Appendix: The GL(n)pack Manual

Kevin A. Broughan
January 19, 2006

§A.1 Introduction

This appendix is the manual for a set of functions written to assist
the reader to understand and apply the theorems on GL(n, R) set
out in the main part of the book. The software for the package is
provided over the world wide web at
http://www.math.waikato.ac.nz/~kab

and is in the form of a standard Mathematica add-on package. To
use the functions in the package you will need to have a version of
Mathematica at level 4.0 or higher.

8A.1.1 Installation

First connect to the web site given in the paragraph above and click
on the link for GL(n)pack listed under “Research” to get to the GL
(n)pack home page. Instructions on downloading the files for the
package will be given on the home page. If you have an earlier
version of GL(n)pack first delete the file gln.m, the documentation
gln.pdf and the validation program glnval.nb. The name of the
file containing the package is gln.m. To install, if you have access
to the file system for programs on your computer, place a copy
of the file in the standard repository for Mathematica packages
- this directory is called “Applications” on some systems. You
can then type <gln.m and then press the Shift and Enter keys
to load the package. You may need administrator or super-user
status to complete this installation. Alternatively place the package
file gln.m anywhere in your own file system where it is safe and
accessible.

Instructions for Windows systems: The package can be loaded
by typing

SetDirectory["c:\your\directory\path"] ;<<gln.m;ResetDirectory[]<Shift/Enter>
or
Get["gln.m",Path->{"c:\your\directory\path"}]<Shift/Enter>

where the path-name in quotes should be replaced by the actual
path-name of directories and subdirectories which specify where
the package has been placed on a given computer.

408

Instructions for Unix/Linux systems: These are the same
as for Windows, but the path-name syntax style should be like
/usr/home/your/subdirectory.

Instructions for Macintosh systems: These are the same as for
Windows, but the path-name syntax style should be like HD:Users:ham:Documents:.

All systems: The package should load printing a message. The
functions of GL(n)pack are then available to any Mathematica note-
book you subsequently open.

8§A.1.2 About this manual

This appendix contains a list of all of the functions available in the
package GL(n)pack followed by a manual entry for each function
in alphabetical order. Many functions contain the transcript of an
example and reference to the part of the text to which the function
relates, as well as lists of related functions. Each function has both
a Mathematica style long name and a 3 letter/digit abbreviated
name. Either can be used, but the error messages and usage infor-
mation are all in terms of the long names. To contain information
about bug fixes and updates to GL(n)pack consult the CUP web
site for the text:http://www.cup.co.uk/goldfeld.

8§A.1.3 Assistance for users new to computers or
Mathematica

On the GL(n)pack web site (see above) there are links giving tu-
torial and other information for those people who want access to
the package but are new or relatively new to computers. The man-
ual entries assume familiarity with Mathematica, so some may re-
quire extra help. Alternatively sit down with someone familiar with
Mathematica to see it at work.

There are many issues to do with computer algebra and mathe-
matical software that will arise in any serious evaluation or use of
Mathematica and GL(n)pack . Suffice to comment on one aspect:
GL(n)pack function arguments are first evaluated and then checked
for correct data type. If the user calls a function with an incorrect
number of arguments or an argument of incorrect type, rather than
issue a warning and proceeding to compute (default Mathematica
style), GL(n)pack prints an error message, aborts the evaluation
and returns the user to the top-level, no matter how deeply nested
the function which makes the erroneous call happens to be placed.
This is a tool for assisting users to debug programs which include
calls to this package.

8A.1.4 Mathematica functions

Each GL(n)pack function is a standard Mathematica function and
so will work harmoniously with built-in Mathematica functions and
user functions. Useful standard functions include those for defining

409

functions (Module and Block for example) list and matrix manipu-
lation and operations(“.” represents matrix multiplication), special
functions (such as the KBessel), plotting functions and the linear
algebra add-on package. Note however that a formatted matrix,
returned by MatrixForm, is not recognized by Mathematica as a
matrix. A matrix in Mathematica is just a list of lists of equal

length.

8A.1.5 The data type CRE: Canonical Rational
Expressions

Many GL(n)pack functions take symbolic arguments which are ei-
ther explicit integers or real or complex numbers (exact or floating
point) or mathematical expressions which could evaluate to num-
bers. These expressions are expected to be in the class sometimes
called “Canonical Rational expressions” or CREs. This class of ex-
pression is defined as follows: members are rational functions with
numerical coefficients and with symbolic variables, any number of
which may be replaced by function calls, or functions which are
not evaluated (“noun forms”) or functions of any finite number of
arguments each of which can be, recursively, a CRE. Some package
functions will accept lists of CRFs or matrices with CRE elements.
This should cover most user needs, but notice it excludes simple
types like matrices with elements which are matrices. (The single
exception is the GL(n)pack function MakeBlockMatrix, which takes
as argument a matrix with matrix elements.) If a user is unsure
regarding the data type of a mathematical expression, the GL(n)
pack function CreQ can be used. See the manual entry.

8A.1.6 The algorithms in this package

The reader who uses this package may notice that many functions
appear to run almost instantaneously, for example MakeBlockMa-
trix or HeckeMultiplicativeSplit. Others however take considerable
time to complete, minutes or hours rather than seconds. This is
often because the underlying algorithm employed is exponential, or
in at least one instance, more than exponential. Improvements in
this completion time are of course possible: The GL(n)pack code is
interpreted, so there may be speed-ups attainable using the Math-
ematica function Compile, even though it has a restricted domain
of application. Existing algorithms could be replaced by faster al-
gorithms. The existing algorithms could be re-implemented in a
compile-load-and-go language such as C++ or Fortran, or an in-
teractive language allowing for compilation such as Common Lisp.
This latter would be the best choice, because execution speed for
compiled code is quite comparable to that of the two former choices,
but its range of data types is vast, certainly sufficient for all of
the package. Functions which will slow significantly as the di-
mension increases include GetCasimirOperator, ApplyCasimirOp-
erator, KloostermanSum, MPSymmetricPowerLFun, and Special-
WeylGroup.

410

8A.1.7 Acknowledgements

I had assistance from Columbia University and the University of
Waikato and a number of very helpful individuals while writing the
package. These included Ross Barnett, Mike Eastwood, Sol Fried-
berg, Jeff Mozzochi and Eric Stade in addition to Dorian Goldfeld,
who’s detailed text and explicit approach made it possible. Their
contribution is gratefully acknowledged.

Kevin Broughan

Hamilton, New Zealand
July 2005

411

§A.2 Functions for GL(n)pack

ApplyCasimirOperator[m,expr,iwa] (aco): The operator acts
on an expression.

BruhatCVector[a] (bcv): The minors (cy, .., ¢p—1).

BruhatForm[a] (bru): The four Bruhat factors of a non-singular
symbolic matrix.

BlockMatrix[a,rows,cols] (blm): Extract a general sub-block
of a matrix.

CartanForm][a] (car): The two Cartan factors of a numeric non-
singular matrix.

ConstantMatrix[c,m,n] (com): Construct a constant matrix of
given size.

CreQle] (crq): Check a Canonical Rational Expression.

DiagonalToMatrix[d] (d2m): Convert a list to a diagonal ma-
trix.

EisensteinFourierCoefficient|z,s,n] (efc): The GL(2) Fourier
series n'' term.

EisensteinSeriesTerm|[z,s,ab] (est): The n'"term of the Eisen-
stein series for GL(2).

ElementaryMatrix[n,i,j,c] (elm): Construct a specified elemen-
tary matrix.

FunctionalEquation[vs, i] (feq): Generate the affine parameter
maps.

GetCasimirOperator[m,n,“x”,“y” “f?] (gco): The operators

for dimension n.
GetMatrixElement|a, i, j| (gme): Return a specified element.

GlnVersion[] (glv): Print the date of the current version.

HeckeEigenvalues[m,n,“a”] (hev): The values of (\;;) for GL(n).

HeckeMultiplicativeSplit[m](hms): Prepare to evaluate a Hecke
Fourier coefficient.

HeckeCoefficientSum[m, ms, “x”](hcs): The right hand side
of the Hecke sum.

HeckeOperator[n, z,“f’] (hop): of n'Morder for square integrable
forms on h™.

HeckePowerSum|e, es,“B”](hps): Exponents for the Hecke sum
at any prime.

HermiteFormLower[a] (hfl): The lower left Hermite form.

412

HermiteFormUpper[a] (hfu): The upper left Hermite form.

IFun[v,z] (ifn): The power function I,(z).

InsertMatrixElement|e,i,j,a] (ime): Insert an expression in a
given matrix.

IwasawaForm([a] (iwf): The product of the Iwasawa factors of
a matrix.

IwasawaXMatrix[w] (ixm): Get the x matrix from the Iwasawa
form.

IwasawaX Variables[w] (ixv): Get the x variables from the Twa-
sawa form.

IwasawaYMatrix([z] (iym): Get the y matrix from the Iwaswa
form.

IwasawaY Variables(z] (iyv): Get the y variables from the Iwa-
sawa form.

IwasawaQ[z] (iwq): Test to see if a matrix is in Iwasawa form.

KloostermanBruhatCell[a,x,c,w,y]| (kbc): Solve a = z.cw.y
for x and y.

KloostermanCompatibility[t1,t2,c,w] (klc): Relations for a valid
sum.

KloostermanSum|[t1,t2,c,w] (kls): Compute an explicit Kloost-
erman Sum.

LanglandsForm[p,d] (lIf): The three matrices of the Langlands
decomposition.

LanglandsIFun(g,d,s) [lif]: Summand for the Langlands Eisen-
stein series.

LeadingMatrixBlock][a,i,j] (lmb): Extract a leading sub-block
of a matrix.

LongElement[n] (lel): Construct the matrix called the long ele-
ment.

LowerTriangleToMatrix[l] (1tm): Construct a lower triangular
matrix.

MakeBlockMatrix[mlist] (mbm): Construct a matrix from sub-
matrices.

MakeMatrix[“x”,m,n] (mkm): Make a matrix with indexed el-
ements.

MakeXMatrix[n,“x”] (mxm): Construct a symbolic unimodu-
lar matrix.

413

MakeXVariables[n,“x”] (mxv): Construct a list of Iwasawa x
variables.

MakeYMatrix[n,“y”] (mym): Construct a symbolic diagonal
matrix.

MakeY Variables[n,“y”] (myv): Construct Iwasawa y variables.

MakeZMatrix([n,“x”,“y”] (mzm): Construct a symbolic Iwa-
sawa z matrix.

MakeZVariables[n, “x”,“y”] (mzv): A list of the x and y vari-
ables.

MatrixColumn[m,j] (mcl): Extract a column of a given matrix.
MatrixDiagonal[a] (mdl): Extract the diagonal of a matrix.

MatrixJoinHorizontal[a,b] (mjh): Form a matrix by joining
two matrices horizontally.

MatrixJoinVertical[a,b] (mjv): Form a matrix by joining two
matrices vertically.

MatrixUpperTriangle[a] (mut): Extract the upper triangular
elements.

MatrixLowerTriangle[a] (mlt): Extract the lower triangular el-
ements.

MatrixRow[m,i] (mro): Extract a row of a matrix.
ModularGenerators[n] (mog): Construct the generators for SL(n,Z).
MPEisensteinLambdas[v] (eil): The \;(v) shifts.

MPEisensteinSeries[s,v] (eis): Minimal parabolic Eisenstein se-
ries.

MPEisensteinGamma(s,v] (eig): Gamma factors for minimal
parabolic series.

MPExteriorPowerGammal|s,v,k] (epg): Exterior power gamma
factors.

MPExteriorPowerLFun[s,v,k] (epl): Minimal parabolic exte-
rior power L-function.

MPSymmetricPowerLFun([s,v k] (spf): Minimal parabolic sym-
metric power L-function.

MPSymmetricPowerGammals,v,k| (spg): Symmetric powers
gamma factors.

NRowsla] (nro): The row dimension of a matrix.

NColumns[a] (ncl): The column dimension of a matrix.

ParabolicQ[p,d] (paq): Test a matrix for membership in a given
subgroup.

414

PluckerCoordinates[a] (plc): Compute the bottom row based
minors.

PluckerInverse[Ms]| (pli): Compute an element in SL(n,Z) with
given minors.

PluckerRelations[n,v] (plr): Compute quadratic relations be-
tween minors.

RamanujanSum|[n,c] (rsm): Evaluate the Ramanujan sum s(n, c).

RemoveMatrixRow][a,i] (rmr): Remove a row of a matrix non-
destructively.

RemoveMatrixColumn|a,j] (rmc): Remove a matrix column non-
destructively.

SchurPolynomial[k,x] (spl): The Schur multinomial Si(z1, - ,z,).

SmithForm[a] (smf): Compute the Smith form of an integer ma-
trix.

SmithElementaryDivisors[a] (sed): Smith form elementary di-
visors.

SmithInvariantFactors[a] (sif): Smith form invariant factors.

SpecialWeylGroup[n] (swg): Weyl integer rotation group with
det 1 elements.

SubscriptedForm][e] (suf) : Print arrays with integer arguments
as subscripts.

SwapMatrixRows[a,i,j] (smr): Return a new matrix with rows
swapped.

SwapMatrixColumnsl[a,i,j] (smc): Return a new matrix with
columns swapped.

TailingMatrixBlock[a,i,j] (tmb): Extract a tailing matrix block.

UpperTriangleToMatrix[u] (utm): Form an upper triangular
matrix.

VolumeFormDiagonal[“a”,n] (vfd): The volume form for di-
agonal matrices.

VolumeFormGIn[“g” ,n] (vfg): The volume form for GL(n).

VolumeFormHn[“x”, %

half plane.

y”,n] (vfh): Volume form for the upper

VolumeFormUnimodular[“x”,n) (vfu): The volume form for
the unimodular group.

VolumeBall[r,n] (vbl): The volume of a ball in n-dimensions.

VolumeHn[n] (vhn): The volume of the generalized upper half
plane.

415

VolumeSphere[r,n] (vsp): The volume of a sphere in n-dimensions.

Wedgelfy, - ,fn] (weg): The wedge product for differential forms
and the d operator.

WeylGenerator|[n,i,j] (wge): Each matrix generator for the Weyl
permutation group.

WeylGroup[n] (wgr): Compute the Weyl group of permutation
matrices.

Whittaker[z,v,psi] (wit): Compute the generalized Whittaker func-
tion Wygcquer symbolically.

WhittakerGammal|v] (wig): Gamma factors for the Whittaker
function Wacquet-

WMatrix[n] (wmx): A variation on the long element matrix with
determinant 1.

ZeroMatrix[m,n] (zmx): The zero matrix of given dimensions.

416

§A.3 Function Descriptions and Examples

B ApplyCasimirOperator (aco)

This function computes the Casimir operator acting on an arbitrary
expression, or undefined function, of a matrix argument in Iwasawa
form, and optionally other parameters, with respect to the Iwasawa
variables, which must be specified by giving the matrix in Iwasawa
form.

To simply compute the operator it is easier to use the function
GetCasimirOperator. Because this function uses symbolic dif-
ferentiation, only functions or expressions which can be differenti-
ated correctly and without error by Mathematica may be used as
valid arguments. Note also that no check is made that the user
has entered valid Mathematica variables. Since all arguments are
evaluated it is good practice to use the function Clear to ensure
arguments which should evaluate to themselves do so. See Propo-
sition 2.3.3, Example 3.4 and Proposition 2.3.5.

ApplyCasimirOperator[m, expr, iwa] — value

where m is positive integer with value 2 or more being the order of
the operator, expr is a Mathematica expression, normally in the
Iwasawa matrix or variables and other parameters, which can be
symbolically differentiated, iwa is a numeric or symbolic matrix
in Iwasawa form, and value is an expression or number being the
result of applying the Casimir operator in the Iwasawa variables to
the expression.

Example

In[1]:= z = MakeZMatri x[3, "x", "y"]

Qut[1]= {{y[1)y[2], x[1, 2]y[1], x[1, 3]}, {0, y[1], x[2, 3]}, {0, O, 1}}

In[2]:= ApplyCasimrQperator[2, Det[z.z], z]

Qit[2]= 12y[1]*y[2]?

In[3]:= L =LongEl enent [3]

Qt[3]= {{0, 0, 1}, {0, 1, O}, {1, O, 0}}

Inf4]:= Sinplify[ApplyCasimrQperator[3, a= |Fun[{vl, v2}, L.z], z]/a]
Qut[4]= 3 (2v1®+3v1?v2+vl (-2+3v2-3v2?%) -2v2 (2-3v2+v2?))

See also: GetCasimirOperator, MakeZMatrix, IwasawaForm, Iwasawa(Q.

B BruhatCVector (bcv)

In the explicit Bruhat decomposition of a nonsingular matrix a, the
diagonal matrix ¢ has a special form, each element being the ratio
of absolute values of minor determinants (¢;) of the original matrix

417

a with the element in the (i,7)"" position being ¢, _;41/c,_; for
2 < i < n—1 with the (n,n)™ element being c; and the (1,1)*,
det(w)det(a)/cp—1. This function returns those ¢;.
See Section 10.3 and Proposition 10.3.6.

BruhatCVector[a] — ¢

a is a non-singular n X n square matrix of CREs,

c isalist of n —1 CREs {c1, - ,cn-1}.

Example:

In[17]:

LE3 = LongEl enent [3];
Bruhat CVector [{{1, 2, 3}, {4, 5, 7}, {7, 8, 9}}, LE3]

Qut[18]= {7, 3}
In[19]:= LE4 = LongEl enent [4]; Matri xFor m[LE4]
Qut[19]// Matri xForme

0 001

0 010

0100

1 000

In[20]: = Bruhat CVector [
{{1, a, b, 3}, {0, 1, b, 1}, {a, 2, 0, b}, {1, 2, 3, 4}}, LE4]

Qut[20]= {1, Abs[2-2a], Abs[3a+2b-2ab]}

See also: BruhatForm, LanglandsForm.

418

BruhatForm (bru)

This function finds the factors of a non-singular matrix, which may
have entries which are polynomial, rational or algebraic expressions,
so that the matrix can be expressed as the product of an upper
triangular matrix with 1’s on the leading diagonal (unipotent), a
diagonal matrix, a permutation matrix (with a single 1 in each row
and column) and a second unipotent matrix. When an additional
constraint, namely, that the transpose of the permutation matrix
times the second upper triangular matrix is lower triangular, then
the factors are unique. This is the so-called Bruhat decomposition.
See Section 10.3 definition 10.3.6. The decomposition is used in
Section 10.6 to derive the fourier expansion of a minimal parabolic
Eisenstein series.

BruhatForm[a] — {u;,c,w,uz}
a is a non-singular square CRE matrix,
u; is an upper triangular unipotent matrix,
c is a diagonal matrix,
w is a permutation matrix,

up is an upper triangular unipotent matrix.

Example:
Inf[1]:= B={{X, Yy, 2z}, {u, v, 0}, {0, 2, 1}}
Qut[1l]l= {{X, VY, z}, {u, v, 03}, {0, 2, 1}}
In[2]:= b =Bruhat For m[B];
In[3]:= Map[MatrixForm b]
15 7 5y 7 (5 -y)+z 00
at[3]l= {|0 1 0 , 0 u ol
0 0 1 0 0 2
See also:

CartanForm, HermiteForm, IwasawaForm, SmithForm, Langlands-
Form.

419

O B c|<

PNk O

BlockMatrix (blm)

This function returns a specified sub-block of a matrix. The entries
of the sub-block must be contiguous.

Block matrices are used in a number of places, but most especially
in Chapter X on Langlands Eisenstein series.

BlockMatrix[a, rows, columns] — b

a is a matrix of CREs,

rows is a list of two valid row indices for a, being the first and last
sub-block rows,

columns is a list of two valid column indices for a, being the first
and last sub-block columns,

b is the sub-block of a with the specified first and last row and
column sub-block indices.

Example:

In[168]:= A= {{4, 8, u, 1, 2}, {8, 7, 2, 0, 1}, {4, 5, 1, 2, 0}};
B={{1, 1, 1}, {1, 4, v}, {2, 2, 2}};

In[170] : = M= Transpose[A]. B; Matri xFor m[M]

Qut[170]// Matri xFor me=
20 44 12 +8v
25 46 18+7v
4+u 10+u 2+u+2v
5 5 5
3 6 2+V

In[171] : = MatrixForm[Bl ockMatri x[M {1, 2}, {1, 3}1]

Qut [171]// Matri xFor m=
20 44 12 +8v
25 46 18 +7v

See also: LeadingMatrixBlock, TailingMatrixBlock, MakeBlockMatrix, MakeMatrix.

420

CartanForm (car)

This function gives a form of the Cartan decomposition of a nu-
meric real non-singular square matrix, namely the factorization
a = k.exp(xz) where k is orthogonal and z symmetric. It follows
that the transpose of an invertible matrix satisfies an

from this
equation

for some orthogonal matrix k, where ‘a is the transpose of a. The
function is restricted to numeric matrices is because eigenvectors

ta = k.a.k

and eigenvalues are used.

CartanForm|[a] — {k, s}

a is a non-singular real numeric square matrix,

k is an orthogonal matrix,

s is the matrix exponential of a symmetric matrix.

Example:

In[84]:

In[88]:=

Qut [88] =

In[89]:=

|

See also:

BruhatForm, IwasawaForm, LanglandsForm, HermiteFormLower,

PrintCartan[g_] : = Mdul e[{ans, k, S},
ans = N[Cartan[g]];
Print [Matri xFor m[First [ans]]];
Print [Matri xForm[Part [ans, 2]]1;
Return[True]]

g={{1, 2, 0}, {0, 2, 33}, {0, O, 13}

{{1, 2, 0}, {0, 2, 3}, {0, O, 1}}

PrintCartan[g]

-0.494923 -0.00367894 -0.868929
0.112604 0.991288 -0.0683336
0. 86161 -0.131665 -0.490196

-0.494923 -0.764638 1.19942
-0.00367894 1.97522 2.8422
-0.868929 -1.87453 -0.695197

HermiteFormUpper, SmithForm.

421

ConstantMatrix (com)

This function constructs a constant matrix with specified element
value.

This function can be used together with other functions to construct
matrices.

ConstantMatrix[c, m, n] — a
c is a CRE,
m is an integer with m > 1,
n is an integer with n > 1,
a is an m by n matrix having each element equal to c.

See also: ZeroMatrix, ElementaryMatrix, MatrixJoinHorizontal, MatrixJoinVertical.

CreQ (crq)

This function checks to see if its argument evaluates to a so-called
Canonical Rational Expression (CRE), i.e. a number (real or com-
plex, exact or floating point) or rational function in one or many
variables with numerical coefficients, where any number of the vari-
ables can be replaced by function calls, including calls to undefined
(so called noun) functions of one or many arguments with argu-
ments being canonical rational expressions. This is the data type
expected by GL(n)pack functions. See the introduction to the Ap-
pendix.

CreQle] — P

e is a Mathematica expression,

P is True if e is a CRE and False otherwise.

Example:
In[93]:= CreQ[{X, Y}]
Qut[93]= Fal se

In[94]:= CreQ["Xx"]

Qut[94] = Fal se

Inf[95]:= CreQ[2X+y/ (X+1+Sin[x+y])]

Qut[95]= True

See also: ParabolicQ, KloostermanSumQ

422

DiagonalToMatrix (d2m)

This function takes a list and constructs a matrix with the list
elements as the diagonal entries.

Diagonal matrices appear in many places, including in the Iwasawa
and Bruhat decompositions.

DiagonalToMatrix[di] — a
di is a non-empty list of CREs,

a is a square matrix of size the length of di, with zeros in off-
diagonal positions, and with the diagonal entries being the
elements of di and in the same order.

See also: MatrixDiagonal.

EisensteinFourierCoefficient (efc)

This function returns the n*" term of the Fourier expansion of an
Eisenstein series for GL(2), with an explicit integer specified for n.
See Section 3.1, especially Theorem 3.1.8.

EisensteinFourierCoefficient[z, s, n]| — v

z is a CRE,
s is a CRE,
n is an integer being the index of the n*® coefficient,

v is a complex number or symbolic expression representing the n"
Fourier term of the Eisenstein Fourier expansion for GL(2)
with parameters z and s.

Example:
In[1]:= Ei sensteinFourierCoefficient[z, s, 4]
outi 1l = 228 (-1 +23°6s) e8inRez] 1S Bessel K[~ L +s, 8Im[z]]/Imz]
(1= (-1 +21-2s) Gamma[s] Zeta[2S]
In[2]:= EisensteinFourierCoefficient[z, s, 0]
Garma[-+ +s]Im[z]'S Zeta[-1+2s
on[z]=|mms+ﬁ [-3 +s]Im[z] [-1+25]

Gamma[s] Zeta[2s]

See also: EisensteinSeriesTerm, IFun, LanglandsIFun

423

EisensteinSeriesTerm (est)

This function returns the term of the Eisenstein series E(z,s) for
GL(2), namely the summand of:

1 y°
E(zs) = - S
(2,5) 2 Z laz + b2

a,b€Z,(a,b)=1

with explicit values for the integers a, b.
See Definition 3.1.2.

EisensteinSeriesTerm|z, s, ab] — v

z is a CRE,
s is a CRE,

ab is a list of two integers {a,b}, at least one of which must be
non-zero,

v is a complex number or symbolic expression representing the
term of the Eisenstein series for GL(2) with parameters z, s, a, b.

Example:

In[1]:= Ei sensteinSeriesTerm[z, s, {3, 4}]
Qut[1] = %Abs[4+32]*zslm[z}S

In[2]:= EisensteinSeriesTerm[z, s, {12, 16}]
Qut[2]= 0

See also: EisensteinFourierCoefficient, LanglandsIFun.

424

ElementaryMatrix (elm)

This function returns a square matrix having 1’s along the lead-
ing diagonal and with a given element in a specified off-diagonal
position.

ElementaryMatrix[n, i, j, c] — e
n is a strictly positive integer being the size of the matrix,

i is a strictly positive integer being the row index of the off-diagonal
entries,

j is a strictly positive integer with i # j, representing the column
index of the off-diagonal entries,

c is a CRE to be placed at the (i,j)*® position,

e is an n by n matrix with 1’s on the leading diagonal and all other
elements zero, except in the (i,j)'" position where it is c.

Example:

In[182]: = Matri xFor mEl ementaryMatrix[4, 3, 1, x]]

Qut[182]// Matri xForme

1 000
0100
x 010
0 0 01

In[183]:= {al, a2, a3, a4}. %

Qut[183]= {al +a3x, a2, a3, a4}

I n[184] :

96 {{b1}, {b2}, {b3}, {b4}}

Qut [184] {{bl}, (b2}, (b3 +blx}, {b4d}}

See also: SwapMatrixRows, SwapMatrixColumns.

425

FunctionalEquation (feq)

This function, for each index i, returns a list of affine combina-
tions of its variables representing the *" functional equation for
the Jacquet Whittaker function of order n > 2.

See Section 5.9, especially equations 5.9.5, 5.9.6 and Example 5.9.7.

FunctionalEquation[v, i] — vp
v is a list of CREs of length n — 1,

i is a strictly positive integer with 1 <i < n — 1 being the index
of the functional equation,

vp is a list of CREs representing the transformations required of
the variables vp for the i*? functional equation.

Example:

In[96]: = Tabl e[Functi onal Equation[{x1, x2, x3, x4}, i1, {i, 1, 4}]

Qut[96] = Hxl, X2, 7%+x3+x4, §7x4}, {xl, 7%+x2+x3, %7x3, 7%+x3+x4},
{—%+x1+x2, %—XZ, —%+x2+x3, x4}, {%—xl, —%+x1+x2, X3, x4}}

See also: Whittaker, WhittakerGamma, WhittakerStar.

426

GetCasimirOperator (gco)

This function computes the Casimir operator acting on an arbitrary
noun function and with respect to the Iwasawa variables. Note
that this function makes an explicit brute-force evaluation of the
operator, so is not fast, especially for n > 3.

See Proposition 3.3.3 and Example 3.3.4.

y”,%“f”] — Operator

GetCasimirOperator|[m,n, “x”

m is positive integer with value 2 or more being the order of the
operator,

n is a positive integer with value 2 or more being the dimension of
the Iwasawa form,

X” is a string, being the name of the symbol such that the vari-
ables in the upper triangle of the matrix given by the Iwasawa
decomposition are x[i, j],

“y” is astring, being the name of the symbol such that the terms in

the first n — 1 positions of the leading diagonal of the Iwasawa
decomposition are

y[1] -y -1, y[1]---yn -2}, y[1].

“f is a string being the name of a function of noun form (i.e. it
should not be defined as an explicit Mathematica function or
correspond to the name of an existing function) which will
appear as partially differentiated by the computed Casimir
operator,

Operator is an expression in the variables
(x[1,j],1 <i<j<n),(y[i],1<i<n-1)

and the partial derivatives of the function with name “f”
with respect to argument slots of f arranged in the order
(X1,1,X1,25+ -+, ¥15- -+, ¥Yn-1)-

Example:

See also: IwasawaForm, ApplyCasimirOperator.

427

In[8]:= suf [GetCasimrOperator[3, 3, "x", "y", "f"]]

Qut[8]= 3yy (-ypf @001 x5 X135, X235, Y1, Y2l +
Y2 £ 00012 x5 X153, X2,3, Y1, Yol +
2y £ (00020 1% 5 X153, X2,3, Y1, Y2l -
y1y2 f @002 %, 50 X153, X3, Y1, Y2l +
2y, £(00200 %, 50 X153, X2,3, Y1, Y2l -
y1y2 f @020 %, 5 X153, X2,3, Y1, Y2l +
4y xq,0f QL1000 1%y 5 X153, X2,3, Y1, Y2l -
2y1ya Xy, 2 f @O x5, X135, X238, Y1, Y2l +
2y1yp2 f 0200001y, 5 X1 3, X2,3, Y1, Y2l +
2y1 X1, 2220000 1%y 5 X153, X2,3, Y1, Y2l +
y1y23f (0200 %) 5 X3, X2,3, Y1, Y2 -
Y1Ya Xy, 22 f @200 1% 5, X1,3, X2,3, Y1, Y2I -
y12y 2 f (020100 %, 5 X3, X2,3, Y1, Y2l +
2y y 2 f B LL00 1y 5 X3, X2,3, Y1, Y2l +
2y1Y22 Xy, 2 f 12000 1%y 5, X135, X2,3, Y1, Y2l +
Y2 £ (20010 % 5, X153, X2,3, Y1, Y2I)

InsertMatrixElement (ime)

An element is inserted into a matrix returning a new matrix and
leaving the original unchanged.

InsertMatrixElement]e, i, j, a] — b
e is a CRE being the element to be inserted,
i is the row index of the position where the element is to be inserted,

j is the column index of the position where the element is to be
inserted,

a is the original matrix of CREs,

b is a new matrix, being equal to a but with e in the (i, j)*® posi-
tion.

See also: DiagonalToMatrix, MatrixJoinHorizontal, MatrixJoinVertical.

428

GetMatrixElement (gme)

The specified element of a matrix is returned.
GetMatrixElement|a, i, j] — e

a is a matrix of CREs,
i is the row index of the element,
j is the column index of the element,

e is the (i,j)*® element of a.

See also: MatrixColumn, MatrixRow, MatrixBlock.

GlnVersion (glv)

This function prints out the date of the version of GL(n)pack which
is being used, followed by the version of Mathematica. It has no
argument, but the brackets must be given.

GlnVersion[] — True

429

HeckeCoefficientSum (hcs)

This function takes a natural number m, a list of natural numbers
{mi, -+ ,mu_1} and a string for a function name and finds the
terms in the sum right hand side

)\mA(mh te amn—l) = Z A(Coml/Ch C17712/02, e aCn—an—l/Cn—l)

where the summation is over all (¢;) such that H?:_Ol ¢; = m and
¢ilmi,1 <i <n—1. See Theorem 9.3.11 and equation 9.3.17.

HeckeCoefficientSum[m, ms, “A”] — s

m is a natural number (i.e. a strictly positive integer) representing
the index of the eigenvalue A,

ms is a list of natural numbers representing the multi-index of the
Fourier coefficient A,

“A” is a string giving the name of a noun function for the Fourier
coefficient,

s is a term or sum of terms being the right hand side of the expan-
sion AmA(my,---).

Example:

In[99]:= HeckeCoefficientSum[6, {12, 4, 5}, "A"]

Qut[99]= A[2, 24, 5] +A[4, 6, 10] +A[8, 12, 5] +A[18, 8, 5] + A[36, 2, 10] +A[72, 4, 5]

See also: HeckeOperator, SchurPolynomial, HeckePowerSum, HeckeEigenvalue.

430

HeckeOperator (hop)

This function computes the n*® order Hecke operator which acts
on square integrable forms on h™.
See Section 9.3, especially formula 9.3.5.

HeckeOperator|[n, z, f] — T, (f(z))
n is a natural number being the order of the operator,
z is a square matrix of CREs of size n,

f is a string being the name of a function of a square matrix of size
n

)

Ta(f(z)) is an expression representing the action of the n'® Hecke
operator on the matrix function f(z).

Example:

In[21]:= z = {{X, x"2, 2}, {1, X, x+1}, {0, 2, x}}

Qut[21]= {{x, X%, 2}, {1, x, L+x}, {0, 2, x}}

In[22]:= HeckeOperator[2, z, "f"]

ut[22]= f[{{x, x4, 2}, {1, x, 1+x}, {0, 4, 2x}}] +
fr{{x, x3, 2}, {1, 2+x, 1+2x}, {0, 4, 2x}}] +
fr{{x, x2, 2}, {2, 2x, 2 (L+x)}, {0, 2, x}}] +
fI{{x, 2+%x% 2+x}, {1, x, 1+x}, {0, 4, 2x}}] +
fL{{X, 2+%X2% 2+x}, {1, 2+x, 1+2x}, {0, 4, 2x}}] +
fr{{2x, 2x%, 43, {1, x, 1+x}, {0, 2, x}}]+
FI{{l+Xx, x+x2, 3+x}, {2, 2X, 2+2x}, {0, 2, X}}]

In[26]:= f[z_]:= Sum[z[[i, i]], {i, 1, Length[z]}]
In[28]:= HeckeQperator[1l2, z, "f"]

Qut[28]= 2804 + 4688 X

See also: HeckeEigenvalue.

431

HeckePowerSum (hps)

This function takes a natural number m, a list of natural numbers
{mi, -+ ,mu_1} and a string for a function name and finds the
powers of any fixed prime in the sum right hand side

)\mA(mh te amn—l) = Z A(Coml/Ch C17712/(32, e aCn—an—l/Cn—l)

where the summation is over all (¢;) such that H?:_Ol ¢; = m and
¢ilmi,1 <1 <n —1in case m and each of the m; is a power of a
fixed prime. The powers that appear in the expansion are the same
for any prime. The purpose of this function is to simplify the study
of the multiplicative properties of the Fourier coefficients.

See Theorem 9.3.11 and equation 9.3.17.

HeckePowerSum]a, as, “B”] — list

a is a non negative integer, being the power a of any prime p such
that p? is the index of the eigenvalue Apa,

as is a list of non negative integers representing the powers of a
fixed prime which appear in the multi-index of a Fourier co-
efficient,

list consists of a sum of terms Blbq i, -+ ,bn_1] such that the
corresponding term in the Hecke sum would have a value

ApP, o).

Example:
In[100] : =
HeckePower Sum[2, {3, 4, 5}, "B"]

Qut [100] =
B[1, 6, 5] +B[2, 4, 6] +B[2, 5, 4] +B[3, 2, 7] +
B3, 3, 5] +B[3, 4, 3] +B[3, 5, 5] +B[4, 3, 6] +B[4, 4, 4] +B[5, 4, 5]

See also: HeckeOperator, SchurPolynomial, HeckeEigenvalue, HeckeCoefficientSplit,

432

HeckeEigenvalue (hev)

This function returns the value of the m'™ eigenvalue of the ring
of HeckeOperators acting on square integrable automorphic forms
f(2) for h™. Note that when the Euler product of a Maass form is
known, the Fourier coefficients which appear in the expressions for
the eigenvalues (the A in A\,;, = A(m,1,---,1)) can be expressed in
terms of Schur polynomials in the parameters which appear in the
Euler product.

See the text Section 9.3, especially Theorem 9.3.11.

HeckeEigenvalue[m, n, a] — Ay
m is a natural number representing the index of the eigenvalue A\,

n is a positive integer of size two or more being the dimension of

GL(n),

a is a string representing the name of a function of n — 1 integers
being the Fourier coefficients of a given Maass form which is
an eigenfunction of all of the Hecke operators.

Am is an expression representing the m*" Hecke eigenvalue.

Example:

In[39]:= HeckeEi genvalue[2*3"4x5"2, 6, "a"]

ait[39]= a2, 1, 1, 1, 1]
(-a[l, 1, 1, 3, 1] +af1, 3, 1, 1, 1

3a[l, 3,1, 1, 1]a[3, 1, 1, 1, 1

(-a[l, 5, 1, 1, 1] +a[5, 1, 1, 1, 1

12+2aj1, 1, 3,1, 1]a(3, 1, 1, 1, 1] -
12+af3, 1, 1, 1, 114
12)

l l

1 1 1

See also: HeckeOperator, HeckeMultiplicativeSplit, SchurPolynomial, HeckePowerSum.

433

HeckeMultiplicativeSplit (hms)

This function takes a list of natural numbers {my,--- ,my,_1}, finds
the primes and their powers that divide any of the m;, and returns
of list of lists of those primes and their powers. The purpose of
this function is the evaluation of the Hecke Fourier coeffients of a
Maass form in terms of Schur polynomials when the Euler product
coeffients of the form are known. If py,--- ,p, are the primes and
ki ; is the maximum power of p; dividing m;, then the Fourier
coefficient

r
]i)ri, kb n—
A(mh"‘,mn—l):HA(pi 'la"'api, 1)'
i=1

See Theorem 9.3.11 and equation 7.4.14.
HeckeMultiplicativeSplit[m] — list

m is a list of natural numbers representing the multi-index of the
Fourier coefficient,

list consists of sublists, each being a prime p; and a list of n — 1
powers of that prime k; j.

Example:

In[98]:= HeckeMultiplicativeSplit[{2*3"2%x5"4, 2"3 %3 x5, 5}]
ut[98]= ({2, {1, 3, 0}}, {3, {2, 1, 03}, {5, (4, 1, 1}}}
See also:

HeckeOperator, SchurPolynomial, HeckeFigenvalue, HeckeCoeffi-
cientSum.

434

HermiteFormLower (hfl)

This function computes the lower left Hermite form h of a non-
singular integer matrix a, and a unimodular matrix [such that
a = I.h. This Hermite form is a lower triangular integer matrix
with strictly positive elements on the diagonal of increasing size,
and such that each element in the column below a diagonal entry
is non-negative and less than the diagonal entry.

See Theorem 3.11.1.

HermiteFormLower[a] — {l, h}

a is a non-singular integer matrix,
1 is a unimodular matrix,

h is a lower triangular integer matrix, being the Hermite form of
a.

Example:

I'n[4]: m = {{5, 2, -4, 7}, {1, 6, 0, -3}, {1, 2, -2, 4}, {7, 1, 5, 6}};

In[8]:= {l, h} =Herm teFornlLower [m4]

Qut [8] {{{-5, -2, -4, 7}, {1, 3, 0, -3}, (-3, -1, -2, 4}, (-4, -4, 5, 6}},

{{241, 0, O, O}, {158, 4, 0, 0}, {35, 1, 1, 0}, {238, 2, 0, 1}}}

In[9]:= Map[MatrixForm %

5 2 4 7 241 0 0 0
i (|1 3 0 -3 158 4 0 0
(o= {| 3 4 5 4| |3 110
4 4 5 6 238 2 0 1
Inf[10]:= |.h-m

ut[10]= {{O, O, O, O}, {O, O, O, O}, {O, O, O, O}, {0, O, O, O}}

See also: HermiteFormUpper, SmithForm

435

HermiteFormUpper (hfu)

This function computes the upper Hermite form h of a non-singular
integer matrix a, and a unimodular matrix [such that a = [.h. This
Hermite form is an upper triangular integer matrix with strictly
positive elements on the diagonal of increasing size, and such that
each element in the column above a diagonal entry is non-negative
and less than the diagonal entry.

See Theorem 3.11.1.

HermiteFormUpper[a] — {1, h}
a is a non-singular integer matrix,
1 is a unimodular matrix,

h is an upper triangular integer matrix, being the Hermite form of
a.

Example:
In[107]: =
m = {{5, 2, -4, 7}, {1, 6, 0, -3}, {1, 2, -2, 4}, {7, 1, 5, 6}};

In[108] : =
Mat ri xFor m[m4]

Qut [108]// Matri xForme=

52 -4 7
16 0 -3
1 2 -2 4
71 5 6

In[109]: =
{I', h} = Hermi t eFor nUpper [m4];

In[110]: =
Map [Mat ri xForm 9%

Qut [110] =
52 -3 -2 1 0 0 144
16 -3 -3 0 1 1 262
{12—2—1’00291}
71 2 -3 0 0 0 482
In[111]: =
l.h-m
Qut[111] =

{{o0, o, o, 03}, {0, 0, 0, O}, {O, O, O, O}, {O, O, O, O}}

See also: HermiteFormLower, SmithForm

436

IFun (ifn)

This function returns the value

n—1ln—1
L,(Z) — H H v, GVj
i=1 j=1

where b, ; = ijif i+ j <nand (n—4)(n—j)ifi+j > n. The
n X n matrix z is real and non-singular, or has CRE elements which
could evaluate to a real non-singular matrix. The variables y; are
those in the Iwasawa decomposition of z.

See Section 2.4, 5.1.1.

IFun(v,z] — v
v is a list of n — 1 CREs,

z is an n x n non-singular matrix of CREs,

v is the product I,(z).

Example:

I n[23] :

m= {{1, x[1, 21, x[1, 3]}, {0, 1, x[2, 3]}, {0, O, 1}}.
{{y[l1yr21, o, 03, {0, y[1], 0}, {0, O, 1}};

In[22]:= Matri xFor m[m]

Qut[22]// MatrixForme
y[11yi2] x[1, 2]y[1] x[1, 3]

0 y[1] x[2, 3]
0 0 1
In[16]:= I Fun[{vl, v2}, m]

Qut[16] = y[l]V1+2V2 y[2J2V1+V2

See also: IwasawaForm, IwasawaY Variables.

437

IwasawaForm (iwf)

This function computes the Iwasawa form of a non-singular real ma-
trix a. This consists of the product of an upper triangular unipotent
matrix z and a diagonal matrix y with strictly positive diagonal
entries such that, for some non-singular integer matrix u, real or-
thogonal matrix o and constant diagonal matrix §, a = w.x.y.0.6.
This function returns a single matrix z = z.y.

See Section 1.2.

IwasawaForm[a] — z

a is a non-singular square matrix of CREs,

z is an upper-triangular matrix with positive diagonal entries, be-
ing the Iwasawa form of a.

Example:

The Iwasawa decomposition of the matrix

(¢ 3

is found.

In[8]:= g={{a, b}, {c, d}};

In[9]:= | wasawaFor m[g]

antel= (GG Sirg) 00 1)

In[12]:= g={{y, X, x"2}, {2y, O, x}, {0, x, 1}};
In[13]:= MatrixForm[l wasawaFor m[g]]

Qut[13]// Matri xForm=

X (2+x-2x2) y 1:x2 2x2
V1:x2 \/x4+4y2:4x2 y2 V1ex2 (x4+4y2:14x2y2) T+x2
4
Tz A2 .
J14x2 1+x2
0 1

See also:
IwasawaQ, MakeZMatrix, IwasawaXMatrix, IwasawaY Matrix, Iwa-
sawaX Variables, IwasawaY Variables.

438

IwasawaXMatrix (ixm)

This function returns the unipotent matrix x corresponding to the
decomposition z = z.y of a matrix z in Iwasawa form.
See Proposition 1.2.6.

IwasawaXMatrix[w] — x

w is a square non-singular matrix of CREs which must be in Iwa-
sawa form,

x an upper-triangular matrix with 1’s on the diagonal and values
X3 in each i, j position above the diagonal.

Example:

In this example the x-matrix, x-variables, y-matrix and y-variables
are extracted from a generic matrix in Iwasawa form.

I'n[23]: m= {{1, x[1, 2], x[1, 31}, {O, 1, x[2, 31}, {O, O, 1}}.

{{yl1l1yI[2], O, 0}, {O, y[1], O}, {O, O, 1}};
In[22]:= Matri xFor m[m]

Qut[22]// MatrixForm=

y[11y2] x[1, 2]y[1] x[1, 3]
0 y[1] X[2, 3]]
0 0 1

In[17]:= MatrixForm[l wasawaXMat ri x[m]]

Qut[17]// Matri xForme

1 x[1, 217 x[1, 3]
0 1 X[2, 3]
0 0 1

In[18]:= |wasawaXVari abl es[m]

Qut[18]= {x[1, 2], x[1, 3], x[2, 3]}

In[19]:= lwasawaYMatri x[m] // Matri xForm

Qut[19]// Matri xForne
y[flryif2y 0 0
1

0 y[il] o
0 0 1
In[20]: = |wasawaYVari abl es[m]

Qut[20]= {y[1], y[2]}

See also: IwasawaForm, IwasawaXMatrix, IwasawaY Variables, IwasawaYMatrix.

439

IwasawaX Variables (ixv)

This function returns the x-variables from a matrix z = z.y in
Iwasawa form. These are the elements in the strict upper triangle
of the matrix « in row order.

See Proposition 1.2.6.

IwasawaX Variables[w] — 1

w is a square non-singular matrix of CREs which must be in Iwa-
sawa form,

1 is a list of the form {x1.2, - ,X1n,X2.3, - ,Xn—1,n}-

See also: IwasawaForm, IwasawaXMatrix, IwasawaY Variables, IwasawaY Matrix.

IwasawaY Matrix (iym)

This function returns the y-matrix from the decomposition z = x.y
of a matrix z in Iwasawa form.
See Proposition 1.2.6.

IwasawaYMatrix[z] — y

z is a square non-singular matrix of CREs which must be in Iwa-
sawa form,

y a diagonal matrix where the it? diagonal slot has the value
y1---¥n_i for 1 <i<n —1 where the (n,n)** position has
the value 1.

See also:
IwasawaForm, IwasawaXMatrix, IwasawaY Variables, IwasawaX Vari-
ables.

IwasawaY Variables (iyv)

This function returns a list of the y-variables from the Iwasawa
decomposition of a matrix z = x.y.
See Proposition 1.2.6.

IwasawaYvariables[z] — L

z is a square non-singular matrix of CREs which must be in Iwa-
sawa form,

L alist {y1, -+ ,yn—1} of the y-variables of the Iwasawa form.

See also:
IwasawaForm,IwasawaY Matrix, IwasawaX Variables,IwasawaX Matrix.

IwasawaQ (iwq)

This function tests a Mathematica form or expression to see whether
it is a non-singular square matrix in Iwasawa form.
See Section 1.2.

IwasawaQ[z] — value

440

z is a Mathematica form,

value is True if z is a matrix of CREs in Iwasawa form, False
otherwise.

See also: IwasawaForm, MakeZMatrix.

441

KloostermanBruhatCell (kbc)

This function takes an explicit permutation matrix w with all other
arguments being symbolic. It returns rules which solve for x and
y in the square matrix Bruhat decomposition equation a = x.c.w.y
assuming c is in “Friedberg form”, x and y are unipotent and y
satisfies tw.'y.w is upper triangular. These rules are not unique.
See Chapter XI, especially Section 11.2. Also 10.6.3.

KloostermanBruhatCell[a,x,c,w,y] — rules

a is a symbol which will be used as the name of an n X n matrix.
x is a symbol which will be used as the name of a unipotent matrix.

c is a symbol which will be used as the name of an array c[i] repre-
sentng a list of n — 1 non-zero integers specifying the diagonal
of a matrix. (Note that the 1st element of the diagonal repre-
sents the term det(w)/c[n — 1], the second ¢[n — 1]/c[n — 2]
and so on down to the last ¢[1] as in the notation of 11.2.1.)

w is an n X n matrix which is zero except for a single 1 in each
row and column, being an explicit element of the Weyl Group
W,.

y is a symbol which will be used as the name of a unipotent ma-
trix which satisfies *w.ty.w is upper triangular making the
decomposition unique, given a.

rules is a list of rules of the form x[i, j] — eij or y[i, j] — eij where
the eij are expressions in the ali, j] and c[i].

Example:

In[29]:= w=Weyl Group[4][[19]]

Qut[29]= {{O0, O, O, 1}, {1, O, O, O}, {O, 1, O, O}, {0, O, 1, O}}

In[30]:= suf [Kl oostermanBruhatCell [a, X, c, W, Y]]

coa cia a
Qut[30]= {X1,2> —2—tb, X35 R, x4 =2,
' %] ' C2 ' C1
Ciap 2 az 3 as, 3
X2,3 = y X2,4 > ——, X34-> ——, ¥1,2-0, y13-0,
Co C1 C1
C2 (Cirap4-2ap384,4) +C18p 2 (-Cq1a34 +3as 3a4,4)
Y1,4 >)
Ci1C3
C1a3,4-3az33d4,4 4,4
Y2,3 >0, Y24~ Y3,4 > }
C2 C1

See also: BruhatForm, BruhatCVector, KloostermanCompatibility, KloostermanSum.

442

KloostermanCompatibility (klc)

This function takes an explicit permutation matrix w, with remain-
ing arguments symbolic, and returns a list of values, each element
being a different type of constraint applicable to any valid Klooster-
man sum based on w. The first element is a list of forms restricting
the characters. The second is a set of divisibility relations restrict-
ing the values of the diagonal matrix c¢. And the third is the set of
minor relations. A typical approach to forming Kloosterman sums
would be to first run this function, determine a valid set or sets
of parameters from the symbolic output, and then run Kloost-
ermanSum using explicit integer values of valid parameters. See
Chapter XI, Proposition 11.2.10, Lemma 10.6.3.

KloostermanCompatibility[t1,t2, ¢, w, v] — {characters, divisibilities, minors}

. Pn— Py
t1 is a symbol representing the character €™ i1 t1Li+1] of U, (R).
t2 is a symbol representing another character of Uy, (R).

c is a symbol representing the diagonal of a matrix in Friedberg
notation. (Note that the 1st element of the diagonal is the
term det(w)/cy_1, the second c,_1/cn_2 and so on down
to the last cq as in the notation of 11.2.1.)

w is an n X n matrix which is zero except for a single 1 in each
row and column, representing an explicit element of the Weyl
Group Wy,.

v is a symbol representing the generic name of any bottom row-
based minor.

characters is a list of expressions relating the elements of t1, t2
and the c;. Each expression must vanish if an explicit Kloost-
erman sum is to be valid.

divisibility is a list of lists each sublist being of the form {c;, 1} or
{ci, cj}. The former means valid sums must have the ¢; = £1.
The latter means they must have c;|c;.

minors is a list of rules of the form v[{j1,j2, - ,ji}] — ¢; or O,
giving the constraints on minors.

Example:

See also: KloostermanBruhatCell, BruhatForm, BruhatCVector, KloostermanSum,
PluckerRelations, PluckerCoordinates, PluckerInverse.

443

In[1861]: =
Mat ri xFor m{w= Wyl G oup[4][[17]]]

Qut[1861]// Matri xFor me
0010

0
1
0

= O O

0 1
00
00
I n[1882] : =

Subscri ptedFormikl c[tl, t2, ¢, w, V]]
Qut[1882] =

cotls cotl,
{57t =57 -2, ({1 c2)y {Ca Call

{(V[{2}] »c1, V[{1}] >0, V{1, 2}] »c2, V[{1, 2, 4}] »c3 V[(1, 2, 3}] >0}}

KloostermanSum (kls)

This function computes the generalized Kloosterman sum for SL(n, Z)
for n > 2 as given by Definition 11.2.2. When n = 2 this coincides
with the classical Kloosterman sum. More generally the sum is

5(91,02,07 ’LU) = Z 91(b1)02(b2)

y=bicwba

where

~ € Un(Z)\SL(n,Z) N G /Ty

and T, = 'w.'U,(Z).wNU,(Z) and G,, is the Bruhat cell associ-
ated to the permutation matrix w. Since these sums are only well
defined for some particular compatible values of the arguments the
user is advised to first run KloostermanCompatibility with an
explicit w to determine those values. Note that the complexity of
the algorithm is O([[;c;<,,_; lci|™) = O(c"”) where ¢ = max|c;].
See Chapter XI. o

KloostermanSum|tl, t2, ¢, w] — value

t1l is a list of n — 1 integers representing a character of Uy, (R).

t2 is a list of n —1 integers representing another character of
U, (R).

c is alist of n — 1 non-zero integers specifying the diagonal of a ma-
trix. (Note that the 1st element of the matrix is det(w)/cn—_1,
the second ¢, —1/cn—2 and so on down to the last ¢; as in the
notation of 11.2.1.)

w is an n X n matrix which is zero except for a single 1 in each
row and column, representing an explicit element of the Weyl
subroup W, of GL(n,R).

value is a sum of complex exponentials being a Kloosterman sum
when it is well defined.

444

Example:

This n = 4 example shows how KloostermanCompatibility should
be run after selecting a permutation matrix. Then Kloosterman-
Sum is called with compatible arguments.

In[37]:= w=Weyl Goup[4][[17]]
aut[371= {{O0, O, 1, 0}, {O, O, O, 1}, {1, O, O, O}, {O, 1, O, 0}}

In[31]:= suf [klc[tl, t2, ¢, w, V]]

cotls
012

cotlg
-t2g, % -t23},

ait[31]= {{

{{c1, c2}, {C3, C2}}, {V[{2}] —>cC1, V[{1}] >0,
V{1, 2}] »ca, V[{1, 2, 4}] >c3, V[{1, 2, 3}] >0}}

In[32]:= kls[{3, 7, 12}, {4, 13, 1}, {3, 3, 3}, w]

Qut[32]= 9e % +8e 3"

445

Example:

This first illustrates commutativity of the LongElement sums (c/f
[Fridberg, 1987, Proposition 2.5]), then Proposition 11.2.4 and fi-
nally is given an example of a classical sum showing it is real.

In[21]:= KkIs[{4, 13}, {6, 7}, {3, 3}, LongEl ement [3]]
Qut[21]= 4+3e 3 +3e %"

In[22]:= kIs[{6, 7}, {4, 13}, {3, 3}, LongEl enent [3]]
Qut[22]= 4+3e 5 +3e 5"

In[23]:= KkIs[{9, 7}, {1, 13}, {3, 3}, LongEl enent [3]]
Qut[23]= 4+3e 3 +3e T

In[40]:= a=klIs[{4, 13}, {6, 7}, {12, 31}, LongEl ement [3]]

i 11ix _17in 17in _25in 25 1 _29in 29 n
Qut[40]= 2@ 188 +e@ 186 + e 18 +2@ 18 +2¢@ 18 +2¢ 18 +2¢ 18 +2 e 18 +

Al bus i irn 47 i n

: n
2e % 1o 1o T 4 2e T 4o W6 +2e I +2e I 4 e W5 4

53 i
eW+2eW+2eTW+@W+2@W+@W+@W+2@TW+

7911/(79 i 83 i nt 83 i xt 91 i 91 i 95 i nt 95 i nt

2@ T +e 6 +e 85 +2e M6 +2e 18 + 186 +2 e I8 +e 186 +
_103irx 103 i 1t 107 i n 107 i 1t 109 i 1t 109 i 1t _113ix
2@W+GW+ZQW+GW+QW+ZGW+QW+
113 i n _115ix 115 i 133 i 1 133 i 1t _139ix 139 i 1t
2@ 18 +2 @ 186 <+ @ 186 4+ em*+2@w+2ewr+@w+
14547 145 i 1t 149 i 1t 149 i 1t _5in 5irn _157inx
e T 12 e W 4o W5 42e W 1o 5 +2e 5 +2e I
157 i n _lsLin 161 i 1 _169ix 169ix 175 i n 175 i 1
26T 12 W 426 I 12 W 4 e I 42 e W6 4 @ 18

In[25]:= b =kls[{35, 25}, {18, 38}, {12, 31}, LongEl enent [3]];
In[26]:= a-b
Qut[26]= O

In[35]:= s =Kl oostermanSum[{24}, {13}, {43}, LongEl enent [2]]

2in 10 10 it 12irx 12in
Qut[35]= e #3 +e’a +2e b +2<el3 +2e a3 +2<e a3 +2<e 3 +2e B+

B 305
2 e 5" +2<e a5 +2e 5" +2(e " +2 e 5 +2e E +2e 4@ 4+

i 32irn 32in i 42 i 42 i
2<e 73 +2e @ +2e B +2e s +2e E " 12e # 42e M@

In[36]:= I mExpToTrig[s]]

Qut[36]= O

See also: BruhatForm, BruhatCVector, KloostermanCompatibility, KloostermanBruhatCell,
PluckerCoordinates, PluckerInverse, PluckerRelations.

446

LanglandsForm (11f)

This function returns a list of the three matrices of the Langlands
decomposition of a square matrix in a parabolic subgroup specified
by a partition of the matrix dimension.

See Section 10.2.

LanglandsForm[p, d] — {u, ¢, m}
p is a square matrix of CRESs,
d is a list of r positive integers of length at most n with sum n,
u is a unipotent block upper triangular matrix,

c is a diagonal matrix with r diagonal blocks each being a positive
constant times the identity,

m is a block diagonal matrix with each diagonal block having de-
terminant +1.

Example:

Inf[1]:= d= {2, 2}; a={{1, 2, 3, 4}, {5 6, 7, 8}, {0, 0, 1, 2}, (O, O, 3, 4}}

Mat ri xFor m[a]

1 2 3 4
5 6 7 8
0 012
0 0 3 4
In[19]:= {u, ¢, m} = Langl andsFor m[a, dJ;
In[20]:= Map[MatrixForm {u, c, m}]
1
100 1, (20 0 0 z 100
01 -2 3 0 2 0 0 2 3 0 0
atf20= {15 6 1 o' |00z o | |00 L vz |}
00 01 00 0 +2 3
V2 00 % 2vZ

In[21]:= MatrixForm[u.c. m]

Qut[21]// Matri xForme

1 2 3 4
56 7 8
0 012
0 0 3 4

See also:ParabolicQ, LanglandsIFun.

447

LanglandsIFun (lif)

This function computes the summand for Langlands’ Eisenstein
series with respect to a specified parabolic subgroup.
See Chapter X, Definition 10.4.5.

LanglandsIFun[g, p, s] — Is(g.z)

g is a non-singular matrix of CREs in the parabolic subgroup spec-
ified by the second argument,

p is a list of r positive integers representing a partition of the ma-
trix dimension,

s is list of r CREs such that > ;_, dis; = 0,
Is(g.z) is the summand for the Langlands Eisenstein series.

Example:

In[20]:

g={{1, x, 3}, {4, 5 x"2}, {0, 0, x+1}},

In[21]:= MatrixForm[g]

Qut[21]// Matri xForme=

1 x 3
4 5 x2
0 0 1+x
In[11]:= d = {2, 1};
In[23]:= Langl andsl Fun[g, d, {1+1, -2-211}]

Q,It[23]— Abs[5,4xll+fl Abs[lJrX]—Z—Zj

See also: LanglandsForm.

448

LeadingMatrixBlock (Imb)

This function extracts a leading matrix block of specified dimen-
sions.

LeadingMatrixBlock|a, i, j] — b
a is a matrix of CREs,
i is a valid row index for a,
j is a valid column index for a,
b is the leading block of a with i rows and j columns.

See also: BlockMatrix, TailingMatrixBlock, GetMatrixElement.

LongElement (lel)

This function constructs the so-called long element of the group
GL(n,Z), a matrix with 1’s along the reverse leading diagonal and
0’s elsewhere. See Chapter V.

LongElement[n] — w

n is a strictly positive integer,

w is an n by n matrix with 1’s down the reversed leading diagonal
and 0’s elsewhere.

Example:

In[267]:= MatrixForm[LongEl ement [4]]

Qut[267]// Matri xFor m=
0

= O OO

1
0
0
0

O oOoOr o

0
1
0

See also: WMatrix, ModularGenerators.

449

LowerTriangleToMatrix (Itm)

This function takes a list of lists of increasing length and forms a
matrix with zeros in the upper triangle and the given lists consti-
tuting the rows of the lower triangle.

LowerTriangleToMatrix[l]] — a

1 is a list of lists of CREs of strictly increasing length representing
the elements of a lower triangular sub-matrix including the
diagonal. The first has length 1 and each successive sub-list
has length 1 more than that preceding sub-list.

a is a full matrix with 0 in each upper triangular position.
Example:

In[185]:= Matri xForm[
Lower Tri angl eToMatri x[
{{a}, {b, c}, {d, e, f}}1]]

Qut[185]// Matri xForm=
a 0o
b c O
d e f

See also: UpperTriangleToMatrix.

450

MakeBlockMatrix (mbm)

This function takes a list of lists of matrices and creates a single
matrix wherein the j** matrix element of the i*" sublist constitutes
the i, j*® sub-block of this matrix. In order that this construction
succeed, the original matrices must have compatible numbers of
rows and columns, i.e. the matrices in each sublist must have the
same number of rows for that sublist and for each j the ;" matrix
in each sublist must have the same number of columns. In spite of
this restriction, the function is a tool for building matrices rapidly
when they have a natural block structure.

MakeBlockMatrix[A] — B

A is a list of lists of equal length of matrix elements, each matrix
having CRE elements,

B is a single matrix with sub-blocks being being the individual
matrices in A.

Examples:

In[101]: =
all =ldentityMatrix[2]; al2 = ZeroMatri x[2, 47;
a2l = Constant Matri x[x, 3, 2]; a22 = Constant Matrix[1, 3, 4];
MakeBl ockMat ri x[{{a22, all}, {a2l, a21}}]

MakeBl ockMatri x::arg3 : The submatrices nust have conpatible row and col unm nunbers.

Qut[103] =
$Abort ed

In[104]: =
MakeBl ockMatri x[{{all, al2}, {a2l, a22}}] // Matri xForm

Qut [104]// Matri xFor me=

1 00 0O00O0
01 000O00O0
x x 1 1 11
x x 1 1 11
x x 1 1 11

See also: ConstantMatrix, ZeroMatrix,LongElement, WeylGroup, Special WeylGroup.

451

MakeMatrix (mkm)
This function returns a symbolic
MakeMatrix[“a”, m, n]| — A

” is a string being the name of the generic symbolic matrix ele-

ment variable ali, j],

“a

m is a strictly positive integer representing the number of rows of
A

)

n is a strictly positive integer representing the number of columns
of A,

A is a symbolic matrix with i, j*® entry ali, j].

Examples:

In[105]: =
MakeMatri x["a", 5, 6] // Matri xForm

Qut [105]// Mat ri xFor m=

a[l, 1] afl, 2] afi1, 3] ajl, 4] aj[l, 5] af[l, 6]
ar2, 11 ajf2, 2] a2, 31 ajf2, 4] ai2, 51 a2, 6]
ar3, 11 a3, 2] a3, 3] a3, 4] aj[3, 51 a3, 6]
a[4, 11 af4, 2] a4, 3] a4, 4] a4, 5] a[4, 6]
a[b, 1] a5, 2] a5, 3] a5, 4] a5, 5] a[5, 6]

See also:

MakeYMatrix, MakeZMatrix, MakeBlockMatrix, ZeroMatrix, Con-
stantMatrix, InsertMatrixElement, WeylGroup, ModularGenera-
tors, LongElement, WMatrix, Special WeylGroup.

452

MakeXMatrix (mxm)

This function returns a symbolic upper triangular square matrix of
given dimension with 1’s on the leading diagonal, i.e. a unipotent
matrix.

See Definition 1.2.3.

MakeXMatrix[n, “x”] — u

n is a strictly positive integer representing the size of the matrix,

“x” is a string being the name of the generic symbolic matrix

element variable x[i, j],

u is an upper-triangular symbolic matrix with 1’s on the leading
diagonal.

Examples:

In[8]:= MatrixForm[MakeXMatri x[4, "x"1]

Qut[8]// Matri xFornme
1 x[1, 2] x[1, 3] x[1, 4]
0 1 X[2, 3] x[2, 4]
0 0 1 X[3, 4]
0 0 0 1
In[9]:= MakeXVari abl es[4, "Xx"]

Qut[9]= {x[1, 2], x[1, 3], x[1, 4], x[2, 3], x[2, 4], x[3, 4]}

In[11]:= MatrixForm[MakeYMatri x[4, "y"1]

Qut[11]// Matri xForne

y[1]ly([2]y[3] 0 0 O
0 y[1]ly[2] 0 O
0 0 y[1l] ©
0 0 0 1

In[12]: = MakeYVari abl es[4, "y"]
Qut[12]= {y[1], y[2], yI[3]}

In[24]:= MatrixForm[MakezZMatri x[4, "x", "y"11

Qut[24]// Matri xFornme

yI11y[2]y[3] xI[1, 2]y[1l]y[2] x[1, 3]y[1l] X[1, 4]
0 y[1]y[2] X[2, 3]y[1] x[2, 4]
0 0 y[1] X[3, 4]
0 0 0 1

MakeZzVari abl es[3, "x", "y"]

Qut[25]= {x[1, 2], x[1, 3], x[1, 4], x[2, 3], X[2, 4], x[3, 4], y[1], y[2], y[3]}

See also: MakeXVariables, MakeYMatrix, MakeY Variables, MakeZMatrix, MakeZVariables.

453

MakeX Variables (mxv)

This function returns a list of the x-variables which appear in the
symbolic generic Iwasawa form of a square matrix of given dimen-
sion.

See Definition 1.2.3.

MakeXVariables[n, “x”] — 1

n is a strictly positive integer representing the size of the matrix,

“x” is a string being the name of the generic list element variable

x[i, j],

1 is a list of the x-variables in order of increasing row index.

See also: MakeXMatrix, MakeYMatrix, MakeY Variables, MakeZMatrix.

MakeYMatrix (mym)

This function returns a symbolic diagonal matrix of given dimen-
sion with values on the leading diagonal being the product of the
y-variables of a matrix expressed in Iwasawa form.

See Definition 1.2.3 and the manual entry for MakeXMatrix.

MakeYMatrix[n, “y”] — d

n is a strictly positive integer representing the size of the matrix,

[y e2s

is a string being the name of the generic symbolic matrix
element variable yl[i] such that the j*! diagonal element is
the product y[1]y[2]---y[n — j].

Yy

d is a diagonal matrix.

See also: MakeXMatrix, MakeXVariables, MakeY Variables, MakeZMatrix.

MakeY Variables (myv)

This function returns a symbolic list of the n — 1 y-variables which
would occur in the Iwasawa form of a matrix of size n X n.
See Definition 1.2.3 and the manual entry for MakeXMatrix.

MakeY Variables[n, “y”] — 1

n is a strictly positive integer representing the size of the matrix,

99

“y” is a string being the name of the generic variable y[i],

1 is a list of the form {y[1],--- ,y[n — 1]}.

See also: MakeXMatrix, MakeXVariables, MakeYMatrix, MakeZMatrix, MakeZVariables.

454

MakeZMatrix (mzm)

This function returns a symbolic upper triangular square matrix of
given dimension being in generic Iwasawa form.
See Example 1.2.4 and the manual entry for MakeXMatrix.

MakeZMatrix[n, “x”,“y”] — u

n is a strictly positive integer representing the size of the matrix,

“x” is a string being the name of the generic symbolic Iwasawa

x-variable x[i, j|,

” is a string being the name of the generic symbolic Iwasawa

y-variable y/[i],

“y

u is an upper-triangular symbolic matrix with i, j*® element having
the form x[i, jly[1] - y[n —j] .

See also: MakeXMatrix, MakeXVariables, MakeYMatrix, MakeY Variables, MakeZVariables.

MakeZVariables (mzv)

This function returns a list of the variables which occur in the
Iwasawa form for a matrix with generic symbolic entries and of
given size.

See the manual entry for MakeXMatrix.

MakeZVariables[n, “x”, “y”] — 1

n is a strictly positive integer representing the size of the matrix,

“x” is a string being the name of the generic symbolic matrix
element x[i, j] with i > j,

“y” is a string being the name of the generic symbolic matrix

element y/i],

1 is a list of the Iwasawa variables with the x-variables first in order
of increasing row index followed by the y-variables:

{x[1,2],--- ,x[1,n],x[2,3],- - ,xn—1,n],y[1], - ,y[n—1]}.

See also: MakeXMatrix, MakeXVariables, MakeYMatrix, MakeY Variables, MakeZMatrix.

MatrixColumn (mcl)

This function returns a given column of a matrix.
MatrixColumn[m, j] — ¢

m is a matrix of CREs.

j is a valid column index for m.

c is the j*P column of m returned as a list.

See also: MatrixRow.

455

MatrixDiagonal (mdl)

This function extracts the diagonal of a matrix.
MatrixDiagonal[a] — d

a is a square matrix of CREs,

d is a list, being the diagonal entries of a in the same order.

See also: DiagonalToMatrix.

MatrixJoinHorizontal (mjh)

This function assembles a new matrix by placing one matrix to the
right of another compatible matrix.

MatrixJoinHorizontal[a, b] — ¢

a is a matrix of CREs,
b is a matrix with the same number of rows as a,

¢ is a matrix with block decomposition ¢ = [a|b].

Example:

In[285]:= A= {{a, b, c}, {d, e, f}}; B={{1, 1}, {2, 2}};

In[292]:= MatrixForm[MatrixJoi nHori zontal [A, B]]

Qut[292]// Matri xForme
abc 11
def 2 2

See also: MatrixJoinVertical.

456

MatrixJoinVertical (mjv)

This function assembles a new matrix by placing one matrix above
another compatible matrix.

MatrixJoinVertical[a, b] — ¢

a is a matrix of CREs,
b is a matrix with the same number of columns as a,

c is a matrix with block decomposition having a above b.

See also: MatrixJoinHorizontal.

457

MatrixUpperTriangle (mut)

This function extracts the elements in the upper triangle, including
the diagonal, of a square matrix and returns a list of lists of the
elements from each row.

MatrixUpperTriangle[a] — t

a is a square matrix of CREs,

t is a list of lists of elements with the it? element of the j*® list

being the (j,i+ j — 1)** element of a.

I n[303] : A= {{a, b, c}, {d, e, f}, {9, h, i}};
In[316]:= Matri xFor m[A]

Qut [316]// Matri xForme=

a b c
d e f
g h i

In[320]: = MatrixUpper Tri angl e[A]

Qut[320]= {{a, b, c}, {e, 1}, {i}}

See also: MatrixLowerTriangle, UpperTriangleToMatrix.

MatrixLowerTriangle (mlt)

This function extracts the elements in the lower triangle of a square
matrix, including the diagonal, and returns them as a list of lists.

MatrixLowerTriangle[a] — t

a is a square matrix of CREs,

t is a list of lists where the it? element of the j*! list represents
the (j,i)*® element of a.

See also: MatrixUpperTriangle, LowerTriangleToMatrix.

458

MatrixRow (mro)

This function returns a given row of a matrix.
MatrixRow[m, i] — r

m is a matrix of CREs,

i is a row index of m,

r is a list representing the i*" row of m.

See also: MatrixColumn.

ModularGenerators (mog)

This function returns a list of two matrix generators for the sub-
group of the group of integer matrixes with determinant 1, i.e.
generators of SL(n,Z).

See Chapter 5, especially Section 5.9.

ModularGenerators[n] — g
n is a positive integer with n > 2,

g is a list of two n by n matrices which will generate SL(n,Z).

Example:

In[174] : = Map[Matri xForm Modul ar Gener at or [6]]

00000 -1, (110000
10000 O 010000
~Jo1000 o0 001000
utl1741= {\5 51 00 o' |00 010 0
00010 0 000010
00001 0 000001

See also: WeylGenerator, WeylGroup, Special WeylGroup, WMatrix, LongElement.

459

MPEisensteinLambdas (eil)

This function computes the functions \;(v) : C*~! — C such that
the L-function associated with the minimal parabolic Eisenstein
series Lg, (s) is a product of shifted zeta values

n
Lp,(s) = [[¢(s = M(w)).
See Chapter X, 10.4.1 and Theorem 10.8.6.

MPEisensteinLambdas[v] — L

v is a list of n — 1 CREs with n > 2 representing complex param-
eters,

L is a list of affine expressions in the elements of v representing
the functions A;(v).

Example:

In[10]:= suf [MPEi senstei nLanbdas[{v[1l], Vv[2], V[3]}]1]

Qut[10] = {7%+3V1+2V2+V3, 7%7V1+2V2+V3,
1

3
7—v1—2v2+v3, 7—v1—2v2—3v3}

See also: MPEisensteinSeries, MPEisensteinGamma, MPExteriorPowerGamma,
MPExteriorPowerLFun, MPSymmetricPowerLFun, MPSymmetricPowerGamma.

MPEisensteinSeries (eis)

This function computes the L-function associated with the minimal
parabolic Eisenstein series F,(z) as a product of shifted zeta values

n

Lp,(s) = H (s = Ai(v)).

See Chapter X, 10.4.1 and Theorem 10.8.6.
MPEisensteinSeries[s,v] — Z

s is a CRE representing a complex number,

v is a list of n — 1 CREs with n > 2 representing complex param-
eters,

Z is a product of n values of the Riemann zeta function at shifted
arguments.

Example:

See also: MPEisensteinLambdas, MPEisensteinGamma, MPExteriorPowerGamma,
MPExteriorPowerLFun, MPSymmetricPowerLFun, MPSymmetricPowerGamma.

460

In[4]:= suf [MPEi sensteinSeries[s, {V[1], V[2]}]1]

Qut[4]= Zeta[l+s-2vy-Vy] Zeta[s+Vy-Vy] Zeta[-1+S+Vy+2Vy]

MPEisensteinGamma (eig)

This function computes the gamma factors for the minimal parabolic
Eisenstein series

Gp,(s) =n"/? HP(S_TW).
=1

See Chapter X, Theorem 10.8.6.
MPEisensteinGamma(s,v] — G

s is a CRE representing a complex number,

v is a list of n — 1 CREs with n > 2 representing complex param-
eters,

G is the gamma factor for the minimal parabolic Eisenstein series
functional equation.

Example:

In[5]:= suf [MPE senstei nGamma[s, {v[1], V[2]1}]]

Qut[5]= 3872 Garma[% (1+s-2vy-vy) |

Gamm[i (s +Vi-Vz)| Gamma| L

> 7(—1+S+V1+2V2)}

See also: MPEisensteinLambdas, MPEisensteinSeries, MPExteriorPowerGamma,
MPExteriorPowerLFun, MPSymmetricPowerLFun, MPSymmetricPower Gamma.

MPExteriorPowerGamma (epg)

This function returns the gamma factors for the k" symmetric L-
function associated with a minimal parabolic Eisenstein series. See
the introduction to Chapter XIII.

MPExteriorPowerGamma(s,v,k] — G

s is a CRE representing a complex number,

v is a list of n — 1 CREs with n > 2 representing complex param-
eters,

k is a natural number k > 1 representing the order of the exterior
power,

G is the gamma factor for the functional equation of the exterior
power.

461

In[9]:= MPExteriorPower Ganma[s, {vl, v2}, 2]

out[9]= s 3s/2 Gamm[% (1+s-vl-2v2)]

Gamm[l (s -vl+v2)] Gamma|

5 (—l+S+2V1+V2)}

N~

Example:

See also: MPEisensteinLambdas, MPEisensteinSeries, MPEisensteinGamma,
MPExteriorPowerLFun, MPSymmetricPowerLFun, MPSymmetricPower Gamma.

462

MPExteriorPowerLFun (epl)

This function returns the k*® exterior power of the L-function of
a minimal parabolic Eisenstein series as a product of zeta values.
See the introduction to Chapter XIII. This function can be used to
show that exterior power L-functions satisfy a functional equation.

MPExteriorPowerLFun(s,v,k] — Z

s is a CRE representing a complex number,

v is a list of n — 1 CREs with n > 2 representing complex param-
eters,

k is a natural number k > 1 representing the order of the exterior
power,

Z is a product of Riemann zeta function values.

Example:
In[7]:= suf [MPExteriorPower LFun[s, {v[1], v[2]}, 2]1]
Qut[7]= Zeta[l+s-vy-2Vvy] Zeta[s-Vvy+Vy] Zeta[-1+S+2Vy+Va]

See also: MPEisensteinLambdas, MPEisensteinSeries, MPEisensteinGamma,
MPExteriorPowerGamma, MPSymmetricPower LFun, MPSymmetricPowerGamma.

MPSymmetricPowerLFun (spf)

This function returns the & symmetric power of the L-function of
a minimal parabolic Eisenstein series as a product of zeta values.
See the introduction to Chapter XIII. This can be used to show
that symmetric power L-functions satisfy a functional equation.

MPSymmetricPowerLFun[s,v,k] — Z

s is a CRE representing a complex number,

v is a list of n — 1 CREs with n > 2 representing complex param-
eters,,

k is a natural number k > 1 representing the order of the exterior
power,

Z is a product of Riemann zeta function values.

Example:

In[6]:= suf [MPSymmetricPower LFun[s, {v[1], v[2]}, 3]]

Qut[6]= Zeta[s] Zeta[l+s-3v;]Zeta[-1+s+3vi]Zeta[l+s-3Vy]
Zeta[3+s-6vy;-3vy]Zeta[2+s-3vy-3Vvy] Zeta[s+3vy-3Vy]
Zeta[-1+s+3vy] Zeta[-2+s+3Vvy+3Vvy] Zeta[-3+s+3Vy+6V3]

See also: MPEisensteinLambdas, MPEisensteinSeries, MPEisensteinGamma,
MPExteriorPowerGamma, MPExteriorPowerLFun, MPSymmetricPowerGamma.

463

MPSymmetricPowerGamma (spg)

This function returns the gamma factors for the k" symmetric L-
function associated with a mimimal parabolic Eisenstein series. See
the introduction to Chapter XIII.

MPSymmetricPowerGamma(s,v,k] — G

s is a CRE representing a complex number,

v is a list of n — 1 CREs with n > 2 representing complex param-
eters,

k is a natural number k > 1 representing the order of the exterior
power,

G is the gamma factors for the k' symmetric power L-function.

Example:

In[8]:= suf [MPSynmmretri cPower Ganma[s, {v[1l], v[2]}, 3]]

out[8] = n’SSGamm[%} Gamm[% (1+s-3vy)]|
[7 1+s+3v1)]Gamm[%(1+573v2)}
i (3+S -6V -3Vy) Gamrai(2+s—3v1—3v2>
2 2
i (s +3vy-3Vy) Garrmai(—1+s+3v2)
2 2
i -2+S+3Vvy +3Vy) Garmal(73+s+3vl+6v2)
2 2

See also: MPEisensteinLambdas, MPEisensteinSeries, MPEisensteinGamma,
MPExteriorPowerGamma, MPExteriorPowerLFun, MPSymmetricPowerLFun.

NRows (nro)

This function gives the number of rows of a matrix.
NRows[a] — m

a is a matrix of CREs,
m is the number of rows of a.

See also: NColumns.

NColumns (ncl)

This function gives the number of columns of a matrix.
NColumns[a] — n

a is a matrix of CREs,
n is the number of columns of a.

See also: NRows.

464

ParabolicQ (paq)

This function tests a square matrix to see whether or not it is in a
given parabolic subgroup as specified by a non-trivial partition of
the matrix dimension.

See Chapter X, especially Section 10.1.

ParabolicQ[a, d] — ans
a is an n X n square matrix with entries which are CREs,
d is list of at most n positive integers with sum n,

ans is True if a is in the specified subgroup and False otherwise.

Example:
Inf1]:= d={2, 2}; a={{1, 2, 3, 4}, {5 6, 7, 8}, {0, 0, 1, 2}, {0, O, 3, 4}}
t[1]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {0, O, 1, 2}, {0, O, 3, 4})

In[2]:= MatrixForm[a]

Qut[2]// MatrixForne
1 2 3 4

5
0
0

oo o
[AI=SEN
AN ©

In[3]: Par abol i cQ[a, d]

Qut[3]= True

In[57]:= a2 ={{1, 2, 3, 4}, {5, 6, 7, 8}, {0, O, 1, 2}, {x, O, 3, 4}}

aut[57]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {0, 0, 1, 2}, {x, O, 3, 4}}

In[58]:= ParabolicQ[al, d]

Qut[58]= Fal se

See also: LanglandsForm, LanglandsIFun.

465

PluckerCoordinates (plc)

This function takes an n X n square matrix and returns a list of
lists of the so-called Pliicker coordinates, namely the values of all
of the bottom j X j minors with 1 <j<n-—1.
See Chapter XI, Section 11.3, Theorem 11.3.1.

PluckerCoordinates[a] — value

a is an n X n matrix of CREs.

value is a list of lists being the values of all of the j x j minor
determinants with 1 < j <n — 1 based on the bottom row
and taking elements from the bottom j rows. The j*® sublist
has the j x j minors in lexical order of the column indices.

Example:

In[31]:= PluckerCoordi nates[{{1, 2}, {4X, 5y}}]

Qut[31]= {{4Xx, 5y}}

In[32]:= suf [Pl ucker Coordi nat es[MakeMatri x["x", 3, 3]]]

Qut[32]= {{Xs31, X3,2, X33},
{-X2,2 X3,1 +X2,1 X3,2, —X2,3X3,1+X2,1X33, —X2,3X3,2+X2,2X33}}

In[33]:= m= {{12, 3, 4, -1, 7}, {3, 0, 2, 1, 0}, {4, 5, 6, 7, 0},
{0, 2, 19, 3, 13}, {1, 2, 3, 4, 5}}; MatrixForm[m]

Qut[33]// MatrixFornF

12 3 4 -1 7
3 02 1 0
4 5 6 7 O
0 2 19 3 1
1 2 3 4 5

In[34]:= plc[m]

ut[34]= ({1, 2, 3, 4, 5}, (-2, -19, -3, -1, -32, 2, 8, 67, 92, 11},
(-45, 9, 37, 153, 374, 51, 99, 412, -1, -578},
(360, 1310, 34, -1462, 414))

See also: PluckerRelations, PluckerInverse, KloostermanSum.

466

PluckerInverse (pli)

This function takes a list of lists of integers, which could be the
Pliicker coordinates arising from a square matrix, and returns such
a matrix having determinant 1. The matrix is not unique but
PluckerInverse followed by PluckerCoordinates gives the iden-
tity, provided the list of lists of integers is compatible, i.e. arises
from some matrix. See Section 11.3.

PluckerInverse[Ms] — a

Ms is alist of n — 1 sublists of integers Mis = {{M3,--- ,Mu}, {My2, -}, -},
representing the Pliicker coordinates of a matrix in lexical or-
der.

a is an integer matrix having those Pliicker coordinates or False
in case they are incompatible.

Example:

In[2162]: =
g = Mbdul ar Generators[4]; a=9g[[1]1]; b=9g[[2]];
m=a.a.a.b.b.b.b.a.b.b.b.a.b.b.a.a.a.b.a.a.a.b.b.b.a.a.b.a.a.a.a.a.a.b;
Mat ri xFor m[m]

Qut[2163]// Matri xFor e
0 -1 -4 -10
O 0 -1 -3
O 0 0 -1
1 8 16 40

In[2164]: =

Ms = pl c[m]
Qut[2164] =

{{1, 8, 16, 40}, {0, O, 1, O, 8, 16}, {0, O, 1, 8}}
I n[2165] : =

a=pli [Ms]; MatrixForm[a]

Qut [2165]// Mat ri xFor nr

0 -1 0 O

0O 0 -1 O

O 0 0 -1

1 8 16 40
I n[2166] : =

pl c[a]
Qut[2166] =

{{1, 8, 16, 40}, (O, O, 1, O, 8, 16}, {0, O, 1, 8}}

See also: PluckerCoordinates, PluckerRelations, KloostermanSum, KloostermanCompatibility.

467

PluckerRelations (plr)

This function computes all the known quadratic relationships be-
tween the minors of a generic square n X n matrix known as the
Pliicker coordinates. See Chapter XI. In case n = 2 there are none
and for n = 3 one. For n > 3 the number grows dramatically. No
claim is made that this function returns, for any given n, a complete
set of independent relationships. By “complete” is meant sufficient
to guarantee the coordinates arise from a member of SL(n,Z).

PluckerRelations[n, v] — relations

n is a positive integer with n > 2.

v is a symbol representing the generic name used for the Plucker
coordinates so v[{iy,--- ,ij}] is the matrix minor based on
the last j rows and the columns indexed by ij,---,i; with
these indices in strictly increasing order.

relations is a list of quadratic expressions with coefficients +1
in the v[{---}]s, which vanish whenever the values of the
v[{--- }|s come from the minors of an n x n matrix.

Example:

In[1]:= PluckerRel ations[3, v]

Qut[1]= {v[{3}]Vv[{L, 23] -v[{2}]VvI[{L1, 3}]+Vv[{1}]Vv[{2Z, 3}]}

In[2]:= PluckerRel ations[4, v]

Qut[2]= {v[{3}]V[{l, 23] -v[{2}]V[{L, 3}]+Vv[{1}]Vv[{2, 3}],
VI{4}IvIi{l, 2}]-v[{2}]VvI[{1, 4}]+Vv[{1}]VI[{2, 4}],
VI{4}]1VvI{L, 3}]-~ V[{3}JV[{1 4}]+V[{1}JV[{3‘ 4311,
VI{431VvI{2, 3}]1-VvI{3}]1VI[{2, 4}]+Vv[{2}]1VI[{3, 4}],
V{1, 4}1vI[{2, 3}]-VvI[{1, 3}] ({2, 431 +Vv[{L, 2}]1VI[(3, 4}],
vI{l, 431vI[{1, 2, 3}]-v[{1, 3}1VvI[{L, 2, 4}]~
V{1, 2}]1VvI{L, 3, 4}], v[{4}1VvI[{1l, 2, 3}]-Vv[{3}]VI[{l, 2
VI{2}1VvI{1, 3, 4}]-Vv[{1}]VI[{2, 3, 4}], v[{2, 4}]1VvI[{L, 2
v[{2, 3}1VvI[{1, 2, 4}1+Vv[{1, 2}1VvI[{2, 3, 4}],
V{3, 4}1vI[{1, 2, 3}]-v[{2, 3}]VvI[{L, 3, 4}]~
V{1, 3}1VvI[{2, 3, 4}], V[{3, 4}1VI[{L, 2, 4}] -
V{2, 4}1VvI[{1, 3, 431 +Vv[{1, 4}1VvI[{2, 3, 4}]}

In[3]:= Map[Function[n, Length[Pl uckerRel ations[n, v]]],

Qut[3] =

{2, 3, 4, 5, 6, 7}]

{0, 1, 10, 47, 160, 458}

See also: PluckerCoordinates, PluckerInverse, KloostermanSum

468

RamanujanSum (rsm)

This function computes the Ramanujan sum s(n, ¢) for explicit nat-
ural number values of n, ¢, namely

s(n,c) = Z ermic,

See Propositions 3.1.4, 3.1.7.
RamanujanSum[n,c] — s

n is a strictly positive integer,
c is a strictly positive integer,

s is an integer being the Ramanujan sum.

Example:

In[27]: = Tabl e[Ramanuj anSum[n, 1] - Mbebi usMu[n], {n, 1, 10}]

Quit[27]= (0, 0, 0, 0, 0, 0, 0, 0, O, O}

In[31]:

Tabl e [Ramanuj anSum[n, 23 n] /Eul er Phi [n], {n, 1, 20}]

(3= (1,1, 1, 1,1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1}

RemoveMatrixRow (rmr)

A given row is removed from a matrix, leaving the original un-
changed.

RemoveMatrixRow[a, i] — b

a is a matrix of CREs,
i is a valid row index of a.

b is a matrix with all rows identical to a except the it® which is
missing.

See also: RemoveMatrixColumn.

RemoveMatrixColumn (rmc)

A given row is removed from a matrix, creating a new matrix and
leaving the original unchanged.

RemoveMatrixColumn|a, j| — b

a is a matrix of CREs,
j is a valid column index of a,

b is a matrix with all columns identical to a except the j*® which
is missing.

See also: RemoveMatrixRow.

469

SchurPolynomial (spl)

This function computes the Schur polynomial in n variables 1, - -+ , x,
with n — 1 exponents kq,---,k,_1, that is to say the ratio of
the determinant of a matrix with i, " element 1 for i = n and

x?l+”+ki_l+n_i for 1 <i < n -1, to the determinant of the ma-

trix which is 1 for ¢ = n and ac;-’fi for1<i<n-—1.
See Section 7.4.

SchurPolynomial[x, k] — Sk (X1, - ,Xn)
x is list of n CREs,
k is a list of n — 1 CREs,

Sk(X1, -+ ,Xn) is the Schur polynomial.

Example:

In[4]:= SchurPolynom al [{X, vy, z}, {a, b}]

X2+a+b (yl+a _ Zl+a) 4 yl+a Zl+a (yl+b _ Zl+b> + Xl+a (_y2+a+b + 22+a+b)

Qe X-y) x-2) (y-2)
In[5]:= SchurPol ynom al [{1, X, x*2, x"3}, {2, 2, 2}]
Qut[5]= x® (L-x+x2)% (L+x+x2)> (1 +x3+x5)

In[6]:= SchurPol ynom al [{1, x"2, x, x"3}, {1, 2, 3}]

Qut[6]= X° (1+x+x?)
(1+2x+4x%2+7x3+10x%+13x5+17x8+19x7 +21x8+22x%° +
21 x10 + 19 x1 + 17 x12 + 13 x13 + 10 x™ + 7 x5 + 4 x16 4 2 x17 4 x18)

See also: HeckeMultiplicativeSplit.

470

SmithForm (smf)

This function returns the Smith form diagonal matrix d of a square
non-singular matrix a with integer entries. This matrix d satis-
fles 0 < d;; and d;; | diy1441 for all « < n — 1. It also returns
unimodular matrixes [, r such that a = l.d.r.

See Theorem 3.11.2.

SmithForm[a] — {1, d, r}
a is non-singular integer matrix,
1 is a unimodular matrix,
d is a diagonal matrix, being the Smith Form of a,

r is a unimodular matrix.

Example:

The Smith form of a 4 by 4 matrix is computed and the result
checked.

Inf[4]:= md = {{5, 2, -4, 7}, {1, 6, O, -3}, {1, 2, -2, 4}, {7, 1, 5, 6}};
{I, s, r} =SmthForm[mi]
{{{5, -4, 186, -233}, {1, 0, O, O3, {1, -2, 89, -11}, {7, 5, -178, 22}},

{{1, o0, 0, 03}, {0, 1, O, O}, {O, O, 1, O}, {O, O, O, 964}},
{{1, 6, 0, -3}, {0, -49, 1, 41}, {0, 118, 0, 1}, {0, 1, O, 0}}}

Map [Matri xForm %4

5 -4 186 -23 1 00 O 1 6 0 -3
1 0 0 0 010 O 0 -49 1 41

{ 1 -2 89 -11}7 (001 O |" |0 118 0 1 }
7 5 -178 22 0 0 0 964 0 1 0 O

l.s.r -nd

{{o0, o, o, 0}, {0, 0, 0, O}, {O, O, O, O}, {O, O, O, O}}

See also: SmithElementaryDivisors, SmithInvariantFactors, HermiteFormLower,
HermiteFormUpper.

471

SmithElementaryDivisors (sed)

This function computes the elementary divisors of a non-singular
n x n integer matrix a, i.e. for each j with 1 < j <n, the ged d;(a)
of all of the j x j minor determinants. If s; is the jth diagonal entry
of the Smith form then s; = d;(a)/d;—1(a).

SmithElementaryDivisors[a] — 1
a is a non-singular n x n integer matrix,

1 is a list of the n Smith form elementary divisors of a in the order
{di(a), -, dn(a)}.

See also: SmithForm, SmithInvariantFactors, HermiteFormUpper, HermiteFormLower.

SmithInvariantFactors (sif)

This function computes the invariant factors of the Smith form of
a non-singular integer matrix a. These are all of the prime powers
which appear in the diagonal entries of the Smith form of a.

SmithInvariantFactors[a] — 1

a is an n X n non-singular integer matrix,

1 is a list of prime powers.

See also: SmithForm, SmithElementaryDivisors, HermiteFormUpper, HermiteFormLower.

472

Special WeylGroup (swg)

This function, for each natural number n, returns the group of nxn
matrices with each entry being 0 or 1, and having determinant 1.
There are 2" 'n! such matrices.

See Sections 6.3 and 6.5.

SpecialWeylGroup[n] — g
n is a natural number representing the matrix dimension,

g is a list of n X n matrices representing the Weyl group.

Example:

In[3]:= w=Speci al Wyl Group[3];

In[4]:= Map[MatrixForm w]
1 00 1 0 O 1 0 O 10 O

Qut[4]= { o010}, /0 O 2,0 -2 01, |0 0 -1
0 01 0 -1 0 0 0 -1 01 O
01 0 010 0 10 0 1 0
1 0 0 |, [0 o1y, |-1 0 0], 0 0 -1
0 0 -1 1 00 0 01 -1 0 O
0 01 0 01 0 0 1 0 0 1
10 0|, 0O 10|, (-1 0o 0, |0 -1 0
010 -1 00 0 -1 0 1 0 0
-1 0 O -1 00 -1 0 O -1 0
0O 1 0 |, [0O 0 1/, 0O -1 0], { 0 0
0 0 -1 0 10 0 0 1 0 -1
0 -1 0 0 -1 0 0 -1 0 0 -1
1 0 0], O o0 1f,|-2 0 O0¢{, |0 O
0 0 1 -1 0 O 0O 0 -1 1
0 0 -1 0 0 -1 0 0 -1 0 0
1 0 O |, {0 1 01, |-1 0 0|, 0 -1
0 -1 0 10 O 0 1 0 -1 0

In[5]:= Map[Det, w]

Qut [5] {1, 1, 1,1, 1,1,1,1,11,1, 1,11 1,1,1, 1,

In[7]:= Lengt h[Speci al Wyl G oup[5]] - 2745

ut[7]= 0

1, 1, 1, 1, 1, 1)

See also:WeylGroup, WMatrix, WeylGenerator, ModularGenerators, LongElement.

473

SubscriptedForm (suf)

This function takes a Mathematica expression and prints it out in

such a way that subexpressions of the form x[ny,ng, - -

the n; are explicit integers, are printed in the style

Xnj,nz, - ,n-

,], where

The value of this function is for improving the look of expressions

for inspection and should not be used otherwise.

Compare the

Mathematica function MatrixForm. Not all expressions can be sub-

scripted using this function.
SubscriptedForm[e] — f

e is a Mathematica expression,

f is a subscripted rendition of the same expression.

Example:

I n[2395] : =
a = MakeMatrix["Xx", 4, 4]

Qut [2395] =
{{x[1, 17, x[1, 2], x[1, 3], x[1, 4]},
{x[3, 1], x[3, 2], xX[3, 3], x[3, 41},

I n[2396] : =
Subscri pt edFor m[a]

Qut [2396] =
{{X1,1, X1,2, X1,3, X1,4}, {X2,1, X2,2, X2
{X3,1, X3,2, X3,3, X3,4}, {Xa 1, X4,2, Xa

In[2397]: =
Mat ri xFor m[%

Qut [2397] // Mat ri xFor e
X1,1 X1,2 X1,3 X1,4
X2,1 X2,2 X2,3 X2,4
X3,1 X3,2 X3,3 X3,4
X4,1 X4,2 X4,3 Xg,4

I n[2398] : =

3 X2,4},
.3, X4,4}}

b=x[0, 2, -4] +f [y[1] -3%y[2]]/ (x[1, 2, 3] +y[3]);

In[2399]: =
Subscri pt edFor m[b]

Qut [2399] =
fly:1-3y2]

Xo,2, -4 +
Y3 +X1,2,3

474

SwapMatrixRows (smr)

Two rows of a matrix are exchanged creating a new matrix and
leaving the original unchanged.

SwapMatrixRows]a, i, j] — b
a is a matrix of CREs,
i is a valid row index for a,
j is a valid row index for a,

b is a matrix equal to a except the i*? and j*® rows have been
exchanged.

See also: SwapMatrixColumns, ElementaryMatrix.

SwapMatrixColumns (smc)

Two columns of a matrix are exchanged creating a new matrix and
leaving the original unchanged.

SwapMatrixColumnsla, i, j] — b
a is a matrix of CREs,
i is a valid column index for a,
j is a valid column index for a,

b is a matrix equal to a except the i*" and j*® columns have been
exchanged.

See also: SwapMatrixRows, ElementaryMatrix.

TailingMatrixBlock (tmb)

This function returns a tailing matrix block of specified dimensions
leaving the original matrix unchanged.

TailingMatrixBlock[a, i, j] — b
a is a matrix of CREs,
i is a positive integer less than the number of rows of a,
j is a positive integer less than the number of columns of a,
b is the tailing block of a with i rows and j columns.

See also: LeadingMatrixBlock, BlockMatrix.

475

UpperTriangleToMatrix (utm)

This function takes a list of lists of strictly decreasing length and
forms a matrix with zeros in the lower triangle and with the given
lists constituting the rows of the upper triangle. The length of the
matrix is the length of the first sub-list. The last sub-list has length
1 and each successive sublist has length one less than the preceding
sub-list.

UpperTriangleToMatrix[u] — a

u is a list of lists of CREs of decreasing length representing the
elements of an upper triangular sub-matrix including the di-
agonal.

a is a full matrix with 0 in each lower-triangular position.

See also: MatrixUpperTriangle, LowerTriangleToMatrix.

476

VolumeFormDiagonal (vfd)

This function computes the differential volume form for the set of
diagonal matrices
n
/\ dai,
i=1

where the product is the wedge product.
See Sections 1.4 and 1.5.

VolumeFormDiagonal[“a”, n] — Form

“a” is a string which will be the name of a one-dimensional array
symbol,

n is a positive integer representing the dimension of the form,

Form is the diagonal volume form based on the variables ali].

See also: VolumeFormGln, VolumeFormHn, VolumeFormUnimodular.

VolumeFormGln (vfg)

This function computes the differential volume form for the matrix
group GL(n,R) using the wedge product.
See Sections 1.4 and 1.5 and Proposition 1.4.3.

VolumeFormGlIn[“g”, n] — Form

” is a string which will be the name of a two-dimensional array

symbol,

“g

n is a positive integer representing the dimension of the matrices,

Form is the diagonal volume form based on the variables gli, j].

Example:

In[62]:= Vol umeFornd n[g, 2]

dig[l, 1]]d[g[l, 2]]~d[g[2, 1]] ~d[g[2, 2]]
(-g[1, 2] 9[2, 1] +9g[1, 119[2, 2])?

Qut [62]

See also:VolumeFormHn, VolumeFormDiagonal, VolumeFormUnimodular.

477

VolumeFormHn (vfh)

This function computes the differential volume form for the gener-
alized upper half plane.
See Definition 1.2.3 and Proposition 1.5.3.

VolumeFormHn[“x”, “y”, n] — Form

2

“x” is a string which will be the name of a two-dimensional array

symbol,

“y” is a string which will be used as the name of a one-dimensional

array symbol,

n is a positive integer representing the dimension of the matrices
which appear in the Iwasawa decomposition,

Form is the volume form based on the variables x[i, j], y[j].
Example:

In[60]:= Vol umeFor mHn["x", "y", 3]

dix[1, 2] +d[x[1, 3]]~d[x[2, 3]]~d[y[1]]d[y[2]]

Qut [60] =
[60] yi113y2)3

See also:VolumeFormGln, VolumeFormDiagonal, VolumeFormUnimodular.

VolumeFormUnimodular (vfu)

This function computes the differential volume form for the group
of unimodular matrices, i.e. real upper-triangular with 1’s along
the leading diagonal.

See Sections 1.4 and 1.5.

VolumeFormHn[“x”, n] — Form
“x” is a string being the name of an array symbol,

n is a positive integer representing the dimension of the matrices,

Form is the volume form based on the variables x[i, j].
Example:

In[57]: = Vol unmeFor mUni nodul ar [x, 3]

Qut[57]= d[x[1, 2]]~d[x[1, 3]]1d[x[2, 3]]

See also: VolumeFormHn, VolumeFormDiagonal, VolumeFormGln.

478

VolumeBall (vbl)

This function computes the volume of an n-dimensional ball with
given radius.

VolumeBall[r, n] — Vol

r is a CRE representing the radius of the ball,
n is a positive integer, being the dimension of the ball,

Vol is the n-dimensional volume of the ball.

Example:

In[342]:= {Vol umeSphere[r, 3], Vol uneSphere[r, 5]}

87T2I’4}

Qut[342]= {47r?, 3

In[343]:= {VoluneBall [r, 3], VoluneBall [r, 5]}

4 r3 87‘(2I’5}

Qut[343]= { 3 15

See also:VolumeSphere, VolumeHn.

VolumeHn (vhn)

This function computes the volume of the generalized upper half-
plane using the volume element VolumeFormHn.
See Example 1.5.2 and Proposition 1.5.3.

VolumeHn[n] — Vol

n is an integer with n > 2 representing the order of the upper half-
plane, being the size of the matrices appearing in the Iwasawa
form,

Vol is a real number.

See also: VolumeBall, VolumeSphere.

VolumeSphere (vsp)
This function computes the n-dimensional volume of the sphere S™
in R+

VolumeSphere[r, n] — Vol

r is a CRE being the radius of the sphere,
n is the dimension of the sphere,

Vol is the volume of the sphere computed using n-dimensional
Lebesgue measure.

See also: VolumeBall, VolumeHn.

479

Wedge,d

This function computes the Wedge product of any finite number
of functions or differential forms in an arbitrary number of dimen-
sions. It works with the differential form operator d. Note that
these functions have a different construction from others in GL
(n)pack , and have limited error control. An alternative to the
function Wedge is the infix operator which may be entered into
Mathematica by typing a backslash, and open square bracket, the
word “Wedge” and then a closing square bracket. It prints like cir-
cumflex, but is not the same. Note that wedge products of vectors
are not currently supported

See Sections 1.4, 1.5, 5.6, 5.7 and 5.8.

Wedgelfy, f2, ..., f,] — value
f; is an expression or a form,

value is the wedge product of the functions or forms f;.

Example:

In this example the function Wedge is used in conjunction with the
differential form generator function d. Note that symbols, such as
a, can be declared to be constant explicitly by setting, d[a] = 0.
In[64]:= Wedge[ad[x] +bd[y], ud[x]+vd[y]]

Qut[64]= -bud[x]sd[y] +avd[x]d[y]

In[65]:= d[a] =0; d[b] =0; d[c] =0;

Inf68]:= (ad[x]+bd[y])» (Exp[ax]d[y])

Qut[68]= ae?*d[x]d[y]

In[69]:= d[%

Qut[69]= O

In[71]:= d[ay d[x] +bd[y] + cxd[z]]

Qut[71]= -ad[x]d[y] +cd[x] ~d[Z]

In[72]:= d[x"4]

ut[72]= 4x3d[x]

See also: VolumeFormGln, VolumeFormHn.

480

WeylGenerator (wge)

This function returns a set of matrix generators for the Weyl sub-
group of the group of integer matrixes with determiant +1, which
consists of all matrices with exactly one £1 in each row and column.
A single call returns a single generator. See Chapter VI.

Also see the manual entry for Special WeylGroup.

WeylGenerator[n,i,j] — g

n is a positive integer with n > 2,
i is a positive integer with i < n,
j is a positive integer with i # j < n,

g a matrix with 1’s along the leading diagonal and zeros elsewhere,
except in the (i,)*® position where the value is -1 and (j,1)*®
position where the value is 1 and where the corresponding
(i,1)*" and (j,j)*" diagonal elements are 0.

Example:

In[168]: = Matri xFor m[Weyl Gener ator [5, 2, 3]]

Qut[168]// Matri xForme

10 0 0O
00 -1 00
01 0 0O
00 0 10
00 0 01

See also: ModularGenerators, LongElement.

WeylGroup (wgr)

This function returns, for each whole number n, a list of all of the
Weyl group of n by n permutation matrices.
See the proof of Proposition 1.5.3.

WeylGroup[n] - {m17 ms, - 7mk}
n is a positive integer with n > 1,

m; is a matrix with a single 1 in each row and column.

Example:

In[5]:= Map[MatrixForm Wyl Group[3]]

1 00 1 00 010 010 0
t[s5]= {{0 1 0}, /OO0 1|, |1 00| (001} |1
0 0 1 010 0 0 1 1 00 0

See also: WeylGenerators, SpecialWeylGroup, LongElement.

481

Whittaker (wit)

This function computes a symbolic interated integral representatin
of the generalized Jacquet Whittaker function Wyacquer (also writ-
ten W) of order n, for n > 2, as defined by Equation 5.5.1. See
Proposition 3.4.6, Section 3.4, Equation 5.5.1 and Equation 5.5.5.
The algorithm uses the recursive representation of the Whittaker
function defined by Stade [Stade, 1990, Theorem 2.1] related to that
used in the book as follows. Let Wg and W§ be Stade’s Whittaker
and Whittaker starred functions respectively and let I' represent
the gamma factors for either form. Then

Q«Wi=T«W;=W;=Ws

where
n—1
—/
Q = Iu(y)]A,’
Jj=1
n—j
Hi = Tj,k>
k=1
k+j—1 .
(TLV,L') 7
T; = — =
J.k 2 2
i=k

Whittaker[z, v, m, u] — {coef, char, gam, value}
z is an n X n non-singular CRE matrix,
v is a list of n — 1 CREs,
m is alist of n — 1 CREs (m;) representing a character ¢y, (x) = ezﬂi(plsiSn—l Mn—i+1Xiit1))

u is a symbol which will be used to form the dummy variables in
the iterated integral,

coef is the coefficient ¢, ;m, defined in Proposition 5.5.2,

char is the value of the character ¢y, (x) for z = x.y the Iwasawa
form,

gam is a product of terms as returned by WhittakerGamma,

value is a symbolic expression being the value of the Whittaker
function at My where z = x.y with parameters v and char-
acter t1,1,1,..,1. In this expression the K-Bessel function at

a complex argument and parameter K, (z), is represented by
the noun function K[v, z].

Example:

482

In[19]:= Whittaker [{{y, 0}, {0, 1}}, {v}, {m}, w]
ZFVW\/MK[f% +V, 27y Abs[m]]

Gamma [V] }

Qut[19]= {Abs[m ™V, 1, 7 Ganma[v],

In[1]:= Wittaker [ldentityMatrix[6], {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, u]

4998263614010039534235859662310294189453125
8192 592

||

1+ ur3
(57, 2t 3y 7

10 u[4] 10"

Qut[1]

(1, 1,

268435456 %2

LLLL

[E 2r7u[l]ul4] }
10’ uf2] u[5]

271\/(1+u[1]2) (1+ 2=) ul4]

uisj]
K[%, 2 1+uu[é2]J2u[5}] du[2] du[1] K[22_5,
27 |1+ u[;z]K[%‘?, 2n¢<1+u[3]2> {1+ u[i]z)}
K[%‘rl, 27T\/(1+u[4}2) (1+ u[;}z]}
K[%Ei, 27T\/(1+u[5}) (1+ u[é}z]}
K[%S—,Zﬂ 1+u[612}d1u[6]d1u[5]du[41du[3]/

4998263614010039534235859662310294189453125}

See also: WhittakerGamma.

WhittakerGamma (wig)

This function returns the gamma factors for the generalized Jacquet
Whittaker function. See Definition 5.9.2. Note that although this
definition differs from that in [Stade, 1990], the gamma factor that
it represents is the same.

WhittakerGamma|v] — value

v is a list of n —1 CREs which, if any are numerical, satisfy
Rv; > 1/n.

value is an expression, being the product of the gamma factors for
the Whittaker function of order n.

See also: Whittaker.

483

WMatrix (wmx)

This function returns the so-called w-matrix, with (—1)1"/2 in the
(1,n)" position and 1 in every other reversed diagonal position, a

member of SL(n,Z).
See Section 5.5.

WDMatrix[n] — w
n is a strictly positive integer with n > 2.

w is an n by n matrix with each element 0, except the (1,n)*®

which is (—1)!*/2) and every (i,n —i+ 1)* which is 1 for
2<i<n.

Example:

In[2]:= Map[MatrixForm Map[Wvatrix, {2, 3, 4, 5, 6}]]

00 1, (90991 (0001

Qut[2] = 0 -1 01 0 0010 0010
(2= {(; o 1o 100/

10 0 1000 0100

1000

See also:LongElement.

ZeroMatrix (zmx)
This function returns a zero matrix of given dimensions.
ZeroMatrix[m,n] — Z

m is a strictly positive integer representing the number of matrix
rOws,

n is a strictly positive integer representing the number of matrix
columns,

Z is a zero matrix with m rows and n columns.

See also: ConstantMatrix.

484

O OO OoR
O OO0OOoOOo

oL OO0OO0OOo

O oOoORFr OO0Oo

O oO0OOoOkr oo

O OO or o

I
AN

O O o oo

