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ABSTRACT

Nowadays real-time industrial applications are generating a huge
amount of data continuously every day. To process these large data
streams, we need fast and efficient methodologies and systems. A
useful feature desired for data scientists and analysts is to have easy
to visualize and understand machine learning models. Decision
trees are preferred in many real-time applications for this reason,
and also, because combined in an ensemble, they are one of the
most powerful methods in machine learning.

In this paper, we present a new system called streamDM-C++,
that implements decision trees for data streams in C++, and that has
been used extensively at Huawei. Streaming decision trees adapt to
changes on streams, a huge advantage since standard decision trees
are built using a snapshot of data, and can not evolve over time.
streamDM-C++ is easy to extend, and contains more powerful
ensemble methods, and a more efficient and easy to use adaptive
decision trees. We compare our new implementation with VFML,
the current state of the art implementation in C, and show how our
new system outperforms VFML in speed using less resources.
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1 INTRODUCTION

Streaming data analysis in real time is becoming the fastest andmost
efficient way to obtain useful knowledge from what is happening
now, allowing organizations to react quickly when problems appear
or to detect new trends helping to improve their performance. One
example is the data produced in mobile broadband networks. A
metropolitan city in China can have nearly 10 million subscribers
who continuously generate massive data streams in both signalling
and data planes into the network. Even with summarisation and
compression, the daily volume of the data can reach over 10TB,
among which 95% is in the format of sequential data streams. The
high volume of data overwhelms the computational resources for
processing the data. Even worse, the data streams may experience
a change of statistical distribution over time (this phenomenon is
known as a concept drift), because of the dynamics of subscriber
behaviours and network environments.While it is critical to analyze
the data in order to obtain better insights into network management
and planning, how to effectively mine the knowledge from the large-
scale data streams is a non-trivial issue.

In the data stream model, we need to deal with resources in
an efficient and low-cost way. We are interested in three main
dimensions:
• accuracy
• amount of space (computer memory) necessary
• the time required to learn from training examples and to
predict

These dimensions are typically interdependent: adjusting the
time and space used by an algorithm can influence accuracy. By
storing more pre-computed information, such as look up tables, an
algorithm can run faster at the expense of space. An algorithm can
also run faster by processing less information, either by stopping
early or storing less; the more time an algorithm has, the more
likely it is that accuracy can be increased.

Classification is one of the most widely used data mining tech-
niques. In very general terms, given a list of groups (often called
classes), classification seeks to predict to which group a new in-
stance may belong. The outcome of classification is typically either
the identification of a single group or the production of a probability
distribution of likelihood of membership of each group. A spam
filter is a good example, where we want to predict if new emails
are considered spam or not. Twitter sentiment analysis is another
example, where we want to predict if the sentiment of a new in-
coming tweet is positive or negative. The probability distribution
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generating the data may be changing, and this is why streaming
methods need to be adaptive to the changes on the streams [23, 24].

More formally, the classification problem can be formulated as
follows: given a set of instances of the form (x ,y), where x =
x1, . . . ,xk is a vector of attribute values, and y is a discrete class
from a set of nC different classes, the classifier builds a model
y = f (x ) to predict the classes y of future examples. For example,
x could be a tweet and y the polarity of its sentiment; or x could be
an email message, and y the decision whether it is spam or not.

The state-of-the-art methods for classification of evolving data
streams are classifiers based on decision trees. A Hoeffding tree [8]
is an incremental, anytime decision tree induction algorithm that
is capable of learning from massive data streams, assuming that
the distribution generating examples does not change over time.
Hoeffding trees exploit the fact that a small sample can often be
enough to choose an optimal splitting attribute. This idea is sup-
ported mathematically by the Hoeffding bound, which quantifies
the number of observations (in our case, examples) needed to esti-
mate some statistics within a prescribed precision (in our case, the
information gain of an attribute).

The VFML (Very Fast Machine Learning) toolkit was the first
open-source framework for mining high-speed data streams and
very large data sets. VFML is written mainly in standard C, and
contains tools for learning decision trees (VFDT and CVFDT), for
learning Bayesian networks, and for clustering.

At Huawei, many real data applications need fast decision trees
that use a small amount of memory. C and C++ are still considered
the languages preferred for high-performance applications. Using
VFML for data stream mining was not good enough in large-scale
applications of mobile data, so there was a need to create a more
efficient system for Huawei applications. In this paper, we present
a new framework streamDM-C++, that implements extremely fast
decision trees in C++, that outperforms VFML, and that contains
more classification algorithms than VFML.

The main advantages of streamDM-C++ over VFML are the
following:
• Evaluation and classifiers are separated, not linked together.
• It contains several methods for learning numeric attributes.
• It is easy to extend and add new methods.
• The adaptive decision tree is more accurate and does not
need an expert user to choose optimal parameters to use.
• It contains powerful ensemble methods as Bagging, Boosting,
and Random Forests.
• It is much faster and uses less memory.

This paper is structured as follows.We present VFML in Section 2,
streamDM-C++ in Section 3. We perform an empirical evaluation
in Section 4, and finally, in Section 6 we give our conclusions.

2 VFML: VERY FAST MACHINE LEARNING

TOOLKIT

The VFML (Very Fast Machine Learning) toolkit was the first open-
source framework for mining high-speed data streams and very
large data sets. It was developed before 2004. VFML is made up of
three main components:
• a collection of tools and APIs that help a user develop new
learning algorithms

HoeffdingTree(Stream, δ )
1 � Let HT be a tree with a single leaf(root)
2 � Init counts ni jk at root
3 for each example (x, y ) in Stream
4 do HTGrow((x, y ), HT , δ )

HTGrow((x, y ), HT , δ )
1 � Sort (x, y ) to leaf l using HT
2 � Update counts ni jk at leaf l
3 if examples seen so far at l are not all of the same class
4 then

5 � Compute G for each attribute

6 if G (Best Attr.)−G (2nd best) >
√

R2 ln 1/δ
2n

7 then

8 � Split leaf on best attribute
9 for each branch
10 do� Start new leaf
11 and initiliatize counts

Figure 1: The Hoeffding Tree algorithm

• a collection of implementations of important learning algo-
rithms
• a collection of scalable learning algorithms that were devel-
oped by Pedro Domingos and Geoff Hulten [8].

VFML is written mainly in standard C, and provides a series of tuto-
rials and examples as well as in-source documentation in JavaDoc
format. VFML contains tools for learning decision trees (VFDT and
CVFDT), for learning Bayesian networks, and for clustering. VFML
is being distributed under a modified BSD license.

VFML was the first software framework for data streams, but
the main motivation for it was to be a test bed for the academic
papers of the authors, not open-source software to be extended. For
example, evaluation methods are inside classifiers, and there are
significant barriers in terms of creating new methods.

2.1 The Hoeffding Tree

In the data stream setting, where we can not store all the data, the
main problem of building a decision tree is the need of reusing
the examples to compute the best splitting attributes. Hulten and
Domingos [8] proposed the Hoeffding Tree or VFDT, a very fast
decision tree for streaming data, where instead of reusing instances,
we wait for new instances to arrive. The most interesting feature
of the Hoeffding tree is that it has theoretical guarantees that it
can build an identical tree with a traditional one if the number of
instances is large enough.

The pseudo-code of VFDT is shown in Figure 1. The Hoeffding
Tree is based on the Hoeffding bound. This inequality or bound jus-
tifies that a small sample can often be enough to choose an optimal
splitting attribute. Suppose we make n independent observations of
a random variable r with range R, where r is an attribute selection
measure such as information gain or Gini impurity gain. The Ho-
effding inequality states that with probability 1 − δ , the true mean
r̄ of r will be at least E[r ] − ϵ , with

ϵ =

√
R2 ln 1/δ

2n
Using this fact, the Hoeffding tree algorithm can determine, with
high probability, the smallest number n of examples needed at a
node when selecting a splitting attribute.
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The Hoeffding Tree maintains in each node the statistics needed
for splitting attributes. For discrete attributes, this is the same infor-
mation as needed for computing the Naïve Bayes predictions: a 3-
dimensional table that stores for each triple (xi ,vj , c ) a count ni, j,c
of training instances with xi = vj , together with a 1-dimensional
table for the counts for each class. The memory needed depends
on the number of leaves of the tree, but not on the size of the data
stream.

A theoretically appealing feature of Hoeffding Trees not shared
by other incremental decision tree learners is that it has sound
guarantees of performance. Using the Hoeffding bound one can
show that its output is asymptotically nearly identical to that of a
non-incremental learner using infinitely many examples.

Domingos et al. [8] improved the Hoeffding Tree algorithm with
an extendedmethod called VFDT, with the following characteristics:
• Ties: when two attributes have similar split gain G, the im-
proved method splits if the Hoeffding bound computed is
lower than a certain threshold parameter τ .

G (Best Attr.) −G (2nd best) <

√
R2 ln 1/δ

2n
< τ

• To speed up the process, instead of computing the best at-
tributes to split every time a new instance arrives, it com-
putes them every time a number nmin of instances has ar-
rived.
• To reduce the memory used in the mining, it deactivates the
least promising nodes that have lower pl × el where
– pl is the probability to reach leaf l
– el is the error in the node l
– It is possible to initialize the method with an appropriate
decision tree. Hoeffding Trees can grow slowly and per-
formance can be poor initially so this extension provides
an immediate boost to the learning curve

A way to improve the classification performance of the Hoeffd-
ing Tree is to use Naïve Bayes learners at the leaves instead of
the majority class classifier. Gama et al. [10] were the first to use
Naïve Bayes in Hoeffding Tree leaves, replacing the majority class
classifier. However, Holmes et al. [15] identified situations where
the Naïve Bayes method outperformed the standard Hoeffding tree
initially but is eventually overtaken. To solve that, they proposed a
hybrid adaptive method that generally outperforms the two original
prediction methods for both simple and complex concepts.

This method works by performing a Naïve Bayes prediction per
training instance, and comparing its prediction with the majority
class. Counts are stored to measure how many times the Naïve
Bayes prediction gets the true class correct as compared to the
majority class. When performing a prediction on a test instance,
the leaf will only return a Naïve Bayes prediction if it has been
more accurate overall than the majority class, otherwise it resorts
to a majority class prediction.

2.2 Concept-adapting Very Fast Decision Trees

CVFDT

Hulten, Spencer and Domingos presented the CVFDT (Concept-
adapting Very Fast Decision Trees) algorithm [16] as an extension
of VFDT to deal with concept drift, maintaining a model that is

CVFDT(Stream,δ )
1 � Let HT be a tree with a single leaf(root)
2 � Init counts ni jk at root
3 for each example (x ,y) in Stream
4 do Add, Remove and Forget Examples
5 CVFDTGrow((x ,y),HT ,δ )
6 CheckSplitValidity(HT ,n,δ )
CVFDTGrow((x ,y),HT ,δ )

1 � Sort (x ,y) to leaf l using HT
2 � Update counts ni jk at leaf l and nodes traversed in
3 the sort
4 if examples seen so far at l are not all of the same class
5 then

6 � Compute G for each attribute

7 if G(Best Attr.)−G(2nd best) >
√

R2 ln 1/δ
2n

8 then

9 � Split leaf on best attribute
10 for each branch
11 do� Start new leaf and
12 initialize counts
13 � Create alternate subtree
CheckSplitValidity(HT ,n,δ )
1 for each node l in HT that it is not a leaf
2 do for each tree Talt in ALT(l)
3 do CheckSplitValidity(Talt ,n,δ )
4 if exists a new promising attributes at node l
5 do� Start an alternate subtree

Figure 2: The CVFDT algorithm

consistent with the instances stored in a sliding window. It does
not have theoretical guarantees like the Hoeffding Tree.

Figure 2 shows the code for the CVFDT algorithm. It is similar
to the code for the Hoeffding Tree but with the following changes:

• The main method maintains a sliding window with the latest
instances to have arrived: so it has to add, remove and forget
instances.
• The main method in addition to CVFDTGrow, calls also
another method called CheckSplitValidity to check if the
splits chosen are still valid.
• CVFDTGrow also updates counts of the nodes traversed in
the sort.
• CheckSplitValidity creates an alternate subtree if the at-
tributes chosen to split are now different from the ones that
were chosen when the split was done.
• Periodically, it checks if the alternate branch is performing
better than the original branch tree, and if it is perform-
ing better it replaces it, and if not, it removes the alternate
branch.
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3 STREAMDM-C++ DATA STREAMMINING

SYSTEM

The main goals of streamDM-C++ is to build a fast and efficient
system, well designed to be very easy to use and to extend. The
main objectives of streamDM-C++ are the following:
• run experiments from the command line like this:
PrequentialEvaluation -t train.dataset
-e test.dataset -l HoeffdingTree
-s (FileReader -f file)
• add new learners easily
• create new tasks easily
• evaluators and learners should be separated, not linked to-
gether
• contain several methods for learning numeric attributes
• the adaptive decision tree should not need to tune parameters
that depend on the dataset

Instead of using CVFDT, streamDM-C++ uses the Hoeffding
Adaptive Tree [3], since it adapts to the scale of time change in the
data, and it does not need an experienced user to select the correct
parameters. In the rest of this section, we describe the advantages
of the Hoeffding Adaptive Tree, and explain in detail the design of
streamDM-C++.

3.1 Hoeffding Adaptive Tree

The Hoeffding Adaptive Tree [3] is an adaptive extension to the Ho-
effding Tree, that has theoretical guarantees, no need of parameters,
and uses ADWIN as a change detector and error estimator. A formal
and quantitative statement of the theoretical guarantees (in the
form of a theorem) of the Hoeffding Adaptive Tree appears in [3].

ADWIN [2] is a change detector and estimator that solves in a well-
specified way the problem of tracking the average of a stream of
bits or real-valued numbers. ADWIN keeps a variable-length window
of recently seen items, with the property that the window has the
maximal length statistically consistent with the hypothesis “there
has been no change in the average value inside the window".

More precisely, an older fragment of the window is dropped if
and only if there is enough evidence that its average value differs
from that of the rest of the window. This has two consequences:
first, that change is reliably declared whenever the window shrinks;
and second, that at any time the average over the existing window
can be reliably taken as an estimate of the current average in the
stream (barring a very small or very recent change that is still not
statistically visible).

ADWIN is parameter- and assumption-free in the sense that it
automatically detects and adapts to the current rate of change. Its
only parameter is a confidence bound δ , indicating how confident
we want to be in the algorithm’s output, a property inherent to all
algorithms dealing with random processes.

Also, ADWIN does not maintain the window explicitly, but com-
presses it using a variant of the exponential histogram technique.
This means that it keeps a window of lengthW using onlyO (logW )
memory and O (logW ) processing time per item.

CVFDT has no theoretical guarantees, and it uses a number of
parameters, with default values that can be changed by the user
- but which are fixed for a given execution. Besides the example
window length, it needs:

(1) T0: after each T0 examples, CVFDT traverses the entire deci-
sion tree, and checks at each node if the splitting attribute is
still the best. If there is a better splitting attribute, it starts
growing an alternate tree rooted at this node, and it splits
on the currently best attribute according to the statistics at
the node.

(2) T1: after an alternate tree is created, the following T1 exam-
ples are used to build the alternate tree.

(3) T2: after the arrival ofT1 examples, the followingT2 examples
are used to test the accuracy of the alternate tree. If the
alternate tree is more accurate than the current one, CVDFT
replaces it with this alternate tree (we say that the alternate
tree is promoted).

The default values are T0 = 10, 000, T1 = 9, 000, and T2 = 1, 000.
One can interpret these figures as the presumption that often the
last 50, 000 examples are likely to be relevant, and that change
is not likely to occur faster than every 10, 000 examples. These
presumptions may or may not be correct for a given data source.

The main internal differences of the Hoeffding Adaptive Tree
with respect to CVFDT are:

• The alternate trees are created as soon as change is detected,
without having to wait for a fixed number of examples to
arrive after the change. Furthermore, the more abrupt the
change, the faster a new alternate tree will be created.
• Hoeffding Adaptive Tree replaces the old trees by the new
alternate trees as soon as there is evidence that they are
more accurate, rather than having to wait for another fixed
number of examples.

These two effects can be summarized by saying that the Hoeffding
Adaptive Tree adapts to the scale of time change in the data, rather
than having to rely on the a priori guesses made by the user.

In the case of noisy distributions with outliers, the Hoeffding
Adaptive Tree and CVFDT will not fluctuate abruptly when they
see an outlier, since they compute and use mean values that helps
to smooth the computation.

3.2 Architecture

The architecture of streamDM-C++ is composed by the following
elements:

Instances Data arrive as a sequence of instances. Instances
contain values for a set of input attributes, and for only
one output attribute. streamDM-C++ contains two types of
instances
• Dense Instance: stores the information of the instance
using an array of doubles..
• Sparse Instance: only stores the non-zero values of an
instance using two arrays, one for the indices, and one
for the values. An InstanceHeader object maintains meta-
information about attributes using Attribute objects.

Streams Streams are the objects that read and get instances.
Instances can be obtained in ARFF, C4.5, or CSV format.

Learner Every algorithm in streamDM-C++ is a learner, that
basically has three methods:
• init(): to reset and initialize themodel when there is change
or at the beginning of the mining process
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• update(instance): to update the model when a new in-
stance arrives
• predict(instance): to predict the probabilities for each class
label

Creating new classifiers is as simple as implementing these
three methods.

Evaluator Evaluators maintain and keep statistics of the mea-
surements of the results. We have two types:
• BasicClassificationPerformanceEvaluator: keeps statistics
over a landmark window, i.e., from the beginning of the
data mining rocess.
• WindowClassificationPerformanceEvaluator: keeps sta-
tistics over a sliding window containing the most recent
predictions and results.

Task Tasks contains workflows of the streammining processes.
streamDM-C++ runs tasks. As example, for evaluation we
have two important tasks:
• Holdout Evaluation: performs an evaluation using differ-
ent test and training datasets
• Prequential Evaluation: performs an interleaved test then
train evaluation. All instances are first used to test and
then to train

Parameters To be able to execute tasks, on the command line,
we need to be able to use classes as parameters. An important
feature is to implement class parameters recursively, so that
classes can have class parameters as well. For example, a
bagging class can have the decision tree class as its base
learner and a Naive Bayes Classifier class at the leaves.

3.3 Machine Learning Algorithms

In this section we detail the learners available in streamDM-C++
and the classes needed to implement the decision trees.

The classifiers available in streamDM-C++ are the following:
HoeffdingTree This is the main class that manages the ini-

tialization, the growing and the prediction of the Hoeffding
tree. It is a learner with a tree structure of nodes.

HoeffdingAdaptiveTree This is the main class for the adap-
tive decision tree, that extends the Hoeffding tree.

Bagging Ensemble that uses sampling with replacement, and
majority vote for prediction.

Boosting Streaming boosting that approximates the batch tra-
ditional boosting classifier.

Random Forests Bagging that uses randomized decision trees.
The components of the Hoefffding Tree are the following:
AttributeClassObserver Statistics for each attribute thatman-

ages information about the distribution of the data for each
class label. We give more details in the next subsection.

SplitCriterion Criterion to decide splits. There are two differ-
ent criteria: information gain, and Gini, but it is very easy to
add new ones.

InstanceConditionalTest Tests used to mark the branches.
Node Node of the tree, that can be a leaf (active learning node),

or an internal node (split node).
ActiveLearningNode Node at a leaf of the tree, that keeps

statistics using AttributeClassObservers needed to decide if
we need to split or not.

SplitNode Node that is no longer a leaf, that contains branches
with an InstanceConditionalTest for each branch.

3.4 Handling numeric attributes

Handling numeric attributes in a data stream classifier, is much
more difficult than in a non-streaming setting. In this sectionwewill
present the most popular methods used in decision tree algorithms
in evolving data streams. They are all implemented in streamDM-
C++, as AttributeClassObserver objects. We look at how to manage
the statistics of numeric attributes, and how to decide what are the
best splitting points in decision trees.

3.4.1 VFML. VFML contains the following method for handling
numeric attributes in VFDT andCVFDT: basically, numeric attribute
values are summarized by a set of ordered bins. The range of values
covered by each bin is fixed at creation and does not change as more
examples are seen. A hidden parameter serves as a limit on the
total number of bins allowed–in the VFML implementation this is
hard-coded to allow a maximum of one thousand bins. Initially, for
every new unique numeric value seen, a new bin is created. Once
the fixed number of bins have been allocated, each subsequent value
in the stream updates the counter of the nearest bin.

There are two potential issues with the approach. Clearly, the
method is sensitive to data order. If the first one thousand examples
seen in a stream happen to be skewed to one side of the total range
of values, then the final summary will be incapable of accurately
representing the full range of values.

The other issue is estimating the optimal number of bins. Too
few bins will mean the summary is small but inaccurate, whereas
too many bins will increase accuracy at the cost of space. In the
experimental comparison the maximum number of bins is varied
to test this effect.

3.4.2 Exhaustive Binary Tree. This method represents the case
of achieving perfect accuracy at the necessary expense of storage
space. The decisions made are the same that a batch method would
make, because essentially it is a batch method—no information is
discarded other than the observed order of values.

Gama et al. present this method in their VFDTc system [9]. It
works by incrementally constructing a binary search tree structure
as values are observed. The path a value follows down the tree
depends on whether it is less than, equal to or greater than the
value at a particular node in the tree. The values are implicitly
sorted as the tree is constructed.

This structure saves space over remembering every value ob-
served at a leaf when a value that has already been recorded reap-
pears in the stream. In most cases a new node will be introduced to
the tree. If a value is repeated the counter in the binary search tree
node responsible for tracking that value can be incremented. Even
then, the overhead of the tree structure will mean that space can
only be saved if there are many repeated values. If the number of
unique values were limited, as is the case in some data sets, then
the storage requirements will be less intensive.

The primary function of the tree structure is to save time. It
lowers the computational cost of remembering every value seen,
but does little to reduce the space complexity. The computational
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considerations are important, because a slow learner can be even
less desirable than one that consumes a large amount of memory.

Beside memory cost, this method has other potential issues.
Because every value is remembered, every possible threshold is also
tested when the information gain of split points is evaluated. This
makes the evaluation process more costly than more approximate
methods.

This method is also prone to data order issues. The layout of the
tree is established as the values arrive, such that the value at the
root of the tree will be the first value seen. There is no attempt to
balance the tree, so data order is able to affect the efficiency of the
tree. In the worst case, an ordered sequence of values will cause
the binary search tree algorithm to construct a list, which will lose
all the computational benefits compared to a well balanced binary
search tree.

3.4.3 Greenwald and Khanna Quantile Summaries. The field of
database research is also concerned with the problem of summa-
rizing the numeric distribution of a large data set in a single pass
and limited space. The ability to do so can help to optimize queries
over massive databases.

Greenwald andKhanna [13] proposed a quantile summarymethod
with even stronger accuracy guarantees than previous approaches.
The method works by maintaining an ordered set of tuples, each of
which records a value from the input stream, along with implicit
bounds for the range of each value’s true rank. Specifically, a tuple
ti = (Vi ,дi ,∆i ) consists of three values:

• a value vi of one of the elements seen so far in the stream
• a value дi that equals rmin (vi ) − rmin (vi−1), where rmin (v )
is the lower bound of the rank ofv among all the values seen
so far
• a value ∆i that equals rmax (vi ) − rmin (vi ), where rmax (v )
is the upper bound of the rank of v among all the values
seen so far

Note that rmin (vi ) =
∑
j≤i дj , and rmax (vi ) = rmin (vi ) + ∆i =∑

j≤i дj + ∆i .
The quantile summary is said to be ϵ-approximate, after seeing

N elements of a sequence any quantile estimate returned will not
differ from the exact value by more than ϵN . An operation for
compressing the quantile summary is defined, guaranteeing that
max(дi + ∆i ) ≤ 2ϵN , so that the error of the summary is kept
within a desired bound.

The worst-case space requirement is shown by the authors to be
O ( 1

ϵ log(ϵN )), with empirical evidence showing it to be even better
than this in practice.

3.4.4 Gaussian Approximation. This method presented in [20]
approximates a numeric distribution in small constant space, us-
ing a Gaussian (commonly known as normal) distribution. Such a
distribution can be incrementally maintained by storing only two
numbers in memory, and is completely insensitive to data order.
A Gaussian distribution is essentially defined by its mean value,
which is the center of the distribution, and standard deviation or
variance, which is the spread of the distribution. The shape of the
distribution is a classic bell-shaped curve that is known by scien-
tists and statisticians to be a good representation of certain types of

natural phenomena, such as the weight distribution of a population
of organisms.

For each numeric attribute the numeric approximation procedure
maintains a separate Gaussian distribution per class label. Amethod
similar to this is described by Gama et al. in their UFFT system [10].
To handle more than two classes, the system builds a forest of
trees, one tree for each possible pair of classes. When evaluating
split points in that case, a single optimal point is computed as
derived from the crossover point of two distributions. It is possible
to extend the approach, however, to search for split points, allowing
any number of classes to be handled by a single tree. The possible
values are reduced to a set of points spread equally across the range,
between the minimum and maximum values observed. The number
of evaluation points is determined by a parameter, so the search
for split points is parametric, even though the underlying Gaussian
approximations are not. For each candidate point the weight of
values to either side of the split can be approximated for each class,
using their respective Gaussian curves, and the information gain is
computed from these weights.

4 COMPARATIVE EXPERIMENTAL

EVALUATION

Comparing streaming decision trees with batch trees can be found
in the original paper of VFDT, and may not be fair as streaming
decision trees may be faster and more accurate when there are
changes on the data stream. The settings are different, and also
the online evaluation is different from the batch evaluation. On
streaming decision trees, only two implementations are available:
VFML and MOA.

Massive Online Analysis (MOA) [4] is a software environment
for implementing algorithms and running experiments for online
learning from data streams in JAVA. JAVA is known to be slower
than C++, due to the fact that it needs to run an instance of the
Java Virtual Machine. We perform experiments to compare our new
framework with these two implementations.

4.1 Datasets for concept drift

Synthetic data has several advantages – it is easier to reproduce
and there is little cost in terms of storage and transmission. For this
paper we use data streams of 1, 000, 000 instances created using the
data generators most commonly found in the literature.

SEA Concepts Generator This artificial dataset contains abrupt
concept drift, first introduced in [21]. It is generated using
three attributes, where only the two first attributes are rele-
vant. All three attributes have values between 0 and 10. The
points of the dataset are divided into 4 blocks with differ-
ent concepts. In each block, the classification is done using
f1+ f2 ≤ θ , where f1 and f2 represent the first two attributes
and θ is a threshold value. The most frequent values are 9, 8,
7 and 9.5 for the data blocks. In our framework, SEA concepts
are defined as follows:

(((SEA9 ⊕
W
t0 SEA8) ⊕

W
2t0

SEA7) ⊕
W
3t0

SEA9.5)

Rotating Hyperplane It was used as testbed for CVFDT ver-
sus VFDT in [16]. A hyperplane in d-dimensional space is
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Table 1: Time comparison of streamDM-C++ algorithms with the relative percentage of acceleration. Time is measured in

seconds. The best individual times are indicated in boldface.

streamDM-C++ VFML MOA
HT HAT HT-NB HAT-NB VFDT CVFDT CVFDT CVFDT HT HAT HT-NB HAT-NB

win 1000 win 5000 win 10000
RBF(50,0) 7.11 18.09 7.06 18.16 107.44 23.62 58.49 212.14 14.12 36.68 14.70 37.66
RBF(50,0.0001) 7.24 16.78 7.02 17.6 65.99 20.65 50.13 119.78 14.86 34.27 14.54 36.06
RBF(50,0.001) 7.18 15.92 7.58 15.65 84.64 20.56 58.17 106.48 15.45 34.09 15.50 33.05
RBF(10,0) 7.14 17.98 7.06 17.99 107.74 23.87 58.55 212.69 14.78 38.09 14.62 35.30
RBF(10,0.0001) 7.10 17.19 7.28 17.25 92.04 24.39 35.44 124.52 14.46 36.04 14.46 37.11
RBF(10,0.001) 7.03 17.53 7.04 17.02 97.01 21.61 35.22 113.23 13.82 37.62 14.69 33.86
SEA(50) 3.76 10.28 3.64 10.13 109.13 10.96 41.29 77.91 7.37 21.48 7.41 20.31
SEA(50000) 3.69 10.2 3.67 9.97 125.16 10.79 40.86 78.87 7.33 21.56 7.52 19.79
HYP(10,0.001) 6.65 14.95 6.62 15.27 51.82 29.46 67.80 111.07 13.65 29.51 14.09 32.70
HYP(10,0.0001) 6.79 12.56 6.78 12.8 54.06 19.75 48.25 93.66 13.73 26.01 14.42 27.20
LED(50000) 6.87 23.82 6.97 25.25 33.44 12.62 17.00 19.62 14.67 47.49 14.00 53.15
CovType 0.34 0.64 0.44 0.73 0.65 1.00 1.55 1.66 0.68 1.31 0.86 1.53
Electricity 7.75 21.56 7.73 18.95 22.50 20.05 20.93 26.74 15.53 44.43 16.18 38.71
Poker 3.99 7.97 4.01 8.24 21.26 20.95 16.87 18.88 8.23 16.25 8.15 17.37

the set of points x that satisfy

d∑
i=1

wixi = w0 =
d∑
i=1

wi

where xi , is the ith coordinate of x . Examples for which∑d
i=1wixi ≥ w0 are labeled positive, and examples for which∑d
i=1wixi < w0 are labeled negative. Hyperplanes are use-

ful for simulating time-changing concepts, because we can
change the orientation and position of the hyperplane in a
smooth manner by changing the relative size of the weights.
We introduce change to this dataset adding drift to each
weight attribute wi = wi + dσ , where σ is the probability
that the direction of change is reversed and d is the change
applied to every example.

Random RBF Generator This generator was devised to offer
an alternate complex concept type that is not straightforward
to approximate with a decision tree model. The RBF (Radial
Basis Function) generator works as follows: A fixed number
of random centroids are generated. Each center has a random
position, a single standard deviation, class label and weight.
New examples are generated by selecting a center at random,
taking weights into consideration so that centers with higher
weight are more likely to be chosen. A random direction is
chosen to offset the attribute values from the central point.
The length of the displacement is randomly drawn from a
Gaussian distribution with standard deviation determined by
the chosen centroid. The chosen centroid also determines the
class label of the example. This effectively creates a normally
distributed hypersphere of examples surrounding each cen-
tral point with varying densities. Only numeric attributes are
generated. Drift is introduced by moving the centroids with
constant speed. This speed is initialized by a drift parameter.

LED Generator This data source originates from the CART
book [6]. An implementation in C was donated to the UCI [1]
machine learning repository by David Aha. The goal is to

predict the digit displayed on a seven-segment LED display,
where each attribute has a 10% chance of being inverted. It
has an optimal Bayes classification rate of 74%. The particular
configuration of the generator used for experiments (led)
produces 24 binary attributes, 17 of which are irrelevant.

4.2 Real-World Data

For confidentiality and reproducibility reasons, we use public datasets
in our experiments instead of the real ones used at Huawei. The UCI
machine learning repository [1] contains some real-world bench-
mark data for evaluating machine learning techniques. We will
consider three: Forest Covertype, Poker-Hand, and Electricity.

Forest Covertype dataset It contains the forest cover type
for 30 x 30meter cells obtained fromUS Forest Service (USFS)
Region 2 Resource Information System (RIS) data. It contains
581, 012 instances and 54 attributes, and it has been used in
several papers on data stream classification [12].

Poker-Hand dataset It consists of 1, 000, 000 instances and
11 attributes. Each record of the Poker-Hand dataset is an
example of a hand consisting of five playing cards drawn
from a standard deck of 52. Each card is described using
two attributes (suit and rank), for a total of 10 predictive
attributes. The order of cards is important, which is why
there are 480 possible Royal Flush hands instead of 4.

Electricity dataset Another widely used dataset is the Elec-
tricity Market Dataset described by M. Harries [14] and used
by Gama [11]. This data was collected from the Australian
New South Wales Electricity Market. In this market, the
prices are not fixed and are affected by demand and supply
of the market. The prices in this market are set every five
minutes. The ELEC2 dataset contains 45, 312 instances. The
class label identifies the change of the price related to a mov-
ing average of the last 24 hours. The class level only reflects
deviations of the price on a one day average and removes
the impact of longer term price trends.
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The size of these datasets is small, compared to tens of millions of
training examples of synthetic datasets: 45, 312 for ELEC2 dataset,
581, 012 for CoverType, and 1, 000, 000 for Poker-Hand. Another
important fact is that we do not know when drift occurs or if there
is any drift.

4.3 Results

We use the datasets explained in Sections 4.1 and 4.2. The experi-
ments were performed on 2.66 GHz Core 2 Duo E6750 machines
with 4 GB of memory. The evaluation methodology used was In-
terleaved Test-Then-Train: every example was used for testing the
model before using it to train. This interleaved test followed by
train procedure was carried out on 1 million examples from the
hyperplane, SEA, LED and RandomRBF datasets. The parameters
of these streams are the following:
• RBF(x ,v): RandomRBF data stream of 5 classes with x cen-
troids moving at speed v .
• HYP(x ,v): Hyperplane data stream of 5 classes with x at-
tributes changing at speed v .
• SEA(v): SEA dataset, with length of change v .
• LED(v): LED dataset, with length of change v .

The first, and baseline, algorithm (HT) is a single Hoeffding tree,
enhanced with adaptive Naive Bayes leaf predictions. Parameter
settings are nmin = 1000, δ = 10−8 and τ = 0.05, used in [8]. We
compare the following classifiers:

streamDM-C++: Hoeffding Tree (HT), Hoeffding Adaptive
Tree (HAT), Hoeffding Tree with Hybrid Adaptive Naive
Bayes (HT-NB), and Hoeffding Adaptive Tree with Hybrid
Adaptive Naive Bayes (HAT-NB).

VFML: VFDT and CVFDT with different sliding window sizes
MOA: Hoeffding Tree (HT), Hoeffding Adaptive Tree (HAT),

Hoeffding Tree with Hybrid Adaptive Naive Bayes (HT-NB),
and Hoeffding Adaptive Tree with Hybrid Adaptive Naive
Bayes (HAT-NB).

4.3.1 Time. Table 1 reports the speed of the classification mod-
els induced on synthetic data and real datasets: Electricity, Forest
CoverType, and Poker Hand.

We observe that the speed of CVFDT depends on the size of the
window. In general, as the window size increases the time needed
also increases. If we compare a single Hoeffding Tree, we see that
the streamDM-C++ tree is much faster than the VFML and MOA
trees, in some cases 10 times faster than VFML and 2 times faster
than MOA. The Hoeffding Adaptive Tree is much slower than the
Hoeffding Tree, as it needs more time to manage, detect changes
and build new branches.

Comparing the Hoeffding Adaptive Tree with the CVFDT tree,
we see that the Hoeffding Adaptive Tree is faster, but the increment
of speed is not uniform and depends on the size of the sliding
window. Using the hybrid adaptive Naive Bayes at the leaves of
both trees, the speed of the Hoeffding Tree and the Hoeffding
Adaptive Tree only increases by a small amount.

4.3.2 Memory. The behaviour of the memory results is similar
to the behaviour of the time results. Tables 2 and 3 report the
memory of the classification models induced on synthetic data and
real datasets.

Table 2: Memory comparison of VFML algorithms: VFDT

and CVFDT with different sliding window sizes. Memory is

measured in Kb.

VFDT CVFDT CVFDT CVFDT
win 1000 win 5000 win 10000

RBF(50,0) 862,320 3,040 13,316 94,920
RBF(50,0.0001) 839,172 3,032 15,200 77,028
RBF(50,0.001) 889,348 3,048 16,736 35,156
RBF(10,0) 862,320 3,040 13,316 94,920
RBF(10,0.0001) 835,464 3,280 11,768 85,612
RBF(10,0.001) 866,056 3,044 9,816 78,088
SEA(50) 534,616 1,952 12,352 31,396
SEA(50000) 545,788 1,952 12,052 31,436
HYP(10,0.001) 833,960 3,052 17,664 37,852
HYP(10,0.0001) 828,688 3,056 17,028 35,760
LED(50000) 1,144,436 2,192 7,128 13,196
CovType 36,588 4,464 10,776 21,192
Electricity 1,381,460 3,900 13,900 27,648
Poker 586,504 2,404 5,644 9,404

Table 3:Memory comparison of streamDM-C++ algorithms.

Memory is measured in Kb.

HT HAT HT-NB HAT-NB
RBF(50,0) 4,828 6,452 4,828 6,328
RBF(50,0.0001) 4,916 11,372 4,916 11,948
RBF(50,0.001) 4,512 9,268 4,512 9,084
RBF(10,0) 4,828 6,356 4,828 6,360
RBF(10,0.0001) 4,964 9,184 4,964 9,856
RBF(10,0.001) 4,772 8,728 4,772 9,056
SEA(50) 4,616 8,168 4,616 8,092
SEA(50000) 4,600 8,288 4,600 8,236
HYP(10,0.001) 5,984 10,364 5,988 9,988
HYP(10,0.0001) 7,428 11,776 7,428 11,984
LED(50000) 10,284 23,492 10,280 24,608
CovType 3,956 5,240 3,984 4,932
Electricity 10,264 101,124 10,272 76,660
Poker 5,404 13,448 5,408 15,316

Comparing a singleHoeffding Tree, we observe that the streamDM-
C++ tree needs less memory than the VFML tree.

The memory used by CVFDT depends on the size of the window,
as expected. In general, as the window size increases the memory
needed also increases. The Hoeffding Adaptive Tree uses more
memory than the Hoeffding Tree.

Using the hybrid adaptive Naive Bayes at the leaves of both
trees, the memory used by the Hoeffding Tree and the Hoeffding
Adaptive Tree only slightly increases.

4.3.3 Accuracy. Table 4 shows the accuracy of decision trees
over all the real and synthetic datasets.

In general, we observe the following facts:
• The accuracy of the single Hoeffding trees are similar in
VFML and streamDM-C++.
• The performance of the decision trees with hybrid adaptive
Naive Bayes at the leaves is superior to the performance of
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Table 4: Accuracy comparison of streamDM-C++ algorithms with the relative percentage of acceleration. Accuracy results are

given in %. The best individual accuracies are indicated in boldface.

streamDM-C++ VFML MOA
HT HAT HT-NB HAT-NB VFDT CVFDT CVFDT CVFDT HT HAT HT-NB HAT-NB

win 1000 win 5000 win 10000
RBF(50,0) 69.39 74.1 83.18 84.54 69.68 29.7 37.14 41.71 69.39 74.1 83.18 84.54

RBF(50,0.0001) 31.05 35.6 45.27 61.78 29.43 29.7 32.06 33.62 31.05 35.6 45.27 61.78

RBF(50,0.001) 29.88 30.19 32.26 37.39 29.71 29.7 30.70 29.85 29.88 30.19 32.26 37.39

RBF(10,0) 69.39 74.1 83.18 84.54 69.68 29.7 37.14 41.71 69.39 74.1 83.18 84.54

RBF(10,0.0001) 66.72 68.27 79.23 79.13 64.83 31.32 34.26 42.33 66.72 68.27 79.23 79.13
RBF(10,0.001) 65.84 68.22 76.30 75.47 65.68 29.7 37.17 42.87 65.84 68.22 76.30 75.47
SEA(50) 85.63 87.37 86.43 89.04 85.01 70.41 82.52 83.51 85.63 87.37 86.43 89.04

SEA(50000) 85.65 87.33 86.45 88.70 85.01 70.41 82.52 83.44 85.65 87.33 86.45 88.70

HYP(10,0.001) 79.02 79.54 89.04 88.92 75.55 50.06 63.25 65.25 79.02 79.54 89.04 88.92
HYP(10,0.0001) 67.95 76.97 78.76 87.08 60.04 49.95 55.56 56.36 67.95 76.97 78.76 87.08

LED(50000) 43.92 47.62 68.64 72.60 40.04 15.95 24.52 26.47 43.92 47.62 68.64 72.60

CovType 75.72 76.87 79.19 83.98 71.63 76.67 75.97 75.53 75.72 76.87 79.19 83.98

Electricity 67.91 68.26 80.31 82.29 64.84 66.24 62.4 69.83 67.91 68.26 80.31 82.29

Poker 68.09 59.16 76.06 66.64 69.51 68.97 61.43 58.56 68.09 59.16 76.06 66.64
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Figure 3: Accuracy comparing different numeric attribute

class observers on the Forest Covertype dataset

the decision trees with only the majority class classifier at
the leaves.
• The accuracy of CVFDT depend on the size of the window,
and the optimal size window is different for each dataset.
• The Hoeffing Adaptive Tree outperforms the HoeffdingTree
and CVFDT.

4.4 Numeric Attribute Handlers

streamDM-C++ contains several numeric attribute handlers, in
contrast to VFML that contains only one. Figure 3 shows the results
of a prequential evaluation using a sliding window of 1,000 exam-
ples, on the Forest Covertype dataset, comparing the following
attribute class observers: Gaussian approximation, VFML, Exhaus-
tive Binary Tree, and Greenwald and Khanna Quantile Summaries.

For this dataset, we observe that the different numeric attribute
handlers perform differently, and that for this specific dataset the

Gaussian approximation is the one with highest accuracy. Hav-
ing several numeric attribute handlers is an important feature of
streamDM-C++ that can help to improve accuracy, as it is shown
in this example.
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Figure 4: Accuracy comparing the Hoeffding Tree, Hoeffd-

ing Adaptive Tree and Random Forests on the Forest Cover-

type dataset

4.5 Random Forests

Random Forests is a very powerful ensemble method combining a
set of decision trees; the Random Forest usually outperforms the
single best classifier in the ensemble. Figure 4 shows a comparison
of the Hoeffding Tree, Hoeffding Adaptive Tree and Random Forests
on the Covertype dataset. We see that the Hoeffding Adaptive Tree
has better accuracy than the Hoeffding Tree. More interestingly,
the Random Forest classifier outperforms both, confirming that it
is an extremely good method for classifying data streams.
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5 RELATEDWORK

The algorithms in streamDM-C++ are sequential and they are
not distributed. There is room for improving the framework using
parallelism. Other open source softwares for data streammining are
available that are distributed and work in the Hadoop Ecosystem
using Apache Spark, Apache Flink, and Apache Storm.

Apache Scalable Advanced Massive Online Analysis (Apache
samoa) [19] is a framework that provides distributed machine learn-
ing for big data streams, with an interface to plug-in different stream
processing platforms that run in the Hadoop ecosystem.

Apache samoa can be used in two different modes: using it as a
running platform to which new algorithms can be added, or devel-
opers can implement their own algorithms and run them within
their own production system. Another aspect of Apache samoa is
the stream processing platform abstraction where developers can
also add new platforms by using the available API. With these sep-
aration of roles the Apache samoa project is divided into SAMOA
API layer and DSPE-adapter layer. The SAMOA API layer allows
developers to develop for Apache samoa without worrying about
which distributed stream processing engine (SPE) is going to be
used. In the case of new SPEs being released or the interest in inte-
grating another platform, a new DSPE-adapter layer module can
be added. Apache samoa supports four SPEs that are currently the
state or the art: Apache Flink [7], Storm, Samza, and Apex. Apache
SAMOA has a parallel VFDT implementation called Vertical Ho-
effding Tree [18].

StreamDM for Spark Streaming [5] is an open-source project for
mining big data streams using Spark Streaming [22], an extension
of the core Spark API that enables scalable stream processing of
data streams.

One of the first software available for mining data streams, was
the data stream plugin (formerly: concept drift plugin) [17] for
RapidMiner (formerly: YALE (Yet Another Learning Environment)),
a freely available open-source environment for machine learning,
data mining, and knowledge discovery, extends RapidMiner with
operators for handling real and simulated concept drift in time-
varying data streams.

The data stream mining and concept drift handling operators
provided in this plugin can be combined with all other RapidMiner
operators. For example, the audio and text preprocessing of the
RapidMiner package can be used to detect and handle concept
changes in audio and text data streams and all machine learning
methods for classification available in RapidMiner (and WEKA) can
be combined with the concept drift handling frameworks. However,
some of these frameworks require the learners to be able to estimate
their classification performance.

6 CONCLUSIONS

In this paper we presented streamDM-C++, a new system for
mining evolving streams using decision trees and ensembles in C++.
We explained the design choices for the solution, the deployment
challenges, and lessons learned. Our experimental validation shows
that streamDM-C++ outperforms VFML in the three dimensions
of data stream mining processing: time, memory and accuracy.

streamDM-C++ is available as open source software1, so that
practitioners and researchers in industry can benefit of using this
new extremely fast implementation in C++ of decision trees for
evolving data streams.
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