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Abstract 

Following resolution of a long-standing debate over the timing of the initial settlement of 

New Zealand from Polynesia (late 13th century), a prevailing paradigm has developed that 

invokes rapid transformation of the landscape, principally by fire, within a few decades of the 

first arrivals. This model has been constructed from evidence mostly from southern and 

eastern regions of New Zealand, but a more complicated pattern may apply in the more 

humid western and northern regions where forests are more resilient to burning. We present a 

new pollen record from Lake Pupuke, Auckland, northern New Zealand, that charts the 

changing vegetation cover over the last 1000 years, before and after the arrival of people. 

Previous results from this site concurred with the rapid transformation model, although 

sampling resolution, chronology and sediment disturbance make that interpretation equivocal. 

Our new record is dated principally by tephrochronology together with radiocarbon dating, 

and includes a cryptotephra deposit identified as Kaharoa tephra, a key marker for first 

settlement in northern New Zealand. Its discovery and stratigraphic position below two 

Rangitoto-derived tephras enables a clearer picture of environmental change to be drawn. The 

new pollen record shows an early phase (step 1) of minor, localised forest clearance around 

the time of Kaharoa tephra (c. 1314 AD) followed by a later, more extensive deforestation 

phase (step 2) commencing at around the time of deposition of the Rangitoto tephras (c. 

1400‒1450 AD). This pattern, which needs to be corroborated from other well-resolved 

records from northern New Zealand, concurs with an emerging hypothesis that the ‘Little Ice 

Age’ had a significant impact on pre-European Māori with the onset of harsher conditions 

causing a consolidation of populations and later environmental impact in northern New 

Zealand.  

KEYWORDS: New Zealand, Polynesian settlement, rapid transformation, palynology, 

tephrochronology, Rangitoto tephra, Kaharoa tephra, ‘Little Ice Age’ 
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Introduction 

A long-running debate over the timing of first settlement of New Zealand has eventually been 

resolved in favour of the late settlement hypothesis (Anderson, 1991)  ‒ that is, between c. 

1250 and 1300 AD (Wilmshurst et al., 2008, 2011; Anderson, 2013, 2015a). Attention has 

now turned to the question of what happened next. Pollen and charcoal records, along with 

faunal and plant macrofossil work, have been instrumental in showing widespread forest 

clearances by fire from c. 1250 AD, resulting in a rapid transformation of much of the New 

Zealand landscape (McWethy et al., 2010; Perry et al., 2012a). The rapid transformation 

model suggests that extensive forest was replaced by scrub very early in the Polynesian era 

that persisted through to European contact and settlement in the late 18th and early 19th 

centuries. This model is based largely on records from southern and eastern regions of New 

Zealand, where the natural tipping point from forest to scrub is easier to traverse and harder 

to reverse than in other regions. Less clear is the picture from western and northern regions 

where, under more humid climates, more frequent and persistent firing would be needed to 

prevent forest regeneration once the forest-scrub tipping point was crossed (Perry et al., 

2014).  

Recently, Anderson (2013, 2015b, 2016) has revitalised an earlier argument that 

climate change during the pre-European era may have strongly influenced early Māori 

settlement patterns and land-use practice during what he terms a ‘transitional’ phase of New 

Zealand prehistory. Northern regions, Anderson argues, would have experienced greater 

environmental impacts later in prehistory as population growth consolidated there under the 

harsher climate of the ‘Little Ice Age’ after c. 1400 AD. If so, palaeoecological records from 

the north should differ from their southern counterparts in showing a second wave of human-

environmental impacts accompanying the ‘Little Ice Age’.   
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Here, we present a new pollen and charcoal record for Polynesian settlement and 

forest clearance, dated by tephrochronology, from Lake Pupuke, a maar crater that contains 

the only extant lake in Auckland, northern New Zealand. Previous paleoenvironmental 

studies at Lake Pupuke (Horrocks et al., 2005; Striewski et al., 2009) concur with the rapid 

transformation model, but the data are of low-resolution and their interpretations are 

equivocal. Elsewhere in the Auckland region, reconstructions of human-environment 

interaction in prehistory have been thwarted by dating problems and recent disturbance of 

palaeoecological sites in New Zealand’s most densely populated region (Newnham and 

Lowe, 1991; Horrocks et al., 2002). We trace vegetation and fire history using a short 

sediment core spanning the last c. 1000 years from Lake Pupuke. Using well-dated tephras 

from both the local Auckland Volcanic Field (AVF) and central North Island, along with key 

pollen time markers for the European era, we circumvent problems with radiocarbon dating 

of sediment previously encountered at this site (e.g. Augustinus et al., 2006, 2008; Strieweski 

et al., 2013). The main motivation for this study is to provide a clearer depiction of human-

environment interaction in Auckland over the last c. 1000 years. This new record should also 

show whether the pattern of settlement in this northern New Zealand setting supports the 

Anderson transitional phase model with re-invigorated forest clearances accompanying 

climate change after c. 1400 AD or is better matched to the southern and eastern records 

where rapid and sustained forest clearances persisted from initial Polynesian arrival at or 

soon after c. 1250 AD.  

 

Study region  

Climate and vegetation 
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The present climate of Auckland (Fig. 1) is subtropical with warm, humid summers 

(December-February) and mild winters (June-August) driven by westerly migrating 

anticyclones and troughs (Chappell, 2013). Maximum daily temperatures in the region range 

from 14.5°C in July to 23.7°C in February, and frosts are rare. Average annual rainfall is ~1240 

mm, with a moderate July peak associated with dominant southwesterly airflow.  

 

Figure 1. (a) North Island, New Zealand, showing location of Auckland and Taupo Volcanic Zone (TVZ) 

and main volcanic centres of central North Island. (b) Auckland, showing location of Lake Pupuke and 

other pollen sites, Rangitoto and deposits of Auckland Volcanic Field (AVF). (c) Lake Pupuke showing 
catchment geology, lake bathymetry and locations of sites for core P5 and cores P08-06 and P06-06 

discussed in the text 
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The first European settlers in Auckland found a landscape mostly covered in bracken 

fern (Pteridium aquilinum) and scrub (Colenso, 1844), with evidence both for extensive sweet 

potato (Ipomoea batatas) cultivation by Māori and for intertribal warfare. The natural 

vegetation cover, nevertheless, can be pieced together from isolated remnants together with 

Holocene palynological records (Cranwell, 1981; Newnham and Lowe, 1991; Horrocks et al., 

2005; Newnham et al., 2007). The region supported extensive conifer-angiosperm forest with 

some distinctive communities characteristic of volcanic landscapes and including several 

species that are confined to the northern North Island phytogeographic province (Cockayne, 

1928; Leathwick et al., 2003). This ‘northern’ warm temperate group includes Agathis australis 

(kauri), Beilschmiedia taraire, Vitex lucens, Metrosideros excelsa, Halocarpus kirkii, Ixerba 

brexioides, Weinmannia silvicola and Ackama rosifolia along with several woody species that 

are absent from the southern half of North Island, but which reappear in northern South Island, 

for example, Libocedrus plumosa, Phyllocladus trichomanoides and Quintinia serrata. 

Conversely, a number of common ‘southern’ cool-temperate species, notably Libocedrus 

bidwillii, Nothofagus menziesii, Phyllocladus aspleniifolius, Halocarpus bidwillii and 

Podocarpus nivalis attain their northern limits just to the south of Auckland, usually at the 

highest altitudes. Beech forests, which also characterise southern and montane areas in New 

Zealand, are generally absent from Auckland northwards, with the exception of isolated stands 

of Fuscospora truncata and F. solandri var. solandri.  

AVF 

The central part of the Auckland region straddles an isthmus connecting the Waikato region to 

the south with a narrow, northwesterly-trending peninsula to the north (Fig. 1). The AVF, 
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covering an area c. 360 km2 (Kermode 1992) entirely within Auckland City that occupies much 

of the isthmus, has been active since c. 200 ka (Leonard et al., 2017).  

The 53 mainly basaltic volcanic centres of the AVF (Fig. 1) include maars and their 

associated tuff rings that have created superb depositional environments for the accumulation 

of long sequences of often well-laminated lacustrine sediments interbedded with tephra. 

Basaltic tephras from the small-scale AVF eruptions have provided an important record for 

understanding the timing and frequency of these eruptions (Shane and Hoverd, 2002; Molloy 

et al., 2009; Hopkins et al., 2015, 2017). In addition, the Auckland maar lake sequences include 

many rhyolitic tephras sourced from the central Taupo Volcanic Zone (TVZ), namely, 

Okataina and Taupo volcanic centres, as well as numerous mainly andesitic tephras from 

eruptions of Egmont volcano and Tongariro Volcanic Centre (e.g. Newnham et al., 1999; Shane 

and Hoverd, 2002; Molloy et al., 2009; Hopkins et al., 2015, 2017) (Fig. 1). More recently, 

cryptotephra studies have begun on the maar lake sediments (Gehrels, 2009; Shane et al., 2013; 

Zawalna-Geer et al., 2016). Cryptotephras are tephra-derived glass shard (and/or crystal) 

concentrations preserved and ‘hidden’ in sediments but insufficiently numerous and too fine 

grained to be visible to the naked eye as a layer (Lowe, 2011). The maar lakes are mostly closed 

systems with low surrounding topographic relief and small catchments resulting in minimal 

currents within the lakes (Striewski et al., 2013). These conditions are considered to provide 

for a more accurate and complete tephra deposition history than open lacustrine systems, 

because they do not produce as many re-worked or over-thickened deposits (Molloy et al., 

2009; Zawalna-Geer et al., 2016).  

Not surprisingly, the Auckland maar lake sedimentary records have underpinned a large 

number of previous investigations into a range of topics including palaeoclimatic 

reconstruction (e.g. Sandiford et al., 2003; Newnham et al., 2007; Nilsson et al., 2011; 

http://www.sciencedirect.com/science/article/pii/S0277379115300238#bib67
http://www.sciencedirect.com/science/article/pii/S0277379115300238#bib44
http://www.sciencedirect.com/science/article/pii/S0277379115300238#bib44
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Augustinus et al., 2011, 2012; Stephens et al., 2012a,b; Barrell et al., 2013; Striewski et al., 

2013; Heyng et al., 2014), volcanic history and hazard assessment (Newnham et al., 1999; 

Molloy et al., 2009; McGee and Smith, 2016; Zawalna-Geer et al., 2016; Hopkins et al., 2017; 

Leonard et al., 2017), and prehistoric settlement history (Horrocks et al., 2005; Striewski et al., 

2009). Most of these studies relate to the pre-Holocene, however, because with one exception 

– Lake Pupuke  the Auckland maars were breached by postglacial marine transgression and 

associated marine sediment flux that terminated lacustrine deposition (Hayward et al., 2011).   

 

Rangitoto volcano 

 

The largest and most recent activity in the AVF, representing about half of the estimated total 

erupted magma, has resulted in the formation of Rangitoto Island, a 6-km-wide basaltic 

shield volcano located near the entrance to Waitemata Harbour (Fig. 1). Although the 

volcanoes of the AVF have long been considered to be monogenetic – each essentially 

formed from one relatively brief eruption episode ‒ Linnell et al. (2016) presented a tephra 

and lava record for Rangitoto eruptives, based in large part on analyses from a drill core 

through the edifice, that indicated multiple eruption episodes. These data, along with dated 

Rangitoto-derived tephra layers in sediments from nearby Lake Pupuke and Motutapu Island 

(Fig. 1; Needham et al., 2011; Shane et al., 2013), suggest that following initial eruptions c. 

6000 cal yr BP (phase 1), multiple eruptions of basaltic tephra occurred during the 

construction of the main Rangitoto edifice, phase 2 being from c. 650 to 550 cal yr BP, and 

phase 3 from c. 550 to 500 cal yr BP. This last phase, according to Linnell et al. (2016), 

generated the scoria cones on Rangitito’s summit and concomitantly two prominent tephras, 

designated informally as ‘Rangitoto 1’ and ‘Rangitoto 2’ by McGee et al. (2011), that are 

manifest as visible, separate but thin (millimetre scale to centimetre scale depending on 
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location) primary tephra deposits in sediment cores from Motutapu and Pupuke (Needham et 

al., 2011; Shane et al., 2013). Rangitoto 1, dated at 553 ± 7 cal. yr BP, is compositionally 

alkalic and characterised by a relatively low SiO2 content (~ 45 wt%); Rangitoto 2, dated at 

505 ± 6 cal. yr BP, is subalkalic and characterised by a relatively high SiO2 content (~ 50 

wt%) (Needham et al., 2011; Shane et al., 2013; Zawalna-Geer et al., 2016; Hopkins et al., 

2017). Other explosively-generated basaltic Rangitoto tephras occur in Pupuke’s lake 

sediments as cryptotephras with up to four identified in cores P06-06 and P08-06 (Shane et 

al., 2013). An implication of the recognition of Rangitoto 1 and Rangitoto 2 tephras in Lake 

Pupuke and on Motutapu Island as stratigraphically separate entities (even though these are 

informal names) is that the name ‘Rangitoto Tephra Formation’, which was defined by 

Froggatt and Lowe (1990) to represent a single eruptive event dated at c. 750 14C yr BP, 

should be abandoned. 

 Tephra deposited at the Sunde archaeological site on Motutapu Island (Fig. 1), 

containing casts of human and dog footprints, has been correlated (via glass-shard major 

element composition) with Rangitoto 1 (553 ± 7 cal. yr BP) (Shane et al., 2013). This 

correlation is important because it indicates that phases 2 and 3 of the eruptions of Rangitoto 

were witnessed by early Māori settlers, whose gardening and other activities must have had 

an impact in the region from at least that time (Scott, 1970; Davidson, 1978; Nicol, 1981, 

1982; Bulmer, 1994; Lowe et al., 2000).  

 

Lake Pupuke 

Lake Pupuke (36°46′48″S, 174°45′58″E) is a large, deep, freshwater lake formed in a maar 

crater, situated ~7 km north of Auckland city centre (Fig. 1). On the basis of recent Ar/Ar 

dating, Pupuke maar formed c. 193,000 years ago (Leonard et al., 2017) and (with nearby Tank 
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Farm and Onepoto maars) represents one of the three oldest volcanic edifices of the AVF. 

Although only ~5 m above present sea level and less than 200 m from the current shoreline on 

its eastern margin, the lake is protected from saltwater influx and erosion by a thick tuff margin 

(Fig 1; Horrocks et al., 2005), and there is no evidence for marine incursion (Augustinus et al., 

2006). The lake occupies ~57% of its catchment area which supplies a small amount of runoff 

into the lake basin. However, the lake is essentially a hydrologically-closed system receiving 

most of its inputs from rainwater. Minor outputs from the lake occur in the form of coastal 

springs but evaporation is the dominant source of water loss (Augustinus et al., 2006). Lake 

Pupuke has a bowl shaped bathymetry which increases in depth towards the centre (Fig. 1), a 

total surface area of 1.1 km2, a volume of 2.9 km3 and a maximum depth of 57 m (Horrocks et 

al., 2005). As a result of the growth of Auckland, Lake Pupuke today is surrounded by 

residential buildings, recreational facilities and parkland.  

Previous investigations of human-environment interaction from Lake Pupuke 

Striewski et al. (2009) used a range of physical and geochemical proxies measured in a 

sediment core from Lake Pupuke to conclude that “far-reaching and fundamental changes” in 

the lake ecosystem accompanied the arrival of people in the area. They argued that 

Polynesian forest clearance by fire caused enhanced erosional activity in the catchment just 

prior to the eruption of Rangitoto volcano, which at the time they considered to have occurred 

c. 550‒500 cal. yr BP. Earlier, Horrocks et al. (2005) presented a Holocene pollen record 

from Pupuke that also appeared to indicate rapid and extensive deforestation by people 

commencing just prior to the Rangitoto eruption (the product of which is referred to in most 

of the text as ‘Rangitoto Tephra’), although the low resolution of this record precluded a 

more precise assessment of the timing. Only one post-Rangitoto Tephra sample was analysed 

and this contained European era pollen. Nevertheless, Striewski et al. (2009) proposed from 

this evidence that prehistoric human colonisation of the Auckland region commenced c. 610 



11 
 

cal. yr B.P and that Rangitoto Tephra (for which an age of c. 550 cal. yr BP, c. 1400 AD, was 

adopted, p. 78) may be regarded as a ‘settlement layer’ for the region (in the same way that 

Newnham et al. (1998a) and Lowe et al. (2000) designated the Kaharoa tephra as the 

‘settlement layer’ for North Island). These interpretations align strongly with both the short 

prehistory and rapid transformation models largely derived from southern New Zealand 

evidence, suggesting no distinction between northern and southern patterns as since argued 

by Anderson (2016). Furthermore, Striewski et al. (2009) suggested that their estimated 

Auckland settlement date of ~610 cal. yr BP could mark the onset of continuous human 

settlement for all of New Zealand because Auckland is believed by some to be among the 

first places in the country to have been colonised (e.g. Irwin, 1992; McFadgen, 1994).  

These important conclusions from previous work at Pupuke have essentially 

established a settlement template for the Auckland region. Nevertheless the applicability of 

the rapid transformation model to Auckland is based on interpretations of the precise timing 

and extent of settlement that remain poorly-resolved in light of the sampling resolution 

employed in this work, considering subsequent work on Rangitoto eruptive history. Shane et 

al. (2013) showed that in two Pupuke cores, P08-06 and P06-06, the latest phases of the 

Rangitoto eruption are represented by the two Rangitoto tephras 1 and 2: Rangitoto 1 

(referred to as ‘lower’ Rangitoto by Shane et al., 2013) is evident as a visible (macroscopic) 

basaltic tephra layer in both cores and was dated (based on age data in Needham et al., 2011) 

by Bayesian modelling at 553 ± 7 cal yr BP in P08-06 (63 cm depth) and at 551 ±  7 cal. yr 

BP in P06-06 (60 cm depth); Rangitoto 2 (referred to as ‘upper’ Rangitoto) occurs as a visible 

basaltic tephra layer in P06-06 (57 cm depth), dated at 505 ±  6 cal. yr BP, but as a 

cryptotephra deposit of the same age in P08-06 (54 cm depth) (Shane et al., 2013). Similarly, 

Gehrels (2009), Shane et al. (2013) and Zawalna-Geer et al. (2016) showed that the precisely-

dated Kaharoa tephra (636  12 cal. yr BP) could be detected as a cryptotephra layer in 
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Pupuke cores, thereby offering prospect for further resolving the timing of human-

environmental impacts in Auckland region prehistory. 

Access to archived core material from the P5 core analysed by Horrocks et al. (2005) 

provided us with an opportunity to review these earlier conclusions in light of subsequent 

work. We undertook palynology with a higher resolution than that of Horrocks et al. (2005) 

and combined the findings with tephrochronology to provide a more precise reconstruction of 

the prehistoric settlement patterns of Auckland region.  

 

Methods 

Sediment coring 

Lake Pupuke sediment core collection, and sedimentological and geochemical analyses have 

been described previously (Horrocks et al., 2005; Augustinus et al., 2006, 2008). The lake 

sediment core for the pollen and charcoal record presented here (P5) was collected from the 

deepest part of the lake (Fig. 1) using a Mackereth-type corer with 65 mm diameter polyvinyl 

chloride (PVC) tubes (Augustinus et al., 2008).  

Lithostratigraphy 

The P5 sediments consist of partially and variably laminated, fine, diatomaceous organic-rich 

muds (Horrocks et al., 2005; Augustinus et al., 2008). The laminations are millimetre- to sub-

millimetre-thick alternating dark and light layers. The laminated appearance results from 

diatom-rich layers contrasting with background sedimentation (Augustinus et al., 2008) and, 

although they may be attributed in part to seasonal influence, facies investigations by 

Striewski et al. (2009) ruled out an annual tempo.  
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 The lacustrine sediments are interrupted by two visible tephra layers. The Taupo 

tephra occurs at 168 cm depth and consists of a very thin (~2 mm) coarse ash layer. Rangitoto 

eruptive activity is represented by a single visible basaltic coarse ash layer between 27 and 24 

cm depth, 141 cm above the Taupo tephra. Above this Rangitoto-derived tephra deposit, the 

sedimentary texture changes from laminated to massive. 

 

Palynology 

Using the stratigraphic position of the two visible tephras, we estimated that the time interval 

of interest in this study, the last ~1000 years, was encompassed by the uppermost 75 cm of the 

P5 core although the top ~15 cm was extremely fluid and considered unreliable for palynology. 

We subsampled the core from 75 cm to 15 cm for pollen and microscopic charcoal with a total 

of 23 evenly spaced samples, approximately treble the resolution of the previous palynological 

investigation at Pupuke (Horrocks et al., 2005).  

Preparation of pollen slides followed standard procedures (Faegri and Iversen, 1989) and 

are described in Supplementary Information (available online).  

 

Tephrochronology 

 

As noted earlier, difficulties with establishing reliable 14C ages for Pupuke and other maar 

lake sediments have been reported in previous studies (Horrocks et al., 2005; Augustinus et 

al., 2006; 2008). These problems have been attributed to pervasive hard water and old carbon 

effects in the lakes that partly arise from the incorporation of Tertiary-aged fossil shells (i.e. 

calcareous xenoliths) into the basaltic eruptives (e.g. Sandiford et al., 2001) and partly from 
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human-induced inwashing of old carbon from the catchment following Polynesian settlement 

as has been observed in other lacustrine environments in northern New Zealand (e.g. 

Newnham et al., 1998a; McGlone and Wilmshurst, 1999). Because the laminations are 

unlikely to be annual (Striewski et al., 2009, 2013), layer counting was not deemed feasible 

as a chronological tool. 

In contrast, tephrochronology provides three precise age points in the core P5 

sequence. The so-called Rangitoto tephra is identified as a single coarse ash layer between 27 

and 24 cm depth. In their previous description of P5, Horrocks et al. (2005) reported that two 

black, coarse ash layers occur at c. 28 and c. 27 cm depth (2 and 1 mm thick, respectively), 

separated by laminated lake sediments. These two tephra layers were designated 'lower' and 

'upper' Rangitoto, respectively,by Needham et al. (2011), and represent Rangitoto 1 and 2 as 

described above. However, the two layers could no longer be visibly distinguished from each 

other at the time of subsampling for the current work and we conclude that the core depth 

interval 27‒24 cm in P5 represents the two layers blended together because of sediment 

shrinkage. This conclusion is supported by glass geochemistry analyses from this deposit 

(reported below), which show that both Rangitoto 1 (c. 550 cal. yr BP) and Rangitoto 2 (c. 

500 cal. yr BP) tephras are present, and hence, we refer to this deposit hereafter informally as 

‘Rangitoto-1/2’ tephra with an age c. 550‒500 cal yr BP.  

The visible rhyolite Taupo tephra (1718 ± 10 cal.  yr BP; Hogg et al., 2012) has been 

previously identified in the Pupuke cores on the basis of stratigraphy, mineralogy, and glass 

major element chemistry (Horrocks et al., 2005; Molloy et al., 2009). The Taupo tephra 

occurs at the base of the P5 sequence at 168 cm and consists of a very thin (~2 mm-thick) 

coarse ash layer. In addition to these two visible layers, the Kaharoa tephra (636 ± 12 cal. yr 

BP; Hogg et al., 2003), identified in the current study as a cryptotephra deposit (see below), 

provides the third precise (crypto)tephra age for the record. In addition, the palynological 
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results presented below provide a fourth robust age point in the form of the known historical 

timing for the introduction of exotic pollen marking the start of European era, c. 1850 AD 

(Augustinus et al., 2006). Recognition of these four events have enabled us to develop a 

comparatively robust chronology for the pollen record.  

 

Tephrostratigraphy  

Because the Kaharoa tephra is a critical marker for the earliest settlement of northern New 

Zealand (Newnham et al., 1998a; Lowe et al., 2002) and has been precisely dated by 

radiocarbon and tree-ring-based wiggle-match dating (Lowe et al., 1998; Hogg et al., 2003), 

its identification as a cryptotephra layer in the P5 core was an important part of this study. 

Core P5 was sub-sampled in 1-cm thick contiguous slices for cryptotephra analysis. 

Methods for extracting dispersed glass shards in sediments have been described elsewhere 

(e.g. Davies et al., 2005; Gehrels et al., 2006, 2008) and are included in Supplementary 

Information (available online). Distinguishing between a primary (in situ) tephra-fall deposit 

and reworked glass shards is a key step in cryptotephra methodology and requires an analysis 

of multiple sequences across the depositional site to try to distinguish primary from 

secondary deposits. We compared the glass-shard concentrations from P5 with comparable 

records reported previously from two other Pupuke cores, P08-06 (Shane et al., 2013) and 

P06-06 (Zawalna-Geer et al., 2016; Fig. 1). 

A total of two distinct glass-shard types are recognized in the sequences from Lake 

Pupuke, primarily on the basis of colour (Fig. 2). Prior to chemical analysis, clear (colourless) 

shards were tentatively identified as originating from rhyolitic (sources) and brown shards 

from andesitic, dacitic or basaltic sources (Shane, 2000). Glass shards of selected horizons 

from P5 were analysed as described in Supplementary Information (available online).  
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Figure 2. Glass shard concentrations and loss-on-ignition measurements derived from core P08-06 

(Gehrels, 2009; Shane et al., 2013), P5 (this study) and P06-06 (Zawalna-Geer et al., 2016). Numbered 

arrows point to positions in the core of samples containing glass shards that have been analysed by electron 

microprobe analysis and presented in Table 1. See text regarding stratigraphic status of ‘Rangitoto 

Tephra’. 
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Age modelling 

As discussed above, we have determined four age points within the c. 1000-year-long pollen 

record from the Taupo, Kaharoa, and Rangitoto-1/2 tephras and the advent of European 

pollen. From these age-depth relationships, we determined ages for each of the pollen 

samples via linear interpolation between adjacent dated horizons. Linear interpolation is 

justified because previous age modelling of Holocene sediments in Lake Pupuke indicate 

near-constant accumulation rates prior to the anthropogenic era (Horrocks et al., 2005; 

Striewski et al., 2009; Shane et al., 2013; Zawalna-Geer et al., 2016). 

 

Results 

 

Tephrostratigraphy  

 

The results of down-core glass-shard counts for core P5 are shown in Figure 2, alongside those 

from P08-06 and P06-06. The highest concentrations of shards were found immediately above 

and below the visible Taupo and Rangitoto-1/2 tephras. Additional peak concentrations of glass 

formed relatively discrete horizons (narrow bands). 

All three cores display distinctive peaks in both clear and brown glass at the same horizon 

a few centimetres depth below the visible Rangitoto-1/2 tephra layer. In P5, this double peak 

of clear and brown shards occurs between 38 and 39 cm depth and represents the highest 

concentration of clear shards (at 143 shards per mg-d-wt.) from a cryptotephra deposit. Both 

types of shard from this horizon were analysed for major oxide geochemistry (see below). A 

small number of discrete peaks in brown shards are also observed, typically in lower 

concentrations than clear shard counterparts (Fig. 2).  
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Glass major element composition 

 

Shane et al. (2013) and Zawalna-Geer et al. (2016) reported glass major element chemistry for 

P08-06 and P06-06, respectively, and showed that the Kaharoa tephra is represented by the 

peak in clear shards that coincides with the distinctive clear and brown shard couplet occurring 

a few centimetres below the Rangitoto 1 and 2 layers. The yellow or brown shards are of 

andesite composition, likely to be derived from Ruapehu volcano, Tongariro Volcanic Centre 

(Shane et al., 2013; Zawalna-Geer et al., 2016). We analysed the corresponding horizon for P5 

between 39 and 38 cm depth in the core, 13 cm below the visible Rangitoto-1/2 tephra.  

 The results of the P5 EMP analysis match those previously reported for the clear and 

brown shard couplet from P08-06 and P06-06. The brown shards are predominantly dacite  

with a composition characteristic of Ruapehu-derived Tufa Trig members as identified in core 

P08-06 (Gehrels, 2009; Shane et al., 2013). The analyses show good correspondence with the 

composition of Tufa Trig member Tf6 (Donoghue & Neall, 1996; Donoghue et al., 1997; 2007; 

Zawalna-Geer et al., 2016). For the three analyses obtained of the clear glass in the sample, 

two show a clear correlation with the compositionally distinct Kaharoa tephra (Fig. 3; Table 

1).  
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Figure 3. Major element composition of glass shards analysed from two depths in Core P5 and their 

identification as Kaharoa, Tufa Trig 6 (Tf6) and Rangitoto 1 and 2 tephras. In conjunction with 

stratigraphic superpositioning, the Kaharoa analyses match glass of magma type T2 (later phase of 

Kaharoa eruption) reported by Smith et al. (2005) and Zawalna-Geer et al. (2016); the Tf6 analyses are 

consistent with glass analyses reported by Zawalna-Geer et al. (2016); and Rangitoto 1 and 2 match 

analyses on glass reported by Horrocks et al. (2005), Needham et al. (2011),  Zawalna-Geer et al. (2016) 

and Hopkins et al. (2017). 
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Table 1. Electron microprobe major-element analyses of tephra-derived glass shards from two sample 

depths in P5, Lake Pupuke.  

 
TnG VC, Tongariro Volcanic Centre; AVF, Auckland Volcanic Field.  
 

Sampling positions are shown in Fig. 2. Means (in bold) and standard deviations of total number (n) 

analysis (of individual shards) normalized to a 100% loss-free basis (wt%). Analysis undertaken at NERC 

Tephra Analytical Unit, University of Edinburgh, February and June 2007. Mean values for independently 

characterized laboratory standards, TB1G and Lipari, are provided in Table S1 (available online).  

*Total iron as FeO 

**Water by difference 

  

 

 

 

A sample from the top of the visible Rangitoto-1/2 tephra in core P5 was also analysed. A clear 

distinction can be made between shards that are relatively high in SiO2 (subalkalic, as in 

Rangitoto 2 tephra) and shards relatively low in SiO2 (alkalic, comparable to Rangitoto 1 

tephra) (Shane et al., 2013; Zawalna-Geer et al., 2016; Hopkins et al., 2017). As noted earlier, 

these results showing a mix of both shard types support our conclusion that both previously 

reported visible tephra layers are likely to be represented by the single visible layer we 

recognised in P5. 
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Palynology and vegetation reconstruction 

 

A total of five pollen zones were recognised (Fig. 4), as described below. 

 

Zone P1, extending from c. 925 to c. 725 cal. yr BP, and zone P2, from c. 725 to c. 600 cal. 

yr BP, are dominated by tall tree taxa, mostly representing northern conifer-angiosperm forest 

communities. Agathis australis and Dacrydium cupressinum are the main emergent species, 

each comprising ~ 30% of total dryland pollen. Also common in the emergent or canopy 

layers were Dacrycarpus dacrydioides, Prumnopitys taxifolia, P. ferruginea, Podocarpus 

spp., Phyllocladus spp. and Metrosideros. Fuscospora pollen reaches 10% but may represent 

non-local sources as this taxon is typically over-represented (Bussell, 1988; McGlone and 

Basher, 2012). The subcanopy layer is represented by a diverse range of mostly angiosperm 

trees and shrubs, including tree ferns, epiphytes and lianas. Their diversity and persistently 

low pollen percentages are typical of northern forests in the region today and suggest that the 

lake was surrounded by closed canopy forest with a littoral margin represented by sedges and 

Leptospermum. The aquatic flora is dominated by the colonial alga Botryococcus and 

Pediastrum with occasional Myriophyllum. The main change from P1 to P2 is seen in the 

wetland and aquatic flora with notable declines in Leptospermum, Botryococcus and 

Pediastrum whilst Isoetes appears for the first time in P2 and remains prominent for the rest 

of the zone. 
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Figure 4. Pupuke (P5) pollen percentage diagram. Rt-1/2: Rangitoto tephra-1/2 (solid blue line); Ka: 

Kaharoa tephra (dashed red line). 
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Zone P3 extends from c. 600 cal. yr BP (just above the Kaharoa tephra) to c. 500 cal. yr BP 

(top of Rangitoto-1/2 tephra). The assemblages remain dominated by northern conifer-

angiosperm forest trees and shrubs with few clear changes in composition or abundance apart 

from one exception: the previously dominant tree taxon, Agathis, declines from ~30% to 

~15% during the course of the zone. The other major distinctions are the rise to sustained 

moderate levels in Pteridium and charcoal, both having been rare in previous zones. In the 

aquatic flora, Isoetes rises to a peak of 20% and then declines sharply just below Rangitoto-

1/2 tephra. 

 

Above Rangitoto-1/2, in zone P4, extending from c. 500 cal. yr BP to 100 cal. yr BP, 

Pteridium rises markedly to peak at ~40% and charcoal concentrations also rise. All tree taxa 

show a clear decline, whilst there are prominent increases in shrub and herb taxa, notably 

Coprosma, Coriaria, Myrsine, Pseudopanax and Poaceae. In the wetland and aquatic flora, 

Cyperaceae, Botryococcus and Pediastrum increase. Zone P5, from  c.100 cal. yr BP to near 

present, comprises the uppermost three assemblages, characterised by pollen from exotic taxa 

characteristic of the European era, notably Pinus, Cupressus and Plantago lanceolata.  

 

Discussion 

An enhanced Auckland tephrostratigraphy for the past 1800 years 

 

The identification of Kaharoa tephra in P5 as well as previously reported for P08-06 and P06-

06 cores (Fig. 2) confirms the integrity of this cryptotephra deposit as a robust primary 

tephra-fall event at the site. This conclusion is also supported by similarities in the pattern of 

glass concentrations between sequences (Fig. 2) including a double peak in clear and brown 
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shards at an equivalent stratigraphic horizon, and by its stratigraphic position relative to other 

features in the core. This development improves the chronology we have developed for core 

P5 over previous investigations of human-environment interaction at Lake Pupuke (Horrocks 

et al., 2005; Striewski et al., 2009). As this key marker also occurs at a critical time in the 

Pupuke pollen record (Fig. 4), we are able to pin down the timing of first human impacts and 

subsequent changes more precisely than was previously possible. 

 

Vegetation of Auckland and human impact over the last ~1000 years: a revised model 

 

The Pupuke pollen record gives the most detailed picture yet of the vegetation and 

environmental history of the Auckland region over the last millennium. Prior to human 

arrival, the lake was likely surrounded by northern conifer-angiosperm forest with kauri the 

dominant emergent tree, as has been depicted in previous Holocene pollen records from the 

region (Newnham & Lowe, 1991; Horrocks et al., 2005). The first unequivocal evidence for 

human impact occurs just above the precisely-dated Kaharoa Tephra (636 ± 12 cal. yr BP; 

Hogg et al., 2003), signifying the beginning of pollen Zone P3. Our new Pupuke pollen 

record is consistent, apart from a few notable exceptions, with previous palynological work 

involving Kaharoa tephra that shows characteristic paleoecological disturbances linked to 

human activity at or soon after its deposition at ~80 % of sites in North Island (Newnham et 

al., 1998a). At 19 pollen sites where the Kaharoa tephra is found, the start of the sustained 

decline of tall trees and accompanying rise in bracken fern (Pteridium) spores, together with 

increases in charcoal, essentially coincided with the deposition of the Kaharoa tephra, or soon 

after, that is, deforestation by human-fired burning began at c. 636 cal. yr BP, or a little later. 

However, at five sites (Kopouatai, Newnham et al., 1995a; Papamoa, Newnham et al., 1995b; 

Kohika, McGlone, 1981; Holdens Bay, McGlone, 1983b; and Te Rangaakapua, Wilmshurst, 
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1997), the rise in bracken and charcoal and the decline in tall trees began a short while before 

the fall of the Kaharoa tephra, indicating that deforestation at these sites was initiated a few 

decades before c. 636 cal. yr BP (Newnham et al., 1998a; Lowe et al., 2002; Lowe and 

Newnham, 2004). 

In contrast to most pollen records showing human impact from southern New Zealand, 

however, the initial settlement phase had only a minor impact on the northern forests. Of the 

major tree pollen taxa, only Agathis australis (kauri) shows any sustained decline (from c. 

30% to 15%). Modern pollen rain studies show that kauri tends to be under-represented in 

pollen assemblages, unless present close to the pollen depositional site (Elliott, 1999; 

Newnham et al., 2017). A decline in kauri but not in other tree taxa may indicate that local 

forest clearances occurred only in the vicinity of the lake and were not an extensive feature 

regionally. It is not until after the deposition of the Rangitoto-1/2 tephra, c. 550‒500 cal. yr 

BP, that substantial and progressive forest clearance occurs with observable decline in 

virtually all tree taxa. From this time through to the European era, indicated by Pinus and the 

pollen of other adventives at c. 1845 AD (Augustinus et al., 2006), a fern-scrubland 

characterised by bracken and a range of angiosperm shrubs developed around Lake Pupuke 

and presumably across much of the Auckland region. 

In addition to the contrasts with southern New Zealand records, our new Pupuke record 

also questions the applicability of the rapid transformation model to the Auckland region, as 

proposed from previous work at the site (Horrocks et al. 2005; Striewski et al. 2009). Rather 

than supporting near-immediate and widespread deforestation before Rangitoto 1 tephra and 

from c. 610 cal yr BP, as proposed by Striewski et al. (2009), this new record suggests that 

the first c.100 years of human occupation were characterised by lower level activity and 

minor localised forest clearances. It is not until after deposition of the Rangitoto 1 and/or 2 

tephras that rapid transformation of the landscape is clearly observable in this new record. 
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How might these different interpretations be reconciled? First, the higher resolution 

pollen record presented here with stronger chronological control afforded by the Kaharoa 

tephra enables a more rigorous comparison to be made of the first c.100 years of human 

activity around Lake Pupuke. Second, the conclusion by Striewski et al. (2009) for near-

immediate and widespread deforestation before Rangitoto 1 tephra is based largely on 

indirect evidence – changes in a range of sedimentary and geochemical properties assumed to 

depict catchment erosion or changes in biomass consequent upon deforestation. Whilst this 

assumption may well be justified, these indirect proxies lack a point of reference to indicate 

the extent of deforestation that resulted in the changes. Moreover, the measurement of some 

of these proxies – notably dry bulk density, magnetic susceptibility, organic carbon and 

associated chemical ratios ‒ can be strongly affected by cryptotephra deposits in the 

sediments, which we show to be comparatively high at this critical time (Fig. 2). The 

presence of glass shards and possibly mineral grains (crystals), in the sediment, even in small 

amounts, would have an effect on the sediment analyses. In contrast, the pollen percentages 

are not affected by variability in the amounts of cryptotephra in the sediments, provide a 

reasonable approximation of the extent of deforestation, and show that major impacts on 

catchment vegetation did not occur until after deposition of the Rangitoto-1/2 tephra. Rather 

than a single phase of near immediate and widespread impact, this new record portrays a two-

step phase where an initial phase of comparatively minor loss of trees chronologically 

constrained between the Kaharoa and Rangitoto-1/2 tephras (i.e. between c. 636 and c. 550 

cal. yr BP) is followed by a more extensive phase of clearance during or soon after deposition 

of Rangitoto tephra-1/2 (i.e. c. 550‒500 cal. yr BP and after). 
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Patterns of deforestation in New Zealand: north versus south 

 

Records of deforestation from southern New Zealand (e.g. McWethy et al. 2009, 2010, 2014) 

describe an ‘initial burning period’ (IBP; c. 1280‒1600 AD) during which most of the 

deforestation by deliberate and systematic burning appears to have occurred within a few 

decades by small, transient populations. The IBP was diachronous, occurring within 180 

years between c. 1270 AD and 1450 AD at the sites investigated. There is no clear evidence 

that climate or climate change were significant factors in the burning (McGlone, 1983a; 

McWethy et al., 2010), unlike most other parts of the world where climate changes are 

strongly implicated in Holocene fire regimes (e.g. Whitlock et al., 2010). The IBP was 

followed by a period of less-frequent and less-severe burning in ‘The Late Maori period (c. 

1600‒1850 AD)’ during which, despite reduced fire activity, forest failed to recover at most 

sites investigated. Subsequently Perry et al. (2012a, 2012b, 2014) have provided a plausible 

explanation for both the rapidity and extent of forest degradation and the persistence of fire-

induced scrub following the IBP. In essence, they explain that the more flammable seral and 

invasive vegetation and degraded soil conditions created by initial burning provided positive 

feedbacks that served to both accelerate and maintain the transformation.  

The pattern observed in the south is essentially the reverse of that depicted at Lake 

Pupuke. The IBP at Pupuke occurs early in the 14th century, as in the south, but is 

characterised by minor levels of charcoal and fire-induced vegetation with little discernible 

loss of forest. It is not until after Rangitoto 1 and/or 2 (c. 1400‒1450 AD) that severe and 

sustained forest clearances by fire occurred. At the same time in the south, the severe initial 

burning phase had ended at most sites. What might explain this pattern of later extensive 

firing in the north? Climatic differences between the two regions may play a role. The 

vulnerability of South Island forests to human-set fires was closely linked with a strong west-
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east rainfall gradient, and forests in areas with high rainfall (>1600 mm/yr; such as coastal 

Taranaki: Wilmshurst et al., 2004) were less impacted by fires than drier eastern forests 

(McGlone, 1983a; McWethy et al., 2010; Perry et al., 2014). It can be argued that forests in 

the humid Auckland climate are less susceptible to burning than forests in the drier regions of 

the eastern South Island. Whilst this is undoubtedly true, it does not explain, however, why 

extensive firing is not observed in Auckland before c. 1400‒1450 AD during the IBP when 

the most severe clearances are seen in the south.  

 

Climate change in prehistory 

It has long been suggested that climate and climate change could have influenced Polynesian 

migrations (e.g. Bridgmann, 1983). Subsequently Anderson et al. (2006) suggested that 

archaeological evidence for an episodic pattern of initial island colonization in Polynesia 

matches periods of reversal in prevailing wind direction inferred from the millennial-scale 

history of the El Niño-Southern Oscillation (ENSO). These ideas were further developed by 

Goodwin et al. (2014) who used a compilation of paleoclimate data to reconstruct Pacific sea-

level pressure and wind field patterns at bi-decadal scale during the Medieval Climate 

Anomaly. Their reconstruction revealed an anomalous climate shift to the central Pacific 

(Modiki) La Niña pattern during the period 1140‒1260 AD. This shift opened up a climate 

window for off-wind sailing routes to New Zealand, coinciding with the archaeological 

evidence for first settlement there c. 1250 AD or soon after. In summary, there is mounting 

evidence that marked changes in atmospheric circulation exerted strong controls on the 

capacity for Polynesian migration and that, allied to this, the first settlement of New Zealand 

in the middle to late 13th century occurred during an anomalous period of La Niña-like 

conditions that accompanied the Medieval Climate Anomaly (see also Anderson, 2017).  
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The climate prevailing at the time of first arrival (c. 1250 AD) was unusual in the 

context of the remainder of prehistory. In broad terms, the intensification and poleward 

expansion of the Pacific subtropical anticyclone forced the westerlies polewards, temporarily 

weakening their influence on New Zealand climate and bringing calm, stable conditions 

accompanied by warmer temperatures. In this context, the speed and extent of colonisation of 

New Zealand following first contact is more readily understood. In particular, in southern 

regions where food and lithic resources were attractive to early settlers, a far more hospitable 

climate seems likely to have prevailed than that which confronted the first European settlers 

in the early 19th century. 

More recently, Anderson (2016) has suggested that initial settlement patterns were not 

the only example of human-climate response in New Zealand prehistory. He argues that the 

archaeological record shows a number of significant demographic and cultural trends, 

commencing around 1400 AD and broadly coincident with climate change. These trends 

include (1) reduction in populations and abandonment of many previously occupied sites in 

the south, at the same time as northern New Zealand populations expanded; (2) a northwards 

retreat by about 150 km of the southern limit of kumara cultivation; and (3) intensification of 

horticulture in the north. Evidence for such a population decline in the area around Lake 

Waikaremoana, Huiarau Range, eastern North Island, based on falling Pteridium levels prior 

to the European era, was inferred by Newnham et al. (1998b). These changes among others 

heralded the beginning of a middle phase of Maori archaeology, transitional between the 

earlier Colonisation and later Traditional phases (Fig. 5).  

There is growing paleoclimate evidence that a substantial deterioration in climate 

commencing in the period 1400‒1500 AD coincided with these marked changes in the 

archaeological record. Koffman et al. (2014) presented a reconstruction of the westerlies for 

the past 2000 years, using a dust flux record from the West Antarctic Ice Sheet Divide ice 
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core combined with spatially-distributed climate reconstructions from the Southern 

Hemisphere middle and high latitudes. In addition to showing that the westerlies occupied a 

more southerly position during the Medieval Climate Anomaly, their reconstructions indicate 

a marked equatorward shift at c. 1430 AD that persisted until the mid-to-late 20th century. 

This major shift in the latitudinal positioning and strength of the westerlies is also depicted in 

a long‒term reconstruction of the Southern Annular Mode (SAM), defined as the zonal mean 

atmospheric pressure difference between the mid-latitudes and Antarctica (Abram et al., 

2014; Fig. 5), which exerts a dominant influence on the climate variability across the extra-

tropics of the entire Southern Hemisphere (Garreaud, 2007). 
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Figure 5. Schematic comparison of human-environment interaction in South Island and Auckland 

(horizontal bars) alongside reconstructed climate for the past ~1000 years: Southern Annular Mode 

(Abram et al., 2014) and Australasian summer temperatures (Ahmed et al., 2013). Both climate curves are 

shown as anomalies relative to 1961-1990 AD with 70-year smoothing. Archaeology refers to the 

conceptual framework for Māori prehistory proposed by Anderson (2016). Inset map shows mean annual 

temperature variation in New Zealand for 1971-2000 (www.niwa.co.nz) and location (stars) of Lake 

Pupuke (Auckland) study site and Lake Kirkpatrick (South Island), a key site for the rapid transformation 

model (McWethy et al., 2010). 

 

It is now evident from a range of paleoclimate records based on tree-rings, speleothems, 

and glacier fluctuations that this climate change following the Medieval Climate Anomaly 

had profound impacts on New Zealand environments (Fig. 5). Separate tree-ring series on 

Manoao colensoi from Oroko and Ahaura, South Westland (Cook et al., 2002a, 2002b, 

2006), both show that the strongest cold shift in prehistory and over the last 1000 years 

occurred at around 1500 AD, when summer temperatures at Oroko are estimated to have 
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fallen by ~1.5 oC (Cook et al., 2002b). At around the same time, nearby Franz Joseph glacier 

advanced to >4.5 km beyond its present terminus, consistent with other evidence for ice 

advance during the Little Ice Age (McKinzie et al., 2004; Putnam et al., 2012; Lorrey et al., 

2013). Speleothem δ18O records from Hawke’s Bay, eastern North Island, and Fiordland, 

southwestern South Island, both suggest that the most substantial cooling over the past 1000 

years also occurred at c.1500 AD (Lorrey et al., 2008). Lorrey and Bostok (2017) have 

concluded from this and other paleoclimate evidence that the period from 1500 AD to near 

present day was characterised by cooler temperatures than the preceding interval, resulting 

from increased westerly and southerly circulation influences.  

Of particular relevance to the Pupuke pollen record is the kauri tree ring record of 

Fowler et al. (2012) that is closely linked to ENSO variability. This record points strongly to 

weakening ENSO teleconnection to northern New Zealand during the fourteenth and fifteenth 

centuries, consistent with a northerly shift of the westerlies and the sub-tropical front during 

the ‘Little Ice Age’.  

These various paleoclimate records are consistent with the broader hemispheric pattern 

of comparative warmth and stable conditions prevailing for the first c. 100‒200 years of 

Polynesian settlement, followed by a climate deterioration accompanying strengthening and 

equatorward-shifting westerlies that culminated c. 1500 AD. These changes broadly coincide 

with the onset of Anderson’s (2016) ‘Middle or Transitional phase’ of Māori archaeology 

(Fig. 5).  

The Anderson model of climate deterioration promoting expansion of populations and 

intensification of horticulture in the north from around 1400 AD provides a cogent 

explanation for the two-step pattern of forest clearance depicted in the Pupuke pollen record. 

The first of these phases, coinciding with Anderson’s ‘Colonisation’ phase and commencing 

around the time of deposition of Kaharoa tephra (Fig. 5), is characterised by small‒scale, 
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localised forest burns under a warm and humid climate with only minor discernible impacts, 

in strong contrast to the rapid transformation seen in the south at that time. We may surmise 

that these northern forests offered stronger resistance to initial burning attempts than the 

forests in southern and eastern regions of New Zealand which, together with an initially 

warm climate, presented more favourable conditions to early Polynesian settlers. The second 

phase, coinciding with Anderson’s ‘Middle or Transitional’ period and commencing around 

the time of deposition of Rangitoto-1/2 tephra, is marked by extensive forest clearance by fire 

under a deteriorating climate. The conspiring demands of intensifying horticulture and 

expanding populations now drove a more concerted assault on the northern forests at the 

same time as burning impacts abated in the south.  

 

Conclusions  

Fine resolution palynology supported by enhanced tephrostratigraphy at Lake Pupuke, 

Auckland, reveals a two-step pattern of forest clearance during pre-European prehistory. The 

first step, commencing around the time of Kaharoa tephra c. 1314 AD, is marked by small-

scale localised forest clearance whilst the second, commencing around the time of deposition 

of Rangitoto-1/2 tephra c. 1400‒1450 AD, is marked by more extensive deforestation by fire. 

This pattern is essentially the reverse of that shown by similar records from southern New 

Zealand where the IBP within a few decades of human arrival resulted in rapid landscape 

transformation. These results support an emerging hypothesis that climate change exerted a 

strong effect on human settlement, migration and land-use patterns during New Zealand’s 

brief prehistory. The north-south contrast is consistent with the environmental impacts 

expected to have marked a middle or transitional period of Māori archaeology in part 

response to climate deterioration that accompanied onset of the ‘Little Ice Age’. 
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