Working Paper Series
ISSN 1170-487X

A Development Environment
for Predictive Modelling
in Foods

by G Holmes and M Hall

Working Paper 00/9
July 2000

© 2000 G Holmes and M Hall
Department of Computer Science
The Untiversity of Waikato
Private Bag 3105
Hamilton, New Zealand

A DEVELOPMENT ENVIRONMENT FOR PREDICTIVE
MODELLING IN FOODS

G. Holmes' and M. A. Hall®

1.2 Department of Computer Science, University of Waikato. PB 31035, Hamilton. New
Zealand, {geoff,mhall}@cs.waikato.ac nz

ABSTRACT

WEKA (Waikato Environment for Knowledge Analysis) is a comprehensive suite of Java
class libraries that implement many state-of-the-art machine learning/data mining algorithms.
Non-programmers interact with the software via a user interface component called the
Knowledge Explorer.

Applications constructed from the WEKA class libraries can be run on anv computer with a
web browsing capability, allowing users to apply machine learning techniques to their own
data regardless of computer platform. This paper describes the user interface component of
the WEKA system in reference to previous applications in the predictive modeling of foods.

1. INTRODUCTION

Inductive modelling 1s one of the tools that can be successfully employed in predictive
modelling for agricultural applications (Holmes er a/, 1998). With careful data preparation
and sound experimental techniques it is possible to induce models with high predictive
accuracy. If the model can be visualized (not all inductive techniques have this capability),
then it 1s possible to gain valuable insights into the data such as the relative importance and
relevance of attributes and the quantification of key values that “split” numeric attributes to
give good differentiation within the data.

In the food sciences, most potential users of inductive modeling are computer literate non-
programmers working on a variety of computer platforms who are comfortable with modern
computer applications. These users need a tool that will assist them through all phases of the
process of developing a sound model of their data. It is widely recognized that the key to
success comes from uscrs bringing their domain knowledge to the process of application
development.

This process of developing an application is iterative and, in our experience, crucially
dependent on using methods that are capable of producing an interpretable model of the data.
Users require support for data cleansing and selection of a subset of attributes for model
construction, since these are crucial phases of the data mining process. To illustrate the
pitfalls that can be encountered in these stages, suppose, by way of an example, that two
hundred instances of some kind of fruit have been grown on four different orchards.
Environmental data (rainfall, sunshine hours, humidity etc.) has been recorded. and each fruit
has been assigned a unique identtfier in the range 1-200. Given environmental data, the task is
to predict which orchard an mstance of the fruit came from. If the identifier information is
included in the data set then a smart algorithm might induce the following model:

If fruit_ number <=50 Then Class = Orchard 1
Elself fruit_number <=100 Then Class = Orchard_2
Elself fruit number <=150 Then Class = Orchard 3
Else Class = Orchard 4

This model 15 100% accurate but 0% uscful—the model is simply noting that fruit from
Orchard | were assigned identifiers in the range 1-30, fruit from Orchard 2 were assigned
identifiers in the range 51-100, etc. If the model had been produced by a “black box” learner
(such as a ncural network). the naive scientist might have been mislead. Interpretable output
provides a reality check for induced models. The Knowledge Explorer reduces the risk of
adopting misleading models by making it easy for a user to try a variety of learning paradigms
on the same data and to visualize the resulting models. It also provides tools for the inclusion
or exclusion of attributes or data values that are inappropriate and has mechanisms for
discovering the most uscful attributes to use in an application.

Model evaluation is another critical phase in application development. Typically, users view a
model constructed from their entire data set, and cross-validation is the method of choice for
cvaluation. Error rate (100 — percentage correct) is used as the main means of comparing
models on the assumption that classification accuracy is of primary concern.

The emerging standard in machine learning for estimating the error rate is to use stratified
ten-fold cross-validation. Data is divided randomly into ten parts, in each of which the class
is represented in roughly the same proportion as in the entire data set. Each of the ten parts is
held out in turn while the learning scheme builds a model from the remaining nine parts. The
holdout part 1s used for testing, and an error estimate is calculated. The ten error estimates are
averaged to produce an overall estimate of error. The Knowledge Explorer uses this model of
evaluation, thereby reducing the risk of end-users’ drawing unsubstantiated conclusions. A
separate utility (not described in this paper) called the experiment editor allows users to go
beyond a single ten-fold cross-validation to obtain a better error estimate by reducing the
random variation that can occur in choosing the parts. Although there is no consensus in the
field, a common practice is to repeat this single ten-fold cross-validation ten times, giving rise
to the construction and evaluation of one hundred models

This paper is organized as follows. The next section describes the WEKA Knowledge
Explorer—in particular, its support for data preparation, the inclusion of domain knowledge
and the application of a variety of inductive learning paradigms to the same task. This section
also contains a case study of a mushroom data set to show how various aspects of the system
are applied. Section 3 presents a novel interactive interface to the Knowledge Explorer that
encourages users to build their own models of data. This section also contains a case study on
a kiwifruit data set. Section 4 summarizes the contributions that the system makes to end-user
development of predictive models and indicates future directions for the WEKA system.

2. THE WEKA KNOWLEDGE EXPLORER

The Knowledge Explorer (Figure 1) contains a number of state-of-the-art learning algorithms
called classifiers (algorithms for both classification and regression), meta-classifiers that can
mmprove the performance of the base classifiers, association rule learners, unsupervised
lcarning methods (clustering) and a number of methods for pre-processing data called filters.
Filters enable data to be processed at the instance and attribute value levels. Feature selection
(six methods) and data visualization tools are also included in the interface. A summary of the
Knowledge Explorer’s capability is given in Table 1; for a thorough description of the system
see (Witten and Frank, 1999).

The interface has the look and feel of a modern computer application and allows data to be
entered from either a file (for example, a spreadsheet), URL or database connection. The
interface has a number of “states” through which a user works, corresponding to phases in the
process of developing a data mining application. The state shown in Figure 1 is Preprocess,
where data is entered and then possibly modified by filters. The other states are indicated
along the bar to the right of the Preprocess button.

gka Knowledge Explorer

tiributefiiter - —R 3-5

sepallength
sepalwidth

0.1
25
1.198E666666665668

2004543 email wekasupport@cs walkato.acnz
20:45:48: Started on Wednesday, 13 October 1959
20054:14: Base relationis now iris (150 instances)
2005414 Working relation is now iris (150 instances)

Figure 1. The WEKA Knowledge Explorer Interface

The Preprocess screen—where a dataset is loaded into the system—is the logical entry point
for WEKA analysis. At this point the user can access simple statistics for each attribute
(range, mean, and standard deviation) and apply simple transformations to attributes (for
example, normalizing a column of values). Next, a user is likely to visit the Visualize screen,
to explore the relative discriminatory power of different attributes through one- and two-
dimensional plots of attribute values. The user can Select subsets of attributes to analyze with
Classify (classification), Cluster (clustering), or Associate (association rule) model induction
algorithms. Table I summarizes the facilities currently available in the Knowledge Explorer.

The analysis process is not necessarily linear—results from one induced model are likely to
suggest further preprocessing transformations, users may experiment with more than one
subset of attributes for induction, and more than one type of induction algorithm may be
applied to the data set. The simple yet powerful interface encourages experimentation with
analysis options. As its name implies, the Knowledge Explorer supports exploration of the
implicit structure in a data set, guided by an evolving understanding of the data.

The following case study (Section 2.1) illustrates the support that the Knowledge Explorer
offers in developing a data mining application.

Learning Scheme Meta Scheme Filter

ZeroR Bagging Add attribute

OneR AdaBoost Delete attribute

Naive Baves Logit Boost Discretize attribute
Decision Tables Select attribute

Ibk (instance-based) Feature Selection Convert from nominal to binary
J4 .8 {decision tree) Wrappers Merge values

Support Vector Machines Relief Replace missing values
Linear Regression InfoGain Swap attribute values
Locally Weighted Regression Racing Transform numeric values
Decision Stump Correlation based

Model Tree Principal Components

Table 1. Summary of Knowledge Explorer capability

2.1 CASE STUDY 1 - MUSHROOM DATA

The marketing of mushrooms is a highly subjective exercise. In New Zealand there are no
detailed grading specifications for marketing fresh mushrooms. The product tends to be
graded based on the experience of farmers. These “experts” gain most of their external
feedback on quality matters from the wholesaler or auction floor. The real requirements of
consumers are thercfore three or four steps removed from the initial quality decisions which
must be made at the production end of the supply chain.

This case study uses the Knowledge Explorer to try to undercover the criteria used by
consumers in reaching a decision on quality. Over a four week period a group of 10
consumers was asked to segregate groups of mushrooms into three separate categories based
on their understanding of “good” and “bad” mushrooms. At each assessment the consumers
were presented with a set of 60 mushrooms.

A range of quality was created by presenting each consumer with a set of mushrooms made
up of freshly purchased and stored product. On the day of cach assessment a sample of
mushrooms was purchased at a local retail outlet. This sample was divided into six subsets.
Two subsets were used for immediate assessment, while two were placed in a coolstore at
10°C and two placed in a 2°C store. At the next assessment time (four days later) one of the
2°C subsets and one of the 10°C subsets were used. The second pair of subsets were used
eight days after they had been purchased.

The mushrooms were then assessed for several objective measures of quality. First a set of
digital images was captured (Kusabs et. al., 2000) using a lighting chamber with a 22w
annular florescent light. The mushroom was viewed against a matt black background. The
images were captured using a Kodak DC120 digital camera as 1280 x 960 pixel bitmaps.
These 1mages represent each pixel in the RGB (red, green, blue) colour space with intensities
of 0 to 255. This image data was also transformed into the HSV (hue, saturation. value)
colour space according to Tao et. al. (1995). This colour space is supposed to most closely
replicate the human perception of colour.

For the machine learning analysis the image had to be summarized as a smaller number of
attributes. The histograms were normalized to remove size effects so that they describe
relative mtensity. For the normalized image the background was removed and the cach of the
six histograms (R, G, B, H, S and V) for the remaining image were averaged into five bins.
Each bin was used as an attribute for the machine learning scheme. With both top and bottom
views of the mushroom this produced a total of 60 visual attributes. The weight of the

mushrooms and their firmness were also included as attributes. A total of 1320 mushrooms
were evaluated.

The 62 quality attributes were then analysed using J4.8, from the Classifir panel of the
Knowledge Explorer. J4.8 is a Java implementation (Witten and Frank. 1999) of the C4.5
lcarning scheme (Quinlan, 1993) which builds a model of the data as a dccision tree.
Stratified ten-fold cross validation was used to estimate a measure for the likely future

performance of the model. A separate model was produced for cach of the ten consumers, and
all data for all consumers was then combined to generate a global consumer model.

Two machme learning techniques were used to enhance the classification—featurc selection
and boosting. Featurc sclection estimates the contribution of the different quality attributes to
dectermining the grade, by testing the effects of addition and removal of individual attributes.
This enables the identification of the most significant and influential attributes and
combinations, so that extrancous or marginal attributes can be de-selected from model
construction.

Featurc selection is particularly important when dealing with large numbers of attributes. The
Knowledge Explorer encourages an experimental approach by providing six distinct state-of-
the-art approaches to the task, each of which can be selected for comparison with relative
case.

In this casc study, two variants of the “wrapper” (Kohavi and John, 1993) feature selection
technique were used. The first, standard wrapper, uses a full run of five fold cross-validation
to cstimate the impact of adding and removing attributes. The second method, called “racing”
(Moore and Lee. 1994), reduccs the computation required by evaluating subsets of features in
parallel. If a subset is deemed unlikely to have the lowest estimated error, at some stage
during a cross validation, then it is dropped from the race. Similarly, subsets that generate
near identical classifications are also discarded. This has the effect of reducing the percentage
of traming examples used during the evaluation and reduces computational time. The relative
performance of the two techniques (standard wrapper and raced wrapper) can be seen in Table
2.

The second method used to improve the classification accuracy of the induced models was a
“boosting” technique. Boosting builds a series of models in a sequence, such that each new
model in the sequence is designed to improve on the errors made by its predccessor. It
achieves this by initially weighting the data equally when building and testing a model and
then re-weighting specific data instances to focus attention on those instances that were
previously incorrectly classified. A new model i1s constructed based on these re-weighted
values and the process continues, typically for a fixed number of iterations. Instances are
classified by majority vote. Each model decides on a classification and a vote is taken.

In this study. fifty models were built and classified by Adaboost (Freund and Schapirc, 1996).
While the technique improves prediction and reduces misclassifications, it has the
disadvantage that it does not produce a single interpretable decision tree. In this study,
boosting resulted in marginal to moderate increases in classification accuracy—approximately
0.5% to 11.2% (Table 2).

In order to compare the perceptions of quality at the producer and consumer ends of the
supply chain, both producers and consumers must assess the same mushrooms. A producer
model was generated 1n a previous study (Kusabs et. al., 2000), also using the Knowledge
Explorer). The mushrooms were graded by the ten consumers and the induced producer
model.

The degree of similarity between consumers was assessed by calculating a correlation matrix.
Each consumer was comparcd with each of the other nine consumers, the “global™ consumer
{(an combwation of all the consumers) and the producer model. The highest agreement
between consumers was approximately 70% and the lowest 51%. Agreement with the global
consumer ranged from 80% to 67% which dicates that these consumers relate better to an
average of the whole group. than they do to any individual consumer.

Consumer | ZeroR | Standard | Raced Boosted | Features selected (by racing)
Wrapper | Wrapper | Accuracy
Accuracy | Accuracy
| 42.2% | 63.2% 03.1% 67.3% Rt4, Gbl, Hb3, §t3. Sb3, Vt2
2 49.7% | 66.9% 63.1% 68.2% Ht4, Stl, Vtl
3 40.1% | 62.5% 57.5% 68.7% Gbl, Bt3, Ht0, Hb0, Hb4, Vit4d
4 58.9% | 71.0% 71.4% 74.9% Btl, Bb0, Bb2, Ht2, Stl, St2
5 55.1% | 77.1% 75.1% 80.1% Gt0, Bb4, Hb4, Stl, St3, V2
6 46.5% | 69.4% 64.0% 71.0% Wt, Gt2, Gb0, Gb3, Bt4, Bb2
7 62.6% | 67.5% 67.5% 70.3% Rt2, Rb0, Rb3, Btl, Bt2, Ht2
8 44.6% | 63.3% 63.9% 64.4% Gt2, Gb3, Stl, Sb4
9 38.0% | 61.8% 59.7% 64.9% Wi, Rt2, Hbl, Sb2
10 35.5% | 69.9% 69.8% 70.9% Rb0, Rbl
Global 70.1% 69.0% Rt3, Ht0
Producer 82.1% Rtl, Rbl, Bbl, Sbl, Vi3

Table 2. Accuracy of different explorer techniques for consumer grading decisions

The zeroR accuracy figure in Table 2 1s produced by choosing the majority class for a given
data set. It 1s a good estimate of “default accuracy™;, a leamning scheme should provide
significant improvement on this value.

Using the racing wrapper, user model accuracy ranged from 60% to 75%. The producer
model accuracy, when grading mushrooms in the previous study, was 82% (Kusabs et. al.,
2000). This suggests, as expected, that the consumers” grading criteria are not as well defined
as the producer.

Only two of the consumers (6 and 9) used weight as a major determinant. One consumer (2)
used only visual attributes relating to the top of the mushroom. and consumer 10 used only
the bottom of the mushroom. The attributes used by the producer are also shown in Table 2.
It is noteworthy that of the attributes used by the producer only one is used by a (single)
consumer. This was consumer 10, who graded entirely using the bottom view of the
mushrooms. Visual attributes dominate i the consumer decision, with only two consumers
using weight as a primary attribute.

The J4.8 machine learning scheme produced a useful set of quality description models for the
10 consumers. These models have easily interpretable decision trees which are built on the
objective attributes measured. An analysis of the consumer decision trees show that different
consumers use different combinations of attributes to classify their mushrooms (final column
of Table 2). A full tree for consumer 10 after racing feature selection has been applied is
shown in Figure 2. The tree is interpreted as follows: grade 1 mushrooms have Rbl <= 498;
grade 2 mushrooms have either Rbl > 498 and Rb0O <= 990 or (908 < Rbl <= 2005) and Rb0
<= 1028; while grade 3 mushrooms have Rb1 > 908 and Rb0 > 1028 or Rb1 > 2005 and Rb0
<= 1028 or 498 < Rb1 <= 908 and Rb0 > 990. The values in parentheses at the leaves of the
tree give an estimate of how well the rule leading to that leaf will differentiate as yet
unclassified examples. For example, the grade 1 leaf has correctly classified 402 of the 511
(402 + 109) grade 1 mushroom examples mn the training data.

Bot_Hist_Red 1

<= 908

> 908

Bot_Hist_Red_1 Bot_Hist_Red 0

> 1028

3(23608.0) i

> 2005

1402 0/109 0) Bot_Hist_Red_0 Bot_Hist_Red_1

<=990 1 >990 <= 2005

2(355.01147.0) | 322010 3 (59.0/7.0)

2 (246.0/107.0) |

Figure 2. Example Consumer Decision Tree (consumer 10)

Feature selection and inductive learning provide an insight into the complex relationships
which exist where a set of inexperienced consumers are confronted with a highly variable
biological product. Boosting can then be applied to the induced models to enhance
classification accuracy.

3. INTERACTIVE MACHINE LEARNING

Standard machine learning algorithms are non-interactive: they input training data and output
a model. Usually, their behavior is controlled by parameters that let the user modify the
algorithm to match the properties of the domain or data sct—for example, the amount of noise
in the data. Users who are familiar with the workings of an algorithm still have to resort to
trial and error to find optimal parameter settings for a particular application. Most users have
a limited understanding of the underlying techniques and this makes it ecven harder for them to
apply learning schemes effectively.

The same problem arises when choosing a learning technique for a problem at hand. The best
choice generally depends on the properties of the domain, yet there is no standard recipe for
selecting a suitable scheme. The problem is compounded by the fact that users are often
unaware of the strengths and weaknesses of the individual learning schemes. Parameter and
scheme selection are the only mechanisms through which users affect the modcel generated,
and there 1s no other way for domain knowledge to enter the inductive process beyond the
data preparation stage.

An option in the Classify screen of the Knowledge Explorer supports a graphical, interactive
approach to machine learning. Model construction is guided by the user, who “draws”
decision boundaries in a simple but flexible manner. Because the user controls every step of
the mductive process, parameter and scheme selection are no longer required. When used by
a domain expert, background knowledge is automatically exploited because the user is
involved in every decision that leads to the induced model. The scheme works most naturally
with numeric attributes, although the interface does accommodate nominal attributes.

Figure 3 illustrates the user mterface. There arc two kinds of panel: tree visualizers (Figure
3a. 3d, and 3f) and data visualizers (Figure 3b, 3c, and 3¢). At the top of cach screen is a
sclector that indicates which kind of panel is currently being displayed: users can click this to
switch between pancls at any stage of the construction process. The tree visualizer displays

the structure of the decision tree in its current state: Figure 3a. 3d. and 3f shows trecs with
one. two, and three leaves respectively. The user can select any node by left-clicking on it.
which highlights the node and loads the data at that node into the data visualizer. The data
visualizer contains a two-dimensional visualization of the instances that reach the selected
nodc: Figure 3b, 3c. and 3¢ show the data for the root node of Figure 3a, the root node of
Figurc 3d. and the right child of the root of Figure 3f respectively. The data visualizer allows
the user to define a split by drawing polygons in the visualization. Oncc a split has been
generated, the resulting nodes are appended to the tree structure m the tree visualizer.

3.1 BASIC FUNCTIONALITY

The data visualizer 1s divided into three arcas: controls (at the top), a two-dimensional scatter
plot (on the left), and one-dimensional bar graphs (on the right). The controls allow the user
to select attributes and control other aspects of the display. The scatter plot displays the
instances on a plane whose axes are defined by the two attributes currently selected by the
user. The color of each data point indicates the class value of the instance corresponding to
that point, and a keyv to the color coding, giving each attribute name in the color that
represents it, is displayed below the scatter plot. (Three colors are used in Figure 2, and they
appear as barely-distinguishable shades of gray; of course the actual color display is far more
striking.)

The bar graphs, one for each attribute in the data set, provide a compact one-dimensional
visualization of each attribute in 1solation. The array of bar graphs scrolls to accommodate
more attributes than will fit in the space provided (although this is not necessarv with the data
set of Figure 3). These bars provide a convenient way of visualizing the discriminatory power
of individual attributes. The horizontal axis of an attribute's bar spans the range of the
attribute it represents. Data points are randomly distributed along the short vertical axis to
provide an indication of the distribution of class values at any given point in the attribute's
range.

There are two ways which the user can select attributes for display in the scatter plot. First,
pull-down menus are provided in the control arca at the top of the data visualizer that allow
the user to choose the attribute for the X and Y axes by selecting the name of an attribute
from the appropriate drop-down list. Second, attributes can be selected from the attribute bars
displaved in the right area of the data visualizer: clicking on a bar with the left or right mouse
button chooses that attribute for the scatter plot's X and Y axis respectively. Nominal
attributes can be chosen: the different attribute values are displayed along the axis in a
discrete manner.

Once the user 1s satisfied with their choice of attributces, a split can be drawn interactively in
the scatter plot arca of the data visualizer. This 1s accomplished by enclosing data points
within one or more polygons. A pull-down menu at the top of the panel lets the user choose
from a list of shapes that can be drawn. The shapes range from a simple rectangie or polygon
to a “polyline” or open-sided polygon (as shown in Figure 3¢ and 3e). They are drawn by left-
clicking a series of points in the scatter plot. In the case of a polyline, a final click (with the
right mouse button) on one side of the line determines which data points are enclosed: the
cnd-points of the line segment at either end of the polyline are extended to infinity.

A split is defined by the area enclosed within the polygon that has been drawn, or the union of
these areas if there is more than one polygon. When satisfied with the result, the user nserts
it into the tree structure by clicking the Submir button at the top of the data visualizer. This
appends two new nodes, the left containing all instances enclosed by the polygons, the right
recetving all remaining instances. The modified tree can be viewed by switching to the tree
visualizer. If, on the other hand, the user is not satisfied with the split they have drawn, it can
be removed by clicking the Clear button.

Split on
petallength AND petatwidth

<-versicolor, 50.0]
is-virginica, S0.0

Split:on
petaliength AND petalwidth

(Itis-setosa,.50. Splitan

petatieryth &MD petalwidth

(e) ®
Figure 3. Constructing a classifier for the Iris data

The process of defining splits and appending them to the tree continues until the user 1s
satisfied with the resulting classifier. At any stage the data at any given node in the tree can
be visualized by left-clicking on that node. If the user decides to redefine a split at an existing
intcrior node, the subtree below that node will be replaced by the nodes corresponding to the
new split. The user also has the option of simply removing an existing subtree without
defiming a new split by right-clicking on a node in the tree visualizer.

Uscrs can adjust how the tree structure is displayed in the tree visualizer. A right-click
ontside a node generates a pop-up menu from which one can select different options to rescale
the tree. In addition, it is possible to move the tree by dragging it with the left mouse button

The data visualizer offers additional options that alter the appearance of the data to
accommodate preferences of individual users. The color assigned to each class can be
changed using a pop-up color selector. The jitter slider is useful if several instances occupy
cxactly the same coordinates in the scatter plot. Depending on the level of jitter. all data
points are randomly perturbed by a small amount.

The data visualizer also allows the user to examine properties of individual data points by
left-clicking on anv point in the scatter plot (so long as “select instance™ is chosen in the
shape-selection pull-down menu near the top—as it is in Figure 3b). This brings up a text
window summarizing all attribute values for the instances (possibly more than one) located at
that point in the plot.

Here is a detailed walk through the process of building a decision tree for the well-known (in
the statistics and data mining community) Iris data (Fisher, 1936; data set obtained from
(Blake et al, 1998)). This data set has a simple structure that lends itself naturally to
interactive classifier construction. It consists of four numeric attributes that measure
propertics of Iris flowers. The leamning task is to construct a decision tree classifier based on
these four attributes that will correctly assign test data to the three classes. each representing a
different vartety of Iris (virginica, versicolor and setosa).

Before any splits are made, the tree visualizer displays a single node that corresponds to the
root of the tree (Figure 3a). Inside the node is shown the number of instances belonging to it,
broken down by class. In this case there are 50 instances of each class. The node is
automatically selected: this i1s indicated by a highlighted border (cf. the borderless unselected
nodes in Figure 3d and 3f).

To generate a split, the user switches to the data visualizer, which at this juncture displays the
data points at the root node. Figure 3b shows the situation after the user has chosen the third
and fourth attributes (pefallength and petalwidth) for the X and Y axes respectively: both the
selection controls and the attribute bars are updated accordingly.

Next, the user draws a split m Figure 3c, in this case by choosing the polyline option to
generate an open-sided polygon and splitting off the instances belonging to the Iris-setosa
varlety (located in the lower left comer of the display, and easily distinguished by color in the
actual interface). The “enclosed” arca of the polyline is shown in light gray.

Figure 3d shows how the tree is altered as a consequence of submitting the split. Two new
nodes are attached to the root. The left one corresponds to the light gray arca in the data
visualizer, the right one to the remaining (black) region of the instance space. The right node
is automatically highlighted for further processing, because users generally work by splitting
off “easy” regions and leaving the rest for later refinement. The instances at this new node are
automatically displaved in the data visualizer.

The 1llustration shows one further split being made, again using the polyline primitive, which
divides the remaining instances into two almost pure subsets in Figure 3e. The resulting
decision tree 1s shown in Figure 3f. It contains a total of five nodes and classifies all but one
of the training instances correctly.

3.1 CASE STUDY 2 - KIWIFRUIT DATA

Our inferest 1n 1nteractive machine learning derives from the observation that scveral data sets
from our applied data mining projects appear to lend themselves naturally to manual
classification. An example of this type of problem involves classifying kiwifruit vines into
twelve classes. The task 1s to determine which one of twelve pre-harvest fruit management
trcatments had been applied to the vines, on the basis of visible-NIR spectra collected at
harvest and after storage (Kim, Mowat, Poole & Kasabov, 1999). The training and test data
contain 879 instances and 929 instances respectively.

(b)

Figure 4. Classifying Kiwifruit Vines

The traiming data, visualized using the first two of eleven attributes, is shown in Figurc 4a. A
user, with no prior knowledge of the domain and no previous attempts at generating a
classifier for this problem, created a decision tree manually from the training data using the
procedure described in the last section. The resulting tree contained 33 nodes (using only four
attributes) and achieved an accuracy of 85.8% on the test data: Figure 4b shows a miniature
view. For comparison, we ran the decision tree inducer J4.8 (also used in the first case study)
over the same training and test data. [t produced a tree containing 93 nodes (using nine
attributes) with an accuracy of 83.2% on the test data. The difference in accuracy is
statistically significant at the 80% level according to a two-sided paired #-test.

This result 1s preliminary but very encouraging. This part of the Knowledge Explorer allows
users to become nvolved 1in model construction, taking advantage of the innate human ability
to visually 1dentify boundaries between classes in the data.

4. CONCLUSION

[n this paper we have described the WEKA Knowledge Explorer, a tool for exploring data
using inductive learmning. We have given a brief description of its features and demonstrated
its use in two case studies related to food process technology. The tool can be used to uncover
previously unknown aspects of the data, and is particularly useful in discovering the relative
relevance of attributes in the classification task (Section 2). The user classifier described in
Section 3 combines the skills of human user and machine learning algorithm. Situations in
which manual decision-tree construction will fail can be identified by visualizing the data, and
i such cases the user may want to invoke a learning algorithm to take over the induction
process. The latest Knowledge Explorer has this capability, but this feature and the impact of
domain knowledge on model construction have not been empirically evaluated. This type of
emptrical study is next on our research agenda.

WERA is proving to be an extremely popular piece of software—since its release there have
been over 100 downloads per week. Through the Knowledge Explorer mterface it 1s possible
for non-programmers, on any computer platform. to produce sound inductive modecls of their
data.

To date, this interface has been used in several applications in the food sciences: determining
the factors that lead to apple bruising (Holmes er a/, 1998), identifving the factors that
contribute to a degradation in the moisture content of milk powder, modeling mushroom
grading criteria (Kusabs ef al, 2000), and discovering the treatment that has been applied to a
kiwifruit vine. WEKA has the potential to become a valuable part of a food scientist’s set of
modeling tools.

ACKNOWLEDGEMENTS

This work was supported by the New Zealand Foundation for Research, Science and
Technology (FRST). We would like to thank Sally Jo Cunningham for her helpful comments
on an earlier draft of this paper.

REFERENCES

Blake. C.. Keogh, E. and Merz, C. J. 1998. UCI Repository of Machine Learning Data-Bases.
Irvine, CA: University of California, Department of Information and Computer Science.
[http://www ics.uci.edu/~mlearn/MLRepository html].

Fisher.R.A (1936). The use of multiple measurements in taxonomic problems. Annual
Lugenics, 7, Part 1L, 179-188 (1936); also in Contributions to Mathematical Statistics, John
Wiley 1950.

Freund, Y. and R. E. Schapire. 1996. “Experiments with a new boosting algorithm,” in

Proceedings of the 13" International Conference on Machine Learning. Morgan Kaufmann
Publishers, San Mateo, Califorma, pp. 148-156.

Holmes, G., S. J. Cunningham, B. T. Dela Rue and A. F. Bollen. 1998. “Predicting apple
bruising using machine learning,” Acta Hort, 476:289-296.

Kim, J., Mowat, A.. Poole, P. and Kasabov, N (1999). “Applications of connectionism to the
classification of kiwifruit berries from visible-near infrared spectral data,” in Proceedings of
the ICONIP99 International Workshop. University of Otago, (pp. 213-218)..

Kohavi, R., and John, G. H. 1995, “Wrappers for feature subset selection.” Arsificial
Intelligence, 97:273-324.

Kusabs, N. J., Bollen, AI'., Trigg L. and Holmes G. 2000. “Objective measurement of
mushroom guality relative to industry inspectors.” In preparation.

Moore, A. W. and M. S. Lee. 1994. “Efficient algorithms for mimimising cross validation
error.” in Proceedings of the 11™ International Conference on Machine Learning. Morgan
Kaufmann Publishers, New Brunswick, NJ, pp. 190-198.

Quinlan, J. R. 1993, (4.5 Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo, CA.

Tao, Y., P. H Heinemann, Z. Varghese, C. T. Morrow and H. J. Sommer HI. 1995,
“Machine vision for colour inspection of potatoes and apples.” Transactions of the ASAE.
38(5):1555-1561.

Witten. I H.. and Frank E. (1999) Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, San Francisco.

