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Abstract

We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or
another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and
astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic
particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by
solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion
model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion
equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their
self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of
convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock.
Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable
alternative to explain the anomalous diffusion scalings of cosmic-ray particles.
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1. Introduction

Observations of energetic electrons and protons in inter-
planetary space (e.g., Zimbardo et al. 2015) and relativistic
electrons in supernova remnants (Perri et al. 2016) imply that
the transport of cosmic-ray particles in the presence of turbulent
scattering can be superdiffusive. In the superdiffusive regime,
the mean square displacement á ñx2 of the particles increases
with time as ~ at where a > 1, in contrast with the familiar
linear dependence á ñ ~x t2 of standard diffusion.

The observed anomalous diffusion scalings motivated the
development of mathematical generalizations of Brownian
motion to anomalous transport (e.g., Klafter et al. 1987). A
popular recent approach invokes solutions of a formal transport
equation containing fractional derivatives to describe an
evolving cosmic-ray distribution (e.g., Perri & Zimbardo
2007, 2008, 2009; Litvinenko & Effenberger 2014; Perri
et al. 2015; Zimbardo et al. 2015). Those studies relied on the
Green’s function of a fractional diffusion equation, which is
equivalent to an asymptotic expression for a non-Gaussian
propagator in the framework of continuous-time random walks
(Chukbar 1995; Metzler & Klafter 2000). Yet the physical
basis of fractional diffusion models of cosmic-ray transport
remains uncertain, justifying a search for an alternative model.

For weak plasma turbulence, the quasilinear theory was
argued to explain the anomalous diffusive behavior (Vanden
Eijnden 1997). More generally, the cosmic-ray pressure is often
comparable with the magnetic pressure in the surrounding
medium, implying that the cosmic-ray particles are strongly
scattered off self-generated magnetohydrodynamic waves, and
necessitating a nonlinear treatment. A quantitative description
of the resulting evolution of the particle distribution has
obvious physical interest. Here we consider a nonlinear
diffusion model of the anomalous particle transport. The idea
is that the energetic particle density ( )f x t, , where x is the
distance along the mean magnetic field, is governed by a

diffusion equation:

¶
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where the diffusion coefficient D is determined by modeling the
interaction of the energetic particles and the turbulent waves,
generated by the particles themselves. Consequently D is
controlled by f, which makes Equation (1) nonlinear. The
one-dimensional model is justified if the perpendicular diffusion
is weak and the magnetic field lines are only weakly perturbed on
a relevant coherence length scale of the magnetic field and
background turbulence (Nava & Gabici 2013).
Several alternative models of nonlinear cosmic-ray transport

have been explored (e.g., Yan et al. 2012; Malkov et al. 2013),
which generally require the solution of two coupled nonlinear
equations for the resonantly interacting particles and waves:
one equation describes the cosmic-ray pressure, and the other
describes the energy density of the turbulence. The equations
are coupled because the diffusion coefficient D depends on the
energy density of the resonant waves, whereas the growth rate
of the waves depends on the pressure gradient of the resonant
particles (e.g., D’Angelo et al. 2016; Nava et al. 2016). Under
certain simplifying assumptions for the wave generation rate, it
is possible to express the turbulent energy density in terms of
the particle distribution function and hence obtain an equation
for the evolution of ( )f x t, . The resulting nonlinear
Equation (1) contains the diffusion coefficient D that is a
function of ¶ ¶f x (or f in a more general three-dimensional
problem). Solutions of Equation (1) may serve to interpret the
cosmic-ray data and guide the development of more detailed
models.
As a concrete illustration, we consider a model in which the

wave generation by the streaming particles is assumed to be
balanced by wave dissipation (Ptuskin et al. 2008), which
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yields the diffusion coefficient

=
¶
¶
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Without loss of generality, below we set =D 10 , which
corresponds to the change of variable D t t0 . Concrete
physical situations correspond to n = 1 2 and n = 2 3: the
first case corresponds to energy dissipation by a Kolmogorov-
type energy cascade (Ptuskin & Zirakashvili 2003), and the
second case corresponds to wave energy transfer to the thermal
ions that interact with moving magnetic mirrors formed by the
waves (Zirakashvili 2000). More generally, Equation (2) with
some other value of ν might approximate the nonlinear
diffusion coefficient D in a certain parameter range. Mathe-
matically, the expression for D leads to a nonlinear diffusion
equation that had been termed n-diffusion (Philip 1961). Thus
the model for cosmic-ray evolution which we investigate
provides a concrete physical illustration of n-diffusion.

Although we assume throughout the paper that particle
transport is diffusive, it is worth noting that the evolution of
strongly anisotropic particle distributions on timescales that are
shorter than or comparable to a characteristic scattering time is
known to yield a nondiffusive behavior of the particle density
even in a linear regime. More generally, both numerical
(Litvinenko & Noble 2016) and analytical (Malkov 2017)
solutions of the linear Fokker–Planck equation for a test-
particle distribution function demonstrate the transition from a
short-time ballistic propagation regime to a long-time diffusive
regime. In contrast, our analysis applies to a diffusive regime
only, and the nonlinear behavior is ultimately caused by the
strong coupling of the particle and wave distributions.

2. Exact Solutions and Superdiffusive Scalings

We now present exact solutions for nonlinear diffusion and
discuss the anomalous transport scalings that may result.

2.1. Self-similar Solutions for Nonlinear Diffusion

Consider first an initial value problem specified by

d=( ) ( ) ( )f x x, 0 . 3

The initial condition describes the release of particles at the
origin at t=0. To describe their subsequent evolution, we seek
a self-similar solution that satisfies the nonlinear diffusion
Equation (1) and the normalization condition

ò =
-¥

¥
( ) ( )f x t dx, 1. 4

For simplicity, the total particle number is incorporated into the
definition of D0. As usual, an exact self-similar solution is
expected to serve an intermediate asymptotic for a wider class
of initial conditions, which in this case would correspond to
initial distributions ( )f x, 0 , localized around x=0.

Following the well-known procedure (e.g., Dresner 1983;
Assis et al. 2005), we seek a solution in the form

f x= n- -( ) ( ) ( )( )f x t t, , 51 2 1

with the similarity variable

x = n- - ( )( )xt 61 2 1

for an arbitrary n< <0 1. On substituting the self-similar
form into Equation (1) and integrating the resulting ordinary
differential equation for f x( ), we obtain for x > 0:
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where na is an integration constant, and another constant is
specified by the condition f ¥ =( ) 0. Symmetry dictates that
we define the solution for x < 0 by f x f x=( ) (∣ ∣). The
integration constant na is defined by the normalization condition
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where Γ is the gamma function. Note that f x~ n n- -( )2 for
x  1, which ensures the convergence of the normalization
integral for all n< <0 1. For instance, if n = 1 2, we have
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If n = 2 3, we recover the solution derived by Ptuskin et al.
(2008):
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Both solutions are illustrated in Figure 1.
The essential point is that the self-similar solution for ( )f x t,

yields an anomalous, superdiffusive scaling of the mean square
displacement:

ò x f x xá ñ = ~n n-
¥

-( ) ( )( ) ( )x t d t2 . 142 1 1

0

2 1 1

The convergence of the integral in Equation (14) requires that
n< <0 1 2. The limiting cases correspond to standard

diffusion, á ñ ~x t2 (n  0), and ballistic motion, á ñ ~x2

t2 (n  1 2).
Physically, the divergence of the integral in Equation (14)

for n 1 2 reflects the fact that the particle flux
~ n n n- - -( )( )F x 2 1 falls off too slowly as  ¥x , indicating

the breakdown of the diffusion approximation at large x and
formally leading to unphysical “superballistic” scalings for the
second and higher moments of the distribution. Since the
integral for á ñx2 diverges in the physically relevant case
n = 2 3, another observable measure of nonlinearity is useful.
Ptuskin et al. (2008) suggested to use the time tm at which the
maximum of cosmic-ray intensity is reached at a given location

2
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xm. The above-given solution leads to the scaling:

~ n- ( )( )x t , 15m m
1 2 1

which generalizes the scaling derived for n = 2 3 (Ptuskin
et al. 2008) and reduces to the familiar linear result ~x tm m

1 2

when n = 0.

2.2. Diffusive Escape from an Extended Reservoir

Another initial value problem with an exact solution is that
of diffusive particle escape from an extended reservoir.
Suppose the reservoir is large enough, so that the initial profile
of the particle density near the boundary x=0 can be
approximated by the Heaviside step function:

= =( ) ( ) ( )f x f H x f, 0 , const. 160 0

Diffusion of this initial profile will lead to ¶ ¶ >f x 0 for
>t 0. We seek a solution in the form

ò= ¢ ¢
-¥

( ) ( ) ( )f x t g x t dx, , . 17
x

On differentiating Equation (1) with respect to x, we obtain an
equation for = ¶ ¶( )g x t f x, :

¶
¶
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¶
¶

n-( ) ( )g

t x
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1

where

d=( ) ( ) ( )g x f x, 0 . 190

It is well known (e.g., Barenblatt 1952; Pattle 1959) that the
solution of this initial value problem has a self-similar form

y z= n- -( ) ( ) ( )( )g x t t, , 201 2

with the similarity variable

z = n- - ( )( )xt . 211 2

On substituting the self-similar form into Equation (18) and
integrating the resulting ordinary differential equation for y z( ),
we obtain

y z
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As previously, the condition n< <0 1 yields physically
meaningful solutions for ( )f x t, , which conserve the total
number of particles. The integration constant nb is defined by
the normalization condition

ò y z z =
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It follows that
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On substituting Equation (22) into Equation (17), the
solution for ( )f x t, can be rewritten in a compact form:
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where B is the beta function, hB is the incomplete beta function,
and
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The solution for ( )f x t, can be expressed in terms of
elementary functions if n = +( )m2 2 where m is an integer,
which includes the physically meaningful cases n = 1 2 and
n = 2 3. If n = 1 2, we have
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If n = 2 3, the solution is as follows:
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Figure 1. Solution of the diffusion Equation (1) with the diffusion coefficient (2) for n = 1 2 (Equation (10), left panel) and n = 2 3 (Equation (12), right panel) for
the point source initial condition (3) at times t = 0.001, 2, 4, 6, 12, and 20.
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Both solutions are illustrated in Figure 2.

3. Effects of Convection and a Particle Source

We may generalize the diffusive transport equation of the
previous section by adding a convective term and a particle
source term. That would allow us to describe, for instance, the
evolution of energetic particles following their escape from a
localized acceleration site, such as a heliospheric shock (e.g.,
Perri et al. 2015). It is worth mentioning that braided magnetic
fields at a shock may also lead to anomalous spatial transport
and consequently modify the spectrum of shock-accelerated
particles (Duffy et al. 1995; Kirk et al. 1996), but here we only
investigate the effects of nonlinear spatial diffusion in the
evolution of the particle density.

Consider the following nonlinear advection–diffusion
equation:

d
¶
¶

=
¶
¶

¶
¶

¶
¶

+ +
n-⎛

⎝⎜
⎞
⎠⎟ ( ) ( ) ( )f

t x

f

x

f

x
V f S x H t , 30

where V and S are constant, and H(t) is the Heaviside step
function. A delta-functional source d ( )S x may correspond to
energetic particles injected at an interplanetary shock, and V
may be interpreted as the speed of a background flow such as
the solar wind. For simplicity, assume that =( )f x, 0 0.

3.1. Analytical Solutions for Limiting Cases

In the limit of weak diffusion ( D 00 ), the diffusive term in
Equation (30) is negligible, and the density profile is given by a
boxcar function:

» + -( ) [ ( ) ( )] ( )f x t
S

V
H x Vt H x, , 31

where the solution of a first-order differential equation is
specified by the particle conservation constraint ò =fdx St. In
the opposite limit of strong diffusion or weak advection
( V 0), the solution of Equation (30) has a self-similar form

q= -( ) ( )f x t x xt, 1 2 , which leads to a nonlinear ordinary
differential equation for the function θ.

For a general advection–diffusion Equation (30), a time-
dependent density profile is harder to describe analytically. For

instance, invariance with respect to a dilatation group no longer
leads to a self-similar solution of the initial value problem.
Eventually, however, diffusion should balance convection near
the particle source, leading to an approximately steady solution
f (x) both in the range  -Vt x 0 and for >x 0. Because
f 0 as  +¥x , a steady solution for >x 0 corresponds to

the vanishing total particle flux in that region. On setting
¶ ¶ =f t 0 and integrating the resulting second-order ordinary
differential equation, we obtain
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where the integration constants are assumed to be approxi-
mately specified by the non-diffusive solution, which yields

=( )f S V0 and ¥ =( )f 0. Note for clarity that dimension-
ally correct expressions are recovered by returning to the
original dimensional variables: V V D0, S S D0. In the
limit n  0, it is straightforward to verify that Equation (32)
reduces to the familiar linear result, ¥ =( )f x S V, for <x 0
and ¥ = -( ) ( ) ( )f x S V Vx, exp for >x 0, which of course
would also follow directly from the solution ( )f x t, of
Equation (30) in the linear case n = 0 when  ¥t (see,
e.g., Equation (2) in Litvinenko & Effenberger 2014).

3.2. Numerical Solutions for the Fully Time-dependent Case

We employed the VLUGR3 code (Blom & Verwer 1994) to
determine the time evolution of the particle density by solving
Equation (30) numerically. In order to test the ability of the
code to correctly solve nonlinear diffusion equations, we first
numerically reproduced the full time evolution given by the
analytical solution of Equation (1) for the reservoir initial
condition, which is Equation (16). The symbols in the right
panel of Figure 2 give representative results and demonstrate
the applicability of the code.

Figure 2. Solution of the diffusion Equation (1) with the diffusion coefficient (2) for n = 1 2 (Equation (27), left panel) and n = 2 3 (Equation (29), right panel) for
the reservoir initial condition (16) at times t = 0.001, 5, 10, 20, 40, 70, and 100. The symbols in the right panel indicate the numerical solution and illustrate its
accuracy.
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Next we solved the nonlinear advection–diffusion
Equation (30) for the two physically motivated cases n = 1 2
and n = 2 3 and two dimensionless advection speeds V=1
and V=3. The point source at the origin was numerically
represented by a Gaussian profile:

p
= -

⎧⎨⎩
⎫⎬⎭( ) ( )f x

a

x

a
, 0

1
exp . 33

2

2

When specifying the boundary conditions in the numerical
solution, we used as a guide the expected qualitative behavior
of the evolving distribution in the downstream and upstream
regions. Specifically, we implemented a vanishing gradient
¶ ¶ =f x 0 at the left boundary (chosen at = -x 120) and a
vanishing flux, i.e.,¶ ¶ + ¶ ¶ =n∣ ∣f x Vf f x 0, at the right
boundary (chosen at x= 120). This formulation of the
vanishing-flux condition allows us to avoid division by a small
¶ ¶f x in the computation of the solution. We verified that the
resulting numerical solution actually has ¶ ¶ ¹f x 0 for any
finite distance >x 0, which is consistent with the analytical
steady-state solution (32).

Figure 3 displays the resulting numerical solution ( )f x t, in
each of the four cases, presented in steps of D =t 10 and the
initial condition (33) with a=0.5. Evidently, the numerical
solution converges to the analytical asymptotic steady-state

limit that is given by Equation (32) and represented with the
symbols in each panel.

3.3. Asymptotic Power-law Behavior

The steady-state solution given by Equation (32) predicts the
power-law dependence ~ n n-( ) ( )f x x 1 in the upstream region
>x 0, which is of primary interest for modeling the diffusive

transport of shock-accelerated particles. Data analysis of time
profiles of particles accelerated at interplanetary shocks yielded
particle spectra, consistent with such power-law tails. This
result was argued to be evidence of superdiffusive particle
transport and formally modeled in terms of a fractional
advection–diffusion equation (Perri & Zimbardo 2007; Perri
et al. 2015). In the fractional diffusion model, the particle
distribution near a traveling shock is obtained by a straightfor-
ward change of variables that leads to a formula for the particle
density at a fixed point due to a moving source (Litvinenko &
Effenberger 2014). However, we have not yet explored the
effect of a moving source in the nonlinear diffusion model
under consideration.
As a specific example of anomalous transport, Perri &

Zimbardo (2009) analyzed the data on the energetic ions,
accelerated at the termination shock of the solar wind, and
interpreted the results in terms of the process of fractional
diffusion, which yielded ~ g( )f x x with g » -0.7. Interest-
ingly, this value lies between the two cases that we have

Figure 3. Solution of the nonlinear advection–diffusion Equation (30) with the source strength S=1 for n = 1 2 (upper row) and n = 2 3 (lower row). The left
column is for V=1, and the right column is for V=3. In each panel the initial condition (33) with a=0.5 is shown as the narrow peak around x=0. The time
evolution is illustrated by the curves showing the numerical solution of Equation (30) in steps of D =t 10 beginning with t=0. The circles indicate the asymptotic
steady-state solution that was derived analytically with Equation (32).
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analyzed: the predicted power-law index n n-( )1 is −1 for
n = 1 2 and −0.5 for n = 2 3 (see also Figure 4). Note that in
our solution the advection speed V and the source strength S
define the location beyond which the power law is formed but
not the power-law index itself. We emphasize that the present
nonlinear model, while leading to similar superdiffusive
scalings, has the advantage of being based on a physical
model of the interaction of the cosmic rays and their self-
generated turbulence (Ptuskin et al. 2008). Finally, it is
reasonable to expect that nonlinear effects become less
significant in the upstream region far from the shock because
of the decrease in the particle density and the corresponding
weakening of the turbulent scattering.

4. Conclusion

Observations of energetic cosmic-ray particles in several
astrophysical situations imply that the particle evolution can be
quantified by anomalous, superdiffusive transport scalings.
Understanding the mechanism responsible for superdiffusive
transport has obvious physical relevance for theoretical cosmic
ray studies. Motivated by these considerations, we have
considered the evolution of the particle density, governed by
a nonlinear diffusion equation that follows from a self-
consistent treatment of the resonantly interacting particles and
the turbulence that they generate. The nonlinear diffusion
equation provides a concrete physical illustration of the
mathematical model of n-diffusion (Philip 1961).

First, we obtained an exact self-similar solution of an initial
value problem. The solution generalizes earlier results (Ptuskin
et al. 2008) and yields an intermediate asymptotic for an
initially localized particle distribution. The resulting time- and
space-dependent solution for the particle density provides a
straightforward way of explaining the observed superdiffusive
transport scalings within a physically transparent model.

Second, we derived an exact solution for the problem of the
nonlinear diffusive escape of cosmic rays from an extended
reservoir. It is worth mentioning that cosmic-ray diffusion
generally occurs both in physical space and in momentum
space (e.g., Thornbury & Drury 2014), and so it would be of

interest to extend our nonlinear model to describe re-
acceleration of cosmic rays, which is the acceleration
associated with the same turbulence that produces the spatial
diffusion.
Third, we explored analytically and numerically the effects

of convection and a particle source on the nonlinear diffusive
transport. The results can be applied to describe the transport of
cosmic rays following their escape from a shock or another
localized acceleration site. The key point is that the nonlinear
diffusion model naturally yields a power-law dependence of the
cosmic-ray density on the distance upstream of the shock. Such
a dependence was argued to be the signature of a fractional
advection–diffusion equation (e.g., Perri & Zimbardo 2007,
2008, 2009; Perri et al. 2016). Yet our results clearly
demonstrate that, when it comes to explaining the anomalous
diffusion scalings of cosmic-ray particles, a transport equation
with fractional derivatives is not the only game in town.
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Figure 4. Asymptotic steady-state solution (32) of the nonlinear advection–
diffusion Equation (30) for n = 1 2 and n = 2 3 (lower and upper solid line,
respectively) and their asymptotic power-law behavior (dashed lines).
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