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Abstract—Promoting data sharing between organisations is
challenging, without the added concerns over having actions
traced. Even with encrypted search capabilities, the entities
digital location and downloaded information can be traced,
leaking information to the hosting organisation. This is a problem
for law enforcement and government agencies, where any infor-
mation leakage is not acceptable, especially for investigations.
Anonymous routing is a technique to stop a host learning
which agency is accessing information. Many related works for
anonymous routing have been proposed, but are designed for
Internet traffic, and are over complicated for internal usage. A
streaming design for circuit creation is proposed using elliptic
curve cryptography. Allowing for a simple anonymous routing
solution, which provides fast performance with source and
destination anonymity to other organisations.

Index Terms—Anonymous Routing; Elliptic Curve Cryptogra-
phy; Light-weight; Data Sharing; Secure Processing;

I. INTRODUCTION

Since the first proposal of an anonymous network by
David Chaum in 1981 [1], much research has been pro-
posed to further improve the concept either through greater
anonymity [2][3][4]], or faster performance [S][6][7]. However
focus has been on Internet users and traffic. This paper
presents the issue of an organisation accessing information
within a closed group under a data sharing agreement, using
a closed anonymous network to hide their actions to others.
The concept of a closed network is not unique, but to the
best of our knowledge the use case of data sharing between
organisations or agencies has not been explored. Furthermore
with the increasing usage of secure/private processing, data is
already encrypted before leaving the client, but there is still a
requirement for the source to be hidden.

The ability to create an internal anonymous routing net-
work will facilitate data sharing between organisations, while
keeping their actions private. Often search history can leak
information about the searcher and the project they are re-
searching. For example Google uses your search history for
advertisement purposes with AdSense. In Section some
domain specific use cases are given. The primary use case
of this paper is to allow an entity to host information, where
other entities can search this data without the hosting entity
itself gaining any information. When combined with encrypted
search operations, will keep the other organisations actions
private, along with their queries.
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Many related works in Section are designed for an
anonymised network for Internet traffic, whereas this paper is
addressing the issue of providing an anonymised network for
an internal organisation or group of organisations. Therefore
the scope of whom a source needs to remain anonymous from
is reduced to only the other peers. Networks (for example
Internet service providers) in-between these peers cannot see
the request or response data as it is encrypted, but could
try infer whom the source and destination by traffic analysis,
(discussed in Section [IX-GJ).

Elliptic Curve Cryptography (ECC) is proposed in parallel
with Advanced Encryption Standard (AES) as a method of
providing public key support, as well as smaller key and
cipher text sizes, with a simplified anonymous routing protocol
presented in Section A brief attack analysis in Section
shows that the protocol can hide the source and destination,
while protecting the request and response data. Simulations of
performance are given in Section |VII] and shows the proposed
circuit creation approach is acceptable even for small files.
The paper is concluded in Sections and [X] with
comparisons between an closed anonymous network and an
Internet-based one, as well as current open questions and
potential solutions.

II. USE CASES
A. Law Enforcement and Government Agencies

A challenge for law enforcement agencies is keeping their
investigations private, but having the ability to share informa-
tion. INTERPOL helps to facilitate this collaboration between
its member countries [8]], however there is still the issue of
trust and privacy around information sharing. For example
an entity hosts information regarding cryptocurrency, then
ideally the other entities can search, view and download this
information, without revealing to the host which entity is
accessing it. A distributed example is where a country has a
fingerprint of a person of interest [9]. They can query against
other countries databases, without revealing which country the
request came from.

With law enforcement entities, there is the expectation that
they should behave ethically and to the law. The same could
be said of government agencies, but there is a growing threat
of insider attacks [10]]; potential information leakage to the
press invalidity cases [L1], massive operational leakages [12],



and leaked terrorism information [13] are a few examples
in recent years. Even accidental data leakages occur when
sharing or transferring information, with previous Europol
investigations and sensitive data leaked online without the
users knowledge [14].

Therefore data leakages are a problem for law enforce-
ment and government agencies, which has a negative impact
on information sharing between organisations. Outright data
leakage is still an issue, but this paper aims to hide their
activities to provide better control over data sharing, secure
data transfers, and stopping the ability to learn what others are
up to. Keeping law enforcement activities secret (for example
investigations) is critical, and helps to increase the trust in
accessing shared information. Combined with encrypted data
processing, enough privacy can be achieved for some countries
strict legislation around data sharing [15].

B. Healthcare and Finance

Research for new medicines and general health related
issues should be an area where data sharing and collaboration
is critical to saving lives and improving wellbeing [16][17].
However often these sectors can be driven by profit and discov-
ering the next super drug, that they are reluctant to share data.
Data sharing should also be more active between hospitals,
general practices, and other expert organisations [18]. Patient
privacy is a challenge for data sharing in the healthcare sector,
even with anonymous records [17]. Note there is the challenge
of authenticating the release of patient information, but this is
out of scope.

The sharing of financial information could show vulnerabil-
ity or expose a banking systems flaws. Furthermore searching
for links between transfers for detecting fraud and other
illegal activity could be made easier with data sharing. For
example countries have pledged to share tax information with
each other for greater trust and transparency in the banking
sector [[19]. There may arise the need for countries to remain
anonymous while searching this shared data.

C. Encrypted Processing

Applications or services offering private or encrypted pro-
cessing [20][21][22], such as searching [23][24][25], aim to
protect the privacy of users data while in-flight. However in-
formation can be leaked from who and where the request came
from. For example if a user is searching a document while con-
necting through a supermarket’s access point, one could guess
the document is a shopping list. For organisations accessing
shared data, the fact that they are requesting or searching
some data could be revealing, even if the search is encrypted.
Applications that are challenging to implement securely (with
homomorphic encryption for example), anonymising requests
would add a layer of security with little effort. Therefore the
ability to anonymise who and where a request originated from
is an important aspect of private processing.

III. RELATED WORK
A. P2P Designs

Both Tarzan [26] and MorphMix [27] are designed such
that each peer is a potential relay or originator of traffic.
This hides the origins of a request to the other peers and
final destination. A limitation of Tarzan is that a node only
has a small subset of other nodes [28]. For organisations
each hosting information, each node should have knowledge
of all others. With MorphMix the source does not chose the
route through the network, instead it is done by intermediate
nodes. Crowds [29] is also a peer-to-peer (P2P) model but
does not include public-key cryptography. The model of a P2P
network is ideal for data sharing between a large number of
organisations, where each can be a peer in the network.

B. High Latency

Babel [2], Mixmaster [3] and Mixminion [4] introduce
large latencies for achieving anonymity. For example the
Mixmaster protocol defines that the remailer must collect
several encrypted messages before sending the message it has
just created [3]]. For an internal network between organisation,
this could be problematic if there is a limited amount of
traffic being generated. Even though these protocols give better
anonymity than low latency and lightweight protocols, for the
use cases presented in Section [[I| the introduced delay and
small amount of traffic would limit their usefulness.

C. Tor

The anonymous onion routing protocol Tor [30], uses a
small number of relays to hide the origins of traffic in the Inter-
net. Some limitations of Tor are the setup time for circuits and
managing the directory for relay nodes. There has been many
related works on speeding up circuit creation [31][32][33].
However these still have high overhead and few hops when
compared to lightweight designs.

D. Lightweight

Wireless networks with limited resources require simpler
designs and fast circuit creation, but often avoid public
key cryptography because of computational overhead [34].
Lightweight Anonymity and Privacy (LAP) proposed in [S]
addresses the issue of only protecting against the end-server
with low latency and easy circuit creation. Limitations include
no use of public key cryptography or mention symmetric
key exchange, and are designed for Internet communications.
Improvements are proposed [6]][7], but can be simplified for
an internal network between organisations.

E. AES Encryption

Rijndael or as it is commonly known, Advanced Encryption
Standard (AES), is a method of data encryption with symmet-
ric keys [35]. The advantage over other cryptography schemes
for layered encryption is the cipher-text is the same size as
the plain-text. With inputs larger than the key size, they are
split into blocks and chained together. The core operations
of AES are exclusive or (XOR) and bit rotating, giving it



good performance as well as small cipher text sizes. The two
components required for encryption and decryption are the key
(256-bit for example), and initialisation vector (IV).

F. Elliptic Curve Cryptography

A public key cryptosystem, Elliptic Curve Cryptography
(ECC) was proposed independently by Neal Koblitz and Victor
Miller in 1985, and its cryptographic strength comes from
the elliptic curve discrete logarithm problem being hard [36].
The advantages of ECC are smaller key sizes, smaller ci-
pher text sizes (less data transferred) and faster computation
times [37][38] when compared with non-ECC schemes such
as RSA. For example the secp256r1/nistp256 curve (256-bit)
is comparable to the cryptographic strength of a RSA 3072-bit
key [39].

IV. SIMPLIFIED PROTOCOL DESIGN
A. Peer Information

Each node will have an IP address, ID, and public encryp-
tion key for every other node, where the ID is used as a next
hop identifier. With a closed network, all peer information can
be shared via secure mediums (out of scope of this paper,
but is discussed in [40]) as a node is added. Once setup,
nodes will not be added or removed often, hence a closed
network. This mitigates the need for directory servers and the
ability for nodes to automatically join the network. As the
number of nodes will be relatively small compared to Internet
onion routing protocols, each node can periodically ping others
nodes to check for availability. However these nodes should be
permanently alive, and not removed from the network without
prior warning, other than an unexpected failure. The other
benefit is that only verified nodes can join the network.

B. Circuit Construction

With each peer having the public keys of all other peers,
the need of fully secure layered encryption is not required for
data protection. However there is still a need to guarantee the
correct path has been taken, which is where AES is used in
Tor (as well as data protection). For simplicity, AES will not
be used for providing the layering, instead a random value r
will be XORed over all the data with chaining. Each hop and
the destination receive a unique random value. The initial data
is XORed with all r values, then each hop will XOR the r
it receives, removing layers until the destination removes the
final layer. Note that AES can be used, but the performance
will decrease slightly and the circuit path headers will be
larger.

The protocol was designed on top of TCP for packet order-
ing, guaranteed delivery and a form of corruption checking.
In order to provide a new circuit for each TCP stream, circuit
construction must be efficient otherwise the user will expe-
rience latency. Therefore the circuit definition is sent along
with the data. Because each stream has its own circuit, the
need of maintaining state on each node is removed. However
if the circuit is required to be used multiple times, state can
be maintained.
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The circuit header consists of two values: (1) a random value
r, and (2) the next hop identifier. These values are encrypted
with the current hops public key. The cipher values for the
next hop needs layering removed before decryption, hence it
receives the cipher value of r first. They are removed from the
stream when the data is forwarded to the next hop. To prevent
a node guessing where it is in a circuit, when a node removes
its r value and next hop value, the node adds extra rubbish at
the end of the circuit path [31].

An example of the stream structure is given in Figure |1}
using the example circuit in Figure 2] The first two pieces of
information are the maximum number of hops, and the length
of the overall stream. Number of hops is needed in order to
add rubbish (in this case 5), and length is used so that the
stream can be closed when it is finished. If the stream were
to remain open, the length could possibly be removed. The
circuit path comes after with each hops r value, and the next
hop information. A node can only decrypt the next information
after it decrypts r, as the cipher value is obfuscated with that
value. Therefore the previous hop only has the cipher value
for the next r value, as the remaining data is obfuscated.

When the stream reaches the destination, the AES key
and IV are decrypted. The payload includes the request data,
along with a timestamp and checksum value. The timestamp
is important to stop replay attacks, as discussed in Section
The response is encrypted with the AES key using the IV
provided in the request. The cipher text is then obfuscated
with the destinations r value. As the response is streamed
back through the circuit, each node obfuscates further — adding
more layers — until received at the source. The source node
can then remove each layer since it generated the r values,
before decrypting the response.

C. Removing Circuits: Direct Path for Data

Many related protocols have been designed to try and hide
the user from as many entities as possible. However with the
proposed use cases, the organisations only need to hide their
actions from the other peers. Therefore instead of sending a
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Fig. 4. Broadcast the encrypted re-
sponse instead of using a circuit.

request through the circuit, it could be sent directly to the
destination, with the encrypted path back and the source IP
address set to the first node (on the way back) as shown in
Figure 3] This initial request would need to use UDP, then
the downloading of data using the anonymous circuit can use
TCP to keep packets in order and handle dropped packets.

The other option is to remove the circuit altogether and
broadcast the response to all nodes. An example is given in
Figure 4] This has a few disadvantages; large files will have
N download streams compared to 1, a large number of nodes
will consume a large amount of bandwidth, and each node
knows that a request was sent to that destination. However for
small files this could offer a large performance increase. The
same protocol can be used, minus the next node information.
Therefore the client still generates a key for the destination to
encrypt the response.

The limitation of these two approaches is that the source
request, even with the changed source IP address, still orig-
inates from the source node. Networks (for example Internet
service providers) in-between these peers could try infer whom
the source and destination is by traffic analysis. However the
scope is to hide the actions from the other peers, not every
entity in the Internet as all data is encrypted. Therefore the
two speed-up approaches meet this requirement.

V. ATTACK ANALYSIS
A. Breaking the Request

In the case where the destination is known, for example a
single organisation is hosting data for others to search and use,
the destination public key will be known. Also the second to
last hop also knows it is the last hop before the destination as
the next ID will be that of the destination (as there is only one
in this example). However it still does not know the source
node, and what data/request is being sent to the destination.

One attack vector to solve the request would be for the sec-
ond to last node to change the AES key and IV by encrypting
new ones with the destinations public key. Therefore when
the data from the destination is encrypted using an AES key
the node knowns. However the XOR chaining value is not
known. If the node tried to change the XOR value so that the
AES key gets decoded correctly, the request data would then
become incorrect. The response from the destination in this
case would be a message saying the request is corrupt. But
this message cannot be encoded using XOR values as this
would reveal the XOR value used by the destination to the

second to last node (first node on path back). Therefore the
XOR value needs to be guessed when changing the AES key,
which has 232 possibilities. The node could try all options,
but this large number of corrupt requests would be detected
by the destination.

The destination will not know which peer is corrupting the
requests, as it could be one of the other peers in the circuit.
Therefore blocking a peer for corrupting traffic is difficult.
With a limitation of 100 request per second, the destination
cannot process 232 requests a year, meaning guessing the
XOR value is very time consuming. Even if the value is
guessed, only the response to the request would be known
(after changing the AES key). Finally if the request includes a
timestamp, the requests XOR value would have to be guessed
within a few seconds. Otherwise the destination can either
ignore the request or send a timeout message like the corrupt
message.

When the destination is unknown, it is difficult for a node
to try and change request data as the public key is unknown,
and the XOR values for the other nodes are not known.
Therefore if it is unfeasible for a node to break a request
when the destination is known, it is more unfeasible when the
destination could be any of the other nodes.

B. Changing the Response

The other attack vector is where a node tries to modify
the response data. Firstly the response data is encrypted with
AES where the node does not known the key or IV used, and
the XOR chaining means any change to the path or data will
corrupt it.

C. Denial of Service

This model could be abused to slow down another or-
ganisation in the form of a Denial of Service (DoS) attack,
especially if the broadcast response technique is adopted.
However limitations such as number of permitted flows at one
time can help. A DoS on the anonymous network would not
be any different to an attack on a shared network without
anonymisation, aside from the critical point being hit sooner.

D. Outside Attack

If an organisation is compromised, then the threat level
of an attacker trying to analyse traffic in the anonymised
network is not high. There are much bigger threats, such as
phishing and data leakages. The proposed protocol is designed
to stop organisations learning any information while sharing
information. Also by only allowing certain operations and
defining which data can be requested, should keep other
organisations protected if another is compromised.

VI. PROOF-OF-CONCEPT IMPLEMENTATION DETAILS

Keeping with the philosophy of this paper, the implementa-
tion was initially created in Python for its simplicity. However
the performance cost was large due to type packing and
unpacking, so C was used instead.



Fig. 5. Example of implementation process flow between browser, nodes, and
service where a circle represents a node in the closed anonymous network.
Note the browser could be on another machine, but on the same network
within the organisation.

A. SECCURE

A toolset written in C by B. Poettering, SECCURE Elliptic
Curve Crypto Utility for Reliable Encryption (SECCURE) has
implementations of a selection of asymmetric algorithms based
on ECC [41]. In particular the encryption/decryption functions
were used within the node implementation with wrapper
functions, and the toolset was used to generate ECC keys. The
wrapper functions were eccEncrypt, eccDecrypt, eccClean,
ecclnit, which mimicked the app_encrypt and app_decrypt
functions of SECCURE. The signing functions were not
used, however in future work could be used to verify the
response data.

The encryption of plaintext in SECCURE is not actually
achieved with ECC, instead AES is used. However the AES
key and initialization vector are generated by the encryptor,
and encrypted with ECC. When the destination receives the
cipher text, it first decrypts the key and initialization vector
with its ECC private key, allowing it to then decrypt the plain-
text message. This technique keeps the encryption of messages
smaller than they would be with many other cryptography
schemes, while maintaining a public/private key system.

B. Implementation Flow

The implementation follows the example in Figure [5] where
a user from an organisation is requesting data from a HTTP
server from another organisation. The browser can be within
the organisations network, and sends the requests to the proxy.
The proxy process then encrypts the request, defines a circuit
and AES values, sending them to the node process. The proxy
process could exist on each machine in the network, in order
to encrypt the request before sending it to the node. The node
processes this request as it would from another node — there
is no difference between data received from another node and
a proxy.

For each request, a new node process is spawned to
handle that stream of data, including the response. This
saves from needing to maintain state and stream or circuit
identifiers. Because of the context of the use cases, where
only a few streams would occur at once, having a seperate
node process for each stream is acceptable. However in the
context of an Internet onion router, this could be too costly.
The state machine used for the node process is given in
Figure [6] where © = sizeof(E(r)) + sizeof(E(next)) and
y = sizeof (E(aeskey)) + sizeof (E(aesiv)). There are two

bytes = 5 + @
id=0

bytes =5+ (N X x)

bytes =5+ y + (N x x)
closes socket

Destination bytes = len

bytes = len

Next hop

closes socket

Fig. 6. State machine for a spawned node process.

distinct paths for when the stream has reached the destination,
or needs to be forwarded. This is because when the data is
being forwarded, the r value can be removed and then the
data is sent. Also the fwd head state needs to add rubbish to
replace the circuit header it removed.

The transitioning in Figure [6] is given in terms of bytes
received, but can be made simpler by changing the amount
of data to read from the socket. A definition of each state is
given below.

e N: reads the maximum number of hops.

o len: reads the length of the request.

o next: reads and decrypts the first circuit header, giving
r = Decrypt(cipher,) and id = Decrypt(cipher;q &)

o fwd head: reads the remaining circuit headers, removing
r, and adding junk to replace the removed header.

o fwd data: removes r before forwarding the data to the
next hop. Note the data is streaming so the process does
not need to wait for all the data to be received before
forwarding it.

e pass head: consumes the junk circuit headers.

o AES: decrypts the AES key = Decrypt(cipheriey) ®r
and IV = Decrypt(cipherpy) @ r.

e send data: forward the data after decrypting it to the
local machines service (for example a HTTP server).

e Tecv fwd: both states perform the same function, and
receive data from the destination/next hope, XOR with r
and forward it back to the previous hop. However when
id = 0, the data must be encrypted first.

e end: when all data has been received and forwarded, the
node can clean up and terminate.

VII. PERFORMANCE

All results were performed on a Late 2013 Mac Pro (3.7GHz
Intel Xeon E5, 16GB Memory). With nodes on the same
machine, OpenBSD’s Packet Filter was used to add latency
and limit bandwidth. The SimpleHTTPServer Python module
was used for the web server. Note the implementation was
proof-of-concept, and could be optimised further.

A. Circuit Creation

Testing circuit creation time is difficult given the circuit
information and encrypted request data are in the same TCP
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Fig. 8. Throughput versus file size for different latencies.

stream. With the nodes running on the same local machine,
the timestamps would be accurate and can be used to measure
circuit creation. Figure [/| shows the time difference between
the first node generating and encrypting both a path and AES
information, to when the circuit reaches the destination after
the AES information is decrypted. The latency was 20ms or
200ms RTT between every node, and bandwidth was limited
to 1Mbit/s. For comparison, Tor can take a few seconds to
create a circuit with only 3 nodes [42]].

B. Downloading Large Files

The time for a HTML file (8.4KBs) to download with 3
other nodes (5 in total) was on average 0.283s with a 20ms
RTT time between each node in simulation. Figure [/| showed
this was mostly circuit creating and stream time. Therefore the
throughput for larger files was tested and is given in Figure [§]
with varying RTT between nodes. The number of nodes was
5, where 3 nodes are not the source or destination. This shows
that throughput is consistent once the overhead of circuit
creation is reduced. However as the latency increases, the
throughput will decrease. Given the forwarding is performed at
the application layer, a throughput of > 5MB/s is respectable.

The throughput for the 1GB file without going through
the anonymous network for 100ms RTT was 18.6MB/s. Note
that this RTT was between the source and destination, and
the anonymous network had 3 other nodes with this latency.
The same download with a total latency of 400ms RTT
only achieved a throughput of 4.7MB/s. One reason for this
being slower than the anonymous network (5.8MB/s) with the
same total latency is that the data/acknowledge packets take
200ms (one-way) to reach the destination/sender. Where with
the anonymous network each acknowledge packet was sent
between nodes, not the total distance.

Unlike networks such as Tor, the presented use cases in
Section || will not exert a large number of parallel requests on

the anonymous network. However the performance on multiple
requests is more depend on available bandwidth and network
queue sizes, than the processing power of the nodes.

VIII. PROBLEMS AVOIDED WITH A CLOSED NETWORK
A. Keeping Peers Alive

A limitation with traditional peer-to-peer solutions is moti-
vating peers to stay in the network once they have completed
their tasks [30]. However with a closed network between
organisations, the peers should always be up to allow their
shared data to be accessed. The network peers should run on
the same machines as services (HTTP, FTP), saving power and
keeping requests secure.

B. Exit Nodes

With unencrypted services, the exit nodes of an anonymous
routing network can see the traffic in plain-text. Even with
encrypted services, the exit nodes could try to perform a man-
in-the-middle attack, or other forms of attack specific for an
exit node [43]]. This is an advantage of having the web servers
for example being part of the closed network with public key
cryptography, such that even unencrypted services like HTTP
or FTP are protected, and man-in-the-middle attacks are made
more difficult.

C. lllegal Activity

With open anonymous routing networks, they are used
to route both legal and illegal traffic. A study on the dark
web showed that 57% of the active .onion addresses were
illicit [44]. Most users of the Tor Browser never visit the
dark web, however it still makes up for 3-6% of overall
Tor traffic [44][45]. This type of activity is not something
that is possible on a closed network of organisation peers,
with limited operations for data sharing. This is because the
destination node will only submit requests to services running
on the local machine, in this case a web server.

D. Circuit Creation Time

As shown in Section the time to create circuits is
minimised. However given a new circuit is created each time,
leads to an open question in Section If circuits are
only used for large file downloads, and the faster and simpler
broadcast method is used for regular browsing, may not be a
problem.

IX. OPEN QUESTIONS
A. Timezones

Depending on the number of organisations and peers, their
physical location could be problematic as different timezones
mean different working hours. For example an employee in
New Zealand is probably not going to make a request at
the same time as someone from England. Even with perfect
anonymous routing, the time of the request leaks information
on which organisation/peer could have submitted it. A simple
solution would be to batch requests so that they all happen
at the same time regardless of organisation, but this is not



ideal. However if enough organisations are within a similar
timezone, only those nodes could be considered for the circuit,
even though this is still limiting.

B. Network Latency for International Circuits

A problem which could have a similar solution to time-
zones, routing requests across the globe will have latency
overheads. Assuming just adding latency and not limiting
overall bandwidth, the downloading of large files or datasets
was not greatly impacted by international peers, as shown in
Section However for searching and browsing informa-
tion, this latency is going to be frustrating for a user. Good
interface design can help hide latency and reduce the impact
by being responsive, however this still could be a problem.
For example a 8.4KB HTML file took 0.283s to download
with a 20ms RTT between each node (5 in total). However the
same time increased to 1.36s with a 200ms RTT between each
node. Law enforcement agencies will need quick information
on a case in certain situations. Possibly a “fast” option could
be made available where only a few peers are used, but this
should not be known to other peers.

C. The Element of Trust

Even with anonymous routed circuits, because each organi-
sation has agreed upon sharing information and being apart of
the group, there is an element of trust that each peer will
behave in a trustworthy manner. For example a peer does
not purposely corrupt circuits (which is an issue with other
anonymous routing protocols as well). Note that the concept
of using any anonymous routing protocol for organisations
sharing data does not guarantee 100% privacy, but does help
to provide more assurances.

D. Authentication

Providing authentication while keeping the source anony-
mous is an open problem. With the proposed anonymous
network closed (where only permitted entities can join), this
could be seen as a form of authentication. However this is
assuming the public keys for the entities remain private to
only the closed group.

E. Circuit Refresh

An open question in [30]] is how often should a circuit
be refreshed. This paper has discussed a method for more
efficient circuit creating, with random paths that can include
the client and destination. However creating a new circuit
for each stream may lead to intersection and predecessor
attacks [30][43]. Also by allowing a path to include a peer
multiple times could allow for the two to be linked depending
on the volume of traffic.

F. Linking TCP Streams

Another current problem with anonymous routing, and
specifically ones which create circuits often is the ability to
link streams together. When searching for information, the
queries could be linked together at the destination. However
the source should still remain unknown, and furthermore with

encrypted search capabilities would prevent any linking based
on queries. Another point is with limited overall requests, it
could be assumed that queries close together are related.

For the nodes in the circuit to link data streams together
would be difficult. However the point above could be applied
where streams created in close proximity are related. For a
large number of requests, if the source has 0% probability of
being in the circuit path, a node could discover the source
since it would never forward to that node.

G. Network Providers

Even though this is out of scope of the paper, network
providers in-between the organisations could learn the source
and destination for requests. Problems could arise for example
if law enforcement starts requesting network traffic from
an Internet service provider of another entity in the closed
network. This could allow them to learn where a request of
interest originated. Other issues with network providers is the
potential to discover the r values used. But this can be solved
by switching to AES for circuit verification as suggested in
Section

Attempts to hide the source and destination from network
providers with the proposed protocol are challenging, as well
as for other protocols. In order to hide the destination, the
destination could create a random stream that has the same
properties of the request, with another destination chosen at
random. The request data is replaced with dummy data, as
well as a size for the response data. The fake destination
returns random data which reaches the real destination, and
replaces it with the real response. Hiding the source is more
challenging since the stream has to originate from somewhere.
One technique could be for nodes to randomly create paths
with random request data padded to a size of a large request.
If a node wants to send a real request, it could wait until it
receives a dummy request and change it. These techniques
require more exploration in future work.

X. CONCLUSION

Where source and destination information need only be
hidden from other peers in the closed network, a simplified
anonymous routing protocol can be used for better perfor-
mance. Elliptic curve cryptography was used in conjugation
with AES to provide asymmetrical encryption for reduced
cipher text sizes and faster encryption. Chaining of nodes with
a simple XOR function is not sophisticated but as discussed in
Section |V| with data already encrypted, provides good enough
security for an internal network. While AES can also be used
to further improve the scheme by replacing 7.

A closed anonymous network can also offer some level of
authentication with is difficult for anonymous applications.
With the increasing ability to create applications with en-
crypted search capabilities, anonymising the request is still
an important step to achieving hidden usage. Future work
includes combining the anonymous network with a secure
searching application for law enforcement, edging closer to
the goal of near perfect anonymity.
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