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ABSTRACT

We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully
three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations
describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-
propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the
nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the
fluctuationsby, for example, velocity shear and pickup ionsis included. Numerical solutions to the new model
are obtained using the CRONOS framework, and validated against previous simpler models. Comparing results
from the new model with spacecraft measurements, we find improved agreement relative to earlier models that
employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-
dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the
transport of cosmic rays in the turbulent solar wind.
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1. INTRODUCTION

The explicit consideration and self-consistent implementa-
tion of the evolution of turbulence in expanding plasma flows is
a focus of contemporary modeling of astrophysical flow
phenomena. This is particularly so for the solar wind; see the
review-like introductions in Usmanov et al. (2011, 2014), Zank
et al. (2012a), and Wiengarten et al. (2015). This considerable
improvement, relative to non-self-consistent modeling, is, on
the one hand, necessary in order to fully understand the
transport of charged energetic particles in the heliosphere (e.g.,
Engelbrecht & Burger 2013), and via this to explore the
physics of their interactions with the plasma turbulence (e.g.,
Schlickeiser 2002; Shalchi 2009). On the other hand, the
correct description of the transport of cosmic rays in other
astrophysical systems is also of great interest. For example, in
astrospheres, i.e., circumstellar regions occupied by stellar
winds, it is of high relevance in the context of exoplanet
research (e.g., Scalo et al. 2007; Grenell et al. 2012; Grießmeier
et al. 2015) and potentially for an understanding of cosmic-ray
anisotropy at high energy (Scherer et al. 2015). Another
example is the, at least partly diffusive, cosmic-ray transport in
galactic halos (e.g., Heesen et al. 2009; Mao et al. 2015).

Modeling of the transport of solar wind turbulence has
advanced considerably since the early model of Tu et al.
(1984), which was itself a major step forward from WKB
transport theory (e.g., Parker 1965; Hollweg 1973). Improved
inertial range models (e.g., Marsch & Tu 1990; Zhou &
Matthaeus 1990) and energy-containing range models (e.g.,
Matthaeus et al. 1994, 1996; Zank et al. 1996, 2012a) have
been presented. These have often included additional effects,
such as heating of the solar wind (e.g., Zank et al. 1996;
Matthaeus et al. 1999), non-zero cross helicity (e.g., Matthaeus
et al. 2004; Breech et al. 2005, 2008), non-constant difference
in velocity v and magnetic field b fluctuation energy (some-
times called residual energy, Matthaeus et al. 1994; Zank
et al. 2012a; Adhikari et al. 2015), and different correlation

lengths for v and b as well as for the Elasser fluctuations (Zank
et al. 2012a; Dosch et al. 2013; Adhikari et al. 2015). See Zank
et al. (2012a) and Zank (2014) for reviews of this progress.
Another extension concerns the nature of the fluctuations.

Models like those mentioned above typically treat the
fluctuations as being of a single kind, typically either waves
or some form of turbulence. Oughton et al. (2011) developed a
model where propagating high-frequency wave-like fluctua-
tions and low-frequency, perpendicularly cascading, thus
quasi-two-dimensional (quasi-2D) turbulent fluctuations are
both supported (see also Oughton et al. 2006; Isenberg
et al. 2010). This approach, referred to as two-component
turbulence modeling, explicitly acknowledges the presence of
both turbulence and wave-like fluctuations and has distinct
advantages compared to the “traditional” one-component
modeling. First, it is commonly agreed that there are at least
two turbulence drivers, namely stream shear at low frequencies
and unstable pickup ion velocity distributions at high
frequencies. Clearly, the separation of the turbulence into two
corresponding frequency components allows for a more
“natural” quantitative formulation and modeling of the distinct
driving processes. Second, this decomposition permits a fairly
detailed treatment of nonlinear interactions of wave-like and
quasi-2D components with each other and among themselves
(Oughton et al. 2006, 2011). Third, assuming these two
components to determine the slab and 2D turbulence quantities
required in contemporary cosmic-ray transport theorywith
sufficient accuracy, they form the basis of so-called ab initio
modeling of cosmic-ray modulation (Engelbrecht &
Burger 2013).
In order to self-consistently couple turbulence transport

models to those of the large-scale structure of the heliosphere
(e.g., Zank 2015) or astrospheres (e.g., Scherer et al. 2015) the
former must be formulated in three spatial dimensions. This has
been done for the one-component model by Usmanov et al.
(2011). Another generalization concerns the removal of the
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limitation of the model’s validity for the super-Alfvénic solar/
stellar wind regimes, which—again for the one-component
model—has been achieved recently in a non-self-consistent
fashion by Adhikari et al. (2015) and fully self-consistently by
Wiengarten et al. (2015). Naturally, it is desirable to make both
extensions also for the two-component turbulence model. This
is the objective of the present paper, whose structure we now
outline.

We formulate the basic equations of the two-component
phenomenology and its coupling to the large-scale magneto-
hydrodynamic (MHD) equations in Section 2. The implemen-
tation in the CRONOS numerical framework is presented in
Section 3, along with numerical results. These include a
computational validation with respect to the simpler Oughton
et al. (2011) model, and results from the new two-component
model with its more realistic background solar wind. A
comparison with spacecraft data is also presented. Then, in
Section 4, the findings are used to calculate diffusion and drift
coefficients for the transport of cosmic rays in the heliosphere.
We conclude with a summary and an outlook on future
improvements in Section 5.

2. STATEMENT OF THE MODEL AND ITS PHYSICS

2.1. Definitions

We begin by introducing our notation for the large-scale and
small-scale fields. The total solar wind velocity is written

+U r v r x,( ) ( ), the sum of a large-scale piece dependent upon
the heliocentric position vector r, and a small-scale contrib-
ution that alsodependsupon local small-scale coordinates x,
relative to each r. Similarly, the total magnetic field is

+B r b r x,( ) ( ), with associated large-scale Alfvén speed
pr=V B 4A , where r r( ) is the large-scale mass density.

The small-scale dynamics is treated as incompressible (see
Zank et al. 2012bfor a discussion of transport of density
fluctuations). As a simplifying assumption, the fluctuation
amplitudes, v and b, are restricted to be transverse to B; that is,
parallel variances are neglected. Solar wind observations
indicate that this is often a reasonable approximation (e.g.,
Belcher & Davis 1971; Klein et al. 1991). In general, the above
quantities are also time-dependent.

The large-scale wind velocity U is with respect to an inertial
frame; in the frame corotating with the Sun the large-scale
velocity is W= - ´V U r, where W is the solar angular
rotation rate. Our numerical computations are often performed
in this corotating frame. In obtaining the transport equations in
this frame, we make use of the relation  = V U· · , which
holds because W ´ =r 0· ( ) .

The two-component aspect of the model involves separating
the fluctuations into two precisely defined incompressible
elements: quasi-2D turbulence and a complementary wave-like
component (Oughton et al. 2006, 2011). Specifically, employ-
ing Elasser variables, pr= z v b r4 ( ) , we express the
fluctuations as

= +  z r x q w, , 1( ) ( )

where q and w are the quasi-2D and wave-like components,
respectively; both quantities are functions of the (large-scale)
heliocentric radius r and the small-scale displacements x from
each r.

Table 1 summarizes the definitions of the major energy-
related fluctuation quantities, which appear in the transport

model. For the quasi-2D component, sc z, is the normalized
cross helicity, and sD

z the normalized energy difference, equal
to the (normalized) kinetic energy less the magnetic energy all
divided by the sum of these. In general, the analogous quantity
for the wave-like component is indicated by a subscript or
superscript w.
Along with the energies (per mass) of the fluctuations, Z 2

and W2, it is also necessary to consider their characteristic
lengthscales, typically defined using correlation lengths. In
general, these are distinct for each type of field; for example, +ℓ
for +Z 2 and -ℓ fo -Z 2. Here we make the simplifying assumption
that these scales are equal and denote the characteristic
lengthscale of Z2 as ℓ and that of W2 as λ. In addition, the
typical parallel scale of the wave-like component,l, is needed,
particularly in connection with driving by pickup ions. (For
one-component transport models that consider
the± lengthscales separately see Zank et al. 2012a and
Adhikari et al. 2015.)
Finally, in this section, we address the suitability of using

incompressible MHD to model solar wind fluctuations.
Naturally, the actual solar wind fluctuations will often
display some compressive activity. Here, however, from the
outset we approximate them as being incompressible and thus
neglect small-scale compressive behavior. On the observa-
tional side, density fluctuations are often found to be ∼10%
of the mean value (e.g., Roberts et al. 1987; Matthaeus
et al. 1991), providing motivation for neglecting compressive
activity at this level. On the theory side, the nearly
incompressible (NI) approach for systems with small Mach
numbers (Zank & Matthaeus 1992, 1993), leads to a leading-
order description that is either incompressible 3D MHD
(large plasma beta) or incompressible 2D MHD (beta small or
order unity). The next order corrections are termed “NI” and
support MHD waves. In particular, when beta is oftheorder
of unity, as is typical for the solar wind, the NI solutions
include Alfvén waves with timescales shorter than those
associated with the leading-order incompressible behavior.
Thus, modeling the system as we do herein, i.e., using
incompressible quasi-2D and incompressible wave-like
components, is consistent with the NI results.

2.2. The Transport Model for the Fluctuations

The transport and driving terms—for the energy, cross
helicity, and characteristic lengthscales of the fluctuations—

Table 1
Definitions of Some Important Physical Variables for the Quasi-2D

and Wave-like Components

Quasi-2D Wave-like
Fluctuations Quantity Fluctuations

= á ñ  q qZ 2 · Elasser “energies” = á ñ  w wW2 ·
= ++ -Z Z Z2 2 2 2 total “energies” = ++ -W W W2 2 2 2

= -+ -H Z Z2 c
z 2 2 cross helicities = -+ -H W W2 c

w 2 2

s =
-

+
+ -

+ -

Z Z

Z Z
c z,

2 2

2 2

normalized cross helicities
s =

-

+
+ -

+ -

W W

W W
c w,

2 2

2 2

s =
á ñ+ -q q

ZD
z

2

· normalized energy differences s =
á ñ+ -w w

WD
w

2

·

Note.Angle brackets á ñ indicate averaging over the small-scale coordinate x
(at each large-scale coordinate r). Note that Hc

z and Hc
w differ by a factor of two

from the definitions used in Oughton et al. (2011).
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have been derived and discussed in various works (e.g.,
Matthaeus et al. 1994; Usmanov et al. 2011; Zank et al. 2012a).
Here we largely follow the approach of Matthaeus et al. (1994)
and Usmanov et al. (2011), extended to incorporate the
homogeneous two-component phenomenology presented in
Oughton et al. (2011) and also retaining terms of theorder
ofV UA (Adhikari et al. 2015; Wiengarten et al. 2015).

This leads to the following equations for the fluctuation
energies, in the frame corotating with the Sun,

⎡
⎣⎢

⎤
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⎡
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where

=  + -X Y Y , 6( )

⎡
⎣⎢

⎤
⎦⎥

l l
= G + G

- G - G


 

 

 

 

 

 

 

Y W Z
Z W

Z

ℓ

W

ℓ
, 7

w
z w

w
w w

w
z z

w
w z ( )

t t
G =

+
1

1
, 8c

ab
ab c
nl A

( )

s s s s= + -  - +f2 1 1 1 1 , 9ab
a b a b( ) ( ) ( )

with s sºa
c z, or sc w, for the component a=Z or W.

Equation (9) defines various “f” functions, bounded by ±1.
These act as attenuation factors for the modeled nonlinear
terms when the cross helicities are non-zero, as is appropriate
(see, e.g., Dobrowolny et al. 1980a).
The +Y term, which may be positive or negative, models

theexchange of excitation between +Z 2 and +W2, and similarly
for -Y . The Gc

ab are associated with the decay rate of the triple
correlation for the term being modeled, and involve the
nonlinear (tnl) and Alfvén (tA) timescales of the appropriate
components. Further details are given in Oughton
et al. (2006).
Structurally, we have written Equations (2)–(5) so that

different typesof physics appearon separate lines. On the
first lines, we have advection, expansion, and propagation
effects (essentially the WKB terms). The “mixing” terms,
proportional to a sD (Zhou & Matthaeus 1990), are on the
second lines. The third line in each equation presents the
homogeneous decay phenomenology terms. If there is any
forcing, the terms modeling those effects appear as a fourth
line. For example, the quasi-2D and wave-like energies are
driven by large-scale velocity shear—modeled using either
self-consistently computed velocity gradients (Wiengarten
et al. 2015) or ad hoc terms in the manner of earlier models
(e.g., Zank et al. 1996; Breech et al. 2008)—and W2 is also
forced by waves generated during the near isotropization of
pickup ions (EPI˙ ).
Note that the right-most mixing terms in Equations (4) and

(5) are absent from the model of Zank et al. (2012a) on setting
their suggested structural similarity parameters for axisym-
metric quasi-2D fluctuations, namely =a 1 2, b=0. We find,
however, that in order to recover the model of Matthaeus et al.
(1994) it is appropriate to choose = =a b 1 2.
Since in each of theEquations (2)–(5) the final line arises

from a turbulence phenomenology (Oughton et al. 2011), the
terms on these lines are only determined to within O(1)
multiplying constants. There are some constraints on these
constants; for example, when adding the Z2 and W2

equations,we require that the exchange terms cancel. Here,
we adopt the simplest approach of using a single constant in
each equation (except for the variations required in connection
with the exchange terms), denoted az and aw.
Transport equations for the characteristic lengthscales—ℓ , λ,

l—are derived following the approach of Matthaeus et al.
(1994). This is based on integrating correlation functions over the
(small-scale) lag, x. For example, in the case of ℓ ,one starts with
transport equations for x x= á + ñ  r q r x q r xR , , ,( ) ( ) · ( ) ,
defines ò x x=

¥  rL R , d
0

( ) and obtains their transport
equations, adds these to give an equation for
= + =+ -L L L Z ℓ2 2 , and then extracts the equation for ℓ .

The choice of integration direction, x̂, is discussed below. (See
Zank et al. 2012a for a distinct approach.) With the extension to
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two components and retention of VO A( ) terms, this leads to
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Again the presentation structure has advection, expansion, and
wave propagation terms on the first lines, mixing terms (when
nonzero) on the second and third lines, turbulence phenomen-
ology terms on the line after those, and any forcing on a
separate line after that. In the general case, terms associated
with shear driving also appear in the lengthscale equations
(e.g., Matthaeus et al. 1996; Zank et al. 1996, 2012a; Breech
et al. 2008; Oughton et al. 2011). Herein, however, we assume
that shear driving occurs at the correlation scales and thus ℓ , λ,
and l are unaffected by such forcings.

Becauseℓ and λ are characteristic transverse lengthscales, in
Equations (10) and (11), the unit vector x̂ must be chosen to lie
in the plane perpendicular to B, i.e., in the plane of the
fluctuation amplitudes. For a B that lies in the R-T plane, such
as the Parker spiral field, a useful choice is x J=ˆ ˆ , where ϑ is
the polar angle in heliocentric spherical coordinates. (See
Matthaeus et al. 1994, where x̂ is denoted as r̂.)

In general, one also needs equations for the energy
difference lengthscales (Matthaeus et al. 1994; Zank
et al. 2012a; Adhikari et al. 2015). Here we employ the
closures s=L ℓ ZD D

z 2 and ls=L WD D
w 2˜ . These imply equality

of the correlation lengths for the velocity and magnetic fields
( =ℓ ℓ ;v b l l=v b), and induce slight simplifications of
Equations (10) and (11).

In obtaining the equation for l, we assume that the
correlation functions for the W component have the same
symmetry structure as that for “slab” Alfvén waves and

integrate along the mean field direction: x = Bˆ ˆ . We also make
the approximation of a single parallel lengthscale, e.g.,
l l= D, . These features combine to cause cancellation of
the mixing terms. The energy injection associated with (near)
isotropization of pickup-ion-induced waves occurs at the
gyroradius of the pickup protons, l p= Wr r rU2res p( ) ( ) ( )
with the proton gyrofrequency Ω.
To close the model, assuming that the large-scale fields like

V and VA are known, we require knowledge of the normalized
energy differences, sD

z , sD
w . Their transport equations are

obtained in asimilar fashion to the above derivations
(Matthaeus et al. 1994; Zank et al. 2012a; Adhikari
et al. 2015). Herein, however, we approximate sD

z and sD
w as

constant parameters, on the basis of rough observational
support (Roberts et al. 1987; Perri & Balogh 2010; Iovieno
et al. 2016). This yields a closed set of equations for the
fluctuations, given the large-scale fields. Transport equations
for the latter are now considered.

2.3. Large-scale Equations

The fluctuations in the present model consist of two different
components. This leads to some modified terms in the large-
scale momentum equation. The single fluctuation component
form is given in Usmanov et al. (2011), see their Equation
(B2), as

⎡
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whereW = We ;z W =  -14 .71 day 1 (Snodgrass & Ulrich 1990),
and = g eGM r r

2( ) describes the Sun’s gravitational
acceleration, and P is the large-scale gas pressure.
The forms of η and the pressure of the fluctuations pfluct

depend upon the assumed symmetries of the latter, e.g., via the
modeling of the MHD Reynolds stress (Usmanov et al. 2011).
For the present (transverse, axisymmetric) two-component
case, they become
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and are used in place of η and pfluct in Equation (13), which is
otherwise unchanged. “Cross-component” effects like á ñb bZ W

with = +b b bZ W have been neglected. Note that (15) is
equivalent to the kinetic (not magnetic) pressure of the
fluctuations, though this is a little misleading (physically)
since the term is actually the sum of the fluctuation magnetic
pressure and contributions from modeling of the MHD
Reynolds stresses (Usmanov et al. 2011).
An equation for the total energy density is straightforward to

obtain (e.g., Usmanov et al. 2011). However, due to a feature of
the CRONOS code, we work instead with the energy density
associated with unforced ideal MHD,

r
p g

= + +
-

e
U B P

2 8 1
, 16

2 2
( )

4
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where the full energy density also includes gravitational
potential energy and the turbulence energy, r +Z W 22 2( ) .
These “missing” terms in e are accounted for using source
terms in the energy equation (Wiengarten et al. 2015,
Appendix B). Following the latter approach with a g = 5 3
adiabatic equation of state and Hollweg’s heat flux qH
(Hollweg 1974, 1976) yields
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where = +H H Hc c
z

c
w.

The equations describing the evolution of the large-scale
density and magnetic field are unaffected by the extension to
incompressible two-component fluctuations. Neglecting the
turbulent electric field, one has (e.g., Usmanov et al. 2011;
Wiengarten et al. 2015),

r r¶ +  =V 0, 18t · ( ) ( )

¶ +  - =B VB BV 0. 19t · ( ) ( )

3. NUMERICAL RESULTS

We use the numerical MHD framework CRONOS to
implement the two-component phenomenology of turbulence
transport described in the previous section (Equations (2)–(5)
and (10)–(12)) and the partner large-scale MHD Equations (13)
and (17)–(19). A detailed description of the code’s features is
available in Wiengarten et al. (2015). In Section 3.1, we present
a validation study that compares our new, generalized two-
component model with the earlier one by Oughton et al. (2011),
that prescribed all large-scale fields. Section 3.2 discusses
results from the full model, which includes a more realistic
background solar wind.

3.1. Validation

In order to validate the implementation in CRONOS, we
compare results obtained in Oughton et al. (2011) with those
from an appropriately restricted form of the new model’s
equations. Specifically, the background solar wind is prescribed
to be a uniform and constant radial flow with

= -U e440 km s r
1 , and a proton number density profile

=n n r r0 0
2( ) where = = = -n n r 0.3 au 66 cm0 0

3( ) . The
large-scale magnetic field is a Parker spiral, expressed in terms

of a vector potential (e.g., Wiengarten et al. 2015),

⎜ ⎟⎛
⎝

⎞
⎠J

j
= - +

W
JA eB r

r U
sin , 200 0

2 ( ) ( )

where ϑ and j are the polar and azimuthal angles in
(heliocentric) spherical polar coordinates and =B 430 nT.
Additionally, the turbulence transport equations are relieved of
all advection and mixing terms involving the Alfvén velocity
(but retain the dissipation and interchange terms), as well as the
advection and mixing terms in the lengthscale equations. The
energy density equation, (17), simplifies considerably and can
be usefully re-expressed via =P nkT2 in Equation (16) in
terms of the proton temperature (Oughton et al. 2011, Equation
(14)); in the present study, however, it is the energy density
equation that is solved. The equations are then formally
equivalent to those of Oughton et al. (2011), where the sources
of turbulence considered are stream shear (modeling the
influence of, e.g., corotating interaction regions) and isotropi-
zation of pickup ion distributions. While the stream shear
drives both the quasi-2D and the wave-like component (so that

=C 1Z W
sh

, , see below), the pickup-ion driving feeds the wave-
like component only and is approximated as (Zank et al. 1996;
Williams et al. 1997)

⎛
⎝⎜

⎞
⎠⎟

z
t

= -
Y
Y

E
U n

n

L

r
exp

sin
, 21H

PI

2

sw ion

cav˙
( )

( )

where = -n 0.1 cmH
3 is the interstellar neutral hydrogen

density, t = ´1.33 10 sion
6 is the hydrogen ionization time

at 1 au, =L 5.6 aucav is the characteristic scale of the
ionization cavity of the Sun, and = -n 6 cmsw

3 is the solar
wind density at 1 au. The angle Ψ is that between the
observation point and the upwind direction; for pickup ions
entering the heliosphere along the x-axis, it corresponds to
heliospheric latitude, so that above the poles the effective
ionization cavity is larger by a factor of p 2, and this pushes
the region where pickup-ion heating is important to larger r.
The factor ζ describes the fraction of the available energy
actually channeled into the fluctuations and is mainly a
function of the ratio of Alfvén speed to solar wind speed
according to the model of Isenberg et al. (2003) and Isenberg
(2005) that is used in Section 3.2. For this validation case, we
assume a constant z = 0.04. The Kármán–Taylor constants are
set as a a b b= = = =2 2 0.25z w z w and the residual energies
are assumed constant with s s= = -1 3D

z
D
w (e.g., Roberts

et al. 1987; Perri & Balogh 2010).
The computational domain extends from 0.3 to 100 au and is

covered with 300 cells of increasing cell size Dr from 10 to
250 solar radii, while azimuthal symmetry is assumed and the
computations are restricted to the ecliptic plane. The remaining
inner boundary values at =r 0.3 au0 are =Z 15002 km2 s−2,

=W 1502 km2 s−2, s s= = 0.6c z c w, , , l= =l 0.008 au,
l = 0.036 au and = ´T 1.6 105 K.

Figure 1 shows the resulting behavior of the turbulence
quantities with radial distance. In the inner heliosphere, due to
shear driving both the quasi-2D and the wave-like component’s
energy densities decrease less steeply and normalized cross
helicities drop strongly. The latter point follows because, for
example, s = - ++ - + -Z Z Z Zc z,

2 2 2 2( ) ( ), and thus adding
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energy equally to the Z 2 leaves the numerator unchanged but
increases the denominator (Matthaeus et al. 2004; Breech et al.
2005). As shear driving diminishes with heliospheric distance,
the quasi-2D component decays freely while pickup-ion
driving feeds only the wave-like component, which, conse-
quently, constitutes the dominant component in the outer
heliosphere with its normalized cross helicity sc w, quickly
going to zero and its correlation length λ much shorter than its
quasi-2D counterpart l. In the case shown, the pickup driving is
strong enough to induce noticable transfer of energy fromW2 to
Z2 beyond ∼40 au. This occurs via the “exchange” term, +X , in
Equations (2) and (3), as discussed in Oughton et al. (2011).
There is also an associated decrease of ℓ at these distances.
Note that the “anti-correlated” behavior of Z2 and ℓ with
heliocentric distance does not hold for W and λ, which is a
consequence of the pickup-ion driving. Furthermore, conv-
ergence of the parallel lengthscale toward the pickup-ion
gyroradius is also evident. The decaying turbulent energy is
dissipated and heats the outer heliosphere as can be seen in the
temperature panel. Results obtained with CRONOS (black lines)
are shown alongside those obtained with the IDL code (red
lines) used in Oughton et al. (2011). An implementation
mistake that was present in the latter has since been corrected.
The agreement validates the implementation in CRONOS.

3.2. Extended Model

The model presented in Section 2, and employed in the
remainder of the paper, extends that by Oughton et al. (2011) of
the previous section in two ways.First, the background solar
wind is no longer prescribed, but computed self-consistently
and in a fully three-dimensional manner alongside the
turbulence transport equations. Second, the latter are augmen-
ted in several ways, namely by (1) not neglecting transport and
mixing terms involving the Alfvén velocity, (2) improving the
stream shear driving so that it is computed from the
background wind, and (3) employing the theory from Isenberg
(2005) for the efficiency of pickup-ion driving.
In consequence, the implemented model is applicable to

arbitrary solar wind conditions, including sub-Alfvénic
heliospheric regions such as the corona and the heliosheath.
Coronal models and global heliospheric simulations are both
challenging in regard to computer resources, due to the high
space and time resolutions required for the former and the long
propagation times needed for the latter, especially when including
multi-fluid aspects and magnetic fields (e.g., Scherer et al. 2016).
We leave such applications for future studies and consider here
the super-Alfvénic solar wind during typical solar minimum
conditions of fast polar winds and a band of slow wind
occupying equatorial regions. We impose azimuthal symmetry,

Figure 1. Validation of the CRONOS results (black lines) via a comparison with those obtained previously (red lines) by Oughton et al. (2011) for the Elasser
“energies” (upper left panel), the normalized cross helicities (upper right), the correlation lengths (lower left), and the solar wind temperature (lower right).
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which allows for a considerable reduction of computational costs
and thereby enables coverage of the full polar angle with one
degree resolution. The radial grid is the same as in the previous
section, covering the distance from 0.3 to 100 au. Figure 2
displays the applied inner boundary conditions depending on
colatitude. The top row shows the background quantities
(velocity, number density, magnetic field strength, and temper-
ature), in setting which we were guided by Ulyssesmeasurements
(McComas et al. 2000). This includes a small latitudinal gradient
(» 1 km s ) of solar wind speed in the fast wind regime,
constant mass flux, and a Parker spiral magnetic field structure
that neglects a polarity reversal and current sheet. The latter
would be under-resolved in these non-AMR simulations and
would affect the equatorial results more strongly as appropriate.
The bottom row shows the turbulence quantities (turbulent
energy density, lengthscales and cross helicities). There is
considerable spread and uncertainty associated with spacecraft
measurements of these quantities (see Figure 5) and boundary
values were chosen to give a reasonable fit to the available data,
with the 90%–10% partitioning for Z2-W2 guided by observation-
based studies (e.g., Bieber et al. 1996; Hamilton et al. 2008).
Such studies report a range of values but typically find a
dominant quasi-2D component; see Oughton et al. (2015) for a
recent review.

Turbulence driven by stream shear can be calculated self-
consistently from the background wind in the present setup, as
introduced in Wiengarten et al. (2015). However, the influence
of corotating interaction regions, present near solar minimum,
is not inherently covered in this simplified geometry with
azimuthal symmetry. Moreover, we find that if additional shear
is not included in the high-speed regions this results in cross
helicities that increase with radial distance (seeDobrowolny
et al. 1980a, 1980b), which is in contrast to Ulysses
measurements (Figure 5). The source of this additional shear
can be attributed to so-called microstreams (Neugebauer
et al. 1995). In order to model these additional effects, we
include ad hoc terms C Z W

add
, in the full driving for Z and W, so

that

J= ¶ + ¶ +J j
-

U
UC C

1
sin , 22Z W Z W

sh
, 1

add
,

∣ ∣
( ( ) )∣ ∣ ( )

with C Z W
add

, chosen such that in the band of slow wind
=C 1Z W

sh
, , while =C 0.25Z W

sh
, for the fast wind, i.e., a lower

bound on shear driving is imposed at all latitudes. The
transition region results in higher values and the latitudinal
profile of the shear driving displayed in Figure 3 is similar to
that used in Breech et al. (2008).

Figure 2. Inner boundary conditions at 0.3au for the validation run. From the top left to the bottom right panel are shown the radial speed and the number density, the
strength and azimuthal component of the magnetic field, the temperature, the “energies” of the quasi-2D and the wave-like fluctuations, their correlation lengths, and
their cross helicities.

Figure 3. Latitudinal profile of the shear driving termCsh at 0.5 au according to
Equation (22).
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The other source for driving turbulence is the excitation of
waves via the near isotropization of pickup-ion distributions
(EPI˙ ), which we use here in the same form as in Equation (21),
but with the efficiency factor z V U Z V,A A( ) calculated using
the improved formulation developed in Isenberg et al. (2003),
see also Isenberg (2005).

As before, the residual energy densities are assumed constant
with s s= = -1 3D

z
D
w , and the Kármán–Taylor constants are

taken to be a a b b= = = =2 2 0.2z w z w (Breech et al. 2008;
Oughton et al. 2011). The low-latitude inner boundary values at

=r 0.3 au0 are =Z 9002 km2 s−2, =W 902 km2 s−2,
s s= = 0.4c z c w, , , l= =l 0.012 au, l = 0.03 au,and
= ´T 3.0 105 K, while at high latitudes these values are
=Z 50002 km2 s−2, =W 5002 km2 s−2, s s= = 0.6c z c w, , ,
l= =l 0.018 au, l = 0.03 au, and = ´T 1.5 106 K. Simu-

lations are performed until a steady state is reached, for which

Figure 4. Results of the self-consistent two-component turbulence modeling: contour plots of the background solar wind (top row) and the turbulence quantities
(middle and bottom rows) in meridional planes.
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the required physical time corresponds approximately to the
propagation time from the inner to the outer radial boundary,
i.e., about one year. The resulting configuration of the
background wind is illustrated in the top row of Figure 4,
along with the turbulence quantities in the middle and bottom
rows, by contour plots of two-dimensional meridional slices.

The magnetic field exhibits the typical Parker spiral behavior
of decreasing more slowly in the ecliptic (∝r−1) than above the
poles (∝r−2), resulting in a constant Alfvén speed in the former
and a radially decreasing one in the latter region. The solar
wind speed is approximately constant along radial spokes. The
background solar wind quantities are barely affected by the
inclusion of a turbulence description (Wiengarten et al. 2015),
except for some additional heating, mainly occurring in the fast
wind/slow wind transition region due to the strong shear there,
and in the outer heliosphere due to increased pickup-ion
production. The latter effect essentially only acts in the ecliptic
plane, because the efficiency factor ζ tends to zero for small
V UA , as is the case away from the ecliptic plane. This is seen
best in the panel for the wave-like turbulence component, W2.
Also visible are the stripes of enhanced turbulence levels in the
transition region, and these are even clearer in the Z2 panel.

The regions with stronger generation of turbulence are
associated with cross helicities quickly going to zero in their
respective component. In other regions, cross helicities that are

notequal tozero are retained also at large radial distances,
which is not only due to the absence of sources for turbulence,
but also because of the inclusion of the additional
Alfvén velocity related transport terms, as already demon-
strated in Wiengarten et al. (2015) for a one-component
turbulence model. Furthermore, the perpendicular lengthscales
increase with radial distance as turbulence decays, while the
parallel lengthscale approaches the resonant one (lres), which is
inversely proportional to the magnetic field strength.
Figure 5 shows comparisons of the model results at selected

colatitudes with spacecraft measurements. For the fast wind
regions, we use Ulysses measurements during its first fast
latitude scan (Bavassano et al. 2000a, 2000b, blue crosses)
picking out latitudes higher than 35°. Although there is a mixed
latitudinal and radial dependence in these data, we use it for
comparison with radial dependence of the model data only and
choose a colatitude of 15° (blue lines). Model output in the
equatorial plane (black lines) is compared with measurements
from the Voyager 2 spacecraft that have been used in previous
studies (Roberts et al. 1987; Zank et al. 1996; Smith
et al. 2001).
Consider first the high-latitude results. The Ulysses measure-

ments for the turbulent energies (assumed to reside mainly in
the quasi-2D component) and temperature show little scattering
and are well reproduced by the model, whereas spread in the

Figure 5. Comparison of model results for various turbulent quantities at colatitudes of 15° (blue lines) and 90° (black) with spacecraft measurements (Ulysses, blue
symbols; Voyager 2, black symbols). The turbulent energy measurements are taken from Zank et al. (1996) and the cross helicity values are 3 hr (asterisks), 9 hr
(diamonds), and 27 hr (triangles) averages provided by Roberts et al. (1987). The quasi-2D correlation lengths are those derived by Smith et al. (2001) using an
integration (asterisk) and e-folding method (diamond). The observed temperature data are also from the latter paper.
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data is large for the correlation lengths and cross helicity.
However, the model results are well within the covered range.
In the outer heliosphere, pickup-ion driving is evident in W2

and sc w, at r 20 au, but only becomes significant in terms of
the total fluctuation energy for r 80 au. Since shear driving
is also weak in the outer heliosphere, sc z, remains significantly
non-zero and there is no strong heating at these high latitudes.
This is in contrast to the situation near the ecliptic.

At low latitudes, shear driving is relatively strong inside
»5 au, so the radial profiles of the turbulent energies are flatter
than their high-latitude counterparts. Pickup-ion driving also
becomes important closer in (around 5 au) and causes the wave-
like component to become the dominant one for r 10 au. This
leads to a stronger cascade of fluctuation energy and the
associated dissipation yields the increasing temperature profile in
the outer heliosphere. Thus, it appears that an important reason
for the stronger heating near the ecliptic, compared to high
latitudes, is the greater radial rangewhere pickup-ion forcing is
effective. Voyager measurements show considerable spread but
there is again some agreement with the (ecliptic)model results. In
particular, the model temperature is a rough lower bound to the
observational data and the energy-weighted lengthscale,

l= + +L ℓZ W Z W2 2 2 2( ) ( ), passes close to most of the
ecliptic data values. Recall that here (and in Wiengarten
et al. 2015), Alfvén velocity terms are retained in the transport
equations. As Wiengarten et al. (2015) note, this is associated
with a shallower radial decrease of sc z, and sc w, , compared to
transport models, which neglect terms of order V UA . Moreover,
this leads to better agreement with observational data, particularly
for the energy-weighted cross helicity

s sS = + +Z W Z Wc c z c w
2

,
2

,
2 2( ) ( ), depicted using a red

dotted line in Figure 5.

4. RELEVANCE FOR COSMIC-RAY
TRANSPORT COEFFICIENTS

As mentioned in the Introduction, turbulence transport models
such as that presented here are a vital component in ab initio
cosmic-ray modulation studies. These models provide informa-
tion as to the spatial variations of turbulence quantities that feed
directly into the diffusion and drift coefficients employed in such
modulation studies. Given the relative paucity of in situ space-
craft observations of turbulence in the outer heliosphere, and the
extreme sensitivity of computed cosmic-ray intensities to changes
in their transport coefficients (see, e.g., Engelbrecht &
Burger 2013, 2015a), a brief outline of the effects of the outputs
of a novel turbulence transport model will be of interest to the
modulation community. To this end, we present here results for
the rigidity and spatial dependences of the proton parallel and
perpendicular mean-free paths using outputs yielded by the new,
generalized, self-consistent two-component turbulence transport
model discussed above. The parallel mean-free path used here is
that employed by, e.g., Burger et al. (2008), and derives from
quasilinear theory (QLT). We present a novel expression for the
proton perpendicular mean-free path, derived from the random
ballistic decorrelation (RBD) interpretation of the nonlinear
guiding center (NLGC) theory of Matthaeus et al. (2003) as
presented by Ruffolo et al. (2012).

The perpendicular mean-free path expressions derived from
the NLGC theory or variations on its theme such as the extended
NLGC and unified nonlinear theories (see Shalchi 2006, 2010)
have already been used in modulation studies. Since these
expressions involve, in general, implicit functions, they either

need to be evaluated numerically or approximated in some way.
The RBD theory has the distinct advantage ofyieldingexplicit
expressions for l̂ , thereby potentially saving computational time.
This, coupled with the fact that the RBD theory provides results
in good agreement with numerical simulations, motivates the
choice of this scattering theory for the present study.
Assuming axisymmetric fluctuations and a correction for the

backtracking of particles, Ruffolo et al. (2012) find that the
perpendicular diffusion coefficient can be calculated from the
modal spectrum of the 2D magnetic fluctuations S2D using
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with k l= v 3zz par the diffusion coefficient parallel to the
large-scale field B, the particle speed v, and the parallel mean-
free pathlpar of a particle (the latter not to be confused with the
correlation scale l as denoted above). g k( ) is a damping
function that, however, vanishes for the magnetostatic fluctua-
tions assumed here, i.e., g =k 0( ) . The quantity a2 is a
constant, set at a value of 1/3 following Matthaeus et al.
(2003), while = B rB ∣ ( )∣ denotes the background magnetic
field magnitude.
The backtracking-corrected expression is used because, as

Ruffolo et al. (2012) show, it provides results in better agreement
with simulations. For an isotropic particle velocity distribution,
Ruffolo et al. (2012) find that, assuming axisymmetric fluctua-
tions, the average components of the particle guiding center
velocity ṽ are given by

⎛
⎝⎜

⎞
⎠⎟

d

d

á ñ = = á ñ

á ñ= - á ñ - á ñ = -

v
a v B

B
v

v
v

v v
v

a
B

B

3
,

3 3
1 , 25

x
x

y

z x y

2
2 2 2

2
2

2
2

2 2
2

2
2

2

˜ ˜

˜ ˜ ˜ ( )

with the total variance dB2 being the sum of the slab and 2D
variances, denoted by dB2D

2 and dBsl
2, respectively. Note that, in

line with an assumption of axisymmetry,
d d d d d d= + = + =B B B B B B2 2x x x
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2 2( ) , the same

holding for dBy
2.

To derive an explicit expression for the perpendicular
diffusion coefficient k̂ ,we employ an expression for the 2D
modal spectrum used by Engelbrecht & Burger (2013):
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with l2D and lout lengthscales at which the inertial and energy-
containing ranges, respectively, commence. This spectrum has
three ranges: an inertial range, an energy-containing range, and
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an “inner” range that decreases as a function of wavenumber.
This last range is included due to physical and theoretical
considerations, discussed in detail by Matthaeus et al. (2007).
In this study, the inertial range spectral index is assumed to
equal the Kolmogorov value, so that n = 5 3, and the inner
range spectral index is set to q=3 (see, e.g., Matthaeus
et al. 2007). This leads, due to the piecewise definition of
Equation (26), to an expression for the perpendicular mean-free
path of the form
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Here xerfc( ) is the complementary error function, E x( ) denotes
the exponential integral function, G x( ) is the Gamma function,
G x y,( ) the incomplete Gamma function, and F2 2 denotes the
generalized hypergeometric function. Note that the variable ò
denotes half the total transverse variance, from Equation (25),
so that  d d d d= = = +B B B B2 2x

2 2
2D
2

sl
2( ) , assuming

axisymmetry.
An expression for the parallel mean-free path is required to

evaluate Equation (28). To this end, the QLT proton parallel
mean-free path adapted by Burger et al. (2008) from the work
of Teufel & Schlickeiser (2003) is employed:
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where =R R kL m, in terms of the maximal proton gyroradius
RL and the wavenumber associated with the slab turnover scale
so that l=k 1m sl. The quantity s denotes the absolute value
of the inertial range spectral index (also set to the Kolmogorov
value), while dBsl

2 is the slab variance. Note that Equation (29)

is derived assuming a wavenumber-independent energy-con-
taining range on the slab fluctuation power spectrum.
It has been long known, both theoretically and as a result of

numerical test particle simulations, that turbulence also has a
reducing effect on cosmic-ray drift coefficients (see, e.g.,
Jokipii 1993; Minnie et al. 2007; Tautz & Shalchi 2012),
although the exact form of such a turbulence-reduced drift
coefficient is still not properly understood (Engelbrecht &
Burger 2015b). In this study, we consider the effects of the use
of the new, generalized two-component turbulence transport
model on two forms of the turbulence-reduced drift coefficient
proposed by Burger & Visser (2010) and Tautz & Shalchi
(2012), both being results of fits to numerical simulations of the
drift coefficient for various turbulence scenarios.
The drift coefficient proposed by Burger & Visser (2010) is

based on the result derived by Bieber & Matthaeus (1997):

k
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3 1
. 30LA
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The drift coefficient can be related to a drift lengthscale by
k l= v 3A A , where Ω is the particle gyrofrequency, and τ a
decorrelation rate. These authors choose an expression for tW 
in orderto yield a drift coefficient in agreement with
simulations performed by Minnie et al. (2007), so that
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where l= +g R0.3 log 1.0L c s,( ) , and lc s, the slab correlation
scale. The quantity D⊥ denotes the fieldline random walk
diffusion coefficient, given by Matthaeus et al. (1995)
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The quantity lu represents the 2D ultrascale, which, for the 2D
turbulence spectral form used in this study, is given by
Engelbrecht & Burger (2013)
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On the other hand, Tautz & Shalchi (2012) report a fit to their
simulations of the drift coefficient of

k
d

=
+

v
R

c B B3

1

1
, 35L cA

1
2 2 2( )

( )

where = c 1.09 0.521 and = c 0.81 0.352 . Both of the
above expressions for the turbulence-reduced drift coefficient
have been employed in modulation studies, yielding different
results for galactic cosmic-ray proton intensities at Earth
(Engelbrecht & Burger 2013, 2015b).
To evaluate Equations (28)–(30) and(35), we employed the

self-consistent generalized two-component transport model
presented above. This is done under the assumption that the
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quasi-2D and wave-like quantities provide a reasonable
approximation for 2D and slab quantities, following the
approach of Engelbrecht & Burger (2013), i.e., calculating
the variances from

d
m r

d
m r
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+

=
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B
r
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r
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,

1
36

2D
2 0
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2

sl
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where rA is the Alfvén ratio, assumed to be equal to 0.5 in what
follows (see, e.g., Roberts et al. 1987), which corresponds to
the value of s = -1 3D

z w, assumed for the normalized energy
difference through the relation s = - +r r1 1D

z w,
A A( ) ( ) (e.g.,

Breech et al. 2008). Furthermore, for the 2D turnover scale l2D

the weighted quantity l= + +L Z l W Z W2 2 2 2( ) ( ) is used
(and shown in the lower left panel in Figure 5), while it is
assumed that l l= 100out 2D. Although perpendicular mean-
free paths derived from the NLGC family of scattering theories
are quite sensitive to choices made for the 2D outer scale (see,
e.g., Engelbrecht & Burger 2015a), the choice for this quantity
is rendered difficult by a lack of observations. Lastly, it should
be noted that the normalized cross helicities calculated using
the turbulence transport model are not taken into account in the
assumed forms of the slab and 2D power spectra used to derive
the mean-free paths presented here. This refinement of the
modeling will be the subject of future work.

Figure 6 shows the parallel and perpendicular mean-free
paths at Earth as a function of rigidity, along with the Palmer
(1982) consensus ranges for these quantities. The parallel
mean-free path (red line) shows two distinct rigidity depen-
dences, shifting from a P1 3 dependence below ∼10 GV to a P2

dependence, as expected from QLT for the spectral form
assumed here (see, e.g., Bieber et al. 1994). This quantity
remains above the Palmer consensus range (green box) forlpar,
a consequence of using the results of the generalized two-
component turbulence transport model. This model is set to
reproduce both large-scale and turbulent quantities throughout
the heliosphere during solar minimum conditions, during which
l has been previously reported to assume higher values than
during times of higher solar activity (Chen & Bieber 1993).

The perpendicular mean-free path (blue line) also remains
partly above the corresponding Palmer consensus range for
similar reasons, and shows a rigidity dependence that is slightly
steeper than that reported for NLGC-type perpendicular mean-
free paths at 1 au by, e.g., Shalchi (2009), Pei et al. (2010), and
Engelbrecht & Burger (2015a).
Regarding spatial dependences, Figure 7 shows contour plots

of meridional slices of the logarithms of the parallel (left panel)
and perpendicular (right panel) mean-free paths presented here,
calculated using the results of the generalized two-component
turbulence transport model as discussed in Section 3.2. In the
ecliptic plane the radial dependence of the parallel mean-free
path initially increases with increasing radial distance, but then
flattens out due to the pickup-ion contribution to W2. Even
though a decrease in lpar would be expected here due to the
dependence of Equation (29) on dBsl

2, this is balanced to some
degree by an increase of the proton Larmor radius at these
radial distances. At higher latitudes, the flattening of the
parallel mean-free path commences at larger radial distances
and is less obvious than in the ecliptic, due in part to the
latitudinal dependence of the extent of the ionization cavity as
modeled here (see Section 3.1 and Figure 5), being governed to
a greater extent by the higher values of RL and l. Generally, at
the largest radial distances lpar assumes lower values in the
ecliptic, where W 2 and hence dBsl

2 are high, than over the poles,
where the converse is true for W2. Within about 10 au the
parallel mean-free path assumes relatively uniform values as
function of latitude. This behavior is simply due to the
variance.
The perpendicular mean-free path appears to decrease as

function of radial distance due to the fact that pickup ions do
not directly contribute to Z2. This decrease is steeper in the
ecliptic plane than at higher latitudes, reflecting the radial
decrease in Z2 at different latitudes as seen in Figure 5. The
perpendicular mean-free path also consistently assumes higher
values at higher latitudes than in the ecliptic plane, again a
consequence of the behavior of Z2, and hence of dB2D

2 . This
dependence also explains the marked increase in l̂ at
intermediate latitudes corresponding to regions of enhanced
stream-shear effects. Directly above the poles, the perpend-
icular mean-free path assumes relatively high values, which
cannot be associated with a corresponding increase in Z2 as
seen in Figure 4. This increase can, however, be related to a
corresponding increase in the parallel mean-free path, of which
l̂ is a function, and to a lesser degree with an increase of the
perpendicular correlation scales.
The turbulence-reduced drift scales, calculated from the

expressions proposed by Burger & Visser (2010) and Tautz &
Shalchi (2012; denoted by “BV2010” and “TS2012,” respec-
tively), are shown at a rigidity of 1 GV in the left and right
panels of Figure 8. Globally, these expressions yield very
different results, with the Tautz & Shalchi (2012) drift scale
being, in general,considerably larger than the Burger & Visser
(2010) scale. The latter drift scale displays a considerably more
complicated spatial dependence than the former, a consequence
of its additional dependences on the various correlation
lengthscales calculated in the turbulence transport model. The
Burger & Visser (2010) drift scales become very small at
intermediate latitudes due to the enhanced levels of turbulence
associated with regions where stream-shear effects are
significant. This behavior is not readily apparent when the
Tautz & Shalchi (2012) drift scale is considered. It is

Figure 6. Parallel and perpendicular mean-free paths of Galactic protons as
functions of rigidity at 1 au in the ecliptic plane, calculated by using the results
of the generalized two-component turbulence transport model. Green box and
line denote Palmer (1982) consensus values.
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interesting to note, however, that both drift scales yield results
that are larger over the poles than in the ecliptic plane.

The transport coefficients discussed here display complex
dependences on the various turbulence quantities, and hence
have spatial dependences that are far more complex than those
usually assumed in cosmic-ray modulation studies. The latitude
dependences of the drift coefficients alone, given the directions
in which cosmic rays drift in periods of positive and negative
magnetic polarity (see, e.g., Jokipii & Thomas 1981), can be
expected to lead to interesting consequences for modulation
studies. Furthermore, given the sensitivity of solutions to the
Parker transport equation to choices made for the diffusion and
drift terms, the use of self-consistently computed transport
coefficients such as those presented here can be expected to
lead to new insights in the field of cosmic-ray modulation in
both the region enclosed by the termination shock and
potentially beyond, i.e., in the inner heliosheath.

5. SUMMARY AND OUTLOOK

We have generalized the two-component turbulence model
developed by Oughton et al. (2006, 2011) to a self-consistent
treatment with respect to the solar wind plasma. This general-
ization consists, first, in a fully three-dimensional formulation
of the evolution equations of the two-component phenomen-
ology, i.e., the high-frequency parallel-propagating wave-like
and the low-frequency perpendicularly cascading quasi-2D
turbulent fluctuations. This includes both a discussion of the

most suitable way to formulate the evolution equations for the
corresponding correlation lengthscales in order to obtain a
closed system for all large-scale and small-scale quantities and
a discussion of the correct choice for the structural similarity
parameters that implies the occurrence of (in comparison to
earlier work, see, e.g., Zank et al. 2012a) additional mixing
terms in the equations for the energies (per unit mass) and cross
helicities. Second, we have extended the previous modeling by
(1) not neglecting transport and mixing terms involving the
Alfvén velocity, (2) taking into account the solar wind stream
shear, and (3) using a state-of-the-art formulation of the
efficiency of the so-called pickup ion driving (Isenberg 2005).
After an implementation in the MHD modeling framework

CRONOS (e.g., Wiengarten et al. 2015), the new model,
consisting of the generalized turbulence evolution equations
self-consistently coupled with those for the large-scale
expansion of the solar wind, was validated against the
spherically symmetric results obtained earlier by Oughton
et al. (2011) for a prescribed background solar wind.
As a first application, we have compared the new three-

dimensional, self-consistent simulation data with turbulence
quantities derived from measurements made with different
spacecraft and demonstrated an improvement with respect to
earlier models. These improvements comprise the inclusion and
improved reproduction of off-ecliptic Ulysses results and, due
to the additional Alfvén velocity terms, a better agreement of
the computed energy-weighted cross helicity with that derived
from observations.

Figure 7. Meridional plane contour plots of the parallel and perpendicular mean-free paths of 1 GV Galactic protons, calculated by using the results of the generalized
two-component turbulence transport model.
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As a second application,we have used the new results for
the wave-like and quasi-2D fluctuations to calculate ab initio
diffusion mean-free paths and drifts lengthscales of energetic
particles in the turbulent solar wind. Using a well-established
result for the quasilinear parallel mean-free path (Teufel &
Schlickeiser 2003; Burger et al. 2008) and a novel expression
for the proton perpendicular mean-free path (Ruffolo
et al. 2012) derived from the RBD interpretation of the NLGC
theory (Matthaeus et al. 2003), we computed values for both
quantities that are above the famous Palmer consensus
(Palmer 1982; Bieber et al. 1994). Given that the simulations
were carried out for solar minimum conditions, this result is in
accordance with earlier findings (e.g., Chen & Bieber 1993).
With respect to the particle drifts we employed state-of-the-art
expressions derived by Burger & Visser (2010) and Tautz &
Shalchi (2012) for turbulence-reduced drift scales via fits to
simulations of the drift coefficient for various turbulence
conditions. While, interestingly, both drift scenarios predict
larger scales above the Sun’s poles than in the ecliptic plane,
they yield rather different results, in general. On the one hand
the drift scale of Tautz & Shalchi (2012) is considerably larger
than that of Burger & Visser (2010). On the other hand,the
latter exhibits a comparatively complex spatial dependence as a
consequence of its additional dependences on the various
correlation lengthscales. In view of the sensitivity of the
solution of the cosmic-ray transport equation to the diffusion
and drift coefficients, the modeling of their dependence on the
underlying turbulence as studied in the present work can be

expected to lead to new insights in the field of cosmic-ray
modulation, both within and beyond the termination shock.
With the new, generalized two-component model of solar

wind turbulence we have demonstrated the feasibility to self-
consistently take into account all terms containing the Alfvén
velocity. The explicit incorporation of the latter allowed not
only for the extension of the model to all heliographic latitudes
and longitudes but will particularly allow quantitative studies
of the sub-Alfvénic solar wind regions in the inner heliosphere
(as in Wiengarten et al. 2015) close to the Sun and is also a pre-
requisite for applications to the heliosheath whose turbulent
structure is as yet unmodeled.
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ion driving. N.E.E. thanks D. Ruffolo for many valuable
discussions and acknowledges support from the National
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financial support for T.W. via the DFG project FI706/14-1
and for H.F., J.K., S.O., and K.S. via the DFG-funded
collaboration project FI706/18-1.
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