FAMILIES OF ORTHOGONAL AND BIORTHOGONAL
POLYNOMIALS ON THE N-SPHERE

E.G. KALNINS*, WILLARD MILLER, JR.{** AND M. V. TRATNIK***

ABSTRACT. We study the Laplace-Beltrami eigenvalue equation H® = A® on the
n-sphere, with an added vector potential term motivated by the differential equa-
tions for the polynomial Lauricella functions F4. The operator H is self-adjoint with
respect to the natural inner product induced on the sphere and, in certain special
coordinates, it admits a spectral decomposition with eigenspaces composed entirely
of polynomials. The eigenvalues are degenerate but the degeneracy can be broken
through use of the possible separable coordinate systems on the n-sphere. Then a
basis for each eigenspace can be selected in terms of the simultaneous eigenfunctions
of a family of commuting second order differential operators that also commute with
H. The results provide a multiplicity of n-variable orthogonal and biorthogonal fam-
ilies of polynomials that generalize classical results for one and two variable families
of Jacobi polynomials on intervals, disks, and paraboloids.

1. Introduction. Orthogonal polynomials in one variable which also satisfy sec-
ond order ordinary differential or difference equations have proven extraordinarily
useful in the development of special function theory and in the practical approx-
imation of functions, e.g. [R. Askey 1975]. Orthogonal and biorthogonal families
of polynomials in several variables which satisfy second order partial differential or
difference equations are similarly very useful but there is as yet no general theory
and more examples are needed. In this paper we will study such families which are
related to the Laplace-Beltrami eigenvalue equation on the n-sphere. Our procedure
provides a uniform setting within which to classify several known examples related
to the n-sphere and to generate many new examples. Our approach falls within
the theory of Dunkl’s differential-difference operators [C. Dunkl 1988, 1989]; the
main contribution of our paper is to point out the power of separation of variable
methods in this theory. (Note: There is also a considerable literature on discrete
analogs of the Laplace-Beltrami eigenvalue equation on the sphere in which the
symmetry groups are finite, e.g., [D. Stanton 1984].)
It was shown by [Lam and Tratnik 1985] that the Lauricella functions
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and
M —yp41+1, —mg,---,—m T1 Tn
1.2) (1-=z)MF nHL T 2 T, R
(12) (1-a) | B S
form a biorthogonal polynomial family where m; = 0,1,2,---, M = 22:1 mg,

G = Z?ill Ye, © = Y., @; and the ~, are positive real numbers. (We will derive
the inner product later.) Here, the Lauricella function F4 is defined by the series

FA[a; bl,”.,bn;zl,"',zn:l

Clyt** ,Cp
(1.3) = i (@) gty (01)my = (B, 20 - 2
mi, -+ ,mMp=0 (Cl)ml "'(Cn)mnmll...mn! )

(@) = 1 ifm=0
m = ala+1)...(a+m—-1) ifm>1.
As is easily verified by adding the standard partial differential equations for the

Fa, [Appell and Kampe de Feriet 1926], these polynomial functions ® satisfy the
eigenvalue equation

(1.4) H=-M(M+G-1)®

where

(1.5) H=Y" (2i0ij — 2:2;)00,0, + »_ (i — G2:)0%,.
3,j=1 =1

Here 6;; is the Kronecker delta. Note that H maps polynomials of maximum order
m; in z; to polynomials of the same type. It is easy to see that as the m; range
over all nonnegative integers the functions (1.1) form a basis for the space of all
polynomials in variables zi,---,z,, and that the spectrum of H acting on this
space is exactly

{-M(M+G-1): M =0,1,2,---}.

(For n = 2 equation (1.4) appears in the classification by [Krall and Sheffer 1967] of
all second order partial differential operators such that the Mth order orthogonal
polynomials in two variables, with respect to some weight function, are eigenfunc-
tions of the operator.) We will look for other bases of solutions to equation (1.4),
both orthogonal and biorthogonal with respect to a natural inner product.

Equation (1.4) is closely related to the Laplace-Beltrami eigenvalue equation
on the n-sphere, [Eisenhart 1949]. To see this consider the contravariant metric
determined by the second derivative terms in H:

(16) gij = (5”IZ — X;Ty, 1 S i,j S n.
Then det(¢¥) = g7! = 2122 ---2,(1 — ) and

1 +(5,’j
l—z  z;

(1.7) gi]‘ =
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Note that "
; : 1if i=k
g, =§ =
z;g gik = % {0 otherwise.
=
Thus
n
d82 = Z gijdxidxj

ij=1

determines a metric on a Riemannian space with associated Laplace-Beltrami op-
erator

1

(1.8) A, = 7 5;1 92,(9/9 O, ).

A straightforward computation yields

(1.9) H=A,+A,
where

= 1 n+1
(1.10) An =) [y — 5+ (5= = G)z;lon;.

j=1
Thus if y1 = -+ = Y41 = 1/2 then H = A,,, but in general H differs from A,, by
the first order differential operator A,,.
To identify the Riemannian space we introduce Cartesian coordinates zg, 21, - , 25,

in n+1 dimensional Euclidean space and restrict these coordinates by the conditions

n
2 _ —
zo—l—g z,=1—2
i=1

2

Z21 =T
(1.11) 25 = T2
z,zl =Ip.

Note that 22 + 22 + - -+ + 22 = 1. Defining a metric ds? by

n

ds® = Z (dzm)?

m=0

we find

1 &, 1 8ij
2 _ ¥ ) .
(1.12) ds® = 1 Z (1 — x—i)dxzdxj.
4,5=1
Thus the space corresponds to a portion of the n-sphere S™. We can consider the
coordinates {z;} for 0 < z; and = < 1 as covering the portion of the n-sphere given
by 0 <z > 2t =1
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One can transfer the Schrédinger equation (1.4) with vector potential A,, to one
with a scalar potential V,, through the use of a multiplier transformation p. Setting
®(x) = p(x)¥(x) for a nonzero scalar function p we find

= (A +Vox)¥=-M(M+G-1)T
provided

(1.13) p—l = le/2*1/4 - xZ"/2_1/4(1 _ $)7n+1/2—1/4_

A straightforward but tedious computation gives for the scalar potential:

n

Vn:_lz(%—%)(%—%)

4 =1 Ti

1 (Yng1 — %)(7n+1 - %) 1 (n—=3)(n+1)
(1.14) 1 e 4 1-G)? -1 1
or, in terms of Cartesian coordinates,

1 & -3)

gt

i=1

(1.15)

1 (7n+1 - %)(7n+l - %) 1 2 (n — 3)(n + 1)

_ = -Q1-6)F-1-—
4 22 + 4 ( ) 4

The equation H'Y = (A,, + V,,)¥ = AV has a natural Riemannian metric
(1.16) dw = ¢*?dzy - - - dx,, = $;1/2 vz 21— )Yy - - day,

[Eisenhart 1949]. Furthermore, the operator H' = p~'Hp = A, + V,, is formally
self-adjoint with respect to the inner product

(1.17) <UL, ¥, >= // Ty (x) U2 (x)dw
z;>0,z<1

where ¥,, ¥, are twice continuously differentiable functions of the x; which take

complex values:
< HI\Ill,\I'z >=< \Ill,HI\IIQ >

This induces an inner product on the space of polynomial functions ®(x) = p¥,
with respect to which H is self-adjoint:

((I>17q>2 <\II17‘I,2 >

/ / 5 (x)p™2 (x) dw
z; >0, .’K<1
(1.18) = // 8,3, di,
z;>0,z<1
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do=az"'. 27 (1 —2) " ey L day,
(H®y,®5) = (91, HD,).

(Indeed, H is clearly formally self-adjoint and the boundary terms obviously vanish
for the ~; sufficiently large. The result can then be extended to all ; > 0 by
analytic continuation.) Thus (-,-) is the natural inner product associated with
equation (1.4).

A first order symmetry operator for the equation H® = A® is a differential

operator
n

K=" fi(x)d: +9(x)
i=1

such that

[HK|=HK - KH =0,
[Miller 1977]. The first order symmetry operators form a real Lie algebra under
addition of operators, multiplication of an operator by a real scalar, and the com-
mutator bracket [A,B] = AB — BA. If vy =2 =+ = Y41 = 1/2 then H = A,
and it is well-known [Eisenhart 1949, 1961] that the Lie algebra of real symmetry

operators of A, is so(n + 1), with dimension n(n + 1)/2 and a basis of the form
{Ly} where 0 < /¢ < k <n, and Ly, = —Ly,. Explicitly,

(1.19) Lgk = Zgazk — Zkaz[
and

Lij :2./$i$j(azj —8zi), ].Sl,]gn
(1.20) Lo; = 2v/zi(1 — )0z, 1<i<n.
Furthermore, all real second-order differential operators S that commute with A,

can be expressed as linear combinations over R of real constants, elements L, and
elements Ly Ly . For v1,..., 7,41 arbitrary, however, we have

Lemma 1. If K is a first order operator such that [K, H] = 0 then K = ¢, multi-
plication by the real constant c. The second order operators

Si]’ = 418216](6931 — 6%.)2 + 4(’}/i$]’ — ’szl)(azl — (911)

1 1
= L + 40y — 5)z; — (15 = 5):l (90 — ;)
(121) = Sji, 1<i<j<n,

Soi = 4z;(1 — 2)02, + 4[vi(1 — z) — Yn412i]0s,

= L+ 4l — 5)(1— 2) — (s — )zl

2
(1.22) =Sn, 1<i<n,
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do commute with H: [S;;, H] = [So;, H] = 0. Also

(1.23) 8= Sy +23 Son
i=1

i,j=1

We conjecture, but have not proven, that linear combinations of the S;; and Sp;
are the only second order operators commuting with H.

If S is a second order symmetry operator for H then S’ = p~1Sp is a second
order symmetry for H' = A, + V,, and, necessarily, S’ = T + f where T is a second
order symmetry for A, and f is a real-valued function. Thus S’ is a formally
self-adjoint operator with respect to the inner product < -,- > and S is formally
self-adjoint with respect to (-, -).

2. Orthogonal bases of separable solutions. In the paper [Kalnins and Miller
1986] and in the book [Kalnins 1986] all separable coordinates for the equation
A, ¥ = AV are constructed, where A,, is the Laplace-Beltrami operator on S™. It
is shown that all separable coordinates are orthogonal and that for each separa-
ble coordinate system the corresponding separated solutions are characterized as
simultaneous eigenfunctions of a set of n second order commuting symmetry oper-
ators for A,,. These operators are real linear combinations of the symmetries ij,
1<i<j<n+1, where L;; is a rotational generator in so(n + 1). For n = 2 there
are two separable systems (ellipsoidal and spherical coordinates), while for n = 3
there are 6 systems. The number of separable systems grows rapidly with n, but
all systems can be constructed through a simple graphical procedure. (In general,
the possible separable systems are the various polyspherical coordinates [Vilenkin
1968], the basic ellipsoidal coordinates, and combinations of polyspherical and el-
lipsoidal coordinates.) Moreover, the equation (A, + V,,)¥ = AV where the scalar
potential takes the form

n
a; o«
(2.1) Vo = Z — + —g, g, Q1,. .., Qy const.,

is separable in all the coordinate systems in which the Laplace-Beltrami eigenvalue
equation is separable. (That is, V,, of this form is a Stdckel multiplier for all sepa-
rable coordinate systems on S”; see [Boyer, Kalnins and Miller 1986].) Indeed, the
equation with potential (2.1) is separable in general ellipsoidal coordinates. Since
all other coordinates are limiting cases of ellipsoidal coordinates, the conclusion
follows. [NOTE: If each oj = —1k;(k; +m; — 1) where k; and m; are non-negative
integers with m; > 1, then the equation (A, + V,,)¥ = AV can be viewed as a
resriction of the Laplace-Beltrami eigenvalue equation (Aps + V)P’ = AP’ on
the N-sphere where N = Z?:O m; + n, in which the variable dependence on the
subspheres S™i has already been factored out. Moreover, using the canonical equa-
tion technique found in [Kalnins, Manocha and Miller 1980] one can show that all
solutions of the above equation for general 7; are solutions of the flat-space wave
equation in 2n 4+ 2 dimensions with signature (n 4+ 1,n + 1). Thus the conformal
symmetry algebra of the wave equation can be expected to transform solutions of
the eigenvalue equations among themselves. Lemma 2 and Corollary 1 below are
examples of this action.]

The results of Kalnins and Miller, characterizing separable systems by symmetry
operators, can easily be translated to the present case. In those references (for
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V., = 0) the symmetry operators are given explicitly as linear combinations of the
symmetries L7;. The results for the potential (1.14) are similar: one replaces L?;
by Slfj = p~1S;jp and takes the same linear combinations. Moreover, since the
defining symmetry operators for a separable system are real linear combinations
of the ij plus scalar functions, they are formally self-adjoint with respect to the
inner product < -,- >.

These results can now easily be extended to results for solutions of

(2.2) (Ap +Ap)® = 2P
through the mappings

Ap+Ap = p(An +Vo)p ™t
(2.3) Sij = pSi;p~
= pV.

Thus all separable solutions ¥ map to R-separable solutions ® of (2.2), [Miller
1977]. The R-separable coordinates and solutions are determined by commuting
symmetry operators S of A,, + A,, which are obtained from expressions in [Kalnins
and Miller 1986] or [Kalnins 1986] where each occurrence of Lj; is replaced by S;;.
The defining symmetry operators are all formally self-adjoint with respect to the
inner product (-,-). Finally, since each S;; maps polynomials of maximum order my,
in z to polynomials of the same type, it follows that a basis of separated solutions
can be expressed as polynomials in the x;. Since the symmetry operators are self-
adjoint, the basis of simultaneous eigenfunctions can be chosen to be orthogonal.

We conclude from this argument that every separable coordinate system for the
Laplace-Beltrami eigenvalue equation on the n-sphere yields an orthogonal basis of
polynomial solutions of equation (1.4), hence an orthogonal basis for all n-variable
polynomials with inner product (1.18).

As an example we work out the separation equations for spherical coordinates
{u;} on S™

2y = l—z=1-— Unp
2] = T1 = UlU2...Up
2y =a2 = (L —ur)ua...up
(2.4)
= Tp—-1— (1 — ’u,n_z)un_lun
=Ty = (]. — U,nil)un‘
(Note that in terms of angles {6;} one usually sets u; = sin®6;.) It follows that
(25) U; = wj/wj+la j:].,...,n—]_
. j Wy, o

where
j

Wy = E i

i=1



8 E.G. KALNINS*, WILLARD MILLER, JR.{**, AND M. V. TRATNIK***

In terms of the {u;}, the operator (1.5) becomes
i+l

(2.6) H = Z ui(l — ) 82 Z i Z Vo)ti | Ou;

Uit1 -

Equation (1.4) is separable in these coordinates with separation equations

ur(1 —w1)02, 01 + [v1 — (71 + 12)u1] 9y, ©1 = €101,

(2.7)
k1
C
Zk (1 —ug)o ] O + Z% E:I“Yp)uk 0u, Ok = ¢ O,
p:
k=2,3,...,n

Here © = [];_; O« (ux) and the ¢; are the separation constants, with ¢, = —M (M +
G-1).
Noting that the hypergeometric equation

d’g dg
(l—u)ﬁ-l-[c—(a-f-b-l-l) ]%—abg_o

admits the solution
oo
= F
g =2 1( ) mz::l mm, ™,

a polynomial for a = 0,—1,—2,..., and requiring that © be a polynomial in the
{z;} we obtain the solutions

—tly, /£ -1
O1(u1) = 2F1 ( ! 1ttty ;U1>

71
c1=—li(ly +71 +7—1),
(2.8)
_ bttt —Zk, 2(£1 +“‘+€kfl) +£k+71 + oty — 1
@k(uk)—uk 2F1< 2(€l+“‘+€k71)+71+“‘+7k

ck=—l+--+lb) b+ -+l +1+- F Y — 1),

k=2,3,...,n
where > ¢; =M and ¢; =0,1,2.... This determines © to within a normaliza-
tion factor.

In the special case n = 2 we have the result of [Proriol 1957] and of [Karlin and
McGregor 1964]:

by, li+y+y—1 T
Glhlz (mhm?) =2F ( ! LM ) - ) (ml + $2)e1 X

)
7 T + T2

—ly, 20+l 4+ +72+y3 -1,
(2.9) 2F1( 201 + 71 + 7o ;X1 + X2

~ P;!3_1’71+72+211_1) (2$1 —+ 2$2 — ].) (1171 —+ .’172)11 X

1y — 2z
P(’Yz 1,m1-1) L 9.
b ($1 + z2 )

;U'k>7
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where PIEQ’B )(z) is a Jacobi polynomial.
Returning to the general case, we have the eigenvalue equations

(2.10) S0, =¢c0y, £=1,...,n
where
S1=ui(1—u1)d; +[n — (1 +72)w] By
(2.11)
S = u_lksk_l Fup(l—ug)0y, + v+ 47— (4 + Yer1)ur] Ouy s
k=2,3,...,n,

and S, = H. Furthermore, [S;, S;] = 0 and the S; are self-adjoint with respect to
the inner product (-,-). It follows immediately that

(©g,0m) =0

unless ¢, = mq, €5 = ms, ..., £, = m,. The measure do becomes in these
coordinates

do = ul* tul Tt (L )T (L) L (=) Ny L duy,
where 0 < u; < 1. In terms of the symmetries S;;, So;, (1.21-22), we have:

1k+1
(2.12) Sk:§ZSij, k=1,...,n—1

ij=1

1 n
Sn=H=( Zoshp),

h,p=
where we set Sy, = 0.

3. Orthogonal bases for another space of polynomials. Now we make the
change of coordinates z; = y?, 1 < i < n, and look for solutions of (1.4) that
are polynomials in the y;. In general, H doesn’t map polynomials in the y; to
polynomials, but in the special case y; =72 =+ =7, = 1/2, G = v,41 +n/2 =
s/2+ (n+1)/2, we have

1 & 11 ~
(3.1) H=7 > (61 — 4iy5)dyy; + 35— 6G) > Y0y,
i,j=1 j=1

and H does map polynomials to polynomials of at most the same degree. Moreover,
the differential operators

commute with H and form a basis for the symmetry algebra so(n). The special
second order symmetries take the form S;; = L?j, 1<i<j<n,and
1 n
Soi = L%i -2(G - i)yiayi =(1- ny)ai — 2Gyidy,,

=1
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and clearly map polynomials to polynomials of at most the same degree. The
measure takes the form

(3.3) do = (1—yf —- —y2) > Pdy, .. dyy,
where —1 < y; <1 and

(3.4) pt=(1—yi - —y2)h

Again, H and the Sy, are formally self-adjoint with respect to the inner product
(35) @)= [ [ @)
Yyi<i

where ®;, &> are polynomials in the y;.
Every separable coordinate system for the equation

(3.6) H®=-M(M +G—-1)®, 2M a nonnegative integer,

where H is given by (3.1) yields an orthogonal basis of multivariable polynomials
with respect to the inner product (-,-). (For n = 2 this equation is also on the
list of [Krall and Sheffer 1967].) Indeed, for spherical coordinates u; = sin” §; we
obtain the orthogonal basis of polynomials in y:
n—1
6:5:21'!16‘1 H [sin ok]2(11+...+5k_1)022££1+'--+lk_1)+(k71)/2 (COS ek) %
k=2
(3.7
Ly 2L+ F )+l +(n—1)/24+5/2
bit+Lln_1 ) 1 n—1 n .
Un 2Fl< 2(£1++£n71)+n/2 yUn |,

where 2¢; = 0,1,2,... for 1 < i < n-—1, £, = 0,1,2,..., and the C(z) are
Gegenbauer polynomials

20k -k, k42X
o) = Bar (7K AE

Kl A+ 1/2 ’1/2_9”/2>’

[Erdelyi et al. 1951]. (The eigenvalues are defined as before.)

Using the results of [Kalnins 1986] or [Kalnins and Miller 1986], many other
orthogonal bases can be worked out. Moreover the symmetry group SO(n) permits
the derivation of addition theorems for the basis elements, related to the addition
theorem for Gegenbauer polynomials and Koornwinder’s addition theorem, [Koorn-
winder 1972, 1975].

Next we relate the Cartesian coordinates z, and the y, via

2 _ .2
20 ="
2 _ .2
21 =Y
(3.8)
2 .2
znfl_yn
m=l=yi = =y,
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a simple permutation of the relations (2.4), so that the (separable) spherical coor-
dinates v; are associated with the y, through

oy = 3 vy = Y313 U it 7

- - =

v3 +v3’ y3 +y3 +vi’ ’ ys+-o+yl
2 2

(3.9 Vp g = 2y, =1y

-y}
From the point of view of separability for the Laplace-Beltrami eigenvalue equation,
these v; coordinates are equivalent to the u; coordinates introduced earlier, since
one system can be obtained from the other through the action of an element of the
SO(n + 1) symmetry group for this equation. However, the term A,, breaks this
symmetry so from the viewpoint of the eigenvalue equation for H, with v; = 75 =
...7n = 1/2, these are distinct coordinates. The separation equations for the v; are
identical to those for the u; if we interchange v, = 1/2 and yp41 = s/2 + 1/2. For
n = 2 the orthogonal basis of polynomials is

(3.10) C;l(f (sin 01)0222"_3/2“/2 (cos B) sin*** 6,

where £1,¢, = 0,1/2,1,3/2,..., {1 + €5 = N and v; = sin? §;. This is in agreement
with the basis of [Koschmieder 1951, 1957].

For n > 2 we have an orthogonal basis of polynomials of the form © = [];_, O,
where

0, =00y =0,1/2,1,3/2,...,

@k _ [Sinek]2(11+...+[k_1)0225£1+---+lk_1)+(k71)/2(COS ek)
k
(3.11)
0=0,1/2,1,..., l<k<n-—1,
o) _Ul1+"'+ln—2 F _Enflv 2(Zl ++£TL*2) +€n71 + (n_2)/2+5/2v
n—1="U, 1 241 20014+ 4Ly 2)+(n—1)/2 onl
by =0,12,...,
0, = [sin on]Z(l1+"'+ln71)022;[1+'"+ln—1)+(”*1)/2+3/2(COS en)
by =0,1/2,1,...,

where ¢ + -+ £, = M and v; = sin”® ;.

4. The “mixed” case. Next we consider the more general mixed case with

variables 1,...,Zn,, Y1, -, Yny, N1 + N2 = n where
ni na
2 _ 2
zg =1— E T; — E Yas
i=1 a=1
2 _
Zl — $1,
(4.1)
2 _
an - mnl?
2 _ .2
znl—i—l - yla
52 2
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and look for polynomial solutions in x;, y, of the equation
(4.2) Ho(x,y)=-M(M+ G -1)®(x,y),

where vy, 41 = Yny42 = =, = 1/2 and

1
i = 4 Z(5ab = Ya¥5)Oyay, + Z(éi]’xi — %) O0n,a,

a,b %,
1 1
(4'3) - Zyaxiayazi + Z(')’z - Gwi)am + ) 2(5 - G)yaayaa
G _ N9 —+ ].

5 + Z vi +8/2, 2M a nonnegative integer.

For reference,

1
An =3 2 Oar = 496y + D (01 = 2i1)Duss,

a,b [

Y By + 5 3 (1 (04 D) O,

n
(4.4) =7 2 Yady,
1 n+1 1 ntl
A, = Z |:’Yi -3 + ( 5 G)$,:| Oz, + 5 Z( 5 G)yaaya‘

Note that H maps polynomials in z;, y, to polynomials of at most the same order.
The induced measure is

do = xz’rl ...x%’l‘l_l(l — Z% - Zyg)s/%lmdml coodp,dy; ... dyn,,
(4.5)
O<a, —1<ya <1, Y zi+Y y2<1,
i a

and
_ - ny/2—1/4 s
0 1:@1/2 1/4...&11/ / (I_in_zyg) /4
i a

Equation (4.2) admits the symmetry algebra so(ns) with basis
Loy = —Lpg = Yo 0y, — Yp0y., 1<a <b<ns.

The operators H and S, are formally self-adjoint on the space of polynomials in
Zi, Yo With respect to the inner product

(®1,P2) = // ®,(x,y)P2(x,y) do.
0<%Zi wH—Za y2<1
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However, in general the S,,; don’t map a polynomial to one of the same or lower
order in each variable, e.g.,

Sia = 4zy202, + 205, — 42YaOu.y, + 4YiY20s; — 2205, — 2700y, ,

although they do map polynomials to polynomials. It is still true that each sym-
metry operator S maps a polynomial eigenspace of H into itself.

It follows that all separable coordinate systems for the n-sphere yield bases of
orthogonal polynomials in the mixed case, (indeed multiple sets of such bases,
depending on the ordering of the variables z;, y,). For example, if we choose
spherical coordinates u; = sin? §, in the form

Wy
Uy =
We41
where
Zlemi, L=1,...,n
(46) We = 27:11 xl“"Zi;Tl“ y27 Eznl +17"'7n1 + na
]., E =N —+ N9 —+ ].

we find the orthogonal basis of polynomials:
n
0= H @k(uk),
k=1

where

Lyt Loy Ly, 2064+l )+l Y — 1
- F S
On (k) = 2 1( 2000+ H b)) F ke )

(A7) cr=—(lo 4+ + )+ A+ b7+ e —1), k=1,... ni,

Lot b))+ R ’Yi—1/2(

Oy (ur) = [sin Gk]z(‘f1+---+zk_1)022lgk

cos0y),

e =—(l+- )b+ttt —1), k=nitl. o nitne—1,

®n(un) :uﬁ1+...+£",12F1 (—Zm 2((1 +"'+€n71)+€n+G— 1 )

2l 440y 1) +G—s/2—1/2 "

Here ¢1,...,0n,, €y, and 20,,41,...,20y, 1 n,—1 are nonnegative integers. (Recall
that Yn,+1 = Y42 = *** = Yng4n, = 1/2.)
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5. Biorthogonal families of polynomials on S™. We begin this section with
a simplified proof of the biorthogonality of the polynomials (1.1) and (1.2) with
respect to the inner product (-,-),, see (1.18), (1.19). Let S, be the space of all

polynomials in z1,--- ,z, with respect to this inner product and let J(, »s be the
subspace of 8, consisting of solutions ® to the eigenvalue equation
(5.1) H®=-M(M+G-1)9,
where H is given by (1.5). Since the functions
(5.2) DL(x)=Fy |[MFE- L mmamma
Yis 5 Un

clearly satisfy (5.1) for M = Y"1 | m; and since the highest order monomial in these
solutions is z7"* ... 2™~ it follows that the D) for my +--- + m,, = m = M form
a basis for 3, as and, as the m; range over all nonnegative integers, a basis for 3,.
[Note: dim3, ar = (Y™ ').] Since H is self-adjoint we have 3, ar L FHy 4 for

M' £ M . Thus "

(5.3) (D), DY)y =0 form' #m.
It is simple to verify the recurrence relation

(M + G —1)(—m;)

(5.4) 0y DI (%) = DL, (%),
Yi
where
Yj forj#i,1<j<n
’AY]' = v+ 1 for j =1

Yng1+1 forj=n+1

m; forj#£i,1<j<n
m

i—1 forj=1i
M=M-1, G=G+2.
We can consider P; = 0,, as an operator
P;:8, = 8.
Indeed we have
Lemma 2. P;, (1 <i<n), maps H, a onto iHA%M.

Proof. Tmmediate from (5.4). For a basis free proof we can easily verify the operator
identity

(5.6) HP, =GP, + P,H
where H is the operator H with the v; replaced by 4;. Then if H® = —M (M +

G —1)® we have H(P;®) = —M (M + G — 1)(P;®). The null space of P; acting on

JHy,a is of dimension (M:_"z_z) for n > 2, hence the dimension of the range of P; is

M+n-1 B M+n-2\ (M+n-2 _ dim I -
n—1 n—2 B n—1 - Gy



FAMILIES OF ORTHOGONAL AND BIORTHOGONAL POLYNOMIALS ON THE N-SPHERE5

Corollary 1. The operator P; — P; maps 3, ar into fH,y,M , where 1 <i1<j<n

and
Ve fOT’].Sk‘Sn-f-].,k;él,]

Y=< vi+1 fork=1
v +1 fork=j

M=M-1, G=G+2.

Proof.

H(P; — P;) = G(P; — P;) + (P — P))H
Thus if H® = —M (M +G—1)® we have H([P;— P;]®) = —M (M +G—1)[P; - P;]®.

O
The operator P; induces an adjoint operator P : 85 — 8, defined by
(Pi*(I>7 q>l)7 = ((I>7 Pi(pl)’?
for all ® € 85, ®' € §,. A straightforward computation yields
(5.7) P = —z;(1 —2)0z; —vi(1 — ) + Ynt124-
Theorem 1. P7 is a 1-1 map of H; y into Hy ar.
Proof. Taking the adjoint of the relation (5.4) we obtain
P;H =GP} + HP;.
Furthermore, P is 1-1 since P; is onto.
O
Let
CLx) = (P)™ ... (P)y™1 €S,
be the result of applying m,, operators Py,...,m; operators P}, one at a time, to

the function 1 € S, where

vi=vi+mi, 1<i<n,
Yoi1 = Ynt1 +m.
(Each time an operator Pr is applied it lowers v, and yn41 by 1 and leaves the

other v;’s unchanged. The order in which these operators are applied makes no
difference in the result.) It follows from the recurrence relation

n
z; ij(’)zj — 200, + (=M — 1 +1) =y + 1| x
Jj=1

FA|:_M_’YYL+1+1; —Mi,-ry, —Mp
Y17 5 Un
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(5.8)
_(M+1)_(7n+1_1)+13 _mla"'a_(mi+1)7"'a_mn :|

= (1—v)F 3T, , T

( ’YZ) A|: 717"'77i_17"'77n ! "
and a simple induction argument that
(5.9)

—M—’y 1 + 1; —Myy- ,—M T1 Tn

ClL(x) = 1-z)MF T T M e =

m (%) = cym(1-2) A|: Vs s Yn 1’ ’ l—x]

where c, ;, is a nonzero constant. It follows from Theorem 1 that the C, belong to
Hy m for M =my + -+ +m,,. Since there are (M;fl_l) of these functions for fixed
M and since they are clearly linearly independent, they form a basis for H,, .

Now consider the inner product
(Cg'n D’Ym’ )’Y ‘

If m = M #m' = M’ the inner product vanishes, since H,,pr L Hy pr. fm =m/
but m #Z m’ then m; > m] for some i. Thus

(CL,DL.)y =k (L,P/™...P™D},)y =0

since P/"'D}, = 0. (Here, x is a nonzero constant.) We conclude that the set
{C,, D} ,} is biorthogonal. (This family is a generalization of biorthogonal poly-
nomals in two variables studied by [P. Appell and J. Kampé de Fériet 1926] and
extended by [E.D. Fackerell and R.A. Littler 1974].)

Note that the norm of the weight function is

1 l1—z; l-z1——zp_1 n
/ dzy / dzs -+ / dz,, [H xzk—l](l _ x)"/n«kl*l
0 0 0 paie

[T )]

(5.10) = (1, 1)"/ = I'(G)

The relation
(PrCL,D}.)y = (CL,PDl,)s

yields (for m = m') the recurrence relation

mi(M+G—1), ~
(€2, DL, = —%wzﬁ, DL);.

The normalization of the biorthogonal basis can be obtained from this result and
(5.10).
Now we extend the biorthogonality relations to the full n-sphere. We make the
change of variables
e =y:, k=1,2--,n
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in (5.10) and extend the domain of integration to negative values of y, since the
integrand is even in all variables, to get

1,y%,...,y3_1 n
/ dy1/ / dy, [ H YL —yd = —g2)/2 L2

(5.11)
[Ty TORIT(S + 3)
P+ +m+5+3)

= (]-7 l)fy =

Here we have set 7,41 = s/2 + 1/2. (This is a generalization of the weight func-
tion for the biorthogonal family {V(s)( ), & (x)} on the n-sphere of [Appell and
Kampé de Fériet 1926], which is obtained by setting y; = --- = v, = 1/2.) Under
this change of variables the polynomials {C,, D} ,} become

U () = (1 =7 = —y2)™

r M —s/2+1/2; —mq,...,—my —y3 —y2

A I L L R R

YiseeoyIn Y1 Yn Y1 Yn
(5.12)
M+yi+-+ym+s/2-1/2; —mq,...,—my,
R Y R A W)
717"'7771

In the special case y; = --- =, = 1/2 these are exactly the Ul (y) and A% (y) of

[Appell and Kampé de Fériet 1926, page 269]. (To see this transform m; — m},/2,
reverse the order of the sums in F)y by transforming the summation indices as j; —
m},/2—ji, and then use the reflection formula I'(2)I'(1—2) = 7/ sin(nz) to represent
these polynomials in terms of Fp, as given on page 269.) The biorthogonality
demonstration given above immediately implies

(5.13) Vo UV, ~ T S,
k=1
where
(5.14)
(V,U)%:/'”/ [ @221 (1=yi = =) 2V (y)T (y) dys - - - dyn-
yittui<l g2y

Also, since the operator H is self-adjoint with respect to this inner product and

since Ur(,f) and Vrgf) are eigenfunctions of H we have

(5.15) VAl Vi = (U US), =0 if M # M.

Here, Uz(;Z(y) and Vz(,fz) (y) are strictly even degree in all the variables y; with
total degree 2M. We define odd degree polynomials as follows:

Va2 ) = [T welVar® (v)

(5.16) Ui (v) = ([T velvsn (),
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where @ is any subset of (1,2,...,n), and
Y= +1 ifkeqQ
(5.17) = ikEQ.

Since the weight function is even in all variables and the odd degree polynomials
are odd in the variables y, k € @), we immediately deduce by parity

(Vo it Vi Yy = Uami, Usiid)sy = 0,

y = y =

2m/’ 2m/’
(5.18) (Vim0 Uspi? Yy = (Vi UL,y = .

Also, (‘@(%i)l, UZ(:n;Sll)fy vanishes by parity unless both polynomials are odd in ex-

actly the same variables, in which case it is easy to verify that

(5.19) (Vamths Usmil ) = (Va2 UST2 0~ T S, -
k=1
Similarly,
6200 VD VELY, = WU, =0 i M £ A
Theorem 2. Let
(7-5)
Vn(l'y,s) (y) = { V2q (Y)
Vi (v)
U("/rs) y
U'g’s)(-‘/)z{ 2<qu>( )
U2q47-1 (¥)-

Then
(Vn(1%8)’ Ur(nn/"S))fy ~ H 6mkm§c’

VD, v = ), Ul)), =0 if M # M.
In the case n = 1 the biorthogonal polynomials are orthogonal:

(5.21)
8 8 m+vy+s/2—-1/2,—m
Vi) = Ul ) = o (S22
m+7+5/2+1/2,—m‘y2>

V) = U =y ar (2R,

The measure on the interval —1 <y <1 is
dw(y) = ()2 (1 —y*)* 72 dy.

For v = 1/2 these are exactly the Gegenbauer polynomials. For general y they are
a generalization of these polynomials [Chihara 1978, page 156].

The same construction with U,, = V,, can be carried out for all the orthogonal
systems of polynomials in the variables z; as found in §2 to obtain orthogonal
polynomials in the variables y; on the full n-sphere. In general, something is lost
in this construction, however. The polynomials U,,, = V,,, are (except for the even
case) no longer eigenfunctions of H. Indeed, we have
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Lemma 3. Let ®(y) be a polynomial eigenfunction of H:

Hb=-M(M+G-1)®
in the coordinates yy, where x = yi, 1 <k < n, and let Q be a subset of

{1,2,...,n} with |Q| > 0 elements. Then ¥q = [[[;co yi|®(y) is an eigenfunction
of the operator H' corresponding to parameters vy, v, ,1,G" if and only if

3
w=5 forkeq,

and
, 1
"w=g fork € @,
Y= fork¢Q
G' =G - 1Q|, M':M+|Q2|.
Then
HYo=-MM+G —-1)¥,.
It follows from this result that in the case where 3 = --- = 7, = 1/2, the

construction leading to Theorem 2 yields the biorthogonal polynomials U,Sf) (v)

and Vn(f) (y) of [Appell and Kampé de Fériet 1926]. These polynomials are all
eigenfunctions of H. Similarly, for v = --- = v, = 1/2 the same construction
applied to the families of orthogonal polynomials in zj, found in §2, leads to the
families of orthogonal polynomials in yy, found in §3, all eigenfunctions of H.

As a referee has kindly pointed out, Lemma 3 can be generalized if one uses
Dunkl’s differential-difference operator [Dunkl 1988]. In the coordinates y; and for

general 71, -+, Yp41, Dunkl’s operator H is defined as
1 n
=1 Z ii = Yi¥;)Oyuy; 0 + (1 — 2G) Zya ;i P
i,j=1 j=1
- py) =p(=yj
-3 (Lo MR )]
]:1 J y]

(This differs from the operator (1.5) with z; = y7 only in the last term.) The
eigenvalue equation is

Hp(y) = —M(M + G — 1)p(y).

Note that H always maps polynomials in the y; to polynomials and that Hp = Hp
for polynomials p which are even in each of the variables y; and H = H if y; = 1 for
all j. Furthermore, since the operators I; which map p(y) to p(y1,---, —y;, - ,yn)
for j=1,--- ,n, commute with H, we can assume, without loss of generality, that
each eigenfunction is either even or odd in every one of its variables y;. We have
the following generalization of Lemma 3.
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Lemma 3'. Let ®(y) be a polynomial eigenfunction of H:
H®=-M(M+G—1)®

in the coordinates yi, where z;, = y2, 1 < k < n, and let Q be a subset of
{1,2,...,n} with |Q| > 0 elements. Then ¥q = [[[;co ¥i|®(y) is an eigenfunction

of the operator H' corresponding to parameters Vies Yma1> G if and only if
Yo=y—1 forkeQ,
and
Vo= forkgQ
G' =G - 1Q|, M’:M+|£2|.

Then _
HYo=-MM+G —-1)¥,.
Similar comments apply to the “mixed” case in §6.

6. The “mixed” biorthogonal case. Using the techniques introduced in §5 it is
now easy to determine a biorthogonal basis of polynomials in the mixed case with
coordinates (4.1). We set

n1 n2
ny +ns =n, xzzxka yzzzyza
k=1 k=1
ni n2
M = ka, M = ka'
k=1 k=1

The basic building blocks are the polynomials

(6.1) C) (x,y) =

(1—z— )M+ R, —M — M —5/2+1/2—my, —g Tk —Vi
Yk, Sk "1l-z—9y2"1—x —92

and

(6.2) D) (x,y) =

Fa <M+M+%+m+7m +Sl+m+sn2+s/2_1/2;_mk’_m’“;xk,yi>.
Yk Sk
The weight function is

n2

(6.3) w(x,y) = [H ka—ll [H(yi)sk—1/2] (1—z— y2)s/2—1/2
k=1

k=1
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with g, s > 0 and s > —1. The inner product is
(6.4)

<D, Py >y 5= / / @ (x,y) P2 (x,y) w(x,y)dz1 .. . dTp, dy; - . . dyp, -
0<zi,z+y><1

Furthermore,

[Tz DOl T2s (sk)IT(s/2 + 1/2)
Dy 4 4V 81+ +8n, +5/2+1/2)

(6.5) <L1>,,=

It follows from the results immediately preceding (5.10) that the polynomial sets
(6.1) and (6.2) are biorthogonal. However, since they are even functions of the
yr they don’t form a basis for all polynomial functions in the variables z;, y;. To
construct such a basis we define functions

sk+1,s)
07(712 H yk]Can’::r ( 7Y)7
keQ
,8 sk+1,s
(6.6) Dyl (e y) = ([ D5 (),
keQ
where @ is any nonempty subset of (1,2,...,n2).

By parity we have

m,2m?

<Oy D) 5= 0 i Q#Q

< Cg;erl’ D(’Y;SZ)ﬁz’ >"/:-9: 07 < C o) D( ! Z)m '4+1 >7 5= O

If Q = Q' a simple computation yields
1 1
< CTJ;Zn+17D( ! 2)m '+1 >r,s=< 0123281:1+ ) D(’Y’ S;r:’ ) >y,sk+l,s H 5mkmk H 5mk,mk

Since C’n;’ o ) and D,! (s ’ are eigenfunctions of H there are additional orthogonality

relations obeyed by the (C’s alone and by the D’s alone. Collecting all these results
we have

Theorem 3. Let (r.8)
C(n,,s) (x,y) = Cm 24 (x,y)
’ Cr5). 1 (x,y)
m,2q+1 X, ’

(7:9)
D(%s)( ) _ Dm ,2q (X, Y)
m i X0 Y (78)
Dm 2q+1(x7 Y)

Then

< aniz)an’zy’iv)z’ >73 ~ H (smkm H (smkmka

<d”cﬂ&>w_0UM+M¢M+Mg

m,m?

<D DU > =0 if M+M#M + M.

m,m’
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In general, the biorthogonal polynomials listed in Theorem 3 are not eigenfunc-

tions of H. However, in the case s; = --- = s, = 1/2 it follows from Lemma 3
that each of the polynomials satisfies the eigenvalue equation

H®=—(M+M)(M+M+G-1)®

where G =YL v, + (n2 +1)/2+s.

di

Similarly, the above procedure when applied to any one of the orthogonal bases
scussed in §2 leads to an orthogonal polynomial basis with respect to the inner

product < -,- >, ;. Restriction to the case s;1 = --- = s,, = 1/2 yields eigenfunc-
tions of H and coincides with the results of §4.
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11.

12.

13.

14.

15.

16.

17.

18.

19.
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21.
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