
From Event Streams to Process Models and Back:
Challenges and OpportunitiesI

Pnina Soffera, Annika Hinzeb,*, Agnes Koschmiderc, Holger Ziekowd,
Claudio Di Ciccioe, Boris Koldehofef, Oliver Koppg, Arno Jacobsenh,

Jan Sürmelii, Wei Songj

aUniversity of Haifa, Israel
bUniversity of Waikato, New Zealand

cKarlsruhe Institute of Technology, Germany
dHochschule Furtwangen, Germany

eVienna University of Economics and Business, Austria
fTechnische Universität Darmstadt, Germany

gUniversity of Stuttgart, Germany
hTechnical University of Munich, Germany
iHumboldt-Universität zu Berlin, Germany

jNanjing University of Science and Technology, China

Abstract

The domains of complex event processing (CEP) and business process man-
agement (BPM) have different origins but for many aspects draw on similar
concepts. While specific combinations of BPM and CEP have attracted
research attention, resulting in solutions to specific problems, we attempt
to take a broad view at the opportunities and challenges involved. We first
illustrate these by a detailed example from the logistics domain. We then
propose a mapping of this area into four quadrants – two quadrants drawing
from CEP to create or extend process models and two quadrants starting

IThis paper is an outcome of discussions and collaborations that were initiated at the
Dagstuhl seminar 16341 on “Integrating Process-Oriented and Event-Based Systems”

*Corresponding author
Email addresses: spnina@is.haifa.ac.il (Pnina Soffer), hinze@waikato.ac.nz

(Annika Hinze), agnes.koschmider@kit.edu (Agnes Koschmider),
zie@hs-furtwangen.de (Holger Ziekow), claudio.di.ciccio@wu.ac.at
(Claudio Di Ciccio), boris.koldehofe@kom.tu-darmstadt.de (Boris Koldehofe),
kopp@ipvs.uni-stuttgart.de (Oliver Kopp), arno.jacobsen@msrg.org
(Arno Jacobsen), suermeli@hu-berlin.de (Jan Sürmeli), wsong@njust.edu.cn
(Wei Song)

Preprint submitted to Information Systems Wednesday 22nd November, 2017

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



from a process model to address how it can guide CEP. Existing literature is
reviewed and specific challenges and opportunities are indicated for each of
these quadrants. Based on this mapping, we identify challenges and opportu-
nities that recur across quadrants and can be considered as the core issues
of this combination. We suggest that addressing these issues in a generic
manner would form a sound basis for future applications and advance this
area significantly.

Keywords: complex event processing, event-based systems, business
processes, event-driven business process management

1. Introduction

Complex event processing (CEP) and Business Process Management
(BPM) have traditionally been focusing on relatively distinct application
areas. In recent years, newer application scenarios increasingly involve aspects
of both areas. Particularly, in the context of Internet of Things (IoT) [1]
the combination of both areas would be of great benefit and would allow
implementing novel scenarios in smart homes [2], smart cities [3], connected
cars [4], or logistics [5]. BPM and CEP have their origins in the relative
isolation in which their concepts and formalisms were developed. Specifically,
BPM concerns the level of activities within a process (e.g., to ship goods, to
allocate goods) and intends to bring them in an order that follows a (business)
process model. In contrast, CEP is often concerned with lower-level input
events that may relate to activities (e.g., the location of a good via reading
RFID tags at a certain reader). As a consequence, the logic of BPM and CEP
is often defined at different abstraction levels and no explicit link is provided
to bind the two approaches. Furthermore, current process modeling languages
do not support the expressiveness of complex event processing systems and
thus concepts of both domains are specified in two separate computational
environments. To provide mutual benefits for a combination of BPM and
CEP, several challenges need to be attended based on a careful and sound
alignment.

Consider a scenario in the logistics domain. Relevant activities are to store
goods, to manage transportation, to plan the distribution of workloads, and
to handle (order and shipment) documents. Addressing this scenario from
a BPM perspective would involve arranging and coordinating the activities
through a (graphic or formal) representation in a way that meets customer’s

2

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



needs and enabling execution by a logistics management system. Well-known
examples of languages providing a graphical notation are Business Process
Model and Notation (BPMN) [6], Event-driven Process Chains (EPC) [7],
and Petri nets [8]. The execution is typically logged by the BPM system.
The generated event log can later on be mined to gain an understanding
of the actual process, which can thus be improved, become more efficient
and effective. By contrast, CEP often aims at identifying event patterns in
a live trace of events. In particular, CEP offers means to define complex
temporal patterns over events as well as to detect those patterns in live event
streams. It allows the usage of contextual information that supports the
possible choices to enable reaction to occurring events and to monitor ongoing
transportation or shipment.

What generally seems to be two disjoint areas, could greatly benefit from
each other through a convergence of formalisms and methods from both
worlds. While a BPM system would handle, for example, the overall phase of
transportation, the implementation-level monitoring of the truck locations
and the container conditions would be handed to event-based processing.
Furthermore, the CEP component could transmit the status of the current
shipment and inform about bad weather resulting in shipment delays. Thus,
real-time reactions could be allowed for modified events. CEP can thus play a
role in both the monitoring of ongoing events and in real-time decision support,
and extend the model-based BPM with responsiveness to its environment
and flexibility. On the contrary, BPM provides CEP with an order how to
best process the events (e.g., concurrently or alternatively) and thus allowing
to obtain complex-events in a more efficient and effective way. Finally, BPM
and CEP both provide means to define events and relationships between
them. The focus and origins of BPM and CEP are different and the respective
formalisms have different strengths and weaknesses. However, we argue that
leveraging the concepts from both origins in combination can yield benefits
over using the concepts in isolation.

While various attempts have been made in this direction, they mostly
address specific applications, solving specific problems [9–11]. We claim that
a comprehensive view should be taken at possible interaction areas in order
to identify key opportunities, realize benefits, and tackle challenges. Taking
such view, this paper explores challenges that we identified during a Dagstuhl
seminar on “Integrating Process-Oriented and Event-Based Systems” [12] in
August 2016. Existing literature of related work was analysed to define the
scope of our challenges in the context of available solutions. For each challenge,

3

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



the benefits of a mutual combination of BPM and CEP are described. The
two main objectives of this paper are hence to:

∙ Provide an understanding of essential concepts of CEP and BPM and
strengths of both areas, to lay the ground for supporting their automatic
alignment.

∙ Map the directions in which this alignment can be beneficial and the
efforts in these directions. We thereby provide guidance for future
research and highlight open questions.

The remainder of this paper is structured as follows. Section 2 provides
a brief overview of the concepts of BPM and CEP, applies these concepts
to a scenario in the logistics domain, and presents key aspects structured in
four “quadrants” arising from the BPM lifecylce. Sections 3 to 6 describe in
detail each quadrant: using CEP constructs for process mining, enriching
expressiveness of process models, executing business processes via event-
based rules, and deriving event-based rules from process models. For each of
the quadrants, we identify key challenges and existing approaches. Finally,
Section 7 combines the insights from our four quadrants and discusses the core
issues involved in all application areas as well as issues that are relevant only
to some. The paper closes with a brief summary and conclusion in Section 8.

2. BPM and CEP: Background and Interactions

The purpose of this section is to provide sufficient background information
of the areas of BPM and CEP.

2.1. BPM-oriented Systems
Business process models are central artifacts in BPM aiming at documen-

tation, analysis, implementation, and execution of business processes. In a
nutshell, a business process model consists of activities that are executed in
a specific order to achieve a certain goal [13]. Activities can be executed by
software or humans, and can vary in the number of required resources and
the conditions that determine their order. A business process model describes
the three intertwined perspectives of control-flow, data, and resources. The
control-flow comprises the activities of the process and the order in which they
may be executed, distinguishing between regular behavior and exceptions
or compensation. A business process model is typically depicted graphically

4

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



and can be executed by a process engine [13], also called Business Process
Management System (BPMS). The data perspective defines the data elements,
e.g., the order, delivery note, customer id, required for the execution of the
process together with their scope, their visibility and how they are passed on
between activities. The resource perspective clarifies who takes part in which
activities, how work is assigned to resources, and other organizational issues
such as authorization. Given a (business) process model, one can construct
its traces, that is, the possible executions of one process instance or case from
beginning to end or the (temporally ordered) sequence of all events in one log
belonging to one case. Based on these notions, we can define formal criteria of
correctness, most famously, soundness [14]. Such criteria describe acceptable
behaviors in terms of general properties such as deadlock freedom, proper
termination, or bounded resource consumption. Existing analysis techniques
can verify the correctness of a process model with respect to such criteria [8].
During runtime, process monitoring is a mechanism for providing accurate
information of the status of business process instances [13]. This information
can be used to provide feedback to a customer [13] or to generate combined
metrics such as the number of processes carried out per hour [15].

Typically, there exists a gap between process modeling and its execution:
while the process model specifies correct process behavior, the enacted be-
havior may differ. Process mining [16] promotes the understanding of the
actually observed process behavior. Process mining refers to a set of tech-
niques that analyze (mostly historical) event logs in order to derive a model
of the process that created these logs. Generally, one assumes that each event
has a timestamp and belongs to one case (process instance). Process mining
enables discovery of a process model from a log, measuring the conformance
of a log to a model, enhancement of a process model based on logs, and
predictions of process properties [17, 18].

The feasibility of these tasks depends on the quality of the data, that is,
completeness and correctness of the observed events, and properties are given
for each event. Often, the application of pre-processing techniques is required
to improve the quality of a log, and to bridge the gap between the activities
in a process model with events of a log.

2.2. Complex event processing and event-based systems
Complex event processing (CEP) is a core function of event-based systems

(EBS). CEP provides means for applications to react to happenings in form of

5

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



events by triggering the events. Events could be, for example, a new tempera-
ture sensor value, a new RFID read, or more generally a state transition. The
events are typically described in form of an event query, while the reactions
are described in form of event rules (which comprise a query).

CEP offers an abstraction layer that hides the complexity in detecting such
events. The business-level application is only notified about the occurrence
of the event and can concentrate on realizing appropriate actions whenever a
specific event occurs. The basic state of the monitoring infrastructure, like
the kind of sensors available and used for detecting a warning, is no longer
of relevance. Further, the application layer does not need to worry how to
efficiently detect events. This contributes to a significant simplification of the
application by decoupling it from the actual deployment of the monitoring
infrastructure. Adding/removing infrastructure elements can be dealt with
by adapting the behavior of the CEP in detecting events. Not surprisingly,
event processing systems have gained many applications, e.g., in the areas of
monitoring critical infrastructure, logistics, and financial applications [19].

Systems that realize complex event processing typically offer a specific
query language that allows a domain expert to express when for an application
a relevant event occurs. These continuous queries are similar to search queries
but filter streams of incoming events instead of querying static data. Event
streams typically report primitive (atomic) events. Often systems are not
interested in simple events but rather require complex event processing that
relies on the detection of composite events, which are formed by logical and
temporal combinations of events coming from either a single source or many
sources. This typically requires several steps. First, an analysis of the set of
potential event producers is needed, e.g., available sensors or RFID readers.
Second, events of interest are described. Notifications about such events
may then be delivered directly to the application or be used in a subsequent
step to identify a complex event. For instance, in the context of a logistics
scenario a warning may be triggered when a sequence of 5 sensor readings
have each exceeded a critical temperature threshold in the medical container.
Likewise, a warning may be triggered if a cooling box was open for longer
than 5 minutes.

The identification of specific queries and their appropriate abstraction
level typically requires both expert domain knowledge and knowledge of CEP
mechanisms. Support for this process of abstraction and formalization is an
area of ongoing research with contributions ranging from automatic query
generation [20, 21] to supportive CEP query interface [22, 23]. However, this

6

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Table 1: Comparison of BPM-oriented systems and event-based systems

Event-based / CEP Process-oriented / BPM

Construct Event Activity

Goal Detection of event patterns Documentation, analysis, execution,
monitoring, and improvement of busi-
ness processes

Methods Query languages for event specification;
Methods for the efficient detection of
events; Support for distribution, migra-
tion, parallelization; Event dissemina-
tion

Designing graphical or formal process
models; Formal analysis to verify the
correctness of a process model; Pro-
cess mining to discover a process model,
measure the conformance of a log to a
model, and enhance a process model
based on logs; Monitoring and predic-
tion for process instances

Strength Decoupling of producers and con-
sumers of events; Hiding details of low
level event streams and the infrastruc-
ture which is subject to monitoring;
Support for the efficient detection of
complex events

Understanding and analysis in business-
meaningful terms (e.g., activities); Top
down as well as bottom up (modeling)
approaches; Ability to prescribe and ex-
ecute behavior; Understanding the dif-
ference between specified and observed
process behavior

is outside the scope of this article.
CEP query languages typically offer constructs to select event streams of

relevance that restrict the set of (primary) events and patterns that could
detect a new (complex) event. Various event composition languages exist,
most of which support a basic set of pattern operators such as sequence of
events, enumeration, and temporal windows over sets of events. A detailed
discussion of event languages, algebras and their semantics is described by
Hinze and Voisard [24]. From the description of the query model specific
operators can be compiled that allow processing event streams at run-time.

While the query language provides constructs for the specification of events,
a CEP engine supports the efficient detection of specified event patterns. This
comprises in particular the following aspects: First, CEP engines offer support
to access event streams that are required to detect a specific event pattern.
Second, it provides means to efficiently execute operators that are needed to
detect events. Third, it provides means to define the event query. Approaches
towards efficient CEP engines offer, in addition to the detection of events,

7

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



methods for the distribution, migration of state as well as parallel execution,
and therefore allow for highly flexible processing of event streams that, for
instance, allows to minimize bandwidth consumption, the throughput of
events that can be processed by a CEP engine, or the latency it takes to
detect a complex event. Table 1 provides a summary of the main issues
discussed regarding BPM-oriented systems and event-based systems.

2.3. Application of BPM and CEP concepts
This section introduces a running example to demonstrate challenges

and opportunities of combining BPM and CEP. The example concerns the
shipment of medicines from an industry warehouse to the nearest hospital. The
shipment has constraints both in time of consignment1 and in environmental
conditions of the goods during transportation. For simplicity, we consider
three main phases (see Figure 1), namely (i) the preparation phase, with
shipment documentation, reservation of the truck, and the loading of the
goods; (ii) the transportation phase referring to the physical movement of
the truck and the conditions in the container, and (iii) the final consignment
phase, consisting of arrival, unloading and handling of shipment documents.

Order received

Prepare
transportation Transport goods Finalise

consignment
Order consigned

Figure 1: A logistic business process model

Figures 2 to 4 refine our logistic business process model. Three main
actors are considered in this scenario, namely: (i) the transportation and
logistics planner, (ii) the truck and truck driver, who takes part in the
physical transportation of the goods, and (iii) a monitoring system as an
intermediate layer. The monitoring system is meant to be the novel actor
that we envision in the overall event-driven process architecture. It serves as
the middleware between the process-driven execution and the event-driven
retrieval of information (gathered upon the process execution).

In the first activity, “Prepare transportation” (see Figure 2), the planner
starts the process by reserving the truck for the shipment. Thereupon, the

1A consignment is the delivery of the smallest portion of goods that is necessary to
track and trace after bundling it for shipment.

8

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Lo
gi

st
ic

s
co

m
p

an
y

C
o

n
tr

o
lt

o
w

er

Control tower

Reserve truck
for shipment

Send documents
listSend activity list

Pick-up point
reached by

truck

Transport control
ready to start

Tr
u

ck

Truck

Collect
documents

Record activity
list

Reservation received

Transmit
confirmation info

Drive to pick-up
point

Pick-up point
reached

Transport
ready to start

M
o

n
it

o
ri

n
g

sy
st

em

Monitoringsystem

Record
transport

information

Shipment info

Truck ID

Record activities'
attributes

Pick-up point
reached by

truck

Transport
monitoring

ready to start

Figure 2: The “prepare transportation” sub-process

shipment information such as ID, estimated times of departure and arrival,
etc., are registered in the monitoring system. On the other side, the truck
driver communicates the truck ID to the system. The provided coordinates
make it possible to link the information stemming from the truck to the
shipment, that is the main business object of the process. The details about
the list of activities to be carried out, such as the transmission of documents,
the gates at which picking up the container and release it, etc., are given
directly to the truck driver and recorded in the system as well.

In the second activity, “Transport goods” (see Figure 3), the driving
starts after loading the container, in order to consign the goods at the
expected destination. Subsequent notifications of the reached positions are
automatically communicated via transponder from the truck to the monitoring
system, which interprets the positional updates as stages of the ongoing
transportation. The planner is thus kept informed on the evolution of the
task, until the container is unloaded. We remark here that the monitoring
system is meant to transform low-level input events such as the positional
updates into more informative events for the planner, such as the beginning,
progress stage reached, and end of the transportation.

9

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Lo
gi
st
ic
s
co
m
p
an
y

C
o
n
tr
o
lt
o
w
er

Control tower

Receive
transport

notifications
Loading
ended

Transportation
started

Transportation
ended

UnloadingendedTransport
control
started

Transport
control
ended

Tr
u
ck

Truck

Load container Drive Unload container

Transport
started

Container
unloaded

M
o
n
it
o
ri
n
g
sy
st
em

Monitoringsystem

Monitor
transportation

Transport
monitoring
ended

Transport
monitoring
started

Position
updates

Figure 3: The “transport goods” sub-process

Finally, the confirmation of the receipt and other documents are transmit-
ted from the truck to the planner and the process fragment terminates. The
third activity, “Finalise consignment” (see Figure 4), sees the two actors of
truck and logistics company exchanging the final documents to confirm the
consignment. The monitoring system is no longer involved.

In the example, the domains of CEP and BPM can mutually benefit in
several ways:

∙ In a top-down view, the process model would define the activities and
constraints, and determine the events that are to be monitored to ensure
quality of service. Thus, it allows for an effective control of the ongoing
shipment and processes by processing the status of current shipments.

∙ In a bottom-up view, the available event monitoring data follows the
process model thus allowing for an accurate estimation of the time of

10

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Lo
gi
st
ic
s
co
m
p
an
y

C
o
n
tr
o
lt
o
w
er

Collect
consignment
documents

Shipment
confirmed

Tr
u
ck

Shipment
ended

Send
consignment

report

Figure 4: The “consignment phase” sub-process

Table 2: BPM systems and complex event processing in the running example

Activity Processing the order; Transportation of medicine; Adjusting the
temperature in the box where the medicine is shipped

(Complex) event A movement of the truck determined by a position update; A
good is loaded on a truck, e.g., based on a RFID reading

Process Model Shipping of medicine from a warehouse to a hospital while meeting
quality constraints

Event pattern Determine outliers in transportation and arrival time

Complex event
processing

Trigger the event of a warning when the temperature of the shipped
medicine has reached a critical threshold

consignment.

Exemplary BPM and CEP elements that can be found in this scenario
are listed in Table 2.

2.4. Mapping combinations of BPM and CEP
BPM and CEP follow different purposes and rely on conceptually different

foundations, which generally hamper their seamless integration. The scenario
above shows how both areas can gain from each other synergetically. Overall,
going from raw events to process models and backwards, we identified four
specific areas where the combination of process models and CEP forms
potential opportunities and challenges. We classified them with respect to

11

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



the four phases of the BPM lifecycle [13] into four quadrants of a map, see
Figure 5.

enactment

evaluation

design &
analysis

configuration

Q2: Enriching expressiveness 
of process models
challenge: 
support of expressiveness of 
event-based systems in 
process modeling languages

opportunity: 
union of computational 
environment of both domains

From Event Streams to Process Models

Q4: Executing business 
processes via CEP rules
challenge: 
transformation of process 
models into CEP rules

opportunity: 
advancing business 
process execution

Q3: Deriving CEP rules from 
process models
challenge: 
derivation of CEP rules from 
process models

opportunity: 
advancing business process 
monitoring

From Process Models to Event Streams

Q1: Using CEP constructs for 
process mining
challenge: 
perform process mining on
sensor events

opportunity: 
use CEP to identify activities
from sensor events

Figure 5: Four key quadrants of combining BPM and CEP concepts

In our map, two quadrants (Q1 and Q2) take the direction from CEP to
BPM, and are related to the phases of evaluation and of design & analysis of
a process model. In the BPM lifecycle the evaluation phase addresses the
evaluation of process models using business activity monitoring and process
mining techniques. The design & analysis phase tackles the creation and
validation of business process models. From an event streams to process
model perspective the quadrants Q1 and Q2 examine the idea of extending

12

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



or creating process models based on CEP and their concepts. Q1 addresses
how process models can be created or enhanced through the use of complex
events in process mining. Q2 is concerned with enriching the expressiveness
of process models through event-based concepts, so that the process model
may also benefit from language features available in CEP.

The other two quadrants of the map (Q3 and Q4) take the direction
from process models to CEP, and relate to the phases of configuration and
enactment. The configuration phase within the BPM lifecycle is about
technical realization of a process model, including setting specific parameters
to tie implementation details to the higher-level model. Therefore, Q3 is
related to this phase, exploring how to create monitoring CEP queries and
how to derive CEP patterns from a process model. The enactment phase is
related to the execution of process models. Q4 is about executing a process
model through a CEP engine, namely, injecting events and managing event
streams in order to realize a business process.

The classification according to the BP lifecycle shows that we consider
challenges and opportunities for each phase.

The next sections will discuss each of the four quadrants in turn. Based
on our observations, we then discuss the core issues and challenges of the
relationship between process models and CEP.

3. Q1 – Using CEP constructs for process mining

This section examines the idea of using CEP constructs to bridge the gap
between abstraction levels of event logs. We focus on two classes of event logs:
(i) primary event sources, e.g., event logs based on sensor data and (ii) event
logs fulfilling the requirements for process mining. Process mining algorithms
expect event logs at a certain level of abstraction to produce (business) process
models. With primary event sources this abstraction can be obtained only
with great effort. In this context, we focus on the expressiveness of CEP
languages for defining complex event patterns rather than on the real-time
execution with CEP.2

Usually, process mining works with recorded events or real-time data of
information systems (e.g. truck loading ended) and not with low-level raw
data (e.g. raw RFID readings). CEP technologies and the corresponding

2Note that CEP is likely run over log files and not over streams in this scenario.

13

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



high level languages are designed to support the inference of complex events
from raw (input) events. Therefore, the use of complex event processing
for process mining has the potential to bridge abstraction levels of events
meaning that process mining techniques can also process raw data. On the
contrary, process mining techniques could be valuable to IoT data allowing
to derive assumptions about the appropriate placement of sensors.

3.1. Motivation and Research Question
To demonstrate the potential of combining CEP technologies and process

mining, we consider the item observation in our running example. The
example includes loading and unloading of a truck. These activites can be
observed by RFID readers and other sensors and reflected in the IT system.

However, the read events that RFID readers and sensors capture are
distorted by interferences and other physical effects in the wireless communi-
cation [25] as well as by noise and errors in the measurement process itself
(e.g. misconfiguration of readers). Hence, instead of a clean event like “person
entered loading area A”, the system receives a noisy sequence of sensor ob-
servations. For instance, Jeffery et al. [26] demonstrate in their experiments
how RFID readers and motion sensors capture events when a person with an
RFID tag periodically leaves and enters a room. Their experiments show that
both sensor types may create events, even when no person is present or fail
to report events when a person is present. Therefore, there is a non-obvious
mapping between a raw sensor read and the presence of a person.

The experiments by Jeffery et al. [26] show how events like “product
placed on shelf B” or “person entered work area A” may enter the system.
Approaches for process mining typically assume that the analyzed log files
directly reflect activities on the abstraction level of the generated process
model. They typically assume that the events in the corresponding logs are
on a suitable level of abstraction, i.e., they reflect the activities in the business
process. From that perspective, “product removed from a shelf” and “product
placed on shelf B” or “person active in work room A” may reflect activities
that are suitable inputs for mining a process. However, events that enter real
world applications are often captured on a much lower level of granularity,
in particular with the ongoing rise of IoT. Bridging such gaps is at the core
of CEP query languages. Also more data sources with indirect reflections
of business activities become available. A specific activity may often not
be directly observed but needs to be inferred indirectly from a multitude of
observations. For instance, one may need to infer the activity of loading a

14

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



truckraw input streams, so that process mining can incorporate the loading
activity in the overall process model. This may involve cleaning of noisy
RFID signals and correlating data from multiple RFID readers and/or light
barriers. CEP languages hold many constructs that aid such tasks.

The combination of CEP techniques and process mining has the following
benefits:

Improving the quality of event logs for process mining. IoT data
sources often include noisy and erroneous inputs. Instead of filtering in the
stream, the integration of CEP and process mining allows deferring the error
correction with CEP to the mining process (no raw information lost). Event
patterns may be mined to derive the pre-processing of events.

Bringing context into CEP event logs. Process mining algorithms
intend to find behavioral relationships (e.g., sequence, alternative, parallel)
between activities and thus bring activities into context (they define their exe-
cution order). The application of techniques for finding behavioral properties
on IoT data would enhance CEP engines. CEP events could be considered in
context (e.g., due to railroad conditions, the track is still unloaded).

Providing a human-understandable interface for event streams
using process mining visualizations. Process mining derives a process
model from traces providing a structured representation of activities. To
visually recognize any changes of activities it is common to use Dotted-
Charts [27]. Such a chart representation can be used to event streams to
improve the outliers identification.

Following these potential benefits we derive the following research question:
How to enrich process mining with CEP techniques to identify meaningful

business (high) level events out of low level (raw) events and how to benefit
from CEP techniques to automate low-level logs pre-processing techniques?

3.2. Existing work related to Q1
To date, there exist neither methods for coherently combining CEP and

process mining into end-to-end solutions nor a well established tool chain.
However, several works address parts of the problem. Related approaches
stem from a range of different domains and a complete review is beyond the
scope of this paper. Therefore, we discuss relevant approaches along selected
examples of existing work.

In general, we see four main steps in generating business process models
from sensor event logs or applying process mining to sensor data to bridge
level of abstractions. These are: (1) Cleaning and pre-processing of sensor

15

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



data, (2) abstracting events, (3) enriching with context information, and (4)
finding recurring patterns to derive processes.

Cleaning and pre-processing of sensor data. Many works demonstrate the
suitability of CEP and stream processing and related constructs for detecting
business relevant events in low level data streams [28–34]. Moreover, a
considerable amount of work exists on using CEP and middleware with CEP
constructs related to cleaning and pre-processing of IoT data [25, 26, 28, 33].
These works support the technical process of deriving complex events from
low level inputs with operations like filtering, aggregation and correlation.
However, they do not address how to create process models from the results.
Initial approaches can be found that apply process mining to raw data. For
instance, a transformation approach is discussed by van Eck et al. [35] applying
process mining techniques to sensor data. The available approaches have in
common that they intend to map sensor data to activities beforehand.

Abstracting events. The abstraction of events bridges between raw low-level
event logs (e.g. sensor observations) and events at process level (e.g. loading
a container). CEP is well suited for executing the logic that facilitates this
abstraction (i.e. as CEP rules or queries). However, devising the abstraction
logic is a different concern. A number of works at the intersection of CEP
and machine learning exists, which target this particular aspect. [36] describe
a general framework called iCEP for automatic generation of CEP rules.
Tax et al. [37] extract features from a window of events to train a model
for abstraction with supervised learning (i.e., conditional random fields).
Considering differences in abstraction levels of process models [38], Smirnov
et al. [39] transform a process model into a simplified version on a higher
level of granularity, while preserving certain properties of the original process
model. The abstraction is performed either by aggregation or elimination
of labels of process activities [40] or process elements [41]. Works of this
type are examples for research that addresses how to generate abstraction
logic, if labels for training abstraction models are present. However, such
approaches are orthogonal to approaches that leverage knowledge of domain
experts who can provide explicit abstraction rules (e.g., CEP constructs). In
contrast to using e.g., CEP constructs for abstraction, most machine learning
techniques yield abstraction logic that is hard to comprehend by humans. The
suitability of using machine learning or encoded expert knowledge depends
on the requirements of the application domain. Baier et al. [42, 43] exploit

16

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Table 3: Summarizing capabilities of process models and CEP regarding the main issues
discussed (Q1)

Issue Process Mining CEP Application to example

Cleaning
and prepro-
cessing of
sensor data

NA (not a core concept) Supported in CEP by fil-
ter rules and possibly the
combination with window
constructs

the location of a good via reading RFID
tags at a certain reader is not distorted
by interferences and no noisy sequence
of sensor observations are delivered.

Abstracting
events

Aggregation and elimina-
tion on the level of process
activities

Supported through output
definition of CEP queries
on any level of abstrac-
tions

Fitting sub-processes of the logistic busi-
ness process model can be derived from
event logs.

Enriching
with
Context In-
formation

Support through align-
ment of ontological
concepts to activities or
training data

Execution supported by
integration of knowledge
bases and joining streams

The interference of exogenous factors
(e.g., temperature, humidity, etc.) on
transportation monitoring are under-
stood.

Finding
Recurring
Patterns to
Derive
Processes

Process mining uses case
identification as a basis

Detection of events about
the same object as basis

Tracing object in a shipment across dif-
ferent levels of aggregation (i.e. be-
fore and after beeing packed in a con-
tainer/loaded on a truck)

the comparison of the respective behavioral relationships to link the events in
the log to the activities in the process model. Behavioral relationships are
used to define the constraints for a Constraint-Satisfaction Problem (CSP),
which automatically defines the matching. When ambiguities cannot be
solved, the knowledge of process analysts is required to discriminate to which
activity an event should be associated. The approach has been then extended
in [44] by including natural-language processing techniques to compare the
labels of events and activities in the model. Similarly, Mannhardt et al. [45]
rely on behavioral activity patterns that capture domain knowledge and tie
events to activities. Then, they align logged events to process activities.
Beyond the question of how to define abstraction logic, abstraction techniques
are concerned with the execution model and implementation of the logic.
Stocker et al. [46] present an approach that explicitly enables the use of
CEP and machine learning based abstraction. They propose a framework
with four technical layers that explicitly includes CEP and machine learning
as alternatives for implementing the abstraction logic. While Stocker et al.
position their work in the context of situational awareness, it shows concepts
for bridging abstraction levels with CEP that relate to business processes as
well.

Enriching with Context Information. Context enriching in BPM can be
implemented through ontologies. Sztyler et al. [47] construct an activity

17

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



ontology in the context of health-care. Alternatively, the use of a time-
based label refinement is suggested [48]. Further approaches train running
instances at run-time with past instances [49] or use context-related execution
scenarios [50, 51] in order to enrich the context. However, these approaches
do not address the identification of behavioral relationships between event
data. Instead, context information is only used for the selection of appropriate
events.

Finding Recurring Patterns to Derive Processes. A main assumption un-
derlying process mining techniques is that events have an attribute, which
uniquely identifies the process instance they relate to, namely the case ID [16].
Event-based systems may support identification of case IDs though incorpo-
ration of knowledge bases and correlation of events. An example is RFID
middleware that enriches raw observation events with information about the
corresponding process [33].

In Table 3 we provide an overview how CEP and process mining techniques
support the above discussed steps. The table stresses upon the fact that CEP
and process mining do not support all aspects individually, but rather cover
the whole spectrum in combination.

4. Q2 – Enriching Expressiveness of Process Models

This section explores the challenges and opportunities of using CEP
concepts to enrich the expressiveness of process models. We use our running
example (see Section 2.3) to highlight the gaps between process languages
and practical needs, and highlight the opportunities for CEP involvement.

4.1. Motivation and Research Questions
Languages for business process modeling are devised to orchestrate services

and to involve humans for the enactment of a process. They offer control-flow
constructs to wire the activities together. They further offer the opportunity
to include in the workflow the raising (throwing) and elaboration (catching)
of events, including the handling of exceptional circumstances. However, the
common standard modeling notations hardly utilize advanced models and
features in dealing with events. For instance, the business process execution
language Business Process Execution Language (BPEL) [52] treats events as
messages and does not provide the modeler with the opportunity to define
complex events within the model [53]. In contrast, BPMN explicitly includes

18

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



the notion of events such as timers, signals or exceptions, but lacks the
capability of handling or defining complex events. Thus, the expressiveness
of workflow languages is limited with regards to event descriptions.

Capturing of and reaction to complex events. We consider again our running
example of medical transportation. Let us assume that the transportation
ended, but the current time exceeds the expected time of arrival by more
than a predefined threshold. We now wish to model that when a delay occurs,
a compensation action needs to be triggered. To date, process modeling
languages do not support machine-readable statements that allow for an auto-
matic identification of the arrival of the truck at destination: the consecutive
deceleration, stop, and switch-off of the engine in the surroundings of the
destination would be a complex event signaling it. Although expressible as
a CEP query, the inclusion of such extension points towards complex event
processing is not a standardized. Currently, even defining the criteria to
classify the completion of the activity as late is not part of the standard
process modeling capabilities, let alone the exact way to capture such an
exception from low-level input events. Text annotations may be used as a
workaround [54]. However, those are not meant to be processed by a BPMS [6].
Alternatively, event-driven gateways may be used, which are triggered by a
designated event that receives a message generated by a CEP engine [6, 55].
In this case, the required expressiveness is not supported by current process
modeling languages.

As a consequence, the CEP queries and process models are specified in
two separate computational environments and no explicit link is provided to
bind the two. Bringing the CEP specification to the business process model
would decrease such a gap. This would ensure that the person modeling the
business process is in control both of the higher level of abstraction of the
process model, and the related concrete information extracted from low-level
input events. Using such an approach could enhance the expressiveness of
the process model.

Managed begin and end of monitoring. From a practical perspective, we can
see that CEP is not required to come into play throughout the whole execution
of the process. For example, the process might not need the events processing
right from the beginning, but rather once they become of interest. In our
logistics example, the location updates of the truck may be of little interest
before the truck has been actually assigned to the shipment. Furthermore, the

19

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



event monitoring may not be needed for the whole duration of the modeled
process. In our example, the monitoring of the truck’s location updates is
only of interest until the unloading of the container is finished.

Engaging CEP monitoring only when needed by the process (i.e., on
demand) would allow workload reduction in the CEP engine. Therefore, the
CEP engine needs to be aware of when the event monitoring is required by
the process.

Dynamic assignment of event parameters. Finally, CEP queries serving for
event monitoring need to support parameters that can be specified not
at design time (i.e., process modeling time), but rather kept unassigned
until the process instance is unfolding, hence at run-time. In our example,
such parameters could include for example the truck identification number,
the container number, the pick-up point and the destination point, the
estimated times of departure and arrival. In light of the aforementioned
workload reduction for CEP engines, only the trucks actually involved in the
shipment should be monitored in the scope of an ongoing process. However,
realizing such late binding of values and parameters in CEP engines requires
instantiation of respective parameter values and invocation of corresponding
information sources at runtime. CEP languages typically provide constructs
that allow for the definition of abstract query templates which determine
parameters as part of their execution. Furthermore pub/sub mechanisms
allow for invocation of event sources at runtime. However, it remains a
challenge of integrating CEP with BPM to seamlessly derive the concrete
CEP queries that realize the late binding to process instances. For instance,
in our running example a filter may be implemented to select relevant trucks
based on the information carried by events about trucks reservations from
the logistics company. A domain expert can write and deploy the necessary
query with available technologies. Better integration of CEP and BPM
should support this implementation and reduce the manual effort of domain
experts. Ad-hoc solutions can be implemented in BPMSs that allow to
record instance-specific data within, e.g., the so-called information artifacts
in BPMN [6, 56]. The missing connection between BPMSs and CEP engines
makes it however not possible to explicitly assign query parameters with
instance-specific information.

In Table 4 we provide an overview on how concepts of CEP query languages
can be integrated with process modeling to their mutual benefit. These three
aspects lead to the following research question:

20

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Table 4: Summarizing capabilities of process models and CEP regarding the main issues
discussed (Q2)

Issue Process Modeling CEP Application to example

Capturing
of, and
reaction to
complex
events

Only via non-common ex-
tensions

Implementation-level com-
plex event languages exist
as well as higher-level alge-
bras

Automatic detection of the late end of
transportation based on events from the
truck, and start of compensatory activ-
ities

Managed
begin and
end of
monitoring

Monitoring per process
instance. Subscription
to message-based events
upon reaching the respec-
tive activity. Unsubscrip-
tion directly upon receipt.
Custom extensions may
change that behavior.

Based on subscription
(upon event registering
and unregistering)

Truck positions are of interest to the
process execution only after the reser-
vation until the end of the shipment

Dynamic
assignment
of event
parameters

Partially covered by infor-
mation artifacts

Not available Pick-up point and destination locations
and times are defined on a per-instance
basis, hence assigned at run-time.

How to enrich process modeling languages with CEP information while
ensuring that CEP queries are executed only when needed and in relation to
objects of interest to the process?

4.2. Existing work related to Q2
CEP rules capture the dynamic nature of the evolving process tasks by

comparing the observed evolution with expected trends, bounded intervals,
and thresholds. It is a common assumption that such information is present at
design time [57, 58]. As outlined above, previous knowledge of the referenced
values is often not available at such an early stage. Here, we discuss a number
of approaches that allow enrichment of processes by event information, some
of which consider late specification.

Basic BPMN. Recker et al. [59] conducted a study showing that 26% of
the interviewees “indicated that they are limited in capturing events, 80%
categorized this limitation as a problem (minor or major)”. In BPMN, CEP
constructs can be realized building on low-level BPMN tasks such as script
tasks or business rule tasks. This leads, however, to somewhat bloated BPMN
models, because much more constructs are used. For instance, Barnawi
et al. [60] use the expressiveness of BPMN to embed tasks to detect and
handle violations of compliance. To enable checking, it is assumed that the
process engine provides information such as the completion time of tasks.

21

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Extending BPMN with event specifications. An architecture for the integration
of the event-driven analysis of ongoing process instances has been proposed
by Baumgraß et al. [54], using parametric expressions for information that
should become available upon enactment. The proposed approach is based
on the BPMN-T extension of the BPMN language [61], which specifies ad-
hoc time annotations, process snippet interfaces, and event subscriptions
especially for transportation processes inserted in text comments. However,
our objective here is not limited to the scope of a sole application domain
such as transportation or logistics. Furthermore, text annotations are not
suitable for a standardized formal solution, owing to the fact that they are
not meant to be normed by machine-readable grammar rules, but rather used
as human-comprehensible further explanation on the details of the process
model [6].

Baumgraß et al. [62] introduced a BPMN extension using Process Event
Monitoring Points, which specify where and when which event is expected
during business process execution. Event and process information are associ-
ated with data and activity state changes, such as the begin or end of the
process execution. Their approach uses the Esper Query Language queries to
include event monitoring in BPMN [63].

The modeling language rBPMN is an extension of BPMN with the aim to
“integrate both rule- and process-oriented modeling perspectives” [64]. The
rules are written in the REWERSE markup language [65], using business
rules to define and constrain the execution of a business processes. They
can be divided into rules for derivation of new rules, specifying integrity,
production of actions and reaction to processed events. The rBPMN approach
then allows to model some parts of the process based on business rules which
are to be evaluated at runtime. If those business rules can change during
runtime, or are very dependent on data / context / environment-dependent,
a CEP engine could be applied to evaluate the rules at runtime.

Mandal et al. [66] recently proposed an extension of BPMN defined as a
BPMN+X model [67] to specify the automated services requiring a connection
to external CEP engines. The subscription to the external data source can
be customized by means of specific directives regarding a.o. the subscription
query, subscription point, buffer size and policy. They root the execution
semantics of the extended process model in Colored Petri nets (CPNs) [8] to
allow for formal verification. A proof-of-concept implementation based on the

22

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



open-source process engine Camunda3 is made available for testing purposes
and to demonstrate the viability of the model extension as implementable
over off-the-shelf process engines.

Executable event pattern languages and BPEL. A number of authors from
the business process community call for the development of executable event
query languages. These should implement the expression of event patterns
and their relations within process models (see, e.g., [11, 68]).

In their work, von Ammon et al. [69] suggested to extend the workflow
execution language BPEL to cover event concepts that influence the process
execution. For example, they introduced event subscriptions and a simple
pattern constructs, which allowed the start or ending of a process depending
on the observance or lack of an event. While considering a joint execution of
events and processes, the proposal is not concerned with detailed constructs
such as dynamic parameters and CEP on demand.

Similarly, Wieland et al. [70] use an extension of BPEL (called Con-
text4BPEL) to introduce context awareness into workflows using so-called
context events. Using context events, processes can be started, query the
environment, and execute decisions based on the context. They use the
Augmented World Query Language for context queries and the Augmented
World Modelling Language for result representation [71]. Although process
instance data can be used within the queries, the query language supports
geo-locations only and does not offer the expressiveness of CEP languages.

Executable event pattern languages in other languages. Wieland et al. [55]
propose the SOEDA method to support both event-driven systems and service-
oriented architectures. Business processes are first modeled using Event-driven
Process Chains (EPCs) and then transformed into BPEL expressions. The
resulting applications can use process-oriented workflows with events that
trigger the execution of business activities. A shortcoming is the limited
coverage of event patterns and the lack of dynamic adaptations of processes
based on events at runtime [72].

Vidackovic [72] also proposes a method for modeling, platform-specific
transformation and implementation of dynamic business processes based on
CEP concepts. He introduces the Event Processing Model and Notation

3https://camunda.org

23

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002

https://camunda.org


(EPMN), which has a graphic representation similar to BPMN, and uses XML
and the Esper query language [73] for implementation.

Seiger et al. [74] propose extended Petri nets to annotate event queries
to transitions. During execution, the event query is sent to an CEP engine,
which registers listeners and upon pattern detection leads to an execution of
the respective action.

Graphic notations for events in processes. Decker et al. [75] suggested the
Business Event Modeling Notation (BEMN) for expressing complex events in
business processes. They proposed a graphical notation as well as a formal
semantics. The language covers only a somewhat limited range of event
concepts (which were developed based on observations by Barros et al. [76])
with little concern for real-time execution and does not yet provide the
complexity of native CEP languages.

Kunz et al. [77] describe another graphical approach of integrating complex
events, described in Esper query language, into BPMN. They showed how
the core query language clauses select, from and where can be assigned to
BPMN artifacts. Their aim was to provide better usability and user adoption
for Complex Event Processing. The integration of event processing into the
process model is limited and no dynamic interactions between events and
processes are considered.

Breitenbücher et al. [78] introduce the SitME method (Situation-Aware
Workflow Modelling Extension method). The idea is to offer a modeling
environment for workflows including of situational events and situational
scopes. Situational events mirror situational templates [79, 80], which define
a situation based Situation-Aggregation-Trees (SAT) [81]. Breitenbücher
et al. also outline runtime aspects: The workflow is then transformed to a
standard-compliant workflow. For recognizing situations, either Node-RED
flows or CEP engines can be used.

Analyzing events in process models. There are already previous comparisons
of existing work on incorporating CEP concepts into process modeling.

Barros et al. [76] present a catalog of 13 requirements for handling complex
events in process models, mainly driven by event concepts from the process
community. Examples are simple compositions such as as event conjunction
and disjunction as well as complex composites, such as dependencies with
regards to data and process instances. They argue that both BPEL and
BPMN support only a very small selection of event patterns. Similar to our

24

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



arguments in this paper, Barros et al. argue that event pattern descriptions
need to be closely integrated into executable process definition languages.

Vidackovic [72] analyzed the process modeling languages EPC, BPMN 2.0,
UML [82], and WS-BPEL for their support for event concepts. Only EPC
and BPMN are found to fully embrace event monitoring. However, none of
the four languages are found to sufficiently support complex events. The
same work also analyzed selected approaches to event-driven business process
management with regard to their support for complex events (based on CEP
concepts [83]). They considered complex event patterns as well as execution
parameters for sliding windows. Vidackovic observes that existing approaches
each address selected aspects, without yet providing integrated or standardized
solutions. He particularly notes the lack of execution semantics, insufficient
modeling support, and lack of software tools.

Involve CEP on demand. When running a processes, it is assumed that all
services are available at the instantiation of the process. This, however, may
lead to increased costs as the services might not be always required. As
a consequence, the idea is to use the concepts of Cloud Computing. It is
possible to provision the required services in the Cloud at the beginning of
the execution of the process. In processes, there is the possibility to provision
services on demand [84]. Is is also possible to advance even further and
to deploy the process middleware on demand [85]. There is also general
work for service deployment [86], but it is not aware of business processes
execution. This concept can be extended when the business process model is
enriched with CEP constructs. The CEP engine itself can be provisioned on
process start or even the middleware required to read the sensor data can be
provisioned on demand.

5. Q3 – Deriving CEP Rules from Process Models

This section explores the direction of deriving rules, more specifically event
processing or CEP rules, from a process model to allow us to monitor the
process at runtime. Using rules for monitoring a business process is not a new
idea. At the basic level, “normal” rule patterns can be derived in a bottom-up
manner by analyzing an event stream (as described in Q1). In contrast, here,
we discuss the derivation of rules from a process model in a top-down manner.
This raises a number of challenges.

25

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



5.1. Motivation and Research Question
In order to explore this direction and understand the challenges, let

us consider the running example (see Section 2.3), where medical products
transportation requires very special conditions, including a stable temperature
and humidity level in the container and a predefined maximum transportation
time. Sensors in the container and transponders installed on the truck can
help to gather the relevant information.

Considering the process model, the “Drive” activity of the truck (see
Figure 3) can be monitored for various purposes. One purpose can be the
temperature and humidity within the container. In addition, taking as an
example the expected locations for the start and the end of the “Drive”
activity makes it possible to monitor the ongoing execution of the activity,
displaying the gained and remaining distance, e.g., with respect to the current
position of the truck. Deviations of the current position from the expected one
can be reported. Predictions of schedule deviations can be made, based on
comparing the remaining time left to deliver the container with the estimated
time of arrival, on the basis of the current position of the truck and its
speed. In contrast, monitoring the “Collect Documents” activity would be
less challenging, and entail comparing the already collected documents to
a predefined checklist. Monitoring in this case is not too beneficial as the
uncertainty is limited and the events are simple, reporting a task performed
without the need for a complex query logic.

Monitoring capability can depend on available sources, and these will
be relevant for the duration of specific activities. For example, the traffic
information is of extreme interest while the shipment is made by trucks, but
only during the “Drive” activity and until the goods are delivered. The same
rationale holds for a storm forecast along the way. Another issue relates to
the granularity level, which is different for a process model and for event-
based monitoring, including many details that are instance-specific. As an
example, upon instantiation, the “Drive” activity would entail different routes,
quantities, products, and so forth for each process instance.

Following the example, we identified two research questions along which
we discuss related work: Which kinds of process parts/activities and what
business purposes require CEP-based monitoring or rules? How can CEP
queries and rules be derived from process models

26

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



5.2. Existing work related to Q3
Purpose of CEP rules. CEP rules derived from process models can serve a
variety of purposes, such as monitoring of the process progress [77], validation
of conditions defined over the process [87] or monitoring its compliance [88, 89].

In particular, derived rules should be used for monitoring various aspects
of a process. One specific form of monitoring, which has received relatively
high attention, is the monitoring of Service Level Agreements (SLAs) [87].
SLAs define the level of service that a service provider commits to deliver. An
SLA is a contract between a service provider and a consumer, and it includes
appropriate actions to be taken upon violation of the contractual obligations.
Muthusamy et al. [87] present a vision to achieve end-to-end SLA management
by facilitating the various stages of business process development using
formally encoded SLAs. They develop a model to control the provisioning
of business processes based on high-level goals described by means of event-
based rules that can be specified independently of the implementation details
of a process. Furthermore, Chau et al. [90] show how an SLA contract
can be modeled and designed to be configurable, reusable, extensible and
inheritable. The modeling resorts to rules to express runtime conditions and
constraints over process execution events. The resulting rules automatically
monitor a business process and evaluate whether the SLA is violated during
runtime execution. SLA monitoring can be separated from or combined with
general monitoring against compliance requirements, as suggested by Thullner
et al. [91].

In the area of business processes a more general form of monitoring which
is sought is predictive monitoring of various process aspects. Much attention
has been put into predictive monitoring recently, and it appears that CEP
provides promising solution directions. Metzger et al. [92] provide a survey
of corresponding techniques and mention the use of CEP in some analyzed
works. These techniques, however, take a bottom-up approach of learning
from the event stream, and do not incorporate knowledge from the process
model in a top-down manner.

Derivation of rules from process models. Several authors have considered
deriving CEP rules from process models. Here, the term rule has the broad-
est possible interpretation and refers to antecedent-consequent structures
(i.e., if-condition-then-action) [93, 94], patterns (i.e., (complex) event ex-
pressions) [94], and subscriptions (i.e., state or non-state baring Boolean
expressions over predicates to tie events to process elements) [54] For exam-

27

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



ple, the approach proposed by Muthusamy and Jacobsen [95] is based on
decomposing a process into expressions that describe sets of events that may
occur when the process executes.

How to apply the idea of decomposing a process into constituent rules
that are triggered by the events underlying the execution of processes (process
instances) to BPEL has been shown by Li et al. [96] and to the Guard-Stage-
Milestone (GSM) with Lifecycles by Sadoghi et al. [94]. Some of the difficulties
related to the derivation of rules, taking BPMN as a basic process model, are
discussed by Bry et al. [93].

Addressing processes based on web-services, Mulo et al. [88] derive CEP
rules in two steps: first, they transform process activities into event trails
that correspond to the invocation of the respected web services, and then
they transform these trails into CEP rules.

Baresi et al. [97] define and formalize an approach based on an extension
of the artifact-centric language GSM (E-GSM), to automatically translate
process models defined in BPMN into E-GSM and monitor the execution
of such processes through the observation of the related objects. Baresi
et al. [97] in particular show how a monitoring engine based on the E-GSM
specifications can detect anomalies during the execution of the process and
classify them according to different levels of severity, that is, with respect
to the impact on the outcome of the process. Meroni et al. [98] propose a
framework based on [97] that allows for monitoring of processes based on the
recorded status of machine-tracked objects instantiating the artifacts in real
world. Considering the control flow in imperative process models, Weidlich
et al. [99] proposed a two-phase approach. First, to derive behavioral profiles
of the process, in particular considering strict order of activities, exclusiveness,
and interleaving (parallel) execution, and then to derive CEP queries that
correspond to these behaviors.

Approaches have been suggested to support transforming higher-level
process tasks into lower-level detailed event rules, addressing the issues of
transformation between constructs (activity and gateway to event), differ-
ences in abstraction levels, and the specific information that can only become
available upon instantiation. For example, Cabanillas et al. [100] proposed an
approach aimed at enriching the definition of activities by means of attributes.
The attributes in particular were meant to be subject to constraints about
the values they can assume during the execution of the activity, in addition to
thresholds defining the minimum peaks allowed. A typical example for that is
the temperature of the container, with allowed maximum and minimum oscil-

28

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



lations. Based upon this model, and specifically targeting context-awareness,
a system has been developed and described by Di Ciccio et al. [101], capable
of alerting logistics companies in case of predicted diversions during the aerial
transportation of goods. Alerts were raised on the basis of the automated
classification of ongoing flight data features. A similar use case has been
addressed by Baumgraß et al. [54], who annotated BPMN elements with
subscription templates, using placeholders for details which specifically relate
to the process instance during execution.

In the approaches of Cabanillas et al. [100] and Di Ciccio et al. [101], the
devised analysis is purely numerical though, and complex rules beyond the
comparison of gathered values with given thresholds cannot be expressed. Fur-
thermore, streamed raw data needs further rework to be effectively tractable.
In particular, event correlation needs to be established, tying events to process
instances and fixing incorrect ordering of events over time [91]. The interpre-
tation of raw data can be assigned to CEP engines that derive exceptional
conditions by the examination of the data streams. To that extent, the
specification of monitoring rules by means of a machine-readable language
is of utmost importance. They are meant to describe the way in which raw
data need to be processed and interpreted in order to provide high-level
events describing the progression status and the health status of the ongoing
activities in the process. Monitoring rules that co-exist with a process model
are suggested by Thullner et al. [91]. In their approach the process definition
(model) includes compliance check points, while the compliance rules specify
conditions over parameters at these check points and actions to be performed
upon violation. The conditions can address the process execution time or its
flow, and further relate to specified event attributes (e.g., “gold customer”).
A highly generic approach to rule derivation is proposed by Awad et al. [89],
with a predefined generic set of patterns concerning process and task instances.
They relate to the occurrence of tasks, their ordering and resource assignments
in a given process instance. Events are classified to types accordingly. A CEP
engine monitors anti-patterns that indicate any violation of the rules derived
from the process model.

In summary, the challenging areas of difference between process models
and CEP rules generated on their basis are summarized in Table 5.

29

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Table 5: Summary of challenging areas of difference between process models and CEP rules
derived from them (Q3)

Issue Process Model Derived CEP Rules Application to Example

Purpose
supported

Conceptualization, com-
munication, execution

Monitoring of process
progress, compliance, or
SLA; Process execution

The process model specifies control and
message flow among responsible units
and can be executes by an appropriate
engine; A CEP rule can monitor time
commitments for the process and alert
when they are not met

Abstraction
level

High level, business mean-
ingful terms and task defi-
nitions

Low level, need to be cor-
related and aggregated to
be business meaningful

Model: beginning and ending of the
Drive activity; corresponding CEP rule:
position and movement of Truck.

Generic vs.
specific in-
formation

Generic (design time) in-
formation

Instance-specific details,
available at runtime

Generic (model): "Pickup point"; Spe-
cific (CEP): based on specific instance
data - address and coordinates of pickup
point.

Main
constructs

Activities, control-flow
gateways, conditions,
instances

Events, predicates,
antecedent-consequent
structures, sources

A gateway in a process model is trans-
formed to a complex event: (TruckID
sent AND ShipmentInfo passed) =>
then Record Transport Information can
start.

Context
awareness

Can be inferred as a re-
quirement but not explic-
itly specified

Immediate consequence of
the rules

Flight ongoing data as the context of
the logistic process [101] - inferred from
the process but enabled through CEP

6. Q4 – Executing Business Processes via CEP Rules

This section examines the idea of using CEP engines for executing business
processes. In particular, we look for opportunities for advancing business
process execution and note the challenges that are posed such an approach.

6.1. Motivation and Research Question
To explore the potential benefit of CEP engines for process execution, let

us first examine the feasibility of this idea and what can be gained by it. We
do so by focusing on a basic functionality of a process engine, that is managing
the state of the process at any given moment. When a process is executed,
each work item (namely, an instance of an activity in the process model)
can be disabled (before its preconditions are fulfilled based on the process
model), enabled (when according to the process model it is possible to start
executing it), active, or completed [102]. As work items are completed, the
state of the process changes and other work items become enabled. For human-
based activities beginning and ending are typically indicated by the operator,
enabling the engine to advance the state of the process. For tasks whose
execution is continuous, involving non-human resources, and geographically
distributed, this monitoring may pose difficulties. We shall consider this in

30

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



the context of the running example (see Section 2.3), focusing on two specific
activities.

Let us first consider the activity of Monitor Transportation (cf. Figure 3),
which receives updates during the Drive activity of the truck. At a business
level, we have high-level events which are derivable from low-level input events
(not the concerns of a process model) processed by a CEP engine. Assuming
the monitor activity is implemented by a CEP engine, relevant high-level
events are derived by the CEP engine from the respective low-level input
events. Driving started : The truck is in the scope of the starting point,
goods on the truck, the truck is moving out of the scope of the starting
point. Driving completed : The truck is in the scope of the destination point,
goods off the truck, the truck is moving out of the scope of the destination
point. The clear advantage that is observed is the possibility to automatically
detect and record the beginning and completion of the driving, as well as
unexpected exceptions (e.g., traffic jam) without involvement of the driver.
"Traditional"BPM systems react on simple event notifying on the start and
completion of a task, whereas CEP engines are capable of inferring this
information from a combination of lower-level inputs.

In contrast, let us consider the activity of Receive Transport Notifications
(see Figure 3), performed by the logistics company. This is a multiple instance
activity, meaning that a work item is created with every notification sent
by the control system. We assume the company’s activities are performed
by human operators, thus receiving each notification instance is enabled as
soon as it arrives, but only executed when the human operator attends to it
(an event which makes the work item active, followed by an event marking
completion of addressing the notification). In this example, the CEP engine
does not seem to offer an advantage over a process engine because no complex
reasoning to infer the completion of the activity is needed.

Following these two examples, in general terms, the research question is:
What aspects of process execution can benefit from the use of a CEP

engine, and what aspects are better handled by traditional process engines?

6.2. Existing work related to Q4
To address this question systematically, we first outline the basic required

capabilities of a business process engine [103]. These include (a) management
of process instances (cases), (b) basic management of process state; (c) the
dimensions of workflow patterns: control-flow, data, resource, and exceptions
handling; and (d) the use of a process model. We analyze CEP-based process

31

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



execution systems that were found in our literature survey with respect
to these issues. In addition, we characterize the motivations that drive
CEP-based process execution proposals to identify possible strengths of such
systems. In particular, these refer to distributed execution and collaboration,
interaction with diverse environments, flexibility, and scalability [104, 105].

Management of process instances. A process engine should be able to create
instances of a given process model, where each process instance has its
own work items as instances of the process activities. Many instances can
be executed in parallel (e.g., many shipments delivered) and controlled by
the process engine. In contrast, CEP engines typically process a stream of
events, regardless of process instances. A mechanism supporting the creation
and management of process instances by a CEP engine is proposed Cicekli
and Cicekli [106]. Their proposed process engine, which is based on event
calculus, creates a process instance upon a defined external event (e.g., an
order received). It creates a unique ID of the process instance, and this
ID then marks all the activities related to the process instance. This way
parallel instances of the same process can be executed and managed. Appel
et al. [107] propose a middleware connecting CEP and process engines. While
not directly targeting process execution by a CEP engine, they recognize the
need to manage process instances and to “mark” each event by an ID relating
it to a specific process instance. Another example, relating to declarative
Guard-Stage-Milestone (GSM) models, is the CEP engine proposed by Jergler
et al. [108] that creates process instances and monitors their state.

Basic management of process state. This refers to the ability to track the
state of work items as demonstrated to the running example above. While
this is a basic functionality of process engines, they need to be “notified”
about the start and completion of work items, either by the human operators
or by signals (for automated tasks). A CEP engine can infer start and
completion of work items based on a combination of events, and is hence
better suited for activities whose beginning or ending are not specifically
marked. A possible approach is to specify events or rules that mark the
beginning and the completion of an activity [106, 109]. Besides this, Appel
et al. [107] also propose a similar marking for the completion of the entire
process instance. Morales et al. [110] use control events and a coordinator
function which monitors the execution of activities and the set of enabled
activities.

32

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Workflow patterns dimensions. The workflow patterns collection has been
developed as a benchmark for workflow systems and process modeling for-
malisms. The four basic sets of patterns relate to four process dimensions:
control flow patterns [111], data patterns [112], resource patterns [113], and
exception handling patterns [114]. We consider each dimension separately.

∙ Control flow patterns: A large collection of structural patterns that
may exist in a process model, that has served for numerous evaluation
studies of modeling formalisms and workflow systems. While not all
are supported by all process engines [115], they set a basic standard
to be supported, including parallel and conclusive splits, merges and
synchronizations, patterns of multiple instances, state based patterns,
looping, and more. We are not aware of an exhaustive study of how
these can be supported by CEP engines. Yet, specific patterns that
have traditionally been challenging for process engines may be easier to
implement with a CEP engine. For example, the non-local semantics
of the OR join [111], which should synchronize all (and only) the
active branches, can be represented as a complex event. Similarly, the
milestone pattern, where tasks are enabled upon occurrence of a given
event, is difficult to specify using process model control flow constructs,
and easy to specify using event-based rules. Generally speaking, subsets
of control flow patterns are supported by specific CEP engines. We
discuss these in the context of the process models supported.

∙ Data patterns: The data patterns [112] address a variety of issues
concerning how workflow systems handle data when executing processes
and the roles played by data in these processes (e.g., task pre or post
conditions are expressed as logical expressions over data). Although
not specifically discussed in the literature, all these patterns are well
supported by CEP engines.

∙ Resource patterns: The resource patterns [113] mainly address the
distribution of process activities among human operators and the man-
agement of individual and group-related work queues. These are defined
along the lifecycle of a work item, including its creation, offering, al-
location, initiation, and various “detour” operations (e.g., delegation,
escalation). Besides a small group of auto-start patterns, the major-
ity of the resource patterns are not supported by most CEP engines.
Yet, some examples exist, demonstrating that comparable CEP-based

33

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



operations can be defined using designated events denoting human
resource behavior. Cicekli and Cicekli [106] support a relatively rich
resource management functionality, including the assignment of activ-
ities to resources (either human or machine) and managing the state
of resources (waiting or busy), as well as worklists with optimization
rules for selecting a resource to be assigned for an activity. In summary,
the feasibility of supporting at least some resource patterns by a CEP
engine has been demonstrated. Although no real advantage of CEP
engines for this matter has been indicated, a basic support of these
patterns is of importance when seeking to gain other benefits of CEP
engines.

∙ Exception handling patterns: The exception handling patterns [114]
deal mainly with how an exception is handled once it is detected.
These include actions that should be taken regarding the specific work
item that is currently active (e.g., restart, fail), the entire case (e.g.,
remove case), the full set of running cases (e.g., remove all cases),
and compensating actions to be taken. The detection of an exception
is however limited to specific predefined exception types (e.g., time
exception), but is not addressed otherwise. In contrast, CEP engines
can detect any exception as a deviation from an expected pattern
of behavior, with data coming from various sources. Yet, the actual
actions to be taken should be defined. One example where action upon
exception detection is addressed is presented by Morales et al. [110],
offering a basic mechanism for restoring the system and recovering from
exceptions. Being generic, it does not entail compensating actions of
any kind.

Direct execution of process models. Process engines in essence serve for ex-
ecuting process models. Different kinds of models are used by different
engines. In particular, the common process models (e.g., BPMN) follow an
imperative paradigm, explicitly specifying the possible sequences of activi-
ties to be followed. Less commonly used are declarative models, specifying
constraints over the possible actions and allowing flexible execution traces.
Imperative models are rather intuitive to create and easily understandable by
humans [116], while declarative models pose challenges to human understand-
ing [117]. Hybrid process models have also been proposed, combining the
clear and easy-to-follow specification of imperative models where flexibility

34

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



is not essential, and a flexible declarative model at parts that require this.
Process engines usually support a specific model type (imperative, declarative,
or hybrid). For employing a CEP engine for process execution, the human
understandable process models need to be transformed into low level event
specifications. Translating an imperative process model into event specifica-
tions has been addressed to a small extent. Li et al. [96] provide a translation
of block-structured part of BPEL [118] to event specifications. BPEL itself
is an execution language rather than an imperative process model [119], but
mappings exist between BPMN and BPEL (despite the differences in their
expressive power [120, 121]). Cicekli and Cicekli [106] use an imperative
process specification called “control-flow graph”, which supports very basic
control flow patterns (sequence, choice, concurrency, and looping). They
provide event rules for specifying and supporting this expressiveness. Hens
et al. [109] use imperative models (BPMN, Yet Another Workflow Language
(YAWL) [122]) and fragment them to small chunks, each chunk “wrapped”
by events denoting their start/completion that can be processed by a CEP
engine. This, however, cannot be considered a model transformation, as the
imperative model fragments are still handled by process engines rather than
by the CEP engine. Morales et al. [110] use a basic imperative process model
mapped to a pub/sub network specification. Their model supports basic
and advanced branching and merging control flow patterns. Transforming
declarative models to event specifications has been suggested more often.
Jergler et al. [108] suggest a CEP-based execution of the GSM model, which
is a declarative model for specifying life cycle processes of business artifacts.
The GSM model includes Event-Condition-Action (ECA) rules which are
guarded by “sentries”, which can be implemented as CEP engines. ECA-based
execution of a declarative process model is also suggested by Soffer [123]. The
specification of declarative process models (e.g., Dynamic Condition Response
(DCR) graphs [124]) is often based on event rules. Yet, the execution engine
discussed by Hildebrandt and Mukkamala [124] is not a CEP engine. Finally,
hybrid models combine the declarative and imperative approaches to gain the
benefits of both. For example, YAWL, which is basically imperative, allows
using declarative services, as well as worklets. A worklet is a self-contained
process snippet to implement a more abstract task in a process [125], triggered
by rules which are evaluated at runtime. One could look at implementing the
evaluation of such rules by means of CEP: based on the context and subject
to change.

While many of the above discussed properties are basic features of process

35

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Table 6: Summary of capabilities of process engines and CEP engines regarding the main
issues discussed (Q4)

Issue Process Engine CEP Engine Application to example

Management
of process
instances

Supported Formal foundations exist
based on event calculus;
requires event correlation

Initiating, executing, and monitoring each
delivery separately even if they are executed
in parallel

Management
of process
state

Depending on activity
start/completion indica-
tion

Enables deduction of
start / completion based
on event data

Manual indication: start/completion of
handling transport notification Automatic:
start/completion of Drive inferred from lo-
cation and movement of truck

Control-
flow
patterns

Supported Partial support of ba-
sic and advanced branch-
ing/merging patterns

Activities are enabled according to, e.g., (a)
sequence – when Load Container is com-
pleted Drive is enabled; (b) in parallel – Ac-
tivity list is recorded at the truck in parallel
to the recording of the activity attributes at
the monitoring system

Data
patterns

Supported Supported Example patterns: (a) task post-condition
(data value) – completion of Drive deter-
mined based on truck location and move-
ment values; (b) task post-condition (data
existence) - completion of Send Activity list
determined by existence of activity list at
the truck

Resource
patterns

Supported Partial support of offer-
ing, allocation, and initi-
ation patterns, including
specific kinds of optimiza-
tion of task/resource as-
signment

An example pattern: Distribution by offer
(multiple resources) – assuming several em-
ployees can handle transport notifications.
With a CEP engine, the notification event
is published to all possible resources. When
one starts the task, this event results in re-
moval of the task from the other work lists.

Exception
handling
patterns

Handling is supported,
detection is very limited

Strong detection capabili-
ties, handling is very lim-
ited

An exception: mechanical failure of truck
during Drive. Detection: based on an event
at the truck; handling: by rules (a) for the
Drive activity: restart with another truck;
(b) for the process instance: cancel, initiate
another; (c) compensation: notifying cus-
tomer about delay

Direct
execution
of model

Imperative, declarative,
hybrid

Declarative models, par-
tial mappings from imper-
ative models exist

Execution of the imperative models in Fig-
ures 2 to 4 (by any engine)

Environment
considera-
tions &
flexibility

Specific flexibility and
context awareness solu-
tions (adaptivity of im-
perative model or use of
declarative one)

Built in ability to handle
contextual events. Unex-
pected behavior can be
detected without being
specified in advance.

Subscription to event streams that provide
information about traffic and road condi-
tions in addition to rules for adapting the
driving route and timing.

Distributed
processes

Possible but require
choreography solutions,
partial interaction
support

Naturally handled.
CEP’s capability of
handling distributed
event sources is a basic
functionality

Manageing Drive as a sub-process executed
by a local CEP engine, which addresses
events related to the road and driving, and
sends events to another CEP engine execut-
ing the main process. This enables imme-
diate adaptation of driving, independent of,
e.g., connectivity.

36

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



engines, other properties can be considered desirable for certain purposes,
typically supported by CEP engines, thus motivating their use.

In particular, these refer to environment considerations, such as the need
for distribution, flexibility, and interaction with the environment.

Environment considerations and flexibility. Some processes, specifically context-
aware ones, need to interact with the environment during execution. However,
process engines are limited to pre-specified interactions. To overcome this lim-
itation, Schlegel et al. [104] as well as Hens et al. [109] propose a CEP-based
integration framework to manage the interaction between distributed workflow
systems, each managing processes locally. For process engines, context aware-
ness is typically possible only for expected information types and values, and
at predefined points in the process. In contrast, CEP engines can conveniently
receive various, dynamic, and unpredictable events occurring at run-time
from different sources of the environment. And, it can use CEP rules to
analyze those events to obtain the high-level events which guide and adapt the
process execution. For example, Hermosillo et al. [105] propose a framework
which utilizes CEP engines to monitor the execution of business processes and
allows business processes to be dynamically adapted to the changing environ-
ments. Notably, process engines and CEP engines are complementary in this
framework: the former is responsible for the execution of business processes
while the latter is employed to monitor process execution and trigger process
adaptation according to user-defined CEP rules. Under this framework, a
BPEL-extension is given to add flexibility to BPEL processes [126]. Jergler
et al. [108] suggest a CEP engine to enact GSM-based processes with the
intention to support geographically distributed execution of processes. In
summary, CEP engines are more flexible than process engines, because CEP
rules can be easily modified, removed, and added at runtime [105], while
changing workflow models usually requires more effort [127].

Distributed processes. Process engines support process orchestrations, where
while distributed cross-organizational services can be invoked, the whole
process is under a single control. To implement fully distributed processes,
i.e., process choreographies [128], usually several process engines are needed,
and their interactions should be specified before execution [129]. Thus, a full
realization of distributed processes by a process engine is not trivial [127]. In
contrast, CEP engines that process events from different sources naturally fit
distributed processes. For example, Schlegel et al. [104] utilize a CEP engine

37

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



to integrate inter-organizational process engines and applications. The merits
of this platform are two-fold. First, the involved business processes can be
decoupled, and thus there is no need for the corresponding process engines to
be connected. Second, the involved business processes can be heterogeneous,
that is, business processes implemented in different languages and orches-
trated in different engines can be combined together for collaboration. Kong
et al. [130] leverage event processing and ECA rules to realize real-time pro-
cess integration in ubiquitous (distributed) enterprise environments. Similar
approaches are described by Schlegel et al. [104], Hens et al. [109].

Two sets of patterns that relate to service oriented architectures, the
Service interaction patterns Barros et al. [131] and the Correlation patterns
Barros et al. [132] provide a systematic basis for analyzing the relevant
capabilities. The correlation patterns take a high-level view, addressing
(local) process instances and conversations, namely interactions or processes
that span local processes. They list mechanisms for correlating events in
an event stream to process instances and to conversations, supporting the
execution of both local and distributed processes by CEP engines. The service
interaction patterns relate to lower-level mechanisms of message passing among
services, including four groups of patterns: (a) single-transmission bilateral
interactions are simple and basic messaging operations, supported by both
process and CEP engines; (b) single-transmission multilateral patterns involve
multiple messaging parties (e.g., one-to-many send), naturally supported by
pub/sub protocols, and mostly supported by multiple instance functionalities
of process engines; (c) multi-transmission patterns (e.g., multi response to a
message), which can be formulated as a complex event (for CEP), but are
only supported to a small extent by process engines; (d) routing patterns,
which relate to low-level message routing and are not in the scope of this
discussion. In summary, the different levels of support for the interaction
patterns indicate the superiority of CEP engines for distributed processes.

The above discussion is summarized in Table 6. It appears that for most
of the relevant issues a clear advantage of one of the engine types is observed.
As a conclusion, we may say that CEP and process engines can complement
rather than substitute each other. The opportunity that arises is of using CEP
and process engines in combination, where each is responsible for different
aspects. This way the strengths of both can be realized.

38

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



7. Discussion

Following the discussion of each of the four quadrants separately, in
this section we integrate the findings into an overall view, indicating the
core challenges as well as opportunities that emerge. We also discuss some
limitations of our current analysis and point to further aspects that were
beyond the scope of this article.

7.1. Core challenges and opportunities
While each quadrant focuses on a different aspect, there are overarching

concerns that recur across quadrants. Table 7 summarizes the main issues
identified so far, indicating their relevance to each of the quadrants as well
as whether they form a challenge (marked as C) or provide an opportunity
(marked as O). In particular, most of the issues combine challenges and
opportunities. Since the strengths of CEP and BPM are complementary,
many opportunities emerge from the proposed combinations. These, however,
can be realized once the indicated challenges are met. The issues included in
the table are those that were found relevant to at least two quadrants. The
analysis shown in Table 7 enables us to indicate the core issues associated with
the combination of BPM and CEP—challenges which need to be addressed
at a foundational level rather than specifically on a per-application basis. In
addition, the table reveals issues which are relevant in the context of specific
quadrants or application areas but not in others. Last, the table highlights
opportunities that should motivate additional work in each quadrant or across
this area. Below we discuss each of the identified issues.

Unify terminology and bridging abstraction levels is a core chal-
lenge for all quadrants, due to the inherent difference in abstraction levels that
require mechanisms for overcoming them. It is required for obtaining mean-
ingful process models by process mining (Q1), for incorporating CEP queries
in process models (Q2), for deriving event-based rules from process models
(Q3), and for interpreting and executing process models by CEP engines
(Q4). Hence, this is a main core issue to be tackled across all mechanisms to
be developed that integrate event-based and process-oriented systems. We
nevertheless note that particularly for Q1 the CEP capability of combining
raw events into higher-level complex ones is an opportunity that can help
avoiding loaded spaghetti-like mined models.

Accounting for specifics of process instances is also identified as
a challenge which is relevant for all the quadrants. While process models

39

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



Table 7: Key challenges (C) and opportunities (O) in the quadrant areas xxx

Key Issue Q1 Q2 Q3 Q4

Unify terminology and bridging abstraction levels O/C C C C
Accounting for specifics of process instances C C C C
Understandability to humans O/C O/C O O/C
Flexibility and context awareness O O O
Distributed execution O O O
Monitoring of process progress O O C
Unifying/Integrating engines for process execution C O/C
Unifying/Integrating engines for processing event data O/C O
Transformation between process models and event
rules

C O/C O/C

are specified at a generic level, they are instantiated upon execution. Event
streams, which relate to runtime data, are associated to process instances, but
this association is not necessarily explicit. Hence, when the starting point is
a process model (Q2, Q3, and Q4), instance details need to be augmented at
the event processing level. When the starting point is the event stream (Q1),
events need to be correlated along the time line and associated with process
instances to be abstracted to a process model. Note that as opposed to
other issues, we do not indicate opportunities related to this one. Rather, we
consider meeting the challenges related to this issue as essential for realizing
opportunities related to all other issues.

Understandability to humans is a (non-technical) issue which, again,
applies to all quadrants. Here we mainly see the combination of CEP and
BPM as an opportunity, with the presence of a process model improving the
understandability of event-based concepts and analysis, whose formality may
pose cognitive difficulties to humans. Yet, some challenges in this respect still
exist: in Q1 the challenge is to produce process models that are at a sufficiently
high abstraction level to be meaningful and understandable (to avoid spaghetti
models). In Q2 the challenge is to augment the event specifications into
the process models without hampering their understandability. In Q4 the
challenge is to be able to provide process models which are both executable
by CEP and understandable by humans.

Flexibility and context awareness as well as the possibility of dis-

40

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



tributed execution are identified as opportunities in Q2, Q3, and Q4. While
process models have often been criticized for their rigidity and lack of flexibil-
ity, and while context awareness and distributed process management have
long been identified as challenge areas for BPM, these are inherent capabilities
of CEP. Hence, in these respects CEP can enhance and improve the execution
of business processes and their monitoring at runtime.

Monitoring of process progress is also identified as a relevant issue
for Q2, Q3, and Q4. It is an opportunity that motivates works in Q2 and
Q3 (which essentially deal with facilitating such monitoring). For process
execution by a CEP engine this forms a challenge, as the execution requires
an ongoing monitoring of the process state, and is not possible without it.

Unifying/Integrating engines for process execution has been iden-
tified as a challenge relevant for Q2 and Q4. Dealing with the possibility to
delegate parts of the process (or all of it) for execution by a CEP engine.
Concerning Q2, we see the challenge of finding ways to execute a process
model which includes query oriented CEP specifications as well as “traditional”
process representations. This should call for an engine or a combination of
engines that would be capable of executing both. Regarding Q4, we see
challenging questions, such as how to distribute process execution between a
process engine and a CEP engine in order to gain the opportunity, which is
combining the strengths of both.

Unifying/Integrating engines for processing event data is the
“complementary” issue, concerning Q1 and Q3. For Q1, the main ques-
tion is of how to enable a process mining engine to incorporate CEP for
low level event abstraction. Alternatively, one may aim to find ways how a
CEP engine can be leveraged to produce process models as output. CEP and
process mining solutions coexists in today’s software stacks and we see the
better integration between them as an opportunity for facing this challenge,
rather than developing separate solutions for each. Concerning Q3, while
CEP solutions are capable of detecting patterns and monitoring them in a
bottom-up manner, Q3 deals with complementing these by patterns derived
from a process model in a top-down manner. An engine capable of addressing
both directions in an integrated manner is the main opportunity that emerges.

Transformation between process models and event rules forms
challenges for Q2, Q3, and Q4. Essentially, the ability of transforming process
models to CEP rules is an enabler for the issues addressed in Q3 and Q4.
Such transformation is required when a given process model is about to
be executed by a CEP engine and when the logic of the model is to be

41

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



monitored by a CEP engine. As explained, event patterns can be discovered
by CEP engines but are not necessarily the ones that are relevant in business
terms (e.g., for monitoring compliance). The transformation is simpler for
declarative process models, where the main issue is to overcome the differences
in abstraction level and mark ending of completion of activities, and is more
challenging for imperative process models, where the control flow needs to
be fully transformed. It forms an opportunity for targeted and complete
compliance monitoring.

In summary, it is clear that the issues discussed above are fundamental
issues to the integration or combined use of event-based and BPM systems.
Addressing each one at a foundational level, considering the different kinds
of potential application would make a significant advancement of this area.
In particular, progress is needed towards the establishment of standards
and a common formalism, which should unify the terminology and support
transformations between different abstraction levels. It should be generic and
applicable for different application contexts and mechanisms.

7.2. Limitations
We note that further issues related to the combination of event-based and

process-oriented systems may be considered, beyond the ones discussed here.
Examples include specification and definition of events, security issues

in integrated applications, bottom-up identification of event patterns for
monitoring, predictive monitoring of business processes, performance and
efficiency of computation, and more.

The discussion of related work presented here does not aim to be a complete
survey, but rather aims a providing a variety of examples that highlight issues
in each of the quadrants. Each of these, however, address specific problems or
specific applications. A generalization across the four quadrants allowed us to
draw cross-quadrant conclusions and identify the core issues discussed above.

Furthermore, our paper purposefully identifies and discusses challenges
and opportunities at a conceptual level. A detailed case study, which was
beyond the scope of this paper, could provide further insights and explore
selected technical aspects.

8. Conclusion

Event-based and process-oriented systems, as well as CEP and BPM, have
traditionally been disjoint research areas, but in the past few years various

42

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



attempts used specific combinations for solving specific problems or for gaining
specific benefits. This paper takes a broad view of possible combinations of
these two areas, and maps them into four quadrants of a matrix, going from
events to process models and back along the process life-cycle. We illustrate
the challenges as well as the opportunities using a rich and detailed running
example of a logistic process.

The main contribution of this paper is twofold. First, the four quadrant
map forms a basis for a research agenda in this intersection of two areas.
Second, from the generalization of issues—challenges and opportunities—in
each quadrants we were able to indicate core issues as a research agenda. These
issues bear cross-quadrant relevance; they should be addressed fundamentally,
not in the context of a specific application and form a basis for future
applications that would build upon this basis.

References

[1] J. Gubbi, R. Buyya, S. Marusic, P. M., Internet of Things (IoT): A
vision, architectural elements, and future directions, Future Generation
Computer Systems 29 (7) (2013) 1645–1660.

[2] L. Jiang, D.-Y. Liu, B. Yang, Smart home research, in: International
Conference on Machine Learning and Cybernetics (ICMLC’04), IEEE,
659–663, 2004.

[3] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson,
A. Oliveira, Smart Cities and the Future Internet: Towards Cooperation
Frameworks for Open Innovation, in: The Future Internet Assembly
(FIA’11), Springer, 431–446, 2011.

[4] H. Kargupta, Connected Cars: How Distributed Data Mining Is Chang-
ing the Next Generation of Vehicle Telematics Products, in: Inter-
national Conference on Sensor Systems and Software (S-CUBE’12),
Springer, 73–74, 2012.

[5] C. Cabanillas, A. Baumgrass, J. Mendling, P. Rogetzer, B. Bellovoda,
Towards the Enhancement of Business Process Monitoring for Complex
Logistics Chains, in: International Conference on Business Process
Management (BPM’13), Workshops, Springer, 305–317, 2013.

43

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



[6] Object Management Group, Business Process Model and Notation
(BPMN), Version 2.0, URL http://www.omg.org/spec/BPMN/2.0/,
OMG Document Number: formal/2011-01-03, 2011.

[7] A.-W. Scheer, O. Thomas, O. Adam, Process Modeling using Event-
Driven Process Chains, in: Process-Aware Information Systems, John
Wiley & Sons, Inc., 119–145, 2005.

[8] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis
Methods, Case Studies, Springer, 2013.

[9] V. S. Kesaraju, F. W. Ciarallo, Integrated simulation combining process-
driven and event-driven models, Journal of Simulation 6 (1) (2012) 9–20.

[10] R. von Ammon, T. Ertlmaier, O. Etzion, A. Kofman, T. Paulus, Inte-
grating Complex Events for Collaborating and Dynamically Changing
Business Processes, in: International Conference on Service-Oriented
Computing (ICSOC/ServiceWave’09), Workshops, Springer, 370–384,
2010.

[11] J. Krumeich, B. Weis, D. Werth, P. Loos, Event-Driven Business Process
Management: Where are we now? – A Comprehensive Synthesis and
Analysis of Literature, Business Process Management Journal 20 (4)
(2014) 615–633.

[12] D. Eyers, A. Gal, H.-A. Jacobsen, M. Weidlich, Seminar on In-
tegrating Process-Oriented and Event-Based Systems, URL http:
//www.dagstuhl.de/16341, 2016.

[13] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures, Springer, 2nd edn., 2012.

[14] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede,
N. Sidorova, H. M. W. Verbeek, M. Voorhoeve, M. T. Wynn, Sound-
ness of workflow nets: classification, decidability, and analysis, Formal
Aspects of Computing 23 (3) (2010) 333–363.

[15] F. Leymann, D. Roller, Production Workflow – Concepts and Tech-
niques, Prentice Hall PTR, 2000.

44

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002

http://www.omg.org/spec/BPMN/2.0/
http://www.dagstuhl.de/16341
http://www.dagstuhl.de/16341


[16] W. van der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri,
T. Baier, T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen,
J. Buijs, et al., Process mining manifesto, in: International Conference
on Business Process Management (BPM’11), Springer, 169–194, 2011.

[17] A. Bolt, M. Sepúlveda, Process Remaining Time Prediction Using Query
Catalogs, in: International Conference on Business Process Management
(BPM’13), Workshops, Springer, 54–65, 2014.

[18] M. Unuvar, G. T. Lakshmanan, Y. N. Doganata, Leveraging path infor-
mation to generate predictions for parallel business processes, Knowledge
and Information Systems 47 (2) (2016) 433–461.

[19] A. Hinze, K. Sachs, A. Buchmann, Event-based Applications and En-
abling Technologies, in: International Conference on Distributed Event-
Based Systems (DEBS’09), DEBS ’09, ACM, 1–15, 2009.

[20] A. Margara, G. Cugola, G. Tamburrelli, Learning from the past: auto-
mated rule generation for complex event processing, in: International
Conference on Distributed Event-Based Systems (DEBS’14), ACM,
47–58, 2014.

[21] O.-J. Lee, J. E. Jung, Sequence clustering-based automated rule genera-
tion for adaptive complex event processing, Future Generation Computer
Systems 66 (2017) 100–109.

[22] J. Boubeta-Puig, G. Ortiz, I. Medina-Bulo, ModeL4CEP: Graphical
domain-specific modeling languages for CEP domains and event pat-
terns, Expert Systems with Applications 42 (21) (2015) 8095–8110.

[23] D. Jung, Specifying Single-user and Collaborative Profiles for Alerting
Systems, Ph.D. thesis, The University of Waikato, 2009.

[24] A. Hinze, A. Voisard, EVA: An event algebra supporting complex event
specification, Information Systems 48 (2015) 1–25.

[25] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, J. Widom, A
Pipelined Framework for Online Cleaning of Sensor Data Streams,
in: International Conference on Data Engineering (ICDE’06), IEEE,
140–151, 2006.

45

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



[26] S. R. Jeffery, M. Garofalakis, M. J. Franklin, Adaptive cleaning for RFID
data streams, in: International Conference on Very Large Databases
(VLDB’06), VLDB Endowment, 163–174, 2006.

[27] M. Song, W. Van Der Aalst, Supporting process mining by showing
events at a glance (2007) 139–145.

[28] C. Floerkemeier, M. Lampe, RFID middleware design: addressing
application requirements and RFID constraints, in: Joint Conference
on Smart Objects and Ambient Intelligence (sOc-EUSAI’05), ACM,
219–224, 2005.

[29] A. Vijayaraghavan, D. Dornfeld, Automated energy monitoring of
machine tools, CIRP Annals – Manufacturing Technology 59 (1) (2010)
21–24.

[30] P. Rosales, K. Oh, K. Kim, J.-Y. Jung, Leveraging business process
management through complex event processing for RFID and sensor
networks, in: International Conference on Computers & Industrial
Engineering (CIE’10), IEEE, 1–6, 2010.

[31] Y. Fei, J. Hu, E. Hua, Z. Luo, RFID Middleware Event Processing
Based on CEP, in: International Conference on e-Business Engineering
(ICEBE’09), 481–486, 2009.

[32] C. Zang, Y. Fan, Complex Event Processing in Enterprise Information
Systems Based on RFID, Enterp. Inf. Syst. 1 (1) (2007) 3–23.

[33] C. Bornhövd, T. Lin, S. Haller, J. Schaper, Integrating Automatic Data
Acquisition with Business Processes Experiences with SAP’s Auto-ID
Infrastructure, in: International Conference on Very Large Databases
(VLDB’04), Elsevier BV, 1182–1188, 2004.

[34] L. Dong, D. Wang, H. Sheng, Design of RFID Middleware Based
on Complex Event Processing, in: Conference on Cybernetics and
Intelligent Systems (CIS’06), 1–6, 2006.

[35] M. L. van Eck, N. Sidorova, W. M. P. van der Aalst, Enabling process
mining on sensor data from smart products, in: International Conference
on Research Challenges in Information Science (RCIS’16), IEEE, 1–12,
2016.

46

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



[36] A. Margara, G. Cugola, G. Tamburrelli, Learning from the past: auto-
mated rule generation for complex event processing, in: The 8th ACM In-
ternational Conference on Distributed Event-Based Systems, DEBS ’14,
Mumbai, India, May 26-29, 2014, 47–58, doi:10.1145/2611286.2611289,
URL http://doi.acm.org/10.1145/2611286.2611289, 2014.

[37] N. Tax, N. Sidorova, R. Haakma, W. M. P. van der Aalst, Event
Abstraction for Process Mining using Supervised Learning Techniques,
URL http://arxiv.org/abs/1606.07283, 2016.

[38] D. Schumm, F. Leymann, A. Streule, Process Viewing Patterns, in:
International Enterprise Distributed Object Computing Conference
(EDOC’10), IEEE Computer Society Press, 89–98, 2010.

[39] S. Smirnov, M. Weidlich, J. Mendling, Business Process Model Ab-
straction Based on Behavioral Profiles, in: International Conference
Service-Oriented Computing (ICSOC’10), Springer, 1–16, 2010.

[40] A. Koschmider, E. Blanchard, Automatic User Assistance For Business
Process Modeling, in: International Conference on Research Challenges
in Information Science (RCIS’07), 445–454, 2007.

[41] S. Smirnov, H. A. Reijers, M. Weske, T. Nugteren, Business process
model abstraction: a definition, catalog, and survey, Distributed and
Parallel Databases 30 (1) (2012) 63–99.

[42] T. Baier, A. Rogge-Solti, J. Mendling, M. Weske, Matching of events
and activities: an approach based on behavioral constraint satisfaction,
in: Annual Symposium on Applied Computing (SAC’15), 1225–1230,
2015.

[43] T. Baier, C. Di Ciccio, J. Mendling, M. Weske, Matching of Events and
Activities - An Approach Using Declarative Modeling Constraints, in:
International Conference on Enterprise, Business-Process and Informa-
tion Systems Modeling (BPMDS’15), 119–134, 2015.

[44] T. Baier, C. Di Ciccio, J. Mendling, M. Weske, Matching events and
activities by integrating behavioral aspects and label analysis, Software
& Systems Modeling (2017) 1–26.

47

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002

http://dx.doi.org/10.1145/2611286.2611289
http://doi.acm.org/10.1145/2611286.2611289
http://arxiv.org/abs/1606.07283


[45] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst,
P. J. Toussaint, From Low-Level Events to Activities – A Pattern-
Based Approach, in: International Conference on Business Process
Management (BPM’16), Springer, 125–141, 2016.

[46] M. Stocker, M. Rönkkö, M. Kolehmainen, Abstractions from Sensor
Data with Complex Event Processing and Machine Learning, in: Inter-
national Congress on Environmental Modelling and Software (EMS’14),
iEMSs, 1273–1280, 2014.

[47] T. Sztyler, J. Carmona, J. Völker, H. Stuckenschmidt, Self-tracking
Reloaded: Applying Process Mining to Personalized Health Care from
Labeled Sensor Data, T. Petri Nets and Other Models of Concurrency
11 (2016) 160–180.

[48] N. Tax, E. Alasgarov, N. Sidorova, R. Haakma, On Generation of Time-
based Label Refinements, in: International Workshop on Concurrency,
Specification and Programming, 25–36, 2016.

[49] B. Schwegmann, M. Matzner, C. Janiesch, preCEP: Facilitating Pre-
dictive Event-Driven Process Analytics, in: International Conference
on Design Science at the Intersection of Physical and Virtual Design
(DESRIST 2013), Springer, 448–455, 2013.

[50] F. Folino, M. Guarascio, L. Pontieri, Context-Aware Predictions on
Business Processes: An Ensemble-Based Solution, in: On the Move to
Meaningful Internet Systems (OTM’13), Springer, 215–229, 2013.

[51] F. Folino, M. Guarascio, L. Pontieri, Discovering Context-Aware Models
for Predicting Business Process Performances, in: On the Move to
Meaningful Internet Systems (OTM’12), Springer, 287–304, 2012.

[52] OASIS, Web Services Business Process Execution Language Version
2.0, URL http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.
html, 2007.

[53] O. Kopp, K. Görlach, D. Karastoyanova, F. Leymann, M. Reiter,
D. Schumm, M. Sonntag, S. Strauch, T. Unger, M. Wieland, R. Khalaf,
A Classification of BPEL Extensions, Journal of Systems Integration
2 (4) (2011) 3–28.

48

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html


[54] A. Baumgraß, M. Botezatu, C. Di Ciccio, R. M. Dijkman, P. Grefen,
M. Hewelt, J. Mendling, A. Meyer, S. Pourmirza, H. Völzer, Towards a
Methodology for the Engineering of Event-Driven Process Applications,
in: Conference on Business Process Management (BPM’16), Workshops,
Springer, 501–514, 2015.

[55] M. Wieland, D. Martin, O. Kopp, F. Leymann, SOEDA: A Methodology
for Specification and Implementation of Applications on a Service-
Oriented Event-Driven Architecture, in: International Conference on
Business Information Systems (BIS’09), Springer, 193–204, 2009.

[56] M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers, Fundamentals
of Business Process Management, Springer, ISBN 978-3-642-33143-5,
2013.

[57] J. Bae, H. Bae, S.-H. Kang, Y. Kim, Automatic control of workflow
processes using ECA rules, IEEE Transactions on Knowledge and Data
Engineering 16 (8) (2004) 1010–1023.

[58] R. Lu, S. Sadiq, A Survey of Comparative Business Process Modeling
Approaches, in: International Conference on Business Information
Systems (BIS’07), vol. 4439 of LNCS, Springer, 82–94, 2007.

[59] J. Recker, M. Indulska, M. Rosemen, P. Green, How good is BPMN
really? Insights from theory and practise, in: European Conference on
Informatoin Systems (ECIS), 2006.

[60] A. Barnawi, A. Awad, A. Elgammal, R. E. Shawi, A. Almalaise, S. Sakr,
Runtime self-monitoring approach of business process compliance in
cloud environments, Cluster Computing 18 (4) (2015) 1503–1526.

[61] M. Botezatu, H. Völzer, Language and MetaModel for Transport Pro-
cesses and Snippets, GET Service Project, Report 4.1, URL http://
getservice-project.eu/en/project/public-deliverables, 2015.

[62] A. Baumgraß, N. Herzberg, A. Meyer, M. Weske, BPMN extension for
business process monitoring, in: Conference on Enterprise Modelling
and Information Systems Architectures (EMISA’14), 85–98, 2014.

49

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002

http://getservice-project.eu/en/project/public-deliverables
http://getservice-project.eu/en/project/public-deliverables


[63] K. Batoulis, A. Baumgrass, C. Di Ciccio, R. Eid-Sabbagh, M. Hewelt,
A. Meyer, M. Pufahl, T. Wong, Automatic aggregation rule gen-
eration engine, GET Service Project, Report 6.4.1, URL http://
getservice-project.eu/en/project/public-deliverables, 2015.

[64] M. Milanovic, D. Gasevic, Towards a Language for Rule-Enhanced
Business Process Modeling, in: International Enterprise Distributed
Object Computing Conference (EDOC’09), IEEE, 64–73, 2009.

[65] REWERSE Rule Markup Language, URL http://oxygen.
informatik.tu-cottbus.de/rewerse-i1/?q=node/6, 2006.

[66] S. Mandal, M. Weidlich, M. Weske, Events in Business Process Im-
plementation: Early Subscription and Event Buffering, in: BPM, to
appear, 2017.

[67] L. J. R. Stroppi, O. Chiotti, P. D. Villarreal, Extending BPMN 2.0:
Method and Tool Support, in: R. M. Dijkman, J. Hofstetter, J. Koehler
(Eds.), Business Process Model and Notation - Third International
Workshop (BPMN 2011), Springer, 59–73, 2011.

[68] J. Schimmelpfennig, D. Mayer, P. Walter, C. Seel, Involving Busi-
ness Users in the Design of Complex Event Processing Systems., in:
Conference on Database Systems for Business, Technology, and Web
(BTW’11), 606–615, 2011.

[69] R. von Ammon, T. Ertlmaier, O. Etzion, A. Kofman, T. Paulus, Inte-
grating Complex Events for Collaborating and Dynamically Changing
Business Processes, in: International Conference on Service-Oriented
Computing (ICSOC’09), Workshops, Springer Nature, 370–384, 2010.

[70] M. Wieland, O. Kopp, D. Nicklas, F. Leymann, Towards context-
aware workflows, in: International Conference on Advanced Information
Systems Engineering (CAiSE’07), Workshops and Doctoral Consortium,
vol. 2, 25–39, 2007.

[71] M. Bauer, F. Dürr, J. Geiger, M. Grossmann, N. Hönle, J. Joswig,
D. Nicklas, T. Schwarz, Information Management and Exchange in the
Nexus Platform, Tech. Rep. 2004/04, University of Stuttgart, 2004.

50

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002

http://getservice-project.eu/en/project/public-deliverables
http://getservice-project.eu/en/project/public-deliverables
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/6
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/6


[72] K. Vidackovic, Eine Methode zur Entwicklung dynamischer Geschäft-
sprozesse auf Basis von Ereignisverarbeitung (A method for the devel-
opment of dynamic business processes based on event processing), Ph.D.
thesis, Universität Stuttgart, 2014.

[73] EsperTech, Homepage for Esper framework, online at http://www.
espertech.com/esper/, 2017.

[74] R. Seiger, S. Huber, T. Schlegel, PROtEUS: An Integrated System for
Process Execution in Cyber-Physical Systems, in: Enterprise, Business-
Process and Information Systems Modeling, Springer, 265–280, 2015.

[75] G. Decker, A. Grosskopf, A. Barros, A Graphical Notation for Modeling
Complex Events in Business Processes, in: International Enterprise
Distributed Object Computing Conference (EDOC’07), IEEE, 27–36,
2007.

[76] A. Barros, G. Decker, A. Grosskopf, Complex Events in Business
Processes, in: Conference on Business Information Systems (BIS’07),
Springer, 29–40, 2007.

[77] S. Kunz, T. Fickinger, J. Prescher, K. Spengler, Managing Complex
Event Processes with Business Process Modeling Notation, in: Inter-
national Workshop on Business Process Modeling Notation, Springer,
78–90, 2010.

[78] U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp, F. Leymann,
M. Wieland, A situation-aware workflow modelling extension, in: Inter-
national Conference on Information Integration and Web-based Appli-
cations &Services (iiWAS’15), ACM, 1–7, 2015.

[79] K. Häussermann, C. Hubig, P. Levi, F. Leymann, O. Simoneit,
M. Wieland, O. Zweigle, Understanding and designing situation-aware
mobile and ubiquitous computing systems, in: International Confer-
ence on Mobile, Ubiquitous and Pervasive Computing (Ubicomp’10),
WASET, 329–339, 2010.

[80] A. C. F. da Silva, P. Hirmer, M. Wieland, B. Mitschang, SitRS XT –
Towards Near Real Time Situation Recognition, Journal of Information
and Data Management 7 (1) (2016) 4–17.

51

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002

http://www.espertech.com/esper/
http://www.espertech.com/esper/


[81] O. Zweigle, K. Häussermann, U.-P. Käppeler, P. Levi, Supervised
learning algorithm for automatic adaption of situation templates using
uncertain data, in: International Conference on Interaction Sciences
Information Technology, Culture and Human (ICIS’09), ACM, 197–200,
2009.

[82] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language
Reference Manual, Pearson Higher Education, 2004.

[83] D. Zimmer, R. Unland, On the semantics of complex events in active
database management systems, in: International Conference on Data
Engineering (ICDE’99), IEEE, 392–399, 1999.

[84] K. Görlach, F. Leymann, Dynamic Service Provisioning for the Cloud,
in: International Conference on Services Computing (SSC’12), IEEE,
555–561, 2012.

[85] K. Vukojevic-Haupt, F. Haupt, F. Leymann, L. Reinfurt, Bootstrapping
Complex Workflow Middleware Systems into the Cloud, in: Interna-
tional Conference on e-Science (e-Science’15), IEEE, 126–135, 2015.

[86] O. Gunalp, C. Escoffier, P. Lalanda, Rondo: A Tool Suite for Continuous
Deployment in Dynamic Environments, in: International Conference
on Services Computing (SCC’15), IEEE, 720–727, 2015.

[87] V. Muthusamy, H.-A. Jacobsen, T. Chau, A. Chan, P. Coulthard, SLA-
driven business process management in SOA, in: Conference of the
Center for Advanced Studies on Collaborative Research (CASCON’09),
ACM, 86–100, 2009.

[88] E. Mulo, U. Zdun, S. Dustdar, Monitoring web service event trails for
business compliance, in: International Conference on Service-Oriented
Computing and Applications (SOCA’09), IEEE, 1–8, 2009.

[89] A. Awad, A. Barnawi, A. Elgammal, R. Elshawi, A. Almalaise, S. Sakr,
Runtime detection of business process compliance violations, in: Annual
Symposium on Applied Computing (SAC’15), ACM, 1203–1210, 2015.

[90] T. Chau, V. Muthusamy, H.-A. Jacobsen, E. Litani, A. Chan,
P. Coulthard, Automating SLA modeling, in: Conference of the center

52

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



for advanced studies on collaborative research (CASCON’08), ACM,
126–143, 2008.

[91] R. Thullner, S. Rozanyai, J. Schiefer, H. Obweger, M. Suntinger, Proac-
tive business process compliance monitoring with event-based systems,
in: Enterprise Distributed Object Computing Conference Workshops
(EDOCW), IEEE, 429–437, 2011.

[92] A. Metzger, P. Leitner, D. Ivanović, E. Schmieders, R. Franklin,
M. Carro, S. Dustdar, K. Pohl, Comparing and combining predic-
tive business process monitoring techniques, IEEE Transactions on
Systems, Man, and Cybernetics: Systems 45 (2) (2015) 276–290.

[93] F. Bry, M. Eckert, P.-L. Pătrânjan, I. Romanenko, Realizing Business
Processes with ECA Rules: Benefits, Challenges, Limits, in: Interna-
tional Workshop on Principles and Practice of Semantic Web Reasoning,
Springer, Springer Nature, 48–62, 2006.

[94] M. Sadoghi, M. Jergler, H.-A. Jacobsen, R. Hull, R. Vaculin, Safe
Distribution and Parallel Execution of Data-Centric Workflows over the
Publish/Subscribe Abstraction, Transactions on Knowledge and Data
Engineering 27 (10) (2015) 2824–2838.

[95] V. Muthusamy, H.-A. Jacobsen, BPM in Cloud Architectures: Business
Process Management with SLAs and Events, in: International Con-
ference on Business Process Management (BPM’10), Springer Nature,
5–10, 2010.

[96] G. Li, V. Muthusamy, H.-A. Jacobsen, A distributed service-oriented
architecture for business process execution, ACM Transactions on the
Web 4 (1) (2010) 2:1–2:33.

[97] L. Baresi, G. Meroni, P. Plebani, Using the Guard-Stage-Milestone No-
tation for Monitoring BPMN-based Processes, in: Enterprise, Business-
Process and Information Systems Modeling (BPMDS’16), Springer,
18–33, 2016.

[98] G. Meroni, C. Di Ciccio, J. Mendling, Artifact-driven Process Monitor-
ing: Dynamically Binding Real-world Objects to Running Processes, in:
International Conference on Advanced Information Systems Engineering
(CAiSE) Forum, 105–112, 2017.

53

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



[99] M. Weidlich, H. Ziekow, J. Mendling, O. Günther, M. Weske, N. Desai,
Event-Based Monitoring of Process Execution Violations, in: Interna-
tional Conference on Business Process Management (BPM’11), Springer,
182–198, 2011.

[100] C. Cabanillas, C. Di Ciccio, J. Mendling, A. Baumgrass, Predictive
Task Monitoring for Business Processes, in: International Conference
on Business Process Management (BPM’14, Springer Nature, 424–432,
2014.

[101] C. Di Ciccio, H. van der Aa, C. Cabanillas, J. Mendling, J. Prescher,
Detecting flight trajectory anomalies and predicting diversions in freight
transportation, Decision Support Systems 88 (2016) 1–17.

[102] O. Kopp, S. Henke, D. Karastoyanova, R. Khalaf, F. Leymann, M. Son-
ntag, T. Steinmetz, T. Unger, B. Wetzstein, An Event Model for
WS-BPEL 2.0, Tech. Rep. 2011/07, University of Stuttgart, 2011.

[103] W. van der Aalst, K. van Hee, Workflow Management: Models, Methods,
and Systems, The MIT Press, 2004.

[104] T. Schlegel, K. Vidačković, S. Dusch, R. Seiger, Management of interac-
tive business processes in decentralized service infrastructures through
event processing, Journal of King Saud University - Computer and
Information Sciences 24 (2) (2012) 137–144.

[105] G. Hermosillo, L. Seinturier, L. Duchien, Using Complex Event Pro-
cessing for Dynamic Business Process Adaptation, in: International
Conference on Services Computing (SSC’10), IEEE, 466–473, 2010.

[106] N. Cicekli, I. Cicekli, Formalizing the specification and execution of
workflows using the event calculus, Information Sciences 176 (15) (2006)
2227–2267.

[107] S. Appel, P. Kleber, S. Frischbier, T. Freudenreich, A. Buchmann,
Modeling and execution of event stream processing in business processes,
Information Systems 46 (2014) 140–156.

[108] M. Jergler, H.-A. Jacobsen, M. Sadoghi, R. Hull, R. Vaculin, Safe
distribution and parallel execution of data-centric workflows over the

54

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



publish/subscribe abstraction, in: International Conference on Data
Engineering (ICDE’16), IEEE, 2824–2838, 2016.

[109] P. Hens, M. Snoeck, G. Poels, M. D. Backer, Process fragmentation,
distribution and execution using an event-based interaction scheme,
Journal of Systems and Software 89 (2014) 170–192.

[110] A. Morales, T. Robles, R. Alcarria, E. Cedeño, On the Support of
Scientific Workflows over Pub/Sub Brokers, Sensors 13 (8) (2013) 10954–
10980.

[111] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, A. P.
Barros, Workflow Patterns, Distributed and Parallel Databases 14 (1)
(2003) 5–51.

[112] N. Russell, A. H. ter Hofstede, D. Edmond, W. M. van der Aalst, Work-
flow Data Patterns: Identification, Representation and Tool Support,
in: International Conference on Conceptual Modeling (ER’05), 353–368,
2005.

[113] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, D. Edmond,
Workflow Resource Patterns: Identification, Representation and Tool
Support, in: International Conference on Advanced Information Systems
Engineering (CAiSE’05), Springer, 216–232, 2005.

[114] N. Russell, W. van der Aalst, A. ter Hofstede, Workflow Exception Pat-
terns, in: International Conference on Advanced Information Systems
Engineering (CAiSE’06), Springer, 288–302, 2006.

[115] S. Harrer, C. R. Preißinger, G. Wirtz, BPEL Conformance in Open
Source Engines: The Case of Static Analysis, in: International Con-
ference on Service-Oriented Computing and Applications (SOCA’14),
IEEE Computer Society, 33–40, 2014.

[116] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich,
S. Zugal, Declarative versus Imperative Process Modeling Languages:
The Issue of Understandability, in: International Conference on Explor-
ing Modeling Methods in Systems Analysis and Design (EMMSAD’09),
Springer, 353–366, 2009.

55

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



[117] C. Haisjackl, I. Barba, S. Zugal, P. Soffer, I. Hadar, M. Reichert,
J. Pinggera, B. Weber, Understanding Declare models: strategies, pit-
falls, empirical results, Software & Systems Modeling 15 (2) (2014)
325–352.

[118] O. Kopp, D. Martin, D. Wutke, F. Leymann, The Difference Between
Graph-Based and Block-Structured Business Process Modelling Lan-
guages, Enterprise Modelling and Information Systems 4 (1) (2009)
3–13.

[119] F. Leymann, BPEL vs. BPMN 2.0: Should You Care?, in: International
Workshop on Business Process Modeling Notation (BPMN’10), Springer,
8–13, 2010.

[120] M. Weidlich, G. Decker, A. Großkopf, M. Weske, BPEL to BPMN: The
Myth of a Straight-Forward Mapping, in: International Conference on
Cooperative Information Systems (CoopIS’08), Springer, 265–282, 2008.

[121] J. Vanhatalo, H. Völzer, J. Köhler, The Refined Process Structure Tree,
Data Knowledge Engineering 68 (9) (2009) 793–818.

[122] W. M. P. van der Aalst, A. H. M. ter Hofstede, YAWL: yet another
workflow language, Information Systems 30 (4) (2005) 245–275.

[123] P. Soffer, A State-Based Intention Driven Declarative Process Model,
International Journal of Information System Modeling and Design 4 (2)
(2013) 44–64.

[124] T. T. Hildebrandt, R. R. Mukkamala, Declarative Event-Based Work-
flow as Distributed Dynamic Condition Response Graphs, Electronic
Proceedings in Theoretical Computer Science 69 (2011) 59–73.

[125] W. M. van der Aalst, M. Adams, A. H. ter Hofstede, M. Pesic, H. Scho-
nenberg, Flexibility as a Service, in: International Conference on
Database Systems for Advanced Applications (DASFAA’09), Springer,
319–333, 2009.

[126] G. Hermosillo, L. Seinturier, L. Duchien, Creating Context-Adaptive
Business Processes, in: International Conference on Service-Oriented
Computing (ICSOC’10), Springer Nature, 228–242, 2010.

56

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



[127] W. Song, H.-A. Jacobsen, Static and Dynamic Process Change, IEEE
Transactions on Services Computing .

[128] G. Decker, O. Kopp, A. Barros, An Introduction to Service Choreogra-
phies, Information Technology 50 (2) (2008) 122–127.

[129] G. Decker, O. Kopp, F. Leymann, M. Weske, Interacting services: From
specification to execution, Data & Knowledge Engineering 68 (10) (2009)
946–972.

[130] J. Kong, J.-Y. Jung, J. Park, Event-driven service coordination for
business process integration in ubiquitous enterprises, Computers &
Industrial Engineering 57 (1) (2009) 14–26.

[131] A. Barros, M. Dumas, A. H. M. ter Hofstede, Service Interaction
Patterns, in: International Conference on Business Process Management
(BPM’05), Springer, 302–318, 2005.

[132] A. Barros, G. Decker, M. Dumas, F. Weber, Correlation Patterns
in Service-Oriented Architectures, in: International Conference on
Fundamental Approaches to Software Engineering (FASE’07), Springer,
245–259, 2007.

57

Pre-print copy of the manuscript published in Information Systems
identified by doi: https://doi.org/10.1016/j.is.2017.11.002



This document is a pre-print copy of the manuscript
(Soffer et al. 2018)

published in Information Systems.

The final version of the paper is identified by doi:
https://doi.org/10.1016/j.is.2017.11.002

References

Soffer, Pnina, Annika Hinze, Agnes Koschmider, Holger Ziekow, Claudio Di
Ciccio, Boris Koldehofe, Oliver Kopp, Arno Jacobsen, Jan Sürmeli, and
Wei Song (2018). “From event streams to process models and back: Chal-
lenges and opportunities”. In: Information Systems. issn: 0306-4379. doi:
https://doi.org/10.1016/j.is.2017.11.002. url: http://www.
sciencedirect.com/science/article/pii/S0306437917300145.

BibTeX
@Article{ Soffer.etal/IS2018:FromEventStreamsToProcessModelsAndBack,

author = {Soffer, Pnina and Hinze, Annika and Koschmider, Agnes and
Ziekow, Holger and Di Ciccio, Claudio and Koldehofe, Boris
and Kopp, Oliver and Jacobsen, Arno and Sürmeli, Jan and
Song, Wei},

title = {From event streams to process models and back: Challenges
and opportunities},

journal = {Information Systems},
year = {2018},
issn = {0306-4379},
doi = {https://doi.org/10.1016/j.is.2017.11.002},
keywords = {Complex event processing, Event-based systems, Business

processes, Event-driven business process management},
url = {http://www.sciencedirect.com/science/article/pii/S0306437917300145}

}

View publication statsView publication stats

http://dx.doi.org/https://doi.org/10.1016/j.is.2017.11.002
http://dx.doi.org/https://doi.org/10.1016/j.is.2017.11.002
http://www.sciencedirect.com/science/article/pii/S0306437917300145
http://www.sciencedirect.com/science/article/pii/S0306437917300145
https://www.researchgate.net/publication/321863861

	1 Introduction
	2 BPM and CEP: Background and Interactions
	2.1 BPM-oriented Systems
	2.2 Complex event processing and event-based systems
	2.3 Application of BPM and CEP concepts
	2.4 Mapping combinations of BPM and CEP

	3 Q1 – Using CEP constructs for process mining
	3.1 Motivation and Research Question
	3.2 Existing work related to Q1

	4 Q2 – Enriching Expressiveness of Process Models
	4.1 Motivation and Research Questions
	4.2 Existing work related to Q2

	5 Q3 – Deriving CEP Rules from Process Models
	5.1 Motivation and Research Question
	5.2 Existing work related to Q3

	6 Q4 – Executing Business Processes via CEP Rules
	6.1 Motivation and Research Question
	6.2 Existing work related to Q4

	7 Discussion
	7.1 Core challenges and opportunities
	7.2 Limitations

	8 Conclusion



