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Abstract: We completely describe K1(Zp[[G∞]]) and its localisations by using an infinite
family of p-adic congruences, where G∞ is any solvable p-adic Lie group of dimension 3.
This builds on earlier work of Kato when dim(G∞) = 2, and of the first named author and
Lloyd Peters when G∞ ∼= Z×

p n Zdp with a scalar action of Z×
p . The method exploits the

classification of 3-dimensional p-adic Lie groups due to González-Sánchez and Klopsch, as
well as the fundamental ideas of Kakde, Burns, etc. in non-commutative Iwasawa theory.
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1 Introduction

Over the last twenty years, the study of non-commutative Iwasawa theory for motives has
progressed rapidly, due to the work of many mathematicians [2, 3, 6, 17, 18, 19, 20, 23].
Fix an odd prime p, and an infinite algebraic extension F∞/F of some number field F .
We assume that G∞ = Gal(F∞/F ) is a p-adic Lie group with no element of order p; we
further suppose that F∞ contains the cyclotomic Zp-extension F cyc of the base field F .
Clearly if H∞ = Gal

(
F∞/F

cyc
)
, then the quotient Γ = G∞/H∞ will be isomorphic to an

open subgroup of 1 + pZp, under the p-th cyclotomic character ‘κF ’.

For a motive M with good ordinary reduction at p, the work of Coates et al [6]
associates (under the MH(G)-conjecture) a characteristic element ξM ∈ K1

(
Zp[[G∞]]S∗

)
,

where K1(−) denotes the first algebraic K-group, and S∗ is the p-saturation of the Ore
set

S :=
{
f ∈ Zp[[G∞]]

∣∣∣ Zp[[G∞]]
/
Zp[[G∞]]f is a finitely-generated Zp[[H∞]]-module

}
.

The “Non-commutative Iwasawa Main Conjecture” predicts that there exists an element
Lan
M ∈ K1

(
Zp[[G∞]]S∗

)
of the exact form Lan

M = u · ξM with u in the image of K1

(
Zp[[G∞]]

)
;

for any Artin representation ρ : G∞ → GL(V ), its evaluation at ρ⊗κkF should then satisfy

Lan
M

(
ρκkF

)
= the value of the p-adic L-function Lp(M,ρ, s) at s = k,

as the variable k ranges over the p-adic integers. Note that the existence of Lp(M,ρ, s) is
in most cases still conjectural, although its interpolation properties are easy to describe.

Remark: The strategy of Burns and Kato [2, 20] reduces this conjecture to the following:
(1) prove the abelian Iwasawa Main Conjectures for M over all finite layers; (2) describe
K1

(
Zp[[G∞]]S∗

)
via a system of non-commutative congruences; and (3) show that each of

the abelian fragments, Lp(M,ρ,−), in combination satisfy this system of congruences.

There seem to be two approaches to (2), either using congruences modulo trace ideals
[1, 17, 20, 21, 23], or instead by deriving p-adic congruences [10, 11, 12, 16, 18, 19].
Naturally both approaches should be equivalent to one another.

To illustrate precisely what is meant by the terminology ‘p-adic congruences’ above,
for the moment suppose that G∞ is a two-dimensional p-adic Lie group of the form

G∞ ∼= Z×
p n Zp ∼=

(
F×
p × Γ

)
n Zp

where Γ = 1+pZp, and the first factor Z×
p acts on the second Zp via scalar multiplication.

Let φ : Zp[[Γ]]→ Zp[[Γ]], φ : γ 7→ γp denote the linear extension of the p-power map on Γ.

At integers m ≥ m′ ≥ 0, we also write Nm′,m : Zp[[Γp
m′

]]→ Zp[[Γp
m

]] for the norm map.

Kato’s Theorem. ([19, 8.12]) A sequence
(
ym
)
∈
∏
m≥0 Zp

[[
Γp

m]]×
(p)

arises from an

element in K1

(
Zp[[G∞]]S

)
only if the system of p-adic congruences

m∏
m′=1

Nm′,m

(
ym′

φ
(
ym′−1

) · φ(N0,m′−1

(
y0

))
N0,m′

(
y0

) )pm′

≡ 1 mod p2m · Zp
[[
Γp

m]]
(p)

hold at every integer m ≥ 1.
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Kato has obtained similar congruences when G∞ is replaced by any of the groups Γp
snZp.

His work completely describes the two-dimensional situation, since any non-commutative
torsion-free pro-p-group G with dim(G) = 2 is isomorphic to Γp

s n Zp for some s ≥ 0.

Question. Can the analogue of Kato’s p-adic congruences be proven when dim(G) > 2?

Our goal here is to give a positive answer when dim(G) = 3 and G ̸= SL2(Zp), SL1(Dp).
We exclude the two insolvable cases as the representation theory is unpleasant, although
recent work of Kakde [18] provides hope that an answer for GL2(Zp) is not too far away.

1.1 Preliminaries

Fix a number field F and a prime number p ̸= 2. We shall assume that F∞ denotes a
p-adic Lie extension of F satisfying:

(i) Gal(F∞/F ) is a pro-p-group without any p-torsion;

(ii) F∞ contains the cyclotomic Zp-extension F cyc of F .

The examples we have in mind here are solvable three-dimensional Galois groups arising
from algebraic geometry, or alternatively the direct product of a two-dimensional Galois
group with a group of diamond operators (in the context of Hida’s deformation theory).
We therefore suppose that either

(iiia) G∞ = Gal(F∞/F ) where dim
(
Gal(F∞/F )

)
= 3 and G∞ ̸∼= SL2(Zp), SL1(Dp);

or (iiib) G∞ = Gal(F∞/F )×W∞ where dim
(
Gal(F∞/F )

)
= 2 and W∞ ∼= Zp.

In both (iiia) and (iiib), the p-adic Lie group G∞ is three-dimensional and also solvable;
in fact G∞ is a semi-direct product of Zp with an abelian subgroup H∞ of Zp-rank two.
The following result classifies such groups.

Classification Theorem. (González-Sánchez and Klopsch [15]) If the pro-p-group G∞
is solvable and torsion-free with dim(G∞) = 3, then G∞ must be isomorphic to one of the
following possibilities:

(I) the abelian group Zp × Zp × Zp;

(II) an open subgroup of the p-adic Heisenberg group, i.e. a group given by the presentation⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = 1, [h2, γ] = hp

s

1

⟩
for some s ∈ N0;

(III) the group
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s

1 , [h2, γ] = hp
s

2

⟩
for some s ∈ N;

(IV)
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s

1 h
ps+rd
2 , [h2, γ] = hp

s+r

1 hp
s

2

⟩
for some s, r ∈ N with

d ∈ Zp;

(V)
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

sd
2 , [h2, γ] = hp

s

1 h
ps+r

2

⟩
where s, r ∈ N0 and d ∈ Zp,

such that either s ≥ 1, or instead r ≥ 1 and d ∈ pZp;

(VI) either one of the groups: (a)
⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s+r

2 , [h2, γ] = hp
s

1

⟩
or (b)

⟨
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s+rt
2 , [h2, γ] = hp

s

1

⟩
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where s, r ∈ N0 such that s+ r ≥ 1, and t ∈ Z×
p is not a square modulo p.

Let Γ =
{
γz
∣∣ z ∈ Zp

}
where γ is as in the previous theorem (if G∞ = Gal(F∞/F )

satisfies condition (iiia) above, we shall identify its quotient Gal(F cyc/F ) ∼= Zp with Γ).
One defines a decreasing sequence of normal subgroups for G∞ by

Um := Γp
m

nH∞ at each m ≥ 0.

Recall from [24, Prop 25], every irreducible G∞-representation with finite image is of the

form ψ ⊗ IndG∞
Um

(χ) for some m ≥ 0, with characters χ : Uab
m → µp∞ and ψ : Γp

m → Q×
p .

If G is a pro-p-group, then we write Λ(G) = lim←−P Zp[G/P ] for its Iwasawa algebra
where the inverse limit runs over open subgroups P ▹ G. If O contains Zp as a subring
then ΛO(G) := Λ(G)⊗Zp O. Lastly for a canonical Ore set S, we use Λ(G)S and Λ(G)S∗

for the localisation of Λ(G) at S, and at its p-saturation S∗ =
∪
n≥0 p

nS, respectively.

Remark: Let us write NUm : Λ(G∞)→ Λ(Um) for the norm mapping on Iwasawa algebras.
If
[
Um,Um

]
denotes the commutator subgroup of Um, there is a commutative diagram

K1

(
Λ(G∞)

) ∏
NUm (−) mod [Um,Um]−→

∏
m≥0

K1

(
Λ(Uab

m )
) ∏

χ∗−→
∏
m≥0

∏
ρχ

ΛOχ

(
Γp

m)×
y y ↪→

K1

(
Λ(G∞)S

) ∏
NUm (−) mod [Um,Um]−→

∏
m≥0

K1

(
Λ(Uab

m )S
) ∏

χ∗−→
∏
m≥0

∏
ρχ

ΛOχ

(
Γp

m)×
(p)y y ↪→

K1

(
Λ(G∞)S∗

) ∏
NUm (−) mod [Um,Um]−→

∏
m≥0

K1

(
Λ(Uab

m )S∗
) ∏

χ∗−→
∏
m≥0

∏
ρχ

Quot
(
ΛOχ(Γ

pm)
)×

where the vertical arrows are induced from the inclusions Λ(G∞) ↪→ Λ(G∞)S ↪→ Λ(G∞)S∗ ,
and the right-most products range over irreducible non-isomorphic G∞-representations.
One can then define three separate theta-maps Θ∞,χ, Θ∞,χ,S and Θ∞,χ,S∗ by composing

(respectively) the first, second and third rows in the above diagram, so that

Θ∞,χ : K1

(
Λ(G∞)

)
−→

∏
ρχ

ΛOχ

(
Γp

mχ )×
,

Θ∞,χ,S : K1

(
Λ(G∞)S

)
−→

∏
ρχ

ΛOχ

(
Γp

mχ )×
(p)

and Θ∞,χ,S∗ : K1

(
Λ(G∞)S∗

)
−→

∏
ρχ

Quot
(
ΛOχ(Γ

pmχ
)
)×
.

The Main Goal. To describe the images of Θ∞,χ, Θ∞,χ,S and Θ∞,χ,S∗ by using a family

of p-adic congruences linking together the abelian fragments yρχ ∈ Quot
(
ΛOχ(Γ

pmχ
)
)×
.

Note that Case (I) is devoid of any content since G∞ ∼= Γ×H∞ is abelian, in which case

K1

(
Λ(G∞)

)
= K1

(
Λ(Γ×H∞)

) ∼= Λ(Γ×H∞)×

by Morita invariance. Hence one may ignore Case (I) completely, since there are
no non-abelian congruences to consider here.
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1.2 The main results

In order to describe the congruences in each of the non-empty Cases (II-VI), we first need
some means to keep track of those Artin representations induced from characters on H∞.
If χ is a finite order character on H∞ then χ extends naturally to StabΓ(χ)nH∞, hence

ρχ := IndG∞
StabΓ(χ)nH∞

(χ)

is an irreducible G∞-representation of dimension pmχ , where mχ = ordp
([
Γ : StabΓ(χ)

])
.

In all cases ⋆ ∈ {II,III,IV,V,VI}, one constructs characters χ1,n, χ2,n : H∞ → µp∞ via

χ1,n

(
hx1h

y
2

)
= exp

(
2π
√
−1 x/pn

)
and χ2,n

(
hx1h

y
2

)
= exp

(
2π
√
−1 y/pn

)
for each x, y ∈ Zp. In particular, χ1,n and χ2,n together generate a basis for Hom(H∞, µpn).

Case (II). For simplicity, let us initially assume we are in Case (II). Then for each
character χ = χa2,n ·χb1,s+m′ and group element h = hx1h

y
2 ∈ H∞, one defines e∗χ,h ∈ Z[µpn ]

by the formula

e∗χ,h :=

{
χ−1(h) · pmax{0,m′−ordp(b)} if pm

′ | by
0 if pm

′ - by.

Theorem 1. If we are in Case (II), then a sequence
(
yρχ
)
∈
∏
ρχ

ΛOχ

(
Γp

mχ )×
(p)

belongs

to the image of Θ∞,χ,S only if

m∏
m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p - b if m′ > 0

Nmχ,m

(
yρχ

φ
(
yρχp

) · φ(N0,mχ−1

(
y1

))
N0,mχ

(
y1

) )e∗
χ,h
∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

≡ 1 mod ps+m+n+ordp(y) · Zp
[[
Γp

m]]
(p)

(1)

for all integer pairs m,n ≥ 0 with m ≤ n− s, and at every choice of h = hx1h
y
2 ∈ H∞ with

x ∈ {1, . . . , pn} and y ∈ {1, . . . , pm}.

We should point out that, a priori, it is not clear whether the p-adic power Nmχ,m (. . . )
e∗
χ,h

above should even exist, as the exponent e∗χ,h ∈ Z[µpn ] is frequently not a rational integer!

Remarks: (i) For any function f(X) ∈ 1+ p · OCp [[X]], and provided that s ∈ Cp is chosen

to lie inside the disk
∣∣s∣∣

p
< p(p−2)/(p−1), the p-adic power series defined as

f(X)s := expp
(
s logp

(
f(X)

))
converges to an element of 1 + p · OCp [[X]]. In particular, if s ∈ Z then f(X)s coincides
with the standard definition of the s-th power.

(ii) Furthermore, this construction extends after localisation at the multiplicatively closed
set OCp [[X]]− p · OCp [[X]], i.e. if f(X) ∈ 1+ p · OCp [[X]](p) then f(X)s ∈ 1+ p · OCp [[X]](p).

(iii) Although not explicitly stated, it is nevertheless inbuilt into Theorem 1 that each of

the fractions
yρχ

φ(yρχp ) ·
φ(N0,mχ−1(y1))

N0,mχ (y1)
belongs to the multiplicative group 1+p ·Oχ[[Γp

m

]](p).

In lieu of this discussion, one deduces that each term Nmχ,m (. . . )
e∗
χ,h in the above theorem

exists as a well-defined element of the multiplicative group 1 + p · OCp [[Γ
pm ]](p).
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Cases (III)-(VI). Let us now instead suppose we are in Case (⋆) with ⋆ ∈ {III,IV,V,VI}.
We define a non-negative integer ϵ⋆,p by the rule

ϵ⋆,p =


0 if ⋆ = (III) or (IV)

ordp(d) if ⋆ = (V)

r + ordp(t) if ⋆ = (VI).

It will be shown (in Proposition 7) that the abelianization of Um yields the tricyclic group

Uab
m :=

Um[
Um,Um

] ∼= Γp
m

× Cps+m+ϵ⋆,p × Cps+m

where Cd denotes the cyclic group of order d.

Note that the commutator [Um , Um] is actually a subgroup of H∞, while Γ acts on
Uab
m through the finite quotient Γ/Γp

m

; we can then partition

H(m)

∞ :=
H∞[

Um , Um
] ∼= Cps+m+ϵ⋆,p × Cps+m

into a finite disjoint union of its Γ-orbits. Similarly, the dual group Hom
(
H(m)

∞ ,C×) also
has an action of Γ/Γp

m

; let ‘Rm’ denote a set of representatives for its Γ-orbits.

For each orbit ϖh =
{
γ−jhγj

∣∣ j ∈ Z/pmZ
}
, h ∈ H(m)

∞ and character χ : H(m)

∞ → C×,

we generalise the definition of e∗χ,h by computing the trace of h over the orbits of χ:

e∗χ,ϖh
= Tr(Indχ∗)

(
ϖh

)
:=

∑
χ′∈{χg | g∈Γ}

(χ′)−1(h).

In fact, it is easy to check that e∗χ,ϖh
depends only on the image of χ within the set

Rm and on the orbit ϖh generated by h, but not on the individual choices of χ and h.
Although these quantities might seem abstract, they are all computable (see Lemma 35).

Theorem 2. If we are in Cases (III)–(VI), then a sequence
(
yρχ
)
∈
∏
ρχ

ΛOχ

(
Γp

mχ )×
(p)

belongs to the image of Θ∞,χ,S only if

∏
χ∈Rm

Nmχ,m

(
yρχ

φ
(
yρχp

) · φ(N0,mχ−1

(
y1

))
N0,mχ

(
y1

) )e∗
χ,ϖ

≡ 1 mod p2s+3m+ϵ⋆,p−ordp(#ϖ) · Zp
[[
Γp

m]]
(p)

(2)

for every m ≥ 0, and over all Γ-orbits ϖ inside the group H(m)

∞
∼= Cps+m+ϵ⋆,p × Cps+m .

Note in both of these theorems, if one additionally knows that
(
yρχ
)
∈
∏
ρχ

ΛOχ

(
Γp

mχ )×
,

the modified statement should read: ‘
(
yρχ
)
∈ Im

(
Θ∞,χ

)
if and only if the same congru-

ences in (1), (2) hold after replacing p•·Zp[[Γp
m

]](p) with its unlocalised version p•·Zp[[Γp
m

]]’.

We also remark that Burns and Venjakob [3, Prop 3.4] have constructed a splitting

K1

(
Λ(G∞)S∗

) ∼= K1

(
Λ(G∞)S

)
⊕K0

(
Fp[[G∞]]

)
so one can reduce the existence of elements in K1

(
Λ(G∞)S∗

)
to those in K1

(
Λ(G∞)S

)
,

combined with a precise growth formula for the µ-invariant of the individual yρχ’s.
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1.3 Some arithmetic examples

Before explaining the strategy to prove our two main theorems, we first discuss some
applications to non-commutative Iwasawa theory that arise from these K1-congruences.

Totally real extensions. Let us initially suppose that F is a totally real field, and further:

• F∞ =
∪
n≥1 Fn is a union of totally real fields;

• only finitely many primes of F ramify inside F∞/F ;

• F∞ contains the cyclotomic Zp-extension F cyc of F ;

• the cyclotomic µ-invariant of F
(
e2πi/p

)
vanishes.

We denote by Σ the primes ramifying inside F∞/F . One also defines F (m) to be the unique
extension of degree pm contained in F cyc, so that Γ = Gal

(
F cyc/F

) ∼= lim←−mGal
(
F (m)/F

)
.

Let G∞ = Gal
(
F∞/F

)
, and write κF : Γ → Z×

p for the p-th cyclotomic character.
By seminal work of Burns, Kakde and Ritter-Weiss [2, 17, 23], there exists an element
ζF∞/F ∈ K1

(
Λ(G∞)S∗

)
such that, at any Artin representation ρ : G∞ → GL(V ), one has

ζF∞/F

(
ρκkF

)
= LΣ(ρ, 1− k)

for each k ∈ N satisfying k ≡ 0 (mod [F (µp) : F ]). By deforming the k-variable p-adically,
the above values interpolate to the Iwasawa function Lp,Σ(ρ,−) : Zp → Qp constructed by
Cassou-Noguès and Deligne-Ribet [4, 14].

Corollary 3. Let F∞/F be an infinite solvable Lie extension as above, with dim(G∞) = 3.
If the representation ρχ = IndG∞

StabΓ(χ)nH∞
(χ) has dimension equal to pmχ say, then write

LD-R
p,Σ

(
ρχ
)
∈ Quot

(
ΛOχ(Γ

pmχ
)
)×

for the unique element satisfying

κkF ◦ LD-R
p,Σ

(
ρχ
)

= Lp,Σ
(
ρχ, 1− k

)
for all k ∈ Zp.

(a) If we are in Case (II), then the system of congruences (1) holds for yρχ = LD-R
p,Σ

(
ρχ
)
.

(b) In Case (⋆) with ⋆ ∈ {III,IV,V,VI}, the congruences (2) hold for yρχ = LD-R
p,Σ

(
ρχ
)
.

Proof. Note that the infinite sequence
(
LD-R
p,Σ

(
ρχ
))
∈
∏
ρχ

Quot
(
ΛOχ(Γ

pmχ
)
)×

coincides

with Θ∞,χ,S∗
(
ζF∞/F

)
, as they both interpolate the same L-values. Therefore the necessity

of the congruences (1) and (2) follows directly from Theorems 1 and 2, respectively.

Let us now digress momentarily, and assume we are given a congruence of the form

F (X)

G(X)
≡ 1 mod pv · Zp[[X]](p) with F,G ∈ OCp [[X]] and v ≥ 1.

Then F (X)
G(X) = 1+ pv · R(X)

T (X) for some R, T ∈ Zp[[X]] where the µ-invariant of T equals zero.

It follows that F · T = G · (T + pv ·R), and one works out that

µ(F ) = µ(F · T ) = µ(G) + µ(T + pv ·R) = µ(G) + 0,

i.e. µ(F ) = µ(G). Also F = G+ pv·RG
T ∈ OCp [[X]] so that T

∣∣RG, whence F ≡ G (mod pv).
Certainly if µ(F ) = µ(G) = 0, then the leading terms of F and G are congruent mod pv.
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However even if µ(F ) = µ(G) > 0, their leading terms must still be congruent modulo pv,
as one can repeat the above argument with F̃ = p−µ(F ) · F and G̃ = p−µ(F ) ·G instead.

Conclusion: If F (X)
G(X) ≡ 1 mod pv · Zp[[X]](p), the leading terms of F,G agree modulo pv.

We are going to apply this to the congruences (1) and (2) at the trivial orbit ϖ = {id}:
specifically, F will denote the numerator of (1) and (2) while G will be the denominator,

so that F (X)
G(X) ≡ 1 mod pv · Zp[[X]](p) with X = γp

m − 1, and v = s + 2m + n when ⋆ =II

whilst v = 2s+ 3m+ ϵ⋆,p when ⋆ ̸=II.

To individually describe the leading terms, if r(ρ, x0) = orderx=x0

(
Lp,Σ(ρ, x)

)
then

L
(p)
Σ (ρ, 1− k) :=

{
LΣ(ρ, 1− k) if r(ρ, 1− k) = 0

limx→1−k
(
x−r(ρ,1−k) · Lp,Σ(ρ, x)

)
if r(ρ, 1− k) > 0

yields the p-adic residue of Lp,Σ(ρ, x) at the non-positive critical value x = 1− k.

Notations: (i) At integers m ≥ m′ ≥ 0, let us define rm′,m = IndF
(m′)

F (m) (1) to be the regular

representation for Gal
(
F (m)/F (m′)

)
.

(ii) Furthermore, we shall write r
(m′)
0,m as an abbreviation for IndFF (m′−1)

(
ψp ◦ rm′,m

∣∣∣
F (m′)

)
,

where ψp is the p-th Adams operator (strictly speaking ψp only acts on the trace of a virtual
representation, but the abuse of notation makes sense in the context of ζ-functions).

(iii) Lastly set ρ
(m)
χ := IndFF (m)

(
χ
∣∣
F (m)

)
and ρ

(m)
χp := IndF

F (mχ−1)

(
ψp ◦ IndF

(mχ)

F (m)

(
χ
∣∣
F (m)

))
.

Theorem 4. Let F∞/F be as above, with dim(G∞) = 3 and also ζF∞/F ∈ K1

(
Λ(G∞)S

)
.

(a) If we are in Case (II), then for every m,n, k ∈ N:

m∏
m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p - b if m′ > 0

(
L
(p)
Σ

(
ρ(m)
χ , 1− k

)
· L(p)

Σ

(
r
(mχ)
0,m , 1− k

))pmχ

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

≡
m∏

m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p - b if m′ > 0

(
L
(p)
Σ

(
ρ
(m)
χp , 1− k

)
· L(p)

Σ

(
r0,m, 1− k

))pmχ

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

modulo ps+2m+n.

(b) In Case (⋆) with ⋆ ∈ {III,IV,V,VI}, for every m, k ∈ N:∏
χ∈Rm

(
L
(p)
Σ

(
ρ(m)
χ , 1− k

)
· L(p)

Σ

(
r
(mχ)
0,m , 1− k

))pmχ

≡
∏

χ∈Rm

(
L
(p)
Σ

(
ρ
(m)
χp , 1− k

)
· L(p)

Σ

(
r0,m, 1− k

))pmχ

mod p2s+3m+ϵ⋆,p .

Because p-adic zeta-functions of totally real fields do not vanish at odd negative integers,
a nice consequence is that whenever k ≡ 0 (mod [F (µp) : F ]), these congruences actually
involve bona fide complex zeta-values, not simply their p-adic residues.
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Heisenberg extensions. Let us now suppose we are in Case (II) with the parameter s ≥ 0,
in which case G∞ is an open subgroup of the Heisenberg group, i.e.

G∞ ▹ H3(Zp) :=

 1 Zp Zp
0 1 Zp
0 0 1

 where
[
H3(Zp) : G∞

]
= ps.

In an unpublished preprint [20], Kato derives different but equivalent congruences to (1),
as ideal congruences in the group algebras associated to finite sub-quotients of H3(Zp).
Thus Theorem 4(a) gives a concrete description for the most basic of these ideal relations,
as a congruence modulo ps+2m+n connecting the special values of Artin L-functions.

False-Tate extensions. Fix s ≥ 1. We set F = Q(µps) and F∞ = Q
(
µp∞ , q

1/p∞

1 , q
1/p∞

2

)
where q1, q2 > 1 are distinct p-power free integers satisfying gcd(p, q1q2) = gcd(q1, q2) = 1.
Then G∞ = Gal

(
F∞/F

)
is a three-dimensional pro-p-group, corresponding to Case (III)

in the Classification Theorem (note that F∞ is not a union of totally real fields so there is
no element ζF∞/F ∈ K1

(
Λ(G∞)S∗

)
available, and therefore no Iwasawa Main Conjecture

can be formulated for Tate motives here).

Now if s = 1, the congruences (2) specialise down to yield the congruences labelled
(1.1)m,h and (1.2)m in [10, p3]. If E/Q denotes a semistable elliptic curve with good

ordinary reduction at p, then p-adic L-functions Lp(E, ρχ) ∈ Λ
(
Γp

mχ )[
1/p
]
interpolating

the algebraic part of L{pq1q2}(E, ρχ, 1) have been constructed in Theorem 1.5 of op. cit.
Furthermore, there are three ‘first layer congruences’ to check for each tuple (E, p, q1, q2).
These were verified numerically for the elliptic curves 11a3, 77c1, 19a3 and 56a1 using
MAGMA at the primes p = 3, 5 and at small values of q1 and q2, in §6 of op. cit.

On the algebraic side, let us further assume that q1 and q2 are both chosen to be
primes of non-split multiplicative reduction for E, such that

(−1)(p−1)/2 ×
∏

l|cond(E), l ̸=q1,q2

(
l

p

)
= −1

where
(

−
p

)
denotes the Legendre symbol at p. Then if the cyclotomic λ-invariant of

Selp∞
(
E/Q(µp∞)

)
equals one and if Selp∞(E/F∞)∧ belongs to the category MH∞(G∞),

it is shown in [9, Corollary 2.6] that

rankZ
(
E(Fn)

)
= p2n−1 or p2n,

provided the p-Sylow subgroup of III(E/Fn) is finite at each layer Fn= Q
(
µpn , q

1/pn

1 , q
1/pn

2

)
.

Alternatively, by studying the λ-invariants of each χ-part Selp∞(E/Fn(µp∞))∧ ⊗Zp,χ Oχ
using the congruences in Theorem 2, one can produce the same estimate for the rank
(current work of the first named author [13]).

Heegner-type extensions. Consider an imaginary quadratic field k = Q
(√
−D

)
and let us

suppose k∞ denotes its Z2
p-extension, so that Gal(k∞/k) ∼= Γ ×H1,∞ where H1,∞ is the

Galois group of the anticyclotomic Zp-extension of k. For any choice of odd prime q ̸= p
with q - D, one may set F = Q

(√
−D,µp

)
and F∞ = k∞

(
µp, q

1/p∞
)
, in which case

G∞ := Gal(F∞/F ) ∼= Γn
(
H1,∞ ×H2,∞

) ∼= (
Γ×H1,∞

)
nH2,∞.

Here h1 acts trivially on H2,∞ = ⟨h2⟩ = Gal
(
F∞/k∞(µp)

)
, while γ acts on h2 through

multiplication by 1 + p (we must therefore be in Case (V) with s = d = 0 and r = 1).
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Let E/Q be a semistable elliptic curve with ordinary reduction at p, split multiplicative
reduction at q, and with non-split multiplicative reduction at all other primes dividing the

conductor of E. We also suppose that q generates
(
Z/p2Z

)×
so that q is inert in Q(µp∞),

and that the various Heegner conditions (DT1)–(DT7) described in [9, Sect 2.4] hold.
Then it is shown in Proposition 2.14 of op. cit. that for n≫ 0,

p2n ·
(
1− 2p2 + 2p+ 1

(p+ 1)3

)
≤ rankZ

(
E(Fn)

)
≤ p2n + 4

with no hypotheses whatsoever on the finiteness of III(E/Fn)[p
∞].

The upper bound essentially comes from a growth formula for the λ-invariant of
Selp∞(E/Fn(µp∞))∧ as n becomes large. In fact if one exploits the congruences (2),
this yields another way to obtain the upper bound on rankZ

(
E(Fn)

)
, and establishes finer

bounds on the χ-part of E(Fn). However the lower bound relies heavily on the properties
of Heegner points, following the same approach as Darmon and Tian [8] in dimension 2.

pn-division fields of CM curves. Let E/Q be an elliptic curve with complex multiplication

by k = Q
(√
−D

)
, and select a good ordinary prime p ̸= 2 for E which splits inside

Z
(√
−D

)
. If one takes F = Q

(√
−D,µp

)
, Fn = Q

(
E[pn], q1/p

n)
and F∞ =

∪
n≥1 Fn

for an auxiliary prime q not dividing cond(E), then G∞ := Gal(F∞/F ) corresponds to
Case (V) with s = d = 0 and r = 1 again. By using the congruences (2) to study the
λ-invariants of Selp∞(E/Fn)

∧, one can bound the rank of E(Fn) from above by p2n if the
cyclotomic λ-invariant is one. Whilst Heegner points are no longer useful here, a lower
bound on the Z-rank of E(Fn) of the form cp × p2n (with cp ̸= 0 and cp ∼ 1 if p ≫ 0)
should still be feasible, if one exploits the non-triviality of the Euler system of elliptic units
in place of the Heegner points.

Here is a brief plan of the article. In Section 2 we begin by choosing an appropriate system
of subgroups with which to define our theta-map. The choice we make differs from that
made in [17] – ours is a coarser system than Kakde’s choice, yet better suited to the specific
representation theory of G∞. We then write down bases for each piece of the image of the
theta-map, and also introduce auxiliary homomorphisms Ver and π which allow us to pass
between adjacent subgroups in this directed system.

The additive component of the proof is contained in Section 3, where we describe the
image of the additive theta-map through its special values at Artin representations ρχ.
We next formulate four conditions (C1)–(C4), which are just strong enough to determine
whether or not an element lies in the image of this homomorphism.

In Section 4, we pass from the additive to the multiplicative world by means of the
Taylor-Oliver logarithm; for those familiar with the details of [7, p79-123], under this
logarithm the conditions ‘(M1)–(M4)’ transform into our additive conditions (C1)–(C4).
Because our subgroup system is coarser than in op. cit., the proof of the converse statement
“(C1)–(C4) =⇒ (M1)–(M4)” is far from immediate and occupies much of this article.
Finally in Section 5, we develop an algorithm to compute the quantities Rm, e∗χ,ϖ, #ϖ
in Theorem 2 explicitly, using Case (II) as a worked example to trial the algorithm.

Acknowledgements: The authors are grateful to both Antonio Lei and Lloyd Peters for
numerous discussions about non-commutative congruences. They were also hugely inspired
by the work of Mahesh Kakde, to which many arguments in this paper owe a great debt.
Lastly they thank Ian Hawthorn for his friendly guidance during some difficult times.
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2 The general set-up in dimension three

We shall begin by reviewing the representation theory behind these semi-direct products.
Let us first observe that the subgroup H∞ = H1,∞ × H2,∞ ∼= Zp × Zp is generated by
h1 = (1, 0)T and h2 = (0, 1)T topologically. The action of each g = γz ∈ Γ on an arbitrary
element (x, y)T = hx1h

y
2 ∈ H∞ can be described through a 2×2-matrix of the form I2+M :

γz
(
(x, y)T

)
= γ−z

(
hx1h

y
2

)
γz =

(
I2 +M

)z ( x
y

)
for all g = γz ∈ Γ

where I2 =

(
1 0
0 1

)
is the identity, and M ∈ Mat2×2

(
Zp
)
is topologically nilpotent.

Applying the Classification Theorem for G∞, the matrix M equals(
0 ps

0 0

)
,

(
ps 0
0 ps

)
,

(
ps ps+r

ps+rd ps

)
,

(
0 ps

psd ps+r

)
and

(
0 ps

ps+rt 0

)
(3)

in Cases (II), (III), (IV), (V) and (VI) respectively (note in Case (VIa) we have set t = 1).

2.1 Determining the stabilizer of a character on H∞
Note that each element g ∈ Γ acts naturally on χ ∈ Hom(H∞, µp∞) by sending χ 7→ g ∗χ,
where g ∗χ(h) := χ(g−1hg) for all h ∈ H∞. The Γ-stabilizer of χ is given by the subgroup

StabΓ(χ) :=
{
g ∈ Γ

∣∣∣ χ(g−1(hx1h
y
2)g
)
= χ

(
hx1h

y
2

)
for all h = hx1h

y
2 ∈ H∞

}
.

Proposition 5. If χ = χe1
1,n × χ

e2
2,n : H∞ � µpn is a surjective character, then[

Γ : StabΓ(χ)
]
= pmχ where mχ := max{0, m̃χ}

and, using the case-by-case description in the Classification Theorem, one has respectively:

(II) m̃χ = n− s− ordp(e1); (III) m̃χ = n− s; (IV) m̃χ = n− s;

(V) m̃χ = n− s−min
{
ordp(e2) + ordp(d), ordp(e1 + pre2)

}
; and

(VI) m̃χ = n− s−min
{
r + ordp(e2), ordp(e1)

}
.

Proof. Firstly, let us denote by ζpn the primitive pn-th root of unity exp(2π
√
−1/pn).

Case (II). Here I2+M =

(
1 ps

0 1

)
, so that γ−p

i

(hx1h
y
2)γ

pi = hx+p
s+iy

1 hy2. Consequently

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)

= χ1,n

(
hx+p

s+iy
1 hy2

)e1× χ2,n

(
hx+p

s+iy
1 hy2

)e2
= ζ

e1x+(e2+e1×ps+i)y
pn

equals χ
(
hx1h

y
2

)
= ζe1x+e2y

pn for all x, y ∈ Z, if and only if e1 × ps+i ≡ 0 (mod pn).

Case (III). Here I2+M =

(
1 + ps 0

0 1 + ps

)
with repeated eigenvalue λIII,± = 1+ ps,

and it follows that

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)

= χ(hx1h
y
2)

(1+ps)p
i

= ζ
(e1x+e2y)×(1+ps)p

i

pn .
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However (1 + ps)p
i ≡ 1 (mod ps+i) but (1 + ps)p

i ̸≡ 1 (mod ps+i+1), in which case

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)
equals χ(hx1h

y
2) = ζe1x+e2y

pn for all x, y ∈ Z, if and only if

ordp
(
(1 + ps)p

i

− 1
)
= s+ i ≥ n, i.e. if and only if i ≥ n− s.

Case (IV). Here I2 +M =

(
1 + ps ps+r

ps+rd 1 + ps

)
; let λIV,± := 1+ ps± ps+r

√
d be the two

distinct eigenvalues of I2 +M , so that

I2 +M = PIVDIV P
−1
IV with DIV =

(
λIV,+ 0
0 λIV,−

)
and PIV =

(
1 1√
d −

√
d

)
.

Since (I2 +M)p
i

= PIVD
pi

IV P
−1
IV , one readily computes

γ−p
i

(hx1h
y
2)γ

pi = h

(λ
pi

IV,+
+λ

pi

IV,−
2

)
x+
(λ

pi

IV,+
−λ

pi

IV,−
2
√

d

)
y

1 × h
(λ

pi

IV,+
−λ

pi

IV,−
2

)√
d x+

(λ
pi

IV,+
+λ

pi

IV,−
2

)
y

2 .
(4)

To study both
λpi

IV,++λpi

IV,−
2 and

λpi

IV,+−λpi

IV,−
2 , note that

λpIV,± =
(
1 + ps(1± pr

√
d)
)p

= 1 +

(
p
1

)
ps(1± pr

√
d) +

p∑
j=2

(
p
j

)
psj(1± pr

√
d)j

and (1± pr
√
d)j = 1± jpr

√
d+O

(
p2r+δp

)
where δp = ordp(d), hence

λpIV,± = 1 + ps+1 ± ps+r+1
√
d+

p∑
j=2

(
p
j

)
psj ± pr

√
d

p∑
j=2

(
p
j

)
jpsj +O

(
p2s+2r+1+δp

)
= 1 + ps+1 ± ps+r+1

√
d+

(
(1 + ps)p − 1− ps+1

)
±O

(
p2s+r+1+δp/2

)
+O

(
p2s+2r+1+δp

)
.

It follows that
λp
IV,++λp

IV,−
2 will equal 1+ ps+1+

(
(1+ ps)p− 1− ps+1

)
+O

(
p2s+r+1+δp/2

)
,

or less accurately
λp
IV,++λp

IV,−
2 = 1 + ps+1 +O

(
p2s+1

)
; applying an induction argument:

λp
i

IV,+ + λp
i

IV,−

2
= 1 + ps+i +O

(
p2s+i

)
. (5)

On the other hand, the difference term
λp
IV,+−λp

IV,−
2 equals ps+r+1

√
d+ O

(
p2s+r+1+δp/2

)
,

and therefore
λp
IV,+−λp

IV,−

2
√
d

= ps+r+1 +O
(
p2s+r+1

)
; applying induction again:

λp
i

IV,+ − λ
pi

IV,−

2
√
d

= ps+r+i +O
(
p2s+r+i

)
. (6)

Recalling the chosen character χ = χe1
1,n × χ

e2
2,n, from Equation (4) one obtains

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)
= χ1,n

(
γ−p

i

(hx1h
y
2)γ

pi
)e1

× χ2,n

(
γ−p

i

(hx1h
y
2)γ

pi
)e2

= ζ

e1

(λ
pi

IV,+
+λ

pi

IV,−
2

)
+e2

(λ
pi

IV,+
−λ

pi

IV,−
2

)√
d

x+
e1

(λ
pi

IV,+
−λ

pi

IV,−
2
√

d

)
+e2

(λ
pi

IV,+
+λ

pi

IV,−
2

)y
pn .
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As a corollary of our estimates in (5) and (6), γp
i

⋆ χ(hx1h
y
2) = χ

(
γ−p

i

(hx1h
y
2)γ

pi
)
equals

χ(hx1h
y
2) = ζe1x+e2y

pn for all x, y ∈ Z, if and only if

e1p
s+i + e2p

s+r+id ≡ 0 ( mod pn) and e1p
s+r+i + e2p

s+i ≡ 0 ( mod pn),

i.e. if and only if i ≥ n− s−min
{
ordp(e1 + prde2) , ordp(p

re1 + e2)
}
= n− s.

Case (V). Here I2 + M =

(
1 ps

psd 1 + ps+r

)
; let λV,± := 1 + ps+r

2 ± ps
√
∆V with

∆V = d+ p2r/4 denote the eigenvalues of I2 +M . Indeed for all i ≥ 0, one may write

(I2 +M)p
i

= PV

(
λp

i

V,+ 0

0 λp
i

V,−

)
P−1
V

where PV =

(
1 1

pr

2 +
√
∆V

pr

2 −
√
∆V

)
, and its inverse P−1

V = 1
2

(
1− pr

2
√
∆V

1√
∆V

1 + pr

2
√
∆V

− 1√
∆V

)
.

Using this decomposition, we next deduce

γ−p
i

(hx1h
y
2)γ

pi = h

(
λ
pi

V,+
+λ

pi

V,−
2 −

λ
pi

V,+
−λ

pi

V,−
2
√

∆V
× pr

2

)
x+

(
λ
pi

V,+
−λ

pi

V,−
2
√

∆V

)
y

1

× h

(
λ
pi

V,+
−λ

pi

V,−
2
√

∆V

)
dx+

(
λ
pi

V,+
+λ

pi

V,−
2 +

λ
pi

V,+
−λ

pi

V,−
2
√

∆V
× pr

2

)
y

2 . (7)

Now from the binomial theorem,

λpV,± = 1 +
ps+r+1

2
± ps+1

√
∆V +

p∑
j=2

(
p
j

)
psj
(pr
2
±
√
∆V

)j
.

• If ordp(
√
∆V ) ≥ r then

(
pr

2 ±
√
∆V

)j
=
(
pr

2

)j
± j
(
pr

2

)j−1√
∆V +O

(
pr(j−2)+δ′p

)
where

δ′p = ordp(∆V ), hence

p∑
j=2

(
p
j

)
psj
(pr
2
±
√
∆V

)j
=

p∑
j=2

(
p
j

)
psj

((
pr

2

)j
± j

(
pr

2

)j−1√
∆V

)
+O

(
p2s+1+δ′p

)
=

(
1 +

pr+s

2

)p
−
(
1 +

pr+s+1

2

)
± ps+1

√
∆V ×

((
1 +

pr+s

2

)p−1

− 1

)
+ O

(
p2s+1+δ′p

)
.

It follows that
λp
V,++λp

V,−
2 = 1+ ps+r+1

2 +O
(
p2s+2r+1

)
and

λp
V,+−λp

V,−
2
√
∆V

= ps+1+O
(
p2s+r+1

)
upon using the condition δ′p ≥ 2r, so by induction:

λp
i

V,+ + λp
i

V,−

2
= 1 +

ps+r+i

2
+O

(
p2s+2r+i

)
and

λp
i

V,+ − λ
pi

V,−

2
√
∆V

= ps+i +O
(
p2s+r+i

)
. (8)

• Alternatively, if r ≥ ordp(
√
∆V ) then(pr

2
±
√
∆V

)j
=
(
±
√
∆V

)j
+
jpr

2

(
±
√

∆V

)j−1

+O
(
pδ

′
p(j−2)/2+2r

)
13



and arguing in an identical fashion to before, one deduces that

λp
i

V,+ + λp
i

V,−

2
= 1+

ps+r+i

2
+O

(
p2s+δ

′
p+i
)

and
λp

i

V,+ − λ
pi

V,−

2
√
∆V

= ps+i+O
(
p2s+δ

′
p/2+i

)
. (9)

Again as χ = χe1
1,n × χ

e2
2,n, this time Equation (7) implies

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)
= ζ

e1

(
λ
pi

V,+
+λ

pi

V,−
2 −

λ
pi

V,+
−λ

pi

V,−
2
√

∆V
× pr

2

)
+e2d

(
λ
pi

V,+
−λ

pi

V,−
2
√

∆V

)x
pn

× ζ

e1

(
λ
pi

V,+
−λ

pi

V,−
2
√

∆V

)
+e2

(
λ
pi

V,+
+λ

pi

V,−
2 +

λ
pi

V,+
−λ

pi

V,−
2
√

∆V
× pr

2

)y
pn .

Exploiting our eigenvalue estimates in Equations (8) and (9) appropriately, it follows that

χ
(
γ−p

i

(hx1h
y
2)γ

pi
)
equals χ(hx1h

y
2) = ζe1x+e2y

pn for all x, y ∈ Z, if and only if

e2d× ps+i ≡ 0 ( mod pn) and e1 × ps+i + e2 × ps+i+r ≡ 0 ( mod pn);

the latter holds precisely when s+ i ≥ n− ordp(e2d) and s+ i ≥ n− ordp(e1 + e2p
r).

Case (VI). Here I2 +M =

(
1 ps

ps+rt 1

)
; let λVI,± := 1 ± ps

√
prt be its eigenvalues

(note that t = 1 in (a) of the Classification Theorem, and t ∈ Z×
p is not a square in (b)).

Then

(I2+M)p
i

= PVID
pi

VIP
−1
VI with DVI =

(
λVI,+ 0
0 λVI,−

)
and PVI =

(
1 1√
prt −

√
prt

)
.

A straightforward calculation shows

γ−p
i

(hx1h
y
2)γ

pi = h

(
λ
pi

VI,+
+λ

pi

VI,−
2

)
x+

(
λ
pi

VI,+
−λ

pi

VI,−
2
√

prt

)
y

1 × h
√
prt

(
λ
pi

VI,+
−λ

pi

VI,−
2

)
x+

(
λ
pi

VI,+
+λ

pi

VI,−
2

)
y

2 (10)

and clearly λpV,± = 1± ps+1
√
prt+ p2s+1

(
p−1
2

)
prt+ . . . = 1± ps+1

√
prt+O

(
p2s+r+1

)
.

Using a now familiar mathematical induction,

λp
i

VI,+ + λp
i

VI,−

2
= 1 +O

(
p2s+r+i

)
and

λp
i

VI,+ − λ
pi

VI,−

2
√
prt

= ps+i +O
(
p2s+r/2+i

)
. (11)

If the character χ = χe1
1,n × χ

e2
2,n, by Equation (10) the value χ

(
γ−p

i

(hx1h
y
2)γ

pi
)
equals

ζ

e1

(
λ
pi

VI,+
+λ

pi

VI,−
2

)
+e2

√
prt

(
λ
pi

VI,+
−λ

pi

VI,−
2

)x+e1

(
λ
pi

VI,+
−λ

pi

VI,−
2
√

prt

)
+e2

(
λ
pi

VI,+
+λ

pi

VI,−
2

)y
pn .

Plugging Equation (11) into the above, one can then deduce χ
(
γ−p

i

(hx1h
y
2)γ

pi
)
= χ (hx1h

y
2)

for all x, y ∈ Z, if and only if both

e2 × ps+i ×
(√
prt
)2 ≡ 0 ( mod pn) and e1 × ps+i ≡ 0 ( mod pn),

which is itself equivalent to ensuring that

s+ i ≥ n− ordp(e2p
rt) = n− r − ordp(e2) and s+ i ≥ n− ordp(e1).

14



2.2 A “coarse but clean” system of subgroups

The theory in [7, 16, 17, 23] operates best in the setting of one-dimensional Lie groups.

Throughout we choose an integer n, and work with the p-adic group G∞,n := Γn
(

H∞
Hpn

∞

)
.

In later sections we will allow n to vary, but for the time being n is fixed.

Lemma 6. If Z(G) denotes the centre of a group G, then

Z(G∞,n) =



Γp
n−s × H1,∞×Hpn−s

2,∞

Hpn
∞

in Case (II)

Γp
n−s × Hpn−s

∞
Hpn

∞
in Cases (III) and (IV)

Γp
n−s × Hp

n−s−ordp(d)

1,∞ ×Hpn−s

2,∞

Hpn
∞

in Case (V)

Γp
n−s × Hp

n−s−r−ordp(t)

1,∞ × Hpn−s

2,∞

Hpn
∞

in Case (VI).

In particular, Z(G∞) ∼= lim←−nZ(G∞,n) =

{
H1,∞ in Case (II)

{1} otherwise.

Proof. We first note from the semi-direct product structure on G∞,n that

Z(G∞,n) = StabΓ

(
H∞

Hpn∞

)
×

{
hx1h

y
2

∣∣∣∣ (I2 +M)

(
x
y

)
≡
(
x
y

)
mod pnZ2

p

}
Hpn∞

.

One then computes the right-hand side on a case-by-case basis, using the form of the
matrix M listed in Equation (3) (see [5] for the full details of each calculation).

Bearing in mind Kakde’s subgroups should always contain the centre of G∞,n, we define

Um,n := Γp
m

n
(
H∞

Hpn∞

)
where the integer m ∈ {0, . . . , n− s},

so: (i) Z(G∞,n) ⊂ Um,n, and (ii) Γp
n−s⊂ StabΓ(χ) for any χ : H∞� µpm by Proposition 5.

It follows that such χ extend to Um,n if m ∈ {mχ, . . . , n− s}, and will thus factor through

Uab
m,n =

Um,n
[Um,n,Um,n]

=
Γp

m nH∞/Hp
n

∞⟨[
hx1h

y
2 mod Hpn∞ , γpm

] ∣∣∣ x, y ∈ Z
⟩ .

Therefore, by determining the nature of Uab
m,n in each case, we may calculate the number

of irreducible representations ψ⊗ Ind
G∞,n

Um,n
(χ) with ψ : Γ→ C× of finite order. (Remember

that every irreducible Artin representation ρ on G∞ is of this form for suitable m,n, χ, ψ.)

Proposition 7. For each pair m,n ∈ Z with 0 ≤ m ≤ n− s,

Uab
m,n

∼=



Γp
m × H1,∞

Hps+m

1,∞
× H2,∞

Hpn

2,∞
in Case (II)

Um,s+m in Cases (III) and (IV)

Γp
m × Z

pmin{n,s+m+ordp(d)}Z ×
Z

ps+mZ in Case (V)

Γp
m × Z

pmin{n,s+m+r+ordp(t)}Z ×
Z

ps+mZ in Case (VI);

in fact, the first two lines are actual equalities, not just isomorphisms.
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Proof. We proceed by working through the different cases (II)–(VI) in numerical order.

Case (II). Here one simply exploits the commutator relation
[
hx1h

y
2, γ

pm
]
= (hy1)

ps+m

.

Case (III). Here we use
[
hx1h

y
2, γ

pm
]
= (hx1h

y
2)

(1+ps)p
m

−1 and ordp
(
(1+ps)p

m−1
)
= s+m.

Case (IV). Recall from Equation 4 that

γ−p
m

(hx1h
y
2)γ

pm = h

(λ
pm

IV,+
+λ

pm

IV,−
2

)
x+
(λ

pm

IV,+
−λ

pm

IV,−
2
√

d

)
y

1 × h
(λ

pm

IV,+
−λ

pm

IV,−
2

)√
d x+

(λ
pm

IV,+
+λ

pm

IV,−
2

)
y

2

=
(
hp

s+m+...
1 × hp

s+r+md+...
2

)x
×
(
hp

s+r+m+...
1 × hp

s+m+...
2

)y
× hx1h

y
2

upon using the estimates in (5) and (6); consequently

H∞⟨
[h1, γp

m ], [h2, γp
m ]
⟩ ∼= Zp ⊕ Zp

Zp ·
{
(ps+m + . . . , ps+r+md+ . . . ), (ps+r+m + . . . , ps+m + . . . )

}
which means Uab

m,n =
Um,n⟨

[h1,γpm ],[h2,γpm ]
⟩ ∼= Γp

m× Zp

ps+mZp
× Zp

ps+mZp
.

Case (V). This time Equation (7) combined with the estimates (8) and (9) yields

γ−p
m

(hx1h
y
2)γ

pm = h

(
λ
pm

V,+
+λ

pm

V,−
2 −

λ
pm

V,+
−λ

pm

V,−
2
√

∆V
× pr

2

)
x+

(
λ
pm

V,+
−λ

pm

V,−
2
√

∆V

)
y

1

× h

(
λ
pm

V,+
−λ

pm

V,−
2
√

∆V

)
dx+

(
λ
pm

V,+
+λ

pm

V,−
2 +

λ
pm

V,+
−λ

pm

V,−
2
√

∆V
× pr

2

)
y

2

=

(
h

ps+r+m

2 − ps+r+m

2 +...
1 × hp

s+md+...
2

)x
×
(
hp

s+m+...
1 × h

ps+r+m

2 + ps+r+m

2 +...
2

)y
× hx1h

y
2

so that Uab
m,n =

Um,n⟨
[h1,γpm ],[h2,γpm ]

⟩ ∼= Γp
m× Zp

pnZp∪ ps+mdZp
× Zp

ps+mZp
.

Case (VI). Lastly, Equation (10) in tandem with the estimates in (11) implies

γ−p
m

(hx1h
y
2)γ

pm = h

(
λ
pm

VI,+
+λ

pm

VI,−
2

)
x+

(
λ
pm

VI,+
−λ

pm

VI,−
2
√

prt

)
y

1 × h
√
prt

(
λ
pm

VI,+
−λ

pm

VI,−
2

)
x+

(
λ
pm

VI,+
+λ

pm

VI,−
2

)
y

2

=
(
h0+...1 × hp

s+m+rt+...
2

)x
×
(
hp

s+m+...
1 × h0+...2

)y
× hx1h

y
2 ,

hence Uab
m,n =

Um,n⟨
[h1,γpm ],[h2,γpm ]

⟩ ∼= Γp
m× Zp

pnZp∪ ps+m+rtZp
× Zp

ps+mZp
.

We remark in Cases (II-VI), each Uab
m,n has the form Γp

m×H(m,n)

∞ whereH(m,n)

∞ is obtained

from quotientingH∞/Hp
n

∞ = ⟨h1, h2⟩ with the subgroup generated by
{
[h1, γ

pm ], [h2, γ
pm ]
}
.

Definition 8. Let “ orbΓ
(
H(m,n)

∞
)
” denote the orbits under the action of Γ

/
Γp

m

in H(m,n)

∞ .

In particular, if h ∈ H(m,n)

∞ then ϖh ∈ orbΓ
(
H(m,n)

∞
)
consists of the set

{
γ−ihγi

∣∣ i ∈ Z
}
;

we shall sometimes abuse notation, and write h in place of ϖh.
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2.3 Maps between the abelianizations of Um,n
We now outline the various mappings that appear in the description of Ψ and Φ in [7, 17].
Rather than give their full definitions, we specialise them to the specific three-dimensional
situation we are considering.

The conditions (A1)-(A3) and (M1)-(M4) in the exposition [7, p79-123] degenerate
into some fairly simple rules, which can be expressed in terms of an explicit basis for the

image of Kakde’s map “σ
N(U)
U ”. In subsequent sections we will then study how these

expressions transform, once the completed group algebras Λ
(
Uab
m,n

)
are evaluated at a

system of characters χ on H∞.

The mapping σm: Note that the normaliser of each subgroup U = Um,n ⊂ G∞,n is the

whole of G∞,n, so the Zp-linear map labelled σ
N(U)
U in [7, p85] becomes

σ
G∞,n

Um,n
: Λ
(
Uab
m,n

)
−→ Λ

(
Uab
m,n

)
where f 7→

pm−1∑
i=0

γ−ifγi.

If we use the shorthand σm for this linear mapping, clearly σm(f) ∈ H0
(
Γ,Λ

(
Uab
m,n

))
corresponds to the sum over the orbits of f under the action of the finite group Γ/Γp

m

.

Definition 9. For any h = hx1h
y
2 mod

[
Um,n,Um,n

]
, one defines A(m,n)

h
∈ Zp

[
Uab
m,n

]
by

A(m,n)

h
:=

pm−1∑
i=0

h
xi

1 h
yi
2 where

(
xi
yi

)
≡ (I2 +M)i

(
x
y

)
mod pn.

In fact, we could alternatively have defined A(m,n)

h
to be the summation

∑pm−1
i=0 γ−ihγi

which coincides, of course, with σm(h); we will see that these form a basis for Im(σm).

Proposition 10. (i) Each element A(m,n)

h
depends only on the Γ-orbit of h inside H(m,n)

∞ ;

(ii) The image of σm is freely generated over Zp
[[
Γp

m]]
by the A(m,n)

h
’s, in other words

Im
(
σm
) ∼= Zp

[[
Γp

m]]
⊗Zp Zp

{
A(m,n)

h

∣∣∣ h = hx1h
y
2 mod

[
Um,n,Um,n

]}
;

(iii) If r
(n)
σm := rankZp[[Γpm ]]

(
Im(σm)

)
, then

r(n)σm
=


pn+s−1 × (mp+ p−m) in Case (II)

p2s−1 × (pm+1 + pm − 1) in Cases (III) and (IV)

pmin{n−m,s+ordp(d)}+s−1 × (pm+1 + pm − 1) in Case (V)

pmin{n−m,s+r+ordp(t)}+s−1 × (pm+1 + pm − 1) in Case (VI).

Proof. Statement (i) is self-evident. To establish (ii), first note that Uab
m,n = Γp

m ×H(m,n)

∞

where H(m,n)

∞ is the previous quotient of H∞ equipped with the action of the group Γ
/
Γp

m

;

part (ii) now follows because H(m,n)

∞ is generated by hx1h
y
2 mod

[
Um,n,Um,n

]
for x, y ∈ Z.
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To prove (iii) we just need to count the number of distinct A(m,n)

h
’s, which coincides

with the total number of
(
Γ/Γp

m)
-orbits inside H(m,n)

∞ . In fact by Burnside’s lemma,

#
{
Γ-orbits in H(m,n)

∞
}

= #
(
Γ/Γp

m)−1 ×
pm∑
j=1

#
{
h ∈ H(m,n)

∞

∣∣∣ γ−jhγj = h
}
.

From Proposition 7, in each case ⋆ ∈ {II,III,IV,V,VI} one knows H(m,n)

∞
∼= Z

p
N

(m)
⋆,1 Z
× Z

p
N

(m)
⋆,2 Z

whereN
(m)
⋆,1 , N

(m)
⋆,2 ∈ N satisfym+s ≤ N (m)

⋆,1 ≤ n andm+s ≤ N (m)
⋆,2 ≤ n in all five scenarios.

• Assuming that ⋆ ̸= II, one discovers

#
{
Γ-orbits in H(m,n)

∞
}

= p−m ×
pm∑
j=1

pN
(m)
⋆,1 +ordp(j)−m × pN

(m)
⋆,2 +ordp(j)−m

= p

(
N

(m)
⋆,1 −m

)
+
(
N

(m)
⋆,2 −m

)
−1 ×

(
pm+1 + pm − 1

)
.

• Alternatively, if ⋆ = II then γ acts trivially on the first direct factor in H(m,n)

∞ , whence

#
{
Γ-orbits in H(m,n)

∞
}

= p−m ×
pm∑
j=1

pN
(m)
II,1 × pN

(m)
II,2+ordp(j)−m

= p

(
N

(m)
II,1−m

)
+
(
N

(m)
II,2−m

)
−1 ×

(
(m+ 1)pm+1 −mpm

)
.

The result follows upon plugging in values of N
(m)
⋆,1 and N

(m)
⋆,2 listed in Proposition 7.

Corollary 11. The number of irreducible representations of the form Ind
G∞,n

StabΓ(χ)nH∞/pn(χ)

where χ factors through H(m,n)

∞ but not through H(m−1,n)

∞ is given by r
(n)
σm − r

(n)
σm−1 .

Proof. Note that any two characters χ, χ′ as above induce the same G∞,n-representation,

if and only if χ′ belongs to the Γ-orbit of χ inside Hom
(
H(m,n)

∞ ,C×); since the latter group
is (non-canonically) isomorphic to H(m,n)

∞ , its Γ-orbits are in one-to-one correspondence

with the finite set orbΓ
(
H(m,n)

∞
)
. It follows immediately that

“the no. of Ind(χ)’s primitive on H(m,n)

∞ ” = #orbΓ
(
H(m,n)

∞
)
−#orbΓ

(
H(m−1,n)

∞
)
,

which equals r
(n)
σm−r

(n)
σm−1 because Im(σm) = Zp[[Γp

m

]] ·
{
A(m,n)

h

∣∣ ϖh ∈ orbΓ
(
H(m,n)

∞
)}

.

The transfer map Verm,m′ . Consider the subgroups Um,n ⊂ Um′,n of G∞,n with m > m′.

The transfer homomorphism (Verlagerung) Ver
Um′,n
Um,n

relative to these subgroups maps

Uab
m′,n −→ Uab

m,n by sending

g
[
Um′,n,Um′,n

]
7→

∏
τ∈R

cg,τ
[
Um,n,Um,n

]
where R is a fixed set of left coset representatives for Um′,n

/
Um,n, and gτ = rgcg,τ with

cg,τ ∈ Um,n and rg ∈ R.
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Henceforth one writes Verm′,m : Λ
(
Uab
m′,n

)
→ Λ

(
Uab
m,n

)
for the Zp-linear and continuous

extension of the transfer map to the completed group algebras.

Lemma 12. Suppose g ∈ Uab
m′,n, and let ĝ = (γp

m′

)j · (hx1h
y
2) ∈ Γp

m′

n H∞ be any lift.
Then

Verm′,m(g) ≡ (γp
m

)j · hx
′

1 h
y′

2 mod
[
Um,n,Um,n

]
where (x′, y′) =

(
pm−m′

x, pm−m′
y
)
in Case (II), and in the same notation as the proof

of Proposition 5:

(
x′

y′

)
= P⋆


λpm

⋆,+−1

λpm
′

⋆,+ −1
0

0
λpm

⋆,−−1

λpm
′

⋆,− −1

P−1
⋆

(
x
y

)
in Case (⋆), with ⋆ ∈ {III,IV,V,VI}.

Proof. Since Um′,n

/
Um,n ∼= Γp

m′/
Γp

m

, its coset representatives are
{
r0, r1, . . . , rpm−m′−1

}
where ri = γp

m′
i. One can represent ĝ in the form γp

m′
j · (hx1h

y
2) for some choice of j ∈ Zp,

in which case

ĝ ri = γp
m′
j(hx1h

y
2)γ

pm
′
i = γp

m′
(j+i)

(
γ−p

m′
i(hx1h

y
2)γ

pm
′
i
)

= γp
m′

(j+i) ·
(
h
x
pm

′
i

1 h
y
pm

′
i

2

)
where

(
xpm′ i

ypm′ i

)
=
(
I2 +M

)pm′
i
(
x
y

)
. In fact, if ι : Zp → {0, 1, . . . , pm−m′ − 1} so that

ι(z) ≡ z mod pm−m′
, then γp

m′
(j+i) = rι(j+i) · γp

m′
(j+i−ι(j+i)); consequently

ĝ ri = rι(j+i)

(
γp

m′
(j+i−ι(j+i)) ·

(
h
x
pm

′
i

1 h
y
pm

′
i

2

))
.

By definition, the transfer is congruent to

Verm′,m(g) ≡
pm−m′

−1∏
i=0

γp
m′

(j+i−ι(j+i)) · h
x
pm

′
i

1 h
y
pm

′
i

2 mod
[
Um,n,Um,n

]
and as j + i ≡ ι(j + i) mod pm−m′

clearly γp
m′

(j+i−ι(j+i)) ∈ Γp
m

, hence γp
m′

(j+i−ι(j+i))

and hxi
1 h

yi
2 commute modulo

[
Um,n,Um,n

]
. It follows that

Verm′,m(g) ≡ γp
m′
c · hx

′

1 h
y′

2 mod
[
Um,n,Um,n

]
where c =

∑pm−m′
−1

i=0 j + i− ι(j + i), and the vector

(
x′

y′

)
=

(∑
xpm′ i∑
ypm′ i

)
=

pm−m′
−1∑

i=0

(
I2 +M

)pm′
i
(
x
y

)
.

To calculate the term c, without loss of generality assume j ∈ Z, which implies

c =

pm−m′
−1∑

i=0

j + i− ι(j + i) = pm−m′
×
pm−m′

−1∑
i=0

⌊ j + i

pm−m′

⌋
.
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The right-hand sum then yields

pm−m′
−1∑

i=0

⌊ j + i

pm−m′

⌋
= pm−m′

⌊ j

pm−m′

⌋
+

pm−m′
−1∑

i=0

⌊ ι(j) + i

pm−m′

⌋

= pm−m′
⌊ j

pm−m′

⌋
+

pm−m′
−ι(j)−1∑
i=0

0 +

pm−m′
−1∑

i=pm−m′−ι(j)

1 = pm−m′
⌊ j

pm−m′

⌋
+ ι(j) = j

and as an immediate consequence, c = pm−m′ × j so that γp
m′
c = γp

mj as required.

To compute x′ and y′, in Case (II) we find that

pm−m′
−1∑

i=0

(
I2 +M

)pm′
i
=

pm−m′
−1∑

i=0

(
1 ps × ipm′

0 1

)
=

(
pm−m′

ps+m × pm−m′
−1

2

0 pm−m′

)
.

In all other cases ⋆ ∈ {III,IV,V,VI} one has
(
I2 +M

)pm′
i
= P⋆

(
λp

m′
i

⋆,+ 0

0 λp
m′
i

⋆,−

)
P−1
⋆ ,

which means

pm−m′
−1∑

i=0

(
I2 +M

)pm′
i
(
x
y

)
= P⋆

 ∑pm−m′
−1

i=0 λp
m′
i

⋆,+ 0

0
∑pm−m′

−1
i=0 λp

m′
i

⋆,−

P−1
⋆ .

Note that PIII = I2 because I2 + M is already diagonalised. The result follows upon

summing up the relevant geometric progression, i.e.
∑pm−m′

−1
i=0 λp

m′
i

⋆,± equals
λpm

⋆,±−1

λpm
′

⋆,± −1
.

The shift πm,m′ . For integers m > m′, we now look for a reverse mapping to Verm′,m.

The commutator [hx1h
y
2, γ

pm ] corresponds to
(
(I2 +M)p

m − I2
)( x

y

)
as a vector in Z2

p;

however Xpm−1 = (Xpm
′

−1)×
∏m
d=m′+1 ϕpd(X) where ϕpd denotes the pd-th cyclotomic

polynomial, therefore

[hx1h
y
2, γ

pm ] = [hx
′′

1 hy
′′

2 , γ
pm

′

] with

(
x′′

y′′

)
=

m∏
d=m′+1

ϕpd
(
I2 +M

)( x
y

)
.

As a consequence, we have the containments
[
Um,n,Um,n

]
⊂
[
Um′,n,Um′,n

]
⊂ H∞

/
Hpn∞ .

The natural inclusion Um,n ↪→ Um′,n then yields the composition

πm,m′ : Uab
m,n =

Um,n[
Um,n,Um,n

] ↪→ Um′,n[
Um,n,Um,n

] proj
� Um′,n[

Um′,n,Um′,n

] = Uab
m′,n.

Moreover this shift homomorphism induces a map (πm,m′)∗ : orbΓ
(
H(m,n)

∞
)
→ orbΓ

(
H(m′,n)

∞
)
,

sending each orbit ϖh =
{
γ−ihγi

∣∣ i ∈ Z
}
to the direct image ϖπm,m′ (h).

Recall from Proposition 10(ii) that a typical element of Im(σm) has the form∑
ϖ∈orbΓ(H

(m,n)
∞ )

fϖ(γ
pm − 1) · A(m,n)

ϖ =
∑
ϖ

fϖ · A(m,n)
ϖ say,

where each fϖ(X) ∈ Zp[[X]] and A(m,n)
ϖ :=

∑pm−1
i=0 γ−ihγi for any h ∈ ϖ.
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Lemma 13. If m > m′, then πm,m′

(∑
ϖ fϖ · A

(m,n)
ϖ

)
= pm−m′ ×

∑
ϖ fϖ · A

(m′,n)
(πm,m′ )∗(ϖ).

Proof. If h ∈ ϖ with ϖ ∈ orbΓ
(
H(m,n)

∞
)
, then within the algebra Λ

(
Uab
m′,n

)
one has

πm,m′

(
fϖ ·

pm−1∑
i=0

γ−ihγi

)
= fϖ(γ

pm − 1) · πm,m′

pm−m′
−1∑

i1=0

pm
′
−1∑

i2=0

γ−p
m′
i1−i2hγp

m′
i1+i2


= fϖ(γ

pm − 1) ·
pm−m′

−1∑
i1=0

pm
′
−1∑

i2=0

γ−i2πm,m′(h)γi2

since γ−p
m′

πm,m′(h)γp
m′

= πm,m′(h) inside Uab
m′,n, which gives the result.

The norm and trace homomorphisms. We now introduce two final maps that occur in the
definition of both of Kakde’s groups Ψ and Φ. Firstly, if G is a group and Conj(G) denotes
it set of conjugacy classes, then Λ

(
Conj(G)

) ∼= Λ(G)
/
[Λ(G),Λ(G)] as an isomorphism of

Zp-modules [7, §2]. For an integer pair m,m′ with m ≥ m′:

• the norm mapping K1

(
Λ
(
Uab
m′,n

))
−→ K1

(
Λ
(
Um,n

/[
Um′,n,Um′,n

]))
relative to the

subgroup
Um,n

[Um′,n,Um′,n]
⊂ Um′,n

[Um′,n,Um′,n]
= Uab

m′,n is abbreviated by Nm′,m; and

• similarly, the additive trace map Λ
(
Conj

(
Uab
m′,n

))
−→ Λ

(
Conj

(
Um,n

/[
Um′,n,Um′,n

]))
relative to

Um,n

[Um′,n,Um′,n]
⊂ Um′,n

[Um′,n,Um′,n]
= Uab

m′,n is denoted by Trm′,m.

The following lemma describes the effect of the second of these maps on the image of σm′ .
Let charΓpm : Λ(Γ) → Λ(Γp

m

) denote the Zp-linear and continuous extension of the map
which sends γi 7→ γi if pm divides i, and sends γi 7→ 0 if pm does not divide i.

Lemma 14. For a typical element am′ =
∑
ϖ′ fϖ′(γp

m′

− 1) · A(m′,n)
ϖ′ ∈ Im

(
σm′

)[
1/p
]
,

Trm′,m

(
am′

)
= pm−m′

×
∑
ϖ′

charΓpm

(
fϖ′
(
γp

m′

− 1
))
· A(m′,n)

ϖ′ ∈ Λ

(
Um,n

[Um′,n,Um′,n]

)

where the sum is taken over all ϖ′ ∈ orbΓ
(
H(m′,n)

∞
)
.

Proof. From [7, Rk iii], one knows Trm′,m

(
γp

m′
jh
)
=

{
pm−m′ × γpm

′
jh if γp

m′
j ∈ Γp

m

0 if γp
m′
j ̸∈ Γp

m

,

so that for any h ∈ ϖ′:

Trm′,m

(
γp

m′
j · A(m′,n)

ϖ′

)
=

{
pm−m′ ×

∑pm
′
−1

i=0 γp
m′
j ·
(
γ−ihγi

)
if γp

m′
j ∈ Γp

m

0 otherwise.

The stated formula then follows by linearity and continuity.
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3 The additive calculations

We begin by recalling Kakde’s definition of the subset Ψ ⊂
∏
mQp

[[
Uab
m,n

]]
given in [17].

For a fixed n ≥ s, the Zp-module Ψ consists of sequences
(
am
)
satisfying the conditions:

(A1) Trm′,m

(
am′

)
= πm,m′

(
am
)

for any m > m′;

(A2) am = gamg
−1 at every g ∈ G∞,n;

(A3) am ∈ Im(σm) for each m ∈ {0, . . . , n− s}.

In fact, the general definition of Ψ involves more than just this system of sub-quotients.
However the “coarse but clean” choice of subgroups we made is sufficient for our purposes,
as every irreducible representation of G∞,n is a finite twist of a representation obtained
from inducing down a character χ on Um,n, for an appropriate choice of m and χ.

3.1 The image of Ψ under the characters on H(m,n)
∞

The main task is to see how Ψ transforms if we evaluate its constituent elements at a system
of characters χ = {χ} on H∞/Hp

n

∞ . In particular, we want to translate the conditions
(A1)–(A3) involving the am’s into equivalent conditions involving aχ := χ(amχ) instead,
and thereby complete the middle square in the diagram

K ′
1

(
Zp[[G∞,n]]

) Θ∞,n−→ Ω
“twisted log”−→ Ψ ↪→ Q⊗

 ∏
0≤m≤n−s

Zp
[[
Uab
m,n

]]
Evχ↘

y
χ

y
χ

y
χ

χ
(
Ω
) ??99K χ(Ψ) ↪→ Q⊗

(∏
m,χ

Oχ
[[
StabΓ(χ)

]])
.

The following key result describes χ(Ψ) ⊂
∏
χCp

[[
StabΓ(χ)

]]
using p-adic congruences.

Theorem 15. A collection of elements aχ ∈ OCp

[[
StabΓ(χ)

]]
arises from a sequence

(am) ∈ Ψ ∩
∏

0≤m≤n−s Zp
[[
Uab
m,n

]]
, if and only if for each m ≥ 0 and ϖ ∈ orbΓ

(
H(m,n)

∞
)
:

(C1) the compatibility χ(am) = TrStabΓ(χ)/Γpm (aχ) holds if m ∈ {mχ, . . . , n− s},
(C2) the equality aχ′ = aχ holds at each character χ′ ∈ Γ ∗ χ,

(C3)
∑

χ∈Rm,n

TrStabΓ(χ)/Γpm (aχ) · Tr
(
Indχ∗)(ϖ) ∈ Zp

[[
Γp

m]]
, and

(C4)
∑

χ∈Rm,n

TrStabΓ(χ)/Γpm (aχ) · Tr
(
Indχ∗)(ϖ) ≡ 0 mod pordp(#H(m,n)

∞ )+m−ordp(#ϖ)

where Rm,n denotes a set of representatives for the Γ-orbits inside Hom
(
H(m,n)

∞ ,C×).
To calculate #H(m,n)

∞ in property (C4) above, one just applies Proposition 7. On the
other hand, to calculate #ϖ we use the orbit-stabilizer theorem, so that for any h ∈ ϖ
one obtains

#ϖ =
[
Γ/Γp

m

: StabΓ/Γpm (h)
]
=
[
Γ : StabΓ(h)

]
.
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Also by property (C2), an element aχ depends only on the representative for χ in Rm,n,
hence the last two summations in the above theorem are independent of any choices.

Proof. We begin with the ‘only if’ part of the argument. Suppose we are given an arbitrary

element am ∈ Zp
[[
Uab
m,n

]]
, and let us put a

(m)
χ := χ (am) for any character χ : H∞ → µpn

(note that if StabΓ(χ) = Γp
m

, then we will drop the superscript (m) above completely).
Assuming that (am) ∈ Ψ ∩

∏
m Zp

[[
Uab
m,n

]]
, we claim the following statements hold:

(a) there are equalities a
(m)
χ = a

(m)
χ′ for any χ′ ∈ Γ ∗ χ, where Γ ∗ χ :=

{
g ∗ χ

∣∣ g ∈ Γ
}
;

(b) we can express am =
∑
ϖ∈orbΓ(H

(m,n)
∞ )

C
(m)
ϖ · A(m,n)

ϖ , where for any h ∈ ϖ one has

C(m)
ϖ =

#ϖ

pm ·#H(m,n)

∞

×
∑

χ∈Rm,n

a(m)
χ ·

(
#(Γ ∗ χ)
pm

·
pm−1∑
i=0

χ−1
(
γ−ihγi

))
∈ Λ

(
Γp

m)
;

(c) −ordp
(

#ϖ

pm·#H(m,n)
∞

)
= ordp

(
#H(m,n)

∞
)
+m− ordp(#ϖ) ≥ 0;

(d) Tr
(
Indχ∗)(ϖ) = #(Γ∗χ)

pm ·
∑pm−1
i=0 χ−1

(
γ−ihγi

)
;

(e) one has a
(m)
χ = TrStabΓ(χ)/Γpm (aχ) for each m ≥mχ, i.e. (C1) is true.

Deferring their proof temporarily, let us first understand why they yield the three assertions
in our theorem. Clearly statement (C2) is implied by (a) with m = ordp[Γ : StabΓ(χ)].
Moreover both (C3) and (C4) will now follow upon combining (b), (c), (d) and (e) together,

and then observing that the p-integrality of the C
(m)
ϖ ’s is equivalent to each sum

∑
χ∈Rm,n

a(m)
χ ·

(
#(Γ ∗ χ)
pm

·
pm−1∑
i=0

χ−1
(
γ−ihγi

))
=

∑
χ∈Rm,n

TrStabΓ(χ)/Γpm (aχ) ·Tr
(
Indχ∗)(ϖ)

belonging to the lattice
pm·#H(m,n)

∞
#ϖ · Zp

[[
Γp

m]]
= pordp(#H(m,n)

∞ )+m−ordp(#ϖ) · Zp
[[
Γp

m]]
.

We are left to prove these five assertions. Part (a) is a consequence of property (A2).

To prove statement (b), let us write am =
∑
h∈H(m,n)

∞
c
(m)

h
· h where each c

(m)

h
∈ Λ

(
Γp

m)
.

Since the characteristic function of h can be decomposed into a sum over the characters

of the abelian group H(m,n)

∞ , one can express each coefficient above as

c
(m)

h
=

1

#H(m,n)

∞

×
∑

χ:H(m,n)
∞ →µpn

χ−1(h) · a(m)
χ .

Using property (A3) and Proposition 10, we know that am is a Λ(Γp
m

)-linear combination

of A(m,n)
ϖ ’s, which indicates c

(m)

h
is constant-valued for all h inside a prescribed orbit ϖ.

If we denote this common value as ‘c
(m)
ϖ ’, then

am =
∑

ϖ∈orbΓ(H
(m,n)
∞ )

∑
h∈ϖ

c(m)
ϖ · h =

∑
ϖ

c(m)
ϖ ·

∑
h∈ϖ

h =
∑
ϖ

c(m)
ϖ · #ϖ

pm
· A(m,n)

ϖ .

N.B. In this situation, the term c
(m)
ϖ · #ϖpm corresponds to the coefficient C

(m)
ϖ of A(m,n)

ϖ .
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Now we can always break
∑
χ:H(m,n)

∞ →µpn
into a double summation

∑
χ∈Rm,n

∑
χ′∈Γ∗χ.

Furthermore, a
(m)
χ′ = a

(m)
χ whenever χ′ ∈ Γ ∗ χ from (a), hence for any h ∈ ϖ:

c(m)
ϖ =

1

#H(m,n)

∞

·
∑

χ:H(m,n)
∞ →µpn

χ−1(h) · a(m)
χ =

1

#H(m,n)

∞

·
∑

χ∈Rm,n

a(m)
χ

∑
χ′∈Γ∗χ

(
χ′)−1

(h).

Splicing together these last two equations, we therefore conclude

am =
∑

ϖ∈orbΓ(H
(m,n)
∞ )

 #ϖ

pm ·#H(m,n)

∞

×
∑

χ∈Rm,n

a(m)
χ ·

∑
χ′∈Γ∗χ

(
χ′)−1

(h)

 · A(m,n)
ϖ .

Lastly
∑
χ′∈Γ∗χ

(
χ′)−1

(h) coincides with the scaled value #(Γ∗χ)
pm ·

∑pm−1
i=0 χ−1

(
γ−ihγi

)
,

which means (b) is also established.

To show part (c) is easy since the size of each orbit ϖ ∈ orbΓ
(
H(m,n)

∞
)
divides into pm.

In order to establish (d) we define ρm := Ind
G∞,n

ΓpmnH∞/pn
(χ), so that ρm ∼=

⊕
ψ Ind(χ)⊗ψ

where the sum is over all characters ψ : StabΓ(χ)/Γ
pm → C×. Thus for h ∈ ϖ ⊂ H(m,n)

∞ ,

[
StabΓ(χ) : Γ

pm
]
· Tr
(
Indχ∗)(h) = Tr

(
ρ∗m
)
(h) =

pm−1∑
i=0

χ−1
(
γ−ihγi

)
and the orbit-stabilizer theorem for Γ/Γp

m

acting on Hom
(
H(m,n)

∞ , µpn
)
then implies

[
StabΓ(χ) : Γ

pm
]
=

[
Γ : Γp

m][
Γ : StabΓ(χ)

] =

[
Γ : Γp

m][
Γ/Γpm : StabΓ/Γpm (χ)

] =
pm

#
(
Γ ∗ χ

) .
The assertion (e) follows from property (A1): if we set m′ = mχ then

TrStabΓ(χ)/Γpm (aχ) = χ
(
Trm′,m

(
am′

)) by (A1)
= χ

(
πm,m′

(
am
))

= a(m)
χ .

Finally, we must of course demonstrate the ‘if’ portion of the ‘if and only if’ statement.
This amounts to showing the implication

“(A1) and (A2) and (A3) =⇒ (C1) and (C2) and (C3) and (C4)”

is in fact reversible, which is a tedious but relatively straightforward exercise involving
Lemmas 13 and 14 – we refer the reader to [5] for further details.

3.2 A transfer-compatible basis for the set Rm,n

Assume again that ⋆ ∈ {II,III,IV,V,VI}. We can express H(m,n)

∞ as the double quotient

H(m,n)

∞
∼=

H∞/Hp
n

∞⟨
[h1, γp

m ] , [h2, γp
m ]
⟩

where h1 and h2 denote the image insideH∞/Hp
n

∞ of the subgroup generators h1, h2 ∈ H∞,
as outlined in the Classification Theorem.
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Clearly any character χ defined on H(m,n)

∞ must satisfy χ
(
[h1, γ

pm ]
)
= χ

(
[h2, γ

pm ]
)
= 1.

Also H(m,n)

∞
∼= Z

p
N

(m)
⋆,1 Z

× Z

p
N

(m)
⋆,2 Z

where N
(m)
⋆,1 , N

(m)
⋆,2 ∈ N can be read off from Proposition 7;

one may then write[
h1, γ

pm
]
=
(
hx̃1
1 h

ỹ1
2

)pN(m)
⋆,1

and
[
h2, γ

pm
]
=
(
hx̃2
1 h

ỹ2
2

)pN(m)
⋆,2

for integer pairs (x̃1, ỹ1) and (x̃2, ỹ2), neither of which is p-divisible in Z

p
N

(m)
⋆,1 Z

× Z

p
N

(m)
⋆,2 Z

.

To precisely determine them, we note that the commutator
[
hx1h

y
2, γ

pm
]
corresponds to

the vector
(
(I2 +M)p

m − I2
)( x

y

)
inside Zp ⊕ Zp, whence

(
x̃1 x̃2
ỹ1 ỹ2

)
=
((
I2 +M

)pm − I2)( p−N
(m)
⋆,1 0

0 p−N
(m)
⋆,2

)
. (12)

To construct a basis for Hom
(
H(m,n)

∞ ,C×), we therefore need a pair of characters

χ̃1 and χ̃2, sending h
x̃j

1 h
ỹj
2 to a primitive pN

(m)
⋆,j -th root of unity for each j ∈ {1, 2}.

Recall the definition of the generating characters χ1,n, χ2,n : H∞ → µpn from §1.2, namely

χ1,n

(
hx1h

y
2

)
= exp

(
2π
√
−1 x/pn

)
and χ2,n

(
hx1h

y
2

)
= exp

(
2π
√
−1 y/pn

)
.

As an illustration, in Case (II) we know H(m,n)

∞
∼= H1,∞

Hps+m

1,∞
× H2,∞

Hpn

2,∞
from Proposition 7, thus

one may set

χ̃
1,N

(m)
II,1

(
hx1h

y
2

)
:= χ2,n

(
hx1h

y
2

)
= ζypn and χ̃

2,N
(m)
II,2

(
hx1h

y
2

)
:= χ1,s+m

(
hx1h

y
2

)
= ζxps+m .

(13)

We will now abuse our notation, and employ χ

(
x
y

)
as an abbreviation for χ(hx1h

y
2).

Definition 16. For j ∈ {1, 2}, we define characters χ̃
j,N

(m)
⋆,j

: H(m,n)

∞ � µ
p
N

(m)
⋆,j

through:

• if ⋆ ∈ {III, IV, V, VI}, then

χ̃
1,N

(m)
⋆,1

(
x
y

)
:= χ

1,N
(m)
⋆,1

((
pN

(m)
⋆,1 0
0 0

)((
I2 +M

)pm − I2)−1
(
x
y

))
and

χ̃
2,N

(m)
⋆,2

(
x
y

)
:= χ

2,N
(m)
⋆,2

((
0 0

0 pN
(m)
⋆,2

)((
I2 +M

)pm − I2)−1
(
x
y

))
;

• if ⋆ = II, one uses Equation (13) instead to define χ̃
1,N

(m)
II,1

and χ̃
2,N

(m)
II,2

.

In particular, from Equation (12) we see that χ̃
1,N

(m)
⋆,1

(
hx̃1
1 h

ỹ1
2

)
= χ

1,N
(m)
⋆,1

(
h11h

0
2

)
= ζ

p
N

(m)
⋆,1

and χ̃
2,N

(m)
⋆,2

(
hx̃2
1 h

ỹ2
2

)
= χ

2,N
(m)
⋆,2

(
h01h

1
2

)
= ζ

p
N

(m)
⋆,2

, which satisfies our stated requirement.

The main reason why we prefer using the character set
{
χ̃
1,N

(m)
⋆,1

, χ̃
2,N

(m)
⋆,2

}
over the more

naive choice
{
χ
1,N

(m)
⋆,1

, χ
2,N

(m)
⋆,2

}
is motivated by the following compatibility result.
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Proposition 17. (a) The elements of Hom
(
H(m,n)

∞ ,C×) are explicitly given by the set{
χ̃e1
1,N

(m)
⋆,1

· χ̃e2
2,N

(m)
⋆,2

where e1 ∈ Z
/
pN

(m)
⋆,1 Z and e2 ∈ Z

/
pN

(m)
⋆,2 Z

}
.

(b) If ⋆ = II and m > m′, then

χ̃
1,N

(m)
⋆,1
◦Verm′,m =

(
χ̃
1,N

(m′)
⋆,1

)pm−m′

and χ̃
2,N

(m)
⋆,2
◦Verm′,m = χ̃

2,N
(m′)
⋆,2

.

(c) If ⋆ ∈ {III, IV, V, VI} and m > m′, then χ̃
j,N

(m)
⋆,j
◦Verm′,m = χ̃

j,N
(m′)
⋆,j

at each j ∈ {1, 2}.

Proof. Let us first suppose ⋆ = II. Here one has [h1, γ
pm ] = 1 and [h2, γ

pm ] = h
ps+m

1 with

N
(m)
II,1 = n and N

(m)
II,2 = s +m, whilst χ̃

1,N
(m)
II,1

(
h
x

1h
y

2

)
= ζypn and χ̃

2,N
(m)
II,1

(
h
x

1h
y

2

)
= ζxps+m .

Part (a) then follows as χ̃
1,N

(m)
II,1

and χ̃
2,N

(m)
II,1

are independent, while #H(m,n)

∞ = pn · ps+m.

To show (b) one notes for j = 1, 2 that χ̃
j,N

(m)
II,j

◦Verm′,m

∣∣∣
H(m′,n)

∞
= χ̃p

m−m′

j,N
(m)
II,j

by Lemma 12,

in which case

χ̃
1,N

(m)
II,1

(
(h
x

1h
y

2)
pm−m′ )

=
(
ζypn
)pm−m′

and χ̃
2,N

(m)
II,2

(
(h
x

1h
y

2)
pm−m′ )

=
(
ζxps+m

)pm−m′

= ζx
ps+m′ .

Let us instead suppose ⋆ ∈ {III,IV,V,VI}. Since
(
I2 +M

)pm
= P⋆

(
λp

m

⋆,+ 0

0 λp
m

⋆,−

)
P−1
⋆ ,

we deduce that

(
pN

(m)
⋆,1 0
0 0

)((
I2 +M

)pm − I2)−1

=

(
1 0
0 0

)
P⋆


p
N

(m)
⋆,1

λpm

⋆,+−1
0

0 p
N

(m)
⋆,1

λpm

⋆,−−1

P−1
⋆ .

On the other hand, again from Lemma 12 the matrix corresponding to Verm′,m

∣∣∣
H(m′,n)

∞
is

given by P⋆


λpm

⋆,+−1

λpm
′

⋆,+ −1
0

0
λpm

⋆,−−1

λpm
′

⋆,− −1

P−1
⋆ . An elementary calculation reveals the identities

(
pN

(m)
⋆,1 0
0 0

)((
I2 +M

)pm − I2)−1

· P⋆


λpm

⋆,+−1

λpm
′

⋆,+ −1
0

0
λpm

⋆,−−1

λpm
′

⋆,− −1

P−1
⋆

(
x
y

)

=

(
1 0
0 0

)
P⋆


p
N

(m)
⋆,1

λpm

⋆,+−1
0

0 p
N

(m)
⋆,1

λpm

⋆,−−1




λpm

⋆,+−1

λpm
′

⋆,+ −1
0

0
λpm

⋆,−−1

λpm
′

⋆,− −1

P−1
⋆

(
x
y

)

= pN
(m)
⋆,1 −N(m′)

⋆,1

(
pN

(m′)
⋆,1 0
0 0

)((
I2 +M

)pm′

− I2
)−1

(
x
y

)
.
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These matrix identities directly imply that χ̃
1,N

(m)
⋆,1
◦Verm′,m

(
x
y

)
equals

(
χ
1,N

(m)
⋆,1

)pN(m)
⋆,1 −N

(m′)
⋆,1

((
pN

(m′)
⋆,1 0
0 0

)((
I2 +M

)pm′

− I2
)−1

(
x
y

))
.

Since
(
χ
1,N

(m)
⋆,1

)pN(m)
⋆,1 −N

(m′)
⋆,1

= χ
1,N

(m′)
⋆,1

the above quantity is none other than χ̃
1,N

(m′)
⋆,1

(
x
y

)
,

which establishes that χ̃
1,N

(m)
⋆,1
◦Verm′,m = χ̃

1,N
(m′)
⋆,1

.

The argument for the second composition χ̃
2,N

(m)
⋆,2
◦Verm′,m follows identical lines.

Lemma 18. (i) If h
x

1h
y

2 ∈ H
(m′,n)

∞ and f(X) ∈ Zp[[X]], then

Verm′,m

(
f
(
γp

m′

− 1
)
· A(m′,n)

h
x
1h

y
2

)
= p−(m−m′) × f

(
γp

m

− 1
)
· A(m,n)

h
x′
1 h

y′
2

where x′, y′ are as in Lemma 12.

(ii) Using exactly the same notation,

χ̃e1
1,N

(m′)
⋆,1

· χ̃e2
2,N

(m′)
⋆,2

(
A(m′,n)

h
x
1h

y
2

)
= p−(m−m′) × χ̃e1

1,N
(m)
⋆,1

· χ̃e2
2,N

(m)
⋆,2

(
A(m,n)

h
x′
1 h

y′
2

)
unless ⋆ =II, in which case one replaces χ̃e1

1,N
(m′)
⋆,1

· χ̃e2
2,N

(m′)
⋆,2

instead with χ̃e1p
m−m′

1,N
(m′)
⋆,1

· χ̃e2
2,N

(m′)
⋆,2

on the left-hand side of this formula.

Proof. Let us start by establishing (i). If

(
xi
yi

)
=
(
I2 +M

)i( x
y

)
for all i ≥ 0, then

Verm′,m

(
γp

m′
j · A(m′,n)

h
x
1h

y
2

)
=

pm
′
−1∑

i=0

Verm′,m

(
γp

m′
j · hxi

1 h
yi
2

)
= γp

mj ·
pm

′
−1∑

i=0

h
x′
i

1 h
y′i
2

upon applying Lemma 12. Here in Case (⋆) with ⋆ ∈ {III,IV,V,VI}, the vector

(
x′i
y′i

)
= P⋆


λpm

⋆,+−1

λpm
′

⋆,+ −1
0

0
λpm

⋆,−−1

λpm
′

⋆,− −1

P−1
⋆

(
xi
yi

)

= P⋆

 λi⋆,+ ·
λpm

⋆,+−1

λpm
′

⋆,+ −1
0

0 λi⋆,− ·
λpm

⋆,−−1

λpm
′

⋆,− −1

P−1
⋆

(
x
y

)
=
(
I2 +M

)i( x′

y′

)

so that Verm′,m

(
γp

m′
j · A(m′,n)

h
x
1h

y
2

)
equals γp

mj ·
∑pm

′
−1

i=0 γ−ih
x′

1 h
y′

2 γ
i = γp

mj ·pm′−mA(m,n)

h
x′
1 h

y′
2

(the same identity for the Verlagerung holds in Case (II) also). The result extends to the
completed group algebra by linearity and continuity.

Secondly to show part (ii) is true, we first set f(X) = 1 and then evaluate the identity
from (i) at the character χ̃e1

1,N
(m)
⋆,1

· χ̃e2
2,N

(m)
⋆,2

. We next use Proposition 17(b)-(c) to rewrite

the transformed left-hand side in terms of the powers of χ̃
1,N

(m′)
⋆,1

and χ̃
2,N

(m′)
⋆,2

.
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4 The multiplicative calculations

To complete the proof of the main theorem, our strategy is to establish the existence,
commutativity and row-exactness of the diagram

1 → F×
p × Gab∞,n → K ′

1

(
Zp[[G∞,n]]

) LOG−→ Zp
[[
Conj(G∞,n)

]]
→ Gab∞,n → 1∣∣∣∣ y

Θ∞,n

y
Θ+

∞,n

∣∣∣∣
1 → F×

p × Gab∞,n → Φ
L−→ Ψ → Gab∞,n → 1∣∣∣∣ y

χ

y
χ

1 → F×
p × Gab∞,n → χ

(
Φ
) Lχ

−→ χ
(
Ψ
)

↪→ ↪→

∏
m,χ

OCp

[[
StabΓ(χ)

]]× (∏
m,χ

OCp

[[
StabΓ(χ)

]])
⊗ZpQp. (14)

The top two lines of this diagram are precisely those occurring in [7, p80]. The vertical
arrows labelled as “χ” denote evaluation at a system of representatives Rm,n, and as

Gab∞,n
∼= Γ, the whole ensemble χ therefore restricts to being the identity map on F×

p ×Gab∞,n.
At this preliminary stage, we make no attempt to explain the maps LOG, L and Lχ.

From Section 3, the module Ψ ⊂
∏
m Zp

[[
Uab
m,n

]]
will consist of elements satisfying

Kakde’s additive conditions (A1)-(A3). Analogously, Φ ⊂
∏
m Zp

[[
Uab
m,n

]]×
consists of

those elements
(
ym
)
satisfying the multiplicative conditions (M1)-(M4) below, which we

have specialised from [7, p107] to our particular situation:

(M1) Nm−1,m

(
ym−1

)
= πm,m−1

(
ym
)

for all m ≥ 1;

(M2) ym = gymg
−1 at every g ∈ G∞,n;

(M3) ym ≡ Verm−1,m(ym−1) mod Im
(
σ̃m
)

for each m ≥ 1;

(M4)

(
y
(ν)
m

)p
Nm,m+1

(
y
(ν)
m

) − φ

( (
y
(ν)
m−1

)p
Nm−1,m

(
y
(ν)
m−1

)) ∈ p · Im
(
σ(ν)
m

)
for every m ≥ 0.

Here in condition (M3), the homomorphism σ̃m : Zp
[[
Uab
m,n

]]
→ Zp

[[
Uab
m,n

]]
denotes the

additive map sending f 7→
∑p−1
i=0 γ

−pm−1ifγp
m−1i.

Warning: If a sequence
(
ym
)
satisfies conditions (M1)-(M4), then its image under L

automatically satisfies (A1)-(A3) by [7, p107, Lemma 4.5]. Unfortunately, because the
family of abelianizations

{
Uab
m,n

}
0≤m≤n−s we use is coarser than that considered in [7, 17],

we cannot directly apply the results in op. cit. to obtain a converse statement such as

L
(
(ym)

)
∈
(∏
m

Zp
[[
Uab
m,n

]])
(A1)-(A3)

?
=⇒

(
ym
)
∈
(∏
m

Zp
[[
Uab
m,n

]]×)
(M1)-(M4)

.

The salvage is to show that K1

(
Zp[[G∞,n]]

)
splits into a direct product of K1

(
Zp[[Γ]]

)
with

with a complementary factor W†; we shall then construct a section S : p ·Ψ→ Θ∞,n

(
W†
)

for which L ◦ S and S ◦ L
∣∣
Θ∞,n(W†)

are both identity maps. One concludes that
(
ym
)

arises from K ′
1

(
Zp[[G∞,n]]

)
if and only if L

(
(ym)

)
∈ p ·Ψ, which is itself equivalent to the

sequence χ ◦ L
(
(ym)

)
satisfying constraints (C1)–(C4) from Theorem 15.
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4.1 Convergence of the logarithm on Im(σm)

We will shortly introduce the Taylor-Oliver logarithm, which is usually defined in terms
of group algebras arising from finite groups. Since the profinite groups G∞,n and Um,n are
both infinite, one should instead consider their finite counterparts

G(ν)∞,n := Γ/Γp
ν

nH∞/Hp
n

∞ and more generally U (ν)
m,n := Γp

m

/Γp
ν

nH∞/Hp
n

∞ ,

at each integer triple m,n, ν ∈ Z with 0 ≤ m ≤ n− s ≤ ν. For example, U (ν)
0,n equals G(ν)∞,n.

Remark: Using Proposition 7, one has Uab
n−s,n

∼= Un−s,n; in other words Un−s,n is abelian.

It follows that Γp
ν

acts trivially on H∞/Hp
n

∞ for all ν ≥ n− s, so the semi-direct products
above make good sense. Whenever we write the superscript (ν) above an object or a map,
we mean the analogue of that object/map for the corresponding finite group (providing
the object/map descends to its finite version, of course).

Now recall from Proposition 10(ii) that Im(σm) is freely generated over Zp[[Γp
m

]] by the

elements A(m,n)
ϖ with ϖ ∈ orbΓ

(
H(m,n)

∞
)
. It is therefore trivially true that Im

(
σ
(ν)
m

)
must

be generated over Zp
[
Γp

m

/Γp
ν ]

by the same A(m,n)
ϖ ’s. If ϖ1, ϖ2 ∈ orbΓ

(
H(m,n)

∞
)
contain

h1 and h2 respectively, then

A(m,n)
ϖ1

·A(m,n)
ϖ2

=

pm−1∑
i=0

γ−ih1γ
i ·
pm−1∑
j=0

γ−jh2γ
j =

pm−1∑
i=0

pm−1∑
j=0

γ−i
(
h1h

γj−i

2

)
γi =

pm−1∑
t=0

A(m,n)

h1h
γt

2

which belongs to the image of σ
(ν)
m . It follows that Im

(
σ
(ν)
m

)
is an ideal of Zp

[
U (ν),ab
m,n

]
.

Iterating the above calculation N -times, one deduces that

A(m,n)
ϖ1

· A(m,n)
ϖ2

· · · A(m,n)
ϖN+1

=

pm−1∑
t1=0

pm−1∑
t2=0

· · ·
pm−1∑
tN=0

A(m,n)

h1h
γt1

2 ···hγtN

N+1

which means for each ϖ ∈ orbΓ
(
H(m,n)

∞
)
and element h ∈ ϖ,(

A(m,n)
ϖ

)N+1

=

pm−1∑
t1=0

· · ·
pm−1∑
tN=0

A(m,n)

h h
γt1 ···hγtN

=
N+1∏
j=2

pm

#ϖ
·
∑
w2∈ϖ

· · ·
∑

wN+1∈ϖ
A(m,n)

hw2···wN+1
.

• Clearly if #ϖ < pm, then
(
A(m,n)
ϖ

)N+1

∈ pN · Im
(
σ
(ν)
m

)
⊂ p · Im

(
σ
(ν)
m

)
.

• Alternatively, if #ϖ = pm so that StabΓ/Γpm (h) =
{
γp

m}
, then(

A(m,n)
ϖ

)N+1

=
∑
w2∈ϖ

· · ·
∑

wN+1∈ϖ
A(m,n)

hw2···wN+1
=

∑
(t1,...,tN )∈(Z/pmZ)⊕N

A(m,n)

h h
γt1 ···hγtN

.

There are at most pmN distinct elements of the form h h
γt1

· · ·hγ
tN

, whilst the total

number of elements in H(m,n)

∞ is p2s+2m+ϵ⋆,p if (⋆) ̸=(II), where by Proposition 7 the term

ϵ⋆,p := N
(m)
⋆,1 +N

(m)
⋆,2 − 2s− 2m =


0 in Cases (III),(IV)

ordp(d) in Case (V)

r + ordp(t) in Case (VI)

is independent of m and n.
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Consequently for mN ≥ 2s+2m+ ϵ⋆,p these elements h h
γt1

· · ·hγ
tN

will start repeating,

in which case
(
A(m,n)
ϖ

)N+1

∈ p · Im
(
σ
(ν)
m

)
. Note that the latter inequality is equivalent to

N + 1 ≥ 3 +
2s+ϵ⋆,p
m , so we arrive at the following estimate:(

A(m,n)
ϖ

)j
j

∈ p

⌊
j

3+
2s+ϵ⋆,p

m

⌋
− log(j)

log(p)

· Im
(
σ(ν)
m

)
. (15)

If one sets ϵ⋆,p = −s and n = m, a similar argument implies (15) also holds for (⋆) =(II).

Proposition 19. (a) The two formal power series log(1 + y) =
∑∞
j=1(−1)j+1 y

j

j and

(1 + y)−1 =
∑∞
j=0(−1)jyj converge for all y ∈ Im

(
σ
(ν)
m

)
.

(b) If δm :=
⌈
3+

2s+ϵ⋆,p
m

p

⌉
then for every N ≥ 1, the logarithm induces a natural isomor-

phism

log :
1 + Im

(
σ
(ν)
m

)δm·N

1 + Im
(
σ
(ν)
m

)δm·N+1

∼−→
Im
(
σ
(ν)
m

)δm·N

Im
(
σ
(ν)
m

)δm·N+1
;

in particular, if p ≥ 5 and one chooses m ≥ 2s+ ϵ⋆,p, then δm = 1 above.

(c) There are isomorphisms 1+p·Im
(
σ
(ν)
m

) log→ p·Im
(
σ
(ν)
m

)
and p·Im

(
σ
(ν)
m

) exp→ 1+p·Im
(
σ
(ν)
m

)
which are mutually inverse maps to one another.

Proof. To show (a) one uses the estimate (15) together with the fact that the exponent⌊
j

3+
2s+ϵ⋆,p

m

⌋
− log(j)

log(p) → ∞ as j → ∞, which implies both limj→∞(−1)j+1 y
j

j = 0 and

limj→∞(−1)jyj = 0. In fact, since Im
(
σ
(ν)
m

)j ⊂ p · Im
(
σ
(ν)
m

)
for j ≫ 0, the topology

induced by the neighborhoods
{
Im
(
σ
(ν)
m

)j}
j∈N coincides with the p-adic topology.

The assertion in (c) can be proved by following an identical argument to [7, p106],
which leaves us to tackle (b).

For simplicity we suppose that p ≥ 5 andm ≥ 2s+ϵ⋆,p, so that
(A(m,n)

ϖ )p

p ∈ Im
(
σ
(ν)
m

)
by

the estimate (15), whence yp

p ∈ Im
(
σ
(ν)
m

)
for all y ∈ Im

(
σ
(ν)
m

)
. Consider the homomorphism

log† : 1 + Im
(
σ(ν)
m

)N → Im
(
σ
(ν)
m

)N
Im
(
σ
(ν)
m

)N+1
⊗Zp Qp

given by log†(1+y) := log(1+y) mod Im
(
σ
(ν)
m

)N+1
. Assuming that j > 1, let us examine

the p-integrality of (−1)j+1 y
j

j for each y = a1 · · · aN ∈ Im
(
σ
(ν)
m

)N
:

• If p - j then (−1)j+1 y
j

j = ±a
j
1···a

j
N

j ∈ Im
(
σ
(ν)
m

)Nj ⊂ Im
(
σ
(ν)
m

)N+1
;

• If j = p then (−1)p+1 y
p

p =
ap1
p · a

p
2 · · · a

p
N ∈ Im

(
σ
(ν)
m

)1+p(N−1) ⊂ Im
(
σ
(ν)
m

)N+1
;

• If j = pk with k > 1, then

(−1)p
k+1 y

pk

pk
=

(
ap1
p

)k
· ap

k−pk
1 · ap

k

2 · · · a
pk

N ∈ Im
(
σ(ν)
m

)k+pkN−pk ⊂ Im
(
σ(ν)
m

)N+1
.

30



Lastly, the general case where j = pkc with p - c and j > 1 reduces to the previous cases,
upon replacing y with yc throughout.

We therefore conclude (−1)j+1 y
j

j ∈ Im
(
σ
(ν)
m

)N+1
for every y ∈ Im

(
σ
(ν)
m

)N
and j > 1.

Because log†(1 + y) ≡ y mod Im(σ
(ν)
m )N+1, clearly log† : 1 + Im

(
σ
(ν)
m

)N → Im(σ(ν)
m )N

Im(σ
(ν)
m )N+1

must be a surjective map; further, one easily checks that 1 + Im
(
σ
(ν)
m

)N+1 ⊂ Ker
(
log†

)
.

Assertion (b) now follows immediately for p ≥ 5 and m ≥ 2s+ ϵ⋆,p.

Finally, to treat assertion (b) when p = 3 or m < 2s+ ϵ⋆,p, one simply observes that

if δm ≥
3+

2s+ϵ⋆,p
m

p then (yδm )p

p ∈ Im
(
σ
(ν)
m

)
for all y ∈ Im

(
σ
(ν)
m

)
, using the estimate (15)

again. One then repeats the previous arguments, with y replaced by yδm everywhere.

4.2 Interaction of the theta-maps with both φ and log

We now derive some technical results describing how the Frobenius mapping φ and the
logarithm commute with the theta-homomorphisms. Let us recall that in our situation,

the trace and norm maps from G(ν)∞,n down to U (ν)
m,n have the simple description

TrG(ν)
∞,n/U(ν)

m,n
(α) =

pm−1∑
k=0

γ−kαγk and NormG(ν)
∞,n/U(ν)

m,n
(x) =

pm−1∏
k=0

γ−kxγk.

Definition 20. (a) The additive theta-map θ
(ν),+
m,n : Zp

[
Conj

(
G(ν)∞,n

)]
→ Zp

[
U (ν),ab
m,n

]
is

given by the composition

θ(ν),+m,n (−) := TrG(ν)
∞,n/U(ν)

m,n
(−) mod

[
U (ν)
m,n,U (ν)

m,n

]
.

(b) The multiplicative theta-map θ
(ν)
m,n : K1

(
Zp
[
G(ν)∞,n

])
→ Zp

[
U (ν),ab
m,n

]×
is defined by

θ(ν)m,n(−) := NormG(ν)
∞,n/U(ν)

m,n
(−) mod

[
U (ν)
m,n,U (ν)

m,n

]
.

Let ι : Zp
[
Γ/Γp

ν ]
↪→ Zp

[
G(ν)∞,n

]
be the map on group algebras induced from the sequence

Γ/Γp
ν ∼→ Γ/Γp

ν n{1} ↪→ G(ν)∞,n that identifies Γ/Γp
ν

with a non-normal subgroup of G(ν)∞,n.

Lemma 21. There exists a splitting of abelian groups

K1

(
Zp
[
G(ν)∞,n

]) ∼−→ Zp
[
Γ/Γp

ν ]× ×W(ν)
† sending x 7→

(
xcy, x†

)
,

where xcy= ι∗◦ θ(ν)0,n(x), x
† = x

xcy , and the complementW(ν)
† :=

{
x†
∣∣ x ∈ K1

(
Zp
[
G(ν)∞,n

])}
.

Proof. Firstly θ
(ν)
0,n coincides with the quotient mapping modulo

[
U (ν)
0,n ,U

(ν)
0,n

]
= H∞/Hp

n

∞ .

The composition Γ/Γp
ν ι
↪→ G(ν)∞,n

mod H∞/pn

� Γ/Γp
ν

equals the identity, and this induces

K1

(
Zp
[
Γ/Γp

ν ]) ι∗−→ K1

(
Zp
[
G(ν)∞,n

]) θ
(ν)
0,n−→ K1

(
Zp
[
Γ/Γp

ν ])
which must then be the identity map on K1

(
Zp
[
Γ/Γp

ν ]) ∼= Zp
[
Γ/Γp

ν ]×
. The latter group

is therefore isomorphic to a direct factor of K1

(
Zp
[
G(ν)∞,n

])
, and the rest follows easily.
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For a group G, the ring homomorphism φG : Zp[Conj(G)] → Zp[Conj(G)] denotes the
linear extension of the map [g] 7→ [gp] on Conj(G) (note if G is abelian, then Conj(G) = G).

Lemma 22. For all α ∈ Qp
[
Conj

(
G(ν)∞,n

)]
,

θ(ν),+m,n ◦ φG(ν)
∞,n

(α) =

p · φU(ν)
m−1,n

◦ TrG(ν)
∞,n/U(ν)

m−1,n

(α) mod
[
U (ν)
m,n,U (ν)

m,n

]
if m ≥ 1

φG(ν)
∞,n

(α) mod
[
U (ν)
0,n ,U

(ν)
0,n

]
if m = 0.

Proof. If m = 0, the formula is straightforward to establish.

We therefore suppose that m ≥ 1. It is enough to consider conjugacy classes of the

form α = [γj · h] with j ∈ Z/pνZ and h ∈ H∞
Hpn

∞
, since these will generate Qp

[
Conj

(
G(ν)∞,n

)]
.

Key Claims: (I) For all j ∈ Z/pνZ, one has
(
γj ·h

)p
= γpj ·

∏p−1
i=0 h

γji

inside Γ/Γp
νn H∞

Hpn
∞

.

(II) If k, k′ ∈ Z satisfy k ≡ k′ (mod pm−1), then

φU(ν)
m−1,n

([
γj · hγ

k])
≡ φU(ν)

m−1,n

([
γj · hγ

k′ ])
mod

[
U (ν)
m,n , U (ν)

m,n

]
. (16)

Postponing their proof for the moment, one calculates that

θ(ν),+m,n ◦ φG(ν)
∞,n

(
[γj · h]

) by (I)
= θ(ν),+m,n

([
γpj ·

p−1∏
i=0

h
γji])

=

γpj ·
∑pm−1
k=0 γ−k

(∏p−1
i=0 h

γji)
γk mod

[
U (ν)
m,n,U (ν)

m,n

]
if γpj ∈ Γp

m

0 otherwise

=

{
γpj ·

∑pm−1
k=0

∏p−1
i=0 γ

−kh
γji

γk mod
[
U (ν)
m,n,U (ν)

m,n

]
if γj ∈ Γp

m−1

0 otherwise

by (I)
=

φU(ν)
m−1,n

(
γj ·

∑pm−1
k=0 h

γk)
mod

[
U (ν)
m,n,U (ν)

m,n

]
if γj ∈ Γp

m−1

0 otherwise

by (II)
=

φU(ν)
m−1,n

(
γj · p ·

∑pm−1−1
k′=0 h

γk′)
mod

[
U (ν)
m,n,U (ν)

m,n

]
if γj ∈ Γp

m−1

0 otherwise

= p · φU(ν)
m−1,n

◦ TrG(ν)
∞,n/U(ν)

m−1,n

(
[γj · h]

)
mod

[
U (ν)
m,n,U (ν)

m,n

]
.

The full lemma now follows for each m ≥ 1, as Qp
[
Conj

(
G(ν)∞,n

)]
is generated by [γj · h]’s.

It remains to establish Claims (I) and (II). To prove (I) we know that h · γj = γj ·hγ
j

,
in which case(
γj · h

)p
= γj ·

(
h · γj

)
· h · γj · h · · · γj · h = γ2j · hγ

j

·
(
h · γj

)
· h · · · γj · h

= γ2j ·
(
h
γj

· γj
)
· hγ

j

· h · · · γj · h = γ3j · hγ
2j

· hγ
j

· h · · · γj · h

= . . . = γ(p−1)j · hγ
(p−2)j

· hγ
(p−3)j

· · ·
(
h · γj

)
· h = . . . = γpj ·

p−1∏
i=0

h
γji

.

32



To show (II) note that the L.H.S. of (16)
by (I)
= γpj ·

∏p−1
i=0 (h

γk

)γ
ji

= γpj ·
∏p−1
i=0 h

γji+k

,

while the R.H.S. of (16) = γpj ·
∏p−1
i=0 h

γji+k′

by an identical argument; one deduces that

L.H.S. of (16)

R.H.S. of (16)
= γpj ·

(
p−1∏
i=0

h
γji+k

(h
−1

)γ
ji+k′

)
· γ−pj

= γpj ·

(
p−1∏
i=0

γ−(ji+k′) ·
(
γk

′−k · h · γ−(k′−k) · h−1) · γji+k′) · γ−pj .
However hk,k′ := γk

′−k · h · γ−(k′−k) · h−1 ∈
[
U (ν)
m−1,n,U

(ν)
m−1,n

]
because γk−k

′ ∈ Γp
m−1

whenever k ≡ k′ (mod pm−1), which in turn implies L.H.S. of (16)
R.H.S. of (16) =

(∏p−1
i=0 h

γji+k′

k,k′

)γ−pj

.

This latter product is divisible by p, in fact

L.H.S. of (16)

R.H.S. of (16)
∈
[
U (ν)
m−1,n , U

(ν)
m−1,n

]p ⊂ [
U (ν)
m,n , U (ν)

m,n

]
.

Therefore L.H.S. ≡ R.H.S. mod
[
U (ν)
m,n , U (ν)

m,n

]
, which establishes Claim (II) as well.

We now examine how the Frobenius map φ commutes with θ
(ν)
m−1,n. Consider the sequence

Γp
m−1

Γpν
× H∞[
U (ν)
m−1,n,U

(ν)
m−1,n

] (−)p−→ Γp
m

Γpν
× (H∞)p[
U (ν)
m−1,n,U

(ν)
m−1,n

]p � Γp
m

Γpν
× (H∞)p[
U (ν)
m,n,U (ν)

m,n

]
induced from the p-power map, and the containment

[
U (ν)
m−1,n,U

(ν)
m−1,n

]p
↪→
[
U (ν)
m,n,U (ν)

m,n

]
.

If we label the composition as φ̃ : U (ν),ab
m−1,n → U

(ν),ab
m,n , by linearly extending φ̃ one obtains

φ̃U(ν),ab
m−1,n

: Qp
[
U (ν),ab
m−1,n

]
→ Qp

[
U (ν),ab
m,n

]
,

∑
g∈U(ν),ab

m−1,n

cg · [g] 7→
∑

g∈U(ν),ab
m−1,n

cg · φ̃[g]

as a homomorphism of commutative algebras.

Lemma 23. (i) For each integer m ≥ 1 and every x ∈ K1

(
Zp
[
G(ν)∞,n

])
,

φ̃U(ν),ab
m−1,n

◦ logZp[U(ν),ab
m−1,n]

◦ θ(ν)m−1,n(x)

= φU(ν),ab
m−1,n

(
logZp[U(ν),ab

m−1,n]
◦ NormG(ν)

∞,n/U(ν)
m−1,n

(x)
)

mod
[
U (ν)
m,n , U (ν)

m,n

]
.

(ii) For each integer m ≥ 0 and every x ∈ K1

(
Zp
[
G(ν)∞,n

])
,

θ(ν)m,n

(
x†
)
=

θ
(ν)
m,n(x)

τ
(m,ν)
∗ ◦ N0,m

(
θ
(ν)
0,n(x)

) and θ(ν)m,n

(
xcy
)
= τ

(m,ν)
∗ ◦ N0,m(θ

(ν)
0,n(x))

where τ (m,ν) denotes the natural inclusion Qp
[
Γp

m

/Γp
ν ]
↪→ Qp

[
U (ν),ab
m,n

]
.

At first glance these statements are rather technical in nature, and their demonstrations
could easily be skipped on an initial reading. However they will become important tools
for us in the next section, when we calculate the Taylor-Oliver logarithm composed with

the family of theta-maps
{
θ
(ν),+
m,n

}
0≤m≤n−s.
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Proof. Starting with assertion (i), since
[
U (ν)
m−1,n , U

(ν)
m−1,n

]p ⊂ [U (ν)
m,n , U (ν)

m,n

]
one deduces

φU(ν),ab
m−1,n

◦ TrG(ν)
∞,n/U(ν)

m−1,n
(α) mod

[
U (ν)
m,n , U (ν)

m,n

]
= φ̃U(ν),ab

m−1,n

(
TrG(ν)

∞,n/U(ν)
m−1,n

(α) mod
[
U (ν)
m−1,n , U

(ν)
m−1,n

])
= φ̃U(ν),ab

m−1,n

◦ θ(ν),+m−1,n(α) (17)

for every α ∈ Qp
[
Conj

(
G(ν)∞,n

)]
. Evaluating both sides at α = log(x), it is easily verified

φU(ν),ab
m−1,n

◦ log ◦ NormG(ν)
∞,n/U(ν)

m−1,n
(x) ≡ φU(ν),ab

m−1,n
◦ TrG(ν)

∞,n/U(ν)
m−1,n

(
log(x)

)
by (17)
= φ̃U(ν),ab

m−1,n
◦ θ(ν),+m−1,n

(
log(x)

)
= φ̃U(ν),ab

m−1,n
◦ log ◦ θ(ν)m−1,n(x).

To prove (ii), one simply observes that

τ
(m,ν)
∗ ◦ N0,m

(
θ
(ν)
0,n(x)

)
= τ

(m,ν)
∗ ◦NormΓ/Γpm

(
x mod H∞/Hp

n

∞
)

= NormG(ν)
∞,n/U(ν)

m,n

(
τ
(0,ν)
∗

(
x mod H∞/Hp

n

∞
))

mod
[
U (ν)
m,n,U (ν)

m,n

]
= θ(ν)m,n ◦ ι∗

(
x mod H∞/Hp

n

∞
)

= θ(ν)m,n

(
xcy
)
.

Consequently θ
(ν)
m,n

(
x†
)
=

θ(ν)
m,n(x)

θ
(ν)
m,n(xcy)

=
θ(ν)
m,n(x)

τ
(m,ν)
∗ ◦N0,m(θ

(ν)
0,n(x))

, and the two identities follow.

4.3 The image of the Taylor-Oliver logarithm

For a finite group G, the Taylor-Oliver logarithm LOGG : K1

(
Zp[G]

)
→ Zp

[
Conj(G)

]
is

defined by

LOGG(x) := logZp[G](x)−
1

p
φG
(
logZp[G](x)

)
where logZp[G] is the unique extension of logJac(Zp[G]) (see [22] for more details). Note that
G need not necessarily be a p-group, even though it happens to be so in this paper.

If G = G(ν)∞,n then LOGG(ν)
∞,n

denotes the ν-th layer of the map ‘LOG’ occurring in (14).

Our task is to calculate the mappings L and Lχ which make that diagram commutative.
The former of these maps may be determined from the following formulae.

Proposition 24. (a) If m ∈ {1, . . . , n− s} and x ∈ K1

(
Zp[[G(ν)∞,n]]

)
, then

θ(ν),+m,n ◦ LOGG(ν)
∞,n

(x) = logZp[U(ν),ab
m,n ]

 θ
(ν)
m,n(x)

φ̃U(ν),ab
m−1,n

◦ θ(ν)m−1,n(x)

 .

(b) Furthermore, if x† = x
xcy ∈ W(ν)

† then

θ(ν),+m,n ◦ LOGG(ν)
∞,n

(
x†
)

= logZp[U(ν),ab
m,n ]

(
θ
(ν)
m,n(x)

τ
(m,ν)
∗ ◦ N0,m

(
θ
(ν)
0,n(x)

) · φ̃U(ν),ab
m−1,n

(
τ
(m−1,ν)
∗ ◦ N0,m−1

(
θ
(ν)
0,n(x)

)
θ
(ν)
m−1,n(x)

))
.
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Proof. Using the definition of the Taylor-Oliver logarithm and our previous results,

θ(ν),+m,n ◦ LOGG(ν)
∞,n

(x) = θ(ν),+m,n ◦ logZp[G(ν)
∞,n]

(x)− 1

p
· θ(ν),+m,n ◦ φG(ν)

∞,n

(
logZp[G(ν)

∞,n]
(x)
)

by 22
= θ(ν),+m,n

(
log(x)

)
− 1

p
· p · φU(ν)

m−1,n

◦ TrG(ν)
∞,n/U(ν)

m−1,n

(
log(x)

)
mod

[
U (ν)
m,n,U (ν)

m,n

]
= θ(ν),+m,n

(
log(x)

)
− φU(ν)

m−1,n

◦ log
(
NormG(ν)

∞,n/U(ν)
m−1,n

(x)
)

mod
[
U (ν)
m,n,U (ν)

m,n

]
by 23(i)
= θ(ν),+m,n

(
logZp[G(ν)

∞,n]
(x)
)
− φ̃U(ν),ab

m−1,n
◦ logZp[U(ν),ab

m−1,n]
◦ θ(ν)m−1,n(x)

= logZp[U(ν),ab
m,n ]

(
θ(ν)m,n(x)

)
− logZp[U(ν),ab

m,n ]

(
φ̃U(ν),ab

m−1,n

◦ θ(ν)m−1,n(x)
)

which establishes assertion (a).

To prove (b), one simply combines part (a) with the formula from Lemma 23(ii).

Remark: As a direct consequence, in order to make the left-hand square in the diagram

K1

(
Zp[G(ν)∞,n]

) ∏
θ(ν)
m,n−→ Φ(ν)

∏
χ−→ χ

(
Φ(ν)

)y
LOG

G(ν)
∞,n

y
L(ν)

y
L(ν)

χ

Zp
[
Conj(G(ν)∞,n)

] ∏
θ(ν),+
m,n−→ Ψ(ν)

∏
χ−→ χ

(
Ψ(ν)

)
commutative, it follows from Proposition 24(a) that one should define

L(ν)
((

y(ν)
m

))
m
:= logZp[U(ν),ab

m,n ]

 y
(ν)
m

φ̃U(ν),ab
m−1,n

(
y
(ν)
m−1

)
 for all

(
y(ν)
m

)
∈

∏
0≤m≤n−s

Zp
[
U (ν),ab
m,n

]×
.

(18)

To make the right-hand square commutative, we need to work out the map L(ν)
χ explicitly.

Fix a finite order character χ :H∞→ µp∞ factoring through the quotient group H(m,n)

∞ ,
which one may interpret as a homomorphism

χ : U (ν),ab
m,n

∼= Γp
m

/Γp
ν

×H(m,n)

∞ −→ Γp
m

/Γp
ν

× Im(χ)

sending an element γj · h to γj · χ(h). It follows that its extension to Zp
[
U (ν),ab
m,n

]
satisfies

χ
(
θ(ν),+m,n ◦ LOGG(ν)

∞,n
(x)
)

= log
Oχ

[
Γpm

Γpν

]
 χ ◦ θ(ν)m,n(x)

φ
Γpm−1

Γpν

(
χp ◦ θ(ν)m−1,n(x)

)
 .

Moreover by Proposition 24(b), for any x† = x/xcy ∈ W(ν)
† one has

χ
(
θ(ν),+m,n ◦ LOGG(ν)

∞,n

(
x†
))

= log
Oχ

[
Γpm

Γpν

] ( χ ◦ θ(ν)m,n(x)

N0,m

(
θ
(ν)
0,n(x)

) · φΓpm−1

Γpν

(
N0,m−1

(
θ
(ν)
0,n(x)

)
χp ◦ θ(ν)m−1,n(x)

))

as χ acts trivially on Zp[Γp
m

/Γp
ν

], and thus also on N0,m−1

(
θ
(ν)
0,n(x)

)
and N0,m

(
θ
(ν)
0,n(x)

)
.
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Since y
(ν)
m,χ corresponds to χ ◦ θ(ν)m,n(x), the preceding formulae imply one should define

L(ν)
χ

(
(y(ν)
m,χ)

)
m,χ

:= log
Oχ

[
Γpm

Γpν

]
 y

(ν)
m,χ

φ
Γpm−1

Γpν

(
y
(ν)
m−1,χp

)
 where

(
y(ν)
m,χ

)
∈
∏
m,χ

Oχ
[
Γp

m

Γpν

]×
.

Indeed if
(
y
(ν)
m,χ

)
∈
∏
m,χ χ ◦ θ

(ν)
m,n

(
W(ν)

†
)
, then one can further say

L(ν)
χ

(
(y(ν)
m,χ)

)
m,χ

= log
Oχ

[
Γpm

Γpν

] ( y
(ν)
m,χ

N0,m

(
y
(ν)
0,1

) · φΓpm−1

Γpν

(
N0,m−1

(
y
(ν)
0,1

)
y
(ν)
m−1,χp

))
. (19)

In fact
y(ν)
m,χ

N0,m

(
y
(ν)
0,1

) ∈ 1 + p · Oχ
[
Γpm

Γpν

]
for all m, so the full expression occurring inside the

logarithm in Equation (19) must automatically be congruent to 1 modulo p · OCp

[
Γpm

Γpν

]
.

Corollary 25. If
(
y
(ν)
m

)
∈ Θ

(ν)
∞,n

(
W(ν)

†
)
and one sets

(
y
(ν)
m,χ

)
= χ

(
(y

(ν)
m )
)
, then both

L(ν)
(
(y(ν)
m )
)
∈ Ψ(ν)∩ p ·

∏
m

Im
(
σ(ν)
m

)
and L(ν)

χ

(
(y(ν)
m,χ)

)
∈ χ
(
Ψ(ν)

)
∩ p ·

∏
m,χ

OCp

[
Γp

m

/Γp
ν ]
.

Proof. To address the first assertion, Proposition 24(b) implies that

L(ν)
(
(y(ν)
m )
)
m

= logZp[U(ν),ab
m,n ]

(
y
(ν)
m

N0,m

(
y
(ν)
0

) · φ̃U(ν),ab
m−1,n

(
N0,m−1

(
y
(ν)
0

)
y
(ν)
m−1

))

and as each of the two fractions inside the logarithm belongs to the group 1+ p · Im(σ
(ν)
m ),

the containment follows directly from Proposition 19(c).

To establish the second assertion, one combines the discussion after Equation (19)
together with the isomorphism log : 1 + p · OCp

[
Γp

m

/Γp
ν ] ∼−→ p · OCp

[
Γp

m

/Γp
ν ]
.

4.4 A proof of Theorems 1 and 2

Recall from earlier that if a sequence
(
y
(ν)
m

)
satisfies conditions (M1)-(M4), then its image

under L(ν) always satisfies (A1)-(A3). We shall now establish a converse statement

L(ν)
(
(y(ν)
m )
)
∈ p ·Ψ(ν) =⇒

(
y(ν)
m

)
∈ Φ(ν).

If we are successful, the question as to whether or not
(
y
(ν)
m

)
arises from K1

(
Zp[G(ν)∞,n]

)
under the mapping Θ

(ν)
∞,n reduces to determining whether or not L(ν)

χ

(
(y

(ν)
m,χ)

)
∈ χ
(
Ψ(ν)

)
.

To achieve this goal, we will explicitly construct a section

S(ν) :

 ∏
0≤m≤n−s

p · Zp
[
U (ν),ab
m,n

]
(A1)-(A3)

−→

 ∏
0≤m≤n−s

1 + p · Zp
[
U (ν),ab
m,n

]
(M1)-(M4)

for which L(ν) ◦S(ν)
∣∣∣
p·Ψ(ν)

and S(ν) ◦L(ν)
∣∣∣
Θ

(ν)
∞,n(W(ν)

† )
are the respective identity mappings.
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To produce this map S(ν), let us first fix a sequence
(
a
(ν)
m

)
∈
∏

0≤m≤n−s p · Zp
[
U (ν),ab
m,n

]
.

Recall that exp : p ·Zp
[
U (ν),ab
m,n

] ∼−→ 1+p ·Zp
[
U (ν),ab
m,n

]
is an isomorphism of abelian groups.

Definition 26. Given the sequence
(
a
(ν)
m

)
above, one recursively defines y

(ν)
0 := 1 and

y(ν)
m := φ̃U(ν),ab

m−1,n

(
y
(ν)
m−1

)
× expZp[U(ν),ab

m,n ]

(
a(ν)m

)
for each m ≥ 1,

so that
(
ym
)
∈
∏
m 1 + p · Zp

[
U (ν),ab
m,n

]
. We label this association

(
a
(ν)
m

)
7→
(
y
(ν)
m

)
by S(ν).

Lemma 27. (i) The composition L(ν) ◦ S(ν) is the identity map on
∏
m p · Zp

[
U (ν),ab
m,n

]
.

(ii) The composition S(ν) ◦ L(ν) yields the identity map on
∏
m 1 + p · Zp

[
U (ν),ab
m,n

]
.

Proof. To establish the first assertion, one simply calculates that

L(ν) ◦ S(ν)
(
(a(ν)m )

)
m

= L(ν)
(
(y(ν)
m )
) by (18)

= logZp[U(ν),ab
m,n ]

 y
(ν)
m

φ̃U(ν),ab
m−1,n

(
y
(ν)
m−1

)


by 26
= logZp[U(ν),ab

m,n ]

(
expZp[U(ν),ab

m,n ]

(
a(ν)m

))
= a(ν)m .

The proof of the second assertion follows along identical lines.

For the rest of this section, we assume that
(
a
(ν)
m

)
∈
∏
m p ·Zp

[
U (ν),ab
m,n

]
satisfies (A1)–(A3).

The goal now is to prove that properties (M1)–(M4) all hold for
(
y
(ν)
m

)
= S(ν)

(
(a

(ν)
m )
)
.

Three of them are straightforward to deduce, but property (M3) requires more effort.

Establishing that S(ν)
(
(a

(ν)
m )
)
satisfies (M1),(M2),(M4). Let us begin by obtaining (M1).

Since (A1) holds for the sequence
(
a
(ν)
m

)
, clearly

Nm−1,m ◦ expZp[U(ν),ab
m−1,n]

(
a
(ν)
m−1

)
= expZp[U(ν),ab

m,n ]
◦ Trm−1,m

(
a
(ν)
m−1

)
by (A1)
= expZp[U(ν),ab

m,n ]
◦ πm,m−1

(
a(ν)m

)
= πm,m−1 ◦ expZp[U(ν),ab

m,n ]

(
a(ν)m

)
i.e.

Nm−1,m

(
y
(ν)
m−1

)
Nm−1,m

(
φ̃(y

(ν)
m−2)

) =
πm,m−1

(
y(ν)
m

)
πm,m−1

(
φ̃(y

(ν)
m−1)

) for each m ≥ 1. The latter is equivalent to

Nm−1,m

(
y
(ν)
m−1

)
= πm,m−1

(
y(ν)
m

)
× φ̃U(ν),ab

m−1,n

(
Nm−2,m−1

(
y
(ν)
m−2

)
πm−1,m−2

(
y
(ν)
m−1

) ) .
The equality between Nm−1,m

(
y
(ν)
m−1

)
and πm,m−1

(
y
(ν)
m

)
now follows by induction on m,

thereby yielding (M1) as a consequence.

Focussing instead on (M2), the semi-direct product structure on G(ν)∞,n = Γ/Γp
ν n H∞

Hpn
∞

implies the subset of G(ν)∞,n-invariant elements in Zp[U (ν),ab
m,n ] consists of

H0
(
G(ν)∞,n,Zp[U (ν),ab

m,n ]
)

= H0
(
Γ,Zp[U (ν),ab

m,n ]
)

=
(
Im
(
σ(ν)
m

)[
1/p
])
∩ Zp

[
U (ν),ab
m,n

]
.

Now (A2) states that a
(ν)
m belongs to this subset, hence y

(ν)
m ∈ Im

(
σ
(ν)
m

)[
1/p
]
∩Zp[U (ν),ab

m,n ]×

upon combining the recurrence in Definition 26 with induction on m, and (M2) follows.
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To show that (M4) holds true, consider the trace mapping Trm,m+1 acting on Zp
[
U (ν),ab
m,n

]
.

For each integer m ≥ 0, one may decompose

Zp
[
U (ν),ab
m,n

] ∼= Zp
[
Γp

m+1/
Γp

ν

×H(m,n)

∞

]
⊕Ker

(
Trm,m+1

)
where by Lemma 14, the trace acts through multiplication by p on the first factor and
kills off the second factor.

Note that a
(ν)
m ∈ p · Zp

[
U (ν),ab
m,n

]
so 1

pTrm,m+1

(
a
(ν)
m

)
≡ a

(ν)
m mod p · Ker

(
Trm,m+1

)
.

Moreover the sequence
(
a
(ν)
m

)
satisfies (A3), thus p · a(ν)m − Trm,m+1

(
a
(ν)
m

)
∈ p · Im

(
σ
(ν)
m

)
and applying Proposition 19:

expZp[U(ν),ab
m,n ]

(
p · a(ν)m − Trm,m+1

(
a(ν)m

))
∈ 1 + p · Im

(
σ(ν)
m

)
.

It is easy to see exp
(
p · a(ν)m − Trm,m+1(a

(ν)
m )
)
=

exp(a(ν)
m )p

Nm,m+1◦ exp(a
(ν)
m )

. Also, recalling from

earlier that exp
(
a
(ν)
m

)
=

y(ν)
m

φ̃(y
(ν)
m−1)

, we therefore conclude

(
y
(ν)
m

)p
φ̃U(ν),ab

m−1,n

(
y
(ν)
m−1

)p ×
 Nm,m+1

(
y
(ν)
m

)
Nm,m+1 ◦ φ̃U(ν),ab

m,n

(
y
(ν)
m−1

)
−1

∈ 1 + p · Im
(
σ(ν)
m

)
.

Equivalently

(
y(ν)
m

)p
Nm,m+1

(
y
(ν)
m

) × φ̃U(ν),ab
m−1,n

( (
y
(ν)
m−1

)p
Nm−1,m

(
y
(ν)
m−1

))−1

∈ 1+p · Im
(
σ
(ν)
m

)
, so (M4) holds.

Establishing that S(ν)
(
(a

(ν)
m )
)
satisfies (M3). We begin with a technical result describing

the image of the map σ̃m
(ν)

: Zp
[
U (ν),ab
m,n

]
→ Zp

[
U (ν),ab
m,n

]
sending f 7→

∑p−1
i=0 γ

−pm−1ifγp
m−1i.

Lemma 28. For each m ∈ {0, . . . , n − s}, the Γ-invariant submodule H0
(
Γ, Im

(
σ̃m

(ν)))
is finitely generated over Zp

[
Γ/Γp

ν ]
by the combined set{

A(m,n)
ϖ

∣∣∣ ϖ ∈ orbΓ
(
H(m,n)

∞
)
,#ϖ = pm

}
∪
{

#ϖ

pm−1
·A(m,n)

ϖ

∣∣∣ ϖ ∈ orbΓ
(
H(m,n)

∞
)
,#ϖ < pm

}
and in particular, Im

(
σ
(ν)
m

)
⊂ H0

(
Γ, Im

(
σ̃m

(ν))) ⊂ Im
(
σ̃m

(ν))
.

Proof. Because a generator γ ∈ Γ acts trivially on Γp
m

/Γp
ν

and through I2+M on H(m,n)

∞ ,

H0
(
Γ,Zp

[
U (ν),ab
m,n

])
= Zp

[
Γp

m

/Γp
ν ]
⊗Zp H

0
(⟨
I2 +M

⟩
,Zp
[
H(m,n)

∞
])

= Zp
[
Γp

m

/Γp
ν ]
·

⟨∑
h
′∈ϖ

h
′
∣∣∣∣ ϖ ∈ orbΓ

(
H(m,n)

∞
)⟩

= Zp
[
Γp

m

/Γp
ν ]
·
⟨
#ϖ

pm
· A(m,n)

ϖ

∣∣∣ ϖ ∈ orbΓ
(
H(m,n)

∞
)⟩

where we have employed the basic identity A(m,n)
ϖh

=
∑pm−1
i=0 γ−ihγi = pm

#ϖh
·
∑
h
′∈ϖh

h
′
.
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Now pick an element
#ϖh

pm · A(m,n)
ϖh

=
∑
h
′∈ϖh

h
′
belonging to H0

(⟨
I2 +M

⟩
,Zp
[
H(m,n)

∞
])
.

Then one easily sees that

#ϖh

pm
· A(m,n)

ϖh
=

#ϖh

pm
·
pm−1∑
j=0

γ−jhγj =

p−1∑
i=0

pm−1−1∑
j=0

#ϖh

pm
· γ−p

m−1i
(
γ−jhγj

)
γp

m−1i

which coincides exactly with σ̃m
(ν)(

fh
)
, where fh :=

#ϖh

pm ·
∑pm−1−1
j=0 γ−jhγj ∈ Qp

[
H(m,n)

∞
]
.

It follows that pz ·
(

#ϖh

pm · A(m,n)
ϖh

)
∈ Im

(
σ̃m

(ν))
if and only if pz · fh ∈ Zp

[
H(m,n)

∞
]
, and as

pz · fh =

{
pz ·

∑pm−1−1
j=0 γ−jhγj if #ϖh = pm

pz−1 ·
∑
h
′∈ϖh

h
′

if #ϖh < pm,

the latter condition occurs when z ≥ 0 if #ϖ = pm, or alternatively z ≥ 1 if #ϖ < pm.
Therefore the union of the sets

{
fh
∣∣ #ϖh = pm

}
and

{
p · fh

∣∣ #ϖh < pm
}
will generate

the Γ-invariant part of Im
(
σ̃m

(ν))
over Zp

[
Γ/Γp

ν ]
, as asserted.

Finally, the inclusion Im
(
σ
(ν)
m

)
↪→ H0

(
Γ, Im

(
σ̃m

(ν)))
occurs as the generators A(m,n)

ϖ of
the left-hand module are p-integral multiples of generators for the right-hand module.

Proposition 29. For each m ≥ 1, the transfer sends p · Im(σm−1)
Verm−1,m−→ Im

(
σ̃m

(ν))
.

Proof. If we choose any h = h
x

1h
y

2 ∈ H
(m−1,n)

∞ and f(X) ∈ Zp[[X]], then from Lemma 18:

Verm−1,m

(
f
(
γp

m−1

− 1
)
· A(m−1,n)

h
x
1h

y
2

)
= p−1 × f

(
γp

m

− 1
)
· A(m,n)

h
x′
1 h

y′
2

where

(
x′

y′

)
∈ Z2

p is given in Lemma 12. Setting f(X) = p, it follows immediately that

Verm−1,m

(
p · A(m−1,n)

h
x
1h

y
2

)
= A(m,n)

h
x′
1 h

y′
2

∈ Im
(
σ(ν)
m

) by 28
↪→ Im

(
σ̃m

(ν))
.

Lastly applying Proposition 10(ii), we know p · Im
(
σ
(ν)
m−1

)
is freely generated over the

algebra Zp
[
Γp

m−1

/Γp
ν ]

by the set of p · A(m−1,n)

h
x
1h

y
2

’s, hence the result is proven.

Let us now establish that (M3) holds for
(
y
(ν)
m

)
= S(ν)

(
(a

(ν)
m )
)
. For each integer m ≥ 2,

y
(ν)
m

Verm−1,m

(
y
(ν)
m−1

) by 26
=

φ̃U(ν),ab
m−1,n

(
y
(ν)
m−1

)
× expZp[U(ν),ab

m,n ]

(
a
(ν)
m

)
Verm−1,m

(
φ̃U(ν),ab

m−2,n

(
y
(ν)
m−2

)
× expZp[U(ν),ab

m−1,n]

(
a
(ν)
m−1

))
= φ̃U(ν),ab

m−1,n

(
y
(ν)
m−1

Verm−2,m−1

(
y
(ν)
m−2

))× expZp[U(ν),ab
m,n ]

(
a(ν)m −Verm−1,m

(
a
(ν)
m−1

))
and the term a

(ν)
m −Verm−1,m

(
a
(ν)
m−1

)
∈ Im

(
σ̃m

(ν))
, using Lemma 28 and Proposition 29.

39



An identical argument to Proposition 19(b) shows that

expZp[U(ν),ab
m,n ]

:
Im(σ̃m

(ν)
)N

Im(σ̃m
(ν)

)N+1

∼−→ 1 + Im(σ̃m
(ν)

)N

1 + Im(σ̃m
(ν)

)N+1

is an isomorphism for every N ≥ 1, in which case

y
(ν)
m

Verm−1,m

(
y
(ν)
m−1

) = φ̃U(ν),ab
m−1,n

(
y
(ν)
m−1

Verm−2,m−1

(
y
(ν)
m−2

))× (1 + dm
)

for some dm ∈ Im
(
σ̃m

(ν))
.

Furthermore, one easily checks the containment φ̃U(ν),ab
m−1,n

(
Im
(
σ̃m−1

(ν))) ⊂ Im
(
σ̃m

(ν))
.

Therefore, if we inductively assume
y
(ν)
m−1

Verm−2,m−1

(
y
(ν)
m−2

) ∈ 1+Im
(
σ̃m−1

(ν))
, one may conclude

y(ν)
m

Verm−1,m

(
y
(ν)
m−1

) ∈ 1 + Im
(
σ̃m

(ν))
. Property (M3) then follows for all m ≥ 2 by induction.

(If m = 1 the same argument works fine, except one omits the denominator terms above.)

Proof of Theorem 2. As mentioned earlier, now that we have constructed the section S(ν)
mapping p·Ψ(ν) into Φ(ν), to check whether

(
y
(ν)
m

)
arises from an element of K1

(
Zp[G(ν)∞,n]

)
it is the same as verifying if L(ν)

χ

(
(y

(ν)
m,χ)

)
∈ χ
(
Ψ(ν)

)
. However, the latter is equivalent to

checking whether L(ν)
χ

(
(y

(ν)
m,χ)

)
satisfies the conditions (C1)–(C4) listed in Theorem 15.

Theorem 30. If ⋆ ∈ {III,IV,V,VI}, then L(ν)
χ

(
(y

(ν)
m,χ)

)
satisfies conditions (C1)–(C4) in

Theorem 15 if and only if:

(i) NStabΓ(χ)/Γpm

(
y
(ν)
mχ,χ

)
= y

(ν)
m,χ at each m ∈ {mχ, . . . , n− s},

(ii) y
(ν)
m,χ′ = y

(ν)
m,χ whenever χ′ ∈ Γ ∗ χ, and

(iii)
∏

χ∈Rm,∞

NStabΓ(χ)/Γpm

(
y
(ν)
χ

φ
(
y
(ν)
χp

) · φ(N0,mχ−1

(
y
(ν)
1

))
N0,mχ

(
y
(ν)
1

) )Tr(Indχ∗)(ϖ)

≡ 1 mod pN
(m)
⋆,1 +N

(m)
⋆,2 +m−ordp(#ϖ) · Zp

[
Γp

m

/Γp
ν ]

for every integer m ∈ {0, . . . , ν}, and every orbit ϖ ∈ orbΓ
(
H(m,∞)

∞
)
.

Proof. If one chooses the sequence
(
a
(m,ν)
χ

)
:= L(ν)

χ

(
(y

(ν)
m,χ)

)
, then (C1) is readily seen

to be equivalent to (i), while condition (C2) is equivalent to (ii). Focussing therefore on
conditions (C3) and (C4), if one puts e∗χ,ϖ = Tr

(
Indχ∗)(ϖ) then∑

χ∈Rm,n

TrStabΓ(χ)/Γpm

(
a(ν)χ

)
· Tr
(
Indχ∗)(ϖ) =

∑
χ∈Rm,n

e∗χ,ϖ × TrStabΓ(χ)/Γpm

(
a(ν)χ

)
by (19)
=

∑
χ∈Rm,n

e∗χ,ϖ × TrStabΓ(χ)/Γpm ◦ log

(
y
(ν)
χ

N0,mχ

(
y
(ν)
1

) · φ
Γp

mχ−1

Γpν

(
N0,mχ−1

(
y
(ν)
1

)
y
(ν)
χp

))

= log
Zp

[
Γpm

Γpν

] ∏
χ∈Rm,n

NStabΓ(χ)/Γpm

(
y
(ν)
χ

N0,mχ

(
y
(ν)
1

) · φ
Γp

mχ−1

Γpν

(
N0,mχ−1

(
y
(ν)
1

)
y
(ν)
χp

))e∗
χ,ϖ

.
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Recall that (C3) and (C4) together imply
∑
χ∈Rm,n

TrStabΓ(χ)/Γpm

(
a
(ν)
χ

)
·Tr
(
Indχ∗)(ϖ) is

congruent to zero modulo pordp(#H(m,n)
∞ )+m−ordp(#ϖ) ·Zp[Γp

m

/Γp
ν

], for m ∈ {0, . . . , n− s}
and at each orbit ϖ ∈ orbΓ

(
H(m,n)

∞
)
. Now for all integers i ≥ 1, the mappings log :

1+pi ·Zp[Γp
m

/Γp
ν

]
∼−→ pi ·Zp[Γp

m

/Γp
ν

] and exp : pi ·Zp[Γp
m

/Γp
ν

]
∼−→ 1+pi ·Zp[Γp

m

/Γp
ν

]
are inverse isomorphisms to each other. As an immediate consequence,∑
χ∈Rm,n

TrStabΓ(χ)/Γpm

(
a(ν)χ

)
·Tr
(
Indχ∗)(ϖ) ≡ 0 mod pordp(#H(m,n)

∞ )+m−ordp(#ϖ)·Zp
[
Γp

m

Γpν

]

if and only if
∏
χ∈Rm,n

NStabΓ(χ)/Γpm

(
y(ν)
χ

φ
(
y
(ν)

χp

) · φ(N0,mχ−1

(
y
(ν)
1

))
N0,mχ

(
y
(ν)
1

) )Tr(Indχ∗)(ϖ)

belongs to

1 + pordp(#H(m,n)
∞ )+m−ordp(#ϖ) · Zp[Γp

m

/Γp
ν

].

Finally, both H(m,n)

∞
∼= H

(m,∞)

∞ and Rm,n = Rm,∞ provided that ⋆ ∈ {III,IV,V,VI};
moreover ordp

(
#H(m,n)

∞
)
= N

(m)
⋆,1 +N

(m)
⋆,2 , therefore the equivalence is fully established.

The reader will notice that these congruences are independent of the choice of n ≥ m+ s.
They also behave well if we take the projective limit as ν → ∞, hence one can obtain
analogous congruences for the completed group algebras Zp

[[
Γp

m]]
= lim←−ν Zp[Γ

pm/Γp
ν

],

i.e. those congruences labelled Equation (2) in §1.2.

The proof of the ‘non-S-localised version’ of Theorem 2 has therefore been completed,

i.e. a sequence
(
ym,χ

)
∈
∏
m,χ ΛOCp

(
Γp

m)×
belongs to Θ∞,χ

(
K ′

1(Λ(G∞))
)
if and only if

NStabΓ(χ)/Γpm

(
y
(ν)
mχ,χ

)
= y

(ν)
m,χ if m ≥mχ, secondly y

(ν)
m,χ′ = y

(ν)
m,χ for χ′ ∈ Γ∗χ, and lastly

∏
χ∈Rm,∞

NStabΓ(χ)/Γpm

(
yχ

φ
(
yχp

) · φ(N0,mχ−1

(
y1

))
N0,mχ

(
y1

) )Tr(Indχ∗)(ϖ)

≡ 1 mod pN
(m)
⋆,1 +N

(m)
⋆,2 +m−ordp(#ϖ) · Zp

[[
Γp

m]]
for every positive integer m, and at every orbit ϖ ∈ orbΓ

(
H(m,∞)

∞
)
.

Remarks: (a) If ⋆ =II, the proof of Theorem 1 runs along identical lines – the only point

of departure is that N
(m)
II,1 = n and N

(m)
II,2 = s+m, so Rm,n is no longer independent of n.

Nevertheless in Case (II), the multiplicative conditions equivalent to (C3) and (C4) are

∏
χ∈Rm,n

NStabΓ(χ)/Γpm

(
yχ

φ
(
yχp

) · φ(N0,mχ−1

(
y1

))
N0,mχ

(
y1

) )Tr(Indχ∗)(ϖ)

≡ 1 mod ps+2m+n−ordp(#ϖ) · Zp
[[
Γp

m]]
(20)

for every positive integer m ≤ n− s, and at every orbit ϖ ∈ orbΓ
(
H(m,n)

∞
)
.

(b) To transform these into the congruences labelled Equation (1), one must calculate each
ofRm,n, #ϖ and Tr(Indχ∗)(ϖ) precisely – we refer the reader to the worked example given
later in §5.1, for the full details.

(c) Of course, this still only gives us a non-S-localised version of Theorem 1, describing
Θ∞,χ

(
K ′

1(Λ(G∞))
)
rather than Θ∞,S,χ

(
K ′

1

(
Λ(G∞)S

))
, which is an issue we address below.
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Extending these congruences to the localisations. Finally, we explain how to extend these
results from K ′

1

(
Λ(G∞)

)
, to both of the Ore localisations K ′

1

(
Λ(G∞)S

)
and K ′

1

(
Λ(G∞)S∗

)
.

Let us focus first on K1

(
Λ(G∞)S

)
, and write

Θ∞,S : K1

(
Λ(G∞)S

)
→
∏
m≥0

K1

(
Λ(Uab

m )S
)

for the corresponding collection of morphisms
∏
θm,S , with θm,S := NUm(−) mod [Um,Um].

In order to extend the arguments in §4.1-§4.3 so as to produce non-abelian congruence
conditions ‘ΦS ’ describing Im

(
Θ∞,S

)
, one must first extend the Taylor-Oliver logarithm

to a homomorphism

LOGG∞,n,S : K1

(
̂Λ(G∞,n)S

)
−→

̂Λ(G∞,n)S[ ̂Λ(G∞,n)S , ̂Λ(G∞,n)S
] for every n ≥ 1,

where ̂Λ(G∞,n)S denotes the Jac
(
Zp[H∞,n]

)
-adic completion of the localisation Λ(G∞,n)S .

This task has already been partially accomplished (see for example [7, Section 5] or [17]),
but not enough is known about the kernel and cokernel of these maps on the completion.
Indeed by [7, Lemma 5.2], the extension of the logarithm sits inside a commutative square

K1

(
Λ(G∞,n)

)
−→ K1

( ̂Λ(G∞,n)S
)y

LOGG∞,n

y
LOGG∞,n,S

Zp
[[
Conj(G∞,n)

]]
−→

̂Λ(G∞,n)S[ ̂Λ(G∞,n)S , ̂Λ(G∞,n)S
]

where the horizontal arrows are induced from the natural inclusion Λ(G∞,n) ↪→ ̂Λ(G∞,n)S .

We simply observe that the properties of the Taylor-Oliver logarithm we derived in
§4.3 extend to the Jac

(
Zp[H∞,n]

)
-adic completion if one ignores their kernels/cokernels,

and omit the details (which are anyway identical to Section 5 of op. cit.). The remainder
of the proof of Theorems 1 and 2 in the S-localised situation then follows readily, albeit
the congruences in Equations (1) and (2) are now taken modulo p• · Zp

[[
Γp

m]]
(p)

rather

than just modulo p• ·Zp
[[
Γp

m]]
, and we unfortunately lose their sufficiency in the process.

We now turn our attention to the S∗-localisation, Λ(G∞)S∗ , which is less problematic.
Recall that G∞ has no element of order p, in which case Burns and Venjakob [3, Prop 3.4]
have constructed a splitting

K1

(
Λ(G∞)S∗

) ∼= K1

(
Λ(G∞)S

)
⊕K0

(
Fp[[G∞]]

)
.

Furthermore, there exists another commutative diagram

K1

(
Λ(G∞)S∗

) ∼−→ K1

(
Λ(G∞)S

)
⊕K0

(
Fp[[G∞]]

)y
Θ∞,S∗

y
(Θ∞,S ,Θ0)∏

m≥0

K1

(
Λ(Uab

m )S∗
)
←↩

∏
m≥0

K1

(
Λ(Uab

m )S
)
⊕K0

(
Fp[[Uab

m ]]
)

where the map Θ0 : K0

(
Fp[[G∞]]

)
→
∏
m≥0K0

(
Fp[[Uab

m ]]
)
encodes how the non-commutative

µ-invariant information in K0

(
Fp[[G∞]]

)
gets distributed amongst its abelian fragments.
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Thus a sequence (yS∗
,m) lies in the image of Θ∞,S∗ , if and only if each term factorises

into yS∗
,m =

(
yS,m, µm

)
where the components (yS,m) ∈ Im

(
Θ∞,S

)
and (µm) ∈ Im(Θ0).

Note that G∞ is a pro-p-group so that K0

(
Fp[[G∞]]

) ∼= Z, and similarly K0

(
Fp[[Uab

m ]]
) ∼= Z.

Consequently a tuple (µm) ∈
∏
mK0

(
Fp[[Uab

m ]]
)
arises from the image of Θ0 if and only if

for every integer m ≥ 0, one has µm = [G∞ : Um]× µ for some fixed µ ∈ Z.

Because the bottom arrow in the above diagram may possibly not be surjective, the
most one can say is that any (yS∗

,m) ∈ Im
(
Θ∞,S∗

)
must of necessity satisfy (M1)–(M4).

If we denote this subset of
∏
m≥0K1

(
Λ(Uab

m )S∗
)
satisfying (M1)–(M4) by ‘ΦS∗ ’, then this

potential lack of surjectivity yields another obstruction to Θ∞,S∗ : K ′
1

(
Λ(G∞)S∗

)
→ ΦS∗

being an isomorphism. In terms of Θ∞,χ,S∗ = χ ◦ Θ∞,S∗ from the Introduction, this
translates into the necessity of the congruences written down in Theorems 1 and 2 holding

for χ(yS∗
,m) ∈

∏
m,χQuot

(
ΛOχ(Γ

pm)
)×

, but not their sufficiency regrettably.

5 Computing the terms in Theorems 1 and 2

The various quantities Rm,n, ϖ and e∗χ,ϖ occurring in the congruences (1) and (2) are
easy to define in theory, but it is not quite so evident how to work them out in practice.
We shall now give a step-by-step guide to calculating these terms algorithmically.

Step 1: We first explain how to express χ̃
1,N

(m)
⋆,1

and χ̃
2,N

(m)
⋆,2

in terms of χ1,n and χ2,n.

Step 2: We next explicitly list representatives for Rm,n in the form χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

.

Step 3: We end by giving formulae to compute both #ϖ and e∗χ,ϖ = Tr
(
Indχ∗)(ϖ).

The technical results corresponding to Steps 1, 2, 3 in the text below are respectively
Proposition 32, Lemma 34 and Lemma 35.

Definition 31. (a) We set the non-negative integer pair
(
e
[1,m]
⋆,1 , e

[1,m]
⋆,2

)
equal to

•
(
0, 1
)

•

(
ps+m

λp
m

III,± − 1
, 0

)

•

(
ps+m

2

(
1

λp
m

IV,+ − 1
+

1

λp
m

IV,− − 1

)
,
ps+m

2
√
d

(
1

λp
m

IV,+ − 1
− 1

λp
m

IV,− − 1

))

•

(
ps+m+ordp(d)

2

(
1− pr

2
√
∆V

λp
m

V,+ − 1
+

1 + pr

2
√
∆V

λp
m

V,− − 1

)
,
ps+m+ordp(d)

2
√
∆V

(
1

λp
m

V,+ − 1
− 1

λp
m

V,− − 1

))

•

(
ps+m

2

(
pr+ordp(t)

λp
m

VI,+ − 1
+
pr+ordp(t)

λp
m

VI,− − 1

)
,
ps+m

2
√
prt

(
pr+ordp(t)

λp
m

VI,+ − 1
− pr+ordp(t)

λp
m

VI,− − 1

))

in Cases (II), (III), (IV), (V) and (VI) respectively.
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(b) Likewise, we shall define a second pair
(
e
[2,m]
⋆,1 , e

[2,m]
⋆,2

)
by setting it equal to

•
(
1, 0
)

•

(
0 ,

ps+m

λp
m

III,± − 1

)

•

(
ps+m

√
d

2

(
1

λp
m

IV,+ − 1
− 1

λp
m

IV,− − 1

)
,
ps+m

2

(
1

λp
m

IV,+ − 1
+

1

λp
m

IV,− − 1

))

•

(
ps+md

2
√
∆V

(
1

λp
m

V,+ − 1
− 1

λp
m

V,− − 1

)
,
ps+m

2

(
1 + pr

2
√
∆V

λp
m

V,+ − 1
+

1− pr

2
√
∆V

λp
m

V,− − 1

))

•

(
ps+m

√
prt

2

(
1

λp
m

VI,+ − 1
− 1

λp
m

VI,− − 1

)
,
ps+m

2

(
1

λp
m

VI,+ − 1
+

1

λp
m

VI,− − 1

))

again in Cases (II), (III), (IV), (V) and (VI) respectively.

Proposition 32. For integers n≫ 0, one has the character relations

χ̃
1,N

(m)
⋆,1

=



χ0
1,n · χ1

2,n if ⋆=II

χ
e
[1,m]
III,1

1,s+m · χ0
2,s+m if ⋆=III

χ
e
[1,m]
IV,1

1,s+m · χ
e
[1,m]
IV,2

2,s+m if ⋆=IV

χ
e
[1,m]
V,1

1,s+m+ordp(d)
· χe

[1,m]
V,2

2,s+m+ordp(d)
if ⋆=V

χ
e
[1,m]
VI,1

1,s+m+r+ordp(t)
· χe

[1,m]
VI,2

2,s+m+r+ordp(t)
if ⋆=VI

and

χ̃
2,N

(m)
⋆,2

=



χ1
1,s+m · χ0

2,s+m if ⋆=II

χ0
1,s+m · χ

e
[2,m]
III,2

2,s+m if ⋆=III

χ
e
[2,m]
IV,1

1,s+m · χ
e
[2,m]
IV,2

2,s+m if ⋆=IV

χ
e
[2,m]
V,1

1,s+m · χ
e
[2,m]
V,2

2,s+m if ⋆=V

χ
e
[2,m]
VI,1

1,s+m · χ
e
[2,m]
VI,2

2,s+m if ⋆=VI.

Proof. The situation where ⋆ =II has already been dealt with in §3.2, cf. Equation (13).
Let us instead suppose ⋆ ∈ {III,IV,V,VI}. We first recall from Definition 16 that

• χ̃
1,N

(m)
⋆,1

(
x
y

)
= χ

1,N
(m)
⋆,1

((
1 0
0 0

)
T⋆,m,1

(
x
y

))
, and

• χ̃
2,N

(m)
⋆,2

(
x
y

)
= χ

2,N
(m)
⋆,2

((
0 0
0 1

)
T⋆,m,2

(
x
y

))
where T⋆,m,j := pN

(m)
⋆,j

((
I2+M

)pm − I2)−1

. Further, one can diagonalise the γ-action via

(
I2 +M

)pm
= P⋆ D

pm

⋆ P−1
⋆ with D⋆ =

(
λ⋆,+ 0
0 λ⋆,−

)
and P⋆ ∈ GL2(Qp).
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The next objective is to calculate the matrices T⋆,m,j on an individual, case-by-case basis.

Case (III). Here PIII = I2 and N
(m)
III,1 = N

(m)
III,2 = s+m, so that

pN
(m)
III,j

(
(I2 +M)p

m

− I2
)−1

=

(
ps+m

(1+ps)pm−1
0

0 ps+m

(1+ps)pm−1

)
.

Case (IV). Here PIV =

(
1 1√
d −

√
d

)
and N

(m)
IV,1 = N

(m)
IV,2 = s + m, so that for each

j ∈ {1, 2}, the matrix pN
(m)
IV,j

(
(I2 +M)p

m − I2
)−1

equals

ps+m

2


1

λpm

IV,+−1
+ 1

λpm

IV,−−1

1√
d

(
1

λpm

IV,+−1
− 1

λpm

IV,−−1

)
√
d

(
1

λpm

IV,+−1
− 1

λpm

IV,−−1

)
1

λpm

IV,+−1
+ 1

λpm

IV,−−1

 .

Case (V). Assume that n ≥ s +m + ordp(d). Then PV =

(
1 1

pr

2 +
√
∆V

pr

2 −
√
∆V

)
with ∆V = d+p2r/4 ∈ Zp, while N (m)

V,1 = s+m+ordp(d) and N
(m)
V,2 = s+m; consequently

for each choice j ∈ {1, 2}, the matrix pN
(m)
V,j

(
(I2 +M)p

m − I2
)−1

equals

pN
(m)
V,j

2


1

λpm

V,+−1
+ 1

λpm

V,−−1
− pr

2
√
∆V

(
1

λpm

V,+−1
− 1

λpm

V,−−1

)
1√
∆V

(
1

λpm

V,+−1
− 1

λpm

V,−−1

)
d√
∆V

(
1

λpm

V,+−1
− 1

λpm

V,−−1

)
1

λpm

V,+−1
+ 1

λpm

V,−−1
+ pr

2
√
∆V

(
1

λpm

V,+−1
− 1

λpm

V,−−1

)
 .

Case (VI). Assume that n ≥ s+m+r+ordp(t). Then one has PVI =

(
1 1√
prt −

√
prt

)
,

while N
(m)
VI,1 = s +m + r + ordp(t) and N

(m)
VI,2 = s +m; consequently, for each j ∈ {1, 2}

the matrix pN
(m)
VI,j

(
(I2 +M)p

m − I2
)−1

equals

pN
(m)
VI,j

2


1

λpm

VI,+−1
+ 1

λpm

VI,−−1

1√
prt

(
1

λpm

VI,+−1
− 1

λpm

VI,−−1

)
√
prt

(
1

λpm

VI,+−1
− 1

λpm

VI,−−1

)
1

λpm

VI,+−1
+ 1

λpm

VI,−−1

 .

Since we know the form of each T⋆,m,j , one now computes χ̃
1,N

(m)
⋆,1

(
x
y

)
and χ̃

2,N
(m)
⋆,2

(
x
y

)
.
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To illustrate the calculation, suppose we are in the last case ⋆ =VI; then one obtains

χ̃
1,N

(m)
VI,1

(
x
y

)
= χ

1,N
(m)
VI,1

((
1 0
0 0

)
TVI,m,1

(
x
y

))

= χ1,s+m+r+ordp(t)

 ps+m+r+ordp(t)

2

(
x+ y√

prt

λpm

VI,+−1
+

x− y√
prt

λpm

VI,−−1

)
0


= χ1,s+m+r+ordp(t)

 ps+m

2

(
pr+ordp(t)

λpm

VI,+−1
+ pr+ordp(t)

λpm

VI,−−1

)
x

0


· χ2,s+m+r+ordp(t)

 0

ps+m

2
√
prt

(
pr+ordp(t)

λpm

VI,+−1
− pr+ordp(t)

λpm

VI,−−1

)
y


which equals χ

e
[1,m]
VI,1

1,s+m+r+ordp(t)

(
x
y

)
· χe

[1,m]
VI,2

2,s+m+r+ordp(t)

(
x
y

)
. Likewise, one can show that

χ̃
2,N

(m)
VI,2

(
x
y

)
= χ2,s+m

((
0 0
0 1

)
TVI,m,2

(
x
y

))

= χ1,s+m

 ps+m√
prt

2

(
1

λpm

VI,+−1
− 1

λpm

VI,−−1

)
x

0


· χ2,s+m

 0

ps+m

2

(
1

λpm

VI,+−1
+ 1

λpm

VI,−−1

)
y

 = χ
e
[2,m]
VI,1

1,s+m

(
x
y

)
· χe

[2,m]
VI,2

2,s+m

(
x
y

)
.

The other remaining cases ⋆ =III, ⋆ =IV and ⋆ =V follow in an analogous fashion.

For Step 2, we introduce an equivalence relation ‘ ∼ ’ on ordered pairs of integers (a, b).

Definition 33. (i) If ⋆ ∈ {III, IV, V, VI}, then one sets

Xm,n :=

{
(a, b) ∈

(
Z

pN
(m)
⋆,1 Z

× Z

pN
(m)
⋆,2 Z

)
− p ·

(
Z

pN
(m)
⋆,1 Z

× Z

pN
(m)
⋆,2 Z

)}/
∼

where (a, b) ∼ (a′, b′), if and only if(
a 0
0 b

)
≡
(
a′ 0
0 b′

)(
I2 +M

)j
mod

((
I2 +M

)pm − I2) for some j ∈ Z/pmZ.

(ii) If ⋆ = II, then one sets

Xm,n :=

{
(a, b) ∈ Z

pnZ
×
(

Z
ps+mZ

)×}/
∼

where (a, b) ∼ (a′, b′) if and only if a ≡ a′ (mod pn−m).

The following result describes how to produce an explicit set of representatives for Rm,n.
Again we assume that the integer n≫ 0 is chosen sufficiently large with respect to m.
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Lemma 34. (a) Up to isomorphism, the exact number of irreducible G∞,n-representations

ρχ = Ind
G∞,n

StabΓ(χ)nH(m,n)
∞

(χ) induced from primitive characters χ : H(m,n)

∞ → C× equals

#Rm,n −#Rm−1,n =


pn+s−1 × (p− 1) in Case (II)

p2s+m−2 × (p2 − 1) in Cases (III) and (IV)

p2s+m+ordp(d)−2 × (p2 − 1) in Case (V)

p2s+m+r+ordp(t)−2 × (p2 − 1) in Case (VI).

(b) If we define Rprim
m,n := Rm,n−Rm−1,n for every m ∈ {1, . . . , n − s}, then we can take

as representatives for Rprim
m,n the set

{
χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

∣∣∣ (a, b) ∈ Xm,n

}
.

Proof. Part (a) follows (with n≫ m) on combining Proposition 10(iii) and Corollary 11.

To show (b), first suppose that ⋆ ̸= II. Then χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

= γj ∗
(
χ̃a

′

1,N
(m)
⋆,1

· χ̃b′
2,N

(m)
⋆,2

)
if and only if χ̃

1,N
(m)
⋆,1

(
ax
ay

)
· χ̃

2,N
(m)
⋆,2

(
bx
by

)
equals

χ̃
1,N

(m)
⋆,1

(
(I2 +M)j

(
a′x
a′y

))
· χ̃

2,N
(m)
⋆,2

(
(I2 +M)j

(
b′x
b′y

))
for all x, y ∈ Zp.

This latter equality is equivalent to the pair of congruences(
pN

(m)
⋆,1 0
0 0

)((
I2 +M

)pm − I2)−1
(
ax
ay

)

≡

(
pN

(m)
⋆,1 0
0 0

)((
I2 +M

)pm − I2)−1

(I2 +M)j
(
a′x
a′y

)
mod pN

(m)
⋆,1

and (
0 0

0 pN
(m)
⋆,2

)((
I2 +M

)pm − I2)−1
(
bx
by

)

≡

(
0 0

0 pN
(m)
⋆,2

)((
I2 +M

)pm − I2)−1

(I2 +M)j
(
b′x
b′y

)
mod pN

(m)
⋆,2

holding for all x, y ∈ Zp; here we have exploited the construction of χ̃
1,N

(m)
⋆,1

and χ̃
2,N

(m)
⋆,2

given in Definition 16. Because
(
I2+M

)pm − I2 and (I2+M)j commute with each other,
the above may be rewritten as a single congruence(

a 0
0 b

)((
I2 +M

)pm − I2)−1

≡
(
a′ 0
0 b′

)
(I2 +M)j

((
I2 +M

)pm − I2)−1

mod Mat2×2

(
Zp
)
.

Note this congruence is satisfied for some j ∈ Z/pmZ precisely when (a, b) ∼ (a′, b′).
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Let us instead suppose that ⋆ = II. Then χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

= γj ∗
(
χ̃a

′

1,N
(m)
⋆,1

· χ̃b′
2,N

(m)
⋆,2

)
if and only if

χ̃
1,N

(m)
⋆,1

(
ax
ay

)
· χ̃

2,N
(m)
⋆,2

(
bx
by

)
= χ̃

1,N
(m)
⋆,1

(
a′(x+ psjy)

a′y

)
· χ̃

2,N
(m)
⋆,2

(
b′(x+ psjy)

b′y

)
at every x, y ∈ Zp. Again using Definition 16, we can rewrite this as

ζaypn · ζbxps+m = ζa
′y
pn · ζ

b′(x+psjy)
ps+m for each x, y ∈ Zp,

which is itself equivalent to the congruences

b ≡ b′ (mod ps+m) and a ≡ a′ + jpn−mb′ (mod pn) for some j ∈ Z/pmZ.

These last two congruences then reduce to b ≡ b′ (mod ps+m) and a ≡ a′ (mod pn−m).

Therefore in all possible cases ⋆ ∈ {II,III,IV,V,VI}, one concludes that χ̃a
1,N

(m)
⋆,1

·χ̃b
2,N

(m)
⋆,2

and χ̃a
′

1,N
(m)
⋆,1

· χ̃b′
2,N

(m)
⋆,2

lie in the same Γ-orbit if and only if (a, b) ∼ (a′, b′).

Consequently Steps 1 and 2 have now been resolved, and it therefore only remains to
complete Step 3. The latter task is covered by the next result, which enables us to
compute both the size of ϖ and also the exponent e∗χ,ϖ occurring in Theorems 1 and 2,
for each orbit ϖ and representative character χ ∈ Rm,n.

Lemma 35. (i) If ϖ ∈ orbΓ
(
H(m,n)

∞
)
contains an element h = h

x

1h
y

2, then

ϖ =

{
h
a

1h
b

2 such that

(
a
b

)
∈ Y(x,y) mod

((
I2 +M

)pm− I2)( Zp
Zp

)
+

(
pnZp
pnZp

)}

where the set Y(x,y) consists of the vectors

{(
I2 +M

)j ( x
y

)
with j = 0, 1, . . . , pm − 1

}
.

(ii) For each character χ = χ̃a
1,N

(m)
⋆,1

· χ̃b
2,N

(m)
⋆,2

on H(m,n)

∞ , the number e∗χ,ϖ = Tr
(
Indχ∗)(ϖ)

can be computed via the exponential sum formula

pmχ−m ·
pm−1∑
j=0

exp

(
−2π
√
−1

((
ae

[1,m]
⋆,1

pN
(m)
⋆,1

+
be

[2,m]
⋆,1

pN
(m)
⋆,2

)
xj +

(
ae

[1,m]
⋆,2

pN
(m)
⋆,1

+
be

[2,m]
⋆,2

pN
(m)
⋆,2

)
yj

))

where the integer mχ is given in Proposition 5, and

(
xj
yj

)
:=
(
I2 +M

)j ( x
y

)
for all j.

(iii) In particular, if ϖ consists of just the identity element, then e∗χ,ϖ = pmχ ∈ N.

Proof. To establish assertion (i), we remark that γ acts on the quotient group

H(m,n)

∞ =
H∞/Hp

n

∞⟨[
hx1h

y
2 mod Hpn∞ , γpm

] ∣∣∣ x, y ∈ Zp
⟩ ∼=

Z

pN
(m)
⋆,1 Z

× Z

pN
(m)
⋆,2 Z

through the matrix I2 +M , hence our description for the Γ-orbit follows immediately.
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To show part (ii), by the definition of Tr
(
Indχ∗)(ϖ) one calculates that

e∗χ,ϖ =
#(Γ ∗ χ)
pm

·
pm−1∑
j=0

χ−1
(
γ−jhγj

)
=

[Γ : StabΓ(χ)]

[Γ : Γpm ]
·
pm−1∑
j=0

χ−1
(
h
xj

1 h
yj
2

)
by 5
= pmχ−m ·

pm−1∑
j=0

χ̃
1,N

(m)
⋆,1

(
h
xj

1 h
yj
2

)−a
× χ̃

2,N
(m)
⋆,2

(
h
xj

1 h
yj
2

)−b
by 32
= pmχ−m ·

pm−1∑
j=0

χ
e
[1,m]
⋆,1

1,N
(m)
⋆,1

· χe
[1,m]
⋆,2

2,N
(m)
⋆,1

(
h
xj

1 h
yj
2

)−a
× χe

[2,m]
⋆,1

1,N
(m)
⋆,2

· χe
[2,m]
⋆,2

2,N
(m)
⋆,2

(
h
xj

1 h
yj
2

)−b
= pmχ−m ·

pm−1∑
j=0

χ
−ae[1,m]

⋆,1

1,N
(m)
⋆,1

· χ−be[2,m]
⋆,1

1,N
(m)
⋆,2

(
h
xj

1 h
yj
2

)
× χ−ae[1,m]

⋆,2

2,N
(m)
⋆,1

· χ−be[2,m]
⋆,2

2,N
(m)
⋆,2

(
h
xj

1 h
yj
2

)
and the last line is then equivalent to the stated formula.

Finally (iii) is a special case of (ii), corresponding to x = y = 0 and xj = yj = 0.

5.1 A worked example for Case (II)

We end by using Steps 1–3 to yield an explicit expression for the congruences in Case (II).
Firstly by Lemma 34(b) and Definition 33(ii), if one takes m ≥ 1 then

Rprim
m,n =

{
χa2,n · χb1,s+m

∣∣∣ a ∈ Z/pn−mZ and b ∈
(
Z/ps+mZ

)×}
while R0,n coincides with

{
χa2,n · χb1,s

∣∣∣ a ∈ Z/pnZ and b ∈ Z/psZ
}
. It follows that

∏
χ∈Rm,n

NStabΓ(χ)/Γpm (· · · )e
∗
χ,ϖ =

m∏
m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p - b if m′ > 0

Nmχ,m (· · · )e
∗
χ,ϖ

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

.

Now suppose an orbit ϖh ∈ orbΓ
(
H(m,n)

∞
)
contains an element h = h

x

1h
y

2. Then

ϖh =
{
γ−jhγj

∣∣ j ∈ Z
}

=
{
h
x+jpsy

1 h
y

2

∣∣∣ j ∈ Z
}

= h ·
{
h
jpsy

1

∣∣∣ j = 1, · · · , pm−ordp(y)
}

in which case #ϖh = pm−ordp(ỹ), with ỹ ∈ {1, . . . , pm} chosen so that ỹ ≡ y (mod pm).

Finally, if we consider a typical character χ = χa2,n · χb1,s+m′ = χa2,n · χ
pm−m′

b
1,s+m and the

orbit ϖ = ϖh as above, then Lemma 35(ii) implies

e∗χ,ϖh
= pmχ−m ·

pm−1∑
j=0

exp

(
−2π
√
−1

((
pm−m′

b

ps+m

)
(x+ jpsy) +

(
a

pn

)
y

))

= pmχ−m · exp
(
−2π
√
−1
(

bx

ps+m′ +
ay

pn

))
×
pm−1∑
j=0

exp

(
−2π
√
−1
(
bjy

pm′

))

= pmχ−m · exp
(
−2π
√
−1
(

bx

ps+m′ +
ay

pn

))
×

{
pm if pm

′ | by
0 if pm

′ - by.
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However the exponential term exp
(
−2π
√
−1
(

bx
ps+m′ +

ay
pn

))
is then just equal to χ−1

(
h
)
.

Because χ = χa2,n · χb1,s+m′ can be written as χe1
1,n · χ

e2
2,n with e1 = pn−s−m

′
b and e2 = a,

one calculates via Proposition 5 that mχ = max{0, m̃χ} where

m̃χ
by 5
= n− s− ordp

(
pn−s−m

′
b
)

= m′ − ordp(b).

Consequently, if χ = χa2,n ·χb1,s+m′ then e∗χ,ϖh
=

{
χ−1(h) · pmax{0,m′−ordp(b)} if pm

′ | by
0 if pm

′ - by.

Corollary 36. The congruences described in Equation (20) are equivalent to

m∏
m′=0

pn−m′∏
a=1

ps+m′∏
b = 1,

p - b if m′ > 0

Nmχ,m

(
yχ

φ
(
yχp

) · φ(N0,mχ−1

(
y1

))
N0,mχ

(
y1

) )e∗
χ,ϖ

h

∣∣∣∣∣
χ=χa

2,n·χb
1,s+m′

≡ 1 mod ps+m+n+ordp(ỹ) · Zp
[[
Γp

m]]
(p)

for all integer pairs m,n ≥ 0 with m ≤ n − s, and at every choice of h = h
x̃

1h
ỹ

2 ∈ H
(m,n)

∞
with x̃ ∈ {1, . . . , pn} and ỹ ∈ {1, . . . , pm}.

This completes the proof of Theorem 1, in the precise form stated in the Introduction.
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