
Organizing the World’s
Machine Learning Information

Joaquin Vanschoren1, Hendrik Blockeel1, Bernhard Pfahringer2, and
Geoff Holmes2

1 Computer Science Dept., K.U.Leuven, Leuven, Belgium
2 Computer Science Dept., University of Waikato, Hamilton, New Zealand

Abstract. All around the globe, thousands of learning experiments are
being executed on a daily basis, only to be discarded after interpretation.
Yet, the information contained in these experiments might have uses be-
yond their original intent and, if properly stored, could be of great use to
future research. In this paper, we hope to stimulate the development of
such learning experiment repositories by providing a bird’s-eye view of
how they can be created and used in practice, bringing together existing
approaches and new ideas. We draw parallels between how experiments
are being curated in other sciences, and consecutively discuss how both
the empirical and theoretical details of learning experiments can be ex-
pressed, organized and made universally accessible. Finally, we discuss a
range of possible services such a resource can offer, either used directly
or integrated into data mining tools.

1 Introduction

Research in machine learning and exploratory data analysis are, to a large ex-
tent, guided by the collection and interpretation of performance evaluations of
machine learning algorithms. As such, studies in this area comprise extensive ex-
perimental evaluations, analyzing the performance of many algorithms on many
datasets, or many preprocessed versions of the same dataset. Unfortunately, the
results of these experiments are usually interpreted with a single focus of inter-
est, and their details are usually lost after publication or simply not publicly
accessible.

Sharing this information with the world would greatly benefit research in
these fields, fostering the reuse of previously obtained results for additional and
possibly much broader investigation. To realize this in practice, we examine how
to collect learning experiments in public repositories and, more importantly, how
to organize all this information so that it is both easily accessible and useful. The
former implies that the repository should be searchable, allowing easy retrieval of
specific results. To achieve the latter, results should be kept in context, relating
them to known theoretical properties of the included methods and datasets.

One could envisage many creative uses of such a resource. In machine learn-
ing research, pooling the results of many studies would significantly increase
the amount of available experimental data, enabling much larger studies aimed



at finding fundamental insights into the dynamics of learning processes and
offering well-founded answers to open questions. Also, when developing new
learning approaches or enhancements, algorithms are often evaluated against
the same benchmark datasets. This means many experiments are needlessly re-
peated, while the cost of setting up and running them often limits the range
of datasets and parameter settings that can be explored. When reusing prior
experimental results, algorithms can be compared in more depth by running
them instead under a wider range of conditions, thus yielding more generaliz-
able results. Furthermore, meta-level information about algorithms and datasets
available in the repository puts those results in context, and can, for instance, be
used to investigate how different data properties affect algorithm performance.
Finally, it offers a forum for negative results and an easy way to check which
approaches have been tried before and what they achieved.

Conversely, in exploratory data analysis, practitioners faced with a specific
problem will try different preprocessing and modeling techniques to gain a deeper
understanding of the data at hand. In this case, even though each dataset is
unique, a searchable repository of previous experiments could be used to build
on previous experience and check which methods might be particularly useful.
For instance, one might check whether logistic regression is feasible on data
with many attributes, and thus whether a feature selection step might be useful.
Furthermore, large collections of experimental data could be used to search for
similar datasets and the methods that were particularly successful on it, to find
meta-rules describing the usability of a method, or to provide training data for
data mining assistance tools.

The concept of experiment repositories has been introduced earlier [3, 4]. In
this paper, we aim to provide a bird’s-eye view of their possibilities and the chal-
lenges that need to be addressed before their full potential can be exploited. For
those challenges that have been discussed before, we offer pointers to the avail-
able literature and suggest improvements. For those that are new, we propose
solutions, but also point out directions for further research.

In Section 2 of this paper, we first look at existing approaches towards build-
ing experiment repositories in various scientific disciplines. Next, in Section 3, we
propose a common experiment description language to allow for learning exper-
iments to be shared freely, and in Section 4, we discuss how all this information
can be automatically organized in a searchable database. Finally, Section 5 uses
the resulting experiment repository to show how it can assist the development
and application of learning algorithms, either by using it directly as an online
service, or by integrating it into data mining tools. Section 6 concludes.

2 Previous Work

Many scientific disciplines store experimental data as a means of collaboration
between different research groups or to make sure experiments are not needlessly
repeated, most notably in fields like high-energy physics where experiments are
expensive. Still, most fields lack common standards for experiment description.



2.1 Bioinformatics

Bioinformatics has led the way in describing and collecting experimental data
[5]. Probably the best known application can be found in the emergence of mi-
croarray databases3 [14]. The need for reproducibility, as well as recognition of
the potential value of microarray results beyond the summarized descriptions
found in most papers, have led to the creation of public repositories of microar-
ray data [6]. Submitting experimental data in these repositories has become a
condition for publication in several journals [2].

In establishing common standards for describing microarray data, significant
progress has been made to ensure that such data can be properly managed and
shared. In particular, a set of guidelines was drawn up regarding the required
Minimal Information About a Microarray Experiment (MIAME [5]), a MicroAr-
ray Gene Expression Markup Language (MAGE-ML [14]) was conceived so that
data could be uniformly described and shared between projects, and an ontology
(MO [14]) was designed to provide common descriptors required by MIAME for
capturing core information about microarray experiments.

Other, more specific projects go even further. The Robot Scientist [13], a fully
automated scientific discovery system, expresses all physical aspects of experi-
ment execution and even describes the hypotheses that are under investigation
and what has been learned from past experiments.

2.2 Machine Learning

Creating experiment repositories for machine learning inevitably calls for the
development of similar standards to describe and share learning experiments.
First, similar to the MIAME guidelines, learning experiment descriptions should
at least contain the information needed to reproduce the experiment. Such a
set of guidelines is described in [4], covering what should minimally be known
about the algorithms, datasets and experimental procedures. It also proposes
a database schema to store classification experiments, which we shall develop
further in Sect. 4.1 to, in addition, capture preprocessing steps and to allow for
a more flexible description of different learning tasks besides classification.

3 A Language for Sharing Machine Learning Information

To enable a free exchange of experimental results, it would be useful to have a
common description language. As such, learning experiments could be described
in a unified way, without having to know how they are physically stored, while
allowing them to be automatically verified, uploaded to, retrieved from, and
transfered between any existing experiment repository, even if these reposito-
ries are implemented differently or distributed geographically. However, as new
learning approaches are being developed at a constant rate and new learning

3 A microarray records the expression levels of thousands of genes.



tasks often put new twists on classical problems, such a format should easily
extend to capture new types of learning experiments.

To further the development of such standards, we propose an XML-based
markup language, dubbed ExpML, that can be used to describe most classi-
fication and regression experiments4. An important benefit of XML is that it
is hierarchical and extensible. It adapts to experiments of various complexities
by extending the description of any aspect of a learning experiment as much as
needed. In this section, we first provide a formal definition of this language, after
which we will illustrate it with an example.

3.1 ExpML Definition

The XML Schema Definition (XSD) below creates an XML vocabulary for de-
scribing machine learning experiments and governs which elements should ap-
pear, in what order, and the information they should contain. It ensures that
experiments are uniquely defined, and that each of its elements (algorithms, ker-
nels, (preprocessed) datasets, evaluation metrics, etc.) are described in sufficient
detail. To capture both (theoretical) meta-information about the experiments
and the (empirical) settings and results, it distinguishes between element defini-
tions and element instantiations. Definitions make sure the element is uniquely
defined and can hold known properties and descriptions, while instantiations
declare a specific configuration, e.g. including specific parameter settings.

Main structure We highlight the most important parts of the language defini-
tion5, full definitions are available online at http://expdb.cs.kuleuven.be/.
As the following excerpt shows, each description starts with an arbitrary number
of definitions.
<xs : element name=" expml ">

<xs : complexType>
<xs : sequence>

<xs : element name=" definition " nobounds>
<xs : complexType>

<xs : choice>
<xs : element name=" algorithm " type=" algorithmFull "/>
<xs : element name=" kernel " type=" algorithmFull "/>
<xs : element name=" dataset " type=" datasetFull "/>
<xs : element name=" preprocessor " type=" algorithmFull "/>
<xs : element name=" evalmethod " type=" algorithmFull "/>
<xs : element name=" metric " type=" metricFull "/>
<xs : element name=" environment " type=" environmentFull "/>

</xs : choice>
</xs : complexType>

</xs : element>

Next, an arbitrary number of experiments may be defined, starting with the exact
setup, i.e. which instantiations of algorithms, datasets and evaluation procedures
are used. Next, we state the results of the evaluation, the predictions generated
by the model for each target variable and the used computational environment6.
Finally, experiments can be labeled to provide additional information.
4 This language was used in practice to upload all experiments mentioned in Sect. 4.2.
5 We use ‘nobounds’ as a shorthand for ‘minOccurs=“0” maxOccurs=“unbounded”’.
6 Although model description formats exist [8], they are not yet included here.



<xs : element name=" experiment " nobounds>
<xs : complexType>

<xs : sequence>
<xs : element name=" setting ">

<xs : complexType>
<xs : al l>

<xs : element name=" algorithm " type=" algorithmInst "/>
<xs : element name=" dataset " type=" dataInst "/>
<xs : element name=" evalmethod " type=" evalMethodInst "/>

</xs : al l>
</xs : complexType>

</xs : element>
<xs : element name=" evaluation " type=" evaluationType "/>
<xs : element name=" prediction " type=" predictionType " maxOccurs=" unbounded "/>
<xs : element name=" environment " type=" xs : string "/>
<xs : element name=" label " type=" nameValue " nobounds/>

</xs : sequence>
</xs : complexType>

</xs : element>
</xs : sequence>

</xs : complexType>
</xs : element>

Definitions The definitions for new elements should allow them to be properly
used and easily retrieved. This includes descriptions of an algorithm’s param-
eters, whether and how a dataset was preprocessed, how an evaluation metric
is calculated and details about the environment used. Most elements can also
be annotated further using properties, such as dataset and algorithm character-
izations or computational benchmarks. Moreover, the required attributes of the
elements state the minimal information needed to ensure reproducibility, and
whether the definition updates a previous one.
<xs : complexType name=" algorithmFull ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" parameter " type=" parameterFull " nobounds/>
<xs : element name=" property " type=" propertyType " nobounds/>

</xs : sequence>
<xs : attributeGroup r e f=" algoInfoFull "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" parameterFull ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" description " type=" xs : string "/>
<xs : element name=" default " type=" xs : string "/>
<xs : element name=" property " type=" propertyType " nobounds/>

</xs : sequence>
<xs : attribute name=" name " type=" xs : string " use=" required "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" datasetFull ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" preprocessor " type=" preprocInst " nobounds/>
<xs : element name=" classindex " type=" xs : integer " minOccurs="0"/>
<xs : element name=" property " type=" propertyType " nobounds/>

</xs : sequence>
<xs : attributeGroup r e f=" dataInfo "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" metricFull ">

<xs : complexContent>
<xs : al l>



<xs : element name=" name " type=" xs : string "/>
<xs : element name=" formula " type=" xs : string "/>
<xs : element name=" description " type=" xs : string "/>

</xs : al l>
<xs : attribute name=" isUpdate " type=" xs : boolean "/>
</xs : complexContent>

</xs : complexType>
<xs : complexType name=" environmentFull ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" cpu " type=" xs : string "/>
<xs : element name=" memory " type=" xs : string "/>
<xs : element name=" property " type=" propertyType " nobounds/>

</xs : sequence>
<xs : attribute name=" name " type=" xs : string " use=" required "/>
<xs : attribute name=" isUpdate " type=" xs : boolean "/>

</xs : complexContent>
</xs : complexType>
<xs : attributeGroup name=" algoInfo ">

<xs : attribute name=" name " type=" xs : string " use=" required "/>
<xs : attribute name=" libname " type=" xs : string "/>

</xs : attributeGroup>
<xs : attributeGroup name=" algoInfoFull ">

<xs : attributeGroup r e f=" algoInfo "/>
<xs : attribute name=" version " type=" xs : string " use=" required "/>
<xs : attribute name=" libversion " type=" xs : string "/>
<xs : attribute name=" url " type=" xs : anyURI " use=" required "/>
<xs : attribute name=" isUpdate " type=" xs : boolean "/>

</xs : attributeGroup>
<xs : attributeGroup name=" dataInfo ">

<xs : attribute name=" name " type=" xs : string " use=" required "/>
<xs : attribute name=" url " type=" xs : anyURI " use=" required "/>
<xs : attribute name=" isUpdate " type=" xs : boolean "/>

</xs : attributeGroup>

Instantiations Inside an experiment, instantiations describe a specific appli-
cation of the defined elements. While their attributes point to the general def-
inition, they additionally define the element’s individual configuration. For al-
gorithms, this includes setting parameters or meta-parameters, encapsulating
other algorithms (base-learners) or kernels. Datasets, on the other hand, can be
instantiated by a number of nested preprocessing steps, which in turn may have
parameter settings as well, as does the evaluation method.
<xs : complexType name=" algorithmInst ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" parameter " type=" metaParInst " nobounds/>
</xs : sequence>
<xs : attributeGroup r e f=" algoInfo "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" dataInst ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" preprocessor " type=" preprocInst " nobounds/>
<xs : element name=" classindex " type=" xs : integer " minOccurs="0"/>

</xs : sequence>
<xs : attributeGroup r e f=" dataInfo "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" preprocInst ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" parameter " type=" metaParInst " nobounds/>
</xs : sequence>



<xs : attributeGroup r e f=" algoInfo "/>
</xs : complexContent>

</xs : complexType>
<xs : complexType name=" evalMethodInst ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" parameter " type=" nameValue " nobounds/>
</xs : sequence>
<xs : attributeGroup r e f=" algoInfo "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" nameValue ">

<xs : complexContent>
<xs : attribute name=" name " type=" xs : string " use=" required "/>
<xs : attribute name=" value " type=" xs : string " use=" required "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" metaParInst ">

<xs : complexContent>
<xs : extension base=" nameValue ">

<xs : sequence minOccurs="0">
<xs : element name=" algorithm " type=" algorithmInst " minOccurs="0"/>
<xs : element name=" kernel " type=" algorithmInst " minOccurs="0"/>

</xs : sequence>
</xs : extension>

</xs : complexContent>
</xs : complexType>

Results The result of an experiment encompasses the outcomes of an arbitrary
selection of evaluations metrics (depending on the task), and predictions for
each data instance. In the case of classification tasks, the latter may also hold
probabilities for each class.
<xs : complexType name=" evaluationType ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" metric " maxOccurs=" unbounded ">
<xs : complexType>

<xs : attribute name=" name " type=" xs : string " use=" required "/>
<xs : attribute name=" value " type=" xs : string " use=" required "/>

</xs : complexType>
</xs : element>

</xs : sequence>
</xs : complexContent>

</xs : complexType>
<xs : complexType name=" predictions ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" instance " maxOccurs=" unbounded ">
<xs : complexType>

<xs : sequence>
<xs : element name=" prob " maxOccurs=" unbounded ">

<xs : complexType>
<xs : attribute name=" prediction " type=" xs : string " use=" required "/>
<xs : attribute name=" value " type=" xs : string " use=" required "/>

</xs : complexType>
</xs : element>

</xs : sequence>
<xs : attribute name=" nr " type=" xs : integer " use=" required "/>
<xs : attribute name=" prediction " type=" xs : string " use=" required "/>
</xs : complexType>

</xs : element>
</xs : sequence>
<xs : attribute name=" target " type=" xs : string "/>

<xs : complexContent>
</xs : complexType>



3.2 An Example Description

As an illustration, we could use this language to define a new algorithm, run it
on a preprocessed classification problem, and store the generated results:
<algorithm name=" Bagging " version=" 1.31.2.2 " libname=" weka "

libversion=" 3.4.8 " url=" http :// www . cs . waikato . ac . nz / ml / weka /"
classpath=" weka . classifiers . meta . Bagging ">

<parameter name="P">
<description>S i z e o f each bag as percentage o f data s e t s i z e </description>
<default >100</default>
<property name=" suggested_min " value=" 20 "/>
. . .

</parameter>
. . .

<property name=" class " value=" ensemble ">
<property name=" handles_classification " value=" true ">
. . .

</algorithm>
. . .

<experiment>
<setting>

<algorithm name=" Bagging " version=" 1.31.2.2 " libname=" weka ">
<parameter name="P" value=" 90 "/>
<parameter name="O" value=" false "/>
<parameter name="I" value=" 40 "/>
<parameter name="W" value=" algorithm ">

<algorithm name=" NaiveBayes " version=" 1.16 " libname=" weka "/>
</parameter>

</algorithm>
<dataset name=" pendigits -90% ">

<preprocessor name=" RemovePercentage " version=" 1.3 " libname=" weka ">
<parameter name="P" value=" 10 "/>
<dataset name=" pendigits " url=" http :// archive . ics . uci . edu / ml /">

<classIndex>−1</classIndex>
</dataset>

</preprocessor>
<classIndex>−1</classIndex>

</dataset>
<evalmethod name=" CrossValidation " version=" 1.53 " libname=" weka "

libversion=" 3.4.8 ">
<parameter name=" nbfolds " value=" 10 "/>
<parameter name=" randomseed " value="1"/>

</evalmethod>
</setting>
<evaluation>

<metric name=" build_cputime " value=" 5.67 "/>
<metric name=" build_memory " value=" 17929416 "/>
<metric name=" mean_absolute_error " value=" 0.030570337062541805 "/>
<metric name=" root_mean_squared_error " value=" 0.15960607792291556 "/>
<metric name=" predictive_accuracy " value=" 0.8570778748180494 "/>
<metric name=" kappa " value=" 0.8411692914743762 "/>
<metric name=" confusion_matrix " value="

[[0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,[1021 ,0 ,0 ,0 ,2 ,0 ,3 ,0 ,51 ,4] ,[1 ,883 ,...] ,...]] "/>
. . .

</evaluation>
<predictions target="0">

<instance nr=" 00000 " prediction="8">
<prob prediction="0" value=" 1.8761967426234115 E -5 "/>
. . .

<prob prediction="8" value=" 0.9991914442703987 "/>
<prob prediction="9" value=" 3.2190267582597184 E -31 "/>

</instance>
. . .

</predictions>
<environment>machine14</environment>
<label spec=" type " value=" classification "/>

</experiment>



In this case, we first added the ‘Bagging’ algorithm with all the necessary
information, descriptions of its parameters and some basic properties. Next, we
added an experiment using an instantiation of this algorithm with specific pa-
rameter values. Since this is an ensemble algorithm, one of these parameters
encapsulates another (parameterless) algorithm, viz. ‘NaiveBayes’. The dataset
we investigate is ‘pendigits’, preprocessed by feeding it into the ‘RemovePercent-
age’ preprocessor with the stated parameters. The generated model is evaluated
using the 10-fold cross-validation technique. The results of this evaluation are
stated next, using several evaluation metrics, and are followed by predictions for
all the instances, including the probabilities for each class.

3.3 Future Work

While this language is designed to capture a large variety of contemporary clas-
sification and regression experiments, it will still need to be developed further.
First of all, learning algorithms definitions are still quite limited. It would be
instrumental to develop an ontology that models various learning techniques and
their relationships. Also, learning tasks in machine learning, such as clustering,
link discovery and mining relational data are very different, and might require
different ‘flavours’ of this basic language to suit their needs. Alternatively, an
ontology of machine learning techniques could be envisaged to work towards a
unified format. Interesting approaches towards building such an ontology can be
found in [10] and [1]. Finally, although the language allows the description of
sequences of preprocessing steps, more work is needed to capture more complex
data mining workflows.

4 Organizing Experimental Data

For all this information to be accessible and useful, it still needs to be stored in an
organized fashion. Inserting it into a database seems a good solution [3], allow-
ing powerful query possibilities (SQL) and easy integration into software tools.
Ideally, such databases would evolve with the description language to be able
to capture future extensions. There may be several interconnected databases,
using the common language to transfer stored experiments, or conversely, some
databases may be set up locally for sensitive, or preliminary data.

In this section, we focus on designing a database conforming to the structure
of the language described previously, thus capturing the basic organization of
machine learning experiments. This leads to the schema shown in Fig. 1.

4.1 Anatomy of an Experiment Database

Basically, an Experiment consists of a Learner run on a Dataset using a cer-
tain Machine, and the resulting Model is evaluated with a certain Evaluation
Method. These are depicted in Fig. 1 by the dashed lines. Each of these compo-
nents can be defined and instantiated over several other tables. An Experiment
is stored as a specific combination of component instances.



More specifically, a learner instance points to a learning algorithm (Learner),
which can be characterized by any number of features, and its specific parameter
settings. For Ensemble learners, parameters can point to other learner instances,
and additional records are kept to facilitate querying. A dataset instance is
defined by the original dataset and a number of preprocessing steps, which can in
turn be described further, including all the involved parameters. The evaluation
method (e.g. cross-validation) can also be instantiated. Finally, the evaluation
results of each experiment are stored for each employed evaluation metric, and
for predictive models, the (non-zero probability) predictions returned for each
data instance are recorded as well.

This database is publicly accessible at http://expdb.cs.kuleuven.be/.
The website also hosts ExpML definitions, the available tools for uploading ex-
periments, a gallery of SQL queries (including the ones used in the next section),
and a query interface including visualization tools for displaying returned results.

Learner

Dataset

Machine

Model

Evaluation Method

eid
Experiment

eid learner inst data inst eval meth type machine

34 64 128 1 classific. mach14

Machine

mach id benchm1 (props)

mach14 1.123 ...

Ensemble

liid pliid role

64 26 baselearn

Learner

lid name version url lib

38 Baggi 1.31.2 http weka

Learner inst

liid liddefault

64 38 false

Learner parval

liidpid value

64 74 90

64 75 40

Learner parameter

pid lid kid name alias default min max (sugg)

74 38 P bag size 100 20 100 ...

75 38 I nr iterations 10 5 100 ...

Kernel

kid name version

1 RGB 1.1.2.2

2 Poly 1.1.2.2

Learner feats

lid fid fvalue

38 1 meta

Learner feature

fid name formula

1 class ...

Dataset

did name origin url

261 pendigits uci http://...

Data inst

diid didclass index

128 261 -1

Preproc step

diid sdiidppiid

128 28 1

Preprocessor

ppid name version url library

1 RemovePercentage 1.3 http://... weka-3-4-8

Preproc inst

ppiidppid default

1 1 true

Preproc parval
ppiid pid value

1 1 10

Preproc parameter

pid ppid name alias default min max (sugg)

1 1 P percentage 10 1 99 ...

Data feats

diid fid fvalue

128 3 10992

Data feature

fid name formula

3 size ...

Eval meth inst

emiid method

1 cross-val.

Eval meth parval

emiid pid value

1 1 10

Eval meth parameter
pid name

1 nbfolds

Evaluation

eidmid evalue

34 7 .8570778

Eval metric

mid name formula

7 pred acc ...

Cl evaluation

eidmid class evalue

34 14 1 .944495

Prediction

eid prediction

34 1.87E-5,:7,0.999*,3.21E-31!4;..

Fig. 1. A (simplified) schema for an experiment database.



4.2 Populating the Database

To fill this database with experiments, we focused on supervised classification.
We extended the WEKA platform[16] to output experiments in the format de-
scribed above, and developed an interface to the database to automatically in-
terpret and store the experiments.

The repository currently holds about 500,000 experiments, using 54 well-
known classification algorithms (from WEKA), 86 commonly used classification
datasets taken from the UCI repository, and 2 preprocessing methods (also from
WEKA). We ran all algorithms, with default parameter settings, on all datasets.
Furthermore, the algorithms SMO (an SVM trainer), MultilayerPerceptron, J48
(C4.5), OneR, Random Forests, Bagging and Boosting were varied over their
most important parameter settings7. For all randomized algorithms, each exper-
iment was repeated 20 times with different random seeds. All experiments were
evaluated with 10-fold cross-validation, using the same folds on each dataset,
and a large subset was additionally evaluated with a bias-variance analysis.

5 Services of Experiment Repositories

The principled way of annotating algorithms, data, and entire experiments pro-
vides a much needed formal grounds for the development of data mining “web
services” which allow on-demand retrieval of theoretical en empirical data about
learning techniques, and which could then be automatically orchestrated into real
data mining processes. In this section, we illustrate some of the possible services
offered by an experiment database, either by directly querying the database, or
by integrating it in larger data mining tools.

5.1 Public Database Access

All information stored in an experiment database can be accessed directly by
writing the right database query (e.g. in SQL), providing a very versatile means
to investigate a large number of experimental results, both under very specific
and very general conditions. To further facilitate access to this information, a
graphical query interface could hide the complexity of SQL queries. We focus
here on the different services allowed by querying, a wider range of interesting
queries is discussed in [15].

Experiment Reuse As mentioned earlier, when evaluating a new algorithm,
one could use the repository to retrieve previously stored results. For instance,
to query for the results of all previous algorithms on a specific dataset, we simply
ask for all experiments on that dataset and select the algorithm used and the
performance recorded. Fig. 2 shows the result on dataset “letter”. It is imme-
diately clear how previous algorithms performed, how much variation is caused
by parameter tuning, and what the effect is of various ensemble techniques.
7 For the ensemble methods, all non-ensemble learners were used as possible base-

learners, each with default parameter settings.



Fig. 2. Performance of all algorithms on dataset ‘letter’, with base-learners and kernels.

Fig. 3. The effect of parameter gamma
of the RBF-kernel in SVMs.

Fig. 4. Learning curves on dataset ‘letter’.

Hypothesis Testing Writing queries also provides a fast way to explore the
stored data and check hypotheses about any aspect of learning performance. For
instance, to see if the variation in the SMO-RBF data from the previous query
is caused by a specific parameter, we can ‘zoom in’ the SMO-RBF data (adding
a constraint) and include the value of the ‘gamma’ parameter (selecting an extra
field), yielding Fig. 3. When expanding the query towards several datasets, one
can see that the optimal value of that parameter depends heavily on the dataset
used, and more specifically on its number of attributes (indicated in brackets)8.

When analyzing a dataset, one might be interested in how the dataset size af-
fects the performance of an algorithm. Asking for the performance of algorithms
on various downsampled versions of a dataset yields the learning curves shown
in Fig. 4. Such queries may be useful to decide which algorithm to use based on
the amount of available data or, conversely, how much data to collect.

8 As discussed in [15], this reveals that on data with many attributes, it is better to
use small gamma values, suggesting ways to improve the algorithm implementation.



Fig. 5. Ranking of algorithms over all datasets and over different performance metrics.
Similar algorithms are compacted in groups, indicated with an asterix (*).

Finding Fundamental Insights Pooling data from different sources enables
us to perform studies that would be impossible, or very expensive to setup from
scratch, but that may bring very general insights into learning performance. For
instance, one could perform a general comparison of all algorithms (selecting
optimal parameter settings) on the UCI datasets. Following a technique used
by [7], we compare over a range of different evaluation metrics, using SQL ag-
gregation functions to normalize each performance value between baseline and
optimal performance, yielding Fig. 5 as the result of a single query. Note that
this query can simply be rerun as new algorithms are introduced over time. A
complete discussion of the results can be found in [15].

Ranking It is also possible to rank algorithms by writing a query. For instance,
to investigate whether some algorithms consistently rank high over various prob-
lems, we can query for their average rank (based on optimal parameter settings)
over all datasets. Using the Friedman ranking and the Nemenyi test to find the
critical difference (the minimal rank gap for algorithms to perform significantly
different)[9], we yield Fig. 6 for learning approaches in general, and Fig. 7 for
algorithms with specific base-learners and kernels. This shows that indeed, some
algorithms rank significantly higher on average than others on the UCI datasets.

Other Uses There are many more uses that can be thought of. For instance,
much more could be studied when looking at the stored predictions: we could
investigate which instances of a dataset are significantly hard to predict for most
algorithms (and why), whether specific combinations of classifiers perform very
well, or whether a vote over every single algorithm would result in good perfor-
mance. Given the large amount of experiments, it could also be very interesting
to mine the repository and look for patterns in algorithm performance.



Fig. 6. Average rank, general algorithms. Fig. 7. Average rank, specific algorithms.

5.2 Integration in Data Mining Tools

Besides being queried directly, an experiment database could also be a valuable
resource when integrated in a variety of data mining tools. One application
would be to avoid unnecessary computation. When performing a large set of
experiments, the tool could automatically consult the experiment database to
see if some experiments can be reused. Furthermore, one could parallelize the
execution of experiments by uploading unfinished experiments to the database
and have several computers checking for unfinished experiments to run.

The tool could also automatically export experiments into a local or global ex-
periment repository. Local repositories could typically be used for studies where
datasets are not (yet) publicly available or where algorithms are still under de-
velopment, offering a means to automatically organize all experiments for easier
analysis. The experiments (or a selection thereof) could still be shared at a later
point in time by transferring them to global repositories.

Finally, one could integrate experiment databases and inductive databases
[11], creating repositories with much more powerful querying capabilities [3].

6 Conclusions

Sharing machine learning experiments and organizing them into experiment
repositories opens up many opportunities for machine learning research and ex-
ploratory data analysis. While such repositories have been used in other sciences,
most notably in bio-informatics, they have only recently been introduced into
machine learning. To stimulate the future development of these repositories, we
have discussed how they can be created and used in practice, and what chal-
lenges remain to be addressed to realize their full potential. To allow the free
exchange of learning experiments, we have proposed an XML-based description
language capturing a wide range of experiments. Next, we have used the same in-
herent structure to implement a database to capture and automatically organize
learning experiments, improving upon earlier suggestions. Finally, we gave an



overview of possible services that such a resource could offer, either by querying
it to retrieve relevant information, or by integrating it into data mining tools. It
is likely that many more creative uses remain to be discovered.

Acknowledgements

Hendrik Blockeel is Postdoctoral Fellow of the Fund for Scientific Research -
Flanders (Belgium) (F.W.O.-Vlaanderen), and this research is further supported
by GOA 2003/08 “Inductive Knowledge Bases”.

References

1. Allison L.: Models for machine learning and data mining in functional programming.
Journal of Functional Programming 15(1) (2005) 15–32

2. Ball, C.A. and Brazma A. and Causton H. and Chervitz S. and Edgar R. et al.:
Submission of Microarray Data to Public Repositories. PLoS Biol 2(9) (2004) e317

3. Blockeel, H.: Experiment databases: A novel methodology for experimental research.
Lecture Notes in Computer Science 3933 (2007) 72-85

4. Blockeel, H. and Vanschoren, J.: Experiment databases: Towards an improved ex-
perimental methodology in machine learning. PKDD ’07: Proceedings. Lecture Notes
in Computer Science 4702 (2007) 6-17

5. Brazma,A., Hingamp,P., Quackenbush,J., Sherlock,G. et al.: Minimum information
about a microarray experiment (MIAME): toward standards for microarray data.
Nature Genetics 29 (2001) 365371.

6. Brazma A., Parkinson H., Sarkans U., Shojatalab M. et al.: ArrayExpress–a public
repository for microarray gene expression data at the EBI. Nucleic Acids Research
31(1) (2003) 68-71.

7. Caruana R. and Niculescu-Mizil A.: An empirical comparison of supervised learning
algorithms. ICML ’06: Proc. of the 23rd Intl. Conf. on Mach. learning (2006) 161–168

8. The Data Mining Group: The Predictive Model Markup Language (PMML), version
3.2. http://www.dmg.org/pmml-v3-2.html

9. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research 7 (2006) 1–30

10. Džeroski S.: Towards a General Framework for Data Mining. Lecture Notes in
Computer Science 4747 (2007) 259–300

11. Imielinski T. and Mannila H.: A database perspective on knowledge discovery.
Communications of the ACM 39(11) (1996) 58–64

12. Perlich, C. and Provost, F. and Siminoff, J.: Tree induction vs. logistic regression:
A learning curve analysis. Journal of Machine Learning Research 4 (2003) 211–255

13. Soldatova L. N., Clare A., Sparkes A., King R. D.: An ontology for a Robot Sci-
entist, Bioinformatics 22(14) (2006) 464–471

14. Stoeckert,C., Causton,H. and Ball,C.: Microarray databases: standards and ontolo-
gies. Nature Genetics 32 (2002) 469–473.

15. Vanschoren J. and Pfahringer B. and Holmes G.: Learning From The Past with Ex-
periment Databases. Working Paper Series 08/2008, Computer Science Department,
University of Waikato (2008)

16. Witten, I.H. and Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques (2nd edition). Morgan Kaufmann (2005)


