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which is identical with Eq. (4. 5).
Similarly, the cylindrical limit of the field perturba-
tion in #9 is
2V2iE,

il

nP,_1 5 (coshn)
Py
tEq (e — 1)
= ———
TV2(e + 1)

5

Nz =00

lim d{coshn — cost)1/2
n—>c0

2coshn

1%¢, sinh2n,,
nI(Inl + 3)coshini+iy

|n I 12 Inl~1cosh2|nln0

X lim ino
Kinga P

; {6.10)

LOVE

by Egs. (6.1), (6. 3), (6. 6), and (6.7). Hence
lim 0 = E 7 sind — [Eg(e — 1)/(e + 1)]

N300
X (a2/r) siné,

which is exactly Eq. (4. 6).

It is clear from Eqgs. (6. 9) and (6.10) that the only
terms in the » summation that contribute to the cy-
lindrical limit are those for whichn =—1 andn = 1,
Since the truncation procedure of the previous section
always retains these two terms, it follows that the cy-
lindrical limit of the truncated potentials will ap-
proach the same limit as the exact solutions.

1 W.M. Hicks, Phil. Trans. 176, 161 (1884).

2 E.W.Hobson, The Theory of Spherical and Ellipsoidal Harmonics
{Chelsea, New York, 1955), p. 433.

3 Higher Transcendenlal Funclions edited by A. Erdelyi (McGraw-
Hill, New York, 1953}, Vol. 1.

4 L.M. Milne Thomsom, The Calculus of Finite Differences (Mac~

Millan, London 1960), p, 531,

5 A proof of this result is given in Ref. 4, pp. 532-34.

6 The values of PO and QO are taken from Tables of Associated
Legendre Funclions, National Bureau of Standards (Columbia
U.P., New York, 1945).
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Unitary irreducible representations of the homogeneous Lorentz group 0(3, 1} belonging to the principal series
are reduced with respect to the subgroup O(1, 1) ® O(2). As an application we determine the mixed basis mat-
rix elements between O3} and 0O(1, 1) ® 0(2) bases and derive recurrence relations for them. This set of func-
tions is then used to obtain invariant expansions of solutions of the Dirac and Proca free field equations. These
expansions are shown to have the correct nonrelativistic limit.

INTRODUCTION

In recent years there has been considerable interest
in the unitary irreducible representations (UIR's) of
the homogeneous Lorentz group in various bases.12
Harmonic analysis of a scalar function in terms of the
four subgroup bases [i.e., O(3), 0(2, 1), £(2), and
0(1,1) ® 0(2)] has first been given by Smorodinski
and Vilenkin.2 Since this work most of the attention
has been paid to the little group bases as these also
play a role in the usual Poincaré invariant partial
wave analysis3;4 of scalar functions and helicity amp-
litudes. The properties of the reduction of 0(3, 1) with
respect to O(1, 1) ® O(2) are, however, not so well
known. It is the purpose of this paper to develop
these properties and indicate some possible uses.
The content of the paper is arranged as follows. In
Sec.1 we collect the pertinent facts concerning

SL(2, O) [the covering group of O(3, 1)], its Lie alge-
bra and UIR's. In Sec.2 we carry out the reduction of
the principal series of SL(2, C) with respect to
D(1,1) ® D(2) (see Sec.2) the universal covering
group of O(1, 1) ® O(2), The action of the infinitesi-
mal generators of the Lie algebra in such a basis is
also determined. In Sec. 3 we develop the expansion
of a single particle helicity state in terms of mixed
basis matrix elements. An explicit expression for
these matrix elements is obtained for the first time.
In Sec. 4 we derive recurrence relations for these
mixed basis matrix elements, which are used in Sec.
5 to develop invariant expansions of solutions of the
free field Proca and Dirac equations, Finally in Sec.
6 the nonrelativistic limit of these solutions is ob-
tained.
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1. RESUME OF SL(2, C) AND ITS UIR'S

The group SL(2, C)5 is the universal covering group
of the homogeneous Lorentz group 0(3, 1), The ele-
ments of SL (2, C} are the unimodular complex mat-
rices in two dimensions

The subgroup SU(2) consists of all unitary unimodular
matrices of the form

(LFE) tar+ise-1.

SU(2) is of course the covering group of O(3) the real
orthogonal group in three dimensions. The covering
group of O(1, 1) ® 0(2) is denoted by D(1, 1) ® D(2)
and consists of all diagonal unimodular matrices:

a0
<0/3>, aff = 1.

[Note: D(2) is the set of all diagonal matrices of the
form

(1.1)

(1.2)

(1.3)

w2 Q
R = (Z e_wz), 0 <y =27,

such that to each rotation in the plane of the group
0(2) there corresponds the matrices + R(y). This is
just the usual two to one homomorphism between an
orthogonal group and its spinor group. Similar re-
marks apply to D(1, 1) the set of matrices
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UR'S OF THE HOMOGENEOUS LORENTZ GROUP

i(ga/z-g_a/z), _w< gl + oo],

The Lie algebra of SL(2, C) is six dimensional, being
spanned by the generators M;,N, (i = 1, 2, 3) which
satisfy the commutation relations

[Mi,Mj] =€, M, [Miilv]‘] = €Ny,

[N~ N-]:—-— €

(2001

1M (1.4)
There are two independent Casimir invariants of
SL(2, C) which label each irreducible representation.
They are

K, =M2_-N2, K,=M"N. (1.5)
The Casimir invariant of SU(2) is well known to be
M2, Each inequivalent UIR of SU(2) is labeled by the
eigenvalue j, where

M2 =—j(j+1), ij:%yl’%y'”' (1.6)
Each UIR for given j is (2 + 1)-dimensional and the
spectiam. of M, in it is

My=—j,—j+1,...,5—1,i. 1.7

A UIR of D(1,1) ® D(2) is labeled by the two eigen-
values of M, and N, {m, 7} where

—0< T< +0, m=0z3,+1,£3,---. (1.8)
It is easy to see that each such UIR is one-

dimensional.

We now give the spectrum of the Casimir operators
K,,K, corresponding to the principal series {7 0 o}
of SL?Z, C) together with the spectrum of j values of
the UIR's of SU(2) that appear in each such UIR of
SL(2, C). For the principal series

K1=1+p2_j(2), Kzz_pjoa

Jo=0,%,1,%,..., —0<p<+00 (1.9)

and the spectrum of j values is
j=j0;j0 + 10,

The other set of UIR's of SL(2, C) belong to the com-
plementary series which we write as {0,ip}, where

K1: 1—p29
j0:0’1’2’....

K,=0, 0<p<1,

This set of UIR's does not figure in the completeness
relation5 of SL(2, C) and so will not be considered
subsequently.

Finally in this section we give the formulas for the
action of the generators M;, N; on an SU(2) basis of
the principal series .

Mylj,m) = m|j,m),

M+|j;m> = — ia‘;\+1|j,m + 1>,

M_|j,m) = —idd|j,m — 1),

N,lj,m) = — iV[j2 — m 2] C]-|j~ 1, m)
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+iAm|j,m)

+iCoV[(5+ V2 —m2]]|j+ 1,m), (1.10)

N.jm) =—iC[(j—m)(j—m—D]lj—1,m + 1)

+iAN[(G—m)(G+m + D]lj,m + 1)

—iCqV[(j+m + DG +m +2)]j+ L,m + 1),

N_|jmy =iC[(G+m)(j+m —D]lj—1,m — 1)
+iAV[(G+m)G—m + D]ljm — 1)
+iC V(G —m + D(G—m +2)][j+ 1,m — 1),

where

_ —JoP C. - ¢ ((jz—j%)(jz + P2)>1/2
TG+ T 42 — 1 ’

m=—7J,—j+1,....,7 jzjo,j0+1,--.,

and |j,m) is an abbreviation for |pj,; jm):

o = V[ + 1) — A= D]

2. REDUCTION OF THE PRINCIPAL SERIES OF
SL(2, C) UNDER 0(1,1) ® 0(2)

As is well known? the principal series of SL(2, C) is
realized via unitary transformations in a Hilbert
space H of square integrable functions in a certain
domain. The elements of H are specified by functions
f(z) of a single complex variable z varying over the
entire complex plane. (This specification is only pos-
sible up to sets of measure zero.) The scalar product
and norm are given by

()= [ ax[7 ay @),
171 = (f, V2 <,

zZ=x+1iy,
2.1)

In the UIR { j,, p} of the principal series, the unitary
operator U(g) representing the group element g acts
on f(z) in the following way:

[UE)1@) = (6 + B2 + Fay W1

X fl(az +v)/(Bz + 6)] (2.2)
This realization is not the most convenient one for
our purposes. In order to realize the principal series
in a D(1, 1) ® D(2) basis, we make the following trans-
formation:

ed = (x2 +32)12,  tang = y/x,
— 0V =g=+ 90, 0=¢=2m1. (2.3)
Instead of specifying an element of H by f(z) we speci-
fy it by the new function

Fla, @) = e 0 e® TP q), 2. 4)

With this indentification the scalar product can be
written

= [ do [ da 7@ o)ita, 9). (2.5)

The generators M,, N; acting on the fla, ¢) functions
can be expressed as differential operators acting on
a and ¢ as
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M, = j, cosha cos¢ — (p + {) sinh ¢ sin¢

o 0 . d
+ (bmha cos¢ % — cosha sin¢ 521—),
. 0
AISZ—Za—(-p—, (2’6)

N, =j, sinha sin¢g + (p + i) cosha cos¢

+i <cosha sin¢ a—aqS + sinha cos¢ a—aa>,

.0
N3 = — 1 —a-CT .
The operators M,, N, can be obtained from the ex-
pressions for M; and N;, respectively, via the substitu-
tion ¢ —» — 37 + ¢. The principal series of SL(2, C)
is now realized as the set of functions f(¢, ¢) on the
domain (— %, + ®) ® [0, 27] which satisfy

50 = ae S dal a0 < .

The two Casimir invariants of 0(1,1) ® 0(2) are N,
and M,, so that the simultaneous eigenfunctions of N,
and M, in this realization are

2.7

¥, = [1/@mn)]eireeins, (2.8)
where
Ny¥,, = Ty My¥y, = m¥,,,
¥y ¥o) = 0, O(T — T); 2.9
so together with the completeness relations®
1 ® Lilar-a)7 — ’
o7 Vaoe 2)7 dr = d(a’ — a) (2.10a)
1 00 i [Se]
g 2 €070 = 25 8(¢— ¢’ —2m), (2.10b)
Wp:-oo n=—00

we get the following result.

Each UIR {jy, p} of the principal series of SL(2,C)
contains each UIR {m, 7} of D(1,1) ® D(2) exactly
once, provided

m =Jg,do £ Lot 2,0+ (2.11)

Thus each f € H can be expanded in terms of the
eigenfunctions ¥, according to

f= OZO) JZar £ (0,
fo) = [ ao [T daJELL (2.12)

Finally in this section we calculate the action of the
generators M,,N, on the ¥, basis

MY, = %(]0 +ip FiT ¥ 1— m)\Pr—i,mxl
+iGoFipFirt 1 +m)¥ 09,
N . =3F g tp—T+it im)‘l’r—i,mﬂ (2.13)
+ iy tp+T Hik (08 PR
N =N * iN,, M, = M; + iMy;
The action of M; and N, already having been given
in Eq. (2.9).
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3. CALCULATION OF THE MIXED BASIS
MATRIX ELEMENTS AND SINGLE PARTICLE
HELICITY STATES

In this section we construct relativistic functions
with helicity for nonvanishing mass which are at the
same time basis functions of a UIR {j,, p} of the
homogeneous Lorentz group O(3, 1) realized on the
upper sheet of a double sheeted hyperboloid. In
order to do this we use the method of Integral geo-
metry.2:7 In this method?8 a one-particle state of
spin s, helicity A, and four velocity u, denoted by

lu, s, A, is expressed in terms of a function on the
light cone ¢j0p(g) via the relation

lu, s,A) =

1 S oo
2 dp(p? +j3
2(2m)3 jo=-s j“" PrPm TS

xfr[u,€]'1"PijO(R)<Pjop(§)d2§, (3.1)

where T is the integration path on the light cone,
d2& the invariant measure on the cone, and [«, ¢] the
usual Lorentz scalar product

[uyg]—_—uogo_u' E- (3.2)

The rotation specified by D, ; (R) is the rotation
necessary to account for the requantization of the
helicity component from the direction £ to that of u.
The parametrization of the four velocity # in the
coordinate system of interest (the C system or
cylindrical system?2) is

u = (cosha coshb, sinha cosy, sinha siny/, cosha sinhb),
(3.3)
and the 4-vector £ is parametrized by

£ = ec(coshB, cosp, sing, sinhp). (3.4)

The choice of I for the C system is §2 — £% = 1,and
the consequent invariant measure is d2¢ = dpdB.
In the realization on the cone the generators of the
Lorentz group corresponding to a “photon” of dis-
crete helicity A are?

M1 = i(g,V)l + A ['51/(50 + 53)]y

M2 = Z'(E,V)z + A [52/(‘50 + 53)]3

My =— z‘(&,v)3 + A,
. £
., 0 £y
N2 :_Z‘EO a—£2+h~£0—+—§3—,
. 0
N3 = Zﬁo —8?3 .
For the parametrization (3. 4) of &, the Casimir
invariants have the form
2
Mz N2=22 129 12 M+N= i)\(l +i>.
dc? dc de
(3.6)

From (3.4) and (3. 6) it is not hard to show that the
simultaneous eigenfunctions of M2 — N2, M * N,
Mgy and Ny have the form
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@p)\(‘r’p) _ e—(l’ip)Ceip‘beiTﬁe"i)\q)’ (3. 7)
in particular, on the C system contour
@px(T,p) — eipPeitBemir®, (3. 8)

The function &; ,(€) is now expanded in terms of the
€, (7, p) functions according to

& , () :E alor,p)C,; (1,p). (3.9)
For evaluation of the integral over d2¢ in (3.1), it is
most convenient to assume # in the form

u = u, = (cosha, sinhg, 0, 0); (3.10)
the required expansion for the more general form of
u can be obtained by using the simple group proper-
ties of the 0(1,1) ® O(2) matrix elements. So com-
bining (3.9) and (3. 1) requires the calculation of the
following integral:

2 w© .
I'= fo ﬂd(b f_w dp (cosha coshp — sinha cosg) 1%
x D}fjo(R)epjo(T’p)- (3- 11)

We now turn our attention to the explicit form of
Dg; (R). For this it is convenient to write

Q

n = ((cos¢/coshg), (sine/coshB), tanhg), (3.12)
the direction vector of the photon 3-momentum. Now
if n is rotated by — ¢ about the z axis, n becomes

n- n, = ((1/coshp), 0, tanhg). (3.13)

According to the prescription of Ref. 7, the remaining
rotation is a rotation in the xz plane by an amount
1 given by

ugy cosé — |ul

cosn = ———————,

—w (3.14)

where 6 is the angle between ny and u = (sha, 0, 0).
In our case

cosf = 1/coshp

and

coun - S5~ costp sk, @.19
so that we finally have

R = M;(zm — )M, ())My(— 37). (3.16)

The integral I can now be evaluated. It is found to
be given by

. PRl T(1 + 2, + ip)
T +ip) ¥, Ty +1—3p)Tlr, +1 + 1p)

@y +1 +ip),, (— in), (~ i + b

(é)yarzl 7!

X .
As'r4 ,)\]O

(3.17)
« I'(s)T(c —b) .
r(c)

X (% tanha)?"! (cosha)~1-ip Iy(s,b5¢;— e2%)

a(\=jo+2r,)

b
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where
b=30—jg) +7y +7y+7, + 3,
c=2 tip—iT + 3N —jo) 1y try tyy + 3,
oy i = [T(s +2 + 1)T(s —A + 1)T'(s +j, + 1)
XT(s—j, + D]Y2[T(s —x —jp +1)
XT(S +jog— 74 +1)Tlry +x —jg +1)
xT(rd + 1)]1
@), =T@ +n)/T@),

A

p=p—nr

We now identify I with the mixed basis matrix ele-
ment in the following way:

{pjo; SXIN 1 (@)l pjg; T0) = Cf°,, (a) = 1. (3.18)

The expansion of a single particle helicity state in
terms of C system matrix elements is then

1 s o .
2oy 2 e BP0 D)

[>e]
o . o
x 3 [ dralo (@, p)CH @)t e,

P="c0

|u;s,)\,\ =

(3.19)

4. RECURRENCE RELATIONS FOR THE MIXED
BASIS MATRIX ELEMENTS

In this section we use the infinitesmal operator
methodi0.11 to establish recurrence relations and
differential equations for the mixed basis matrix
elements. For this method we use a fixed column of
the mixed basis matrix element {pj; JM | L pjg; 7)
(i.e.,7 and p fixed) as a set of SU(2) basis vectors
spanning the UIR{ j,, p} of SL(2,C). L is a general
lorentz transformation. The generators M,, N, are
then differential operators acting on the six para-
meters needed to specify L. Now using Eqgs. (1. 10)
and (1.9) and making a particular choice for L we
can derive the relations we need. For the C system
we parametrize L as follows

L = My(6)M, (0)M3(a )N, (@)N5 0)M;(Y), 4.1)
so that the mixed basis matrix element is
(igs IM| Ll pjg; 76 = C539 1,
= ? D (0,6, a)Cji‘fTP(a)e”be“’w . (4.2

The generators M, N, corresponding to the paramet-
rization (4.1) are

D 9 , sing 2
M, =— = 4 o e s
cotf sing 3% coso 3% + Sind 7o
il
My =55,
N, = — sin¢ cosa tanha %b + tanha sin¢g sinf sina —aa—e
1 .
~ Sirha cosha (sing cosb cosa + cos¢p sina cosh2a)
d . R d sing sinf
— + — — 2 2
X 33 (cos¢ cosa — sing sina cosd) 5a cosha
Kl 1 . i 2
X5 +Wha (cos¢ sina + sing cosa cos6) R
N3 = — cotf cosa tanha %} + tanha cosf sina ’aa—g

+ cosa (tanha cotd cosd + sind cotha) g*aa‘

. . 0
+ sinf sina 3 (4.3)
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M, and N, can be obtained from M, and N, respec-
tively, via the transformation ¢ —>— 37 + .

In the SU(2) basis we have chosen, the Casimir in-

variant equations have the form

M2 — NZ)C%}"W = (1 +p2—j3) C—%f}.rp’
M-NCY% , =pioCii - (4.4

The explicit expression of the Casimir invariants in
terms of differential operators is found from (4. 3)
to be
2 2
N2 — M2 = 22 4 (tanha + cotha) & + —— =
da? da  cosh2a b2

2 2 —
1 0 cothe ¢ tanh2a 713

sinh2a oy 2 sinha daoy
a2

2
tanha g7 ° 4 coth?a ——
cosha b oa2

— M2 42

(4.5)

M+ N =, (% + tanha) + M, ((tanha — cotha) 2

1 d 1 92
" Sinha @) cotha 3bda’ (4.6)
where
Vi a . 8 cosa @
M, = cotf cosa = +sina =5 — 0 7

1

[+ +x + 1)Y2 (d% + Siflha

— [ —NT =2+ 1)]1/2<a% - sifr’lha

_ (2it/cosha) [ + 1)2 —A2Y2 CHo,,

+ (1 +A)cotha + (J +A + 1)tanha> ch

E. G. KALNINS

sine 9

= . d 9
M, = — cotf sina +teosa 55+ 36"

FiJe’
So applying the Casimir invariants (4.5) to the
CJ%9 ., functions and separating out all but the a
dependence, using known recurrence relations of the
SU(2) matrix elements12 and the orthogonality pro-
perties of the O(1,1) ® O(2) matrix elements, we get
the relations

N (% + X tanha + (1 — ) cotha + siﬁha) Co0.ers

g (d p
+ a>\+1<da — atanha + (1 + 1) cotha — sinha)

pJ . 2T , -
X CJ,)?—I',‘IP +1 (m + p]0> C‘?])?: - = 0, (4 7)
<£2— + (tanha + cotha)i——————TZ . L
da? da cosh2a sinh2a

+ 22 cotha JW + 1) + 3 tanh2a[JJ + 1)
sinha
— A2 coth2a + (1 —jy2 + p2)> Cf,’{o,"w

1 J J 7] J pi
+ 1 tanh2a [0y, ; 05,5 Cr R, 0sr T O oh-1C5 %24 )
) g o ; )
+ it (tanha/cosha) (o, Cj.’j\o_l.,rp — ax+105.1>f11',rp) =0,
(4.8)

The remaining recurrence relations are determined
from the known action of the generators N, in an
SU(2) basis [Egs. (1, 10)]. They are

+ (1 —2x)cotha + (J—x +1) tanha> Cﬁf,?_l;,p

4]
J A+t 13T

4.9)

= o[ +1)2 — j3] [( + D2 +p2][(20 + /T + IV CHY oy

d p

—[(J =@ —x +1)]Y2 (% + B+ (=N cotha + ¢ + N tanhd ) CF% 12y + [ + )@ + 2 + D]V

d j 12 (- j
x (d_a — siflha + (1 +1)cotha + (J — A)tanha) Cg:])(\)+1frp + @2 —2a2)Y? (2it/cosha) CIQ, ,

— oWz — D2 + p2)(2d + 1/ (@ — DIFL2 CFopy

These relations we have developed here are the ones
we will use in the next section in our analysis of the
Proca and Dirac fields.

5. SOLUTION OF THE DIRAC AND PROCA FREE
FIELD EQUATIONS IN THE C SYSTEM

As an application of the previous three sections we
derive invariant expansions of solutions of the Dirac
and Proca equations in terms of the functions

DY, (a,b, ¢) = Chie. ., (a) eitbeirs, (5.1)
This has already been done in the S system for these
equations!3 and more general ones.14.15

An outline of the general method is as follows. In
order to achieve an invariant expansion of an
arbitrary field FJ%O(x), it is convenient to go over
into a coordinate system in which each component
transforms independently. The components of
FJPI{J‘) (x) in this new coordinate system are

J. Math. Phys., Vol. 13, No. 9, September 1972

(4.10)

-
Fio(g) = U(g)F™0 (x) = D831 1 (&) Fffgy,(871%). (5.2)

From this definition it follows that each component
does indeed transform independently:

Ulg Fhio(g) = FF0 (g08)

so that each component of I_'}%" (g) constitutes a
representation space for the Lorentz group and can,
therefore, be expanded in terms of matrix elements
of that group.

(5.3)

We now turn our attention to the Proca field A, (x) of
mass [, i.e.,

2 2 2 2
o-— Hz)AK(X) — ( 8% d + 02 22 #2>
312 w2 0xg? ax?

0Ay
X AK(x) =0, — =0. (5.4)
Xy
We seek a solution for this equation inside the light
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cone, so in the C system we choose x to be para-
metrized by

% = (s cosha coshb, s sinha cos¢, s sinha sing,

s cosha sinhb). (5.5)
The operators 3/3x; have the form
o h hp o _ sinha coshb o  sinhb 3
0xg = COSha oS0 55— s da s cosha 9b’
3 . d cosha coso 3 sing 8
%, sinha cos¢ 7= + s 3a s sinha 3¢’
g _ : : d , cosha sing o | cosp 9
Wy sinha sing 7 + s da ' s cosha 0b
a . 9 sinha sinhb 0
a—xjs— = — sinhd COShﬂa—s +_S—_ﬁ
coshb 0
s cosha 35 * (%)

The transformation to the independent variables
changes the 4-vector x as if at the point (a,5, ¢) the
space has been subjected to the Lorentz transforma-
tion

Q= Nl(“‘ a)Ng(_ b)M3(" o). (5.7)
Under this transformation 3/3x , and A, (x) are trans-
formed according to
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o _¢ @ _1 a2
0%y 9s’ 0%, s aa’
21 8 3 __ 1 3 (59
0x, S sinha 9¢ 0x3 s cosha ab
The transformed Proca equation now becomes
2A (x)
(D — ) (x) kil
i
39;1 o7l 8 929ty _ _
X (Dz g +2‘_—lu—_+ d )Ay(x)zo
ax; ox; ox; ox2
N ¢ (5.10)
94,x) _
—— + D,A,x) =0,
9x;
where
D;=—2 1
1 axk v
passing to the canonical basis
fo=4Ay Vo, =idpFA, f=4A (5.11)
and expanding f,,f; and f, according to
fo =23 Xo (p'jo)(s)cpj". il g2,
(5.12)

(p.dg) pj ito_ipg
= 2, O(s)Cy e e,

- (p,jy) ith ipg
L9, %, 46 =940, (5.8) Fr= I e e,
a 0x,
K where the summation is over Jo» P, 7, P, the system of
where equations (5,10) becomes
|
axo 3 > 1 oC_ P
—— 4+ — C, +—= ||—— + (tanha + cotha) C. + C_> -
(as s hoj ~o V2s l:( da ( ) sinha X
(aa + (tanha + cotha) C P c) Yair ]
- — anha + cotha . — e + =0,
da sinha X cosha X161
92 3 9 3 1 02C C
( Xo ;2 ZXo X0 + uzx()) Co—— [( 9 + (tanha + cotha) —2
os s 9S8 s2 s2 oa? oa
T2 p2 eC._ P
— C,— C> + \/2—<—- + (tanha + cotha) C_ + C >
cosha °  sinh2q 9 X0 du ( ) sinha /%
oC, P 20T
— \/—2—.<— + (tanha + cotha) C, — C+> .+ C.| =0
da ( ) sinha X cosha X1%1 !
92y, 3 oy, > 1 Kach ac 72
=2 ey e, — = + (tanha + cotha) —~ — ———
<as2 s ds Hxa) 1 s2 a2 (tanha + cotha) oa cothzq *
P2 C J‘ tanha c 0,
— + +iT -C.—x.C) + =
sinh2« cosh2a >X1 osha (x X C) cosha Xo€ :|
02 3 ¢ 1 BZC oC T2 1
<i + — Xi+HXr>C —-—’:( - + (tanha + cotha) —* — — b C, ———
052 s 0s oa2 da  cosh2a sinh2q sinh2«
cotha tanha C, P

1
—Etanhzacii2p ct> Xe $E7V2

sinha cosha

where we have used the shorthand

Pig Pig
=C 1,0;7p°

C 1i1'rp7

Cy = C00 o C,=¢C
From the recurrence relations (4.7)—(4.10) we see
that the variables separate if

1 0
x101+—2—tanh2ax C + 21F

co> Xo] =0, (5.13)

(5.14)

da sinh a

1
Xe =X =~ Xp-

We then arrive at the same system of equations as in
Ref. 13 viz.

<i + 2) Gaoygy 4 [301 + 102)]1/2 POs) -
as s
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d 5 d |, 4+p2 (p,0)
— + = = 4+ 4 2 =0, 5.1
<d32 s ds 52 M>X0 (5. 15)
a2 3 d |1+ p2 ) (pt1)
R + p2 $S=0
<ds2 s ds s2 H)x

(remember the summation on j, consists of j, = 0
only, for f,). These equations have the solutlon

(p.t1) (2) (2)
X1 l,

(s) = (1/us)[cyH;, " (us) + ¢y H 3, (us)
( )
&%) = [1/(us)2][e5 HiD(ws) + ey HE (us)].
(5.16)
So the solutions to the Proca equation have the form

(G,0) i
f() f de dp X fr0 (S>COO ‘rp VrbelP‘P’

N

© ( b i
§1 p@«, Jar [P dpx$ 0 (s)C, @ e Y,
(5.17)
where b, = —f,,hy = f;.

This then completes the derivation of an invariant ex-
pansion of solutions of the Proca equation inside the
light cone.

We now turn our attention to the Dirac equation. In
order to obtain an invariant decomposition of a solu-
tion of the Dirac equation, we write the equation in a
canonical basis

(Z'y Pyl u)tp(x =0 (5.18)
where
70=<?(I,>, v =(3 T > (5.19)

(@ = 1,2, 3), where o, are the Pauli spin matrices
and I the 2 X 2 identity matrix. Under the transforma-
tion  of (5.7), Eq. (5.18) changes to

n 8O 4 nn T @ u@ = o, (5.20)
ox” ox”
where ¥/(x) = AY(x),i.e., A is the 4 X 4 matrix accord-

ing to which the spinor { transforms under the
Lorentz transformation .

In the C system we have that
yrA o = i[(tanha + cotha) y1 — 3y°], (56.21)
oxn  2s

If we now look for solutions of the form
Y =D I(S)C@)eimetss,
Y = Z)fj(s)cj(a)e”beliw,

the system of equations (5.20) becomes

i=1,3
j:2’49

(of; 3 T i(ac,
Z(W +2—sf1)C1 * S eosha 141 ";( oa
4 1
tsmra G2 T o (tanha + cotha) Cz> Jo—1f3C5 =0,
afz ; (0C4
(as T35 fz) " s cosha 12C2 — ( da
p L tha) C C 0
— Sinha +—2—(tanha+co a) Cq) f1 — BSfyCy =0,

J. Math. Phys., Vol. 13, No. 9, September 1972

E. G. KALNINS

{2

P

i ac4

2s f3)€ “oa
Sinha Cy + 3 (tanha + cotha) C ) fs—vf1Cy =0,

74
l(as Zsf4>

1
+ 7 (tanha + cotha) Cs> Jfa — 1fCy =0,

f33

" s cosha

7 aCc,  p
s cosha /404 + ( 3a ~ sinha

(5.22)

from which we see that the variables separate if we
take

f1(8) = f5(8),  f3(8) = fy(s),
Ci(a) = clpj/g,l /2;Tp(a)’ t=1,3, (5.23)
Cj(a) = Cf]}g.-l/z;rp(a)’ i=24,

The form of f,(s) and f;(s) is now determined by the
pair of coupled equations

(a‘is + 23 _ Zijop)fs +iuf, = 0, (5. 24)
(3% *+ 95 + 2op) £ +iny =,
which have solutions of the form16é
f1(9) = (/) d,(w9) + e, (19)],
74(8) = (V/1s)eyd, (15) — ey, (19)] (5.25)

with v = 3 + 2ij,p.
So the solutions of the Dirac equation are

+1 /2 o 0 N
v, = :Zi/z p_E_w f deo Apfi(S)C{78 1 13505 (@)
xe”bei”), t=1,3,
1/2 ®©
Y, = ‘2/2 pf;,w f de dpF{(ICL 1 /2:mp(@)
Xeiféeip(p’ j: 2, 4,

This then completes this section on the solution of the
Proca and Dirac equation in the C system.

6. DIFFERENTIAL EQUATIONS SATISFIED BY THE
EXPANSION MATRIX ELEMENTS AND THE
NONRELATIVISTIC LIMIT

From the recurrence relations derived in Sec. 4 we
deduce that the matrix elements used in the expan-
sions of Sec. 5 satisfy the following differential equa-
tions:

(i) Using the shorthand

pj Pj
CJ)\O; TP (@) = o,

we have for j, = J = A = 0 the differential equation

2 2
&2 + (tanha + cotha) a4 __T
da? da coshZa
_ 2 1+ 2)00 =0 6.1
sinh2a ( P%) 0 - 6D
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C9, may be calculated from C3, by using
— i7/cosha CY, = [£(1 + p2)-1/2CY,,

d p 4
+ Jz_(?i—é im> Clo=1[3(1+ pz)]”zC?,u'(G 2

(ii) j, = 1; C}, satisfies the equation

2
[d_ + ((tanha + cotha) +
da2

47 )i
T2 — p2 cosh2a/ da
72 P2
" coshZa  sinh2a
47 tanha
72 — p2 coshZ?q

+ 2+ p2 + tanh2a

(27 tanha — pp cotha):i Clo=0;
(6.3)

the other j, = 1 matrix elements may be deduced
from the relations

i 27 1 = ol p 1
‘ (¢ cosha p) Cle = V2 <da * tanha sinha> Clo-

(6. 4)
(iii) j, = z; C} g,l /o satisfies the equation
2 2
[d— + ((tanha + cotha) + 7 tanha >i T
da2 7+ p cosha/da cosh2a

2
_ b2 i pcothd | hanh2a — cothza)
sinh2a sinha
o <% (tanha + cotha) F b > + pZ}
T £ p cosha sinha
1/2
X Cyiyg 2172 = 0. (6.5)

Similar equations to those of (ii) and (iii) hold for the
cases j, = — 1,j, = — 2, respectively.

These equations are useful in the passage to the non-
relativistic limit.13-17 In this limit we have

a0 s> st Ssa=v,

(6.6)

where 7 is the polar radius in the xy plane in non-
relativistic 3~space

b—-> 0, s—>® st sb=2z, 6.7

In addition we must require that

7= @ in such a way that

T/S“)T’, —0o L < o, (6.8)
finally

p— |pls.

In this limit Eq. (6. 1) becomes
(_di +
dar?

so taking the regular solution at » = 0, we have

1 d , p2
—— 4+ |p}2—72—7—2—>C80(7’):0; (6.9)

v dr
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C8y ~ cd,y(ar), @2 = |pl2 — 72,
From relations (6.2) we see that
CQy = cyd,(ar), C(l)’il = C.d, 4 (a7). (6.10)

Similar results hold in the j, = 1 case as C}, then
satisfies Eq. (6. 9)

This then gives the correct set of functions in 3-
space corresponding to the expansion of Maxwell's
equations in cylindrical coordinates,18 viz.,

E)\(y5 Z, d)) = Jp+>\(a1’)ei‘f’z eiP¢,

A=+%1,0, p=0,1,22,,.., —0o<J7<®0,

(6.11)
We note that the solution in cylindrical coordinates is
an expansion invariant with respect to the group
0(2) ® T,,the direct product of rotations about Oz,
and translations along Oz. So the reduction O(1, 1) ®
0(2) € 0(3, 1) becomes in the nonrelativistic limit
the reduction O(2) ® T, C E(3).

For the nonrelativistic limit of the functions used in
the Dirac equation solution we have the following dif-
ferential equations

a2 1 d o (D £32)2\ 172
<d—’}/‘2— + - — + |P'2—72— y2 C1/2,i1/2 = 0;

v dar
(6.12)

so that this corresponds to a nonrelativistic solution
of the Dirac equation in terms of the complete set of
functions

P (r,a, ¢) = inl /Z(Qy)eif’zeipq;. (6.13)
This coincides with the solution in cylindrical co-
ordinates in 3-space.

7. CONCLUSION

In this paper we have carried out the reduction of the
principal series of O(3, 1) in an O(1, 1) ® O(2) basis
and examined the properties of the O(3) <> 0(1,1) ®
0(2) mixed basis matrix elements. It was shown that
the expansion of solutions of the Proca and Dirac
free fields (inside the light cone) corresponds to the
relativistic generalization of cylindrical coordinates
in 3-space. In future developments we propose to
study the solution of other wave equations (both in-
side and outside the light cone) using these mixed
basis matrix elements. Other related problems of
interest include the reduction of the supplementary
series of O(3, 1) with respect to O(1, 1) € 0(2)19 and
a study of the matrix elements in an O(1, 1) ® O(2)
basis.
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Dynamics of Harmonically Bound Semi-Infinite and Infinite Chains with Friction and Applied Forces
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The dynamics of semi~infinite and infinite linear chains of identical masses and ideal springs is studied. In
addition to the harmonic coupling between nearest neighbors, each particle is harmonically bound to ts equili-
brium position and is subject to friction and time-dependent applied forces. The Laplace transform method is
used to express the motion of all the particles. The exact solutions are found and discussed for four different
cases: (a) an infinite chain, (b) a semi-infinite chain, (¢c) a semi-infinite chain with the position of the end par-
ticle specified as a function of time, and (d) an infinite chain with the position of one particle specified as a
function of time. By specializing some results of the present work, those of previous calculations on simpler

systems by other authors are recovered,

There are two main approaches to the mathematical
description of physical phenomena. One sometimes
tries to study as exactly as possible a simplified
model with only the main features of a real system,
while some are more interested in an approximate
solution of a realistic model. The one-dimensional
systems have been favorite models for the first
approach.! One such system extensively studied is
the infinite chain of point masses and ideal massless
springs1 2 because it is one of the very few many-
body systems in which exact calculations are pos-
sible. However, there has not been much study of an
exact treatment of a semi-infinite chain. Although
there have been many calculations treating semi-
infinite lattices in conjunction with studies on surface
phenomena, 3 most of them can be classified under the
second approach above,

The present work studies the exact dynamics of
semi-infinite and infinite linear chains of identical
masses and ideal massless springs with identical
force constants. In addition to the harmonic coupling
between nearest neighbors, each mass is harmonical-
ly bound to its equilibrium position and is subject to
friction and time-dependent applied forces. The mo-
tion of each of the particles is expressed exactly in
terms of the given quantities and initial conditions.
Four different systems are studied: (a) an infinite
chain, (b) a semi-infinite chain, {¢) a semi-infinite
chain with the position of the end particle specified
as a function of time, and (d)} an infinite chain with
the position of one particle specified as a function
of time. By specializing some of the results, those
of previous calculations on simpler systems by
other authors are recovered.

Let x,(f) represent the displacement of the nth
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particle measured from its equilibrium position.
The integer n is restricted to n = 0 for the semi-
infinite systems (b) and (c). The coupled equations
for the system are

mE, =-—klx, —%,.1)

K ) i . - (1a, 1d)
T [(1—5,,0)] TR T e b, 10)

where m is the particle mass, # and K are the spring
constants, 8 is the friction coefficient, § is the Kro-
necker delta, ¢,(f) represents the external force
applied to the nth particle and is assumed to be a
known function of time. This system of equations is
to be solved for x,(t) subject to the initial conditions
x,(0) =d %,(0) = v,. (2)

n?

For cases (c) and (d), in which x,(¢) is specified, Eq.
(1) for n = 0 determines the applied force ¢,(t) re-
quired to achieve such a specified motion for the par-
ticlen = 0.

If one assumes that x, and ¢, have the Laplace trans-
forms

X,(s)= L{xﬁ(t » = fomdtxn (t) exp{—st), (3)
@,(s) = L{g, (t)/%}, (4)
then Eqgs. (1) and (2) lead to an inhomogeneous linear

difference equation of second order

0
X, — 2(202 +4uo + 202 —(1/2) [6 })X’g
n0

i x [ 1 :l_ P (5a, 5d)
n-1 (1*57‘0) - n?

(5b, 5¢)
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