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Abstract. Let E/Q be an elliptic curve, p > 3 a good ordinary prime for E,
and K∞ a p-adic Lie extension of a number field k. Under some standard

hypotheses, we study the asymptotic growth in both the Mordell-Weil rank

and Shafarevich-Tate group for E over a tower of extensions Kn/k inside K∞;
we obtain lower bounds on the former, and upper bounds on the latter’s size.
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1. Introduction

Let E be an elliptic curve defined over Q, and assume E has good ordinary reduction
at a prime number p > 3. In [DT10], Darmon and Tian showed under certain
technical hypotheses that the Mordell-Weil rank of E over the fields Q

(
µpn , l

1/pn
)

is exactly pn − 1 for all n ≥ 1, where l is a prime of split multiplicative reduction.
In the first half of this paper, we generalise their result to

(i) p-adic Lie extensions of number fields whose Galois groups are Z2
p o Zp;

(ii) the (d− 1)-fold false Tate extensions K∞ = Q
(
µp∞ , l

1/p∞

1 , . . . , l
1/p∞

d−1

)
.

Let G∞ = Gal(K∞/k), and consider the tower of extensions Kn given by taking
the fixed field of K∞ for the powers Gp

n

∞ ; in particular k = K0 ⊂ K1 ⊂ . . .K∞.

Under various hypotheses (see (P1)–(P3) and (DT1)–(DT7) in Section 2),
we show that there exists an explicit rational number δp > 0 such that

(1.1) δp × p(d−1)n − 1 ≤ rankZE(Kn) ≤ τ × p(d−1)n

where τ is the generic λ-invariant of the Selmer group. To find an exact formulae
for δp in some concrete examples, we refer the reader to Propositions 2.14 and 2.17.

If K∞ = Q
(
µp∞ , l

1/p∞

1 , l
1/p∞

2

)
and τ = 1, we can even say (Corollary 2.16) that

rankZE(Kn) = p2n − 1 or p2n.

There are two approaches to obtain these results. The first uses the Dokchitsers’
parity formulae [DD09], as well as results of Greenberg [Gre11] and Guo [Guo93]
on Selmer multiplicities. The second directly generalises the techniques in [DT10].
We construct a tree whose vertices ρ are irreducible Artin representations of G∞,
and then analyse the ρ-part of the Mordell-Weil rank along branches of the tree.

In the second half of this paper, we examine the growth in the p-primary part of
the Shafarevich-Tate groups X(E/Kn) under the assumption that they are finite.
We prove an asymptotic upper bound

#X(E/Kn)[p∞] ≤ pµp
dn+(τp(d−1)n−rankZ E(Kn))n+O(p(d−1)n)

where ‘µ’ is the µ-invariant of the Pontryagin dual of the Selmer group of E/K∞
(see Theorem 4.13). Hence, using the lower bound on rankZE(Kn) given in (1.1):

(1.2) #X(E/Kn)[p∞] ≤ pµp
dn+(τ−δp)np(d−1)n+O(p(d−1)n).

The proof of Theorem 4.13 needs a refinement of Greenberg’s control theorem
[Gre03] for the Selmer group; more precisely, one must study the kernel and cokernel
of the restriction maps

αn : Selp(E/Kn)→ Selp(E/K∞)G
pn

∞ .

We shall prove that ker(αn) and coker(αn) are both finite groups, and then obtain
an asymptotic estimate on their size as n→∞.

The bounds on the Shafarevich-Tate groups resemble the ones for class groups
proved by Cuoco-Monsky [CM81] in the case G∞ ∼= Zdp, and by Perbet [Per11] in the
non-commutative case (our inequalities (1.2) have the same shape as the former).
Furthermore, assuming the MH(G∞)-conjecture and other technical hypotheses,
we obtain bounds that are marginally stronger than those in [Per11].
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2. The structure of the Mordell-Weil group

Determining the exact growth rate in the rank of the Mordell-Weil group of an
elliptic curve seems a difficult problem. If one lowers their expectations somewhat,
in certain cases it is possible to bound (both above and below) the growth rate so
the error term does not dominate the formula. We outline two such approaches here,
and study their implications in some specific examples at the end of the section.

2.1. Preliminaries. Let k be a number field, and K∞/k a p-adic Lie extension
such that

G∞ := Gal(K∞/k) ∼= Γ nH, where Γ ∼= Zp and dim(H) = d− 1.

We assume G∞ has no torsion, and identify Γ with the Galois group of the cyclo-
tomic Zp-extension kcy of k. Choose a generator γ of Γ, so that Γ = 〈γ〉.

If dim(G∞) = 1 clearly G∞ = Γ. Similarly, if dim(G∞) = 2 then either

G∞ ∼= Z2
p, or G∞ ∼= Γ n Zp.

Assume the dimension of G∞ is equal to 3. We remark that G∞ is soluble (because
G∞/H ∼= Γ and H is of dimension 2). The classification of such soluble groups
was found by Klopsch and Gonzales-Sanchez, and is discussed at length in [Klo03,
Theorem 7.4].

Theorem 2.1. If G∞ is soluble and torsion-free, then G∞ is isomorphic to one of
the following possibilities:

(1) the abelian group Z3
p;

(2) an open subgroup of the Heisenberg group, i.e. a group represented by

〈γ, h1, h2 : [h1, h2] = 1, [h1, γ] = 1, [h2, γ] = hp
s

1 〉 for some s ∈ N0;

(3) 〈γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp
s

1 , [h2, γ] = hp
s

2 〉 for some s ∈ N;

(4) 〈γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp
s

1 h
ps+rd
2 , [h2, γ] = hp

s+r

1 hp
s

2 〉 for some
s, r ∈ N and d ∈ Zp;

(5) 〈γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp
sd

2 , [h2, γ] = hp
s

1 h
ps+r

2 〉 where s, r ∈ N0

and d ∈ Zp, such that either s ≥ 1, or r ≥ 1 and d ∈ pZp;

(6) either one of 〈γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp
s+r

2 , [h2, γ] = hp
s

1 〉 or

〈γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp
s+rt

2 , [h2, γ] = hp
s

1 〉 where s, r ∈ N0

with s+ r ≥ 1 and t ∈ Z×p is not a square modulo p.

For example, in case (2) one has

G∞ C

 1 Zp Zp
0 1 Zp
0 0 1

 .

Likewise in case (3), provided µp ⊂ k then K∞ may be realised as an extension of

the form k
(
µp∞ ,m

1/p∞

1 ,m
1/p∞

2

)
where p,m1,m2 are pairwise coprime as integers.

Let E be an elliptic curve over k with good ordinary reduction at all primes
above p. Given an extension L of k, we write XE(L) for the Pontryagin dual of the
p-primary part of the Selmer group of E over L. The following result from [DL15b]
gives an upper bound on the Mordell-Weil rank of E.
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Theorem 2.2. If XE(K∞) is a ZpJG∞K-torsion module which belongs to the cat-
egory MH(G∞) and if d = dim(G∞) ≤ 3, then there exists a filtration

k ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ K∞ with
[
Kn : k

]
= pdn

and a natural number n0 ≤ 2, such that

rankZE(Kn) ≤ τE,G∞× p(d−1)n + 4 for all n ≥ n0

where τE,G∞ = rankZpJHK

(
XE(K∞)

XE(K∞)[p∞]

)
≥ 0.

Note the definition of τE,G∞ above appears slightly differently in [DL15b, Corollary
2] though the two are easily seen to be equivalent. The filtration itself arises by
taking p-powers of the generators for G∞, then fixing by the resulting subgroups.

Proposition 2.3. If only finitely many primes ramify in K∞/k, the prime p > 3
and XE(K∞) ∈MH(G∞), then

τE,G∞ = λ(E/kcy) + mcy
sm + 2×mcy

pgr

where (i) λ(E/kcy) is the cyclotomic λ-invariant of XE(kcy) as a ZpJΓK-module, (ii)
mcy

sm counts the number of primes ν of kcy where E has split multiplicative reduction
and ν is infinitely ramified in K∞/k

cy, that is, it has infinite ramification index,
and (iii) mcy

pgr denotes the number of primes ν of kcy where ordν(jE) > 0, ν is
infinitely ramified in K∞/k

cy with E(kcy
ν )p∞ 6= 0.

Proof. If F is an extension of k, we shall write Y (E/F ) for the quotient XE(F )
XE(F )[p∞ .

For a prime ν of kcy, let us write Iν,∞ ⊂ Gal(K∞/k
cy) for the inertia subgroup

at ν. We use a general formula from [CFKS10, Theorem 3.5] which holds for
extensions K∞/k in which only finitely many primes can ramify – however we need
only to specialise this formula at the trivial representation:

rankZpH0

(
H, Y (E/K∞)

)
= rankZpY (E/kcy) +

∑
ν-p, #Iν,∞=∞

rankZpH
0
(
kν/k

cy
ν , TpE

)
.

The left-hand side is precisely τE,G∞ = rankZpJHK Y (E/K∞), while the middle term
coincides with the λ-invariant of XE(kcy).

We note that as p ≥ 5 and K∞/k is a pro-p-extension, the reduction type for E
at any prime of k cannot change at all as we climb up the tower of number fields.
The last summation can then be computed easily using [CFKS10, Lemma 3.7]. �

The goal in the rest of this section is to outline two different methods of obtaining
lower bounds on the rank. The first of these uses parity statements from [CFKS10,
Gre11, Dok05] as well as the main result of [DL15b], but it only works for orthogonal
representations. The second method adapts work of Darmon and Tian [DT10,
Theorem 1.8] concerning explicit Kummer extensions with Galois group Z×p n Zp.

2.2. Trees associated to p-adic Lie groups. Let us begin by reviewing the
representation theory of G∞. We assume in this section that H is a free Zp-module
of rank d− 1. The finite-dimensional irreducible representations of G∞ are then of
the form

ρχ,ψ = ψ ⊗ IndG∞StabΓ(χ)nH(χ)

where χ : H → µp∞ and ψ : Γ → C× are multiplicative characters of finite order.
Throughout we fix representatives for the orbit under Γ of each character on H.
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Definition 2.4. We associate a tree T = TG∞ = (V, E) to our p-adic group G∞
by setting its vertices to equal

V :=
{
ρ such that ρ = IndG∞StabΓ(χ)nH(χ) for some χ on H

}
and defining its edge set by

E :=
{

(ρ1, ρ2) such that ρ1 = Ind(χ) and ρ2 = Ind(χp) for some χ 6= 1
}
.

The tree T is a combinatorial device for keeping track of arithmetic data at the
irreducible representations ρ ∈ V. Evidently ρ0 = 1 is the root vertex, and the
distance between ρ ∈ V and ρ0 along the edges of the tree is denoted by ‘length(ρ)’.
The structure of each tree TG∞ is particular to the underlying Lie group G∞, and
(in general) the dimension of ρ should increase with length(ρ), unless G∞ is abelian
in which case dim(ρ) remains fixed at one.

length=1

root vertex ρ0

. . .. . .. . .. . .. . . p+ 1 edges

length=2 . . .. . .. . .. . . p edges

length=3 . . .. . .. . .. . . p edges

...

Figure 1. The tree associated to a 2-fold false Tate extension.

Let us now assume we are given a weightingW =
{
Wρ

}
ρ∈V of non-negative integers

attached to the vertices of TG∞ (for example, the weighting W might encode the
multiplicity of the Artin representations ρ ∈ V inside the vector space E(K∞)⊗C).
The volume of W at length ≤ n in the tree T = TG∞ is defined by

vol≤n
(
T,W

)
:=

∑
ρ ∈ V,

0 < length(ρ) ≤ n

Wρ × dim(ρ)

and measures the total weight contribution from vertices at most n edges from ρ0.
It also satisfies the following useful descent property.

Let k′ be any subfield of k such that k/k′ is a normal extension of number fields,
and define the relative volume to equal

vol
(k/k′)
≤n

(
T,W

)
:=

∑
ρ′ ⊂ Indk

′
k (ρ), ρ ∈ V,

0 < length(ρ) ≤ n

Wρ × dim
(
ρ′
)
.
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Lemma 2.5. (i) If at every vertex ρ ∈ V with dim(ρ) > 1 each representation

Indk
′

k (ρ) is irreducible, one has an inequality

vol
(k/k′)
≤n

(
T,W

)
≥
[
k : k′

]
×
(

vol≤n
(
T,W

)
−

∑
ρ ∈ V, dim(ρ) = 1,
0 < length(ρ) ≤ n

Wρ

)
.

(ii) Furthermore, assuming the only characters on G∞ factor through Γ then

vol
(k/k′)
≤n

(
T,W

)
=
[
k : k′

]
× vol≤n

(
T,W

)
.

Proof. We use the formula dim
(
Indk

′

k (ρ)
)

= [k : k′]×dim(ρ), together with the fact

that the functor Indk
′

k (−) identifies each ρ with a single unique ρ′ if dim(ρ) > 1. �

Definition 2.6. A tree TG∞ is in bloom with respect to a weighting {Wρ}ρ∈V if

max
{
Wσ

∣∣ σ ∈ V with Ker(σ) = Ker(ρ)
}
> 0

for all ρ ∈ V with length(ρ) > 0.

The next result gives a non-trivial lower bound on the volume of a tree weighting.

Theorem 2.7. Assume that the pair
(
TG∞ ,W

)
is in bloom.

(a) If G∞ is abelian and dim(G∞) = d, then

vol≤n
(
T,W

)
≥

{
(pd−1−1)(pn(d−2)−1)

(p−1)(pd−2−1)
if d > 2

n(d− 1) if d = 1 or 2.

(b) If G∞ ∼= Γ n Zd−1
p is non-abelian of dimension d, then

vol≤n
(
T,W

)
≥ p(d−1)n − 1

p− 1
.

(c) If G∞ is 3-dimensional and occurs as in Case (3) of Theorem 2.1,

vol≤n
(
T,W

)
≥ p2n−s+1 + ps − p− 1

p− 1
.

(d) If G∞ is as in Case (5) of Theorem 2.1 with s = d = 0 and r ≥ 1,

vol≤n
(
T,W

)
≥ p2n × p1−r(p2 + p+ 1)

(p− 1)(p+ 1)2
+

n× pr

p+ 1
+ a constant.

In principle we could treat all six three-dimensional types listed in Theorem 2.1,
but we only make use of these limited cases (a)–(d) in our arithmetic applications.

Proof. (a) If d = 1 then TG∞ = TΓ consist of only the root vertex, and no edges.
If d > 1, the vertices of TG∞ of length at most n are in one-to-one correspondence
with characters χ : H → µpn ; consequently

vol≤n
(
T,W

)
=

∑
χ:H→µpn , χ 6=1

WInd(χ) × 1 =

n∑
j=1

∑
χ:H�µpj

WInd(χ).

However for each set of characters χ : H� µpj there are precisely pj(d−1)−p(j−1)(d−1)

φ(pj)

distinct Ker(χ)’s, and also WInd(χ) ≥ 1 for at least one χ per kernel, whence

vol≤n
(
T,W

)
≥

n∑
j=1

pj(d−1) − p(j−1)(d−1)

φ(pj)
=

{
n if d = 2
(pd−1−1)(pn(d−2)−1)

(p−1)(pd−2−1)
if d > 2.
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(b) If G∞ ∼= (1 + pZp) n Zd−1
p then TG∞ has Dj = pj(d−1)−p(j−1)(d−1)

φ(pj) vertices of

length j, let us call them ρ
(j)
i say, each with their own unique kernel [DP15, Section

2] and of dimension pj−1 for j > 0. It follows that

vol≤n
(
T,W

)
=

n∑
j=1

Dj∑
i=1

W
ρ

(j)
i
× pj−1 ≥

n∑
j=1

Dj∑
i=1

1× pj−1 =

n∑
j=1

Dj × pj−1

and the right-hand series sums to p(d−1)n−1
p−1 , so we are done.

(c) The topological generator γ of Γ acts on H via multiplication by 1 + ps, hence
γ−p

m

hγp
m ≡ (1 + ps+m)h mod ps+m+1 for all h ∈ H. If χ : H� µpj then

dim
(

IndG∞StabΓ(χ)nH(χ)
)

=
[
Γ : StabΓ(χ)

]
=

{
pj−s if j ≥ s
p0 if j < s.

Here each vertex ρ = Ind(χ) ∈ V of length j is in one-to-one correspondence with

the subsets Ker(χ) ⊂ H of index pj ; the total number of Ker(χ)’s is p2j−p2(j−1)

φ(pj) as

we saw previously in (a). It follows that as
(
T,W

)
is in bloom,

vol≤n
(
T,W

)
=

n∑
j=1

∑
Ker(χ) ⊂ H,

[H : Ker(χ)] = pj

WInd(χ) ×
[
Γ : StabΓ(χ)

]

≥
n∑
j=1

p2j − p2(j−1)

φ(pj)
×

{
pj−s if j ≥ s
p0 if j < s

=

s−1∑
j=1

(p+ 1)pj−1 +

n∑
j=s

(p+ 1)pj−1 × pj−s

which yields p2n−s+1+ps−p−1
p−1 upon summing both geometric series.

(d) Here G∞ ∼= Γ n H ∼=
(
Γ × 〈h1〉

)
n 〈h2〉 where h1 commutes with h2, and γ

acts on h2 through multiplication by 1 + pr. There are two types of characters on
H = 〈h1, h2〉 of order pj :

• χ = χ1χ2 with χ1 : 〈h1〉 → µpj and χ2 : 〈h2〉� µpj . . . “Type (I)”

• χ = χ1χ2 with χ1 : 〈h1〉� µpj and χ2 : 〈h2〉 → µpj−1 . . . “Type (II)”.

Every vertex ρ of length j is induced by such a character above, but each Ker(χ) has
φ(pj) different characters with that same kernel. Also, in Type (I) the dimension
of the associated vertex ρ = Ind(χ) is always pmax {0,j−r}, but in Type (II) the
dimension of the associated ρ is pmax {0,i−r} where χ = χ1χ2 and pi = order(χ2).
Since the pair

(
T,W

)
is in bloom,

vol≤n
(
T,W

)
=

n∑
j=1

∑
χ:H�µpj

WInd(χ) ×

{
pmax {0,j−r} if χ is Type(I)

pmax {0,i−r} if χ is Type(II)

≥
n∑
j=1

pj × pmax {0,j−r} +

n∑
j=1

j−1∑
i=0

φ(pi)× pmax {0,i−r}

and the bottom line sums to the stated expression, after a tedious calculation. �
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2.3. Seeding – parity results on Selmer ranks. We now explain how to use
the work of Coates et al [CFKS10] and Greenberg-Guo [Gre11, Guo93] to establish
some sufficient conditions under which the weighting associated to the Selmer group
for E/K∞ produces a tree T that is in bloom.

Definition 2.8. For an Artin representation ρ : G∞ → GLO(Vρ), one sets

sE,ρ := multiplicity of Vρ ⊗O Qp inside XE(Kn)⊗Zp Qp
where Kn denotes the field extension ρ factors through.

The Selmer weighting sE associated to the tree TG∞ is then constructed so that
the ρ-th component is assigned the value sE,ρ at each representation ρ ∈ V.

Theorem 2.9. Under the three conditions:

(P1) only finitely many primes ramify in K∞/k

(P2) all representations ρ ∈ V of length ≥ 1 are orthogonal

(P3) sE,ρ is an odd number for all ρ ∈ V of length one,

the pair
(
TG∞ , sE

)
is automatically in bloom.

Proof. One simply needs to check if
(
Ind(χ), Ind(χp)

)
∈ E with χp 6= 1, then

sE,Ind(χ) ≡ sE,Ind(χp) mod 2.

Since ρ = Ind(χ) is orthogonal and irreducible, it must automatically be self-dual;
by Greenberg [Gre11, Prop 11.8] one has

sE,ρ ≡ rankO

(
Y
(
twρ(E)/kcy

))
mod 2

where Y
(
twρ(E)/kcy

)
=

X(twρ(E)/kcy)
X(twρ(E)/kcy)[p∞] .

The O-rank of the module occurring in the right-hand side of the congruence
can be identified with the cyclotomic λ-invariant of Y (twρ(E)/kcy), which we shall
label as λρ(E). Moreover the main result of [DL15b, Theorem 1] implies that

λρ(E) =
∑
i

ni(ρ)× λρi(E)

where Ψp ◦ Tr(ρ) =
∑
i ni(ρ)Tr(ρi) under the action the p-th Adams operator Ψp.

However if StabΓ(χ) = Γp
n

and StabΓ(χp) = Γp
m

, then∑
i

ni(ρ)Tr(ρi) =
∑

ψ:Γpm/Γpn→C×
Tr
(
ψ ⊗ Ind(χp)

)
in which case

λρ(E) =
∑
ψ

λψ⊗Ind(χp)(E) = pn−m × λInd(χp)(E)

(here we have used the fact that charOJΓpmK(M) and charOJΓpmK(M ⊗ψ) share the
same number of zeroes on the open p-adic unit disk).

Because pn−m is odd, one immediately deduces that

sE,ρ ≡ λρ(E) ≡ λInd(χp)(E) mod 2

and exploiting [Gre11, Prop 11.8] again, if ρ̃ = Ind(χp) then

λInd(χp)(E) = rankO

(
Y
(
twρ̃(E)/kcy

))
≡ sE,ρ̃ mod 2.

We have therefore shown sE,ρ ≡ sE,ρ̃ mod 2, as required. �



GROWTH IN MORDELL-WEIL RANKS AND X 9

To be in a position to apply the previous theorem, we are required to determine
whether or not the parity of sE,ρ is odd at every single vertex ρ ∈ V of length one.
The following result is a consequence of the Dokchitsers’ fundamental work on the
p-parity conjecture for abelian varieties over number fields, and provides us with a
useful means to check when it is appropriate to apply Theorem 2.9.

Assume k/Q is a Galois extension, and the elliptic curve E is defined over Q.

We shall write ρQ = IndQ
k (ρ) for the representation over the rationals induced by ρ.

Proposition 2.10. If ρ is orthogonal, ρQ is both irreducible and even dimensional,
E has no wild ramification and the p-parity conjecture for E over k holds, then

(−1)sE,ρ = (−1)dim(ρ−Q ) ×
∏

q∈Msm
E

(−1)dim(ρ
Iq
Q ) ×

∏
q∈Msm

E ∪Mns
E

det
(
Frobq

∣∣IndQ
k (Vρ)

Iq
)
,

where Iq is the inertia subgroup at q, Msm
E denotes the set of split multiplicative

primes for E/Q, and Mns
E denotes the set of non-split multiplicative primes.

Proof. Consider first the sign in the functional equation for h1(E) twisted by ρQ,
which we shall label as wE,ρQ say. The main result in [Dok05] states that

wE,ρQ = w
dim(ρQ)
E × (−1)dim(ρ−Q ) ×

∏
q∈Msm

E ∪Mns
E

det
(
Frobq

∣∣IndQ
k (Vρ)

Iq
)

×
∏

q∈Msm
E

(−1)dim(ρ
Iq
Q ) ×

∏
q∈Madd

E

det
(
Frobq

∣∣IndQ
k (Vρ)

Iq
)ordp(NE)

with Madd
E indicating the set of primes of bad additive reduction for E over Q.

Since E has no wild ramification thus ordp(NE) is even, whilst dim(ρQ) is also even
– the first and last terms on the right-hand side can therefore be omitted.

Now by assumption the p-parity conjecture holds for E over k, and also for all
the quadratic extensions of k contained in K∞ (in fact, there are none as K∞ has
odd profinite degree); thus applying [DD09, Theorem 4.5],

wE,ρQ = (−1)sE,ρQ = (−1)sE,ρ .

Note the last equality follows as the ρ’s and ρQ’s are in one-to-one correspondence,
which can be seen from the irreducibility of the latter as Gal(K∞/Q)-modules. �

2.4. Grafting – the Darmon-Tian method. The principal advantage of the
result in the last section is that it requires relatively few hypotheses in order to
obtain positive growth in the Selmer corank for E over the fields Kn as n → ∞.
However a considerable disadvantage is it can only be applied where one expects
the generic rank to be odd, i.e. the pair

(
TG∞ , sE

)
might already be in bloom with

respect to a uniformly even weighting sE , yet the theorem only sees “0 mod 2”.

Here we present an alternative method to establish when T is in bloom that is
heavily based on the two-dimensional case studied in [DT10]. Since we will require
modularity, henceforth we shall assume that the elliptic curve E is defined over Q.

Definition 2.11. For an Artin representation ρ : G∞ → GLO(Vρ), one defines

dE,ρ := multiplicity of Vρ ⊗O C inside E(Kn)⊗ C

where again Kn denotes the field extension ρ factors through.
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The associated Mordell-Weil weighting on TG∞ is then given by dE =
{
dE,ρ

}
ρ∈V .

Remark: Given a tree TG∞ associated to our group G∞, one can always decompose
the tree into a disjoint union of branches Bj indexed by the vertices of length one
from the root vertex ρ0. In this way, it makes sense to speak of both:

(i) The weighting dE restricted to a given branch Bj ;
(ii) The volume vol≤n

(
Bj , dE

)
along each branch Bj .

Indeed if the graph structure of every branch is isomorphic to a single B′ say, and
if the weighting dE is distributed identically amongst the branches, then clearly

vol≤n
(
TG∞ , dE

)
=
∑
all j

vol≤n
(
Bj , dE

)
= ϑ× vol≤n

(
B′, dE

)
where ϑ = #

{
ρ ∈ V

∣∣ length(ρ) = 1
}

.

Suppose there is an edge (ρ, ρ̃) ∈ E where ρ = Ind(χ), ρ̃ = Ind(χp) with χ 6= 1.

One can form the fixed field

K∞,ρ := KKer(ρ)
∞

and if χ : H � µpj with StabΓ(χ) = Γp
n

, the fixed field satisfies [K∞,ρ : kn] = pj

where kn =
(
kcy
)Γpn

for n ≥ 0. Repeating the above using ρ̃ instead, we find that

K ′∞,ρ̃ := KKer(ρ̃)
∞ · kn

is a degree pj−1 extension of kn, in fact K∞,ρ/K
′
∞,ρ̃ is a cyclic degree p extension

of number fields.

One crucial feature is that, in general, the map sending a vertex ρ ∈ V to the
field K∞,ρ need not be injective, i.e. there could well be multiple non-isomorphic
representations of G∞ which yield the same fixed field. This means it becomes
difficult to distinguish whether a jump in the Mordell-Weil rank has arisen at the
vertex ρ, or at another non-isomorphic vertex ρ† sharing the same fixed field as ρ.

Let us now impose six hypotheses necessary for the Heegner point machinery:

(DT1) The representation σE,p : Gal
(
Q(Ep)/Q

)
→ GL2(Fp) is surjective;

(DT2) The p-primary Selmer group for E over kcy is trivial;

(DT3) Each kn is a CM-field, and there exists a Hilbert modular form fn over

the totally real subfield k+
n = kn ∩ R such that L(fn, s) = L(E/k+

n , s);

(DT4) At the prime pn of k+
n lying over p one has apn(E) 6≡ 0, 1 ( mod pn), and

if a good prime ν 6= pn ramifies in K∞/k
+
n then aν(E) 6≡ 1 ( mod pn);

(DT5) The conductor nE of E over k+ = k ∩ R remains inert inside
⋃
n≥0 k

+
n ,

and is relatively prime to disc(k/k+);

(DT6) If Σ′ consists of the infinite places of k+ and the finite places ν satisfying

θk/k+(nE)ν = −1

where θk/k+ is the quadratic character associated to the CM extension,

then the set Σ′ has even cardinality.

Note that the natural generalisation of the last condition to the CM extensions
kn/k

+
n is propagated by the original (DT6) because kcy/k is a pro-p-extension,
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and the conductor nE will remain inert as we climb the real subfields k+
n /k

+ by
(DT5). Before introducing a seventh condition, we need to review the work of
Zhang [Zha04]. Let Σ′n denote the set of places of k+

n lying over Σ′; in particular
Σ′n must have even cardinality if both (DT5) and (DT6) hold.

We write B′n for the totally definite quaternion algebra over k+
n which is ramified

precisely at the places of Σ′n, so B′n is uniquely determined up to isomorphism.
Fix an embedding k+

n ↪→ B′n and choose an order On ⊂ B′n which contains Ok+
n

as a subring of relative discriminant nE = nfn . If G′n denotes the algebraic group
representing the functor R 7→ (B′n ⊗k+

n
R)× on k+

n -algebras, one defines

X′n := G′n(k+
n )
∖
G′n(Af )

/
U ′n

where U ′n is the compact open subgroup
(
On ⊗ Ẑ

)×
. Indeed applying the strong

approximation theorem #X′n <∞, so we can view the finite set X′n as the points
on a zero-dimensional Shimura variety associated to (G′n, U

′
n).

Let HnE denote the Hecke algebra acting on the space of Hilbert modular forms
of level nE , parallel weight two and trivial nebentypus. There is a non-degenerate
bilinear form 〈

−,−
〉
X′n

: Z[X′n]× Z[X′n] −→ Z

and under this pairing the Hecke operators Tm ∈ HnE are self-adjoint with respect
to their natural action on the module of functions Z[X′n]. By multiplicity one, the
fn-isotypic component of Z[X′n] is a line, and we write φ′n for a generator of it.

Definition 2.12. The algebraic part of L(fn, 1) is given by

L(fn, 1) := 2−[k+
n :Q]−1

√
Norm

(
disckn/k+

n

)
× L(fn, 1)(

fn, fn
)
k+
n

×
〈
φ′n, φ

′
n

〉
X′n

where
(
fn, fn

)
k+
n

is the automorphic period induced from the standard measure∑[k+
n :Q]

i=1 dxi ∧ dyi/y
2
i on

PGL2(k+
n )
∖
H[k+

n :Q] × PGL2(Af )
/
U0(nfn).

The final assumption that we must impose is:

(DT7) The prime p does not divide the algebraic L-value L(fn, 1) for all n.

It should be pointed out that if k = Q(µp) then (DT2) =⇒ (DT7) via the results
of Skinner and Urban [SU14], so in this special case (DT7) is actually redundant.

Theorem 2.13. Assume (DT1)–(DT7) hold, and that at each edge (ρ, ρ̃) lying
in some subset of tree branches ⋃

j∈J
Bj ⊂ E ,

there is a single prime of split multiplicative reduction for E ramified in K∞,ρ/K
′
∞,ρ̃.

Then for every ρ ∈ V appearing as a vertex in ∪Bj there exists at least one ρ† ∈ V
of the same length, dimension and kernel as ρ, such that

dE,ρ† > 0.
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Furthermore, if the branches ∪Bj span the entirety of the tree TG∞ then the pair(
TG∞ , dE

)
must be in bloom, in fact as a Gal(Kn/k)-module⊕

ρ ∈ V,
0 < length(ρ) ≤ n

Vρ† ⊗O C ⊂ E(Kn)⊗ C for all integers n > 0.

Proof. Fix any edge (ρ, ρ̃), and suppose K∞,ρ∩kcy = kn. To make the exposition a
lot less cumbersome, we assume that the split multiplicative prime totally ramifies
in the full cyclic pj-extension K∞,ρ/kn, not just in the subextension K∞,ρ/K

′
∞,ρ̃.

Let us write q for the split multiplicative prime of kn lying below it, and as in
[DT10, Lemma 4.1] suppose that p - ordq(qE) where qE is the Tate period of the
elliptic curve E over kn,q.

The entire argument hinges on establishing the following two statements:

(A) There exists a surjective group homomorphism

∂q : E
(
K∞,ρ ⊗kn kn,q

)
−→ Z

pjZ

such that ∂q
(
E(K∞,ρ̃) + E(K∞,ρ)tors

)
⊂ p Z

pjZ ;

(B) There exists a global point P ∈ E(K∞,ρ) such that ∂q(P ) has order pj .

Assuming these statements are true, it follows that the representationWP generated
by the K∞,ρ-rational point P under the action of G = Gal(K∞,ρ/k) must contain
an irreducible subrepresentation ρ†, which factors through Gal(K∞,ρ/k) but not
through Gal(K∞,ρ̃/k), and satisfies

HomG

(
Vρ† , E(K∞,ρ)

)
6= 0.

Both ρ† and the original ρ share the same kernel, dimension and distance from
the root vertex, but need not be isomorphic as G-representations. At the level of
C[G]-modules,

E(K∞,ρ̃)⊗ C ⊕ Vρ† ⊗O C ⊂ E(K∞,ρ)⊗ C

and the rest of the theorem follows inductively along the branches ∪Bj .

Proof of (A). To construct the homomorphism ∂q we use the non-archimedean
parametrization for Tate curves. Let Q be the unique place of K∞,ρ lying over q,
and let R denote the ring of integers of L = (K∞,ρ)Q with finite residue field r.
The Néron model C for E/Spec R will have group of connected components

ΦE :=
(K∞,ρ)

×
Q

qZE R×
∼=

Z
ordq(qE)pjZ

, so that (ΦE)p∞ =

(
(K∞,ρ)

×
Q

qZE R×

)
p∞

∼=
Z
pjZ

upon using the condition that E/L is a Tate curve, and second that p - ordq(qE).
Because the generic fiber C×Spec R Spec L is isomorphic as a group variety to E/L,
one can identify C(R) with the L-rational points on E; the mapping ∂q is then
obtained through the compositions

∂q : E(L)
∼−→ C(R)

redq−→ C̃(r) � C̃(r)
C̃0(r)

proj−→ (ΦE)p∞ ∼=
Z
pjZ

where C̃ = C ×Spec R Spec r denotes the special fiber.
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It therefore remains to check that ∂q
(
E(K∞,ρ̃) + E(K∞,ρ)tors

)
lies in pZ

/
pjZ.

Firstly we know that G∞ has no quotient isomorphic to GL2(Fp) as G∞ is pro-p, so
from (DT1) one deduces that E(K∞,ρ)p∞ is trivial, whence ∂q

(
E(K∞,ρ)tors

)
= 0.

On the other hand, because q totally ramifies in K∞,ρ/kn the group of connected
components for E over K∞,ρ⊗kn kn,q has order pj×u, whilst the group of connected
components for E over K∞,ρ̃ ⊗kn kn,q has order pj−1 × u for some p-adic unit u;
consequently ∂q

(
E(K∞,ρ̃ ⊗kn kn,q)

)
has size pj−1, and (A) now follows.

Proof of (B). As the demonstration is a cannibalisation of the method in [DT10,
§5 and §6] we briefly outline their argument, taking care to point out any areas
of divergence. Let R′ ⊂ B′n be an order containing the ring of integers Okn as a

subring of relative discriminant nE , and set R̂′ = R′ ⊗ Ẑ. An optimal embedding
of Okn into the Eichler orders in B′n that are locally conjugate to R′, consists of a
pair

(Ψ, α) ∈ G′n(k+
n )
∖(

Hom(kn,B′n)×G′n(Af )
)/
U ′n

such that α−1
ν Ψ(Okn,ν)αν ⊂ R′ν at all places ν.

The natural action of the finite group k×n
∖
k̂×n
/
Ô×kn on the optimal embeddings

(Ψ, α) produces finitely many orbits (Ψ1, α1), . . . , (Ψhn , αhn) say, where hn is the
class number. Zhang [Zha04] has associated to (X′n, kn) the canonical element

∆′kn =

hn∑
j=1

(
#Aut(Ψj , αj)

)−1 × αj ∈ Q[X′n]

belonging to the dual lattice Z[X′n]∨, under the non-degenerate pairing 〈−,−〉2X′n .

From [Zha04, Theorem 7.1] there is Zhang’s celebrated formula〈
φ′n,∆

′
kn

〉2
X′n〈

φ′n, φ
′
n

〉2
X′n

= 2−[k+
n :Q]−1

√
Norm

(
disckn/k+

n

)
× L(fn, 1)(

fn, fn
)
k+
n

or in a more concise form,

(2.1) L(fn, 1) =
〈
φ′n,∆

′
kn

〉2
X′n
∈ Z.

We shall also need imprimitive versions of ∆′kn . For an ideal Ok+
n

-ideal c the vector

∆′kn,c is defined as before, but this time summing instead over an orbit of optimal

embeddings of conductor c under the action of the group k×n
∖
k̂×n
/

(Ôk+
n

+ c · Ôkn)×;

in fact ∆′kn,c differs from ∆′kn by some simple Hecke operator relations.

Let q+ = q ∩ Ok+
n

and Σn = Σ′n − {∞, q+}, which has even size by (DT5-6).

We shall write GΣn for the algebraic group over k+
n representing R 7→ (B ⊗k+

n
R)×

where B is the (definite) quaternion algebra ramified only at the places of ν ∈ Σn.
Fix an Eichler order Rn ⊂ B of discriminant prime to q+. We consider two Shimura

curves over k+
n , namely X and X0(q+) of levels Un = R̂×n and U0(q+) respectively,

with complex points

X(C) = GΣn(k+
n )
∖
H×GΣn(Af )

/
Un

X0(q+)(C) = GΣn(k+
n )
∖
H×GΣn(Af )

/
U0(q+).
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The curve E is k+
n -isogenous to a quotient of the Jacobian of X0(q+) (see (DT3))

and without loss of generality, assume the modular parametrisation

η : Jac X0(q+)� E is optimal, with connected kernel.

Remark: Let K be a finite extension of (k+
n )q+

. The generic fiber of the nodal
model X0(q+) is a q+-adic rigid analytic space (actually the union of two wide
open spaces), and there is a specialisation map

∂K ◦ η : Div0
(
X0(q+)

)
(K) −→ ΦE,K

where ∂K denotes the reduction map from C(OK) to the cyclic group ΦE,K of
connected components in the special fiber of C/OK .

We now need arithmetically interesting points to plug into this homomorphism ∂K.

For an ideal cCOk+
n

, one writes H[c] for the ring class field of kn of conductor c.

If g ∈ Gal(H[c]/kn) then choose a lift g ∈ Gal(H[cq+]/kn), and pick closed points
z1, z2 ∈ X0(q+)(H[cq+]) satisfying πi(zi) = z0 where z0 is a CM point (see [DT10,
§6]) of conductor c, and π1, π2 : X0(q+) −→ X are the two natural degeneracy
maps. Darmon and Tian construct Heegner points

∆c,q :=
∑

g∈Gal(H[c]/kn)

(
z1 − z2

)g ∈ Div0
(
X0(q)

)
(H[cq+])

and if K = H[cq+]⊗kn kn,q, then ∂K ◦ η
(
∆c,q

)
will be independent of these choices.

Recall the field extension K∞,ρ/kn is ramified at the multiplicative prime q,
therefore K∞,ρ ⊂ H[ptnmq+] for some square-free Ok+

n
-ideal m coprime to pnq+

and positive integer t (note that p is the only prime which can wildly ramify in the
p-adic Lie extension K∞/k). Henceforth set c := ptnm and K := H[ptnmq+]⊗kn kn,q,
so that

∂c,q+ = ∂K : E
(
H[cq+]⊗kn kn,q

)
−→ Z

dcZ
denotes the reduction map to the group of connected components ΦE,K ∼= Z/dcZ.
It is shown in [DT10, Proof of Thm 6.1] that

∂c,q+ ◦ η
(
∆c,q

)
= (dc − 2)×

〈
φ′n,∆

′
kn,c

〉
X′n

for the imprimitive vectors ∆′kn,c, and squaring both sides

(2.2) ∂c,q+
◦ η
(
∆c,q

)2 ≡ 4×
〈
φ′n,∆

′
kn,c

〉2
X′n

mod dc.

Remark: We now explain how to descend from H[ptnmq+] back down to K∞,ρ.
Since q must split completely in H[ptnm]/kn and is totally ramified in K∞,ρ/kn,
one can choose the above lifts g ∈ Gal

(
H[ptnmq+]/K∞,ρ

)
so that

η
(
∆K∞,ρ

)
= Norm

H[ptnmq+]
/
K∞,ρ·H[ptnm]

◦ η
(
∆c,q

)
where ∆K∞,ρ :=

∑
g∈Gal(H[cq+]/K∞,ρ)

(
z1 − z2

)g
belongs to Div0

(
X0(q)

)
(K∞,ρ).

This norm element is compatible with the natural projection map Z/dcZ� Z/pjZ
on connected components [DT10, Thm 6.1], therefore

(2.3) ∂q ◦ η
(
∆K∞,ρ

)
≡ ∂c,q+

◦ η
(
∆c,q

)
mod pj .
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Combining Equations (2.2) and (2.3), it directly follows that

(2.4) ∂q ◦ η
(
∆K∞,ρ

)2 ≡ 4×
〈
φ′n,∆

′
kn,c

〉2
X′n

mod pj .

We will now need to pass from the imprimitive vector ∆′kn,c to the primitive ∆′kn .
For every integer t ≥ 2, there is a recurrence relation

∆′kn,ptn = ∆′
kn,p

t−1
n

∣∣Tpn − p∆′kn,pt−2
n

≡ ∆′
kn,p

t−1
n

∣∣Tpn mod p

whilst ∆′kn,pn = ∆′kn
∣∣(Tpn − 1), and ∆′kn,c = ∆′kn,ptn

∣∣∣∏ν|m(Tν − 1) since the ideal

m is square-free (we have written Tν in place of Uν at primes dividing the level).
Because the Hecke operators are self-adjoint,〈

φ′n,∆
′
kn,c

〉
X′n

≡
〈
φ′n , ∆′kn

∣∣∣∏
ν|m

(Tν − 1) ◦ Tpt−1
n
◦ (Tpn − 1)

〉
X′n

mod p

≡
〈
φ′n

∣∣∣∏
ν|m

(Tν − 1) ◦ Tpt−1
n
◦ (Tpn − 1) , ∆′kn

〉
X′n

mod p.

But φ′n is an eigenvector under the action of the Hecke algebra HnE , thus

φ′n

∣∣∣∣ ∏
ν|m

(Tν − 1) ◦ Tpt−1
n
◦ (Tpn − 1) = apn(E)t−1

∏
ν|pnm

(
aν(E)− 1

)
× φ′n

and furthermore,

(2.5)
〈
φ′n,∆

′
kn,c

〉
X′n
≡ apn(E)t−1

∏
ν|pnm

(
aν(E)− 1

)
×
〈
φ′n,∆

′
kn

〉
X′n

mod p.

Note that aν(E)− 1 = −2 if ν is a non-split multiplicative prime, aν(E)− 1 = −1
if ν is a bad additive prime, while aν(E) − 1 6≡ 0 mod p if ν is a good prime by
our assumption (DT4); also apn(E)t−1

(
apn(E)− 1

)
6≡ 0 mod p by (DT4) again.

It follows directly that apn(E)t−1
∏
ν|pnm

(
aν(E)− 1

)
must be a p-adic unit.

The argument is almost complete – combining Equations (2.4) and (2.5) together
with Zhang’s formula (2.1):

(2.6) ∂q ◦ η
(
∆K∞,ρ

)2 ≡ (p-adic unit)× L(fn, 1) mod p.

We now have our global point P = η
(
∆K∞,ρ

)
∈ E(K∞,ρ), it remains to show that

it has order pj after hitting it with ∂q. Under condition (DT7) the critical value

L(fn, 1) = 2−[k+
n :Q]−1

√
Norm

(
disckn/k+

n

)
× L(fn, 1)(

fn, fn
)
k+
n

×
〈
φ′n, φ

′
n

〉
X′n
∈ Z ∩ Z×p ,

hence the right-hand side of the congruence (2.6) is a p-adic unit; as a consequence
∂q(P ) is a generator for (ΦE)p∞ ∼= Z/pjZ, and statement (B) is proved. �

2.5. Three worked examples. We should begin with some general comments.
Suppose there exists a field k′ ⊂ k such that k/k′ is a normal extension, and every

vertex ρ ∈ V of dimension > 1 exhibits the property that Indk
′

k (ρ) is irreducible.
Assume the elliptic curve E is defined over Q, and that as Gal(Kn/k)-modules⊕

ρ∈Jn

(
Vρ ⊗O C

)⊕eρ ⊂ E(Kn)⊗ C
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where the sum is over a subset Jn of ρ’s of dimension > 1. As E is defined over k′

it follows that
⊕

ρ∈Jn

(
Indk

′

k (Vρ)⊗O C
)⊕eρ

is contained inside E(Kn)⊗ C, hence

rankZE(Kn) ≥
∑
ρ∈Jn

eρ × dim
(
Indk

′

k (Vρ)
)
.

In particular, if the pair
(
TG∞ , dE

)
is in bloom then

rankZE(Kn) ≥ vol
(k/k′)
≤n

(
TG∞ , dE

)
and the right-hand side is calculated using Theorem 2.7 and Lemma 2.5 in tandem.
(The same is true on replacing dE by sE , and rankZE(Kn) by corankZpSelp(E/Kn).)

Example A. Let k′ = Q(
√
−D), and we denote by k′∞ the full Z2

p-extension of k′.
It follows that Gal(k′∞/k

′) ∼= Γ × H1 where H1 denotes the Galois group for the

anticyclotomic Zp-extension of Q(
√
−D), so H1 = 〈h1〉 is procyclic of Zp-rank one.

If k = k′(µp) and K∞ = k′∞
(
µp, q

1/p∞
)

for an odd prime q, then

G∞ := Gal(K∞/k) ∼= Γ n
(
H1 ×H2

) ∼= (
Γ×H1

)
nH2

where h1 acts trivially on H2 = 〈h2〉, while γ acts on h2 via multiplication by 1 + p
(we are therefore in Case (5) of Theorem 2.1 with s = d = 0 and r = 1).

Let E be a semistable elliptic curve over Q with conductor NE = q×ME , where q
is a prime of split multiplicative reduction, and ME is a square-free integer coprime
to q. We assume q generates (Z/p2Z)× which implies q is inert in Q(µp∞), and
further suppose that q is inert in k too. One also requires that E has non-split
multiplicative reduction at every place of k lying over ME .

If (DT2) holds and XE(K∞) ∈MH(G∞), then by Proposition 2.3 one has

τE,G∞ = 0 + 1 + 2× 0 = 1,

and so Theorem 2.2 implies

rankZE(Kn) ≤ p2n + 4 for n� 0.

Note (DT3) is certainly true as k/Q is a solvable extension, and k is a CM field;
we also assume that the primes dividing ME are inert in k, which implies (DT5).
Since E has no complex multiplication thus (DT1) holds for almost all primes p.
Moreover (DT6) holds provided the number of primes ν of k+ dividing p×disck/k+

with θk/k+(nE)ν = −1 is even, as the number of archimedean places is even.

Finally most good ordinary primes p satisfy ap(E) 6≡ 0, 1 ( mod p) to get (DT4),
and we will assume (DT2) =⇒ (DT7) in order to obtain (DT7) as a condition.

Proposition 2.14. Under the above hypotheses, for n� 0 there are bounds

p2n × p(p2 + p+ 1)

(p+ 1)3
≤ rankZE(Kn) ≤ p2n + 4.

Proof. We have already obtained the upper bound, so we focus on the lower bound.
Applying Theorem 2.13 we see that the pair

(
TG∞ , dE

)
is only partially in bloom,

corresponding to ρ ∈ V that ‘see’ the ramification of the prime above q in the
subquotient kcy

(
q1/p∞

)
/kcy. A quick calculation by hand shows the proportion
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of ρ’s for which a prime above q ramifies in K∞,ρ/K
′
∞,ρ̃ equals pn

pn+pn−1 = p
p+1 ,

therefore one concludes

rankZE(Kn) ≥ p

p+ 1
× vol

(k/k′)
≤n

(
TG∞ , dE

)
≥ p(p− 1)

p+ 1
× vol≤n

(
TG∞ , dE

)
where the last inequality follows from Lemma 2.5(i) and the fact [k : k′] = p − 1.
Plugging in our explicit formula from Theorem 2.7(d) and tidying up the result,
the required lower bound is established. �

It seems somewhat disappointing that the upper and lower bounds are not equal,

even though for large primes p the factor p(p2+p+1)
(p+1)3 becomes very close to one.

We now describe a situation where the upper and lower bounds really do coincide,
thereby yielding an equality for the Mordell-Weil rank over Kn.

Example B. Let E be a semistable elliptic curve over Q, and l1, . . . , ld−1 primes
of non-split multiplicative reduction for E. We choose k = Q(µp), k

′ = Q and set

K∞ := Q
(
µp∞ , l

1/p∞

1 , . . . , l
1/p∞

d−1

)
.

Then G∞ := Gal(K∞/k) ∼= Γ n Zd−1
p , corresponding to part (b) of Theorem 2.7.

We shall also assume l1, . . . , ld−1 are quadratic residues modulo p, and that

(2.7) (−1)(p−1)/2 ×
∏
q|ME

(
q

p

)
= −1

where NE = l1 × · · · × ld−1 ×ME .

Proposition 2.15. If XE(K∞) belongs to MH(G∞), then

corankZpSelp(E/Kn) ≥ p(d−1)n − 1.

Proof. Firstly hypotheses (P1) and (P2) of Theorem 2.9 certainly hold true here.

Also, if ρ is of the form IndQ
k (χ) where the character χ : Gal

(
k(m1/p)/k

)
� µp for

some p-power free m supported on l1× · · ·× ld−1, then Proposition 2.10 informs us

(−1)sE,ρ = (−1)(p−1)/2 ×
∏

q|(NE×m−1)

(
q

p

)
.

Under our residue assumptions on l1, . . . , ld−1 and by Equation (2.7), the right-hand
side equals −1 hence the multiplicity sE,ρ is always odd, and (P3) holds.

Applying Theorem 2.9, we deduce that the pair
(
TG∞ , sE

)
must be in full bloom;

as a direct consequence

corankZpSelp(E/Kn) ≥ vol
(k/Q)
≤n

(
T, sE

) by 2.5(ii)
= (p− 1)× vol≤n

(
T, sE

)
.

However the right-hand volume equals p(d−1)n−1
p−1 from Theorem 2.7(b). �

Corollary 2.16. If d = 3, the cyclotomic λ-invariant of XE(Q(µp∞)) equals one,
and the p-primary part of X(E/Kn) is finite at each layer Kn, then for all n ≥ 1:

rankZE(Kn) = p2n − 1 or p2n.
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Proof. By Proposition 2.3 again, one has

τE,G∞ = 1 + 0 + 2× 0 = 1,

hence Theorem 2.2 implies rankZE(Kn) ≤ p2n + 4. Our assumption on X(E/Kn)
means we can interchange the Selmer corank with the Mordell-Weil rank over Kn,
and from the previous proposition we have rankZE(Kn) ≥ p2n − 1; therefore

p2n − 1 ≤ rankZE(Kn) ≤ p2n + 4.

Now E(Kn) contains at most a single one-dimensional representation (character)
because the λ-invariant of XE(Q(µp∞)) equals one; further, it cannot contain two
copies of a particular ρ ∈ V of length one otherwise (P3) would then be violated.
Thus the rank of E(Kn) is either p2n or p2n − 1, depending on whether the zero in
the power series charZpJΓK

(
XE
(
Q(µp∞)

))
is of the form e2πij/pn−1, where i =

√
−1

and j is an integer. �

Example C. Let E denote a semistable elliptic curve defined over Q of conductor
NE = q × l ×ME , such that E has split multiplicative reduction at the prime q,
and non-split multiplicative reduction at the prime l. Put k = Q(µps), k

′ = Q and

K∞ := Q
(
µp∞ , q

1/p∞ , l1/p
∞)
.

Here Gal(K∞/k) ∼= Γ n Z2
p, corresponding to case (3) of Theorem 2.1 with s ∈ N.

The hypothesis (DT3) is automatically true, and (DT4) holds precisely when
ap(E) 6≡ 0, 1 ( mod p). Likewise (DT5) is OK provided the primes dividing NE
are primitive roots modulo p2. However (DT6) requires that

• ωp(NE)(p−1)/2 = +1 if p ≡ 1 mod 4, and

• ωp(NE)(p−1)/2 = −1 if p ≡ 3 mod 4

where ωp is the Teichmüller character, as there are (p−1)ps−1

2 infinite places in k.

Proposition 2.17. If (DT1)–(DT7) hold for K∞ = Q
(
µp∞ , q

1/p∞ , l1/p
∞)

, then(
p2n−s+1 + ps − p− 1

)
× p

p+ 1
< rankZE(Kn) ≤ p2n + 4.

Proof. Here τE,G∞ = 0 + 1 + 2× 0 = 1, so the upper bound again follows readily
from Theorem 2.2. To get the lower bound, a simple calculation reveals that the

number of extensions Q
(
µpn , (q

ilk)1/pj
)/

Q(µpn) with 1 ≤ j ≤ n, in which the prime

above q totally ramifies, equals pn+1−1
p−1 . However the total number of these types

of extension Q
(
µpn , (q

ilk)1/pj
)/

Q(µpn) equals (p+ 1)× pn−1
p−1 , yielding the ratio

pn+1−1
p−1

(p+ 1)× pn−1
p−1

=
pn+1 − 1

pn+1 + pn − p− 1
>

p

p+ 1
for all n ≥ 0.

Consequently Theorem 2.13 tells us that a portion of p
p+1 -ths of the pair

(
TG∞ , dE

)
at least is in bloom, meaning that

rankZE(Kn) >
p

p+ 1
× vol

(k/k′)
≤n

(
TG∞ , dE

) by 2.5(ii)
=

p(p− 1)

p+ 1
× vol≤n

(
TG∞ , dE

)
and the last volume equals p2n−s+1+ps−p−1

p−1 using Theorem 2.7(c). �
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Corollary 2.18. If k = Q(µp) so that s = 1, then

(p2n − 1)×
(

1− 1

p+ 1

)
< rankZE(Kn) ≤ p2n + 4.

As we also found in Example (A), if the prime p is very big then 1− 1
p+1 becomes

very close to 1, but these bounds will never be quite enough to produce an equality.
It would be a worthwhile project to look for explicit p-adic Lie extensions K∞/k
where the two bounds agree, and thus equality follows.

Examples (A)–(C) suggest most of the cyclotomic λ-invariant for E over Kn is
absorbed into the Mordell-Weil group. If we identify ZpJΓK with the power series
ring ZpJXK, the characteristic power series over the number fields Kn are of the
form

charZpJΓK
(
XE(Kcy

n )
)

= pµn ×Xp2n·δp × gn
where δp ∼ 1 if the prime p � 1, µn ≥ 0 denotes the cyclotomic µ-invariant, and
gn is some polynomial whose degree is significantly smaller than p2n × δp.

3. Control theorems

Let us now suppose that the prime number p ≥ 5, and fix an infinite extension K∞
of k whose Galois group G∞ = Gal(K∞/k) is a p-adic Lie group of dimension d.
We also assume:

(A) The Galois group G∞ is torsion-free.

(B) The cyclotomic Zp-extension kcy of k is contained inside K∞.

(C) At each prime v of k above p, the maximal unramified extension of K∞,w/kv
is finite for all primes w of K∞ lying above v.

Let H = Gal(K∞/k
cy) and Γ = Gal(kcy/k). One may write G∞ as the semi-direct

product Ho Γ.

Suppose E/k is an elliptic curve that has good ordinary reduction at all primes
above p; we abbreviate E[p∞] by B. If L/k is an algebraic extension, we write
B(L) for H0(L,B) = E(L)[p∞], and recall from [Zer04, Prop10] that for any p-adic
Lie extension F of k, either B(F ) = B or #B(F ) <∞. We shall assume that

(D) #B(K∞) is finite.

We note that the situation where K∞ = k(B) has been extensively studied by
Harris [Har79], Coates [Coa99] and many others.

Let Σ be the set of primes of k consisting of those above p, the archimedian
primes and the places where E has bad reduction. For each prime v ∈ Σ and an
extension L/k, we write

Jv(L) =
⊕
w|v

H1(Lw, B)

E(Lw)⊗Qp/Zp
.

Let us also assume that

(E) There are finitely many primes of K∞ lying above v for all v ∈ Σ.

We remind the reader that if L is an extension of k, we have written Selp(E/L) for
the p-primary part of the Selmer group of E over L.
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Theorem 3.1. Let L/k be a finite extension contained inside K∞, and let α denote
the restriction map

Selp(E/L)→ Selp(E/K∞)GL

where GL = Gal(K∞/L). Under hypotheses (A)–(D), both kerα and cokerα are
finite; furthermore, there is an upper bound # kerα ≤ #B(K∞)d.

Remark: Such a control theorem has been proved in [Gre03], and certain sufficient
conditions for both kerα and cokerα to be uniformly bounded have been given.
For our purposes, we do not need to have uniform bounds, but rather, asymptotic
growths of these groups. In the proof of Theorem 3.1, we shall give an explicit (but
much more complicated) upper bound on #cokerα – this allows us to analyse the
asymptotic behaviour of these bounds in § 3.3 below.

Consider the fundamental diagram

0 // Selp(E/K∞)GL // H1(GΣ(K∞), B)GL //⊕
v∈Σ Jv(K∞)GL

0 // Selp(E/L) //

α

OO

H1(GΣ(L), B) //

β

OO

⊕
v∈Σ Jv(L)

γ=⊕γv

OO

// 0.

By the snake lemma, we have the exact sequence

0→ kerα→ kerβ → ker γ → cokerα→ cokerβ.

Therefore to bound kerα and cokerα, it is sufficient to bound kerβ, cokerβ and
ker γ, respectively.

3.1. Bounding kerβ and cokerβ.

Lemma 3.2. Under hypothesis (D), both kerβ and cokerβ are finite. Furthermore,
# kerβ ≤ (#B(K∞))d and #cokerβ ≤ (#B(K∞))2d.

Proof. From the inflation-restriction exact sequence

0→ H1(GL, B(K∞))→ H1(GΣ(L), B)→ H1(GΣ(K∞), B)GL → H2(GL, B(K∞))

we deduce that kerβ = H1(GL, B(K∞)) and cokerβ ↪→ H2(GL, B(K∞)). Because
#B(K∞) < ∞, it is clear both H1(GL, B(K∞)) and H2(GL, B(K∞)) are finite
with bounds as stated in the lemma. �

Note that kerα ↪→ kerβ, hence the finiteness of kerα and the bound on # kerα in
Theorem 3.1 follow from the above result.

3.2. Bounding ker γ. For each v ∈ Σ, fix a prime u of L (respectively w of K∞)
that lies above v (respectively above u). We shall write Gu = Gal(K∞,w/Lu),
Hu = Gal(K∞,w/L

cy
u ) and Γu = Gu/Hu ∼= Gal(Lcy

u /Lu), and study γv in a number
of different cases.
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3.2.1. The study of ker γv for v - p∞. Note that if v ∈ Σ is a finite prime and v - p,
then

ker γv =
⊕
u|v

H1(Gu, B(K∞,w))

by inflation-restriction. Furthermore, Gu is a p-adic Lie group of dimension ≤ 2.
By [Ser63, II.§5 Ex 2], if q denotes the cardinality of the residue field Lu, then its
maximal pro-p extension has Galois group isomorphic to either Zp if q 6≡ 1 mod p,
or to 〈x, y : xyx−1 = yq〉 if q ≡ 1 mod p. As a consequence, Hu is either trivial or
isomorphic to Zp (as Gu is torsion-free).

Case 1: Hu is trivial.

Let us first recall the following classical result from group cohomology.

Lemma 3.3. Let G be a pro-cyclic group such that G = 〈g〉 ∼= Zp, and let A be a
G-module; then H1(G,A) ∼=A/(g−1). Suppose furthermore that A is isomorphic to
(Qp/Zp)r as abelian groups for some integer r ≥ 0. Then H0(G,A) and H1(G,A)
have the same Zp-corank; in this case, if H0(G,A) is finite then H1(G,A) = 0.

Corollary 3.4. Let F/Lu be a Zp-extension. Then H1(F/Lu, B(F )) is finite, and
its cardinality is bounded above by #B(F )/B(F )div.

Proof. We may decompose B(F ) into B(F )div ⊕ B(F )′ for some finite subgroup
B(F )′ of B(F ). Since both B(F )div and B(F )′ are Gal(F/Lu)-modules, we have

H1(F/Lu, B(F )) ∼= H1(F/Lu, B(F )div)⊕H1(F/Lu, B(F )′).

However the invariants H0(F/Lu, B(F )div) are finite, in which case Lemma 3.3 tells
us that H1(F/Lu, B(F )div) = 0. Therefore

H1(F/Lu, B(F )) = H1(F/Lu, B(F )′) ∼= B(F )′/(γ − 1)

is finite, with cardinality bounded by #B(F )′ = #B(F )/B(F )div as required. �

If Hu is trivial, then K∞,w = Lcy
u is the unique unramified Zp-extension of Lu.

Hence we may apply Corollary 3.4 to deduce that ker γu is finite, and that its
cardinality is bounded above by #B(Lcy

u )/B(Lcy
u )div.

Case 2: Hu ∼= Zp.
We consider two separate sub-cases.

Case 2.a: E does not have potential good reduction at v.

The extension Lu(B)/Lu is also a p-adic Lie extension of dimension 2, which means
that K∞,w = Lu(B). We can therefore apply [Coa99, Proposition 3.9] to deduce
that ker γu is finite and its cardinality is the exact power of p dividing cu/Lu(E, 1),
where cu is the local Tamagawa number of E at u.

Case 2.b: E has potential good reduction at v.

Suppose that M/L is a finite extension in which u is totally ramified, and that
E has good reduction at u′ the unique prime of M above u. We shall now write
M∞ = K∞,w ·M , which is a finite extension of K∞,w. Let Gu′ = Gal(M∞/Mu′),
Hu′ = Gal(M∞/M

cy
u′ ) and Γu′ = Gu′/Hu′ ∼= Gal(M cy

u′ /Mu′) as before.

Lemma 3.5. There exists an isomorphism

H1(Gu′ , B) ∼= Hom(Hu′ , B)Γu′ .
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Proof. Our assumption v - p means that the p-power torsion points on E generate
an unramified extension of Mu′ , so Mu′(B) = M cy

u′ ⊂M∞ and BHu′ = B.

Note that H2(Γu′ , B) = 0, as the cohomological dimension of Γu′ is 1 given that
it is procyclic. Inflation-restriction yields the short exact sequence

0→ H1(Γu′ , B)→ H1(Gu′ , B)→ H1(Hu′ , B)Γu′ → 0.

Now Lemma 3.3 tells us that H1(Γu′ , B) = 0, in which case there are isomorphisms
H1(Gu′ , B) ∼= H1(Hu′ , B)Γu′ ∼= Hom(Hu′ , B)Γu′ . �

Proposition 3.6. Let q be the order of the residue field of Mu′ , and let Frobu′ be
the Frobenius element in Γu′ . Then, there is an isomorphism

Hom(Hu′ , B)Γu′ ∼= ker(Frobu′ − q : B → B).

Furthermore, the above is a finite group, whose cardinality is equal to the exact
power of p dividing 1/Lu′(E, 1).

Proof. Fix a topological generator y of Hu′ . Then, the conjugation action of Frobu′

on y is given by yFrobu′ = yq. Note that if θ is an element of Hom(Hu′ , B), it is
uniquely determined by θ(y) ∈ B; we shall set Q = θ(y) ∈ B. If in addition θ is
invariant under the action of Γu′ , then

θ(yFrobu′ ) = Frobu′ · θ(y)

which is equivalent to

q ·Q = Frobu′ ·Q.
Recall that the Pontryagin dual B∨ of B is Tp(E) via the Weil pairing. It follows
that the dual of ker(Frobu′ − q : B → B) is isomorphic to Tp(E)/(Frobu′ − q) as
Frobu′ − q is self-dual. The latter is a finite group because q is not a Weil number,
and its cardinality is equal to the exact power of p dividing det(Frobu′ − q|TP (E)),
which coincides with 1/Lu′(E, 1). This concludes the proof. �

Corollary 3.7. The group ker γu is finite of cardinality bounded by the exact p
power dividing 1/Lu′(E, 1).

Proof. Without loss of generality, we may assume that Mu′/Lu is a Galois extension
of degree co-prime to p, because p ≥ 5. We have the inflation-restriction exact
sequence

0→ H1(Mu′/Lu, B(Mu′))→ H1(M∞/Lu, B)→ H1(Gu′ , B).

However H1(Mu′/Lu, B(Mu′)) = 0 by our assumption on the degree of Mu′/Lu.
Therefore, we deduce from Lemma 3.5 and Proposition 3.6 that H1(M∞/Lu, B)
is in fact finite of cardinality bounded by the exact p power dividing 1/Lu′(E, 1).
Since ker γu = H1(Gu, B(K∞,w)) is a subgroup of H1(M∞/Lu, B) via inflation,
the corollary follows. �

3.2.2. The study of ker γv for v|p∞. It is clear that if v|∞, ker γv = 0 since we
assume that p 6= 2. It remains to study the case where v|p, for which we have the
following result of Greenberg.

Proposition 3.8. If v|p, then ker γv is finite. Furthermore, there exists a constant
Cp such that # ker γv ≤ Cp for all L and u.
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Proof. Note that E has good ordinary reduction at v and that our assumption
(C) implies that the residue field of K∞,w is a finite extension of that of kv. In

particular, if Ẽ denotes the reduced curve for E at the place w, Ẽ(K∞,w) is finite
and [Gre03, Propositions 4.2 and 4.4] apply. �

Finally we conclude that cokerα is finite, and that there exists some constant CL
such that

#cokerα ≤ CL
where CL is given by a product C∞ ×

∏
u Cu, with u running through the finite

primes of L that divide Σ, and

Cu =



#B(K∞))2d if u =∞;

#B(Lcy
u )/B(Lcy

u )div u - p, dimGu = 1;

|cu/Lu(E, 1)|−1
p u - p, dimGu = 2 and E not potential good at u;

|1/Lu′(E, 1)|−1
p u - p, dimGu = 2 and E potential good at u;

Cp u|p.

Here | − |p denotes the p-adic norm given normalized by |p|p = p−1, so that | ? |−1
p

is the exact p-power dividing ? for any rational number ?.

3.3. Variation of CL. We now study the constant CL as L varies. We first remark
that C∞ and Cp are independent of L by definition. If u - p and dimGu = 1, then
Cu is uniformly bounded. For u|p, if the maximal unramified extension of Lu inside
K∞,w is finite, then Cu is also uniformly bounded.

For u - p and dimGu = 2, we remark that the terms 1/Lu(E, 1) and 1/Lu′(E, 1)

correspond to the number points on the reduced curves Ẽ modulo u and u′; hence,
the exact powers of p dividing these terms are given by #B̃u(`u) and #B̃u′(`u′).

Lemma 3.9. If E has multiplicative reduction at u, then
∣∣∣ 1
Lu(E,1)

∣∣∣−1

p
=
∣∣#`u−1

∣∣−1

p
.

Proof. This follows from the fact that Ẽ(`u) ∼= `×u . �

Corollary 3.10. Suppose that dimGu = 2. If E has split multiplicative reduction
at u, then Cu = [Lu : kv]Cv. If E has non-split multiplicative reduction at u, then
Cu = [Fu : Fv]Cv where Fu and Fv are the residue fields of Lu and kv, respectively.

Proof. Let e and f be the ramification index and the inertia degree of the extension
Lu/kv. Then both e and f are p-powers since Lu/kv is a p-extension.

Let qv and qu be the cardinalities of the residue fields of kv and Lu, respectively.
Clearly qu = qfv , and we write qv = 1 + prs where p - s. By Lemma 3.9, the exact
order of p dividing 1/Lv(E, 1) is pr. If f = pt then

qu = (1 + prs)p
t

= 1 + pr+ts+O(pr+t+1),

and the latter implies the exact p-power dividing qu − 1 is pr+t = f × pr.
Note if E has split multiplicative reduction at u, then the Tamagawa number cu

is given by ordu(∆E), therefore cu = e× cv; we may deduce that Cu = e× f ×Cv.
If E has non-split multiplicative reduction, then cu is coprime to p as we assume
that p ≥ 5, and we are done. �
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Proposition 3.11. Suppose that u - p, dimGu = 2 and E has potential good
reduction at u. Then Cu ≤ [Fu : Fv]2Cv.

Proof. Assume that E has good reduction over the finite extension Mv′ of kv, whose
degree is coprime to p. Then Lu and Mv′ are linearly disjoint over kv, and E has
good reduction over Mu′ := Mv′ · Lu. We have

Cv = |1/Lu′(E, 1)|−1
p = |1 + qv′ − av′ |−1

p = |(1− s)(1− t)|−1
p

where qv′ = #Fv′ , av′ is the trace of the Frobenius on the Tate module and s, t are
the roots of X2 − av′X + qv′ . Suppose [Fu′ : Fv′ ] = pn, so that

Cu = |1/Lu′(E, 1)|−1
p = |(1− sp

n

)(1− tp
n

)|−1
p .

If |1 − s|−1
p = 1, then the same is true for 1 − sp

n

by Fermat’s little theorem;
otherwise, we may write 1 − s = aπ where a, π ∈ OCp with |a|p = 1 and |b|p < 1.
One has the π-adic expansion

1− sp
n

= 1− (1− aπ)p
n

= apnπ +O(pnπ2)

and the above implies |1−spn |−1
p = pn×|1−s|−1

p . Undertaking a similar calculation
with t replacing s, we deduce that

Cu ≤ p2n × Cv = [Fu′ : Fv′ ]Cv.

However Mv′/kv and Mu′/Lu are totally ramified, thus [Fu′ : Fv′ ] = [Fu : Fv]. �

3.4. Control theorem for infinite extensions. Theorem 3.1 deals with finite
extensions L/k. We now introduce an analogous result that deals with infinite
algebraic extensions containing the cyclotomic Zp-extension kcy of k.

Theorem 3.12. Let L/k be a finite extension contained inside K∞, and α′ the
restriction map

Selp(E/L
cy)→ Selp(E/K∞)HL

where HL = Gal(K∞/L
cy). Under hypotheses (A)–(E), both kerα′ and cokerα′

have finite Zp-coranks, and their maximal finite quotients are bounded as L varies.

Proof. We once again consider the fundamental diagram

0 // Selp(E/K∞)HL // H1(GΣ(K∞), B)HL //⊕
v∈Σ Jv(K∞)HL

0 // Selp(E/L
cy) //

α′

OO

H1(GΣ(Lcy), B) //

β′

OO

⊕
v∈Σ Jv(L

cy)

γ′=⊕γ′v

OO

// 0.

It is clear that the same argument as in Lemma 3.2 shows both kerβ′ and cokerβ′

are finite, bounded above independently of L. It remains to consider ker γ′v.

If v - p∞, and Hu = 1, then we have trivially γ′v = 0. If Hu ∼= Zp, we may
apply [HV03, Lemma 3.4] and deduce that ker γv ∼= (Qp/Zp)nv for some integer nv,
depending on the number of primes lying above v. If v|p∞, the results in §3.2.2
still apply, and the theorem follows. �

Remark: The Zp-coranks in Theorem 3.12 are in fact given by mcy
sm + 2×mcy

pgr, in
the terminology of Proposition 2.3.
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4. Bounding Shafarevich-Tate groups

We write MH(G∞) (respectively MH(G∞)∗) for the category of ZpJG∞K-modules
M such that M/M [p∞] (respectively M) is finitely generated over the ring ZpJHK.
Applying [BV11, Proposition 3.4], there is an isomorphism of algebraic K-groups

(4.1) K0(MH(G∞)) ∼= K0(MH(G∞)∗)⊕K0(FpJG∞K).

Note that K0(FpJG∞K) is in fact isomorphic to Z since G∞ is torsion-free (c.f the
discussion at the beginning of Section 3.3 in op. cit.).

For each M ∈ K0(MH(G∞)), we define the µ-invariant µG∞(M) ∈ Z to be
its image inside K0(FpJG∞K). The µ-invariant has been equivalently defined in
[How02] and [Ven02] to be∑

i≥0

rankFpJG∞K
(
M [pi+1]/M [pi]

)
.

Inside G∞, we fix a series of open subgroups G∞ ⊃ G1 ⊃ G2 ⊃ · · · such that
[G∞ : Gn] = Cpdn for n� 0. We shall analyse the growth of MGn [p∞] for a given
M ∈MH(G∞). This will be done in three steps:

(i) We analyse the growth of M [p∞] by studying the variation of µ-invariants;
(ii) We study the module M/M [p∞] ∈MH(G∞)∗ and in particular, upon taking
Hpn -coinvariants, the growth in the resulting λ-invariants as n→∞;

(iii) Lastly, we study the contribution to MGn [p∞] coming from these λ-invariants,
using the techniques of Iwasawa and Mazur.

4.1. Estimations of Zp-torsion modules.

Lemma 4.1. Let M be a finitely generated ZpJG∞K-module that is Zp-torsion. If
M/p is a torsion FpJG∞K-module, then for all i ≥ 0

#Hi(Gn,M) = pO(p(d−1)n).

Proof. This result is based on [Per11, Corollaire 2.4]. Since ZpJG∞K is Noetherian,
there exists an integer r such that M [pr] = M . For all k < r, we may apply
Corollaire 2.3 of op. cit. to obtain the bound

#Hi(Gn, p
kM/pk+1M) ≤ pCkp

(d−1)n

where Ck is some constant that is independent of n. From the short exact sequence

0→ pk+1M → pkM → pkM/pk+1M → 0,

we obtain the inequality #Hi(Gn, p
kM) ≤ #Hi(Gn, p

k+1M) × pCkp
(d−1)n

. Now
prM = 0, hence one deduces that

#Hi(Gn,M) ≤ p(C1+···Cr)p(d−1)n

.

�

Lemma 4.2. Let M and N be finitely generated ZpJG∞K-modules that are Zp-
torsion. If M and N are pseudo-isomorphic as ZpJG∞K-modules, then

#MGn = #NGn × pO(p(d−1)n).
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Proof. This result is based on [Per11, Proposition 2.5]. As in the proof of op. cit.,
there is an exact sequence

0→ A→M
f→ N → B → 0

where A,B are pseudo-null ZpJG∞K-modules. This gives two short exact sequences

0→ A→M → im(f)→ 0,

0→ im(f)→ N → B → 0.

Furthermore, our assumption on the Zp-torsioness means that A and B are also
Zp-torsion. By [Per11, Lemme 1.9], we may apply Lemma 4.1 to both A and B.
From the homologies of the two short exact sequences above, we deduce that

#MGn = # im(f)Gn × pO(p(d−1)n) = #NGn × pO(p(d−1)n).

�

Corollary 4.3. If M is a finitely generated ZpJG∞K-module that is also Zp-torsion,

#MGn = p[G∞:Gn]×µG∞ (M)+O(p(d−1)n).

Proof. Using the main result of [Ven02], there exists a pseudo-isomorphism of
ZpJG∞K-modules

ϕ : M [p∞]→ ⊕ZpJG∞K/pni

for unique integers ni ≥ 0 and µΓ(M [p∞]) =
∑
ni. Therefore by Lemma 4.2,

#MGn =
∏
i

#(ZpJG∞K/pni)Gn × pO(p(d−1)n) = p
∑
ni×[G∞:Gn]+O(p(d−1)n).

�

4.2. Estimations for elements in K0(MH(G∞)∗). Throughout this section, we
fix an element Y ∈ K0(MH(G∞)∗).

Lemma 4.4. Let H′ ≤ H be an open subgroup for which H1(H′, Y ) is finite. Then,
µΓ(YH′) = 0.

Proof. There is a short exact sequence

0→ N → ZpJHK⊕r → Y → 0

for some r ≥ 0 and some sub-module N of ZpJHK⊕r. This induces an exact sequence

H1(H′, Y )→ NH′
δ→ Zp[H/H′]⊕r → YH′ → 0.

Note that Zp[H/H′]⊕r is a free Zp-module, so µΓ(Zp[H/H′]⊕r) = 0. Furthermore,
since H1(H′, Y ) is finite we obtain the finiteness of ker δ as well, which then implies
µΓ(NH′) = 0. As µ-invariants respect exact sequences, we deduce µΓ(YH′) = 0. �

Remark: In [CFKS10, Theorem 3.5] it is shown, under certain hypotheses, that the
condition Hi(H′, Y ) is finite holds for all i ≥ 1.

From now on, we assume that

(U) Either G∞ is a uniform pro-p group, or H is an abelian group.

In general G∞ contains a uniform open subgroup, so we may always achieve (U)
by taking a finite extension of k. Under this hypothesis, let Hn := Hpn , Γn := Γp

n

and Gn := Gp
n

∞ = Hn o Γn.
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Lemma 4.5. Suppose that G∞ is uniform, and both Hi(Hn, Y ) and Hi(Hn+1, Y )
are finite for all i ≥ 1. Then

rankZp(YHn+1) = pd−1 × rankZp(YHn).

Proof. This is proven in [DL15b, proof of Theorem 2.6] for the case d = 3 and n
sufficiently large using the Ritter-Weiss congruence from [RW06]. The condition d ≤
3 was needed to show the uniformity of the p-adic Lie group ([DL15b, Lemma 3.2
and Theorem 4.2]) and that the characteristic ideals of Hi(−, Y ) vanish for all i ≥ 1
(Lemma 2.3 of op. cit.). Since we are assuming that G∞ is uniform and that the
relevant homology groups are finite, the same proof goes through verbatim. �

Corollary 4.6. If G∞ is uniform and Hi(Hn, Y ) are finite for all n� 0 and i ≥ 1,
then there exists some constant τY such that λΓ(YHn) = τY p

(d−1)n for all n� 0.

Proposition 4.7. Suppose that H is abelian. Then YHn is a torsion ZpJΓK-module

whose λ-invariant is given by τY p
(d−1)n +O(p(d−2)n), where τY = rankZpJHK Y .

Proof. From the structure theorem [Bou65, §4, Théorème 4] for finitely-generated
modules over ZpJHK, there is a pseudo-isomorphism

M ∼ ZpJHKτY ⊕ T
where T is a finitely-generated torsion ZpJHK-module whose µ-invariant vanishes.
By [CM81, Lemma 3.3], if M and N are pseudo-isomorphic ZpJHK-module, then∣∣∣ rankZp(M)Hn − rankZp(N)Hn

∣∣∣ = O(p(d−3)n).

Therefore one may assume that Y is of the form ZpJHKτY ⊕ T . Theorem 3.14 of

op. cit. says that rankZp THn = O(p(d−2)n), and moreover

rankZp ZpJH/HnKτY = τY × [H : Hn] = τY × p(d−1)n.

Hence YHn must be of rank τY p
(d−1)n + O(p(d−2)n), which means it is a torsion

module over ZpJΓK, with the λ-invariant as claimed. �

4.3. Estimations in cyclotomic extensions. Throughout this section, we shall
identify the Iwasawa algebra ZpJΓK with the power series ring ZpJXK. For an integer
i ≥ 1, we fix a primitive pi-th root of unity ζpi . We shall write εi = ζpi − 1 and

let ωi and Φi be (1 +X)p
i − 1 and the minimal polynomial of εi respectively. For

i = 0, we set ε0 = 0 and ω0 = Φ0 = X.

Lemma 4.8. Let n ≥ 1 and f ∈ ZpJΓK. We write h = gcd(f, ωn−1) and f = gh.
Consider the projection map

πn : ZpJΓK/(f, ωn)→ ZpJΓK/(f, ωn−1).

We have

(1) rankZp ZpJΓK/(f, ωn−1) = ordεnh(εn);
(2) If f(εn) 6= 0, then kerπn is finite with lenZp kerπn = ordεng(εn);
(3) If f(εn) = 0, then ker(πn) is a free Zp-module of rank φ(pn).

Proof. The first two parts of the lemma are proved in [Kob03, proof of Lemma 10.5(i)].
To show (3), we make use of the isomorphism in op. cit.:

kerπn ∼= ZpJΓK/(g,Φn).
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If f(εn) = 0, we have Φn|f . In particular Φn|g, which implies that (g,Φn) =
(Φn). Therefore, the isomorphism above becomes kerπn ∼= ZpJΓK/Φn, hence the
result. �

Lemma 4.9. Suppose that f(0) 6= 0, then lenZpZpJΓK/(f,X) = ordp(f(0)). Oth-
erwise, ZpJΓK/(f,X) is free of rank 1 over Zp.

Proof. This is immediate from the fact that ZpJΓK/(f,X) ∼= Zp/f(0). �

Combining these two lemmas, we obtain the following proposition.

Proposition 4.10. Let f ∈ ZpJΓK, and for each integer n ≥ 0 set

Mn = ZpJΓK
/

(f, ωn).

One defines hn = gcd(f, ωn), gn = f/hn and chooses I ⊂ {0, 1, . . . , n} such that∏
i∈I Φpi(1 +X) = ωn/hn. Then

(i) rankZpMn = deg(hn);

(ii) If there exists an integer n0 ≥ 1 such that ωn0
|f , then #Mn[p∞] ≤ p

∑
i∈I ordεigi(εi);

Proof. Consider the short exact sequence

0→ kerπi →Mi →Mi−1 → 0,

for i = 1, . . . , n. This tells us that

rankZpMn = rankZpM0 +

n∑
i=1

rankZp kerπi.

Hence, Lemmas 4.8 and 4.9 imply that this is equal to
∑
i φ(pi), where the sum

runs through 1 ≤ i ≤ n, with Φi|hn. This gives part (i).

We now prove part (ii). By assumption, Φ0, . . . ,Φn0 all divide f . The same short
exact sequence above and the previous two lemmas tell us that M0,M1, . . . ,Mn0

are all free Zp-modules and that

#Mn[p∞] ≤
∏
i∈I

# ker(πi)[p
∞].

By Lemma 4.8(2), # ker(πi)[p
∞] = pordεigi−1(εi). If i ∈ I, we have Φi - f , which

implies that gi−1 = gi. Hence the result. �

Corollary 4.11. Let f ∈ ZpJΓK such that f = ωn0
× R for some n0 ≥ 0 and R a

polynomial over Zp whose irreducible factors all have degree < pn0(p − 1). For all
n ≥ n0,

#Mn[p∞] ≤ pn×(deg f−rankZp Mn),

where Mn = ZpJΓK/(f, ωn) is as defined in Proposition 4.10.

Proof. By assumption, Φi - f for all i > n0. In particular, under the notation of
Proposition 4.10, we have hn = ωn0

and gi = R for all i ≥ n0. Hence, rankZpMn =
degωn0 and

#Mn[p∞] ≤ p
∑n
i=n0+1 ordεiR(εi).

By the Weierstrass preparation theorem, we may assume that R(X) = XdegR +
pQ(X) with degR < pn0(p − 1) and Q(X) ∈ Zp[X]. Let i ≥ n0 + 1. Then

R(εi) = εdegR
i + pQ(εi), and since

ordεi(pQ(εi)) ≥ pi−1(p− 1) ≥ pn0(p− 1) > degR = ordεi(ε
degR
i ),
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one deduces that ordεiR(εi) = degR. Therefore,

#Mn[p∞] ≤ p(n−n0)×degR ≤ pn(deg f−degωn0
),

which finishes the proof. �

Definition 4.12. Let f ∈ ZpJΓK. We say that f is almost cyclotomic if f =
ωn0
× R for some integer n0 ≥ 0 and R ∈ ZpJΓK which, up to units, factorises

into a product of irreducible polynomials whose degrees are all < pn0(p− 1). If M
is a finitely generated torsion ZpJΓK-module, we say that M is almost cyclotomic
if it is pseudo-isomorphic to a direct sum

⊕
i ZpJΓK/fi, where each fi is almost

cyclotomic.

The three examples discussed in §2.5 suggest that the characteristic power series
of the Iwasawa modules XE(Kcyc

n ) are ‘almost cyclotomic’ in nature, for these
specimens at least. To establish this requires us to show most p-adic zeroes arise
from finite order characters ψ on Γ for which rankZp

(
H0
(
Γn,XE(Kcyc

n )⊗ψ−1
))
> 0,

while the remaining p-adic zeroes (those which are not of the form ζpi − 1) have
small algebraic degrees over Qp.

In the appendix, we shall show that it is in fact possible to bound the latter by
the ZpJHK-rank of XE(K∞), giving evidence for the almost cyclotomic condition
provided X divides the characteristic ideal of XE(Kcyc

n ) and that the ZpJHK-rank
of XE(K∞) is < p − 1. However, as John Coates pointed out to us, there are
cases where the characteristic power series for the Selmer group over Kn is not
almost cyclotomic – e.g. see [Coa02, Thm 7] corresponding to E = X1(11), p = 5,
K∞ = Q(E[5∞]) where this condition fails.

4.4. Estimations of #X(E/Kn)[p∞]. We decompose K∞ into a series of sub-
extensions k ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ K∞, where each Kn is given by (K∞)Gn .
For a sub-extension L of K∞/k, recall we wrote XE(L) for the Pontryagin dual of
the p-Selmer group Selp(E/L), and assume that XE(K∞) ∈MH(G∞).

Theorem 4.13. Let M = XE(K∞) and write Y = M/M [p∞] ∈ K0(MH(G∞)∗).
Suppose that the hypotheses (A)–(E) and (U) hold, and that Hi(Hn, Y ) is finite
for all i ≥ 1 and n � 0 if H is not abelian. Furthermore, suppose that MHn is
almost cyclotomic for n sufficiently large. Then

(4.2) #MGn [p∞] ≤ pµG∞ (M)pdn+(τY p
(d−1)n−rankZp MGn )n+O(p(d−1)n).

Proof. From the short exact sequence

0→M [p∞]→M → Y → 0

we have

(4.3) #MGn [p∞] ≤ #M [p∞]Gn ×#YGn [p∞].

Using a combination of Lemma 4.4, Corollary 4.6 and Proposition 4.7, there is an
isomorphism of Zp-modules

YHn
∼= ZτY p

(d−1)n+O(p(d−2)n)
p ⊕ Tn

where Tn is finite.

The main result of [Mat03] tells us that the maximal finite Λ-submodule of
XE(Kcy

n ) is bounded by #B(Kcy
n ) ≤ #B(K∞) (which is finite by hypothesis (D)).

Therefore, we deduce from Theorem 3.12 that #Tn is bounded independently of n.
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Our assumption on the characteristic ideals of MHn being almost cyclotomic allows
us to apply Corollary 4.11, and thereby obtain the bound

#YGn [p∞] ≤ p(τY p
(d−1)n−rankZp MGn )n+O(np(d−2)n).

Moreover Corollary 4.3 tells us that

#M [p∞]Gn = pµG∞ (M)pdn+O(p(d−1)n),

thus we can deduce (4.2) from (4.3). �

Corollary 4.14. Under the same hypotheses as Theorem 4.13,

#XE(Kn)[p∞] ≤ pµG∞ (M)pdn+(τY p
(d−1)n−rankZp MGn )n+O(p(d−1)n).

Proof. This follows directly from Theorem 3.1 and the fact that the constant CKn
in the control theorem is pO(pn), which is itself a consequence of hypothesis (C)
and the results in §3.3. �

Remark: One may obtain the weaker estimate

#XE(Kn)/pn = p(ρG∞ (M)n+µG∞ (M))pdn+O(np(d−1)n),

where ρG∞(M) denotes the rank of M over ZpJG∞K, by using Theorem 3.1 together
with [Per11, Théorème 2.1], and without assuming that M is inside K0(MH(G∞))
(nor the assumption on ‘almost cyclotomic’, nor that on the homology of Y ).

If L is a finite sub-extension of K∞/k, we shall write X(E/L) for the Shafarevich-
Tate group of E over L. Assuming the p-primary part X(E/Kn)[p∞] over the field
Kn is finite, from the short exact sequence

(4.4) 0→ E(Kn)⊗Qp/Zp → Selp(E/Kn)→X(E/Kn)[p∞]→ 0

one immediately deduces

#X(E/Kn)[p∞] = #XE(Kn)[p∞].

Moreover Theorem 4.13 tells us that

#X(E/Kn)[p∞] ≤ pµp
dn+(τY p

(d−1)n−rankZp MGn )n+O(p(d−1)n)

where µ = µG∞(M), so in particular

#X(E/Kn)[p∞] ≤ pµp
dn+τY np

(d−1)n+O(p(d−1)n).

We may refine this bound using Theorem 2.7, under suitable conditions.

Suppose G∞ is one of the non-commutative groups considered in Theorem 2.7.
If the weighted tree

(
TG∞ , dE

)
associated to the multiplicity of the Artin represen-

tations inside E(K∞) ⊗ C is in bloom, there exists a rational number δp ∈ (0, τY ]
such that

rankZE(Kn) ≥ δpp
(d−1)n.

By Theorem 3.1, rankZpMGn = rankZp XE(Kn). Because we are assuming that
#X(E/Kn)[p∞] <∞, (4.4) implies that rankZpMGn = rankZE(Kn). Therefore

#X(E/Kn)[p∞] ≤ pµp
dn+τ∗np(d−1)n+O(p(d−1)n)

where τ∗ = τY − δp (we should point out that τY = τE,G∞ in our earlier notation).
To further illustrate, we apply this formula to the various specimens studied in §2.5:
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• If E is one of the elliptic curves studied in Example A, then d = 3, τY = 1 and

δp = p(p2+p+1)
(p+1)3 . Furthermore, (DT2) means that the µ-invariant of Sel(kcy) is 0,

and by [CSS03, Corollary 2.14] this forces µG∞(M) to vanish under our hypotheses
on E and K∞. Hence, we have the formula

#X(E/Kn)[p∞] ≤ p
(2p2+2p+1)np2n

(p+1)3
+O(p2n)

.

• If E is one of the elliptic curves studied in Example B, then τY = δp = 1. Our
formula simplifies to become

#X(E/Kn)[p∞] ≤ pµp
dn+O(p(d−1)n).

• If E is one of the elliptic curves studied in Example C, then d = 3, τY = 1 and

δp = p2−s

p+1 . As in the first example one has µ = 0, so our bound reduces to

#X(E/Kn)[p∞] ≤ p
(p+1−p2−s)np2n

p+1 +O(p2n).

• If E is one of the elliptic curves studied in [DT10], then d = 2 and τY = δp = 1.
Furthermore µ = 0 (as in the case of Example A), thence

#X(E/Kn)[p∞] ≤ pO(pn).

Finally, we remark that similar bounds on X should be possible in the situation
where p 6= 2 is a prime of bad multiplicative reduction; see [DL15a, Section 3.3] for
the formulation of an Iwasawa Main Conjecture in the false Tate curve setting.
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Appendix A. Skew power series rings and characteristic ideals

Let G be a d-dimensional torsion-free p-adic Lie group, given by H o Γ, where
Γ ∼= Zp and H is a uniform pro-p group. Let Λ(?) be the Iwasawa algebra Zp[[?]]
for ? ∈ {G,H,Γ}. Suppose that Γ = 〈γ〉 and H = 〈σ1, . . . , σd−1〉. An element
of Λ(G) if a (possibly infinite) sum of (σ1 − 1)n1 · · · (σd−1 − 1)nd−1 · (γ − 1)n for
some non-negative integers n1, . . . , nd−1, n. We may identify Λ(G) with the skew
power series ring RJX;σ, δK, where R = Λ(H), X is an indeterminant, which can
be identified with γ − 1, σ : R → R is a ring homomorphism and δ : R → R is a
σ-derivation. If r ∈ R,

Xr = σ(r)X + δ(r).

More generally, for n ≥ 1, we have

(A.1) Xnr =

n∑
i=0

(Xnr)iX
i,

where (Xnr)i are elements of R.
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For f =
∑∞
i=0 riX

i, we say that f has finite reduced order if ri ∈ Λ(H)× for
some i ≥ 0. Recall the Weierstrass Preparation Theorem of Venjakob in [Ven03]
states that such f admits the factorization

f = u× f̃

where u ∈ Λ(G)× and f̃ is a polynomial over Λ(H) in X.

Lemma A.1. Let M = Λ(G)/I be a Λ(G)-module that is finitely generated over
Λ(H). Then, there exists f ∈ I that has finite reduced order.

Proof. Let m be the maximal ideal of Λ(H). For each element f ∈ I, we may write
f =

∑∞
i=0 riX

i. Suppose that f does not have finite reduced order. Then, ri ∈ m
for all i.

Note that we have the following isomorphism of Λ(H)-modules:

sH : Λ(G)→Λ(H)N

∞∑
i=0

aiX
i 7→(ai)i=0,1,....

The image of Λ(G)f at the i-th component is∑
k+`=i,k≤j

Λ(H)(Xjr`)k.

as given by (A.1). Since we assume that r` ∈ m for all `. The Λ(H)-module above
is contained in m by [Ven03, Lemma 2.1]. If this is the case for all f ∈ I, the
image of M under sH in Λ(H)N is non-trivial at all components, which contradicts
the fact that M is finitely generated over Λ(H). Therefore, we conclude that there
must exist f ∈ I with finite reduced order. �

Lemma A.2. Let f =
∑n
i=0 riX

i be a polynomial in Λ(G). There exists r′0, . . . , r
′
n ∈

Λ(H) such that

f =

n∑
i=0

Xir′i.

Proof. Note that for all m ≥ 0 and h ∈ H, there exists h′ ∈ H such that γmh =
h′γm by the fact that H is normal in G. Hence the result by identifying X with
γ − 1. �

For all n ≥ 1, we write Hn = Hpn , which is a subgroup of H and H/Hpn is a
p-group of order p(d−1)n by the uniformality of H.

Proposition A.3. Let M = Λ(G)/I be a Λ(G)-module that is finitely generated
over Λ(H) and that I contains a polynomial f in X of degree τ . Then, MHn is a
finitely generated Λ(Γ)-torsion module. Furthermore, its characteristic power series
factorizes into polynomial of degree ≤ τ .

Proof. Note that Λ(G)Hn can be identified with Λ(H/HnoΓ) = Zp[H/Hn]JX;σ, δK.
We fix a set of coset representatives of H/Hn, say {hi : i = 1, . . . , p(d−1)n}. Each
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element of Λ(G)Hn can be written as
∑
i fihi, where fi are some elements of Λ(Γ).

As Λ(Γ)-modules, we have the isomorphism

sΓ : Λ(G)Hn →Λ(Γ)⊕p
dn∑

i

fihi 7→(fi)i=1,...,p(d−1)n .

We know that MHn is a quotient of Λ(G)Hn/IHn , so it suffices to prove our result

for the latter. Since In particular, sΓ(Λ(G)Hn)/sΓ(IHn) is a quotient of Λ(Γ)⊕p
dn

,
it is finitely generated over Λ(Γ).

By Lemma A.2, the image of f under sΓ is a polynomial of degree τ at each
component. Therefore, sΓ(Λ(G)Hn)/sΓ(IHn) may be decomposes as a direct sum
of Λ(Γ)-modules where each summand is killed by a polynomial of degree d. �

Corollary A.4. Let M = Λ(G)/I be a Λ(G)-module that is finitely generated
over Λ(H). Then, MHn is a finitely generated Λ(Γ)-torsion module for all n ≥ 1.
Furthermore, there exists an integer τ , independent of n, such that the characteristic
power series of MHn factorizes into polynomial of degree ≤ τ .

Proof. By Lemma A.1, I contains an element of f that is of finite reduced order.
Venjakob’s Weierstrass Preparation Theorem tells us that we may replace f by a
polynomial in X, say of degree τ . The result now follows from Proposition A.3. �
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