Loading...
Thumbnail Image
Item

Effect of processing condition and composition on the microhardness of Cu-(2.5-10)vol.%Al₂O₃ nanocomposite powder particles produced by high energy mechanical milling

Abstract
Nanostructured Cu-(2.5-10vol.%)Al₂O₃ nanocomposites were produced using high energy mechanical milling. For the as-milled Cu- Al₂O₃ composite powder particles having Al₂O₃ volume fractions of 2.5% and 5%, the increase in average microhardness is significant with the increase of milling time from 12 hours to 24 hours. With the increase of the content of Al₂O₃ nanoparticles the microhardness increases and in the range of 255HV-270HV. The milled nanocomposite powders were heat treated at 150, 300, 400 and 500°C for 1 hour, respectively, to determine the thermal stability of the powder particles as a function of annealing temperature. The average microhardness increased/decreased for the Cu- Al₂O₃ composites after annealing at 150°C due to the dislocation density, while increasing the annealing temperature to 300°C and 400°C the average microhardness almost remained mostly unchanged. Further increasing the annealing temperature to 500°C causes significant decrease in average microhardness due to reduction in dislocation density and coarsening of Cu grains of the Cu- Al₂O₃ composite powders produced after 24 hours of milling. This paper is to report and discuss the changes of the microhardness of the material, caused by the compositions and processing conditions, used to fabricate the Cu-(2.5-10)vol.% Al₂O₃ nanocomposite powders.
Type
Journal Article
Type of thesis
Series
Citation
Mukhtar, A., Zhang, D., Kong, C. & Munroe, P. (2010). Effect of processing condition and composition on the microhardness of Cu-(2.5-10)vol.%Al₂O₃ nanocomposite powder particles produced by high energy mechanical milling. International Journal of Modern Psysics B, 24(15-16), 2308-2313.
Date
2010
Publisher
World Scientific
Degree
Supervisors
Rights
This is an author’s accepted version of an article published in the journal: International Journal of Modern Psysics B. © 2010 World Scientific Publishing Company.