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Abstract

In this paper, we investigate the method ol stacked generalizalion in
combining models derived from different subsets of a training dataset by
a single learning algorithm, as well as different algoritlims. The simplest
way to combine predictions from competing models is Hajority vote,
and the effect of the sampling regime nsed to generate training subsets
has already been studied in this context- when bootstrap samples are
used the method is called bagging, and for disjoint samples we call it
dagging. This paper extends these studies to stacked genceralization,
where a learning algorithm is employed to combine the models. This
yields new methods dubbed bag-stacking and dag-stacking.

We demonstrate that bag-stacking and dag-stacking can be effective
for classification tasks even when the training samples cover just a small
fraction of the full dataset. Iu contrast Lo carlier bapging results, we
show that bagging and bag-stacking work lor stable as well as unstable
learning algorithms, as do dagging and dag-stacking. We find that hag-
stacking (dag-stacking) almost always has higher predictive accuracy
than bagging (dagging), and we also show that bag-stacking models
derived using two different learning algovithms is more effective than
conventional hagging,.
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1 Introduction

Wolpert (1992) proposed stacked generalization as a general method of using
a high-level model to combine lower-level models to achieve greater predictive
accuracy. Although it has met with some success for regression tasks (Breiman,
1996a), its application to classification tasks has been limited. However, very
recently we have successfully applied stacked generalization to classification
tasks (Ting & Witten, 1997), a domain in which a significant amount of re-
search on model combination had previously been restricted to such simple
methods as majority vote and weight averaging,

The term bagging refers to the use of majority vote to combine multi-
ple models derived from a single learning algorithm using bootstrap samplés
(Breiman, 1996b). Another, which we call dagging, is similar but uses disjoint,
samples rather than bootstrapping. The present paper investigates the use of
a learned model instead of majority vole to combine the individual models,
thereby adopting the framework of stacked generalization. We call the vesult-
ine methods bag-stacking, in which bootstrap samples are used as training data
(or the individual models, and dag-stackang, which uses disjoint samples.,

Breiman (1996h) conclnded that hagging only works witl unstable learning
algorithms such as decision tree learners. In contrast, our results show that
bagging and bag-stacking (and also dagging and dag-stacking) both work with
stable learning algorithms too —they can work well when the individual models
are derived from just a small fraction of the full dataset. The implication of
these results is that models can be derived much more quickly (becanse less
training data is used), and that the methods of bagging and dagging, as well
as bag-stacking and dag-stacking, apply to more learning algorithms than was
previously thonght.

This paper concentrates on comparing Lhe predictive accuracy ol bagging,
with bag-stacking, and dagging with dag-stacking, when used to combine mod-
cls derived by a single learning algorithm and by two different learning algo-
rithms. Section 2 formally introduces the notions of bagging, dagging, bag-
stacking and dag-stacking. Scction 3 reports results obtained when stacking,
models derived by a single learning algovithm, and Section 4 examines the
stacking of models derived by two different learning algorithins. Section 5 dis-
cnsses some further issues, followed by related work and a snmmary ol onr

conclusions.



2 Bagging, Dagging, Bag-Stacking and Dag-
Stacking

Giiven a training dataset £ = {(yn,4n),n = 1,..., N}, where y, is the class
value of the nth instance and w,, is a vector representing its attribute values,
we consider subsets of samples produced by one of two samnpling regimes:

bootstrap samples — randomly sample £ with replacement into
I subsets of size NV, where N < N';

disjoint samples — randomly sample £ without replacement into
I disjoint subsets of size N, where AN < N'.

Use some learning algorithn to derive A models M. from the subsets. The
learning algorithm is called a level-0 generalizer, and the resulting models are
level-0 models. The baggimg method (Breiman, 1996h) uses majority vote to
combine the classification outpnts of models derived from hootstrap samples.
The method that we call dagging uses the same majority vote to combine the
outputs of models derived from disjoint samples.

Now, instead of majority vote, let ns consider the use of a higher-level
learning algorithm to combine the level-0 models in the spirit of stacked gener-
alization (Wolpert, 1992; Ting & Witten, 1997). However, unlike the previous
implementations of stacked generalization, we do not employ cross-validation
to generate the higher-level data. Tnstead, we nse £ as a fest set for each of Che
L models—despite the fact that snbsets of £ were nsed to train those models.
Supposce that there are T ontput classes, and let pyi() denote the probability
that the Ath model assigns to the ¢th class given the test instance . The
vector

P = (e Gen)s oo sy )y ooy ()

oives the kth model’s class probabilities (or the ath instance, and at the end
of the testing process, the data assembled from the output of the A models is

L': o {('.Un-. l'r}lrn' Sy ‘!:’f{uu L | !’.-'\'u)s'” — I! -4';\'”}'

This is called level-1 data.' Use a learning algovithm, which we call the lenel-1

generalizer, Lo derive aanodel M Lhal predicts the class Trom this level-1 data.
M is called the level-1 model. '

ISee Appendix A for an alternative way in which level-1 data can he obtained for stacked

peneralization.




To classily a new instance, the level-0 models My, are used to prodnce a
veetor (,n”, SPULs ooy Phlsoos PlIs <oy DKLy s PKT) which is input to the level-
I model M, and t]lv ontput of M is the final classification resnlt for that
instance. To estimate cach method’s predictive accuracy we always use a
completely separate test dataset 7.

Depending on the sampling strategy nsed to produce the data from which
the level-0 models are derived, we call this implementation of stacked general-
ization bag-stacking ov dag-stacking (bootstrap/disjoint. samples aggregation
by stacking).

The following subscctions deseribe the level-0 and level-1 generalizers used
in this paper.

!

2.1 Level-0 Generalizers

Two learning algorithms are used at level 0: CLS, the well-known decision
tree learner (Quinlan, 1993), and NI, a re-implementation of a naive Bayesian
classifier (Cestnik, 1990). Only unpruned trees are derived from C4.5 since,
as Breiman (1996D, 1996d) discovered, agpregation from hagged models seems
to eliminate overfitting.? 1t is necessary for our scheme that the level-0 gen-
eralizers produce output class probabilities /() for any instance (where,
in all cases, ¥; Ii(x) = 1), and we now oxhibit the formulas that are used to
estimate this.

C4.5: Consider the leal of the decision tree at which the instance @ falls. Let
m; be the number of (training) instances with class ¢ at this leal, and

suppose the majority class al the leal is [. Lot 7 = 2ipi M- Then
1941
Pila) sl e,
P 1T

Pi(x) = (1 — Pj(x)) X 1:%{, fori+# I

NB: Let P(ia) be the posterior probability ol class 7, given instance . Then

ey = i)
Fil) = So Pla]r '

20Our experiments confirm this.




In both cases the class that the level-0 model predicts for an instance « is that
I for which

Pj(x) > Pi(a) for all 7 # I.

Breiman (1996D) claims that bagging can only improve the predictive ac-
curacy of learning algorithms that are unstable, where an “nnstable” learning
algorithm is one for which small perturbations in the training set can produce
large changes in the derived model. C4.5 and NI are unstable and stable re-
spectively, which enables ns to investigate hag-stacking, and dag-stacking under
hoth conditions.

In Section 3, only one learning algorithm —cither CL.5 or NB-—is used to
derive all of the level-0 models. Tn Section 4, hoth are used together.

2.2 The Level-1 Generalizer

We previously discovered that stacked generalization works well when aomnlti-
response linear regression algorithm, MLR, i used as Lhe level-1 generalizer
(Ting & Witten, 1997). Consequently we use the same method for both bag-
stacking and dag-stacking,.

MLR is an adaptation of a least-squares linear regression algorithm that
Breiman (1996a) used in regression settings. Any classification problem with
roal-valued attributes can be transformed into a multi-response regression
problem. If the original classification problem has [ classes, it is converted
into I separate regression problems, where the problem for class € has instances
with responses equal to one when they have class ¢ and zero otherwise.

The input to MLR is level-1 data. The lincar regression for class € is simply

K i
,'f,h’;-(_f.') = Z Z (\',i..i',p;_.,(.'f').
k=1 i=1
Choose the coefficients {ayi} to minimize
ST e = 20 D Cricpkila)
(4t JeL I 1

The cocflicients {age} are constrained to he non-negative. This is accom-
plished by using a constrained least-squares alporithm described by Lawson &
Hanson (1995) to derive non-negative regression coeflicients for each class.




Table 1: Datasets nsed in experiments

[Dataset | Training  Classes Attributes  Test
instances munber type instances
DNA 2000 3 GO nominal 1186
Satellite 4435 6 36 continuons 2000
Letters 15000 26 16 continuons 5000
Shuttle 43500 7 0 continuons 14500

We are now in a position to describe the working of MLR. To classify a
new instance x, compute LR (x) for all 1 classes and assign the instance to
that class ¢ which has the greatest value:”

LRu(x) > LRu(x) for all ¢ # .

3 Stacking models derived by a single learning
algorithm

We now describe experiments to investigate bag-stacking and dag-stacking of
models that are derived by a single learning algorithm. The fonr datasets used
are the moderate to large ones used in the Statlog project. (Michie et al., 1994)
and also by Breiman (1996h, 1996d); they are summarized in Table 1. Iach
includes separate training and test sets. Small datasets are not used because
we want to investigate models derived from only a fraction of the original
dataset.

The following subscctions compare the predictive error rate of bagging to
that of bag-stacking, and dagging to that of dag-stacking. We vary the data
size N from which level-0 models are derived, and also the munber v of level-0

models that are combined together.

3.1 Bag-Stacking

For cach dataset, parts of the training dala £ are used Lo devive models and
the entirely separate test set 7 is used Lo assess their ervor rate.

Phe pattern recognition community calls this type of elassifier o lincar machine (Duda
& Hart, 1973).

G




Table 2: Error rates when hagging and hag-stacking 4.5 models

Dataset N K=5 K'=10 N =20 K =560
g Ly s EH s o I35 Ey  FEps
DNA 100 14.7 8.5 9.6 5T G.5 5.4 6.4 6.0
200 13.9 8.8 9.6 5.7 78 4.9 6.9 5.3
400 9.1 8.6 6.5 (.3 4.9 4.8 4.8 4.4
800 8.2 7.1 6.0 6.0 56 5.4 5.0 5.0
2000{ 5.8 6.5 7.0 6.0 (.0 4.9 4.9 4.8 5.0
Satellite 100 20.1 19.2| 17.7 169 169 15.6] 164 14.2
200 16.9 16.3| 16.2 15.5| 158 14.1| 15.6 13.8
400 15.6 149 149 13.7] 14.2 13.5| 13.5 12.9
800 14.4 14.0f 13.2 12.9| 12.6 12.0| 12.9 12.1
4435| 14.8| 13.3 13.2| 11.5 11.6| 11.9 11.8 11.2 11.0
Letters 100 52.1  43.0 43.2 34.1 36.6  28.6
200 45.0  36.8 35.2 28.71 20.8 245
400 34.9 3021 27.7 24.2[ 232 204 NA NA
800 277 244 21.8 19.7] 184 16.5
1600 20.1 18.2 16.4 15.6] . 14.5 13.3
15000( 12.9] 10.3 9.9 8.6 8.4 7.5 Z.1
Shuttle 400 0.510 0.517| 0.586 0.462| 0.614 0.393| 0.559 0.276
800 0.517 0.428] 0.510 0.379] 0.497 0.283| 0.510 0.234
1600 0.345 0.310] 0.372 0.179] 0.366 0.172] 0.310 0.097
3200 0.276 0.179] 0.200 0.131] 0.193 0.117| 0.179 0.090
43500 0.48] 0.021 0.021| 0.028 0.007| 0.021 0.007 0.028 0.014

E. is the error rate of a single model derived from all of £;
Ep is the error rate of bagging;

Epg is the error rate of hag-stacking.

Tables 2 and 3 show these ligures for the level-0 generalizers CAL.5 and NB
respectively. The values ol £y are determined nsing the entive training set. £
to form a single model. Tn Table 2, which nses C4.5, Fg is the testing error
rate of i pruned tree; as noted carlier, unpruned trees are nsed elsewhere, The
following fonr columns give £ and gy for =15, 10, 20 and 50, based on
level-0 models each derived from just. N instances of the training set £, for




small values of N and for N = N'. The size ol the samples nsed is indicated in
the first column. Results for A = 50 are not available for the Letters dataset
because they take too long to compute (see Section 5).

For cach dataset, bold [ace is used to indicate ervor rates that are lower
than the value ol Ft,, the same level-0 classifier trained on the entire dataset.
In addition, underlining is used to compare the results with the value of Ep
Chat was obtained nsing the largest values for Aand N, that is, with A = 50
level-0 models (A = 20 for the Letters dataset) each trained using the size of
the full dataset (N = N').

The figures in bold show the remarkable vesult that both bagging and bag-
stacking can achieve better predictive accuracy than a single model der lV('LI
nsing the entire dataset — even when their level-0 models are derived from
a small fraction of the dataset. This is apparent in the DNA and Satellite
datasets when combining C4.5 models, and i all datasets when combining
NB models. In almost all cases, bag-stacking yields superior performance to
hageing.

Now turn attention to the underlined figures. It is apparent when bagging
and bag-stacking C4.5 models that the error rate tends to decrease as the
training size N increases —as one might expect. However, the evidence when
bageing and bag-stacking NB models is mixed. While l.]u' expected trend is
followed in the DNA dataset, in the Satellite dataset the error seems to inerease
with N. In the Letters dataset, the ervor demonstrates a U-shape trend as N
increases. Nonetheless, in almost all cases the predictive error rates of both
bageing and bag-stacking decrease when N increases,

Tn bagging and hag-stacking C1L.5 models, the lowest error rate is achieved
by bag=stacking models derived using acsmall fraction of the Tnll DNA - dataset.
In the other three datasets, the lowest error rate is achicved by bag-stacking
models derived nsing the size of the full dataset. Tn bagging and bag-stacking
NI3 models, the lowest ervor vate is achieved by bag-stacking models dervived
using a small fraction of the full dataset in all Tonr datasets.

A comparison between Breiman’s hagging results and owrs appears in Ap-

pendix 3.

3.2 Dag-Stacking

This section compares two methods of combining dagged models. As in the
above investigations, all error rates ave calenlated using, the test set. 7, which



Table 3: Error

rates when bhageing and bag-stacking NIB models

9

[ Datasct N K=85 A=10 | ~K=20 K =50
Eg Ep  Epy Ly 1Ips 'y Iips Ep  Epg
DNA 100 12.8 7.8 10.5 7.1 9.0 5.8 9.9 4.8
200 | 6.3 8.7 6.0 8.4 D 9.5 4'9
400 3% | 4.8 5.2 . 5.3 4.1 5.2 4.1
800 4.6 4.4 4.8 4.3 4.8 3.8 4.7 3.6
2000 4.2 3.9 4.2 4.0 4.2 4.5 3.6 4.4 3.7
Satellite 100 20.7 18.8] 20.9 16.1| 21.0 16.4| 20.7 15.2
200 21.8 19.5| 21.1 17.6|] 21.5 16.4| 20.8 15.2
400 23.5 20.7| 22.7 17.1] 22.5 16.7| 21.0 15.1
800 22.7 20.4| 22.9 20.5 23.1 20.0f 23.0 19.3
4435 23.3| 234 21.6] 23.2 21.1] 23.3 21.2| 23.1 20.9
Letters 100 G5.0  47.2] 57.8 3910 47.7 304
200 0.8 34.5 42.6 29.1| 37.7 24.4
- 400 43.3  31.11 399 28.4 38.0  25.06 NA NA
800 503 30,9 302 204 379 271
1GO0 a0 314 38.0 30.8] 37.5 28.7
15000/ 38.7 37.4 33.1] 37.7 32.6] 37.5 32.1
Shuttle 400 8.000 7.621| 8.179 7.6G14| 8.152 7.593| 8.124 6.628
800) 7.945 6.317| 8.048 6.310] 8.159 6.366| 8.076 6.297
1600 8.117 T7.290( 8.145 7.248| 8.097 7.041 8.028 6.3606
3200 8.641 7.27G| 8.090 7.145| 8.303 7.097| 8.221 6.531
43500[ 9.745] 9.545 ()_8_{_]'1 0.297 6.759( 9.407 6.724( 9.455 6.724]




Table 4: Bagging, dageing, bag-stacking and dag-stacking C4.5 models
Dataset - " Es| By Eps| Ep Epg)
DNA N=100, K=20 (.5 5.4 8.3 5.4
N=200, K=10 9.6 5.7 7.8 5.6
N=400, k=5 9.1 8.6 7.6 6.0
all data 5.8

Satellite N=100, K=44 [G.2  14.5 1G.0  14.7
N=200, Ix=20 IN.8 1.1 5.2 13.4
N=400, K=10 14.9 1:3.:if 14.0 14.4
N=800, k=5 14.4 14.0 14.9 14.2
all data [41.8

Letters  N=400, k=20 23.2 204 239 21.0
N=800, k=10 21.8 19.7 21.0 18.6
N=1600, Ix=5 20.1 18.2 20.6 18.4
all data 12.9

Shuttle N=400, Ix=50 0.559  0.276 | 0.510 0.297
N=800, K=50 0.510 0.234 | 0.517 0.207
N=1600, Ix=20 036G 0.172 [ 0.345  0.172
N=3200, Ix=10 0.200 0.131 ] 0.221 0.172
all data (.048

is entirely separate from the training data £.

Iy is the error rate of dagpging;

Epg is the error rate of dag-stacking.
2, 5 b

The figures Es, I2p and Epg from the previous subsection are also included, for
comparison. Results are tabulated in Table 4 for C4.5 models and Table 5 for
NB models. The first column indicates the values of I and N used—because
subsets are disjoint for dagged models it is necessary that A’N < N’ in all

Cases.

10

In order to reduce the number of tests that had to be done, Fg, Fp and
I s figures from the previous work were re-used by choosing A = 5, 10, 20, 50
subsets of N = 100, 200, 400, 800, 1600, and 3200 instances wherever possible.
For the DNA dataset, the 2000 training instances were split into 20, 10, and




Table 5: Bagging, dagging, bag-stacking and dag-stacking NI3 models

Datasct Iy I s - _E;) 191y
DNA N=100, K=20 9.0 5.8 10.5 5.0
N=200, K=10 87T 60| 58 4.8
N=400, K=5 5.4 4.8 4.8 4.7
all data 4.2
Satellite  N=100, K=44 208 1LY 207 150
N=200, k=20 2.5 16.4 21.5 17.4
N=400, [x=10 22.7 17.1 22.2 20.0
N=800, IKx=5 22 204 23.9 20.2
all data 23.3 ,
[ Letters N=400, K=20 380 25.6| 38.0 245
N=800, k=10 3 e 32.06 37.7 28.6
N=1600, K=5 38.0 314| 384 31.2
all data 37.8
Shuttle  N=400, K=50 8,124 6.628 | 8.062 6.324
N=800, K=50 307G 6.297 | 7.966  7.021
N=1600, [x=20 S.097 0 70410 | 79100 6.607
N=3200, k=10 Q090 T7.145 | 8.028 (.821
all data 9.745

5 equal subsets. For the Satellite dataset, 4400 of the 4435 training instances
were split into <4 subsets, and 4000 of them were split into 20, 10, and 5
subsets. For Letters, only half ol the training data was nsed, and split into
20, 10, and 5 subsets. For the Shuttle data, 20,000 and 40,000 of the 43,500
(raining instances were split into 50 subsets, and 32,000 of them were split into
20 and 10 subsets.

Examination of the values of /) and Epg in the final column of both
tables reveals that dag-stacking, like bag-stacking, almost always yields a lower
predictive error rate than dagging. However, comparing bag-stacking with dag-
stacking, Fpg vs Epg, gives no clear indication of either method being superior
to the other. The same is true when comparing bagging with dagging, Eg vs
E,').

11




Summary

Summarizing the conclusions from these experiments, we find that

e stacking using MLR almost always yields lower predictive error rate than
majority vote when combining cither bagged or dagged models;

e bag-stacking and dag-stacking have comparable predictive accuracy, as
have bagging and dagging;

e when using bagging or bag-stacking, it is sometimes better to use only a
small fraction of the entire dataset to derive the models;

e bagging, dagging, bag-stacking and dag-stacking all work well with both
unstable (i.e., C4.5) and stable (i.c., NB) learning algorithms.

4 Bag-stacking models derived by two differ-
ent algorithins

In this section, we investigate bag-stacking models derived using both C4.5
and NDB, and compare the predictive error rate to that of hagging. Table G
shows the result of bagging and bag-stacking when the same number of models
was generated by C4.5 and NB. The final two colmuns give the corresponding
fipures when only one learning algorithim is nsed.

These results reveals an important feature of bagging: unless the predictive
error rate of the base models is [airly close, bagging does not improve aceu-
racy. This is apparent in the last three datasets. Here the difference in ervor
rate £y between C4.5 and NB is large, and in cach case the performance of
hageing models derived [rom heterogenons level-0 generalizers falls far short
ol that for the better ol the two homogencons cases. On the other hand, in
the DNA dataset the heterogencons model outperforms the hetter of the two
homogeneous models hecause the difference in error rate is mnch smaller. This
accords with the results of Ting & Witten (1997) when combining three difler-
ent, types of learning algorithms using majority vote. Although bag-stacking
suflers from the same problem, it does so Lo a fae smaller extent as the last
three datasets show.

To Murther investigate this phenomenon, we tried combining unequal num-
hors of models derived from CALS and NB using, diflerent vadues of N, so long




Table G: Bagging and bag-stacking level-0 models from different learning al-
gorithms

C4.5 and NB C4.5 NB
Dataset E‘” E;;_»; ) .E;; Enlg EB Eﬂ_ﬂ,‘
DNA N=100, K=20x2 6.0 48 6.3 5.7 9.9 5.2
N=200, K=10x2 4.6 3.3 7.8 4.9 8.4 5.3
6.3 5.2 4.7

N=400, K=5x2 1.9 4.1 6.5
Satellite N=200, K=20x2 18.4 14.7 | 15.7 143 2L.7 17.2
N=400, K=10x2 20.1 14.5 | 14.2 135 | 225 16.7
N=800, K=5x2 18.4 13.2( 13.2 129 229 20.5
Letters  N=800, K=10x2 206.1 182 184 16,5 | 379 27.1
N=1600, K=5x2 26.0 182 164 15.6 | 385 308
Shuttle  N=1600, K=10x2 | 3.310 0.172 | 0.366 0.172 | 8.097 7.041
N=3200, K=10x2 | 3.407 0.124 | 0.193 0.117 | 8.303 7.097

a5 Lthe two homogencons cases yield comparable performance. Two datasels,
in which combining heterogenous models performs worse than combining ho-
mogeneous models, are used for this investigation: Satellite and Letters. We
refer to Tables 2 and 3 Lo choose the values of A and N, sneh that the two
homogeneous cases have comparable performance. In both datasets, we choose
the best performing bagging and bag-stacking NB models, i.e., A = 50 and
N = 100 for the Satellite dataset, and L = 20 and N = 200 for the Let-
ters dataset. Then, choose the comparable performing CoLo-derived models:
N = 10, and N = 100 to 800 for the Satellite dataset, and N = 200 to 1600
for the Letters dataset. In these settings, the performances of the two ho-
mogencous cases are closer in bag-stacking than in bagging. Thus, we expect.
bag-stacking heterogenous models wonld yield better predictive acenracy in
more cases than in bageging.

The results are shown in Table 7. With bagging (l£3), the error rate for
the heterogeneons C4.5/NB model is lower than that for both homogeneous
models in just one case (N = 200 in the Letters dataset) where the difference
in error rates are small. With bag-stacking (/7p¢), the heterogeneous model
yields lower predictive evror rates than hoth of the homogencons ones in all

r

cases. These results conlivm onr expectation.

13




Table 7: Bagging and bag-stacking diflerent numbers of level-0 models from
two learning algorithms

C4.5 NB 4.5 and NB

Dataset En FEps| Fy Eps| Epn Eps

Satellite KN =10 KN=50 | AN =10+50

N=100 17.7 16.9 | 20.7 15.2 | 20.2 14.0

N=200 16.2  15.5 20.0 14.0

N=400 14.9  13.7 19.9 132

N=800 13.2 12.9 19.7 12.6

Letters KN =10 N =20 N =10+ 20
N=200 35.2 287377 244 131.5 225 ;

N=400 277 24.2 ZATINS 19.8

N=800 21.8 197 24.6 17.5

N=1600 | 16 15.6 20.9 14.8

5 Discussion

When the full dataset is nsed to generate cach level-0 model, onr results for
bagging are in agreement with those of Breiman (199Gh)  bagging increases
the predictive accuracy of unstable learning algorithms but not stable ones.
However, when just a small proportion of the data is used to generate level-0
models, we find that bagging can improve the predictive accuracy of stable
learning algorithms too. Although this is in accordance with the results of
two studies of base-line hehavior of a different kind of dagging (Ting & Low,
1997; Ting & Witten, 1997), which uses rather diflerent. model combination
methods than majority vote, it contradicts the conventional wisdom that “the
more data the better.” It certainly has significant implications for learning
time: since each level-0 model uses much less training data, it can be obtained
much faster.

Like bagging and dagging, bag-stacking and dag-stacking are ideally suited
to parallel processing becanse cach level-0 model can be constructed indepen-
dently. Morcover, because it uses the MLR method, level-1 learning can also
henefit from parallelism. For a /-class problem, the regression for each class
can be carried ont independently on [ C'PUs,

The execution time of MLR depends on the number of classes involved as
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Figure 1: Computation time for MLRY

well as on the training set size. When A models are combined in a J-class
problem, the mumber of attributes for level T data is AT and the regression
algorithm must be exeented 7 times. Figure | shows the exeeution time of
MLR for the four datasets on a Sun SPARCserver 1000 machine. In Letters,
which has 26 classes, exceention time inereases dramatically with the nmmhber
ol models. The inerease is little more than linear for A up to 50 in the other
three datasets, where the maximum number ol classes is seven.

It. might be thought obvious that bag-stacking (or dag-stacking) will out-
perform bagging (or dagging) becanse the additional level-1 learning inevitably
provides more information than a mere majority vote. However, not any learn-
ing algorithm is suitable for the level-1 generalizer. Ting & Witten (1997) show
that of four learning algorithms tested; only MLR performs satisfactorily (the
other three were C4.5, NB and 1B1), and its level-1 data must consist ol joint,
output class probabilities of level-0 models, i.c., £,

Our results in this paper provide further evidence, apart from our earlier
results (Ting & Witten, 1997), that our implementation of stacked general-
ization has its general applicability and can be easily incorporated into the
existing model combination framework by merely replacing the existing level-1
combination method with level-1 model derived from MLR using £.

Finally, like dagging, dag-stacking has a natural application to on-line
learning.



6 Related Work

The rescarch reported in this paper was inspived by Breiman (1996h, 1996d), as
well as by our own work (Ting & Witten, 1997). Breiman (1996h) introduces
the idea of bagging, and Breiman (1996d) also shows that combining models
(using majority vote) derived using a small fraction of the entire dataset gives
accuracy better than that of a single model derived using the entire dataset.
Our contribution here is to show that stacking these procedures generally works
even better than combining them using majority vote.

Although Wolpert introdunced stacked generalization as long ago as 1992,
Ting & Witten (1997) were the first to show how to make it work in classifica-
tion tasks. The key is the use of output class probabilities of level-0 models ds
level-1 data, and the use of MLR as the level-1 generalizer. The present paper
incorporates this framework, except that cross-validation is not used (details
of the differences between implementations are sminmarized in Appendix A).
Other work on stacked generalization in classification tasks has either had a
more limited focus or evaluated the results on just a few datasets (LeBlanc
& Tibshirani, 1993; Chan & Stollo, 1995; Kim & Bartlett, 1995; FFan et al.,
1996).

Several researchers have investigated various methods ol combining mod-
els produced by a single learning algorithmm from the entire dataset. Different
models have heen found by varying the learning parameters (Hansen & Sala-
nion, 1990; Perrone & Cooper, 1993; Kwok & Carter, 1990; Buntine, 1991;
Oliver & Hand, 1995; Kononenko & Kovacic, 1992) and by using different
sampling methods (Freund & Schapire, 1996; Ali & Pazzani, 1996). Tech-
niques used to combine the individual models include (weighted) majority
vote, weighted averaging, Bayesian combination, distribution summation, and
likelihood combination. None of this work uses a learning algorithm to perform
level-1 learning,.

Ting & Low (1997) study the base-line hehavior of dagging empirically.
Theoretical work on dagging includes Kearns & Seung (1995) and Meir (1994).

7 Conclusions and future work
This paper shows how stacked generalization can be successfully applied to
combine bagged or dagged models derived from a single or multiple learning

algoritluns. Stacking using MLR almost always yields a lower predictive error
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rate than majority vote when combining either bagged or dagged models. Both
bag-stacking and dag-stacking work for stable as well as nnstable learning
algorithms, even nsing subsets which cover only a small fraction of the full
dataset to derive the level-0 models.

When combining models derived from different learning algorithms, it is
necessary that the models perform comparably in order to gnarantee increased
predictive accuracy throngh bagging or bag-stacking. However, hag-stacking
is more tolerant than bagging of differences in level-0 performance.

Dagging (dag-stacking) has been shown to be comparable to bagging (bag-
stacking). This finding opens up an application of dagging and dag-stacking
to on-line learning where data constantly arrives in hatches.

One can also apply the same stacked generalization framework to m‘(:ixfg
(Breiman, 1996¢), yielding “arc-stacking” or the stacking of arced models. We
would like to investigate this method in the near future.

Appendix A—Implementations of stacked gen-
eralization

This Appendix recounts the key differences hetween stacked generalization as
used in this paper and that described by Ting & Witten (1997). We denote the
latter by SG for ease of reference. The differences are in the training process,
and mainly affect the computational requirenments.
Suppose that there are i level-0 models.
e SG relies on cross-validation to obtain level-1 data. Suppose
J-fold cross-validation is employed. Let the learning time for
cach level-0 model he ¢ and the testing time for each instance
he t. Then the computational time required for the prepara-
tion of level-1 data is
N(JC + N't)
where N’ = is the size of the give dataset L.
o DBag-stacking and dag-stacking need just one round ol learning,
for each level-0 model. The computational time required to

prepare the level-1 data is

K(C+ N't)




Table 8: Breiman’s results for bagging vs Ting & Witten’s

Breiman | Ting & Witten

Dataset ES EB ES EB

DNA 6.2 5.0 5.8 4.8

Satellite | 14.8 10.3 | 14.8 11.2

Letters | 12.6 6.4 | 12.9 *7.5

Shuttle | .062 .014 | .048 028
*K = 20.

We conclude that SG needs a factor of J more computation time than bag-
stacking and dag-stacking, since N't <« C for a learning algorithm such as
C4.5 and N't ~ C for NB. Moreover, C' in bag-stacking and dag-stacking is
often much less than for SG, since less training data is necessary.

Finally, SG requires a final training which uses the entire dataset L for
each level-0 model to complete the whole training process. No such re-training
is required for bag-stacking and dag-stacking.

The reader is referred to Ting & Witten (1997) for differences between the
initial proposal of stacked generalization by Wolpert (1992) and the recent
successful implementation for classification tasks.

Appendix B—Comparison of bagging results with
Breiman’s

Breiman’s (1996b) bagging results are tabulated along with ours in Table 8.
Note that Breiman uses CART (Breiman at al, 1984), and we use C4.5. In
both cases K = 50, except in the Letters dataset, where we use only K = 20.
The results of bagging (Fp) are comparable, as are the results for a single
pruned tree (Eg).
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