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Winternitz and coworkers have shown that the eigenfunction equation for the Laplacian on the
hyperboloid x3 —x}—x} =1 separates in nine orthogonal coordinate systems, associated with nine
symmetric quadratic operators L in the enveloping algebra of SO(2,1). Corresponding to each of the
operators L, we employ the standard one-variable model for the principal series of representations of
SO(2,1) and compute explicitly an L basis for the Hilbert space as well as the unitary
transformations relating different bases. We also compute the associated results for realizations of
these representations on the hyperboloid. Three of our bases are related to well-known subgroup
reductions of SO (2,1). Of the remaining six, one is related to Bessel functions, two to Legendre
functions, and three to Lamé functions. We show that there is virtually a perfect correspondence
between the known theory of the Lamé functions and the representation theory of SO(2,1) and

50(3).

1. INTRODUCTION

As is well known, the group SO(2, 1) acts on the
hyperboloid x2 - x% = x2=1, x,>0, with induced Lie
derivatives K,, K,, M, given by

Klz—xc,ajc2 —xzaxo, K,=-x axl —xlaxo,

(1.1)
Mslea

Xg - xza

%
and commutation relations (2. 3). Consider the eigen-
value equation

Qf(xoj xlyxz):l(l+ l)f(xoy xpxz)y (1-2)

where @ =K2+ K2 - M? is the Casimir operator of the
Lie algebra so(2, 1) expressed in terms of (1.1) and f
is a function on the hyperboloid. Olevsky' has shown
that Eq. (1. 2) separates in nine orthogonal coordinate
systems and Winternitz and coworkers®'® have shown
that these coordinate systems correspond to nine
quadratic symmetric operators L in the enveloping
algebra U of SO(2,1). Indeed, let S be the space of all
symmetric second order elements in U, let C be the
center of U and form the factor space T=S/SNC. (In
this case SN C={aQ}, a any constant). Then SO(2, 1)
acts on T via the adjoint representation and splits it
into nine types of orbits. Choosing an operator L from
each orbit, we find that for each such L the pair of
equations

Qf=1(+1)f, Lf=X, (1.3)

corresponds to one of the nine coordinate systems in
which (1.2) separates. In fact, A corresponds to a
separation constant.

We choose our nine operators L as M2, K2, (K, +M,),
Ly, Ly, Loy, Lyp, Lyp, Lp, where the last six are given
by (3.1). For the explicit derivation of these operators
and the orthogonal coordinates to which they correspond
see Ref. 2.

In the present paper, rather than study (1.2) directly,
we employ the standard one-variable model (2. 6) for the
principal series representations of SO(2, 1) and
explicitly compute an L basis for the Hilbert space
corresponding to each of our nine L operators. We also
compute unitary transformations relating different
bases. Qur results on the spectral resolutions of the
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L operators, though determined for the simple one-
variable model, are obviously valid for any model of
the principal series. The spectral resolutions for the
“subgroup operators” M2, K2, and (K,+ M,)* are well
known, e.g., Refs. 4—6 and partial results for L; and
L, can be found in Ref. 3. However, the remaining four
cases are treated here for the first time. The operators
Ly, Ly, Lgy lead to expansions in Lamé functions, L,
to Bessel functions and the Hankel transform, and

Ly, Lyp to expansions in Legendre functions.

In Sec. 4 of this paper we construct models of the
principal series in terms of solutions of (1.2), thus
making explicit the relationship between the above
results and separation of variables. This is accom-
plished via the Gel’fand—Graev transform which maps
functions on the unit circle to functions on the
hyperboloid and is an intertwining operator for the
group action. We obtain a number of new results
relating solutions of (1. 2) in various bases.

Recently Patera and Winternitz’ have introduced a
new basis for the representations of the rotation group
SO(3). Their basis consists of the eigenfunctions of the
symmetric operator E = —4(L?+ vL2), where O0<7r<1
and [L,, Lj]:emLk. In the two-variable model of the
irreducible representations of SO(3), functions on a
sphere, the eigenfunctions are products of Lamé poly-
nomials. However, the only one-variable model com-
puted in Ref. 7 was one in which the basis functions ap-
peared as complicated Heun polynomials. In Sec. 5 we
show that, in fact, by a suitable change of variable and
phase, one can construct a one-variable model in which
the basis functions are exactly the Lamé polynomials.
We show that there is a one-to-one relationship between
the results of Ref. 7 and the standard theory of Lamé
polynomials as presented in Ref. 8 or Ref. 9. This
permits the use of tabulated properties of Lamé poly-
nomials to implement the theory of Ref. 7. In general
our results show an intimate relationship between the
representation theory of SO(2, 1) and SO(3) on the one
hand and the theory of Lamé functions on the other.

We have not attempted to compute the matrix elements
for the principal series representations of SO(2, 1) in
any of the nonsubgroup bases. The practical computation
of such results awaits the introduction of appropriate

Copyright © 1974 American Institute of Physics 1263

Downloaded 03 Nov 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1264 E.G. Kalnins and W. Miller Jr.: Lie theory and separation of variables. 4 1264

coordinates on the group manifold such that variables
separate in the differential equations for the matrix
elements. Work is in progress on this problem.

This paper is one of a series analyzing the relation-
ship between Lie theory and separation of variables in
the partial differential equations of mathematical
physics. 10-12

2. SUBGROUP BASES

In this section we establish notation and review those
properties of SO(2, 1) that we will need in the sequel.

The group SO(2, 1) consists of those proper linear
transformations acting on a three-dimensional vector
x= (%, %1, ¥,) which preserve the infinitesimal distance

ds® = dx? — dx? — dx?. (2.1)

(These are the Lorentz transformations in the plane. )
The group SO(2, 1) is 2—1 homomorphic to the group
SU(1, 1) of quasiunitary unimodular matrices

e=(5 %) lal-lal=1

3 (2.2)

The generators of the Lie algebra of SO(2, 1) are de-
noted by K,, K,, and M,. Here K,, K, are the generators
of the pure Lorentz transformations along the 1 and 2
axes, respectively, and M, is the generator of rotations
in the 1, 2 plane. The defining commutation relations

of this algebra are

(K, K,J==-M,, [K,,M]=K,, [M,K]=K,. (2.3)

All unitary faithful irreducible representations are
labeled by the eigenvalue of the Casimir operator @,
where

Q=K:+K:-M2=](1+1). (2.4)

All such irreducible representations are infinite dimen-
sional. We now give the spectrum of ! corresponding to
the unitary irreducible representations and the eigen-
values m of the operator iM, in each such
representation.

(i) Principal series: I==3+ip, 0<p<oo,
m=0, £1, +2, -~ or 3%, +3, -,

(ii) Complementary series: Iml=0, —1<7<0,
m=0, £1, £2, -,

(iii) Positive discrete series: 2I =integer,
m=Il+1, [+2, .

(iv) Negative discrete series: 2! =integer,
m==1=1, =1~2, -,

For the purposes of this paper we only consider the
single valued representations of the principal series.
For a more detailed treatment of SO(2, 1) we refer to
the standard references, 4, 13. The principal series
of SU(1, 1) can be realized on the Hilbert space // of
square integrable functions f on the unit circle with the
scalar product

(Fomy= [ f(e) nie)as.

The action of a group element g on a function f is
specified by

(2.5)
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0y _ | a,i6 4 |21 ae‘9+E)
T@)f(e)=|Be*+a|* f{gmrg ) (2.6)
and the generators of the Lie algebra have the form

K, =Icosf - sind 4,

de
K. —-—lsina—cose-i (2.7
2T g’ .
d
Ms_-ig-

Of the nine possible bases for SO(2, 1) as given by
Winternitz ef al.?, three are of the subgroup type and
have been treated in some detail in the literature.*-¢
We now give the explicit form of each of these subgroup
bases for the principal series. In the section on the
two variable model we also give the expansions in the
subgroup bases. These results are not new, ¢ but we
present them here in summarized form in the interest
of completeness.

1. Spherical system: The explicit form of the princi-
pal series in this basis has already been presented in
our definition of the principal series. The basis func-
tions of the spherical system are just the eigenfunctions
exp(im 8)/v21 of the operator M,. This is the canonical
or standard basis to which we will relate all subsequent
bases.

2. Equidistant system: The basis defining operator
for this system is K,.

The representation space of the principal series
splits into two spaces. The basis vectors in each space
are

fl =(coshg) exp(itq) C,, (2.8)
where €=+ 1 is a reflection label which distinguishes

the two spaces and C,; =(}), C_,=(%). The variable ¢ is
related to 9 by

_co<7'<oo,

e?=tan3#8, 0<8sm,

(2.9)

e '=tan}(0-7), 7ws6s<27.

On each of the spaces K, is essentially the momentum
operator with a unitary continuous spectrum, the real
line. For further details concerning this basis see
Refs. 5, 6.

3. Horocyclic system: The basis defining operator
for this system is K, + M,. The representation space
of the principal series is then spanned by a single set
of basis vectors given by

fi=[301+23)) exp(isz), —=<s<w, (2.10)
where the variable z is related to 6 by
z=tan%#. (2.11)

This basis has been considered to a limited extent in
Ref. 13. The choice of basis operator is more con-
venient but still equivalent to that used in Ref. 13.
(Similar remarks apply to the equidistant system.)

3. NONSUBGROUP BASES

Now we enumerate the six types of orbits in T which
do not correspond to subgroup bases. Choosing a
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standard element on each of the orbits, we obtain the
following list of six operators.

(1) Elliptic system: L, =M2+ kK%, kcR,
(2) Hyperbolic system: L, =K% - 72M2, O0<r<]1,
(3) Semihyperbolic system: Ly, =M.K, + K,M,+ 7 K2,

O0<v<oo, 3.1)
(4) Elliptic-parabolic system: L, =y K%+ K%+ M?
+ KM, + MoKy,

y>0,
(5) Hyperbolic-parabolic system:
Lyp=-vEK,+KI+Mi+K M+ MK, y>0,

(6) Semicircular-parabolic system:
Lop =K K, + KKy + KMy + MK,.

We will show that each of these operators corresponds
naturally to a symmetric operator on the Hilbert space
# =L,[0, 27] corresponding to the principal series
representations of SO(2, 1). Furthermore, we will show
that each such symmetric operator has equal deficiency
indices and can be extended to one or more self-adjoint
operators on //. Finally we will compute the spectral
resolutions of these self-adjoint extensions and relate

them to the spectral resolution of Ly = M2,

Recall that for the principal series the Lie algebra
generators are given by (1.7 and I=-%+ip, p>0.

Lie theory and separation of variables. 4

|

v [7 FS(6) FE¥(6) do

= %E—; (=) fozn exp(— in¢) (sinkp)'Pit (cosie)do

BT YR P I "2 Pn+ HIT(I + ik +1)/2)T(=2n+ 1~ it +1)/2)

1265

A. Elliptic parabolic system

For our first example we consider the operator L,
normalized so that y =1:

+ 1+ 1)

Lgp=2(1-5siné) fz + (21 ~ 1) cosb == d
(3.2)

dae
- I sing].

This operator can be defined on the domain of all C*
functions on the circle which vanish near 8=17/2. 1t is
straightforward to show that L, is essentially self-
adjoint on this domain and that the self-adjoint exten-
sion, which we also call Ly, has continuous spectrum
only, covering the negative real axis. The normalized
generalized eigenfunctions are
F7P(6)= a,(sing¢) t/2+to pt {12440 (COST D),
(3.3)

4t sinh 7¢

1/2
1
=_l——— e < <
% (coshw£+cosh1rp> » O=am+ ¢, O<p<am,

and the orthogonality relations are
[ Fe(
Here, Ly, FyP(0)=~ £ FyP(6), 0<Ef<, and P4(z) isa

Legendre function.® A tedious computation for the over-
lap functions between the S and EP bases yields

(B)FTP(B)dO=05(& - k). (3.4)

T(=n+1+1)D((1-i+2)/2)T((-2n =it =1+ 1)/2)

n-l,n+s, n,n+i
X4 F,

(3. 5)

im 227 T((i = [+ 1)/2) T((L ~ 2n + it + 1)/2)

@I =2+ 3)/2) T(= 1= 68/ T((L + 2n = L 7 i8)/3)

(1+2n+it-10)/2, (1+2n-4£=1)/2, 1+2n

1 n~l~% n+i,n+1,n
X F
(TuD1 ¢°3

where the plus sign applies to the case #» <0 and the
minus sign to n>0. The ,F, is a generalized
hypergeometric function. ®

B. Elliptic system

Corresponding to the elliptic system we have

d

+ B2 —— 2 — i —_
= (1+ k? cos?8) d92 + k*(2] - 1) sinb cosd 70
+ k*(I? sin%6 + 1 cos?6). (3.6)

Initially we define this operator on the domain of C*
functions on the circle. However, it is easy to see that
Ly has a unique self-adjoint extension. Indeed, it cor-
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1

(1+2n-1+it)/2, 1+2n-1~i£)/2, 2n

Iy

esponds to a regular Sturm— Liouville operator on the
interval {0, 27] with periodic boundary conditions. Thus
the spectrum is discrete. To solve the eigenvalue
equation L fY=x\fF, we set

£,(8)=(1+E? cos?0)'/2 g, (w),

0= ¢ —1/2 and sin¢ = sn(w, ik), where sn(z, k) is a
Jacobi elliptic function (Ref. 8, Chap. 13). Then the
eigenvalue equation becomes

<z;f—2—1le(l+1) sn?(z, 7’)+Z(Z+1)12— )gl(z) 0,
3.7

Z=(1+0) 2w, P e Kiy) <z <3K(y)

- ] _1+k2 - Y T2 s yy

Downloaded 03 Nov 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1266

with periodic boundary conditions g,(2)13£=0,
£(2)1%%£=0. This is the Lamé equation and the required
eigenfunctions are the periodic Lamé functions with
period 4K. We can divide the eigenfunctions into sym-
metry classes by noting that L ; commutes with the
unitary commuting idempotent operators R,, R,, where

(R Y (@)=F(=9), (RyfNP)=f(m—¢)
with ¢ as in (3. 3) and f{¢) a function on the unit circle.

Since the eigenvalues of R, and R, are 1 the eigen-
functions of L fall into four classes labeled by these
eigenvalues. In terms of the notation given in Ref. 8,
Sec. 15.5.1, the results are

A1+ %) £,(2) period R, R,
a2"(v%) Eci™(z,7%) 2K 1 1
A" HP)  Eci™Nz, 7Y 4K -1 1 (3.8)
B2™2(%)  EsP™2(z, 77 2K 1 -1
™Yy Esi™Yz,7?) 4K -1 -1
for m=0,1, 2,-.-. Here the multiplicity of each eigen-

value is one, and the superscripts m are related to the
number of zeros of the corresponding eigenfunctions in
a period. We normalize each eigenfunction fF to have

unit length in //, leaving a phase factor undetermined.

Note that the action of R, and R, on the spherical
basis functions f5(8) = exp(im 8)/V27 = (- i)™ exp(im ¢)/V21
is

R =(=1)"f%, Rofo=Fin (3.9)

The overlap functions relating the /%, basis to the fE
basis are the coefficients UE:$ in the expansion

fE=2 UESSS. (3.10)
We can obtain recurrence relations for these coef-
ficients by substituting (3. 10) into the eigenvalue equa-
tion L, fE=xfE and equating coefficients of 5 on both
sides of the resulting identity. For example, the basis
function £, ($)=(1+ k% sin?¢)*/2 Ec3"(z, +°) satisfies
R,h,=R,h,=h, so that the expansion (3. 10) takes the
form

h(9)=3C,+ "Zi_} C,,cos(2nd).

Substituting this expression into the eigenvalue equation,
we find

[P +1)—2)]C, = k(12 =51 - 2)C,=0,
E3(n-1)(3 =20+ 21 -1)]C,,.,

+ 3R (U1 + 1) = dn] - (x + 4n?)} C,,

+R[Ln+1)(1+2)+ 5 (1=-D]C,,.,=0.

(3.11)

These expressions are closely related (but not identical)
to recurrence formulas derived in Section 15.5.1 of
Ref. 8. There are similar formulas for the other three
types of periodic Lamé functions.

C. Semicircular parabolic system

The basis defining operator L, has the form
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"E.G. Kalnins and W. Miller Jr.: Lie theory and separation of variables. 4 1266

L.y =2cosé(1 — siné) ad;z— + (21 = 1)(1 ~ sind)
(3.12)

X(1+ 2 sinf) Zdé +Icosé[1 + 2(I ~ 1)siné].

Before discussing the self-adjoint extension of L, it is
convenient to use instead of the functions f defined on
the unit circle, the functions g°(v),

£(8)=[20/(1+v9)]' g"(v),
where e=+1, v=vVcotlp (0<d <), ande=—1,
v=vV—-cotlp (7 < ¢ <27). The space of functions f(6) is
then replaced by the pair of functions (g°, g°), and so
we need to consider L, acting on the direct sum of two
Hilbert spaces which we call 4/* and //~ (H=/"® 4").
On each of these spaces L, has the form

Lep= (L 0x0),

dv? v

(3.13)

This operator has deficiency indices (1, 1) on each of the
two Hilbert spaces /* and //~. There is thus a two-
parameter family of possible self-adjoint extensions of
L, acting on the space of functions defined on H. We
choose one of these which immediately suggests itself
and relate it to the standard S basis. The normalized
generalized eigenfunctions we choose are

FERO) =[20/(1 + o) X J,, . (V2 A0) C,, (3. 14)

with C, as in (2. 8). This choice of basis corresponds to
the choice of eigenvalue ex? (0 < < «) for the basis
vector FSP(9), i.e.,
Lop fEP=en?fCP.
The orthogonality relations are
JErelyreroyao=sv -0, .. (3. 15)

The relation of this basis to the spherical basis can be
readily computed:

USSPt N~ f: V2 H(V2 A)

=My A+

X (@2 +iPE(1+ oY) i do

_ [2\/17 (%)H z; iZ"—'c(i")
I(-1-n) 1 9\ /1 a\™
N I=ATr+I+D) (i H) <1—62_3 az>

822 1+1/2-7
x<-—)\—2_> J'l-l /2+r(XZ)K-l-l/2+r (\Z)]

where >0 and K,(2) is a MacDonald function.

(3.16)

2=17

For n<0 it is only necessary to make the substitution
! ——1~1. The only modification of these results for
the overlap function _,’,S}’_l is the replacement of the
%" term in the above expression by (- 7)#*~,

D. Hyperbolic system

The basis defining operator L, has the form

+(1 - 21) sind cosd 4

— (2 _ 20y 2
Ly=(r -cos 9)d92 76

(3.17)
- 1% 5in%0 - I cos?6.
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I
P 2K ————+] Q=eol, 2W- KX
T -
K
8=T-o =T+l

FIG. 1. The 6 coordinate in the v plane for the hyperbolic sys-
tem.

This operator is defined in the domain of all C~ func-
tions which vanish near those four points for which
lcos8| = (»>0). It is convenient at this point to split
the space H into a direct sum of four spaces which we
label by a discrete index i (=1, 2,3 or 4). The splitting
is achieved according to the prescriptions

M= (=a<8<a), f*—~(a<f<7=-aq),

e (m-—a<f<mt+a), Hr(r+ta<f<2r- «) so that

DU

e

H= (3.18)

i
-

(note: we assume r¥=cose, 0<a< 7/2). The functions
7(6) are then replaced by functions k;(v), given by

f:(0) =i’ /en(v, ) hy(v),

where 7’ =(1 - 7*)!/2 and cosé=dn(v, 7)/cn(v, 7).

(3.19)

The ranges of the parameters are shown in Fig. 1,
and it can be seen that as 8 runs from — a — 27 - @, the
parameter v describes a closed path as indicated in
Fig. 1.

On each of the Hilbert spaces //! the operator Ly has
the form

&

=g =7 LI+ 1) so¥(w, 7).

Ly (3.20)
We are then concerned with four eigenvalue problems
each of which is such that the operator L, is singular

at each of the two corresponding end points. Let us first
consider the choice of basis for //'. For this space

ve (iK', iK' + 2K). Following Erdelyi,® Chap. 15, we
choose the boundary conditions for a basis as

(i) [sn(v, M ]'/2 A(v) bounded at v=iK",
AN(K+iK')=0.

(3.21)

The corresponding solution is denoted by A= F2™(v, 7)
and has 2m zeros in the interval (iK', iK' + 2K)

(ii) [sn(v, ) /2 A(v) bounded at v=1iK',
AK +iK')=0. ’

The corresponding solutions are denoted by F5™(v, 7).
In the above A(v) is the corresponding solution of the
equation L A=x_A. Here m is the number of zeros of
the eigenfunction A in the interval (iK’, iK’ + 2K). These
are the finite Lamé or Lamé Wangerin functions. The
solution of the corresponding boundary value problem
gives these functions as expansion functions with the
discrete spectrum of L, labeled by the upper index.
[This index is also the number of zeros of the solution
in the interval (iK', iK’ + 2K).] The problem for the basis
of /% is exactly similar so that we then have the basis

(3.22)
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H o (@)=FNv, ", (3.23)

msi

The ), are 4X1 column vectors having 1 in the ith row
and zero elements elsewhere. For the choice of basis
in the spaces /4% and //* the corresponding eigenfunction
expansion problem is similar to that considered already
but the variable v is now in the range (iK', —iK’) or
(2K +iK’, 2K - iK'). The corresponding boundary value
problem of interest is now given by the requirement that
(snv)'/2 A(v) be bounded at the end points v==x4K’ and
that A’(0)=0 or A(0)=0 according as A is even or odd
about v=0. The complete set of eigenfunctions are the
Lamé Wangerin functions FT(v, 7). The corresponding
basis functions are then given as in (3. 23) with i=2, 4.
In particular we have for each eigenfunction f ffm. (2
=1,2,3,4) as 8 varies from — a to 27— a, that v varies
continuously around the rectangle drawn in Fig. 1. The
corresponding eigenfunction [iv' /en(v, nlr H;cor-
responds to a continuous differentiable function of 8 and
is therefore an element of the original representation
space. This requirement picks out this solution and
does not require us to consider the deficiency indices
in each subspace. (We have essentially periodic bound-
ary conditions). The latter procedure in general leads
to sectionally continuous eigenfunctions on H. The
orthogonality of the basis functions is written

(f:f,i s fo .j)zéuémm' an

with N! a normalization factor. The eigenfunctions f L
defined as above are nonzero only in the corresponding
Hibert space //*.

i=1,3.

(3.24)

We now proceed to calculate a recurrence relation
for the overlap functions between hyperbolic and
spherical bases.

We consider in detail overlaps associated with the
spaces /' and //3. As with the elliptic system it is
convenient to consider a number of discrete trans-
formations. The first of these is reflection R about the
line Rev =K. This corresponds to the transformation
#— — 8. We have accordingly

sz,i(v):(_ 1)mfy£{,i(v)a i=1,3. (3. 25)

In addition, if we consider the reflection R : 6 —7 = 6,
then we have

RfE (0)=(-1)"f% [(v), i#j, i,j=1,3.
From these equations we can form the linear com-
binations Fi* = f¥ (v)x fE (v) [with ¢,7 as in (3. 23)]
having eigenvalues (- 1)™, (- 1)" respectively, of the
operators R and R.

(3.26)

It is these functions for which we can form the over-
lap functions, i.e., instead of relating the normal basis
fB (v} to the spherical basis fSvia fB .=y~ UBSFS
we write each Fii* ag a Fourier series in 6 and find
recurrence relations for the coefficients. This involves
extending the domain of the functions FE* to be defined

on the unit circle, 0< 8 <27.

The symmetrized basis function G =(+* - cos?6)’ /% x
Fg,* has eigenvalues + 1 for the both the reflections R
and R and so can be represented by the series

GE8)=14Cy+ 2, C,,cO8(210) (3.27)
n=1
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for a < §<m/2 - «. Applying the operator L, to both
sides, we obtain the recurrence relations

-+ 1+2,]c,+[2+131-1)]C, =0,
(3 - 1)@1-2p-1)+ I - 1)]C,,,

+[2p2(1 - 2¢") - M1+ 1) -2, ]C,,

+[3p+ 121+ 2p+ 1)+ (1 - 1)]C,,,,=0
forp=1.

(3.28)

Similar recurrence relations can be derived for the
other symmetrized basis functions. Identical arguments
can be applied to overlap functions associated with the
Hilbert spaces #/* and /4/*. In this case it is convenient
to introduce the same discrete transformations as
previously but with 8 replaced by ¢(6=17/2+ ¢). With
this change the analysis goes through as before.

E. Semihyperbolic system

The basis defining operator Lg, has the form
dZ

ae

+ 7(12 sin%0 + I cos?8) - [ siné.

+ (21 - 1) cos8(1 + 7 sing) Zi%
(3. 29)

Ly = (7 cos?d ~ 2sind)

This operator is defined on the domain of all C* func-
tions which vanish near the two points at which sind
=1/7[(1+72)!/2-1]. It is convenient to split the space
H into the direct sum of two spaces //, and //, defined
according to the prescription 4/, ~ (<6< 7 - a),

Ho (=< f<2m+ a) so that

H=H & H,.

The functions f(8) are then replaced by the pair of
functions %; (i=1, 2), where

N sn(v, s) dn(v, s) !
6= <[_ T+ 272 + 7+ 1] s0(s, 5) = 27) In(v),

a<0<7-a,

— N sn(u, q) dn(u, q) 1
- <[(1 + 724y — 1] sn’(u, q) - 21’) o),

T-a<0<2r+aq, (3.30)

where

yo BLEPE
v

(1+r23t/2-1]

2 (L4722 _y qz_(1+'rz)1/2+'r
SERAT T T AR

and

21 -1+ 732+ [(1+ 7221 - 7] sn¥(v, s)
(1+%-(1+72)2]sn’(v,s) - 27 ’

a<él<r-—a,

sinf =

_ L+ 2 147 en¥(u, g) - 2[(1 +rY)H/2 - 1]
[(T+7H72 -1+ 77 sn’(u, q) - 272 ’

T=-a<0<27+a.

(3. 31)
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The corresponding ranges of the variables are
0<wv<2K(s), 0<u<2K(q). In terms of the new
variables the operator L, assumes the forms

& en?(y, s)
2y~1/2 [ [ 2
(1+ 7)Y 2 Lgg= (dvz +i(I+1) sn?(v, s) dn*(v, s)

rII+1)

& cn®(u, q)
=z "W+ sn®(u, q) dn*(u, q)

- (—11;1%%11,)2— . (3. 32)
It is possible to make further transformations and write
Ly in the form of the standard Lamé operator as for
instance in (3.20). The resulting elliptic functions then
have a complex molulus k= exp(iy) (¢ real) and the range
of variation of the new variables is not parallel to either
of the directions of periodicity. It is more convenient

to consider the operator Ly, in one of the forms (3. 30).
The problem of the self-adjoint extension of Ly on each
of the spaces //; is exactly analogous to that considered
in each of the spaces //, of the hyperbolic system. In
particular we choose the boundary conditions which re-
quire that [sn(v, s)]"*/2 A(v, s) be bounded in the interval
(0, 2K(s)). Here A(v, s) is a solution of Ly A=X A,
More precisely the boundary conditions are:

(i) [sn(v, $)]"*/2 A(v, s) bounded at v=0, 2K(s) and
N(K,s)=0. The corresponding solution is denoted by
K%™(v, s} and has 2m zeros in the interval (0, 2K(s)).

(i1) [sn(v, s)]1/2 A(v, s) bounded at v=0, 2K(s) and
A(K,s)=0. The corresponding solution is denoted by
K2™Y(y, s) and has 2m + 1 zeros in the interval [0, 2K(s)].
Similar remarks apply to the related problem on #/,.
The corresponding solutions are denoted by M7(u, g).
The spectrum in each case is discrete. A complete set
of eigenfunctions for the Hilbert space H is then

(V) =K7(v, 8)C,,

myl
(W) =M7(v, q)C..

Satisfying the normalization conditions, we have

rsn?n’ frsr;t!’{m'):(smm' 8pes MmN =1,2.

The functions K7(v, s) and M7(«, ¢) that we have in-
troduced are closely related to the Lamé Wangerin func-
tions which appear in the hyperbolic basis. In fact if we
take the operator L, in the standard Lamé form we
have in the space //,

(3. 33)

[r+(r2+ 1212 L,

& Wl+1
= o7 = UL+ D s, 1)+ o (1;,2(+-+_1)1)/2]1/2

(3. 34)

where k= [q-i(1 - ¢*)'/?]/[g +i(1 - ¢*)'/*] and
w=[g+i(1- ) Jv - iK' (k).

The corresponding eigenfunctions of this operator are
then Lamé Wangerin functions. These solutions can be
represented in a series as Erdeyli has done for the
case of complex &, e.g.,
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le”‘(w,k):Z_:OA,exp[— i+1+27)¢], (3.35)
where cosg=sn(w, k) and the coefficients A, satisfy the
recurrence relations

[H-(1+1?(2-#%)]A,+ (20 + 3) kA, =0,
r-D(+rPPA,_ +[H-(I+1+27)2(2-F)]A,
+(r+1)(2+2r+3)R2A,,, =0,

y=1 and H=2x, —I(I+1)%, (3. 36)
2m

In this way we can write a series expansion for each of
our basis functions K7' and M7. It is again straight-
forward to calculate recurrence relations for the over-
lap functions between the semihyperbolic system and
the spherical or canonical basis. This again depends on
the fact that a given basis function consisting of two
components represents a continuous function of ¢ for
6< [0, 27]. We merely note here that this can be done
and omit the calculation which leads to rather lengthy
recurrence relations.

F. The hyperbolic parabolic system

The operator Ly, has the form
2

. . d . d
Ly, =2sinf(siné - 1) r I +(27 - 1) cosf(1 - 2 sinb) 10

~ 22 5in%6 - 2! cos®g - [ sind, (3.3

We consider this operator to be defined initially on the
C~ functions of 6 which vanish near the points § =7/2,

7, 3m/2, where Ly, is singular. It is convenient to con-
sider the space H divided into four subspaces /! as with
the hyperbolic system, i.e., H=2‘§=lep,t/". Each of these
subspaces corresponding to functions of ¢ defined over
an interval of length 7/2, e.g., H#'—(0< 8 <7/2) ete.

It is then convenient to consider the operator Lyp acting
on new functions %; in each of these spaces where

vy=1.

f(6)=[V2 sinhd/(1+ cosh®s) ] h,(b), i=1,2,
=[v2 siny/(1 + cos?y)]* k,(¥), i=3,4. (3.38)
The variables & and iy are given by
. . 1/2 — s
[(1+ sin6)/2sing]'/2=cothd if 0<6<7t (3. 39)

=icoty if 7<6<27.

For i=1,2, Ly, acting on the functions %,(b) has the
form

& Wi+1)

db® ~ sinh?%

and for i =3, 4 it is just required to make the sub-
stitution & —iy. For i=1, 2 the solutions of the eigen-
value equation Ly, k= p2h are the functions (sinhb)!/2
P37/2 (coshb). From this observation it is immediately
seen that a complete set of basis functions does exist if
we take =~ ip (p real and positive). The corres-
ponding completeness properties follow from the prop-
erties of the generalized Mehler transform. A complete
set of orthonormal basis functions is then

FEB(b)=[(p sinhmp/7) T(1+1+ip) T(1 +1 - ip)]*/2
X (sinhb)*/2p-1-L/2 (coshp),

-1/2+i0

Lyp=

(3. 40)

i=1, 2, satisfying the orthogonality relations
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S for o =8(p=p").

The spaces //, and //, can be combined by defining the
variable ¢ as in (3.37) with 0 <¢ <7 but now taking into
account the sign of the square root. The corresponding
eigenvalue problem is singular at both ends of the
interval ¢ = (0, 7). There is a two-parameter family of
self-adjoint extensions of L, since the deficiency in-
dices are (2, 2).

Each linearly independant solution is square integrable
so that the spectrum is discrete for each self-adjoint
extension. The computation of an orthonormal basis of
eigenfunctions is straightforward but complicated and
unenlightening and so we omit it. Also, the integrals
relating these bases to the standard spherical basis
appear intractable.

4. THE TWO VARIABLE MODEL

The group SO(2, 1) acts on 3-space according to
x— L(g)x, where x=(x,, x,, %,) is a column 3-vector and
L(g) is the 3X 3 matrix representation of SU(1, 1) defined
as in Ref. 13, p. 289. This action induces a representa-
tion of SU(1, 1) on the space 7 of C* functions in
3-space, defined by operators T(g):

[T(g)F)(x)=F(L(g™)x), F= 7.

To be precise, we choose the action so that the cor-
responding Lie derivatives are as in (1.1). Clearly the
quadratic form xZ - x% — %% is preserved by this action.
In this section we will construct models of the principal
series representations of SO(2, 1) in which the Hilbert
space consists of functions F(X) defined on the hy-
perboloid 42 - x% ~x2=1, x,>0, and the group acts via
(4.1). In particular we will explicitly construct in this
space the various basis functions listed above. Further-
more, we will use the Gel’fand—Graev transform to
expand an arbitrary function, square integrable on the
hyperboloid, in terms of each type of basis. We note
that the basis functions are exactly those which appear
when one uses separation of variable methods to find
solutions of the wave equation

(4.1)

02 02
(o - 57

which are homogeneous in y,, ¥,, ,.

az
- @) é(y)=0, (4.2)

We use the Gel fand—Graev transform** to map func-
tions on the unit circle corresponding to a principal
series representation of SO(2, 1) to functions on the
hyperboloid. Thus, corresponding to fe 4 and the
representation ! = - % +ip, we define a function F(x) on
the hyperboloid by the integral

F(x)= j:' (x,+ x, 8inf - x, cos@) " F(0)de =I[f]. (4.3)

It is easy to check that the operator T(g), (2.6), acting
on f induces the operator T(g), (4.1), acting on F:

T(g)F =I[T(g)f].

It follows that the Lie derivatives (2. 7) acting on f in~
duce the Lie derivatives (1. 1) acting on F.

If {fS} is a basis for // corresponding to the operator
L, then
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(K3+KZ-M3fFS=11+1)f8,
(4.4)
LGfS:)‘nff'

1t follows that the functions F§=I(fC) satisfy the equa-
tions

(K2 + K2 = MZ) FS = 1(1 + 1) FS,
LGFS:KnFS’

(4.5)

where now the operators K,, K,, M, are given by (1. 1)
and L, is expressed in terms of these operators by one.
of the Egs. (3.1). We shall see that each choice of L,
in (3. 1) corresponds to a separation of variables in the
first equation (4. 5).

We can now employ any one of our bases {FS} to ex-~
pand functions on the hyperboloid. Thus, if H(x) is
square integrable on the hyperboloid %2 —x2 = x2=1,
%,>0, with respect to the measure dx,dx,/x,, then the
Gel’fand—~Graev integral transform yields the expansion
1 ~1/2+§

H(X)= Frrs f I[f )l cotnldl, (4.6)
-1/2=~f
where f,(6) is a function on the circle defined by

f (%) (x, + %, sinb - xzcose)’%@L (4.7)

0

Since f,(#) can be expanded in a {f¢} basis, we obtain
ft(e):;A?,"ff’ A;G'"=<ff,fz>,

or

1 =1/2+i®
Hx)= Frrs f Icotnldl ; ASm Fé(x),

1/2=iw

(4.8)

AG f f H(x) FS(x) %@2—

Formulas (4. 8) apply directly in the case L, has dis-
crete spectrum. When L, has continuous spectrum, it
is necessary to replace the sum over n by an integral.

Note: In the usual treatments of the Gel’fand—Graev
integral transforms, our [ f,] is replaced by an integral
over an arbitrary contour I" on the cone xZ - x% - 22 =0,
which intersects every generator once. In this paper
that contour is always chosen to be the circle (x,, x,, x,)
=(1, —sind, cos#h).

We can view the transform (4. 4) in another way:
namely as the inner product of the functions %,(6),

F(0)= 4,

F(x)=(h,, 1), (4.9)
h(6) =(x,+x, sind — x, cosh) = /.
Then the formula F¢=(h,, f%) yields immediately the
expansion

hy(8) = 2 F8(x)f5(8) (4.10)

for the kernel function % (6). Furthermore, a direct
computation yields the result

<hx’ hy> =27 Px(xovo — XYy = x2y2)’

where P,(z) is a Legendre function. Substituting (4. 10)
into (4.11), we find

(4.11)

J. Math. Phys., Vol. 15, No. 8, August 1974

Lie theory and separation of variables. 4

1270

21 Py(%e0o = %1V = %3Y2) = 2. FR(X) FE(y)- (4.12)
Finally, if two,L/ bases {fS}, {f£} are related by over-
lap functions U¢S:

n m ’
fE=2 UK 1,
it follows immediately that

F¢=3, US-KFK, (4.13)
m

n.,m m

We now list the functions F¢ for each choice of G. In
several cases the integral I[f S] appears not to be known,
and we have to make explicit use of the fact that, in
each of the appropriate coordinates tabulated in Ref. 2,
I[ff] satisfies a simple second order ordinary dif-
ferential equation. Thus F¢ can be expressed as pro-
ducts of solutions of such equations with coefficients
determined by evaluating the integral for special values
of the parameters x. We now give explicit expressions
for seven of the nine bases discussed.

A. Spherical system

Fola, $)
= " [cosha - sinha siné siny - sinha cosé cosy]™*
X exp{im 6) d6 (4.14)
=1 I(i+1-m) . ;
=i  Tir1) L7 (cosha)exp(ime)

with (x,, x,, %,) = (cosha, - sinhasiny, sinha cosy),
O<a<»o, 0sy<27m.
B. Equidistant system
FE4(a,b)
= f_ ‘: [cosha coshb coshg — cosha sinhb sinhg
- ¢ sinha] ! exp(iTq) dq

Tl+1+i7)T(1+1-171)
I(l+1)

(—ca—s;ll?)l—z—exp[— ZTT(Z + 1/2)/4]

X P72 (~ etanha) exp(iTh) (4. 15)

with (x,, x,, x,) = (cosha coshb, - sinha, cosha sinhb),

—0<g< o —~w<h<oo,
C. Horicyclic system
Fa,7)= foz' [L(exp(~ a) + (¥ + 1) exp(a)) ~ 7e? cosd
- L(exp(~ a) + (¥’ = 1) exp(a)) sing | !
% (2 cos?io)!
X explistanz6) d6

1+1/2

P(l {-;- | expl- a/2)K,, ;e |s|) explisr)
(4. 16)
with
(%o» %1, %,) = ($exp(— a) + (2 + 1)es],
- slexp(—a) + (r2 - 1) e?], ve?),
0<r< o —w<a<oo,
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D. Elliptic-parabolic system
F%®(a, 8) = a,[2 cosha cosp]'*!
1 4
x ]: [cosh?a + cos?6 — cos (cosh®a + cos?g — 2)

-2 sin¢ sinha sin8] ! (sin} )’

xpit(cosio)do. (4.17)
Here,
. 1 (coshza + cos20> ,
°7 2\ coshacosé
1 (sinze— sinh2a> ,
1= 3 \“coshacosé
o= — sinha siné
2™ coshacos®
Using Ref. 2 and symmetry in ¢ and {6, we have
FE®(q, §) = A Pi%(tanhq) P! (itang)
+ B(P¥(tanha) Q%*(:tand) + @}*(tanha)
x Pi¢(itanf)) + C Q¢ (tanha) Qi¢(itand). (4. 18)

Setting Py=P[(0), P,=[dP[(x)/dx],.,, etc., (these
values are listed explicitly in 8, Vol. 1), and com-
puting F}?(0,0), 2,FF7(0,0), and 3,3,FEF(0, 0) directly
from (4. 17) and from (4. 18), we obtain the equations

PoPy PyR,+Q.P, @R\ /A E,
PP, P,Q,+QP, @%@, B =l 0|, (4. 19)
PP, Pi+ QP @@i/\C/ \E,

where

a2 (1 + 14 2i8)/2) {1+ 1 - 24£)/2)
T+ DTE) -2k +2)/2) T((= 1 - 2iE + 1)/2)’

E,

-, 2734 g (1 + 2 — 2i8)/2) T((1 + 2 + 2i£)/2)
T+ DTG N0 -2 + 1)/ T(- 1~ 2iE)/2)

E,=

Equations (4. 19) can be solved via Cramer’s rule to
give explicit values for the constants A, B, C.

E. Elliptic system
FE {(a,B)= foz'r {dnadnp ~ cna cnB siné

+(i/¥2) sna snp cosd] 1
X (1+ cos?6)!/2 Ep™(z)ds. (4.20)

Here for simplicity the moduli of all elliptic and Lamé
functions are chosen to be 7, where v=7'=1/v2, and
we have introduced coordinates «, B8 on the hyperboloid
via the expressions

%,=v2 dna dng, x,=-cnacnB, x,=-(i/v2)snasnp,
0<as4K, 0<sB<iK

(see Ref. 3). The letter p in Ep™(2) stands for either ¢
or s from expressions (3. 8). Finally,
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_ =+ ?c0s9, 1
sn(z,7)= 1 +Ecoste)’2 T3’ k=1

Making use of the facts that FE  (a,8) is symmetric
in @ and B, that it satisfies the Lamé equation in «,
and that F}  (a,B)=F% ,(a+4K,pB), we easily obtain

Fg .(a,8)=C, EpTa)EPT(R), (4. 21)

where the constant C p,m Can be determined by evaluating
the integral for a fixed choice of o and g.

Substituting this result into (4.12) and using the
orthogonality relations for the elliptic basis, we obtain
the integral

Ap nEPT(a’) EPT(B) EPT(B') =27 [ P (2 dnar dnev’ dng dng’
—cnacna’ cnf cnf’
- L sna sna’ snf snp’)

X Epf(a)da, (4. 22)
where A, _ is a constant,

F. Semicircular parabolic system
FPR(E,M)

+ - I o (VA0 032 gy
=2Vd (2&n)? 1[ {[vz+(lgl_/:n)2][vz+(£ +in )P

_ 921y 111 (ann)1/2
- (l+1)

J 1172 BV K 1y 12(0m). (4.23)

The remaining integral is given by inferchanging ¢ and
n, i.e.,
FP(E,m)=FgFn, £);

the coordinates on the hyperboloid are

oo B o 1 k) (B4
°T T 8Egq T2\t q) T 8tn
with £,17>0.

G. Hyperbolic system
Flm{,i(a, B)

B
=(ir") / F7(v,7)

i ,
ST cna cnf env + vr’ sna sng snv
A

3 -1-1
+ L dna dnB dnv dv
v’
=X, FJ(a, 7) F7(8,7), (4. 24)
where the integration region is over the appropriatc ‘de

of the rectangle in Fig. 1 corresponding to the Hilbe..
space /¢, e.g., if i=1, (A, B)=(iK' + 2K, iK').

The coordinates on the hyperboloid are
x,={ir/7’)en(a, ¥) cn(B, ¥),
x,==1rsn(a, ¥) sn(B, ¥),

%, =(2/7’) dn(a, ¥) dn(gB, 7),

where a= (iK', iK' +2K), B< (iK', —iK’). The constants
appearing in (4. 24) are numbers which can in principle
be determined by calculation in special cases of the
integrand.
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5. THE ROTATION GROUP IN AN ELLIPTIC BASIS

There has recently been an investigation by Patera
and Winternitz” of the rotation group in a basis alternate
to the usual one in which the component of angular
momentum in a fixed direction is diagonalized. If the
components of angular momentum are denoted by
L, (i=1,2,3), satisfying the usual commutation relations
[L,,L,]=¢,,L, the operator which is diagonalized is
E=-4(L%+72L%), where 0<7%<1, In their work
Patera and Winternitz examined the two variable
realization on the sphere of SO(3) and showed that in this
basis the corresponding basis functions are ellipsoidal
harmonics or products of Lamé polynomials as opposed
to the conventional spherical harmonics in the canonical
basis. The two-variable realization was discussed in
detail in that paper together with the properties of the
matrix relating the two bases. In that paper the authors
were not, however, able to produce a realization of the
single-variable model in which the basis functions were
single Lamé polynomials. It is the purpose of this sec-
tion to show that this can be done in a quite straight-
forward way. We also show how to relate the overlap
coefficients to the coefficients of the Lamé polynomials,

The one-parameter model of the representations of
the rotation group is realized on the space of poly-
nomials f(z) of order less than or equal to 2J (J
=angular momentum) in the complex variable z. The

invariant scalar product is so defined that
(2774 27 N =(J =M)HT+M)! 6, . (5.1)

A canonical basis in this realization (i. e., one in which
L, is diagonal) is

J=M
= z -— B £S5
fi= rgmmra e~ M < (5.2)
The generators of SO(3) are
, d . d
L,=%i(1-2%) I +idz, L,=3(1 +22)E -Jz,
4o
L3=ZZE-—IJ. (5.3)
The operator E can then be written
2
E=[1-n2-1+n]1 +r)z2-(1—r)]?jz—2
2 5 2,7 d
+(2J-1) 221+ = 22(1 = 7")] —
dz
+2J[1+ 72+ (1 =72)(2J - 1)2%]. (5.4)

If we now write the eigenfunctions f of E in terms of new
functions i, where

F(2)=(r") [(b=22)(1-b22))7 2 R(2), b= 1+7 ,
l1-7v
(5. 5)
and make the change of variable
-i(1+b)z 5.6

sn(w, ’}’) = [(b _ 22)(1 _ bz2)]1/2 ’

the operator E acting on the 7 functions has the form
YE=

= — 72J(J + 1) sn(w, ¥).

e (5.7
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The eigenvalue equation for E acting on the & functions
is then the L.amé equation. The corresponding solutions
are the Lamé polynomials. There are two cases to con-
sider, viz., when J is even or odd.

Arscott® has shown that there are eight species of
Lamé polynomials, four corresponding to even J and
four to odd J. We shall consistently use his notation for
the Lamé polynomials as it is very suggestive of the
corresponding expansion of the Lamé polynomials in
terms of Jacobi elliptic functions. In each case (J even
or odd) the four corresponding polynomials form a
complete basis for representation space. We now make
these statements explicit.

Case1,/J=2N(N=1,2, ")
The complete basis set is
A}*szQ”uEé"Mz(w), A.;:n:FZNSCE;MZ(w)’

A}-m:FZNSdE;nN#Z(w)’ A.;r-n :FZNCdE;"sz(w), (5. 8)

where F=7'[(b - 228)(1 - b2?) /2,

F can also be expressed in terms of w via Eq. (5.6),
but we not do this here. The pair of discrete indices
labeling the A functions are the eigenvalues of two
discrete operators. The first of these is the reflection
operator R which acts on functions f according to

Rf(2)=f(-2)

so that R A%Z=p A%3. The second discrete label is related
to the inversion operation I which acts on functions f
according to

1f(2)=2%f(1/2)

so that IA%, = qA%,. This method of labeling basis func-
tions has been employed by Patera and Winternitz. The
index m in each case labels the number of zeros of each
Lamé polynomial appearing in the basis and hence also
labels the basis vectors of a given type. For the basis
function A%, m lies in the range 0 <m <N +1; for all
other basis functions we have the range 0 sm <N.

Case 2, /J=2N+1(N=1,2,-"")
The complete basis set is

Ay =FNLeEr (W), Af,= FRNLGER, o(w),

.9
A‘-’-m____,FZN»«l SCdE2N+3(w), A;;:FZN"I SE;"N+3(1,U). (5 )

Here m varies between 0 <m <N for A7, but varies
between 0 <m <N + 1 otherwise.

The calculation of the nonzero elements of the overlap
matrix relating the E or Lamé basis to the canonical
basis can be achieved by writing down the equation

e 1
A= 2 X I+ IO

27 M 4 pzIeH)y,

(5. 10)
where the summation extends over those M for which
(=1)*¥ =g, All that is required is then the writing out
of the left-hand side as a polynomial in z and equating
coefficients. We shall illustrate this calculation in the
particular case of the coefficient (X N)m,Zq corresponding
to the basis function AJ},, on the left-hand side of (5. 10).

Downloaded 03 Nov 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1273 E.G. Kalnins and W. Miller Jr.: Lie theory and separation of variables. 4
r,Rez €1 L4
Imz<0 Imz>0
K’ O<Rez < B2 Imz=|0

! ] 20

U
Rez=o,1mz<\//E o of
In{tﬂrnho'\.

2K

FIG. 2. The mapping snw=—i(1+b)z/[(1 —b2) (b - 22)IV? in the
w plane. In order to make this a single valued map, the z
plane has two cuts along the intervals I, =[b"Y2, /2] and I,
=[~b"Y2 —pY2], The lines w=2K+iv and w=— 2K +iv with

- K <Imv< K are identified.

Written in terms of the variable z the basis function
> wm can be expressed in the form

N
m =TV (- 1P (1+0)* af,
»=0

x[(b - 22) (1 = b2*)]V" 2%, (5.11)
where ET, (w)=3 ¥, af, sn**w and the coefficients
satisfy the recurrence relations

Aal+2ar =0,
(2N =-2p+2)(2N+2p-1)7%al,,
+[4(1+ 73 =nytlan - (20 + 1) (2p + 2) aly,, =0, (5. 12)

where 47}’ is the eigenvalue of the operator E. Equating
coefficients on both sides of (5.10), we obtain

N
(X3 ) 20 = [(2N = 20) 1 (2N + 2q) 1 /2 25 2% ag,

»=0

XZ (- 1)?+u+v C(N—P> (N—P>(1 + ,‘,)2N-!>-u+v(1 _ ,;,)u-a-v.
u,v u v
(5.13)

For 0 sp <N - g the 4, v summation is over integers
u,v such that 0 su+v<N-g—-p. For N—g<p<N,
u=v=0. This expression then relates the overlap
matrix to the coefficients a3, of the expansion of Lamé
polynomials in terms of Jacobi elliptic functions as
given by Arscott. Similar calculations can be made for
the other nonzero elements of the matrix (X%),, ,.

It is also possible to map the one-variable model we
have examined thus far, into the two variable model of
the rotation group realized as square integrable func-
tions on the three-dimensional sphere. This is achieved
by the following means. With each function f(2) we
associate a function on the sphere given by

. J
rw=2 [ () 0%
c

271 z z (5.14)

Here x is a point on the two-dimensional unit sphere,
le., x=(x,%,%,), ¥2+x2+x2=1andv

=[4i(2% - 1), 3i(2* +1), z]. The contour of integration is
any closed path around the origin.
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1. Canonical basis: Substituting the basis vector /7 in

this expression, we get

J1y

Fr (6, )= TG T i Py, (cose) exp(—iM ¢),

(5.15)
where P}, (cosé) is the matrix element of a rotation

about the x axis in the canonical basis. The point x on
the sphere is parametrized as

x=(sinf cos¢, sinf sing, cosd).

2. The elliptic basis: In this case it is convenient to
make the change of variable indicated in Eq. (5.6). The
resulting integral is then

!
F?e (@, B) = —‘-]—-f (1 -7) [iK sna snB snw — dna dn8 dnw
27
c (5. 16)

>

J -2J b
— v cna enB cnw snw E®?
gonw]” (smaw)®’ B, (w) ——

where EfZ (w) is one of the Lamé polynomials which form
the particular basis for given J, e.g., E;% (w)
=uEyy.(w). The integration is over a contour which
encloses the origin in the w plane and lies strictly inside
the square in the complex w plane with vertices

(2K, +iK’) and (2K, +iK'). The situation is illustrated

in Fig. 2, where the details of the mapping are shown
together with a possible contour. The coordinates on

the sphere are given by the relations

x=((1/r")dn(a, r)dn(B,7), - (ir/r’)cn(a, ¥) cn(g, 7),
-7 sn(a, 7)sn(B, 7))
with a & (- 2K, 2K), = (-K, =K+ 2iK’).

In each case the integral (5.16) and hence F?¢(a, B)
is expressible in terms of a product of Lamé poly-
nomials of the type appearing in the integral, e.g.,

F;;Vm(a’ B) = h’]’ﬁ;uE;nzNa-Z(a’ B) =2 uE;nN-r-Z (a)uE;nN+2(6)!

where we have used the notation of Arscott for the pro-
duct of two Lamé polynomials. In each case X is a con-
stant of proportionality which can in principle be calcu-
lated. This result can readily be obtained by con-
sidering the properties of the integral under the dis-
crete operators R and I as well as using the fact that the
integral satisfies the Laplace equation and is symmetric
in a and B.

In order to make this a single valued map, the z plane
has two cuts along the intervals I, = [571/2, p1/2] and
I,=[-b"1/2, —p'/2], Because of the periodicity of the
elliptic functions the lines 2K + iv and - 2K + iv, where
- K’ <y<K’ are identified.
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