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Abstract This paper introduces Hierarchical Interface-Based Supervisory Control using

the Conflict Preorder and applies it to the design of two manufacturing systems models

of practical scale. Hierarchical Interface-Based Supervisory Control decomposes a large

system into subsystems linked to each other by interfaces, facilitating the design of complex

systems and the re-use of components. By ensuring that each subsystem satisfies its interface

consistency conditions locally, it can be ensured that the complete system is controllable and

nonblocking. The interface consistency conditions proposed in this paper are based on the

conflict preorder, providing increased flexibility over previous approaches. The framework

requires only a small number of interface consistency conditions, and allows for the design

of multi-level hierarchies that are provably controllable and nonblocking.

1 Introduction

Supervisory control theory of discrete event systems [33, 44] is a general framework for the

design and synthesis of reactive control functions. Systems are typically modelled using a set

of finite-state machines interacting in lock-step synchronisation [15, 33], so the framework

is naturally suited for modular decomposition. Since the inception of supervisory control

theory, numerous extensions for modular, decentralised, and hierarchical control have been

proposed to cope with the ever-increasing size and complexity of industrial-scale control

systems.

The simplest approach to modular supervisory control is horizontal decomposition or

decentralised supervisory control [3,32,34,37,42,44], where related components are grouped

together and controlled in isolation. While this approach works well to ensure controlla-

bility, the essential requirement to be nonblocking is not so easy to ensure and often ig-

nored in the early work [5, 22]. It has later been found that natural projection with the

observer property can help to ensure the nonblocking property in decentralised frame-

works [10, 11, 25, 35, 41, 43].
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Alternatively, the system can be decomposed vertically into high-level subsystems that

coordinate the action of other low-level subsystems. This is the idea of hierarchical super-

visory control. The decomposition can be done using hierarchical events [41, 44] or hierar-

chical states [13, 23].

Other approaches [2, 9] apply concepts from software design [6] to supervisory control.

Software engineers have long advocated the decomposition of software into modules or

subsystems that interact via well-defined interfaces [31]. The interfaces are typically the

first part of a module to be designed. They define the contract [29] between a module and its

users, facilitate the re-use and documentation of modules, and form the basis for automatic

formal verification. The software approach can also be applied to automata models [2],

where behavioural interfaces are modelled as automata, and a refinement relation aids in

constructing implementations from the interfaces.

Hierarchical Interface-based Supervisory Control (HISC) [17,19,21] combines the ideas

of hierarchical structuring of control functions in supervisory control with interfaces. A large

discrete event system is decomposed into subsystems, the behaviour of which is defined by

interfaces. After implementation of a subsystem, it is formally verified against its interface

consistency conditions. General results ensure that, if all subsystems satisfy these interface

consistency conditions locally, then global properties such as controllability and nonblock-

ing follow for the combined system. The complete system state space never needs to be

explored, offering substantial savings in computational effort for verification.

Most HISC frameworks are based on a master-slave relationship between subsystems,

with high-level subsystems sending requests to low-level subsystems and waiting for an-

swers to come back [17, 19]. The expressiveness is increased by the addition of low data

events [18]. The framework has also been extended to support synthesis of least restrictive

subsystem controllers [20] and multi-level hierarchies [14].

While the master-slave structure is common in software, it is not always appropriate for

reactive and control systems. As an alternative, projection-based abstractions [10,35,42] do

not impose a master-slave relationship. While these methods are not as structured as HISC,

it is known that a projection that satisfies the observer property [25, 42, 43] can serve as an

abstraction of a subsystem and thus as its interface. With additional requirements such as

output control consistency [10] or local control consistency [30, 35], it is also possible to

ensure maximal permissiveness of supervisors when using synthesis. However, the observer

property is a strong requirement, and it is not guaranteed that an interface exists for every

given subsystem and choice of interface events [25]. The set of interface events may have to

be extended [11] by exposing internal transitions of the subsystem to outside users.

The more recent approach of Hierarchical Interface-based Supervisory Control using

the Conflict Preorder (HISC-CP) [26] does not assume a master-slave relationship either.

Based on results about the conflict preorder [28], interfaces are conflict-preserving abstrac-

tions of the subsystem they represent. The use of nondeterministic interfaces ensures the

existence of interfaces for every subsystem and every choice of interface events, avoiding

the expressive limitations of natural projection [11,25,42] and HISC [18,21]. The more com-

plicated interface consistency conditions can be verified by an exponential conflict-preorder

algorithm [39]. Due to the increased expressive power, the HISC-CP interface consistency

conditions facilitate the design of better hierarchies and allow full flexibility in the construc-

tion of interfaces and subsystems.

This paper is an extended version of [26]. The HISC-CP modelling approach is de-

scribed more clearly using two detailed examples of manufacturing systems, and experi-

mental results demonstrate the feasibility of the approach for a large-scale system. In the

following, Section 2 introduces the background of discrete event systems and the conflict
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preorder. This is followed in Section 3 by the description of the HISC-CP methodology

and interface consistency conditions. Next, Section 4 applies hierarchical interface design

to two practical examples of manufacturing systems, and Section 5 concludes by comparing

the approach to previous work.

2 Preliminaries

2.1 Events and Traces

Event sequences and languages are a simple means to describe the behaviour of discrete

event systems. Their building blocks are events, which are taken from a finite alphabet Σ .

For supervisory control, Σ is partitioned into the set Σc of controllable events and the set Σu

of uncontrollable events. In addition, the silent event τ /∈ Σ is used, with the notation Σ
′
τ =

Σ
′ ∪̇ {τ} for any alphabet Σ

′ ⊆ Σ .

Σ
∗ denotes the set of all finite traces of the form σ1σ2 · · ·σn of events from Σ , including

the empty trace ε . A subset L ⊆ Σ
∗ is called a language. The concatenation of two traces

s, t ∈ Σ
∗ is written as st. Trace s ∈ Σ

∗ is a prefix of t ∈ Σ
∗, written s ⊑ t, if t = su for some

u ∈ Σ
∗. For Ω ⊆ Σ , the natural projection PΩ : Σ

∗ → Ω
∗ removes from traces s ∈ Σ

∗ all

events not in Ω .

2.2 Nondeterministic Automata

System behaviours are modelled using finite-state automata. Supervisors are usually deter-

ministic, but plant models and interfaces may be nondeterministic.

Definition 1 A (nondeterministic) finite-state automaton is a 5-tuple G = 〈ΣG,Q,→,Q◦,
Qω〉 where ΣG ⊆ Σ is the automaton alphabet, Q is a finite set of states, → ⊆ Q×ΣG,τ ×Q

is the transition relation, Q◦ ⊆ Q is the set of initial states, and Qω ⊆ Q is the set of marked

or terminal states.

The transition relation is written in infix notation x
σ
→ y. It is also defined for υ /∈ ΣG,τ

by letting x
υ
→ x for all states x ∈ Q. The transition relation is further extended to traces in Σ

∗
τ

by letting x
ε
→ x for all x ∈ Q, and x

sσ
→ y if x

s
→ z

σ
→ y for some z ∈ Q. For brevity, x

s
⇒ y,

with s ∈ Σ
∗, denotes the existence of a trace t ∈ Σ

∗
τ such that x

t
→ y and PΣ (t) = s. That

is,
s
→ denotes a path with exactly the events in s, while

s
⇒ denotes a path with an arbitrary

number of τ shuffled with the events in s.

For state sets X ,Y ⊆ Q, the expression X
s
→ Y denotes the existence of x ∈ X and y ∈ Y

such that x
s
→ y. Furthermore, x → y denotes the existence of s ∈ Σ

∗
τ such that x

s
→ y, and

x
s
→ denotes the existence of y ∈ Q such that x

s
→ y, and G

s
→ x stands for Q◦ s

→ x. The

same notations are introduced for ⇒.

The prefix-closed language of the automaton G is L (G) = {s ∈ Σ
∗ | G

s
⇒}. Note that

this is defined over the complete alphabet Σ , not just the automaton alphabet ΣG.

When two automata are running in parallel, lock-step synchronisation in the style of [15]

is used.
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Definition 2 Let G = 〈ΣG,QG,→G,Q
◦
G,Q

ω

G〉 and H = 〈ΣH ,QH ,→H ,Q
◦
H ,Q

ω
H〉 be two auto-

mata. Then the synchronous composition of G and H is

G‖H = 〈QG ×QH ,ΣG ∪ΣH ,→,Q◦
G ×Q◦

H ,Q
ω

G ×Qω

H〉 (1)

where
(x,y)

σ
→ (x′,y′) if σ ∈ ΣG ∩ΣH , x

σ
→G x′, and y

σ
→H y′ ;

(x,y)
σ
→ (x′,y) if σ ∈ (ΣG \ΣH)∪{τ} and x

σ
→G x′ ;

(x,y)
σ
→ (x,y′) if σ ∈ (ΣH \ΣG)∪{τ} and y

σ
→H y′ .

In synchronous composition, shared events must be executed by all automata synchron-

ously, while other events (including τ) are executed independently. Under the notation in this

paper, where the languages of all automata are defined over the full alphabet Σ , synchronous

composition of automata coincides with the intersection of their languages. The following

proposition generalises the known result [33] to the case of nondeterministic automata with

silent events considered here.

Proposition 1 For any two automata G and H, it holds that L (G‖H) = L (G)∩L (H).

Proof First assume s ∈ L (G‖H). Then there exist initial states x◦G of G and x◦H of H and a

path

(x◦G,x
◦
H)

σ1→ (x1
G,x

1
H)

σ2→ ·· ·
σn→ (xn

G,x
n
H) (2)

in G ‖H such that s = PΣ (σ1 · · ·σn). Consider a transition (xk−1
G ,xk−1

H )
σk→ (xk

G,x
k
H) on this

path. If σk ∈ ΣG then xk−1
G

σk→ xk
G by Def. 2. If σk = τ then it holds by Def. 2 that xk−1

G

τ
→ xk

G

or xk−1
G = xk

G, which both implies xk−1
G

ε
⇒ xk

G in G. If σk /∈ ΣG∪{τ} then xk−1
G = xk

G by Def. 2,

and thus xk−1
G

σk→ xk−1
G = xk

G by the definition of → for events not in the automaton alphabet.

In all three cases xk−1
G

PΣ (σk)
=⇒ xk

G in G. As this can be shown for all transitions on the path (2),

it follows that x◦G
s
⇒ xn

G, i.e., s ∈ L (G). Likewise, it is shown that s ∈ L (H) and therefore

s ∈ L (G)∩L (H).
Conversely, assume s ∈ L (G)∩L (H). Then there exist initial states x0

G of G and x0
H

of H and paths

x0
G

σ1⇒ x1
G

σ2⇒ ·· ·
σn⇒ xn

G in G ; (3)

x0
H

σ1⇒ x1
H

σ2⇒ ·· ·
σn⇒ xn

H in H ; (4)

such that s = σ1 · · ·σn. Consider a pair of transitions xk−1
G

σk⇒ xk
G and xk−1

H

σk⇒ xk
H on these

paths. There exists paths xk−1
G = y0

G

τ
→ ·· ·

τ
→ yi

G

σk→ yi+1
G

τ
→ ·· ·

τ
→ y

j
G = xk

G in G and xk−1
H =

y0
H

τ
→ ·· ·

τ
→ yl

H

σk→ yl+1
H

τ
→ ·· ·

τ
→ ym

H = xk
H in H, which by Def. 2 implies (xk−1

G ,xk−1
H ) =

(y0
G,y

0
H)

τ
→ ·· ·

τ
→ (yi

G,y
0
H)

τ
→ ·· ·

τ
→ (yi

G,y
l
H)

σk→ (yi+1
G ,yl+1

H )
τ
→ ·· ·

τ
→ (y j

G,y
l+1
H )

τ
→ ·· ·

τ
→

(y j
G,y

m
H) = (xk

G,x
k
H) in G ‖H. This means (xk−1

G ,xk−1
H )

σk⇒ (xk
G,x

k
H) in G ‖H, and as this can

be shown for all transitions on the paths (3) and (4), it follows that s ∈ L (G‖H). ⊓⊔

Hiding is the act of replacing certain events by the silent event τ . This is a simple form

of abstraction that in general introduces nondeterminism.

Definition 3 Let G= 〈ΣG,Q,→,Q◦,Qω〉 andϒ ⊆Σ . The result of hidingϒ from G, written

G\ϒ , is the automaton obtained from G by replacing each transition x
υ
→ y with υ ∈ϒ by

x
τ
→ y, and removing all events in ϒ from ΣG.
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2.3 Supervisory Control

Given plant and specification automata, supervisory control theory [33] allows one to design

a supervisor that restricts the plant behaviour such that the specification is fulfilled. The key

requirements for such supervisors are controllability and nonblocking.

Definition 4 Specification K = 〈ΣK ,QK ,→K ,Q
◦
K ,Q

ω
K 〉 is controllable with respect to plant

G = 〈ΣG,QG,→G,Q
◦
G,Q

ω

G〉 if, for every trace s ∈ Σ
∗, every state x ∈ QK , and every uncon-

trollable event υ ∈ Σu such that K
s
⇒K x and G

sυ
⇒G, it holds that x

υ
→K .

Definition 5 An automaton G = 〈ΣG,Q,→,Q◦,Qω〉 is nonblocking if, for every state x ∈ Q

such that G → x, it holds that x → Qω ; otherwise G is blocking. Two automata G and H are

nonconflicting if G‖H is nonblocking.

Controllability essentially represents safety properties, while nonblocking or noncon-

flicting is the weak liveness property underlying supervisory control theory. A major chal-

lenge in supervisory control is to ensure that large systems remain nonconflicting.

2.4 The Conflict Preorder

Conflict equivalence [28] provides a means to reason about conflicts in a compositional way.

According to process-algebraic testing theory, two automata are considered as equivalent if

they both respond in the same way to all tests of a certain type [8]. Here, a test is an arbitrary

automaton, and the response is the observation whether or not the test and the automaton in

question are nonconflicting.

Definition 6 [28] Automaton G is less conflicting than automaton H, written G .conf H, if

for any automaton T such that H ‖T is nonblocking, G‖T also is nonblocking. G and H are

conflict equivalent, written G ≃conf H, if G .conf H and H .conf G.

The relation .conf is known as the conflict preorder. Its use in compositional reasoning

is based on the fact that it is preserved under the operations of synchronous composition and

hiding. These so-called congruence properties have been established in [28].

Definition 7 Let . be a relation on the set of automata.

– The relation . is a pre-congruence with respect to synchronous composition, if for all

automata G . H and for every automaton T , it holds that G‖T . H ‖T .

– The relation . is a pre-congruence with respect to hiding, if for all automata G . H and

for all ϒ ⊆ Σ , it holds that G\ϒ . H \ϒ .

Proposition 2 [28] The conflict preorder .conf is a pre-congruence with respect to syn-

chronous composition and hiding.

In fact, the conflict preorder is the coarsest nonblocking-preserving preorder with these

congruence properties [28]. It produces the smallest possible conflict-preserving abstrac-

tions, and therefore is used for efficient compositional verification of the nonblocking prop-

erty [12, 27, 40].

Every automaton can be associated with a language of certain conflicts, which contains

all traces that, when possible in the environment, necessarily cause blocking.
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Definition 8 [24] The set of certain conflicts of automaton G is

Conf(G) = {s ∈ Σ
∗ | for every automaton T , if T

s
⇒ then G‖T is blocking } . (5)

If G is nonblocking, then clearly Conf(G) = /0. However, the set of certain conflicts is

not necessarily a subset of the language of the automaton [28]. Certain conflicts are closed

under extension, because whenever the possibility to execute a trace s leads to blocking, then

this also holds when an extension st is possible. Lemma 3 below shows that, if s ∈Conf(G)
then st ∈ Conf(G) for any trace t ∈ Σ

∗, even if st /∈ L (G). Conversely, Lemma 4 shows

that every trace s of certain conflicts has an explanation in the language of its automaton G,

i.e., a prefix r ⊑ s accepted by G that is a certain conflict.

Lemma 3 [24] Let G be an automaton. Then Conf(G) =Conf(G)Σ ∗.

Lemma 4 [24] Let G be an automaton, and let s ∈ Conf(G). Then there exists a prefix

r ⊑ s such that r ∈ L (G)∩Conf(G).

Certain conflicts are closely related to the conflict preorder. The conflict preorder does

not imply language inclusion, i.e., G .conf H does not imply L (G)⊆L (H). A relationship

between the languages of two automata related through the conflict preorder can only be

established when certain conflicts are taken into account.

Lemma 5 [28] Let G and H be arbitrary automata. If G .conf H then

(i) Conf(G)⊆Conf(H);

(ii) L (G)∪Conf(G)⊆ L (H)∪Conf(H).

The following lemma is needed below to prove Prop. 10. It follows from the results cited

above and shows how certain conflicts can be preserved under synchronous composition.

Lemma 6 Let G and H be two automata. If s ∈ Conf(G) and s ∈ L (H)∪Conf(H), it

follows that s ∈Conf(G‖H).

Proof Let s ∈ Conf(G) and s ∈ L (H)∪Conf(H), and let T be an arbitrary automaton

such that T
s
⇒. It is to be shown that G‖H ‖T is blocking. Consider two cases.

If s ∈ L (H), then clearly H ‖T
s
⇒, and since s ∈ Conf(G), it follows that G‖H ‖T is

blocking.

Otherwise s∈Conf(H), and also s∈Conf(G) by assumption. By Lemma 4 there exist

prefixes rG,rH ⊑ s such that rI ∈ L (I)∩Conf(I) for I ∈ {G,H}. Choose r = rI to be the

shorter of these prefixes. Then G ‖ T
r
⇒ and H ‖ T

r
⇒, and since r = rI ∈ Conf(I), this

implies that G‖H ‖T is blocking. ⊓⊔

Exponential complexity algorithms are known to compute the set of certain conflicts

of a given automaton [24] and to test whether two given automata are related through the

conflict preorder [39].
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3 HISC Using the Conflict Preorder

This paper proposes a development methodology of hierarchical interface-first design, which

is similar to common design practises in software engineering [6, 31]. When faced with the

task of developing a large control system, engineers will first identify its key components or

subsystems. Subsystems may be groups of related physical system components or software

components with related functionality.

Having identified the subsystems, the next step is to describe their behaviour. For each

subsystem, the interface is defined to capture the behaviour of the subsystem as it presents

itself to an outside user. Each subsystem is assigned a set of interface events, which it can

use to communicate with other subsystems, and its behavioural interface is specified using

interface automata. The interface defines the sequencing of events and the communication

protocol to be implemented by the subsystem. It forms a contract [29] for the use of the

subsystem and at the same time provides vital design documentation. Ideally, an interface

only describes the external interactions of the subsystem and reveals as little as possible

about its internal workings.

Once the subsystems and their interfaces are defined, the design process is separated,

and control solutions for each subsystem are developed in isolation. The designer for each

subsystem implements the subsystem contract as defined by the interface, using standard

design methods for small-scale discrete event systems. If a subsystem relies on functionality

provided by another subsystem, then that functionality is accessed only through the defined

interface of the other subsystem.

HISC imposes interface consistency conditions [19, 21] to be satisfied by each subsys-

tem, and tools are available to verify these conditions automatically. If the subsystems are

implemented in such a way that each subsystem satisfies its interface conditions locally,

then it is guaranteed that the global system consisting of all the subsystems together has de-

sired properties such as controllability and being nonblocking. This guarantee can be made

without the need to analyse the complete global system. If a subsystem is modified at a

later stage, only its local interface consistency conditions need to be rechecked to ensure the

properties of the global system.

In the following, Section 3.1 describes the structure of subsystems using the formal

concept of Hierarchical Interface Structures. Then, Section 3.2 describes the interface con-

sistency conditions used in this paper for Hierarchical Interface-Based Supervisory Control

using the Conflict Preorder (HISC-CP). Finally, Section 3.3 shows that these interface con-

sistency conditions are powerful enough to capture any kind of behavioural interface.

3.1 Hierarchical Interface Structures

With Hierarchical Interface-Based Supervisory Control using the Conflict Preorder (HISC-

CP), subsystems are arranged in tree-like hierarchy as shown in Fig. 1. Subsystems are mod-

elled recursively as Hierarchical Interface Structures, which contain automata and possibly

other subsystems.

Definition 9 A Hierarchical Interface Structure (HIS) is a 5-tuple

H = 〈r, I,G,S,LL〉 (6)

where

– r ∈ N0 is the rank of H, also denoted by rank(H).
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G22 S22
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I0

S1 G2

H0

H1

H21 H22

H2

Fig. 1 Hierarchical Interface Structure.

– I, G, and S are automata, called the interface, plant, and supervisor of H, respectively.

– LL is a finite set of HIS, called the lower levels of H, such that rank(L) < r for each

L ∈ LL.

Fig. 1 shows the overall structure of an HIS. An HIS contains its interface, plant, and

specification, each of which may be a single automaton or the synchronous composition of

several automata. In addition, an HIS contains zero or more lower-level subsystems, which

are in turn HIS. In the figure, HIS H0 contains its interface I0, plant G0, and specification S0,

as well as two lower levels H1 and H2, where H2 contains two further lower levels H21

and H22. The rank prevents cyclic structures by setting a maximum nesting depth of the

lower-level subsystems. In the figure, the rank of H0 could be 2, if the rank of H1 and H2

is 1 and the rank of H21 and H22 is 0.

Given an HIS H = 〈r, I,G,S,LL〉 with I = 〈ΣI ,QI ,→I ,Q
◦
I ,Q

ω
I 〉, G = 〈ΣG,QG,→G,Q

◦
G,

Qω

G〉, and S = 〈ΣS,QS,→S,Q
◦
S,Q

ω

S 〉, the following additional notations are used.

– I(H) = I is the interface of H.

– LL(H) = LL denotes the lower levels of H.

– ΣI(H) = ΣI is the interface alphabet of H.

– ΣH(H) = ΣG ∪ΣS is the local or high-level alphabet of H.

– Σ(H) = ΣG ∪ΣS ∪
⋃

L∈LL Σ(L) is the global alphabet of H.

– G(H) = G‖
∥

∥

L∈LL
G(L) is the flat plant of H.

– S(H) = S‖
∥

∥

L∈LL
S(L) is the flat supervisor of H.

– F(H) = G(H)‖S(H) is the flat system of H.

The above definitions describe a structure similar to [14, 21], with each subsystem con-

sisting of local plant, specification, and interface automata. The flat system describes the

composition of all the automata in the hierarchy and thus the behaviour of the complete

system. Unlike the above works, interfaces are not part of the flat system. The interface of

an HIS H is understood as an abstraction that can replace H when analysing a larger system

containing H.

For the subsystems to be considered in isolation, they may not share any events except

through the interface alphabets. Unlike previous approaches, HISC-CP allows events to be

shared by different lower levels, if these events are in both interfaces. Strict event locality is

thus sacrificed for increased expressiveness.

Definition 10 An HIS H is well-formed if it satisfies the following conditions.

– ΣI(H)⊆ ΣH(H).
– Σ(L)∩ΣH(H)⊆ ΣI(L) for all L ∈ LL(H).
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– Σ(L1)∩Σ(L2)⊆ ΣI(L1) for all L1,L2 ∈ LL(H) with L1 6= L2.

– Every L ∈ LL(H) is well-formed.

A crucial question in supervisory control is whether a system is controllable and non-

blocking. This amounts to checking whether the flat system of an HIS satisfies these prop-

erties.

Definition 11 An HIS H is globally controllable if S(H) is controllable with respect to G(H).

Definition 12 An HIS H is globally nonblocking if F(H) is nonblocking.

3.2 Interface Consistency

HISC abandons global conditions such as controllability and nonblocking in favour of suffi-

cient conditions checked locally for each subsystem. HISC-CP uses the conflict preorder to

define these so-called interface consistency conditions.

Definition 13 An HIS H is interface consistent if it satisfies the following conditions.

– (G‖S‖
∥

∥

L∈LL
I(L))\ (Σ \ΣI(H)).conf I(H).

– Every L ∈ LL(H) is interface consistent.

An HIS H is interface consistent if its interface is a conflict-preserving abstraction of

the automata in H and the interfaces of its lower-level subsystems. All events not used in the

interface can be hidden as well-formedness ensures that they cannot be used by any other

subsystem. The requirement for the interface to be more conflicting ensures that the non-

blocking property is preserved if the subsystem is replaced by its interface when analysing

another system that uses the subsystem. The following result lifts the interface consistency

condition to the complete flat system containing all lower levels of the hierarchy.

Proposition 7 Let HIS H be well-formed and interface consistent. Then it holds that

F(H)\ (Σ \ΣI(H)).conf I(H) . (7)

Proof Let H = 〈r, I,G,S,LL〉 and I = 〈ΣI ,QI ,→I ,Q
◦
I ,Q

ω
I 〉. The claim is shown by induction

on the rank r of H.

If r = 0 then LL = /0, and it follows directly from Def. 13 that F(H)\ (Σ \ΣI) = (G‖S‖
∥

∥

L∈LL
F(L))\ (Σ \ΣI) = (G‖S)\ (Σ \ΣI) = (G‖S‖

∥

∥

L∈LL
I(L))\ (Σ \ΣI).conf I.

Now assume H has rank r+1 and that the claim holds for all L ∈ LL. It follows that,

F(H)\ (Σ \ΣI) =
(

G‖S‖
∥

∥

L∈LL

F(L)
)

\ (Σ \ΣI)

=
(

G‖S‖
∥

∥

L∈LL

[F(L)\ (Σ \ΣI(L))]
)

\ (Σ \ΣI)

(by Def. 10 as H is well-formed)

.conf (G‖S‖
∥

∥

L∈LL

I(L))\ (Σ \ΣI)

(by inductive assumption and Prop. 2)

.conf I (by Def. 13 as H is interface consistent) ⊓⊔

By Prop. 7, the local property of interface consistency ensures that the interface of an

HIS H is a more conflicting abstraction of the complete flat system of H. If the interface is

nonblocking, this is enough to ensure that the complete system is nonblocking.

9



Proposition 8 Let HIS H = 〈r, I,G,S,LL〉 be well-formed and interface consistent. If I is

nonblocking, then H is globally nonblocking.

Proof Note that F(H) \ (Σ \ΣI(H)) .conf I by Prop. 7. Since I is nonblocking, it follows

from Lemma 5(i) that Conf(F(H)\ (Σ \ΣI(H)))⊆ Conf(I) = /0. This means that F(H)\
(Σ \ΣI(H)) is nonblocking, i.e., F(H) is nonblocking. Thus, H is globally nonblocking. ⊓⊔

If an HIS H has a nonblocking interface, then interface consistency guarantees that the

complete hierarchy below H is nonblocking. Usually it is desired for subsystems to be non-

blocking on their own, and such subsystems can be represented by nonblocking interfaces.

If the topmost system in a hierarchy is not intended for use as part of another system, a

one-state nonblocking interface Itop = 〈 /0,{q◦}, /0,{q◦},{q◦}〉 can capture the requirement

that the global system must be nonblocking.

Prop. 8 does not require that all subsystems of an HIS be nonblocking; this is only

required of the top level. A subsystem could be blocking along with its interface: it then

is up to an upper level to establish nonblocking through interaction with the lower level’s

interface. Such a situation is allowable in this framework and may work fine if the blocking

is corrected by the levels above, but it can make understanding a system more difficult. As

a design guideline, the concept of being locally nonblocking is introduced in Def. 14, which

states that every subsystem is nonblocking on its own. It is not required that an HIS be locally

nonblocking, but if it is, each subsystem is more self-contained and easier to understand. If

the system is interface consistent, then it follows from Def. 13 that the system is locally

nonblocking if all interfaces are nonblocking.

Definition 14 An HIS H = 〈r, I,G,S,LL〉 is locally nonblocking if it satisfies the following

conditions.

– G‖S‖
∥

∥

L∈LL
I(L) is nonblocking.

– Every L ∈ LL is locally nonblocking.

Global controllability is more difficult to prove. It is known that controllability of sub-

systems implies controllability of the global system [5]. This suggests that global controlla-

bility can be ensured if each subsystem is controllable on its own.

Definition 15 An HIS H = 〈r, I,G,S,LL〉 is subsystem controllable if it satisfies the follow-

ing conditions.

– S is controllable with respect to G.

– Every L ∈ LL is subsystem controllable.

Proposition 9 Let H = 〈r, I,G,S,LL〉 be an HIS. If H is subsystem controllable, then H is

globally controllable.

Proof This is an immediate consequence of Prop. 3 and 4 in [5]. ⊓⊔

Unfortunately, the above result does not take interfaces into account. Sometimes, the

following stronger condition is needed to prove global controllability. In the definition that

follows, the interfaces of the subsystems at the next level are added to the plant of HIS H

for the purpose of checking controllability. Thus, the designer of the high-level HIS H treats

G‖
∥

∥

L∈LL
I(L) as the plant model when designing the local supervisor S.

Definition 16 An HIS H = 〈r, I,G,S,LL〉 is locally controllable if it satisfies the following

conditions.
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– S is controllable with respect to G‖
∥

∥

L∈LL
I(L).

– Every L ∈ LL is locally controllable.

The problem with taking the interfaces into account is that the conflict preorder is not

directly linked to language inclusion when certain conflicts are present. Yet, the additional

assumption of the system being nonblocking ensures that interface consistency in combina-

tion with local controllability implies global controllability.

Proposition 10 Let HIS H= 〈r, I,G,S,LL〉 be well-formed, interface consistent, and locally

controllable. If I is nonblocking, then H is globally controllable.

Proof It is shown by induction on the rank r that for all s ∈ Σ
∗ and for all υ ∈ Σu such

that S(H)
s
⇒ xS(H) and G(H)

s
⇒ xG(H)

υ
→, it holds that S(H)

s
⇒ xS(H)

υ
→ or s ∈Conf(I). As

Conf(I) = /0 for nonblocking I, this implies the claim.

If r = 0, then LL = /0. In this case, S = S(H)
s
⇒ xS(H) and G ‖

∥

∥

L∈LL
I(L) = G(H)

s
⇒

xG(H)
υ
→, and since H is locally controllable, it follows by Def. 16 that S(H)

s
⇒ xS(H)

υ
→.

Now assume H has rank r+ 1 and that the claim holds for all L ∈ LL. By assumption

S ‖
∥

∥

L∈LL
S(L) = S(H)

s
⇒ xS(H) = (xS,(xS(L))L∈LL). That is, for each L ∈ LL there exists a

state xS(L) such that S(L)
s
⇒ xS(L), and likewise there exists a state xG(L) such that G(L)

s
⇒

xG(L)
υ
→. By inductive assumption, it follows that S(L)

s
⇒ xS(L)

υ
→ or s ∈ Conf(I(L)). Let

F ′(L) = F(L)\ (Σ \ΣI(L)), and note that F ′(L).conf I(L) by Prop. 7, and therefore

L (F ′(L))∪Conf(F ′(L))⊆ L (I(L))∪Conf(I(L)) (8)

by Lemma 5(ii), for all L ∈ LL. Consider two cases.

If s ∈Conf(I(L0)) for some L0 ∈ LL, then first note that as F(L) = G(L)‖S(L)
s
⇒ for

all L ∈ LL and by (8):

s ∈ L (F(L))⊆ L (F ′(L))⊆ L (F ′(L))∪Conf(F ′(L))⊆ L (I(L))∪Conf(I(L)) .

As this holds for all L ∈ LL, and given s ∈ Conf(I(L0)) it follows by Lemma 6 that

s ∈ Conf(G‖S ‖
∥

∥

L∈LL
I(L)). Since furthermore (G‖S ‖

∥

∥

L∈LL
I(L))\ (Σ \ΣI(H)) .conf I

by Def. 13, it follows by Lemma 5(i) that PΣI(H)(s) ∈ Conf
(

(G ‖ S ‖
∥

∥

L∈LL
I(L)) \ (Σ \

ΣI(H))
)

⊆Conf(I), and since I has alphabet ΣI(H) also s ∈Conf(I).

Otherwise s /∈ Conf(I(L)) for all L ∈ LL, so S(L)
s
⇒ xS(L)

υ
→ and thus F(L)

sυ
⇒ for all

L ∈ LL. It remains to be shown that S
s
⇒ xS

υ
→. Since sυ ∈L (F(L)), it follows from (8) for

all L ∈ LL that

sυ ∈ L (F(L))⊆ L (F ′(L))⊆ L (F ′(L))∪Conf(F ′(L))⊆ L (I(L))∪Conf(I(L)) .

That is, sυ ∈ L (I(L)) or sυ ∈Conf(I(L)) for all L ∈ LL. If sυ ∈Conf(I(L)), then since

s /∈ Conf(I(L)) it follows that sυ is a shortest trace of certain conflicts, and thus sυ ∈
L (I(L))∩Conf(I(L))⊆ L (I(L)) by Lemma 4. Hence, in both cases, sυ ∈ L (I(L)) for

all L ∈ LL. It follows that G‖
∥

∥

L∈LL
I(L)

sυ
⇒, and since S

s
⇒ xS and H is locally controllable,

it follows from Def. 16 that S
s
⇒ xS

υ
→. ⊓⊔

In summary, an HIS is guaranteed to be globally controllable and nonblocking, if the

top-level interface is nonblocking and each subsystem satisfies the local conditions of well-

formedness, interface consistency, and local controllability.
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Well-formedness is a straightforward syntactic condition, and local controllability can be

checked by standard algorithms after construction of the synchronous composition [33]. To

verify interface consistency, it is necessary to determine whether the interface is more con-

flicting than the composition of the automata in the subsystem and the interfaces at the next

level. The conflict preorder can be checked by an exponential algorithm [39]. For improved

performance, polynomial abstraction algorithms [12, 27, 40] can replace the subsystem by a

conflict equivalent abstraction using only the interface events. Then the smaller abstraction

can be compared to the interface by the conflict preorder algorithm.

3.3 Expressive Power

Given Def. 13 of interface consistency, the question arises under which circumstances an

interface satisfying this definition exists. This question can be answered positively for HISC-

CP: an interface exists for every subsystem and choice of interface events.

Proposition 11 Let A = 〈Σ ,Q,→,Q◦,Qω〉 be an automaton, and let ΣI ⊆ Σ . Then there

exists an interface automaton I = 〈ΣI ,QI ,→I ,Q
◦
I ,Q

ω
I 〉 such that A\ (Σ \ΣI).conf I.

Proof Consider I = A\ (Σ \ΣI). As .conf is a reflexive relation, it holds that A\ (Σ \ΣI) =
I .conf I. ⊓⊔

As an interface is an abstraction of its subsystem rather than a part of the system, the

existence of interfaces follows trivially. Every subsystem can serve as an abstraction of itself

and thus as its own interface—after hiding of non-interface events.

Other hierarchical approaches do not have this property. With previous HISC meth-

ods, interfaces must have command-pair [19] or LD-interface [18] structure, and not every

behaviour can be modelled in this way. With projection-based methods, an interface only

exists if the projection to the set of interface events has the observer property [25, 43]. If

these properties are not satisfied, the only way to obtain an interface is to include additional

events in the interface alphabet. Yet, this exposes more information about the subsystem to

its users, which usually is not desired from an interface design point of view. Prop. 11 shows

that HISC-CP does not have such restrictions.

If a legacy subsystem G ‖ S without interface is given, then Prop. 11 can be used to

extract or synthesise an interface for it. While the interface I = (G ‖ S) \ (Σ \ ΣI) from

the proof is typically large, it can be simplified using conflict-preserving abstraction al-

gorithms [12,27,40]. These are polynomial algorithms that, given an automaton, compute a

conflict equivalent abstraction, which is typically smaller than the original automaton. Yet,

the result is conflict equivalent to the subsystem, rather than more conflicting, and it is likely

that simpler and better understandable interfaces can be obtained by manual design.

4 Examples

In this section, the process of hierarchical interface design is applied to two practical exam-

ples of manufacturing systems. All supervisors and interfaces presented were designed man-

ually, and verified using the discrete event systems modelling tool Supremica [1] to satisfy

the interface conditions. If verification of some property failed, the models were modified

and checked again, until all checks passed.
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Cell 1

Polish Part

Cell 2

Attach Case Attach Part

Cell 3

Source Sink

Fig. 2 Simple Manufacturing System.

Interface iface polish:

!complete polish
!err polish

start polish

Plant polish part:

!complete polish

dip acid

!err polish

polish
start polish

start release

Supervisor sequence polish:

dip acid

dip acidpolish

polish

start polish

start release

Fig. 3 Cell 1 — Polishing subsystem.

Section 4.1 describes the complete model of a medium-scale manufacturing system.

This system was designed following the methodology of hierarchical interface-first design.

The interfaces were designed first, and afterwards the subsystems were modelled and veri-

fied until each subsystem passed the interface consistency conditions.

Section 4.2 shows the structure and interfaces for a hierarchical model of the large-

scale AIP manufacturing system. This system was modified from a legacy model [36]. The

hierarchical interface structure was changed to increase the number of hierarchy levels. In a

few cases, interfaces were extracted automatically from the subsystems, but the results were

only used for guidance. All interfaces were created or modified manually.

4.1 Simple Manufacturing Example

The first example demonstrates hierarchical interface design for a simple manufacturing

system. The model presented is inspired by earlier work [4,19,38], and extended to demon-

strate capabilities of HISC-CP. The manufacturing system consists of three cells connected

by a conveyor belt as shown in Fig. 2. Parts enter the system from the source at the left,

and are processed by cells 1, 2, and 3 in this order, before exiting through the sink at the

right. The model of the system is hierarchically decomposed into three low-level subsys-

tems representing each of the three cells, and a top-level system that coordinates these three

cells. In the following, a hierarchical automata model of the simple manufacturing system is

proposed, starting with the three subsystems. In the figures, initial states are marked by an

incoming arrow, and terminal states are coloured black. Uncontrollable events are prefixed

with an exclamation mark (!).

The model of Cell 1 is shown in Fig. 3. Interface iface polish specifies that the high-level

can request the cell to start the polishing sequence (start polish), and the cell will respond

that polishing has completed with success (!complete polish) or failure (!err polish). The

decision about success or failure is made at the very end of the process, so both results are

possible until the end. The interface has the structure of a command-pair interface [19].
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Interface iface part:

τ τ
attach aattach b

!err attach!err attach

finish afinish b

Interface iface repair:

attach a
attach b

!err attach

repair attach

Plant attach part:

!complete a !complete b

!err attach

!err attach

!return part

start a start b

take part

Supervisor coordinator attach:

attach aattach b

!err attach!err attach

finish afinish b

repair attach

Supervisor sequence attach:

attach a

attach b

!complete a

!complete b

!err attach

!err attach

finish a

finish b

!return part

!return part

start a

start b

take part

take part

Fig. 4 Cell 2 — Attach Part subsystem.

Interface iface case:

τ

!complete case

!err case

repair case

start case

Plant attach case:

!attach case
!complete case

!err case

start case

Supervisor coordinator case:

!complete case

!err case

repair case
start case

Fig. 5 Cell 3 — Attach Case subsystem.

The interface behaviour is reflected by plant polish part, which permits polishing ac-

tion between the start polish and start release events, and afterwards reports the success or

failure of the operation. The supervisor sequence polish ensures that the dip acid and polish

actions are executed twice during the polishing sequence.

The interface of Cell 2, shown in Fig. 4, is the synchronous composition of two automata

iface part and iface repair. Interface iface part describes the normal behaviour of the cell:

the high-level coordinator may request to attach a part of type A or B (attach a or attach b),

which may result in successful completion (finish a or finish b), or in an error (!err attach).

Unlike Cell 1, the error is not always possible, and the τ events indicate that a coordinator

interacting with Cell 2 cannot rely on an error to occur. The second interface component

iface repair specifies that, if an error occurs, the cell must be repaired (repair attach) before

it can be used again.

The plant model attach part describes the possible sequencing of low-level commands

in this cell, which is coordinated by the supervisors coordinator attach and sequence attach.

These components ensure the behaviour specified by the interface, i.e., that a request to

attach part A or B initiates the commands for the requested part, and after an error no further

request is possible until the cell is repaired.

Cell 3, shown in Fig. 5, works in a similar way to Cell 2, except that it can only attach

a single type of part. Interface iface case specifies that a start case command may result in

an error (!err case) or in successful completion (complete case), with the error not always
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Plant path flow:

!err case

!err

!finish exit

!part arrive1

!part arrive2!part arrive3

part enter part leave1

part leave2

part leave3 part leave exit

!recognise a
!recognise b

start exit

Supervisor repair:

!err attach
!err case

part enter

repair attach
repair case

Supervisor sequence tasks:

attach a attach b

!complete case

!complete polish

!err attach !err attach

!err case

!err polish

finish a finish b

!finish exit
!part arrive1

!part arrive1

!part arrive2

!part arrive3

part enter

part leave1

part leave1

part leave2

part leave3

part leave exit

!recognise a !recognise b

start case

start exit

start polish

Fig. 6 Top-level Subsystem for Simple Manufacturing System.

possible. After an error, the cell must be repaired (repair case) before it can be used again.

The low-level plant attach case and supervisor coordinator case ensure this behaviour.

Fig. 6 shows the components of a top-level subsystem, which coordinates the three cell

subsystems through their interfaces. The plant model path flow describes the layout of the

manufacturing system as shown in Fig. 2. In front of each cell, there is a part acquisition

unit that automatically stops a part and holds it until given a release command. In front of

Cell 2, there is a part recognition sensor that determines the need to attach part A or B. The

supervisor sequence tasks routes the parts through the cells in the required order, executes

the appropriate commands for the cell and the part type, and then allows the completed part

to leave the system. This model assumes that it is possible to recover from errors in Cells

1 and 2 by repeating the operation that caused the error, while an error in Cell 3 causes

a loss of the workpiece and forces a restart. In addition, supervisor repair prevents parts

from entering the system while Cell 2 or 3 is under repair. The top-level subsystem has no

interface, except for the implicit interface Itop to specify a globally nonblocking system.

The three cell subsystems and the top-level subsystem are easily found to be interface

consistent and locally controllable by Supremica. It follows by Prop. 8 that the complete

system is nonblocking, and by Prop. 10 that the complete system is controllable.

4.2 AIP Automated Manufacturing System

The second example describes a HISC-CP model of a a large manufacturing system, the Ate-

lier Inter-établissement de Productique (AIP). This system was first modelled as a discrete

event system in [4], and later in [17, 36] using HISC and in [23] using state tree structures.
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External loop 4

I/O Station
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External
loop 1
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Transport
Unit 3

Transport
Unit 2

Transport
Unit 1

Fig. 7 The Atelier Inter-établissement de Productique.

CplMvInPallet

MvInPalletType1
MvOutPalletMvInPalletType2

CplMvOutPallet

I(IO) PalletRepd

ProcCpl

ProcPallet

ProcErr

ττ

τ

I(AS3)

LibPallet

PalletRlsd

NoTrnsfELTrnsfCplToEL

TrnsfToEL

TrnsfCplToCL

TrnsfELToCL

ττ

I(TU)

Fig. 8 Interfaces for AIP manufacturing system components.

The model proposed here is a modified version of [36]. The previous two-level hierarchi-

cal was modified to a three-level hierarchy with HISC-CP, and the interaction between the

subsystems was changed in order to reduce polling.

The AIP system coordinates the transport and processing of workpieces in pallets. The

system consists of a central loop and four external loop conveyors as shown in Fig. 7. Pallets

can be transferred between the central and external loops by four transport units. External

loops 1, 2, and 3 each have an assembly station with a robot to process pallets. External

loop 4 is linked to an input/output station to allow pallets to enter and leave the system.

The AIP system is modelled in a three-level hierarchy. The top level is a coordinator

that also controls the central loop. It contains four subsystems controlling each of the four

external loops, which contain two subsystems each for the transport units, the assembly

machines, and the input/output station. The external loops 1 and 2 and their transfer units

and assembly stations are identical, while the other subsystems are all slightly different.

The complete model consists of 13 HIS with 209 automata in total. The reachable state

space exceeds 108 states, and brute-force verification using explicit state enumeration or

BDDs was unsuccessful in Supremica. Figures 8, 9, and 10 show some key interfaces in this

model, which are explained below.
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PalletRlsd
TrnsfCplToCL

TrnsfCplToEL

IsPalletCL

QPalletAtEL

QPalletAtCL

τ
τ

τ

τ

τ

I1(EL4)

TrnsfCplToCL τ

I2(EL4)

Fig. 9 Interfaces for AIP external loop 4.

Interface I(IO) in Fig. 8 describes the behaviour of the input/output station. It can be

requested to transfer a pallet of type 1 or type 2 into external loop 4 (MvInPalletType1

or MvInPalletType2) or to remove a pallet from there (MvOutPallet), and reports back on

completion of the transfer (CplMvInPallet or CplMvOutPallet). Due to its simplicity, this

interface is identical to the command-pair interface proposed in [36].

The assembly stations and transfer units are more involved. Assembly station 3, mod-

elled by interface I(AS3) in Fig. 8, is given a pallet (ProcPallet), which it presents to its

robot for assembly. It then releases the pallet, and reports whether the pallet was success-

fully processed (ProcCpl) or repaired (PalletRepd), or indicates a failure (ProcErr) of the

operation [17]. As the assembly station can decide internally which result occurs, another

subsystem using the component must allow for all the three results to ensure nonblocking.

This is modelled using the τ-transitions, which can neither be controlled nor observed by a

high level using this interface. As the high-level user is unaware of which state the subsys-

tem has entered, it always needs to be prepared for a situation where only one of the three

answers ProcCpl, PalletRepd, or ProcErr is possible, and ensure that termination remains

possible in each case.

The transfer units, modelled by interface I(TU) in Fig. 8, can perform three different

operations. They can be requested to transfer a pallet from their external loop to the central

loop (TransfELtoCL), or to keep a pallet in the central loop (LibPallet). These requests are

followed by replies (TransfCplToCL or PalletRlsd respectively) indicating successful com-

pletion. Alternatively, transfer units can be requested to transfer a pallet from the central to

their external loop (TransfToEL), which may result in success (TransfCplToEL) or failure

(NoTransfEL). Again, τ-transitions in I(TU) model the fact that the transfer unit decides

internally on the success or failure of the operation.

The interfaces in Fig. 8 are adapted from the HISC command-pair interfaces [17] pro-

posed in [36]. However, the original interfaces do not include any τ-transitions and therefore

are smaller. The need for the next higher level to support all possible results of an operation

is expressed in HISC through different event types. For example, event ProcPallet in I(AS3)
is a so-called request event, while ProcCpl, PalletRepd, and ProcErr are answer events.

The HISC semantics [17] requires the high-level subsystem to support all possible answers,

eliminating the need for τ-transitions.

HISC-CP does not distinguish event types, so the answer event semantics is expressed

through nonblocking. Silent τ-transitions linked to additional states show that the low level

may allow only some events. As the high level cannot synchronise on τ , after sending the

request ProcPallet to the assembly station, it must be able to continue with each answer

ProcCpl, PalletRepd, and ProcErr to ensure nonblocking in combination with the inter-

face I(AS3). While this approach uses more states, it is more expressive and makes it possi-

ble to specify exactly which answers must be supported by a high-level subsystem.
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Fig. 10 Interfaces for AIP external loop 3.

The interface for external loop 4 is given by the synchronous composition I1(EL4) ‖
I2(EL4) of the automata in Fig. 9. This external loop simultaneously serves as the source

and sink of pallets.

Interface component I1(EL4) models the basic behaviour pattern of this subsystem. The

high-level coordinator can request a pallet from the external loop (QPalletAtEL), which

may result in completion of transfer (TransfCplToCL) or in no answer at all if no pallet is

available. Alternatively, the high-level coordinator can request a pallet to be moved into the

external loop (QPalletAtCL), which results in a notification (IsPalletCL) if a pallet is present

or no answer otherwise. After the notification, the transfer may succeed (TransfCplToEL) or

fail (PalletRlsd).

As the external loop always accepts new pallets from the input/output station, the high-

level coordinator cannot indefinitely refuse new pallets. This is modelled by the second

interface component I2(EL4), which says that it must always be possible for event Transf-

CplToCL to occur in order to ensure nonblocking. This implies that the high-level coordi-

nator must repeatedly request new pallets through the event QPalletAtEL, or otherwise the

system will block.

The interface of external loop 3 is given by the synchronous composition of the automata

in Fig. 10, more precisely

I(EL3) = (I1(EL3)‖ I2(EL3))\{el, release} . (9)
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Table 1 Experimental Results.

Subsystem |I| |F | States LCont IConsist

AIP 0 17 18,101,632 0.03 s 5.89 s

EL1,EL2 3 8 1,636 0.01 s 1.46 s

EL3 2 6 442 0.01 s 0.24 s

EL4 2 9 1,854 0.01 s 0.19 s

TU1,TU2 1 23 98 0.02 s 0.23 s

TU3 1 27 204 0.02 s 0.22 s

TU4 1 19 152 0.02 s 0.17 s

AS1,AS2 1 16 120 0.01 s 0.14 s

AS3 1 24 106 0.02 s 0.14 s

IO 1 1 2 0.00 s 0.00 s

The internal events el and release are used to model the interface more concisely, but they

are not available for interaction with the next higher level and are not part of the interface.

Interface component I1(EL3) models the basic behaviour pattern of external loop 3. This

subsystem can be requested to check for presence of a pallet (QPallet). This may result in

no answer, if no pallet is detected, or in transfer of a pallet detected at the external loop to

the central loop (TransfCplToCL). Alternatively, if a pallet is detected in the central loop,

first a notification is sent (IsPalletCL). Then the subsystem may decide to reject the pallet

(PalletRlsd) if the external loop is full, or it may send a second notification to signal accep-

tance (TransfToEL). The subsequent attempt to transfer may succeed (TransfCplToEL) or

fail (PalletRlsd).

The second interface component I2(EL3) models the capacity restrictions of external

loop 3. The conveyors of the external loop can only hold six pallets, three pallets travelling

from the transfer unit to the assembly station and three pallets travelling from the assem-

bly station to the transfer unit. The notification TransfToEL is only sent when the external

loop has capacity for another pallet. Once three pallets have been transferred to the external

loop, the first conveyor may be full resulting in the immediate rejection of incoming pallets

(release). Yet, this is not necessarily the case as up to three additional spaces can become

available when pallets are processed by the assembly station, indicated by the τ-transitions

in I2(EL3). Furthermore, automaton I2(EL3) models the restriction that pallets returning to

the central loop can only be detected in the external loop (el) after they have been transferred

into the external loop and processed by the assembly station.

The external loop interfaces cannot be modelled as command-pair interfaces [17], as it

is the case for the assembly station and test unit interfaces. While notification events such

as IsPalletCL and TransfToEL can be modelled using low-data events [18], this technique

does not allow for requests such as QPalletAtCL and QPallet that are not always followed

by an answer. HISC-CP interfaces are more flexible and support such behaviour. This makes

it possible to replace previously proposed two-level hierarchies [17, 36] for the AIP model

by the three-level hierarchy shown here.

Table 1 gives an overview of the subsystems of the AIP model and the time taken by

Supremica [1] to verify them. It shows for each subsystem the number |I| of interface au-

tomata and the number |F | of plant and supervisor automata, as well as the number of

reachable states of the composition of the local plants and supervisors and the interfaces

of the next lower level (States). Then it shows the time taken by Supremica to verify local

controllability (LCont) and interface consistency (IConsist). All experiments were run on

a standard desktop computer with a 3.3 GHz CPU and 8 GB of RAM.

19



The three-level hierarchy model proposed here exhibits the same behaviour as its two-

level precursor [36]. Both models permit up to seven pallets simultaneously in the central

loop, which is the maximum possible while preventing blocking under the capacity restric-

tions. Yet, the two-level hierarchy [36] results in a high level with 2.6 ·1010 reachable states

and on the same computer takes 48 s to verify using BDDs and the HISC tool DESpot [16].

Table 1 shows that all HISC-CP properties are verified easily by Supremica in a matter

of seconds. Local controllability is checked by explicit state enumeration; for the large top-

level subsystem AIP it terminates early due to the absence of uncontrollable events. Interface

consistency is verified by computing a conflict equivalent abstraction of the subsystem using

the heuristic abstraction method [12], and comparing the result to the interface using the

conflict preorder algorithm [39]. This reduces to a compositional conflict check [12] for the

top-level subsystem AIP, which only uses the implicit interface Itop. As all checks pass, it is

concluded that the system is globally controllable and nonblocking.

5 Conclusions

The framework of Hierarchical Interface-Based Supervisory Control using the Conflict Pre-

order (HISC-CP) has been proposed as an alternative approach to hierarchical supervisor

design. The feasibility of the framework has been demonstrated by modelling two manufac-

turing systems.

Previous HISC frameworks such as [18] are based on a master-slave relationship be-

tween subsystems, and for such systems offer good event localisation and more structure

and guidance for system design. This leads to smaller subsystems with smaller interfaces,

which are deterministic and easy to understand.

HISC-CP allows a wide range of interfaces, including nondeterministic interfaces. The

framework is more flexible in how the system is decomposed, potentially leading to smaller

interfaces and subsystems when there is no clear master-slave relationship. The choice of

interface events is not restricted: an interface exists for every subsystem and set of interface

events, although these interfaces may be nondeterministic and include silent transitions.

Experience with modelling the AIP system shows that HISC-CP interfaces are not al-

ways easy to design manually. The need to ensure that the interface is more conflicting

than the subsystem can make it necessary to expose more detail about the subsystem to the

higher levels than desired. Better interfaces may be possible by exploiting the property of

answer events used in earlier HISC approaches [18], which must always be enabled by the

higher levels. Taking this property into account requires changes to the conflict preorder and

associated algorithms, which is an interesting topic of future research.

While previous HISC interface consistency conditions can be checked in polynomial

time [7], the algorithms to check HISC-CP interface consistency are exponential [39], which

may pose challenges when faced with large interfaces. Thanks to compositional minimisa-

tion algorithms [12, 27, 40], this was not found to be a problem for the large AIP model.

These minimisation algorithms can also be used to automatically extract interfaces for legacy

subsystems in polynomial time.

The HISC-CP design methodology employs automatic verification. The designer mod-

els the components of a subsystem, and then uses tools to verify local interface consistency.

If verification is successful for all subsystems locally, it is guaranteed that the global prop-

erties of controllability and nonblocking are satisfied.

While it is possible to synthesise, i.e., automatically compute subsystems satisfying low

data interface consistency [20], it is not clear whether the same can be achieved for the more
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general HISC-CP conditions. It is an interesting question for future research to investigate

to what extent it is possible to synthesise least restrictive subsystems that are less conflicting

than a given interface, and what the properties of such synthesis results would be.
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