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Abstract: We completely describe K1(Z,[G0]) and its localisations by using an infinite
family of p-adic congruences, where G, is any solvable p-adic Lie group of dimension 3.
This builds on earlier work of Kato when dim(Go,) = 2, and of the first named author and
Lloyd Peters when Goo = Z; X Zg with a scalar action of Z) . The method exploits the
classification of 3-dimensional p-adic Lie groups due to Gonzdlez-Sanchez and Klopsch, as
well as the fundamental ideas of Kakde, Burns, etc. in non-commutative Iwasawa theory.
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1 Introduction

Over the last twenty years, the study of non-commutative Iwasawa theory for motives has
progressed rapidly, due to the work of many mathematicians [2, 3, 6, 17, 18, 19, 20, 23].
Fix an odd prime p, and an infinite algebraic extension F../F of some number field F'.
We assume that Go, = Gal(F/F) is a p-adic Lie group with no element of order p; we
further suppose that Fi, contains the cyclotomic Z,-extension F'V¢ of the base field F'.
Clearly if H,, = Gal(FOO/FC-"C)7 then the quotient I' = G,/ Hoo will be isomorphic to an
open subgroup of 1 + pZ,, under the p-th cyclotomic character ‘kp’.

For a motive M with good ordinary reduction at p, the work of Coates et al [6]
associates (under the My (G)-conjecture) a characteristic element &y € K (Zy[Gools+),
where K7(—) denotes the first algebraic K-group, and S* is the p-saturation of the Ore
set

S = {f € Zp[Go] ‘ Zp[Gool /Zp[Goc]f is a finitely-generated Zp[[HOO]]—module} .

The “Non-commutative Iwasawa Main Conjecture” predicts that there exists an element
L3} € K1(Zp[Goo]s+) of the exact form L3 = u- £y, with u in the image of K1 (Z,[Gxo]);
for any Artin representation p : Go, — GL(V), its evaluation at p® k¥ should then satisfy

7, (pm’}) = the value of the p-adic L-function L,(M, p, s) at s =k,

as the variable k ranges over the p-adic integers. Note that the existence of L, (M, p, s) is
in most cases still conjectural, although its interpolation properties are easy to describe.

Remark: The strategy of Burns and Kato [2, 20] reduces this conjecture to the following:
(1) prove the abelian Iwasawa Main Conjectures for M over all finite layers; (2) describe
K1 (Zy[Goo]s+) via a system of non-commutative congruences; and (3) show that each of
the abelian fragments, L, (M, p, —), in combination satisfy this system of congruences.

There seem to be two approaches to (2), either using congruences modulo trace ideals
[1, 17, 20, 21, 23], or instead by deriving p-adic congruences [10, 11, 12, 16, 18, 19].
Naturally both approaches should be equivalent to one another.

To illustrate precisely what is meant by the terminology ‘p-adic congruences’ above,
for the moment suppose that G, is a two-dimensional p-adic Lie group of the form

Goo = Z) XLy = (Ff xT) X Z,

where I' = 1+pZ,, and the first factor Z) acts on the second Z,, via scalar multiplication.
Let ¢ : Z,[T] — Zp[I'], ¢ : v — ~P denote the linear extension of the p-power map on I

At integers m > m/ > 0, we also write Ny m : Zp[[?" ]| — Z,[?"] for the norm map.

Kato’s Theorem. ([19, 8.12]) A sequence (ym) € [L>0Zp =" (Xp) arises from an
element in Ky (Zp [[Goo]]s) only if the system of p-adic congruences

m/’

m p
Ym/ 4 N m/—1Y m m
H Nm,’m <<P(y7n/_1) . (-/V?O m/’ (1y<0)0)) > = b mod p2 . Zp [[Fp ]] (p)

hold at every integer m > 1.

m’/=1



Kato has obtained similar congruences when G, is replaced by any of the groups I'?” x L.
His work completely describes the two-dimensional situation, since any non-commutative
torsion-free pro-p-group G with dim(G) = 2 is isomorphic to T'?" x Z,, for some s > 0.

Question. Can the analogue of Kato’s p-adic congruences be proven when dim(G) > 2%

Our goal here is to give a positive answer when dim(G) = 3 and G # SL3(Z,), SL1(Dy).
We exclude the two insolvable cases as the representation theory is unpleasant, although
recent work of Kakde [18] provides hope that an answer for GLy(Z,,) is not too far away.

1.1 Preliminaries
Fix a number field F' and a prime number p # 2. We shall assume that F,, denotes a
p-adic Lie extension of F' satisfying:

(i) Gal(Fw/F) is a pro-p-group without any p-torsion;

(ii) Foo contains the cyclotomic Z,-extension F¥¢ of F'.

The examples we have in mind here are solvable three-dimensional Galois groups arising
from algebraic geometry, or alternatively the direct product of a two-dimensional Galois
group with a group of diamond operators (in the context of Hida’s deformation theory).
We therefore suppose that either

(iia) Goo = Gal(Fx/F) where dim(Gal(Fs/F)) = 3 and Goo % SL2(Z,), SL1(Dy);
or (iiib) Go = Gal(Fs/F) x Ws where dim(Gal(Fx /F)) = 2 and Wao = Z,,.

In both (iiia) and (iiib), the p-adic Lie group G is three-dimensional and also solvable;
in fact G is a semi-direct product of Z, with an abelian subgroup Ho, of Z,-rank two.
The following result classifies such groups.

Classification Theorem. (Gonzdlez-Sdinchez and Klopsch [15]) If the pro-p-group Geo
is solvable and torsion-free with dim(Gs) = 3, then Goo must be isomorphic to one of the
following possibilities:

(I) the abelian group Z, X Ly X ZLy;

(II) an open subgroup of the p-adic Heisenberg group, i.e. a group given by the presentation
<fy,h1,h2 i [h1, ko] = 1, [he, ] = 1, [he,y] = WY > for some s € Ny;

1) the group {7, h1, ha : [h1,ho] = 1, [h1,7] = hE", [ha, 7] = hE") for some s € N;
1 2

(IV) (v, h1,ha : [h1, ho] = 1, [hy,7] = h’fshgﬁrd, [ha,7] = h’l’ﬁrhgv for some s,r € N with
d € Zy;

(V) (7, ha, b < [hayha] = 1, [he, 4] = B2, [ha, o) = BEBE ) where s,r € Ng and d € 7,
such that either s > 1, or instead r > 1 and d € pZ,;

r
)

(VI) either one of the groups: (a) (v,hi,hs: [hy, ho] =1,[h1,7] = h’;+ [ha,v] = h’fs>

s+ s
or (b) <7>h13h2 : [hl,hQ] = ]., [hl,’y] = h‘g t, [th’y] = hz{ >



where s, € No such that s +r > 1, and t € Z; is not a square modulo p.

Let I' = {y* | z € Z,} where v is as in the previous theorem (if Goo = Gal(Fx/F)
satisfies condition (iiia) above, we shall identify its quotient Gal(F'*¥°/F') = Z, with T').
One defines a decreasing sequence of normal subgroups for G, by

U, = P x Ho at each m > 0.
Recall from [24, Prop 25], every irreducible G..-representation with finite image is of the
form ¢ ® Indg: (x) for some m > 0, with characters x : U2 — pipee and o : TP — @;

If G is a pro-p-group, then we write A(G) = lim , Z,[G/P] for its Iwasawa algebra
where the inverse limit runs over open subgroups P <1 G. If O contains Z, as a subring
then Ao (G) := A(G) ®z, O. Lastly for a canonical Ore set S, we use A(G)s and A(G)s-
for the localisation of A(G) at S, and at its p-saturation S* = J,,5, p"S, respectively.

Remark: Let us write My, : A(Goo) = A(Uy,) for the norm mapping on Iwasawa algebras.
It [Z/{m, L{m] denotes the commutator subgroup of U,,, there is a commutative diagram

K (A(G)) NI T g (a5 TT TTAe, 07)"

m>0 m>0 py

l l !

Ky (A(Ga)s) TN L Bl TT ey (A i) g) IT ITao. (™),

m>0 m>0 py

! | !
Ky (A(Guc)se ) TN (L B b0l TT ey (A )5 T TIQuot(Ao, (r”))"

m>0 m>0 px

[7

L?'

where the vertical arrows are induced from the inclusions A(Goo) = A(Goo)s < A(Goo) s+,
and the right-most products range over irreducible non-isomorphic G..-representations.
One can then define three separate theta-maps O y; Oco,y,s and Oy, 5+ by composing
(respectively) the first, second and third rows in the above diagram, so that

@oo,x P Ky (A(goo)) — HA(’)X (Fme)X,
@oo,x,s K4 (A(goo)g) — HA@X (F

and 600%5* s Ky (A(goo)g*) — H Quot (on (Fpmx )) X

Px

The Main Goal. To describe the images of Ou y, Oco,y,s aNd Ooo x5+ by using a family

of p-adic congruences linking together the abelianifmgm;nts Yo, € Qzlot (on (Fpmx))x.

Note that Case (I) is devoid of any content since Goo 2 T" X H is abelian, in which case
Kl(A(gOO)) = Ki(A(T x Hoo)) = AT X Hoo) ™

by Morita invariance. Hence one may ignore Case (I) completely, since there are

no non-abelian congruences to consider here.

4



1.2 The main results

In order to describe the congruences in each of the non-empty Cases (II-VI), we first need
some means to keep track of those Artin representations induced from characters on Hqo.
If x is a finite order character on H., then x extends naturally to Stabpr(x) X Heo, hence

o Goo
Px = Indstabr‘(x)[XHoo x)

is an irreducible G-representation of dimension p™x, where m, = ordp([F : Stabp(x)]).
In all cases x € {ILIILIV,V,VI}, one constructs characters xi,n, X2,n : Hoo — fpoe via

X1,n(AThY) = exp (2nvV—=1x/p") and x2.,(h{hy) = exp (2mvV—1y/p")
for each z,y € Z,. In particular, x1, and x2,, together generate a basis for Hom(H oo, ftpn )-

Case (II). For simplicity, let us initially assume we are in Case (II). Then for each
character x = x5, -XZ{,H_W and group element h = hihy € Ho, one defines e;,h € Zippn)
by the formula

. X—l(ﬁ) .pnlax{o,m/—ordp(b)} if pm’ | by
e = ,
X 0 if p™ f by.
Theorem 1. If we are in Case (II), then a sequence (ny) € pr Ao, (Fpmx)(xp) belongs
to the image of O x5 only if
mopn et N evh
H H H N, < Yoy ) 90( O,mX—l(y1))>
m’'=0 a=1 b=1, h QO(Ypo) No’mx (yl) x=x2 ,x" ,
ptbifm’ >0 AL sbm
_ s+m+n-+ordy m
=1 modp @z, [T, (1)

for all integer pairs m,n > 0 with m < n—s, and at every choice of h = hihy € Hoo with
ze{l,....,p"andy € {1,...,p"}.

We should point out that, a priori, it is not clear whether the p-adic power N m (... )e;,h,
above should even exist, as the exponent e} , € Zlupn] is frequently not a rational integer!
Remarks: (i) For any function f(X) € 1+p-Oc,[X], and provided that s € C, is chosen
to lie inside the disk |s|p < p®=2/(=1) the p-adic power series defined as

f(X)? = exp, (slogp (f(X)))

converges to an element of 1+ p- Oc,[X]. In particular, if s € Z then f(X)
with the standard definition of the s-th power.

¢ coincides

(ii) Furthermore, this construction extends after localisation at the multiplicatively closed
set Ocp [[X]] —p- O(cp [[X]], ie. if f(X)el+p- O(cp [[X]](p) then f(X)*el+p- O(Cp [[X]](p)

(iii) Although not explicitly stated, it is nevertheless inbuilt into Theorem 1 that each of

the fractions @gf‘)x’ 3 (PU/\\/}’O:X 7(;(1);1)) belongs to the multiplicative group 1+p- O, [[Fpm]](p).

In lieu of this discussion, one deduces that each term me’m (... )e;”l in the above theorem
exists as a well-defined element of the multiplicative group 1+ p- Oc, [[F”m]](p).



Cases (IIT1)-(VI). Let us now instead suppose we are in Case (x) with x € {II[,IV,V VI}.
We define a non-negative integer €, , by the rule

0 if % = (III) or (IV)
€xp = { ordy(d) if x = (V)
r+ord,(t) if x = (VI).

It will be shown (in Proposition 7) that the abelianization of U,, yields the tricyclic group

. U, "
Z/[fn L Fp X Cps+m+e*,p X Oszrm

(U, Unn]

where Cy denotes the cyclic group of order d.

Note that the commutator [, , U] is actually a subgroup of Ho, while T acts on
U2 through the finite quotient I'/T?"; we can then partition

ﬂg;n) = [Z/l}[ozl] = Ops+m+€*,p XCpS+""

into a finite disjoint union of its I'-orbits. Similarly, the dual group Hom(?‘-l((;n)7 (CX) also

has an action of I'/T?"; let ‘R,,’ denote a set of representatives for its I'-orbits.

For each orbit w;, = {’y‘jﬁwj ‘ j € Z/me}, he ﬂizl) and character x : ﬁf,’:) — C*,
we generalise the definition of e} ;, by computing the trace of h over the orbits of x:
Sy = T(Imdx)(@z) = > ()7

x'€{x? | gel'}

*
X @Wr

R, and on the orbit oy generated by h, but not on the individual choices of x and h.
Although these quantities might seem abstract, they are all computable (see Lemma 35).

Theorem 2. If we are in Cases (III)~(VI), then a sequence (y,, ) € pr Ao, (I‘me)
belongs to the image of Ocs y,s only if

H me’m ( y/Jx . @(No’mx—l(yl))>ex=w
¥

XERm (Yorr) Mom, (v1)
= 1 mod pPH¥mtes-ard@=) g ["] o (2)

In fact, it is easy to check that e depends only on the image of x within the set

X

(p)

)

for every m > 0, and over all T'-orbits w inside the group ﬂ((:: 2 Cpotmrenp X Cpotm.

Note in both of these theorems, if one additionally knows that (ypx) e[l oy Ao, (I’pmX ) X,
the modified statement should read: ‘(ypx) € Im(@oo,z) if and only if the same congru-

m

ences in (1), (2) hold after replacing p®-Z, [[Fpm]](p) with its unlocalised version p®-Z,[I'?" ]’
We also remark that Burns and Venjakob [3, Prop 3.4] have constructed a splitting
Kl (A(goo)S*) = Kl (A(goo)S) S5 KO (Fp [[gooﬂ)

so one can reduce the existence of elements in K (A(Go)s+) to those in Ki(A(Go)s),
combined with a precise growth formula for the p-invariant of the individual y, 's.



1.3 Some arithmetic examples
Before explaining the strategy to prove our two main theorems, we first discuss some
applications to non-commutative Iwasawa theory that arise from these K;-congruences.
Totally real extensions. Let us initially suppose that F' is a totally real field, and further:
o F = Un21 F,, is a union of totally real fields;
e only finitely many primes of F' ramify inside Fi,/F’;
e F contains the cyclotomic Zy-extension F'¥¢ of F

e the cyclotomic p-invariant of F' (62”/ p) vanishes.

We denote by ¥ the primes ramifying inside F., /F. One also defines (™) to be the unique
extension of degree p™ contained in F¥¢, so that I' = Gal(F®¥¢/F) = lim Gal(F(™/F).

Let G = Gal(Foo/F), and write kg : I' — Zg for the p-th cyclotomic character.
By seminal work of Burns, Kakde and Ritter-Weiss [2, 17, 23], there exists an element
Cr./r € K1(A(Goo)s+) such that, at any Artin representation p : Goo — GL(V), one has

Croyr(pEf) = Ls(p,1—k)

for each k € N satisfying k = 0 (mod [F'(uy) : F]). By deforming the k-variable p-adically,
the above values interpolate to the Iwasawa function L, s (p, —) : Z, — Q,, constructed by
Cassou-Nogues and Deligne-Ribet [4, 14].

Corollary 3. Let Fio /F be an infinite solvable Lie extension as above, with dim(G) = 3.

If the representation py = Indggbr(x)m_[ (x) has dimension equal to p™x say, then write

L;])D,_zR (py) € Quot(Ao, (re™x ) " for the unique element satisfying
Ko LII));ZR(pX) = Lys(p. 1 —k) for allk € Z,.
(a) If we are in Case (II), then the system of congruences (1) holds fory, = LpD'ER (Px)-

(b) In Case (x) with x € {IILIV,V,VI}, the congruences (2) hold fory, = Lag‘(px).

Proof. Note that the infinite sequence (LE"ER (py)) € pr Quot (Ao, (I‘pmx)>>< coincides
with 600%5* (C Foo/ F), as they both interpolate the same L-values. Therefore the necessity
of the congruences (1) and (2) follows directly from Theorems 1 and 2, respectively. O

Let us now digress momentarily, and assume we are given a congruence of the form

ZE)X(; =1 mod p’ Zy[X]) with F,G € Oc,[X] and v > 1.

Then % =14+p- ?Eg for some R, T € Z,[X] where the p-invariant of T equals zero.

It follows that F'-T = G - (T + p” - R), and one works out that
uw(F) = p(F-T) = p(G)+ (T +p"-R) = n(G) +0,

ie. u(F) = p(G). Also F = Gerv‘# € Og, [X] so that T|RG, whence F = G (mod p®).
Certainly if u(F) = u(G) = 0, then the leading terms of F' and G are congruent mod pv.



However even if u(F) = u(G) > 0, their leading terms must still be congruent modulo p*,
as one can repeat the above argument with F' = p=#(F) . F and G = p~#F) . @ instead.

F(X) _

Conclusion: If o = =1 mod p" - Zp[X](p), the leading terms of F,G agree modulo p”.

We are going to apply this to the congruences (1) and (2) at the trivial orbit @ = {id}:
specifically, F' will denote the numerator of (1) and (2) while G will be the denominator,

so that % = 1 mod p¥ - Zy[X](,) with X = AP" — 1, and v = s + 2m + n when * =II
whilst v = 25 4+ 3m + €, , when % #£IL

To individually describe the leading terms, if r(p, z¢) = ordery—g, (Lp, s (p,z)) then
Ls(p,1 -k ifr(p,1—k)=0
L(Ep)(pal - k) = . ( )—r( 1—k) . ( )
limg_y1—k (m P . ij(p,a:)) ifr(p,1—%k)>0

yields the p-adic residue of L, x(p, z) at the non-positive critical value x = 1 — k.

Notations: (i) At integers m > m/ > 0, let us define ry,/ ., = IndF(m) (1) to be the regular
representation for Gal (F(m)/F(m/)).
(()17:7/1)
where 1), is the p-th Adams operator (strictly speaking 1, only acts on the trace of a virtual
representation, but the abuse of notation makes sense in the context of {-functions).

(ii) Furthermore, we shall write r;’,,’ as an abbreviation for Ind§<,n/,1)<¢p o rm/,m’F(m,))

m (my)
(iii) Lastly set p( ) .— IndF(m)(X|F(m)) and p( ™) = Indj‘;(mx_m(z/)p oIndI;(mf (X|F<m>)>~
Theorem 4. Let Fyo /F be as above, with dim(Goo) = 3 and also (p_/p € K1(A(Goo)s)-
(a) If we are in Case (H), then for every m,n,k € N:

m

H H H (L2 (o, 1= k) - Lg>(rgm>,1_k))’“

b=1,
p’[b7fm >0

— b
XﬁX%»n .Xl,s+'m’

m ’L m’ S+"L/ me

I1 H IT (B8 1-8 L o1 -k)

o e pfbbzf:ml’7>0 X:XS’".X?’””/
modulo p*t2m+n,

(b) In Case (x) with x € {IILIV,V,VI}, for every m,k € N:

m p
[T (29640 1- 1) 0 a1 - 1)

mx

XERm
= H (L(Ep)( ;T)» 1- k) Lg) (ro,ma 1- k/’))p : mod p28+3m+5*,p.
XERm

Because p-adic zeta-functions of totally real fields do not vanish at odd negative integers,
a nice consequence is that whenever k = 0 (mod [F'(pp) : F]), these congruences actually
involve bona fide complex zeta-values, not simply their p-adic residues.



Heisenberg extensions. Let us now suppose we are in Case (II) with the parameter s > 0,
in which case G, is an open subgroup of the Heisenberg group, i.e.

1 7, 7,
Goo < H3(Zp):=| 0 1 Z, where [Hg(Zp) : goo] = p°.
0 0 1

In an unpublished preprint [20], Kato derives different but equivalent congruences to (1),
as ideal congruences in the group algebras associated to finite sub-quotients of H3(Z,).
Thus Theorem 4(a) gives a concrete description for the most basic of these ideal relations,
as a congruence modulo p*2™*+™ connecting the special values of Artin L-functions.

False-Tate extensions. Fix s > 1. We set F = Q(pps) and Foo = Q(upm,q}/pm,qé/pm)
where ¢, g2 > 1 are distinct p-power free integers satisfying ged(p, ¢192) = ged(¢1,492) = 1.
Then G, = Gral(FOo /F ) is a three-dimensional pro-p-group, corresponding to Case (III)
in the Classification Theorem (note that Fi is not a union of totally real fields so there is
no element (r_/r € K1 (A(goo) 3*) available, and therefore no Iwasawa Main Conjecture
can be formulated for Tate motives here).

Now if s = 1, the congruences (2) specialise down to yield the congruences labelled
(1.1)p,5 and (1.2),, in [10, p3]. If E/g denotes a semistable elliptic curve with good
ordinary reduction at p, then p-adic L-functions L,(E, py) € A(I‘pmx) [1 / p] interpolating
the algebraic part of Lypg, 4.} (F, py, 1) have been constructed in Theorem 1.5 of op. cit.
Furthermore, there are three ‘first layer congruences’ to check for each tuple (E, p, q1,q2).
These were verified numerically for the elliptic curves 11a3, 77cl, 19a3 and 56al using
MAGMA at the primes p = 3,5 and at small values of ¢; and ¢, in §6 of op. cit.

On the algebraic side, let us further assume that ¢; and g2 are both chosen to be
primes of non-split multiplicative reduction for E, such that

(—1)P-D/2 I (;) _

l|cond(E), I#q1,q92

where (5> denotes the Legendre symbol at p. Then if the cyclotomic A-invariant of

Selp (E/Q(pp)) equals one and if Sely=(E/Fx)" belongs to the category My (Goo),
it is shown in [9, Corollary 2.6] that

rankZ(E(Fn)) = pLor p?",

provided the p-Sylow subgroup of l(E/F,,) is finite at each layer F;, = Q(jpn, @ v @ /» n)
Alternatively, by studying the A-invariants of each x-part Selpee (E/F,(tipe))" ®z, . Oy
using the congruences in Theorem 2, one can produce the same estimate for the rank
(current work of the first named author [13]).

Heegner-type extensions. Consider an imaginary quadratic field k = Q(\/j) and let us
suppose ko, denotes its Zf,—extension7 so that Gal(keo/k) =2 T' X Hi oo where Hq o is the
Galois group of the anticyclotomic Z,-extension of k. For any choice of odd prime ¢ # p
with ¢ 1 D, one may set F' = Q(\/fD,up) and Fi = koo (up, ql/poo), in which case

Goo = Gal(Fs/F) = T'x (Hi00 X Hoo) = (I'X Hio0) X Ho oo

Here hy acts trivially on Ha oo = (h2) = Gal(Foo/koo(up)), while v acts on hy through
multiplication by 1 + p (we must therefore be in Case (V) with s =d =0 and r = 1).



Let E,q be a semistable elliptic curve with ordinary reduction at p, split multiplicative
reduction at ¢, and with non-split multiplicative reduction at all other primes dividing the

conductor of E. We also suppose that ¢ generates (Z/pQZ) " 5o that q is inert in Q(ppe-),
and that the various Heegner conditions (DT1)—(DT7) described in [9, Sect 2.4] hold.
Then it is shown in Proposition 2.14 of op. cit. that for n > 0,

P2 _2p2+2p+1
(p+1)°

with no hypotheses whatsoever on the finiteness of II(E/F,)[p™].

) < rankz(E(F,)) < p*+4

The upper bound essentially comes from a growth formula for the A-invariant of
Selyee (E/Fy (pip=))” as n becomes large. In fact if one exploits the congruences (2),
this yields another way to obtain the upper bound on ranky (E (Fn)), and establishes finer
bounds on the y-part of F(F,,). However the lower bound relies heavily on the properties
of Heegner points, following the same approach as Darmon and Tian [8] in dimension 2.

p"-division fields of CM curves. Let E,q be an elliptic curve with complex multiplication
by k = Q(m), and select a good ordinary prime p # 2 for E which splits inside
Z(v=D). If one takes F' = Q(v=D,p,), F, = Q(E[p"].¢"/?") and Fs = U, Fn
for an auxiliary prime ¢ not dividing cond(FE), then G, := Gal(F/F) corresponds to
Case (V) with s = d = 0 and r = 1 again. By using the congruences (2) to study the
A-invariants of Sely (E/F,)", one can bound the rank of E(F,) from above by p*" if the
cyclotomic A-invariant is one. Whilst Heegner points are no longer useful here, a lower
bound on the Z-rank of E(F,) of the form ¢, x p*" (with ¢, # 0 and ¢, ~ 1 if p > 0)
should still be feasible, if one exploits the non-triviality of the Euler system of elliptic units
in place of the Heegner points.

Here is a brief plan of the article. In Section 2 we begin by choosing an appropriate system
of subgroups with which to define our theta-map. The choice we make differs from that
made in [17] — ours is a coarser system than Kakde’s choice, yet better suited to the specific
representation theory of Go,. We then write down bases for each piece of the image of the
theta-map, and also introduce auxiliary homomorphisms Ver and 7 which allow us to pass
between adjacent subgroups in this directed system.

The additive component of the proof is contained in Section 3, where we describe the
image of the additive theta-map through its special values at Artin representations p,.
We next formulate four conditions (C1)—(C4), which are just strong enough to determine
whether or not an element lies in the image of this homomorphism.

In Section 4, we pass from the additive to the multiplicative world by means of the
Taylor-Oliver logarithm; for those familiar with the details of [7, p79-123], under this
logarithm the conditions ‘(M1)—(M4)’ transform into our additive conditions (C1)—(C4).
Because our subgroup system is coarser than in op. cit., the proof of the converse statement
“(C1)—(C4) = (M1)-(M4)” is far from immediate and occupies much of this article.
Finally in Section 5, we develop an algorithm to compute the quantities R,,, €} ., #w
in Theorem 2 explicitly, using Case (II) as a worked example to trial the algorithm.

Acknowledgements: The authors are grateful to both Antonio Lei and Lloyd Peters for
numerous discussions about non-commutative congruences. They were also hugely inspired
by the work of Mahesh Kakde, to which many arguments in this paper owe a great debt.
Lastly they thank Ian Hawthorn for his friendly guidance during some difficult times.

10



2 The general set-up in dimension three

We shall begin by reviewing the representation theory behind these semi-direct products.
Let us first observe that the subgroup Hoo = Hi,co X Ho,0o = Zp X Zy is generated by
hy = (1,0)T and hy = (0,1)T topologically. The action of each g = v* € I on an arbitrary
element (x,y)T = h¥hY € H can be described through a 2 x 2-matrix of the form I+ M:

V((@,y)") = v (hirE)y" = (I + M) ( ; ) forallg=~* €Tl

where Iy = < (1) (1) > is the identity, and M € Mat2X2<Zp) is topologically nilpotent.

Applying the Classification Theorem for G, the matrix M equals

0 ps ps 0 ps ps+7" 0 ps 0 ps
(0 0)’<0 ps)’(ps“d p ) \wd et ) (e 0 ) O

in Cases (II), (IIT), (IV), (V) and (VI) respectively (note in Case (VIa) we have set ¢t = 1).

2.1 Determining the stabilizer of a character on H

Note that each element g € I" acts naturally on x € Hom(Heo, ftpe) by sending x — g *x,
where g x(h) := x(g~'hg) for all h € H,. The I'-stabilizer of y is given by the subgroup

Stabr(x) = {g er ‘ x(g " (hThY)g) = x(h{hY) for all h = hihY € Hoo}.
Proposition 5. If x = X‘ffn X Xo'n * Hoo = ppn 8 a surjective character, then
[[": Stabp(x)] = p™  where m, := max{0,m, }
and, using the case-by-case description in the Classification Theorem, one has respectively:
(II) m, =n—s—ordy(e); (III) m, =n—s; (IV) m, =n —s;
(V) m, =n— s — min{ord,(e) + ord,(d), ord,(e; + p"e2) }; and

(VI) m, =n — s —min {r + ord,(ez),ord,(e1)}.
Proof. Firstly, let us denote by (,» the primitive p”-th root of unity exp(2w+/—1/p™).

Case (II). Here [+ M = ( (1) pl ), so that =P (hThY)yP" = h-f+p5+iyh32’. Consequently

i i s+i s+ s+i
X(’Y P (hfhg)'yp) — Xl,n(hf+p yhg)EIXXQ,n(hngrp yhg)ez _ ;71LI+(e2+el><P )y

equals x (h{hY) = (;‘i”ezy for all 2,y € Z, if and only if e; x p*** =0 (mod p").

1+p° 0

Case (IIT). Here I + M = < 0 14 p°

and it follows that

) with repeated eigenvalue Ay + = 1+p°,

X('y”’l(h"fhg)'ypl) — X(hgfhg)(HpS)p _ C}(ﬁ1w+ezy)X(1+p) )

11



However (1 + p $)P' = 1 (mod p*t?) but (1 4 p*)?' # 1 (mod p*T+1), in which case
(’y P (hih3)~P ) equals x(hihy) = C;im+62y for all z,y € Z, if and only if

ord, ((1 —&-ps)pi —1)=s+i > n, ie. if and only if ¢ > n —s.

1+ps szr'r
ps+'rd 1 +ps
distinct eigenvalues of Is + M, so that

Case (IV). Here I + M = ( ); let Ajy+ = 1+p* £p**"V/d be the two

_ . A 0 1 1
I+ M = PryDyy Py with Dpy = ( fg* v >and Pry = ( Vi >

Since (I2 + M)pi = P[VD?;Pf‘}, one readily computes

pi pi pi _ pi pi B pi pi pi
agngyr = p e )y (e )i (RagTes)y
. . (4)

)\Pi )\Pi )\P _/\P
To study both ”““; = and —F5—= note that

P
’\II]V,i = (1+p5(1ipr‘/a))p - 1+<11)> lip’”\f +Z< ) liprf)
j=2
and (1 £p"Vd)? = 1 £ jp"v/d+ O(p* %) where 6, = ord,(d), hence

p
)\]IDV,:I: =1 +p3+1 :I:p5+r+1\/g+ Z (]; ) sJ ipr\[ Z ( >jp5j + O( 23+2r+1+6p)

j=2
— 14 ptl L 4 <(1 Fp)P -1 s+1) + O( 2s+r+1+5p/2) _|_O(p25+2r+1+6p).

It follows that % will equal 1+ p*+! + ((1 +p5)P—1 fpsﬂ) +O(p?strtiton/2))

PSR N
or less accurately 5=

=1+ p*T + O(p***™!); applying an induction argument:
Ny o+ Ny

5 — 1+ps+i+o(p2s+i). (5)

. AP, —AP
On the other hand, the difference term ~*5="= equals pstrHiVd + O(p25+7“+1+5p/2),
)\P

Ay — . . . .
Dot IV — pstrtl o O(p2s+7FL); applying induction again:

and therefore 5va

My =My, . ,
s i ps—i-r-&-z + O p23+r+1 . 6
Recalling the chosen character x = X%, X x57,, from Equation (4) one obtains

i i - i\ €1 i i\ 2
X (7T RERN) = xam (YT RERDN) T xam (v (RERY)

AP +AP AP —AP AP —AP AP +AP

IV,+ T 1v,— IV,+ 1v,— IV,+ IV, — IV, + T v, —
(el< z )*92( 2 )\/E z+ el( 2V )+e2( 2 ) Y
= Cpn .
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As a corollary of our estimates in (5) and (6), 77* x(hihY) = x (v‘pi(h”fhg)vpi) equals
X(h3hY) = (™Y for all z,y € Z, if and only if
e1p* T + e d =0 (mod p") and e p* T + exp*t =0 ( mod p"),

ie. ifandonly if ¢ > n—s— min{ordp(el +p'desy) ,ord,(p e + 62)} =n—s.

S

1 p st s .
Case (V). Here I + M = ( pid 14 ptt ); let Ayt := 1+ P5— 4+ p°/Ay with

Ay = d + p*" /4 denote the eigenvalues of Iy + M. Indeed for all i > 0, one may write

A0
(I + M)P = PV< vt )Pv—l

0 )\]‘D/’7
here 1 ( 1V 1\/ ) ditsi p;l=1 1= QVPLV viv
where rry — T T , anda 1ts 1mmverse =5 T
5+VAy & -VAy v 2\ 1+ 2\p/AV - \/iv

Using this decomposition, we next deduce

i i i

P Pi P p Pi Pi
v _ (*v.+:A ,—_*v,+”v,—X%)m+(*v,+**v,—>y
_pz 1.y pz _ 2/Ay 2\/Ay
Y P (hThy? = hy

Now from the binomial theorem,

P r -
sV 3 (7 ) (G eV

s+r+1

e =1+

) . N - _ ,
e If ord,(v/Ay) > r then (% + \/Av)] = (”7)] +j (%)] VAy —|—O(p7’(J*2)+5p) where
4, = ord,(Ay ), hence

E (v =L (5 ((8) 4(5) V) oo

j=2 Jj=2
r+s\ P r+s+1 r+s\ P71 /
(B (v (14 70) T 1) 4 o
AP, 42D shrdl st A =AY s Ss+r
It follows that “V 2V = 142500 4O (p2o 2+ ) and 2t 2l = potl L O (p2s+7H)
upon using the condition d;, > 27, so by induction:
N 4D st | N , ,
+ - p 25+27r+i V,+ Vi— _  s+i 2s+7r+i
S N £ i, [ +0 and ———— = +0 . (8
2 (v ) 2VAy P (v )-

o Alternatively, if > ord,(v/Ay) then
(V) = (o) 3 (o) soppsane
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and arguing in an identical fashion to before, one deduces that

AL AL ot . YA 4 o
,+ 5 =14 5 +O(p2s+5p+z) and 72+ = B :ps+z+0(p25+6p/2+z). (9)
\% |4

Again as y = ', X x52 , this time Equation (7) implies
1,n 2.n

pl p? P’ _\P - pl _\P
o (e ) (50 )
x (7 ) = G

MWor A Wor tMm AWM  r
e /Ay +ez 5 + By X 5 Y

pr

X
Exploiting our eigenvalue estimates in Equations (8) and (9) appropriately, it follows that
X (’y‘pl(h’fhg)vpl) equals x(h$hY) = (37T for all z,y € Z, if and only if

s+1i s+it+r

ed xpT"=0(mod p") and e; xp*ti ey xp ( mod p");
the latter holds precisely when s +¢ > n — ord,(ezd) and s+i > n —ordy(e; + ezp”).

S

Case (VI). Here I, + M = ( ps}rrt ]71 ); let A\yz 4+ := 14 p*/p't be its eigenvalues

(note that t = 1 in (a) of the Classification Theorem, and ¢ € Z is not a square in (b)).
Then

i i A 0 1 1
p'_ P’ p—1 ; _ VI, + _
(IQ“‘M) = PVIDVIPVI with Dy = < 0 Avi ) and Py; = ( \/th _\/th )

A straightforward calculation shows
o - (I () (i) (),
TP (AR = Ry X hy (10)

and clearly X[, = 14 p**!/p't + p2stl (%) prt4 ... = 1£pHprEt+ O(p*+rtt).
Using a now familiar mathematical induction,

)\61_,'_ +)\1‘7/}_ 254r4i )\1‘7/1[4- - Agl — s+1 2s+r/241
f = 1+O(p ) and W =p +O(p ) (11)

If the character x = x7%, x Xx5%,, by Equation (10) the value x (7_pi(h“ﬁfh32’)'ypi> equals

i i i i i i i i
AP NP \P P AP —AP APL L 4aRD
<e1< VI,+2 VI, )Jrezm( v1,+2 VI, z+ | e1 VI,2+ pT:/I, tes V1,+2 VI, y

pn

Plugging Equation (11) into the above, one can then deduce x (fy*pi(h”f hg)fy”i) = x (hihY)
for all z,y € Z, if and only if both

ey x p*Tt x (\/th)2 =0(mod p") and e; xp*T" =0 (mod p"),
which is itself equivalent to ensuring that

s+1i > n—ordy(ep’t) =n—r—ordy(e2) and s+i > n—ordy(er).
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2.2 A “coarse but clean” system of subgroups

The theory in [7, 16, 17, 23] operates best in the setting of one-dimensional Lie groups.

Throughout we choose an integer n, and work with the p-adic group G, =1 X (ggj )
In later sections we will allow n to vary, but for the time being n is fixed.

Lemma 6. If Z(G) denotes the centre of a group G, then

n—s p"e
re - ox % in Case (II)
P x Hﬁ‘;n in Cases (III) and (IV)
Z(goo,n) = . Hﬁ)go—s—ordp(d)xﬂgn—s ‘
e = x —be = = in Case (V)
. Hpn—s—r—o??ipm o Hp
e x L= " 2 in Case (VI).

Hi0o in Case (II)

{1} otherwise.

In particular, Z(Goo) = @n Z(Goom) = {

Proof. We first note from the semi-direct product structure on G ,, that

2 {h”fh‘g (IQ—I—M)(; )E(z ) modp"Z%}
Z(Goom) = Stabp<H;2) x .

5 Mo
One then computes the right-hand side on a case-by-case basis, using the form of the
matrix M listed in Equation (3) (see [5] for the full details of each calculation). O

Bearing in mind Kakde’s subgroups should always contain the centre of G ,,, we define

Umn = " (;’:E) where the integer m € {0,...,n — s},
$0: (i) Z(Goon) C Unm.n, and (ii) IP" "C Stabr(x) for any x : Hoo— pipm by Proposition 5.
It follows that such x extend to Uy, , if m € {m,,...,n— s}, and will thus factor through
R _ IP" x Hoo /HE,
m,n [um,naum,n] <[hfhg mod ng’ ,ypm] ‘ x,y € Z>

Therefore, by determining the nature of Uﬁ}fn in each case, we may calculate the number

of irreducible representations ¥ ®Ind§,:’: (x) with ¢ : I' — C* of finite order. (Remember
that every irreducible Artin representation p on G is of this form for suitable m,n, x,.)

Proposition 7. For each pair m,n € Z with 0 <m <n — s,

P" x ;ﬁ,f’m X Zi“ in Case (II)
1,00 2,00
Yy ) Unsim in Cases (III) and (IV)
mn m 7 7 .
re Rl s tmfordp (D7 X pTL in Case (V)

m
I'P x

Z Z ; .
pmin{n.3+7n+r+ordp(t)}Z X ps+mZ m Ca’se (VI)}

in fact, the first two lines are actual equalities, not just isomorphisms.
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Proof. We proceed by working through the different cases (I1)—(VI) in numerical order.

Case (II). Here one simply exploits the commutator relation [hhy,+?"] = (hll’)psm.

Case (III). Here we use [h$hy,+*"| = (hfhg)(“ps)pm_l and ord, ((1+p*)P"~1) = s+m.
Case (IV). Recall from Equation 4 that

om om P o o o o
Arv+tAIv— 4 ATvi+ —Mv— ATv,+ v, — Vi ArvietATv, -

2 z 2V Y h 3 z+ 3 Y
2

3

s+m s+r+m z s+r+m s+m Y
(hzla +... « hg d+...) « (h}f +... « th) +) % h;fhg

P (BTG AP

upon using the estimates in (5) and (6); consequently

Moo N Z, ® Z,
<[h1,’7pm}7[hZa’Yme Zp' {(ps+m+... ’ps+r+md+”.)7(ps+r+m+._. ’ps—&-m_'_“_)}
: ab  _ Um.n ~ 1p™ Zp _ Ly
which means U}, = <[h1,'y1’m],[h2,'ypm]> = IP x sz, X ez,

Case (V). This time Equation (7) combined with the estimates (8) and (9) yields

(Rapls Mot i Yo A’afl—xii"_)
—_p™m v 2 2,/A 2 2/A
PUhERY)N" = h v vav

Y (RThy) = by

m m m m m m
AP AP AP NP AP AP r
( V,+ V,—>d$+( Vit V.o TVt V,—sz')y
X h

2 2/Ay

Ijs+7-+m ps+r+m

ps+1»+m7ps+r+m+“. Py T pmy " T Y oy
= |h °? 2 x hg ) ox | by X hy ? 2 x hih3

U m z z
so that U2P = et = TP x — g X pereg-
N (R ) PRI Ly Tt

Case (VI). Lastly, Equation (10) in tandem with the estimates in (11) implies

m

m m m m m m
(*Z\J/I LA )w+(*1\)/1,+’*1\3/1,7 )y prt()‘z\)/l,+7/\el,— )$+(*Z\)/I,++*€If )y
_m m P) ooy Pl 3
()" = by 7

. 0+... p5+m+rt+... x p5+m+“. 0. Yy z1Y
= (e xng ) = (nt x h9t)" X hRY

1

U, m Z Z
hence U2P = m,n TP x — X P O
m,n <[h17’\/pm])[h27’ypm]> p"Z,U p> T, p>T™Z,

We remark in Cases (II-VI), each U32P,, has the form I xﬁf}?’n) where ﬁ(o:l ™ s obtained
from quotienting Hoo/HE, = (h1, h2) with the subgroup generated by {[h1,7*"], [h2,7*"]}.

Definition 8. Let “orbr (ﬁf;“")) ” denote the orbits under the action ofF/FT’m in ﬁfjf’").
In particular, if h € ﬁ((;n’n) then wy, € orbr (ﬂ(;:’n)) consists of the set {'y_iﬁfyi | 1€ Z};

we shall sometimes abuse notation, and write h in place of wy,.
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2.3 Maps between the abelianizations of 4, ,,

We now outline the various mappings that appear in the description of ¥ and ® in [7, 17].
Rather than give their full definitions, we specialise them to the specific three-dimensional
situation we are considering.

The conditions (A1)-(A3) and (M1)-(M4) in the exposition [7, p79-123] degenerate
into some fairly simple rules, which can be expressed in terms of an explicit basis for the

image of Kakde’s map “ag O subsequent sections we will then study how these
expressions transform, once the completed group algebras A(L{fnﬁn) are evaluated at a
system of characters x on H..

The mapping o,,: Note that the normaliser of each subgroup U = U,, , C Goo,n is the
whole of G 1, so the Zy-linear map labelled ag(U) in [7, p85] becomes

p™—1
Ug{:: CAUER,) — A(UEP,)  where f Z N o
i=0

If we use the shorthand o, for this linear mapping, clearly o,,(f) € H° (F,A(Z/{;",‘fjn))
corresponds to the sum over the orbits of f under the action of the finite group I'/ re”.

Definition 9. For any h = h{h} mod [Up, n,Upm ]|, one defines .A%m’n) € Zy [Uﬁlbn] by

Yi

p"—1
(m,n) TTiTYi Z; _ ; x
A = ;_O hi'hs'  where ( ) = (I, + M) ( Y ) mod p”™.

In fact, we could alternatively have defined A(ﬁm’n) to be the summation Zf:o_l Y hA?

which coincides, of course, with ,,(h); we will see that these form a basis for Im(o,,).
Proposition 10. (i) Fach element A(Em’n) depends only on the I'-orbit of h inside ﬂf:on’n);

i) The image of o, is freely generated over Z,[[T?" || by the Almon) ’s, in other words
p h

(o) = Z,[[7"]) @z, Z, { AL

ho= hhg mod [Upn s Unm,n] }
(i) If r((;:,? i= ranky, [pom] (Im(o,)), then

p" Tl x (mp+p —m) in Case (II)

p?* =l x (pmtt +pm —1) in Cases (III) and (IV)
prin{n—mistordp(d)fts—1 o (pmAl L gm 1) in Case (V)
prin{n—mostrtordy (its—1 o (pymAl L gym 1) in Case (VI).

o =

Proof. Statement (i) is self-evident. To establish (ii), first note that U32>, = P" x ﬂi’f’")
where ﬂfjj’”) is the previous quotient of H., equipped with the action of the group I' / e

n)

part (i) now follows because QSZ’ is generated by hihY§ mod [Un n,Um.s| for z,y € Z.
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ALm,n),

To prove (iii) we just need to count the number of distinct s, which coincides

with the total number of (I'/ I )-orbits inside 7—[ . In fact by Burnside’s lemma,
7 (m.m) R e e s
#{D-orbits in Hy, '~} = #(T/T?")" x Z# {h eH ™M |y TRy = h}
j=1

From Proposition 7, in each case x € {ILIILIV,V,VI} one knows ﬁf]o"’”) >~ L L

(m) (m)
pe1z pNx2'z

where N*(T), N(m) € Nsatisfy m+s < N*(jrf) <nand m+s < N*(f;) < nin all five scenarios.

e Assuming that x # II, one discovers

m

P
#{I‘—orbits in ﬁ(;:n)} m oy ZPN(M)-Ford p@)=m N tord, (j)—m
Jj=1

P (V)1 (et )

e Alternatively, if x = II then  acts trivially on the first direct factor in ﬁf;n’n), whence
7( ) b (m) (m) .
#{F—orbits in 'HOZL’R } = p M™x ZpNH 1 pNH " +ord, (j)—m

(m) (m)
_ p(N” l—m)-i-(NH 3 m)—l % ((m =+ 1)p7n+1 _ mpm)
The result follows upon plugging in values of N, (m) and NV *(7; ) listed in Proposition 7. 0O

Corollary 11. The number of irreducible representations of the form Indsgbt (x) X Hoo /" (x)

~hm) is given by rgm) — TL(,?,B .-

where x factors through ﬂfjf’") but not through Wf}?
Proof. Note that any two characters x, x’ as above induce the same G, ,-representation,

if and only if x’ belongs to the I'-orbit of x inside Hom (7—[ ) (CX) since the latter group

is (non-canonically) isomorphic to 7—{00 "

with the finite set orbp (H(m n)). It follows immediately that

, its T-orbits are in one-to-one correspondence

s gorbp (HL™) — #orbr (Hew ™),

which equals o™ — )| because Im(o,,) = Z,[T?"]- {A%m’n) | @y, € orbr (ﬁ&n’n)) }. O

“the no. of Ind()’s primitive on H

The transfer map Verp, /. Consider the subgroups U C Uy n 0f Goo p with m > m/.

m/ . n

The transfer homomorphism (Verlagerung) Veru relative to these subgroups maps

uz i Uz, by sending

g[um’,nvum’,n] — H Cqg,1 [um,naum,n}

TER

where R is a fixed set of left coset representatives for U, ,, /Z/Im,n, and g7 = rycyr with
Cgr €Um,n and ry € R.
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Henceforth one writes Verp, , : A(L{%ti’n) — A(U3P,) for the Z,-linear and continuous
extension of the transfer map to the completed group algebras.

Lemma 12. Suppose g € L{fn‘%, and let g = (»yp’"’l Y - (h¥hY) € Fp’"'/ X Hoo be any lift.
Then - o
Vet m(g) = (V)7 -hi hy  mod [Unn,Upn,n]

where (z',y') = (pm_m/ac7 pm_m/y) in Case (II), and in the same notation as the proof
of Proposition 5:

m

AP -1

# 0
T 2 op | M PLT) mc th HLIV,V,VI
y ) =D . " . y in Case (x), with x € {IILIV,V,VI}.
Afﬁ' -1
Proof. Since um”n/um,n =P /Fpm, its coset representatives are {7“0, T, .. 7Tp'rn—m’—l}

where r; = 4P . One can represent § in the form " 7 - (h¥h}) for some choice of j € Z,,
in which case

gry = me j(hfhg)fypm i fypm (3+14) (,y—pm i(hfhg)vpm 1) — 719’” (3+4) . (hfp’”/ihgp’”/"')

where ( Lpm'i ) = (12 + M)p’m ’ ( 5 ) In fact, if ¢ : Z, — {0, 1,... ,pm 1} so that

/.
P

(z) = z mod p™=™ | then A*" () = iy - VP U=+ consequently

R m' . i (i acpm/i ypm/l.
gri = T (’Yp (e (J+Z))'(h1 hy ))

By definition, the transfer is congruent to

m—m’_q

Verm’,m(g) = H lypm,(j+i_b(j+i)) 'hglcpmrllhgpmg mod [um,n7um,n}
=0

and as j + i = «(j 4 i) mod p™~™ clearly 'ypm/(j“‘i_b(j“‘i)) € I'?" | hence me,(j“‘i_b(j“‘i))
and h{'hY' commute modulo (Up, n, U] It follows that

Vet m(g) = 7" ¢ bR mod [Un n,Unm.n)

’
m—m

where ¢ = >"F_ “'j+i—u(j+1i), and the vector
() - (B) -5 wewr (3)
y 3 Yyt R y )
To calculate the term ¢, without loss of generality assume j € Z, which implies
pmm -1 prm e
co= Y jHi—uti) = pmx Y Lpi::@'J'
i=0 i=0
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The right-hand sum then yields

\‘ Jtu J — pm—m’\‘ J J +P Z \;L(j)—i_lJ
pmfm’ pmfm’ - pmfm’
p7n—m/7b(j)71 p7n77n’_1

T e T e e -

=0 i:pm—m’,L(j)

m—m

’
p —1
0

1=

M : —_ ’ . ’HL/ mo .
and as an immediate consequence, ¢ = p™~"" X j so that 7 ¢ =~P J as required.

To compute ' and g, in Case (IT) we find that

! pm,z
In all other cases x € {IILIV,V,VI} one has (I + M)" ' = P, ( At EL ) P

which means

m—m/71

p . m-m’ 1 pmy
S o (2) e (T8 Ve
i=0 y 0 o P

Note that Pp; = Is because I + M is already diagonalised. The result follows upon
AP 1

=—. O
il

’ ’
. . . . meme_ g
summing up the relevant geometric progression, i.e. > .7_, )\f,i’ equals

The shift Tp m:. For integers m > m/, we now look for a reverse mapping to Ver,, .

The commutator [h¥hY,v*"'] corresponds to ((I2 + M)P" — Ig) < Z:j > as a vector in Z2;

however XP" —1 = (Xpm, —1) < T35, 1 @pe(X) where ¢ denotes the p?-th cyclotomic
polynomial, therefore

Y o ! ) ” T
rng ") = g g ") wien (5 =TT pelin) (3),
d=m'+1

As a consequence, we have the containments [um,n,um,n} C [um,,n,um/,n] - ’HOO/’HQZ.
The natural inclusion Uy, , < Uy, », then yields the composition

. uab o um,n um’,n proj um’,n
Tm,m’ - m,mn [

um,n»um,n} - [um,naum,n} - [um’,nvum’,n]

. ab
= Upi p-

(m;n)

) = orbr (HI™),

Moreover this shift homomorphism induces a map (m,m/ )« : orbr (H o

sending each orbit wy; = {7y 7"hy’ | i € Z} to the direct image @ _ (-

Recall from Proposition 10(ii) that a typical element of Im(o,,) has the form
S S =1 AL = 3 S AD say,
weorbr(ﬁgl’n)) @

where each f(X) € Z,[X] and AL = f:&l y~*h~® for any h € w.
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Lemma 13. If m > m/, then My, m (Zw foo -AE;"*”)) =" XY fw LA

(T, m? )= (@)

7(m7n)

Proof. If h € w with w € orbr (7—[

o0

), then within the algebra A(uab ) one has

m’,n
’

p—1 pr—m 1 pm 1 ) )

—17 1 _ m —p™ i1 —io T P 141

Tm,m/ fw : E Y h”Y - fw(’yp - 1) * Tm,m/ § E Y P ! zh,yp e
=0

11=0 i9=0

pm—m/71 pnz/71
= fw(’yp - 1) : Z Z ’y_lzwm,m’(h‘)’yz?
1=0  ix=0
since Y it (B)YP" = T e (R) inside Uz ., which gives the result. O

The norm and trace homomorphisms. We now introduce two final maps that occur in the
definition of both of Kakde’s groups ¥ and ®. Firstly, if G is a group and Conj(G) denotes
it set of conjugacy classes, then A(Conj(G)) = A(G)/[A(G), A(G)] as an isomorphism of
Z,-modules [7, §2]. For an integer pair m, m’ with m > m/:

e the norm mapping K; (A (L{ab )) — K, (A (Z/lmm/ [Z/{m/m,um,/m])) relative to the

m’n
subgrou Unm,n C U =Ub s abbreviated by N, m; and
STOUR 7 0 s ] & W Uyr ]~ Y Nm?,m;

e similarly, the additive trace map A(Conj(Ust,)) — A(Conj U/ [Unv s U n]) )

U n U/ :
T C oo = ] = U2, is denoted by Trpr -

i Ui n] m! o Um! n

relative to [

The following lemma describes the effect of the second of these maps on the image of o,,.
Let charpym : A(T) — A(TP") denote the Z,-linear and continuous extension of the map
which sends v — ~¢ if p™ divides i, and sends v¢ ~ 0 if p™ does not divide i.

Lemma 14. For a typical element ap, = _, for (’ypm/ -1 ~.Ag'f/’”) € Im(am/) [1/p],

’

m—m’ " m/, Z/[m,n
Tfm/’m (am/) =p X ;Ch&frpm (fw/ (')/p - 1)) . A(w’ ™) e A (M)

’

where the sum is taken over all @' € orbr (ﬁf}? ”))

pmim, > Vpﬂl JE if Vpﬂlj 6 Fpm

Proof. From [7, Rk iii], one knows Tr,,/ (ypmljﬁ) = " N
0 if 2" g TP,

so that for any h € w':

’ , o m’ 1 m! . = ) - .
Tl"m/ m (’)/pmj . A(W,L ,n)) = pm X Ef:o ,yp 7. (’Y Zh’}/z) if ,yp J TP
| N 0 otherwise.

The stated formula then follows by linearity and continuity. O
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3 The additive calculations

We begin by recalling Kakde’s definition of the subset ¥ C ], Q, [[Uab ﬂ given in [17].
For a fixed n > s, the Z,-module ¥ consists of sequences (am) satisfying the conditions:

(A1) Trpym (am/) = Tm,m’ (am) for any m > m/;

(A2) a,, =gang ' atevery g€ Goon;

(A3) a,, €Im(o,,) foreach m e {0,...,n — s}.
In fact, the general definition of ¥ involves more than just this system of sub-quotients.
However the “coarse but clean” choice of subgroups we made is sufficient for our purposes,

as every irreducible representation of G ,, is a finite twist of a representation obtained
from inducing down a character x on U, ,, for an appropriate choice of m and x.

3.1 The image of ¥ under the characters on ﬁf;” ")

The main task is to see how ¥ transforms if we evaluate its constituent elements at a system
of characters y = {x} on Ho./HE . In particular, we want to translate the conditions
(A1)-(A3) involving the a,,’s into equivalent conditions involving a, := x(am,) instead,
and thereby complete the middle square in the diagram

Ocon 0 “twiStid>10g” ] [N Q X H Zp [[u%b,nﬂ

0<m<n-—s

K1(Zp[Goon])
Evi\l l&
Q) D oxw) = Q®<H0 [Stabr(x )]]).

The following key result describes x(¥) C H [[Stabp ﬂ using p-adic congruences.
(

Theorem 15. A collection of elements a, € Oc, [[Stabp X)]] arises from a sequence
(am) € YN [ocrmen_s Ly ([U2P,]]. if and only if for each m > 0 and @ € orbp (’Horonn))
(C1)  the compatibility x(am) = Trgpapy () /rem (Ax) holds if m € {my,...,n — s},

(C2)  the equality a,» = a, holds at each character x' € I' x x,

(C3) Z Trstabr (y)/rem (ay) - Tr(Indx*) (@) € Z, [[F”mﬂ, and
XERm,n

Z7(m.n)
(C4) Z Trstabr (y)/rem (ay) - Tr(Indx*) (w) =0 mod porde(#Hoe ) Fm—ordy ()
XERm . n

where R, , denotes a set of representatives for the I'-orbits inside Hom(’H ™) (CX)

To calculate #’H( ) in property (C4) above, one just applies Proposition 7. On the

other hand, to calculate #w we use the orbit-stabilizer theorem, so that for any h € w
one obtains

#w = [[/I*" : Stabp pem (h)] = [I': Stabr(R)].
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Also by property (C2), an element a, depends only on the representative for x in R, »,
hence the last two summations in the above theorem are independent of any choices.

Proof. We begin with the ‘only if” part of the argument. Suppose we are given an arbitrary
element a,, € Z, [[Uﬁl‘fn]], and let us put a§{"’) = x (am,) for any character x : Hoo — fipn
(note that if Stabp(y) = I'"", then we will drop the superscript (™) above completely).

Assuming that (a,) € ¥ N[, Zy[[U30,]], we claim the following statements hold:

(a) there are equalities a;m) = ag/n) for any x' € I * x, where I' x x := {g * x | geTl};

(b) we can express a,, = i AT | where for any h € @ one has

Zwéorbp(?-l<m n))

m (I'xx) —iT i m
e R ( le m))emp)s

p™ - # XERm,n

©) oty (i ) = oty (L) o () 2 0
(@) Tr(Indx)(w) = #5050 X (7 ');
(e) one has a{" = Trgup, (o (ay) for each m > my, ie. (C1) is true.

Deferring their proof temporarily, let us first understand why they yield the three assertions
in our theorem. Clearly statement (C2) is implied by (a) with m = ord,[I" : Stabr(x)].
Moreover both (C3) and (C4) will now follow upon combining (b), (¢), (d) and (e) together,

and then observing that the p-integrality of the C’gn)’s is equivalent to each sum

p™—1
F .
Z ag(m) . ( * X Z Y 1 Zh’yl)> _ Z TrStabr(x)/FPm (ax) -Tr (Indx*)(w)

XERm,n XERm,n

belonging to the lattice %ﬂwg") Zy[[TP"]) = pOde(#ﬁ(o?"'L))+m—0rdp(#W) YA I

We are left to prove these five assertions. Part (a) is a consequence of property (A2).
To prove statement (b), let us write ap, =3 x _zom.m) &EL") To where each "™ € A(TP™).

Since the characteristic function of A can be decomposed into a sum over the characters

. —(m,n) .
of the abelian group H., =, one can express each coeflicient above as

m 1 R .
C(E : 7_t(rn n X Z X l(h) ’ agén)'
# X:ﬁ(;o"’n)—),upn

Using property (A3) and Proposition 10, we know that a,, is a A(T'?")-linear combination
of .A(m’n)’s which indicates (‘%m) is constant-valued for all h inside a prescribed orbit w.

If we denote this common value as ¢ ( ) , then

D DD SR SPCE DU SO

weOer(ﬂfg"")) hew hew

N.B. In this situation, the term ¢\7" - ﬁf corresponds to the coefficient C™ of AT
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Now we can always break >
(m) (m)
ax

T into a double summation > oz D icp., -

whenever Y’ € T'* x from (a), hence for any h € w:

= Y WAl = —— - Y A Y ().

#H i, HHE™ G e

Furthermore, a,

Splicing together these last two equations, we therefore conclude

aAm = Z ﬁ Z a(m) Z (X/)_l(ﬁ) . Ag%,n)

m .
wEorbp(ﬁgL"")) p # 0o XERm,n x'€l*x

Lastly Zx’el‘*x (X/)—l(ﬁ) coincides with the scaled value #(F;x) b -1 = (,y—iﬁ,yi)7
which means (b) is also established.

To show part (c) is easy since the size of each orbit w € orbp (ﬁ((;n ’n)) divides into p™.

In order to establish (d) we define p,, := Indrp Mo fpn »(X), so that pm, = P, Ind(x) ® 7

(mn

where the sum is over all characters ¢ : Stabr(x)/I?" — C*. Thus for h € w C H,,,

[Stabr(x) : Fpm] ~Tr(Indx*)(R) = Tr(p},)(h) = Z x (v
=0

(m,n)

and the orbit-stabilizer theorem for I'/T?" acting on Hom (’H , ,upn) then implies

e L L [[:1P"] i
[Stabr(x) : T?"] = [T :Stabr(x)]  [T/TP™ :Stabp/rem (x)]  #(T*x)

The assertion (e) follows from property (Al): if we set m’ = m, then

TEY X (e () = 2l

Finally, we must of course demonstrate the ‘if” portion of the ‘if and only if’ statement.
This amounts to showing the implication

“(Al) and (A2) and (A3) = (C1) and (C2) and (C3) and (C4)”

Trstabr () /rem (@y) = X (rﬁm’um(am’))

is in fact reversible, which is a tedious but relatively straightforward exercise involving
Lemmas 13 and 14 — we refer the reader to [5] for further details. O

3.2 A transfer-compatible basis for the set R},

Assume again that x € {ILIII,IV,V,VI}. We can express ﬂf;”’") as the double quotient
ﬁ(m,n) ~ _ HOO/H?Z
* <[h17’ypm] ) [h27’ypm]>

where hy and hsy denote the image inside Hoo/ 7—[’;2 of the subgroup generators hi, ho € Hoo,
as outlined in the Classification Theorem.
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Clearly any character x defined on ﬁ(m’n) must satisfy X([ﬁl,wpm]) = X([ﬁg,'ypm]) =1

Also H(m " N(%'” X (m) where NfT), N(m) € N can be read off from Proposition 7;
px1' 7 p %27
one may then write
N (™) a(m)

m = ~ *,1 m *,2
[h1,97"] = (h{*RH)" and  [h,7""] = (h2h5?)"
for integer pairs (Z1,91) and (Z2,J2), neither of which is p-divisible in N(#) X %
P *,1 7 po* 27
To precisely determine them, we note that the commutator [h”fh'g,'ypm] corresponds to

the vector ((I+ M)P" — I) ( ; ) inside Z,, ® Z,,, whence

N(m)

Si'l ‘%2 o p™ _ p_ *,1 0
< U1 Y2 ) B <(I2+M) 12) ( 0 -NY > (12)

p

To construct a basis for Hom ('H(m ) (CX) we therefore need a pair of characters
(m)
x1 and Y2, sending h1 h‘2 to a primitive p™+i -th root of unity for each j € {1,2}.
Recall the definition of the generating characters x1,n, X2,n : Hoo — Hpn from §1.2, namely
X1, (h{hY) = exp (2rvV—1a/p") and x2.,(h{hY) = exp (2mvV—-1y/p").

As an illustration, in Case (II) we know ﬂf;" R~ r;lsffn

X Zi—ﬁ"’ from Proposition 7, thus
2,00

one may set
)217]\7;17"1) (hglohg) = X2 (hfhg) = an and )NCQ,NI(}'{Z) (hfhg) = X1,5+m (h h2) = C sm -
(13)
We will now abuse our notation, and employ X(z) as an abbreviation for x(hihY).

: ﬁ(m’n)

o0

Definition 16. For j € {1,2}, we define characters X;

N(m) —» 'upNiT.';) through:

o ifx € {III, IV,V,VI}, then

(m)
B T ' N, 0 pm —1 T
Xy (y) T Ny (( "o 0 ) ((+a)" ~ 1) ( v ))
~ i 0 0 p™ —1 T
XZ’N&Z) <y> = X27N£T'21) (( 0 pNim) ) ((IQ + M) — IQ) y ;

o if x=1II, one uses Equation (13) instead to define X, yom) and X, yom) -
2SI, IV, 2

and

. . . - T1pd1) _ 110} _
In particular, from Equation (12) we see that Xy, v (R7*h3Y) = X, N (hiRY) = CpNif”i)
~ T I _ 011 _ . . .
and Xg N (h12h%?) = Xo N0 (h9h3) = CPNS,QL), which satisfies our stated requirement.
The main reason why we prefer using the character set { X1 N Xg N(,,L)} over the more
[ | 2%, 2

naive choice { X1 N Xg N('m,)} is motivated by the following compatibility result.
Vo1 Vo2
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Proposition 17. (a) The elements of Hom(ﬂ((;:’n), (CX) are explicitly given by the set

~eq ~eo N;((M) Nim)
{XLNE,"{) 'Xz,fo’;’ where e1 € Z/p 1 Z and eg € Z/p 275

(b) If x = II and m > m/, then

‘VTL*‘VTL,

p
XLN*(WI) o Very, m = (Xl,Nf”{/)) and X2,Nf”;') o Very, m = X27N£n;’>~

(c) If x € {II, IV, V,VI} and m > m/, then XLN*(,T;) oVery m = Xj,fo’;/) at each j € {1,2}.

- m — m 8 tm
Proof. Let us first suppose * = II. Here one has [hy,7*"] = 1 and [hy,7*"] =1,  with
NI(ITZ) =n and NI(ImQ) = s+ m, whilst XI’NI(;ni) (ﬁfﬁg) = (jn and )ZZN;Iml) (Efﬁé’) = Cpotm-
’ Z(m.n)

Part (a) then follows as X, ym and X, y(m are independent, while #ﬂf;n’n =p".pstm,
N1 N1 ,
To show (b) one notes for j = 1,2 that )Zj i o Vermrm| o= )ij:;(::) by Lemma 12,
VI, Hoo RS
in which case
5 ——y — pm—m’ B —z—y — pm—m’
Xl,N;;jQ((hlhﬂp )= (Gn) and XQ,Ng’;)((hlh?)p )= (<;9+m) = Qo+

- ™
Let us instead suppose » € {IILIV,V,VI}. Since (.[2 + M)p = P, ( AB* )\]?m > Pt

we deduce that

*,1
N . 1 B 0
pot 0 (I+MP—J> - <1O>P Mot , pt
S [ A O L R
A -1
On the other hand, again from Lemma 12 the matrix corresponding to Ver,,s ., () is
H;on m
DU
T 0
given by P, ot T N P!, An elementary calculation reveals the identities
0 gt
AP 1
P
* 4
prjylL) 0 pvn —1 )‘ijj 1 0 1 T
o o ) (Erdn”—n) p g T P
/\ff";/—l
A A
_ 10 p AT -1 AP -1 pi(®
0 0 * N A" *
0 p_-l 0 o Y
AP AP 1
_ Ninf)*wall/) pN*(nll) 0 T M pm/ T -1 z
=p> 0 0 (( 2+ ) - 2)



These matrix identities directly imply that X, \.om) o Verp ( ; ) equals
EE I

N(7rl)7N(7n/)
p ol *,1 e *(T ) 0 pm’ -1 T
(XLNE,"IQ 0 0 ((12 +M)T - 12) ( y > '

N ()

. p o - T
Since (XLNETY)) = Xl,Nif’f/) the above quantity is none other than Xl’NfTT/) ( y ) ,

which establishes that )ZLNLW{) o Very, m = )ZLN%/).
The argument for the second composition Xo n(m) © Verm: m follows identical lines. [
Vg2

(m’,n)

Lemma 18. (i) If hihy € He.
Vet m (f(fypm -1) .A(J;é”)) = pm=m) f(*" —1) - Almm),

hy hg hy hy

and f(X) € Z,[X], then

where ',y are as in Lemma 12.

(i) Using exactly the same notation,

el (m _ —(m—m') ce2 (m,n)
Xl,NE:’Y,) X2 N(m/) (A T y ) - p X Xl N(m) X27N,(:g) Aﬁi,ﬁgl
71,—771/
unless x =II, in which case one replaces X ) X () instead with X° N“"’) .XZQN("’,)
» * 1 ,2 7 *,1 2%, 2

on the left-hand side of this formula.

Proof. Let us start by establishing (i). If ( ;Z ) = (Ig + M)i ( ; ) for all ¢ > 0, then

’ pm/_l
m’ ’ m' s iy i
Ver, m (717 J 'A(E?E;)) = 2 Ver,, m (»YP I h] h2) = Z h1 h2
1=
upon applying Lemma 12. Here in Case (x) with x € {IIL,IV,V,VI}, the vector
AP 1
p o 0 e
i — - — i
() = | e |2 (0)
AP 1
; AP -1
_ p ot N 0 P (T Z () x’
T 0 i _Afifl * Yy = (24 M) Y
T

so that Ver,,’ (me . A(E?E’;)) equals vP"7 - Zf:o_l y_iﬁf Eg Ayt = AP"d -pm,_mA(EZ’g,

1 2
(the same identity for the Verlagerung holds in Case (II) also). The result extends to the
completed group algebra by linearity and continuity.

Secondly to show part (ii) is true, we first set f(X) = 1 and then evaluate the identity

from (i) at the character x° N("’ -)ZZQN(W). We next use Proposition 17(b)-(c) to rewrite
Ny 2
the transformed left-hand side in terms of the powers of ¥ L e and Xy o O
LA 2%, 2
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4 The multiplicative calculations

To complete the proof of the main theorem, our strategy is to establish the existence,
commutativity and row-exactness of the diagram

1 = FXxG% = K{(Zp[Goonl) “5 Z,[[Conj(Goo,n)]] — G2, — 1
I low. lot, [

1 — FXxG — P £, ] — G =1
[ Lx Ix

1 — Fyx Qign — X(®) E%X x(9)

!
I ©c, [[Stabr ()] " ( I ©c, [[Stabr(x)]]> ®z, Qp. (14)

m,X m,X

The top two lines of this diagram are precisely those occurring in [7, p80]. The vertical
arrows labelled as “x” denote evaluation at a system of representatives R, ,, and as

ggg n =T, the whole ensemble X therefore restricts to being the identity map on F ) x ggg "
At this preliminary stage, we make no attempt to explain the maps LOG, £ and E

From Section 3, the module ¥ C []  Z

Kakde’s additive conditions (A1)-(A3). Analogously, ® C [],,Z, [[Ufﬂfn]]x consists of

those elements (y,) satisfying the multiplicative conditions (M1)-(M4) below, which we
have specialised from [7, p107] to our particular situation:

(M1) Np—1.m (mel) = Trm,m—l(ym) for all m > 1;

(M2)  ym =gymg~ " at every g € Goon;
(M3) ym = Verpm—1.m(¥ym—1) mod Im(&‘,;) for each m > 1;

[[U;bn]] will consist of elements satisfying

(y%’)) (y,(q:) )" )
(M4) — on Pl o €Ep- Im( ) for every m > 0.
Nm m+1(Ym ) Nm 1 m(ym 1)

Here in condition (M3), the homomorphism Om ¢ Lp[[U,]] = Zp[[UsP,]] denotes the
additive map sending f +— > 7~ 0 AP ™
Warning: If a sequence (y,,) satisfies conditions (M1)-(M4), then its image under £

automatically satisfies (A1)-(A3) by [7, pl07, Lemma 4.5]. Unfortunately, because the

family of abelianizations {Z/lji}l nf0<men_s W USe is coarser than that considered in [7, 17],

we cannot directly apply the results in op. cit. to obtain a converse statement such as

(HZ )(Al) (A3) — (HZ UAb X>(M1)—(M4)'

m

The salvage is to show that K1 (Z,[Goo,n]) splits into a direct product of Ky (Z,[I']) with
with a complementary factor W;; we shall then construct a section S : p- ¥ — Ouo p, (W’r)
for which Lo S and S o E‘@ (W) are both identity maps. One concludes that (ym)
arises from K{(Zy[Goo.n]) if and only if £((ym)) € p- ¥, which is itself equivalent to the
sequence x o L£((ym)) satisfying constraints (C1)-(C4) from Theorem 15.
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4.1 Convergence of the logarithm on Im(o,,)

We will shortly introduce the Taylor-Oliver logarithm, which is usually defined in terms
of group algebras arising from finite groups. Since the profinite groups Go,», and U, , are
both infinite, one should instead consider their finite counterparts

G, =T /T% x Hoo/HE, and more generally U :=T7" /T%" w Hoo /HE,,
at each integer triple m,n,v € Z with 0 < m < n —s < v. For example, Z/[é’yrz equals Q((,Z)n

Remark: Using Proposition 7, one has U2" n

= Up—s pn; in other words U,,_; 5, is abelian.
It follows that T acts trivially on Ho./HE. for all v > n — s, so the semi-direct products
above make good sense. Whenever we write the superscript () above an object or a map,
we mean the analogue of that object/map for the corresponding finite group (providing

the object/map descends to its finite version, of course).

Now recall from Proposition 10(ii) that Im(o,,) is freely generated over Z,[I[?"] by the
elements A(m’ with @w € orbr (H( ’ )) It is therefore trivially true that Im(a,(ff)) must

be generated over Z [F”"L/FP ] by the same A(m g If wy, e € orbr (ﬁf;“")) contain
hy and hy respectively, then
p™—1 p"—1 p"—1p™—1 ) p"—1
(m n) . (m n) _ —1 _ (m,n)
AL AG Z ¥y Z vy hyy = E% ZO vy ) = ; A
K2 J =

which belongs to the image of le{ . It follows that Im( (v )) is an ideal of Z, [U7%7),;ab].
Iterating the above calculation N-times, one deduces that

m 1pm_1 p 1

t1=0 t=0 tn=0 hlh? R

which means for each w € orbr (ﬁ(m’n)) and element h € w,

p™—1 p™ N+1

R S SR N £ 1 SR R iy

t1=0 waETw WN+1E€E@

N
e Clearly if #w < p™, then (AE;,"’”)) o cphV- Im(a,(,'f)) Cp- Im(o,(f{)).

e Alternatively, if #w = p™ so that Stabppym (h) {fy” } then

(Ag”’"))NHZ Z Z A(gn;:.).wwrl _ Z A( )1

AR i
w €W WN 41 €@ (t1,...,tN)E(Z/pmZ)DN

There are at most p™ distinct elements of the form h n ' ! N, whilst the total
7 is p2st2mtens if (x) #(I1), where by Proposition 7 the term

0 in Cases (III),(IV)
eop = N+ N —25 —2m = { ord,(d) in Case (V)
r+ord,(t) in Case (VI)

number of elements in H.

is independent of m and n.
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— t1 —~tN
Consequently for mN > 2s + 2m + €, , these elements h R BT will start repeating,

+1
in which case ( (m ’n)) Ep- Im(aﬁ,ﬁf )). Note that the latter inequality is equivalent to

N+1>3+ zst%, so we arrive at the following estimate:

(AT | e |
ST e plarTat = -Im(ag,’{)). (15)
J
If one sets €, , = —s and n = m, a similar argument implies (15) also holds for (x) =(II).

Proposition 19. (a) The two formal power series log(l + y) = Z;’;l(—l)j“y?j and
(1+y) 1= Z?io( 1)dy? converge for all y € Im (o (V)).

+ex
(b) If 6, = [y—‘ then for every N > 1, the logarithm induces a natural isomor-
phism
oo - 1+Im(o (V)) ~ Im(o (V))(SM.N .
1+Im( (1/))5 -N+1 Im(o‘,g,l;))ém'N-i_l )

in particular, if p > 5 and one chooses m > 2s + €, ;,, then d,, =1 above.

(¢) There are isomorphisms 14p- Im( (V)) —%p Im(U&)) and p- Im( ) = 1+p- Im( (v ))
which are mutually inverse maps to one another.

Proof. To show (a) one uses the estimate (15) together with the fact that the exponent

3+25J+;/*,,,J — lo8l) o as j — oo, which implies both lim;_,.(— 1)9“9 =0 and

log(p)
lim; oo (—1)7y? = 0. In fact, since Im( (v )) Cp- Im(om ) for j > 0, the topology
induced by the neighborhoods {Im( ) } en coincides with the p-adic topology.

The assertion in (c) can be proved by following an identical argument to [7, p106],
which leaves us to tackle (b).

(m,n)\p v
For simplicity we suppose that p > 5 and m > 2s+-¢, p, so that % € Im(asn)) by
the estimate (15), whence % €Im (Ufﬁ )) for all y € Im (af; )). Consider the homomorphism

Im (v)
log! 1—|—Im(a,(,’:))N — % ®z, Qp
Im( )

given by log' (14) := log(1+%) mod Im(m(n))NJr Assuming that j > 1, let us examine

the p-integrality of (—1)j+1yj—.] for each y = a;---an € Im( (V))

e Ifpfjthen (~1)7HY = 2% ¢ I (ol))™ ¢ tm(of))N

b

e If j=p then (—1)”‘*‘1% = % cab---ak, € Im(o (V))1+p(N b Im(a%))N—H'

b

o If j =pF with & > 1, then

p* p\ K o kN
= () e (o) Y i of)
p p
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Lastly, the general case where j = p*c with p{c and j > 1 reduces to the previous cases,
upon replacing y with y¢ throughout.

We therefore conclude (—1)3"“17’7] € Im(a,(f:))N+1 for every y € Im(oﬁ,’f))N and j > 1.
Im(of;)™
Im(o())N+1
must be a surjective map; further, one easily checks that 1 4 I1rn(cr7(ﬁ))]\]+1 - Ker(logT )

Assertion (b) now follows immediately for p > 5 and m > 2s + €, 5.

Because logT(l +y) =y mod Im(m(ﬁ))NH, clearly log" : 1+ Im(a%))N —

Finally, to treat assertion (b) when p = 3 or m < 2s + €, ,, one simply observes that
25+€*Yp

RS2V 23 Sm v v . .
if 6, > 2F 5»— then 4 m Ly Im(ar(n)) for all y € Im(m(n)), using the estimate (15)
again. One then repeats the previous arguments, with y replaced by y°» everywhere. [

4.2 Interaction of the theta-maps with both ¢ and log

We now derive some technical results describing how the Frobenius mapping ¢ and the
logarithm commute with the theta-homomorphisms. Let us recall that in our situation,

the trace and norm maps from Qél.f)n down to L{r(f; ). have the simple description

p™—1 p™—1

TYQéZ?n/Mﬁ,Z)n(a) = Z v kFayk  and Normggy)n/uﬁ:)n(x) = H Rk,
k=0 k=0

Definition 20. (a) The additive theta-map O%Rf 2 Zy [Conj (géz)n)] — Zp[ ,(,Z)y;ab] 18
given by the composition
0Lt (=) = Tr

o0, i, (=) mod [T U .

b) The multiplicative theta-map 955)71 Ky (Z él.f)n — 7 fﬁj)ﬁab " is defined by
) D ) P )
o)

mon(—) = Norm mod [Z/{(”) Z/I,(n”)n]

o, u, (=) @,
Let ¢ : Z, [F/ I‘P"] SN Zp[ él.f)n} be the map on group algebras induced from the sequence
P/DP S T/T {1} gég)" that identifies I'/T'?" with a non-normal subgroup of gc(;,)n.

Lemma 21. There exists a splitting of abelian groups

~

Ki(Z, [gé’.j)n]) — Z, [F/l"p"] % WT(V) sending T — (mcy,xT),

where £ = 1,0 952(@, at = 2 and the complement W]SU) = {a' |z € K1(Z, [Qéz)n] )}
Proof. Firstly 9&2 coincides with the quotient mapping modulo [uéf,%uéﬁ] =Hoo/HE, .

. ) mod Hoo /p™
oo,n -

The composition I'/T?" < I'/T*?" equals the identity, and this induces

Ki(Zy[T/T7]) = Ky(Z,[60]) ™5 Ky (2, [0/m7))

which must then be the identity map on K (Z,[T/T*"]) = Z, [['/T?"] . The latter group
is therefore isomorphic to a direct factor of K (Z, [gS,Z)n} ), and the rest follows easily. [
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For a group G, the ring homomorphism ¢¢ : Z,[Conj(G)] — Z,[Conj(G)] denotes the
linear extension of the map [g] — [¢¥] on Conj(G) (note if G is abelian, then Conj(G) = G).

Lemma 22. For all a € Q,[Conj (gél.f)n)],

. T . d U u 1 irm>1
97(711/)7+04P (v) (a) = b @ufn)lno rg( )”'/ur(n)l,n(a) mo [ o ’ ] me*

e P, (@) mod [U1) Ug'] if m=0.
Proof. If m = 0, the formula is straightforward to establish.

We therefore suppose that m > 1. It ib enough to consider conjugacy classes of the
form a = [y/ - h] with j € Z/p"Z and h € oo since these will generate Q, [COI’IJ( S,Z)n)]

Key Claims: (I) For all j € Z/p"Z, one has (v7 - )" = %7 -T["2, 7

(I1) If k, k' € Z satisfy k =k’ (mod p™~!), then

k!

au, (07 T) = o, (077 ]) mod WD U] (9)

Postponing their proof for the moment, one calculates that

-1l
08" o g, (07 B) P o ([w Jita D

_ imo_ly—k(n )fy mod [ mn, ﬁ,f)n] if vP7 e TP
otherwise
= p] pzil ’L 0 /y_kh ’V mod I:uf,(rl;n,Z/[»my?n] if Py] = I’pmil
otherwise
. m k . o
@L,( ) zzalﬁ ) mod [u,(,;’)n,u,(,’fll] ifyi e TP
m—1,
otherwise
by 0D u<”) (v p SEL TR mod U U] it e T
otherwise

=Py OTrg<u) U ln(hj E]) mod [Z/lmn,u(”)}

m—1

The full lemma now follows for each m > 1, as Q, [Conj( fx”)n)] is generated by [y7 - h|’s

It remains to establish Claims (I) and (II). To prove (I) we know that h -7 = 7 oﬁy],
in which case

(,yj.ﬁ)p — ,yj.(ﬁ.,yj).ﬁ./yj.ﬁ...,yj.ﬁ = ,72j.ﬁ7j.(ﬁ.7j).ﬁ...,yj.ﬁ

= R R o= R R R
-2 (-3) _ I
= ... = fy(pfl)ﬂ.h”p o j( )R = = fym.H v
=0
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by (I) s p—1 77" A Itk
To show (II) note that the L.H.S. of (16) "=~ ~%7 - [[:_, (h ! N | s ,
. jit+k!
while the R.H.S. of (16) = %7 . Hf;ol B by an identical argument; one deduces that

-1
LHS. of (16) . (57" =10\
R.HS. of (16) gh () 7

p—1
. itk /o _ T —1 k! L
—7’”-(”’}/ (J+k).(,y"~‘ kop.oy= =R ).»},J'f‘k).ey PJ
i=0

However hy, = i R G [Z/l(”) U

—1n"m-1n

_Jitk Yy
S o . . L.H.S. of (16) _ p—1 77’
, which in turn implies RIS of (16) — ( im0 Mk

because v*—* € P77
} i
whenever k = k' (mod p™~1)

This latter product is divisible by p, in fact

LHS. of (16) _ 1 w) W 1p B
RIS of (16) © X UnZ1n]" C Ui s U]

m—1,n > m,n ’

Therefore L.H.S. = R.H.S. mod [ v, ,(n)n] which establishes Claim (II) as well. [

We now examine how the Frobenius map ¢ commutes with 9m 1.n- Consider the sequence

,n'

1

I Hoo (- I?” (Hoo)? e (Hoo)?
VG [u(u T — T " U, T X WU

m—1,n m,n,Ummn

1,n

P U 0]

ab n— Um (V ).ab , by linearly extending ¢ one obtains

induced from the p-power map, and the containment [L{;L) 1 n,u};’ ) 1n
)

If we label the composition as ¢ : Z/I(V

fu GUOD] S GUDS), Y el X -7
‘ geul e geul

as a homomorphism of commutative algebras.

Lemma 23. (i) For each integer m > 1 and every v € K1(Z,[Gs (V) ),

ab oam)ln( )

<pu<u) ab (logZ e ) o Normg( U

@0 0 log, oo,

m—1,n P[ m—1, n,]

(x)) mod [Z/{f,;’n , L{,(n”),J

,n

(ii) For each integer m >0 and every x € K1 (Zy| ég)n]);

0%, (z)
"0 Ny (050 (x))

0%, (x") = and 0%, (a%) = 7™ 0 Nom (05 (2))

where 7(™Y) denotes the natural inclusion Qp [Fpm /Fpu] — Qp[ (V) ab].

At first glance these statements are rather technical in nature, and their demonstrations
could easily be skipped on an initial reading. However they will become important tools
for us in the next section, when we calculate the Taylor-Oliver logarithm composed with

the family of theta-maps {0(” +}O<m<n .
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Proof. Starting with assertion (i), since [L{f:zl)n ) U,S’:Zl)n]p C | 7%’)” ) ,(,’;)n] one deduces

©, a0 0 'Tr (a) mod [ufn”; , L{T(;L’M

@)
m—1,n go"v"/umfl,n

= G (Trg&?n jut, (@) mod [u,ﬂ;ll,n,ufgzm]) - gum},noom;n(a) (17)

m=1,n

for every o € Q,[Conj( gZ)n)] Evaluating both sides at o = log(z), it is easily verified

Py .m0 ologo Normgg?n/u@) () = ¢y e © Trgg?n/uf:ll‘n(bg(w))

m—1,n m—1,n m—1,n

by (17)  ~ ), N ,
v U Pryab o@fnli7l(log(x)) = Guwae ologo an)_ln(g;)

To prove (ii), one simply observes that
T,Em’u) ONO,m (0&7}3(@)) = T’Em,l/) o Normr/r‘pm (.fL' mOd HOO/HQ;L)
oo o, (T (& mod Hoe /HE) ) mod U, UL ]
ICONS Li (x mod ’HOO/’Hg:) — 95::,)77 (xcy)_

m,n

Norm

W) (1) — O(@) o) ()
Consequently am,n (1' ) - 05:,)11,($°y) - Tim‘wONO,m(eé‘;)L(w))

, and the two identities follow. [

4.3 The image of the Taylor-Oliver logarithm
For a finite group G, the Taylor-Oliver logarithm LOGg : K3 (Zp [G]) — Zy [Conj (G)] is
defined by
1
LOGg(z) = logy ¢() — Ewa(logzp[c} (z))

where log;, (¢ is the unique extension of log ..z, [c)) (see [22] for more details). Note that
G need not necessarily be a p-group, even though it happens to be so in this paper.

IftG = Qég)n then LOG ., denotes the v-th layer of the map ‘LOG’ occurring in (14).

Our task is to calculate the Iﬁappings L and £, which make that diagram commutative.
The former of these maps may be determined from the following formulae.

Proposition 24. (a) If me{1,...,n—s} and z € K, (Z,,[[géz?n]}), then

O ()

Bt © O 1.n(@)

m—1,

92:,)77 OLOGgéz?n () = Ing,,[u("%ﬂb]

m,n

(b) Furthermore, if 2t = % € WT(V) then

xy

97(57)7’1+ o LOGG&I’)” (a:T)

N (p (v),ab
] Tim’y) o No,m (Géyg(z)) Unin

= 1ngp [u(u),ab

m,n

(Tﬁmy) © Non—1 (675(@)) )>

%) | . (x)
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Proof. Using the definition of the Taylor-Oliver logarithm and our previous results,
Oit 0 LOGge (@) = O3 ology 50 (@) = ;3 Ot 0 g, (logy g (@)

"2 O log(a@)) — 7 b, oTr (log(x) mod ), 1S5

(v) ()
goo,n/um—l,n

= Gn’;’);j(log(z)) - gpugilvnolog (Normgég?n/u5:> n(m)) mod [uﬁ;’@,uﬁ,ﬁ;%]

by 23(i ~
y:()e(V) +(10gZ [g(y) ]( )) — (puy(r,;lya]_il (¢] IOgZ [M(u),ab o 9m 1,”( )

PIm—1

1087, e (05 (2)) — 108, 1)) (%{fyj 2b O O e ))

which establishes assertion (a).

To prove (b), one simply combines part (a) with the formula from Lemma 23(ii). O

Remark: As a direct consequence, in order to make the left-hand square in the diagram

(v)
Ki(ze)) e Iy (@)

o(v),+
Z,[Conj(6®),)] o g X (g
commutative, it follows from Proposition 24(a) that one should define

(v)
Ym v),a
=log, e | =y~ | forall ( e [I zul™r.
Pry).ab (ymfl) 0<m<n-s

m 1,n

£ ()

m

(18)
To make the right-hand square commutative, we need to work out the map Egj ) explicitly.

Fix a finite order character x : Hoo — pip factoring through the quotient group ﬁfjj’"),
which one may interpret as a homomorphism

77 (m,n)

X UL 2 TP TP s H Y — TP TP < Im(x)

sending an element 47 - h to 77 - x(h). It follows that its extension to Z [Z/l (”,)nab] satisfies

Ol ()
08+ 0 LOG (v =1 ™ =
X ( m,n ° ng)n (3?)) Ogox [ rr” ] Sprp’" : (Xp o em 1 n(x))

o7

Moreover by Proposition 24(b), for any zf = z/2% € W,E”) one has

o) Nom—1 (05 (x)
(05 010Gy (a1)) = log, = <><<w> S (01<)

Non (082(2)) o\ x2 o8, (@)

as x acts trivially on Z,[I"?" /T?"], and thus also on N ;1 (9(()12(30)) and No (9((;’7)1(30))
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Since yg,lf,)x corresponds to x o 9,(,7)”(30)7 the preceding formulae imply one should define

X

(¥)

(v) v) — . Ymx
SR L Py ) IR ]

Indeed if (yE,T)X) €Il xo 9557),1 (WTV)), then one can further say

) No.m-1(v64
L350 oy = 108, [rom ] (yx'%"rpml (Oml(“)» (19)

NO m (YO 1) rp? Ym=—1,x»

)
In fact % €el+p-O [ ] for all m, so the full expression occurring inside the
0,m yo 1

logarithm in Equation (19) must automatically be congruent to 1 modulo p - Oc, [IIY)TT]
Corollary 25. If (yﬁ,’{)) @é?n (W(V)) and one sets (yﬁn)x) x((y (V))), then both

L ((y¥)) e vnp- Hlm(ar(z)) and £(£)((y£,’f’)x)) ex(¥)np- H Oc, [T7" /T7"].

m m,X

Proof. To address the first assertion, Proposition 24(b) implies that

(v) N, (y(u))
LO((y)) = log, 4w <ym "B <0mlo
m Lop U 7] No,m (y(()y)) Uy 00, (v)

Ym=1

and as each of the two fractions inside the logarithm belongs to the group 1+p- Im(a,(ﬁ )),
the containment follows directly from Proposition 19(c).

To establish the second assertion, one combines the discussion after Equation (19)

m

together with the isomorphism log : 1 +p- Oc, [Fpm /pr] - Oc, [F” /TP } O

4.4 A proof of Theorems 1 and 2

Recall from earlier that if a sequence (y ,(n)) satisfies conditions (M1)-(M4), then its image
under £*) always satisfies (A1)-(A3). We shall now establish a converse statement

LO(y) € p-o® — (y¥) € oW,

If we are successful, the question as to whether or not (y') arises from K (Z,[G%),])

under the mapping ©%),, reduces to determining whether or not Lg ) ((y,(f{ )X)) x(TW).
To achieve this goal, we will explicitly construct a section

S I »r -zl — I t+p 2z, U]
Osmsn—s (A1)-(A3) Osmsn—s (M1)-(M4)
for which £ 0 S®) T and S®) o L) o, W) are the respective identity mappings.
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To produce this map S(”), let us first fix a sequence (ag{)) € HOSmSnfsp . Zp[ ,(;7),;ab].

Recall that exp : p-Z, [Z/{f,f,)ﬁab} =1 +p- Ly [Z/IT(,Q/ )ﬁab] is an isomorphism of abelian groups.

Definition 26. Given the sequence (ag,l{)) above, one recursively defines y(()u) =1 and

yﬁ,’;) = {5“@1,?1, (yfﬁll) X €XPg 11wty (afq’{)) for each m > 1,

so that (ym) S Hm 1+p- Zp[ 7(:7)72ab]. We label this association (ag,':)) — (y%)) by SW),

Lemma 27. (i) The composition L") o SW) is the identity map on Il,.» Z, [L{,(n”,l{ab],
(i) The composition S o L) yields the identity map on [[,1+p- Zp[ ,%{ab} .
Proof. To establish the first assertion, one simply calculates that

™) 6 S®) ((a® W) ((y@)y) Y4 yi
£ oM (), = L) "= "log, ponan | ————
Pry).ab (qu)

mon |
m—1,n

by 26 v v
L logzp[uy(:)ﬁab] (QXPZP[MT(:7)7,1ab] (aﬁ,ﬂ)) = asn).

The proof of the second assertion follows along identical lines. O

For the rest of this section, we assume that (ag{)) €L.p Zp| ,g,;"),;ab] satisfies (A1)—(A3).

The goal now is to prove that properties (M1)—(M4) all hold for (yg,lf)) = S(”)((a%))).
Three of them are straightforward to deduce, but property (M3) requires more effort.

Establishing that S™) ((ag,l{))) satisfies (M1),(M2),(M4). Let us begin by obtaining (M1).

Since (A1) holds for the sequence (a%)), clearly

v v
Mo 050y 0512) = 50300 T a2
by (A1) W)\ _ (v)
= XDy ey © Tmm—1 (@0) = om0 €XDy gy (a0
/\fmfl,m (yf,f’_l) _ 7Tm,m71(ygf))

i.e. ) for each m > 1. The latter is equivalent to

Non-1m (B6522)) 71 (B0 1)

Nmfl,m(yfqz),l) = Wm,mfl(ysrl:)) X @u('/),ab (

m—1,n

Nm—Q,m—l (yfﬁ::),g) )

Tm—1,m—2 (yg,l:)_l)

The equality between Npy,—1.m (yfﬁll) and Ty, m—1 (y%)) now follows by induction on m,
thereby yielding (M1) as a consequence.

Hoo
n

Hoo

Focussing instead on (M2), the semi-direct product structure on Q((,Z)n =T/ " x

implies the subset of gég)n—invariant elements in Z L{#f ),;ab consists of
p ; P ;

m,n

Ho(gé;)n’zp[u(u),ab]) = HO(szp[ur(r;),)ﬁabD = (Im(o'g::)) [l/p]) ﬁZp[ur(rlL,,%ab]

Now (A2) states that a¥) belongs to this subset, hence y') € Im (07(,1{)) [1/p]NZ, [L{#Z),{ab] x
upon combining the recurrence in Definition 26 with induction on m, and (M2) follows.
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To show that (M4) holds true, consider the trace mapping Try, m+1 acting on Z, | ,(;7),;ab].

For each integer m > 0, one may decompose
(v),ab] ~v p™ T pY 7(msn)
Zp [umﬂi ] = Z /F X H () Ker(Trm m+1)

where by Lemma 14, the trace acts through multiplication by p on the first factor and
kills off the second factor.

Note that $5) Ep-7Z [U(”) ab] SO 7Trm m+1( ) = "1: mod p - Ker(TrmmH).
v)

Moreover the sequence (a&)) satisfies (A3), thus p - a%) — Trpmi (aﬁn)) €Ep- Im(a,(f{ ))
and applying Proposition 19:

OXPy, L) (p aly) - Try, m+1(a§Z))) € 14p-Im(e®).

: (v) My — xp(af,))? ;
It is easy to see exp (p - am( T m1(am’ ) = m Also, recalling from
earlier that exp (agﬁ)) = ~(y (";) X we therefore conclude
PYm=—1
) N ) B
(y"” ) % m,m+1(}’m ) €l+4p- Im( (u))

Py (yg)q)p Nonmt1 0 Ppye (yf;:),l)

O -1
Equivalently (y())()) X Py )b (M) € 1+p~Im(07(7'{)), so (M4) holds.

N m41 (Ym m—1,n —-1,m (yfn—l

Establishing that S™) ((a,(f{))) satisfies (M3). We begin with a technical result describing

m—1

the image of the map o) Zy [L{(”) ab] —7Z [Z/h(,i)ﬁab] sending f Zf;ol ryfpm_lif,yp i

Lemma 28. For each m € {0,...,n — s}, the U-invariant submodule H° (F,Im(&?n(u)))
is finitely generated over Z, [F/pr] by the combined set

we orbp(H( ™) ), #w :pm} U {ﬁ-Ag’”) w € orbp(ﬁg:’n)),#w < pm}
and in particular, Im( (V)) C HO(F,Im(&Tn(V))) C Im(@(y)).

Proof. Because a generator v € I' acts trivially on I'?" /I‘py and through I, + M on ﬁ((;n’n),

m,n 00

Fp /Fp <Zh ’wEorbp(H((,:L’n))>

hew

H (D, Zy[UE™]) = 2, [0 /1) g, HO ({12 + M), Z, [HZ))

Z,[r*" /T7"] - < LA TR

w € orbr (H(m n))>

m, -/

where we have employed the basic identity AS;,’i” =>7r, ! vy theyt = #w7 . Zﬁ’eww h
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Now pick an element tzh w, = Wew h belonging to HO((I + M), Z r(m ).
Then one easily sees that

m_q p—1 pm 11
#W* #W* P i s #wﬁ _om—1; i m—1,;
Th .Az(g;n) — Th IRy = mh TP Z(7 Jh,yj),yp i

p p §=0 i—o =0 P
which coincides exactly with o N(V (fh) where f7 := iﬁh . j 0 o Y Ihyl € Q,[H (m n)] .

It follows that p* (#w” -A&QZ n)) € Im(am ) if and only if p* - fr € Z [H( ’ )} and as

m—1 .
pZ . _;?:0 -1 rY*J h'yj if #wﬁ =p
= — .
pz—l . ZEIE‘IZT h if #WE <p™

the latter condition occurs when z > 0 if #w = p™, or alternatively z > 1 if #w < p™
Therefore the union of the sets { f; | #wy; = p™} and {p- f; | #w; < p™} will generate

the I'-invariant part of Im(ﬁ@(y)) over Z, [F / Fpu], as asserted.

Finally, the inclusion Im(a,(,l:)) — HO (I‘ Im( w ))) occurs as the generators AS;,"’”) of
the left-hand module are p-integral multiples of generators for the right-hand module. [

Verﬁ;’m Im (N(u)

Proposition 29. For each m > 1, the transfer sends p - Im(o,—1) Om )

TL

Proof. If we choose any h = hihy € H,. (m=1m) and f(X) € Z,[X], then from Lemma 18:

m—1 m—1,n _ m m,n
Ver,,—1,m (f('yp — 1) "A(Efﬁgl )) = plx f('yp - 1) 'A(Ef/ﬁg),

/
where ( Z, > € Zg is given in Lemma 12. Setting f(X) = p, it follows immediately that

Ver,,— 1m(p A(m 1n)) A(m,fz, € Im(a,g)) by e
ha hy

Im(N(”)).

)

Om=1

algebra Z,[I'?" e “] by the set of p- .A(m )5, hence the result is proven. O

Lastly applying Proposition 10(ii), we know p - Im(o,.” ) is freely generated over the

Let us now establish that (M3) holds for (yff{)) =8W ((a%))). For each integer m > 2,

ygg) by 26 @u(u),ab (y,(q:)_l) X €xp, [u(rf)ﬁab] (a%))
() B (v) )
Vernoam(Yla) - Vetmom (B (9170) X exp g (257))
vl )
= @0 m= o) X €XPy 1)) (a%) — Verm—1.m (an';_l))
metn Verm—27m—1 (ym 2) i ’
and the term a — Ver,, (agll) € Im(&?n(y)), using Lemma 28 and Proposition 29.
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An identical argument to Proposition 19(b) shows that
I —~(V)\N - 1+1 "T/(V) N
m(a,,"” )N -~ + Im(om )

exp,, ,(v).aby — ——
Zp U 7™ Im(am( ))N+1 1 +Im(am( ))N+1
is an isomorphism for every N > 1, in which case
(v) (v)
Ym Ym=1
> — (p (v ) - X (]. =+ dm)
Vermfl ,m (yfn),l) Z/l <Verm 2,m—1 (YSn) 2) >

for some d,,, € Im(w(u)).

Furthermore, one easily checks the containment @, ).an (Im(c?,;fl(y))) C Im(o, (”))
m=1,n

ygn)l

Very, —2,m—1 (y;) 2

) el+ Im(ﬁl(")). Property (M3) then follows for all m > 2 by induction.

Therefore, if we inductively assume

) € 1+Im (J/,;fl(y)), one may conclude
vy
Ver?nflnn( in) 1

(If m = 1 the same argument works fine, except one omits the denominator terms above.)

Proof of Theorem 2. As mentioned earlier, now that we have constructed the section S*)
mapping p- ¥ into ®*), to check whether (y (v )) arises from an element of K (Z[Gs¢ () n])

it is the same as verifying if ,C(V) ((yg,l{)x)) €X (\Il(”)). However, the latter is equ1valent to
checking whether E(V) ((ynl:)x)) satisfies the conditions (C1)—(C4) listed in Theorem 15.
Theorem 30. If x € {II[IV,V,VI}, then Lg)((yg{)x)) satisfies conditions (C1)-(C4) in
Theorem 15 if and only if:

(i) NStabp(X)/FPm (ygﬁi,x) = ysrlz/,)x at each m € {mxv N

(i) yfv;)x’ = y,(ib'?x whenever X' € T xx, and

) ) Tr(Indx ™) (=)
(ZZZ) H JV’Stabr(X)/F”m ( yX(u) . - (No,mx - ((y)l ) ) >
XERm, 00 SO(BIXP ) NO’mX (yl )

(m) | Ar(m) m y
=1 mod pN*,l +N, +m—ord, (#w) -7, [Fp /TP ]

for every integer m € {0,...,v}, and every orbit w € orbr (ﬁ(():hoo))'

Proof. If one chooses the sequence (a&m’u)) = Eg)(( V) '), then (C1) is readily seen
to be equivalent to (i), while condition (C2) is equivalent to (ii). Focussing therefore on
conditions (C3) and (C4), if one puts e} _ = Tr(Indx*)(w) then

>~ Tsianeorem (a87) - Tr(ndx*) (@) = D7 €] o % Trgane(o/rom (a)”)
XE€ERm,n XERm,n
(V) Nom _1( (V))
ewarSab(/Fmolog< ‘Ppm1<7x,,1
XE;MX ebr o/ No ., ( s y
v Ny 1 (y® -
= log, o[22 ] H Nstabr(x) /ro™ ( TP ppmxt <0<1>()>>
re XERm n No ,my Y1 p” Yyr

40



Recall that (C3) and (C4) together imply > cor,  Trsaby(x)/rem (a &”)) - Tr(Indx*)(w) is
congruent to zero modulo pordp(#“f‘(o?””)'*‘m ord, (#5) -Z,[TP" JTP"], for m € {0,...,n—s}

and at each orbit w € orbrp (ﬁ&n’n)). Now for all integers ¢ > 1, the mappings log :

1+p*-Z,[[P" JTP"] = p'-Z,[[P" JTP"] and exp : p*-Z, [P /TP ] = 149" Z TP /TP
are inverse isomorphisms to each other. As an immediate consequence,

y N . F7(m,n) —or o Fp
Z Trtaby (4)/Tr™ (agc ))-Tr(Indx*) (@) =0 mod porde#He " Dtm—ordy(#) 7 [pr }
XE%m,m,

. . ) o (N o ( ) Tr(Indx™)(w)

1+ pordp(#ﬁiZ””Hm—ordp(#w) (Zy[TP" /TP,

Finally, both H. '~ = 7—[ and Ry, n = Rim,0o provided that « € {IILIV,V,VI};
moreover ord (#H(m ") = Ny (m) +N, ( 2), therefore the equivalence is fully established. [

The reader will notice that these congruences are independent of the choice of n > m + s.
They also behave well if we take the projective limit as ¥ — oo, hence one can obtain
analogous congruences for the completed group algebras Z, [[Fpmﬂ = ]'&ny Z,[TP" JTP"],
i.e. those congruences labelled Equation (2) in §1.2.

The proof of the ‘non-S-localised version’ of Theorem 2 has therefore been completed,
i.e. a sequence (ym,y) € [l Ao, (I‘pm)X belongs to @OO,X(K{ (A(G))) if and only if

NStabF(X)/ppm (y(mylx) = yﬁﬁ?x if m > m,, secondly yf?:’)x, = yfﬁ?x for x' € T'*x, and lastly

Yy ¢Nom,—1(y1)) b))
o(yxr)  MNom, (y1)

I Mstaveosmrm

XERm, 00
(m) ('m) m
= 1 mod pNVe TNz Fm—ordy(#w) Ly [[Fp ]]
for every positive integer m, and at every orbit w € orbr (7—[( ’OO)).

Remarks: (a) If x =11, the proof of Theorem 1 runs along identical lines — the only point

of departure is that N I(I 1) =nand N 1(12) = s+ m, so R, , is no longer independent of n.
Nevertheless in Case (II), the multiplicative conditions equivalent to (C3) and (C4) are

r(Ind w)
yo  oMomea ()
e(yxr)  Nom,(v1)

=1 mod ps+27n+n—ordp(#w) . Zp [[I\pm]] (20)

IT Moo

XERm,n

for every positive integer m < n — s, and at every orbit w € orbp (ﬁfjj’")).

(b) To transform these into the congruences labelled Equation (1), one must calculate each
of Ry, #w and Tr(Indy*)(w) precisely — we refer the reader to the worked example given
later in §5.1, for the full details.

(c) Of course, this still only gives us a non-S-localised version of Theorem 1, describing
Ocox (K1 (A(Goo))) rather than O sy (K1 (A(Gxo)s)), which is an issue we address below.
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Ezxtending these congruences to the localisations. Finally, we explain how to extend these
results from K1 (A(Gs)), to both of the Ore localisations K1 (A(Gso)s) and K{ (A(Goo)s+)-
Let us focus first on K3 (A(Qoo)g), and write

Ono,s 1 K1 (A ) = [ Er(a@id)s

m>0
for the corresponding collection of morphisms [[ 0, s, with 6,, s := Ny, (—) mod [Up,, U]

In order to extend the arguments in §4.1-§4.3 so as to produce non-abelian congruence
conditions ‘@s’ describing Im(@oo,g), one must first extend the Taylor-Oliver logarithm
to a homomorphism

_— NG
LOGo. s K1 (AGun)s) — —— =S for cvery n > 1,

[A(goo,n)S; A(goo,n)S]

where A(?o.;)g denotes the Jac(Zy[Hoo,n])-adic completion of the localisation A(Goon)s.
This task has already been partially accomplished (see for example [7, Section 5] or [17]),
but not enough is known about the kernel and cokernel of these maps on the completion.
Indeed by [7, Lemma 5.2], the extension of the logarithm sits inside a commutative square

Ei(MG)) —  Ki(A(Goomn)s)
lLOGgooyn lLOGgooyn,s
A(g/oo:)s

Zy || Conj(Goo.n 7. Goor
[[ J( )]] — [A(goo,n)57A(g°O’n)S]

where the horizontal arrows are induced from the natural inclusion A(Geo.n) = A(Goo,n)s-

We simply observe that the properties of the Taylor-Oliver logarithm we derived in
§4.3 extend to the Jac(Z,, [Hoo,n])—adic completion if one ignores their kernels/cokernels,
and omit the details (which are anyway identical to Section 5 of op. cit.). The remainder
of the proof of Theorems 1 and 2 in the S-localised situation then follows readily, albeit
the congruences in Equations (1) and (2) are now taken modulo p® - Z, [[I'?"]] ) rather

than just modulo p* - Z, [[I?"]], and we unfortunately lose their sufficiency in the process.

We now turn our attention to the S*-localisation, A(Gw)s+, which is less problematic.
Recall that G, has no element of order p, in which case Burns and Venjakob [3, Prop 3.4]
have constructed a splitting

K1 (A(Goo)s+) =2 K1(MGuo)s) @ Ko(FylGool)-
Furthermore, there exists another commutative diagram
l@oo s* l(eoo 5,00)
I 5r(a@)s) < [T KE(AU)s) @ Ko(Fp[UarT)

m>0 m>0

where the map ©¢ : Ko (Fp[Goc]) = [1,n>0 Ko (FplUzr]) encodes how the non-commutative
p-invariant information in Ko (Fp[Ga]) gets distributed amongst its abelian fragments.
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Thus a sequence (yz-,,) lies in the image of O s, if and only if each term factorises
into yg-,, = (yg’m;/lm) where the components (Y§,m) € Im(@oo,s) and (pm) € Im(Op).
Note that G, is a pro-p-group so that Ky (IFp [goo}]) & Z, and similarly K (IE"p [u;b]]) 7.
Consequently a tuple (pn,) € [1,, Ko(Fp[U2P]) arises from the image of Oy if and only if
for every integer m > 0, one has p,;, = [Goo : Up] X p for some fixed p € Z.

Because the bottom arrow in the above diagram may possibly not be surjective, the
most one can say is that any (yz-,,) € Im (O 0,5+ ) must of necessity satisfy (M1)—(M4).
If we denote this subset of [, -, K1 (A(U)g-) satisfying (M1)—(M4) by ‘®s-’, then this
potential lack of surjectivity yiglds another obstruction to O s+ @ K (A(goo)s*) — Dg-
being an isomorphism. In terms of O y,.5+ = X © Oc,s+ from the Introduction, this
translates into the necessity of the congruences written down in Theorems 1 and 2 holding
for x(yz+,,) € [, Quot (Ao, (Fpm)) " but not their sufficiency regrettably.

5 Computing the terms in Theorems 1 and 2

*

The various quantities R, », @ and e} _ occurring in the congruences (1) and (2) are
easy to define in theory, but it is not quite so evident how to work them out in practice.
We shall now give a step-by-step guide to calculating these terms algorithmically.

Step 1: We first explain how to express X; yom and X, e in terms of x1,, and x2n.
V%1 V%2

Step 2: We next explicitly list representatives for R, ,, in the form )2‘11 N )2127 N
L 2T %, 2

Step 3: We end by giving formulae to compute both #w and €] , = Tr(Indx*)(w).

The technical results corresponding to Steps 1, 2, 3 in the text below are respectively
Proposition 32, Lemma 34 and Lemma 35.

[1,m] _[1,m]
*x,1 e*,2

Definition 31. (a) We set the non-negative integer pair (e ) equal to

bS]

2V Ay
ps+m prJrordp(t) N prJrordp(t) szrm pr+ordp(t) B pr+ordp(t)
20\ My =1 Ay — 1) 2Vt Ay =1 A — 1

in Cases (II), (III), (IV), (V) and (VI) respectively.

ps+m 1 N 1 p5+m 1 B 1
2 \My, -1 My_—1)7 2vd \ My, -1 XNy_ -1
< s+m~+ordpy(d) (1 — 2\5@ N 1+ 2\})@> ps+m+0rdp(d) ( 1 1 ))

A RV A R
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(b) Likewise, we shall define a second pair (e[j’lm],e[jém]) by setting it equal to

s+m
’ (0 ’ %1 )
>‘HI.,:N: -1
st/ d 1 1 pstm 1 1
o pnz - p7n 3 2 pm, + pvn
2 )\Nﬁ_fl )\M_fl >‘IV,+*1 /\IV7_71
s+m S+m 7177‘ - 7”’
o [P tmg 1 _ 1 Pt N/ n R N/iT
VA \ N -1 A —1)7 2 AL -1 A -1
(5 s w) T ew)
2 /\{7/1,4- -1 /\I\)/I,— -1 2 )‘1\)/1,+ -1 )‘I\)/I,— -1

again in Cases (II), (III), (IV), (V) and (VI) respectively.

Proposition 32. For integers n > 0, one has the character relations

0 1 . _
Xi,n " X2,n if x=I1
[1,m]
€, 0 e
X1,5+m * X2,5+m if x=I11
i
Xinm = § Xi,s4m " X2,55m if x=IV
V1 e[‘}qlm'] eg,;n,]
Xl,‘;+m+ordp(d) : X2,;+m+0rdp(d) Zf *:V
[1,m] [1,m]
VI,1 VI,2 o
Xl,s+m,+r+0rdp(t) ’ X2,s+m,+r+ordp(t) Z-f*_V]
and
1 0 o
Xl,s+m : X2,s+m Zf**II
0 e
X1,54m * X2.sim o *=II1
[2,m] i2,m]
v — v,1 v,2 . _
Xo nym) = X1.stm " X2,5tm if x=IV
1%, 2 [2,711] 12,m]
V,1 V,2 . _
Xl,s—l—m : X2,s+m Zf*_v
enT  ews
Y ; if x=VI.

X1,s4+m " X2,s+m

Proof. The situation where x =II has already been dealt with in §3.2, cf. Equation (13).
Let us instead suppose x € {IILIV,V,VI}. We first recall from Definition 16 that

- T 1 0 z

° Xl’NS:'{) <y> — XLN)E’:'IL) (( 0 0 ) 7:«,'m,1 ( y ))7 and
- T 0 0 z

° X2,N£T'2L) (y) = XQ,N*Q;) (( 0 ) Teom.2 ( ) ))

(m) m —1
where Ty ;1= pVei ((12 + M)p — IQ) . Further, one can diagonalise the y-action via

—_

0

0

(12+M)P" = P, DY P7' with D, = (A*O* \ ) and P, € GLy(Q,).
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The next objective is to calculate the matrices 7 ,,,; on an individual, case-by-case basis.

Case (III). Here Py = I and NI(IT)l = NI(I?)Q = 5+ m, so that

v N
PN ((12 + M - 12) — ) Jotm .
T )7 =1

1 1 m m
Case (IV). Here Pry = < Vi \/E) and NI(V’)1 = NI(V)2 = s+ m, so that for each

(m) - -1
j € {1,2}, the matrix p"1vii ((Ig + M — IQ> equals

1.1 1 11
pstm P RV Vd \ N -1 N 1
2 1 1 1 1
d| —
Va| =~ o

1 1
Case (V). Assume that n > s +m + ord,(d). Then Py = <p2r " VAY % B \/E)
with Ay = d+p?" /4 € Z,, while N‘(/TE) = s+m+ord,(d) and N‘(g) = s+ m; consequently

(m) m -1
for each choice j € {1,2}, the matrix pivi ((Ig + M)P — Ig> equals

N (e i Sy (S —— L (o
piva [ T TN 2VAY \ NS N vav \ 3o T T
2 "
d P'"} - prnl pn} + pvnl + b pnll - pnzl
VAy \ AP -1 AP -1 AT -1 a1 2VAy A\ -1 A

1 1
Case (VI). Assume that n > s+m-+r+ord,(¢). Then one has Py; = . — ],
(VI) = p( ) VI ( \/th —/p't )
while N‘(/T)l =s+m+r+ordy,(t) and N\(/T)z = s + m; consequently, for each j € {1,2}

(m) m -1
the matrix p™vi.i ((12 +M)P — 12) equals

1 1 1 1 1
N e + —m — e — —
pVLi ,\{;1#—1 A@I’7—1 VpTt ,\{;1#—1 A@I’7—1
2 1 1 1 1
th T - T T + T
A -1 Ay _—1 A -1 A _—1

Since we know the form of each 7, ,, j, one now computes )ZLNLT,I) <§> and Xz,fog) (;C) .
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To illustrate the calculation, suppose we are in the last case x =VI; then one obtains

- T\ 10 T T
v Ny ) = Xangi\L o o ) IVEma

Y
pFmtrrordp () (’”*x/,% v )

0 e
= Xl,s+m+r+ordp(t) 2 A7&11+71 A@I,—fl
0
potm [ prerdp(n) prtordp () -
e It
= Xl,s+m+r+ordp(t) 2 )\1\'?1,+*1 /\‘\D/I,—f1
0
0
* X2,54+mr+ord, (1) potm [ prordp(®) _ prtordp ()
= ™
2vp"t )‘51,+_1 )‘51,7_1

Y

- T\ 0 0 T x
XQJ\,‘(;;;)2 y) = X2,s+m 0 1 VI,m,2 y

P /pTE 11 "
2 P S V]

[1,m] [1,m]
. L LBvia x evi,2 z . s .
which equals X1 s bt ord, (1) ( ) * X st rord, (1) (y ) . Likewise, one can show that

= Xl,5+m VI, + VI, —
O 2,m 2,m
_ eE/f,l] X e[vi,zl x
* X2,5+m pstm ml + m1 y = Xi,5+m y *X2,5+m y .
2 Ay -1 Ay -1
The other remaining cases x =III, x =IV and % =V follow in an analogous fashion. O

For Step 2, we introduce an equivalence relation ‘ ~’ on ordered pairs of integers (a, b).

Definition 33. (i) If x € {III, 1V, V,VI}, then one sets

Z Z Z Z
:{m,n = (a, b) € N O™ X N O™ — P N O™ X N ~
Pt 7 P2 7 Pl 7, P2 7

where (a,b) ~ (a’,b"), if and only if

< 8 2 ) = ( %l (())' ) (I2+M)j mod ((I2+M)pm —12) for some j € Z/p™L.

(ii) If x = II, then one sets
Z Y/ x
o feo e (T}
where (a,b) ~ (a’, ") if and only if a = o’ (mod p"~™).

The following result describes how to produce an explicit set of representatives for R, .
Again we assume that the integer n > 0 is chosen sufficiently large with respect to m.
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Lemma 34. (a) Up to isomorphism, the exact number of irreducible G ,,-representations
Gooon ——(m,n)

Py = IndSt ) (x) induced from primitive characters x : Ho,~ — C* equals
abr(x P
Pt (p—1) in Case (II)
SR, — HR )T (p? 1) in Cases (III) and (IV)
m,n m—1n = p2s+m+ordp(d)—2 X (p2 _ 1) in Case (V)
p2s+m+r+ordp(t)—2 X (p2 _ 1) 7/’7/ CaSe (V[)

(b) If we define RO := Ry — Rin—1,n for every m € {1,...,n — s}, then we can take
(a,b) € X |-

as representatives for REFM the set {)Za (m) xb (m)
: LN 2,N}

Proof. Part (a) follows (with n > m) on combining Proposition 10(iii) and Corollary 11.

a’ ~b’

LN Xz,N*(Tg))

To show (b), first suppose that x # II. Then X?,N“’P . XS,N(”;) = ~J x ()2

. e~ ax - bx
if and only if Xl,Nif’{) ( ay ) 'X2,N£f'§) ( by ) equals

[ d'x Vax
>~(1,N£Trlb) <(.72 + M)’ ( oy )> ')22ny3> ((IQ + M) < vy )> for all z,y € Z,.
This latter equality is equivalent to the pair of congruences
( PN:’{) 0 ) ((12 4—M)me _]2>71 (ax )
0 0 ay

N m -1 ’
pN1 0 (I—i—Mp —I) I, - MY a'x mod N
( 0 0 ) (12 ) 2) (L2 ) ay p

and

(8 (e (5)

0 O pm —1 ) b/x N(m)
= ( 0 pNi,nzb) ) ((Iz—I—M) —12> (IQ"’M)'](b/y) mod p'*2

holding for all z,y € Z,; here we have exploited the construction of )21 N and )22 N
AV 1 1 %2

given in Definition 16. Because (.[2 + M)p — Iy and (I + M)’ commute with each other,
the above may be rewritten as a single congruence

(5 5) (Uray”—n)”

_(ad 0 j P
= (0 y )M ((e+M)" L) mod Mataa(Z,).

Note this congruence is satisfied for some j € Z/p™Z precisely when (a,b) ~ (a’, V).
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Let us instead suppose that x = II. Then x¢ . )Zg N = I % (f(‘ij(nf) . XZI,N“;))
if and only if ' '

LN Yo N
- ar '\ br \ _ . a'(x + p°jy) V(z +p°jy)
Xl,fo’P (ay) -XQ’N*(@ (by) = X1,N£7;> ( a'y 'XZN*(TZ) Vy

at every x,y € Z,. Again using Definition 16, we can rewrite this as

!

C;ng ba: _ Ca'y. b (z4+p°5y)

“ Cpetm o Cpotm for each z,y € Zp,

which is itself equivalent to the congruences
b=V (modp**™) and a=d +jp" ™ (mod p") for some j € Z/p™Z.
These last two congruences then reduce to b = b’ (mod p*t™) and a = o’ (mod p"~™).

Therefore in all possible cases x € {ILIIL,IV,V,VI}, one concludes that )Z‘ll N )Zg N
Vs 1 AV 2

lie in the same I'-orbit if and only if (a,b) ~ (a’, ). O

a’ b

-~ !
and .
X1,N§j’;) X2,N£fg>

Consequently Steps 1 and 2 have now been resolved, and it therefore only remains to
complete Step 3. The latter task is covered by the next result, which enables us to

compute both the size of w and also the exponent e} _ occurring in Theorems 1 and 2,

for each orbit w and representative character x € R, .

Lemma 35. (i) If w € orbr (”HOO 'n)) contains an element h = E‘fﬁg, then

—a—b a p™ Z 4
w = { Rihy such that ( , > € Vi) mod ((L+M)" - 1) ( z )+<an§ )}
where the set Y, ,) consists of the vectors {(Ig + M)j ( z ) with j =0,1,...,p" — 1}.

(i) For each character x = X7 pom -)Zg () 0T ﬁ((:’n), the number e, = Tr(Indx*) ()
V1 1T %2

can be computed via the e:cponeni‘ial sum formula

p"—1 ae[l’lm] bep’lm] ae[l’zm] be[2’2m]

m, — *, *, *, *,

P Y exp | —2mV/—1 N Ty | T e T e | Y
=0

piet P2 pit P2

where the integer m, is given in Proposition 5, and ( IJ ) = (Ig + M)j ( ch ) forall j.

Yj

(#ii) In particular, if w consists of just the identity element, then e} - =p™ eN.

Proof. To establish assertion (i), we remark that v acts on the quotient group

Z7(m.n) Hoo/HE . L Z
Hoo = - = oy X (m)
<[h”fh3 mod H, 4#" ] ’ T,y € Zp> pNorzZ N2z

through the matrix I + M, hence our description for the I'-orbit follows immediately.
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To show part (ii), by the definition of Tr(Indx*)(w) one calculates that

pm—1 ) p™—1
o _ #(I * x) ) } : ! (’y*jﬁ j) _ [I' : Stabr (x)] ) Z ! (E@jﬁyy‘)
X, @ pm 7 [F . Fl)m] 172
=0 =0
by 5 Pt - b
Yy m m ~ Y TLiT Y5
px . E XLN,ET;L) (hl h2 ) X X2 N (hl h2 )
j=0 ’
pm—1
[1 m] [1 m] —a [2,m] [2,m] —b
by 32 P T Y ey eln T 7Y
x E Xl N(m) 2 N(m) hy”hy X Xl,N*(Tg) : X2,N£fg> hy”hy
pmfl
el _pel2ml —ael'y —pel?
m, —m 2 : ae, 1 € <h% h%) X X ae, o
p ot Xl)Nijrlb) XLN*(TYQL) 1 2

and the last line is then equivalent to the stated formula
Finally (iii) is a special case of (ii), corresponding to x =y =0 and z; =y; =0. O
5.1 A worked example for Case (II)

We end by using Steps 1-3 to yield an explicit expression for the congruences in Case (II)
Firstly by Lemma 34(b) and Definition 33(ii), if one takes m > 1 then

RPIT = {Xg,n : X’f7s+m ‘ a€Z/p""™Z and b e (Z/p”mZ) X}
while R ,, coincides with { X&, X

a€Z/p"Z and b€ Z/pSZ}. It follows that

m pnfm/ s+7n
e*
LT Nswveomer ()%= = T 11 H Non (+)
XERm,n m’'=0 a= b=1,
pf{bif m' >0

X:XE,TL'X?,SM
. —(m,n
Now suppose an orbit ;- € orbr (’H(

)) contains an element h = Ewﬁg
= {v'r ljez} = { [ ‘ EZ}
in which case #ws; = p™ %@ with § € {1,..

. Then
- 5. {hjlp Y ‘]: 1’_._ 7pm—ord,[,(y)}

.,p™} chosen so that § =y (mod p™)
Finally, if we consider a typical character x = X3 ,, - X] g4’ = X530 Xf::;b and the
orbit @ = wy, as above, then Lemma 35(ii) implies

m

pm—1
*

oy = P JZ::O eXP( 2my/~1 (( ms;b) (z + jpy) + (;) y))

= p™ ™. exp < 21y — (

e ) 5 e (v ()

=0

m 'f m/ b
- pmxm-exp( %F( stm’ Zy>) X {p ifpm | by

" 0 if p™ fby.
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However the exponential term exp (—271'\/ — ( f_ﬁn, + ﬂ)) is then just equal to x ! (E)

Because x = x5, % sm can be written as x77, - X537, with e; = P57 b and ey = a,
one calculates via Proposmon 5 that m, = max{O mX} where

m, PLS s ord, (p"_s_m/b) = m' — ord,(b).

Consequently, if x = x5 ,, x4 stm then el o =

X*l(ﬁ) . pmax{O,mlfordp(b)} if pm' | by
0 if p™ f by.

Corollary 36. The congruences described in Equation (20) are equivalent to

Il H T N (25 s 72)) )
= b=1, X (yXP) ./\/.07mx (Y1)
p}(bzfm >0

— b
X7X317L'X1,s+777,’

=1 mod ps+m+"+°rd”@) /" [[Fpmﬂ )

7(men)

for all integer pairs m,n > 0 with m < n — s, and at every choice of h = h1 h2 € Heo
withz € {1,...,p"} and g € {1,...,p™}.

This completes the proof of Theorem 1, in the precise form stated in the Introduction.
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