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Abstract. A system of nested dichotomies (NDs) is a method of decom-
posing a multiclass problem into a collection of binary problems. Such a
system recursively applies binary splits to divide the set of classes into
two subsets, and trains a binary classifier for each split. Many methods
have been proposed to perform this split, each with various advantages
and disadvantages. In this paper, we present a simple, general method
for improving the predictive performance of NDs produced by any subset
selection techniques that employ randomness to construct the subsets.
We provide a theoretical expectation for performance improvements, as
well as empirical results showing that our method improves the root
mean squared error of NDs, regardless of whether they are employed as
an individual model or in an ensemble setting.

1 Introduction

Multiclass classification problems are commonplace in real world applications.
Some models, like neural networks and random forests, are inherently able to
operate on multiclass data, while other models, such as classic support vector
machines, can only be used for binary (two-class) problems. The standard way to
bypass this limitation is to convert the multiclass problem into a series of binary
problems. There exist several methods of performing this decomposition, the
most well-known including one-vs-rest [26], one-vs-one [16] and error-correcting
output codes [7]. Models that are directly capable of working with multiclass
data may also see improved accuracy from such a decomposition [13,25].

The use of ensembles of nested dichotomies (NDs) is one such method for
decomposing a multiclass problem into several binary problems. It has been
shown to outperform one-vs-rest and perform competitively compared to the
aforementioned methods [11]. In an ND [10], the set of classes is recursively split
into two subsets in a tree structure. At each split node of the tree, a binary
classifier is trained to discriminate between the two subsets of classes. Each
leaf node of the tree corresponds to a particular class. To obtain probability
estimates for a particular class from an ND, assuming the base learner can
produce probability estimates, one can simply compute the product of the binary
probability estimates along the path to the leaf node corresponding to the class.

For non-trivial multiclass problems, the space of potential NDs is very large.
An ensemble classifier can be formed by choosing suitable decompositions from



2 T. Leathart et al.

2 4 6 8 10 12

102

104

106

108

1010

Number of classes

S
iz

e
o
f

sa
m

p
le

sp
a
ce

Random Selection

Class Balanced

Random-Pair (estimated)

Fig. 1: Growth functions for each subset selection method discussed.

this space. In the original formulation of ensembles of NDs, decompositions are
sampled with uniform probability [11], but several other more sophisticated
methods for splitting the set of classes have been proposed [8,9,19]. Superior
performance is achieved when ensembles of NDs are trained using common en-
semble learning methods like bagging or boosting [27].

In this paper, we describe a simple method that can improve the predictive
performance of NDs by considering several splits at each internal node. Our
technique can be applied to NDs built with almost any subset selection method,
only contributing a constant factor to the training time and no additional cost
when obtaining predictions. It has a single hyperparameter λ that provides a
trade-off between predictive performance and training time, making it easy to
tune for a given learning problem. It is also straightforward to implement.

The paper is structured as follows. First, we describe existing methods for
class subset selection in NDs. Following this, we describe our method and provide
a theoretical expectation of performance improvements. We then present and
discuss empirical results for our experiments. Finally, we touch on related work,
before concluding and discussing future research directions.

2 Class Subset Selection Methods

At each internal node i of an ND, the set of classes present at the node Ci is split
into two non-empty, non-overlapping subsets, Ci1 and Ci2. In this section, we
introduce existing class subset selection methods for NDs. These techniques are
designed to primarily be used in an ensemble setting, where multiple ND decom-
positions are generated that each form an ensemble member. Note that other
methods than those listed here have been proposed for constructing NDs—these
are not suitable for use with our method and are discussed later in Section 5.
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2.1 Random Selection

The most basic class subset selection method is to split the set of classes into two
subsets using a random split.1 This approach has several attractive qualities. It
is easy to compute, and does not scale with the amount of training data, making
it suitable for large datasets. Furthermore, for an n-class problem, the number
of possible NDs is very large, given by the recurrence relation

T (n) = (2n− 3)× T (n− 1)

where T (1) = 1. This ensures that, in an ensemble of NDs, there is a high level
of diversity amongst ensemble members. We refer to this function that relates
the number of classes to the size of the sample space of NDs for a given subset
selection method as the growth function. Figure 1 shows the growth functions
for the three selection methods discussed in this chapter.

2.2 Balanced Selection

An issue with random selection is that it can produce very unbalanced tree struc-
tures. While the number of internal nodes (and therefore, binary models) is the
same in any ND for the same number of classes, an unbalanced tree often implies
that internal binary models are trained on large datasets near the leaves, which
has a negative effect on the time taken to train the full model. Deeper subtrees
also provide more opportunity for estimation errors to accumulate. Dong et. al.
mitigate this effect by enforcing Ci to be split into two subsets Ci1 and Ci2 such
that abs(|Ci1| − |Ci2|) ≤ 1 [8]. This has been shown empirically to have little ef-
fect on the accuracy in most cases, while reducing the time taken to train NDs.
Balanced selection has greater benefits for problems with many classes.

It is clear that the sample space of class balanced NDs is smaller than that of
random NDs, but it is still large enough to ensure sufficient ensemble diversity.
The growth function for class balanced NDs is given by

TCB(n) =

{
1
2

(
n
n/2

)
TCB(n2 )TCB(n2 ), if n is even(

n
(n+1)/2

)
TCB(n+1

2 )TCB(n−1
2 ), if n is odd

where TCB(2) = TCB(1) = 1 [8]. Dong et. al. also explored a form of balancing
where the amount of data in each subset is roughly equal, which gave similar
results for datasets with unbalanced classes [8].

2.3 Random-Pair Selection

Random-pair selection provides a non-deterministic method of creating Ci1 and
Ci2 that groups similar classes together [19]. In random-pair selection, the base
classifier is used directly to identify similar classes in Ci. First, a random pair

1 This is a variant of the approach from [11], where each member of the space of NDs
has an equal probability of being sampled.
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of classes c1, c2 ∈ Ci is selected, and a binary classifier is trained on just these
two classes. Then, the remaining classes are classified with this classifier, and its
predictions are stored as a confusion matrix M . Ci1 and Ci2 are constructed by

Ci1 = {c ∈ Ci \ {c1, c2} : Mc,c1 ≤Mc,c2} ∪ {c1}
Ci2 = {c ∈ Ci \ {c1, c2} : Mc,c1 > Mc,c2} ∪ {c2}

where Mj,i is defined as the number of examples of class j that were classified
as class i by the binary classifier. In other words, a class is assigned to Ci1 if it is
less frequently confused with c1 than with c2, and to Ci2 otherwise. Finally, the
binary classifier is re-trained on the new meta-classes Ci1 and Ci2. This way, each
split is more easily separable for the base learner than a completely random split,
while exhibiting a degree of randomness, which produces diverse ensembles.

Due to the fact that the size of the sample space of NDs under random-pair
selection is dependent on the dataset and base learner (different initial random
pairs may lead to the same split), it is not possible to provide an exact expression
for the growth function TRP (n); using logistic regression (LR) as the base learner,
it has been empirically estimated to be

TRP (n) = p(n)TRP

(
n

3

)
TRP

(
2n

3

)
where TRP (2) = TRP (1) = 1 and p(n) = 0.3812n2 − 1.4979n+ 2.9027 [19].

3 Multiple Subset Evaluation

In class subset selection methods, for each node i, a single class split (Ci1, Ci2)
of Ci is considered, produced by some splitting function S(Ci) : Nn → Na × Nb
where a + b = n. Our approach for improving the predictive power of NDs is
a simple extension. We propose to, at each internal node i, consider λ subsets
{(Ci1, Ci2)1 . . . (Ci1, Ci2)λ} and choose the split for which the corresponding model
has the lowest training root mean squared error (RMSE). The RMSE is defined
as the square root of the Brier score [5] divided by the number of classes:

RMSE =

√√√√ 1

nm

n∑
i=1

m∑
j=1

(ŷij − yij)2

where n is the number of instances, m is the number of classes, ŷij is the esti-
mated probability that instance i is of class j, and yij is 1 if instance i actually
belongs to class j, and 0 otherwise. RMSE is chosen over other measures such
as classification accuracy because it is smoother and a more sensitive indicator
of generalisation performance. Previously proposed methods with single subset
selection can be considered a special case of this method where λ = 1.

Although conceptually simple, this method has several attractive qualities.
By choosing the best of a series of models at each internal node, the overall
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Fig. 2: Left: Growth functions for random selection with multiple subset evalu-
ation and λ ∈ {1, 3, 5, 7}. Solid lines indicate the upper bound, and dashed lines
indicate the lower bound. Middle: Considering class-balanced selection instead
of random selection. Right: Growth functions for random-pair selection.

performance should improve, assuming the size of the sample space of NDs is
not hindered to the point where ensemble diversity begins to suffer.

Multiple subset evaluation is also widely applicable. If a subset selection
method S has some level of randomness, then multiple subset evaluation can be
used to improve the performance. One nice feature is that advantages pertaining
to S are retained. For example, if class-balanced selection is chosen due to a
learning problem with a very high number of classes, we can boost the predictive
performance of the ensemble while keeping each ND in the ensemble balanced. If
random-pair selection is chosen because the computational budget for training is
high, then we can improve the predictive performance further than single subset
selection in conjunction with random-pair selection.

Finally, implementing multiple subset evaluation is very simple, and the com-
putational cost for evaluating multiple subsets of classes scales linearly in the
size of the tuneable hyperparameter λ, making the tradeoff between predictive
performance and training time easy to navigate. Additionally, multiple subset
evaluation has no effect on prediction times.

Higher values of λ give diminishing returns on predictive performance, so
a value that is suitable for the computational budget should be chosen. When
training an ensemble of NDs, it may be desirable to adopt a class threshold,
where λ = 1 is used if fewer than a certain number of classes is present at an
internal node. This reduces the probability that the same subtrees will appear
in many ensemble members, and therefore reduce ensemble diversity. In lower
levels of the tree, where the number of classes is small, the number of possible
binary problems is relatively low (Fig. 2).

3.1 Effect on Growth Functions

Performance of an ensemble of NDs relies on the size of the sample space of
NDs, given an n-class problem, to be relatively large. Multiple subset evaluation
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removes the λ − 1 class splits that correspond to the worst-performing binary
models at each internal node i from being able to be used in the tree. The
effect of multiple subset evaluation on the growth function is non-deterministic
for random selection, as the sizes of Ci1 and Ci2 affect the values of the growth
function for the subtrees that are children of i. The upper bound occurs when
all worst-performing splits isolate a single class, and the lower bound is given
when all worst-performing splits are class-balanced. Class-balanced selection, on
the other hand, is affected deterministically as the size of Ci1 and Ci2 are the
same for the same number of classes.

Growth functions for values of λ ∈ {1, 3, 5, 7}, for random, class balanced
and random-pair selection methods, are plotted in Figure 2. The growth curves
for random and class balanced selection were generated using brute-force com-
putational enumeration, while the effect on random-pair selection is estimated.

3.2 Analysis of Error

In this section, we provide a theoretical analysis showing that performance of
each internal binary model is likely to be improved by adopting multiple subset
evaluation. We also show empirically that the estimates of performance improve-
ments are accurate, even when the assumptions are violated.

Let E be a random variable for the training root mean squared error (RMSE)
for some classifier for a given pair of class subsets Ci1 and Ci2, and assume
E ∼ N(µ, σ2) for a given dataset under some class subset selection scheme.
For a given set of λ selections of subsets S = {(Ci1, Ci2)1, . . . , (Ci1, Ci2)λ} and
corresponding training RMSEs E = {E1, . . . , Eλ}, let Êλ = min(E). There is no
closed form expression for the expected value of Êλ, the minimum of a set of
normally distributed random variables, but an approximation is given by

E[Êλ] ≈ µ+ σΦ−1

(
1− α

λ− 2α+ 1

)
(1)

where Φ−1(x) is the inverse normal cumulative distribution function [28], and
the compromise value α is the suggested value for λ given by Harter [15].2

Figure 3 illustrates how this expected value changes when increasing values
of λ from 1 to 5. The first two rows show the distribution of E and estimated
E[Êλ] on the UCI dataset mfeat-fourier, for a LR model trained on 1,000
random splits of the class set C. These rows show the training and testing RMSE
respectively, using 90% of the data for training and the rest for testing. Note
that as λ increases, the distribution of the train and test error shifts to lower
values and the variance decreases.

This reduction in error affects each binary model in the tree structure, so
the effects accumulate when constructing an ND. The third row shows the dis-
tribution of RMSE of 1,000 NDs trained with multiple subset evaluation on

2 Appropriate values for α for a given λ can be found in Table 3 of [15].
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Fig. 3: Empirical distribution of RMSE of LR trained on random binary class
splits, for values of λ from one to five. The shaded region indicates empirical
histogram, the orange vertical line shows the empirical mean, and the black
dotted vertical line is the expected value, estimated from (1). Top two rows: train
and test RMSE of LR trained on random binary class splits of mfeat-fourier

UCI dataset. For the test data, the approximated value of E[Eλ] is estimated
from the mean and standard deviation of the train error. Third row: train RMSE
of an ND built with random splits and multiple-subset evaluation, trained on
mfeat-fourier for different values of λ. Bottom row: train RMSE of LR trained
on random binary class splits of segment data.

mfeat-fourier, using LR as the base learner, considering increasing values of
λ. As expected, a reduction in train error with diminishing returns is seen.

In order to show an example of how the estimate from (1) behaves when the
error is not normally distributed, the distribution of E for LR trained on the
segment UCI data is plotted in the bottom row. The assumption of normality is
commonly violated in real datasets, as the distribution is often skewed towards
zero error. As with the other examples, 1,000 different random choices for C1 and
C2 were used to generate the histogram. Although the distribution in this case is
not very well modelled by a Gaussian, the approximation of E[Êλ] from (1) still
closely matches the empirical mean. This shows that even when the normality
assumption is violated, performance gains of the same degree can be achieved.
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This example is not atypical; the same behaviour was observed on the entire
collection of datasets used in this study.

4 Experimental Results

All experiments were conducted in WEKA 3.9 [14], and performed with 10 times
10-fold cross validation. We use class-balanced NDs and NDs built with random-
pair selection, with LR as the base learner. For both splitting methods, we
compare values of λ ∈ {1, 3, 5, 7} in a single ND structure, as well as in ensemble
settings with bagging [4] and AdaBoost [12]. The default settings in WEKA
were used for the Logistic classifier as well as for the Bagging and AdaBoostM1

meta-classifiers. We evaluate performance on a collection of 15 commonly used
datasets from the UCI repository [21], as well as the MNIST digit recognition
dataset [20]. Note that for MNIST, we report results of 10-fold cross-validation
over the entire dataset rather than the usual train/test split. Datasets used in our
experiments and their characteristics are listed in the supplementary material.

We provide critical difference plots [6] to summarise the results of the ex-
periments. These plots present average ranks of models trained with differing
values of λ. Models producing results that are not significantly different from
each other at the 0.05 significance level are connected with a horizontal black
bar. Full results tables showing RMSE for each experimental run, including sig-
nificance tests, are available in the supplementary materials.

4.1 Individual Nested Dichotomies

Restricting the sample space of NDs through multiple subset evaluation is ex-
pected to have a greater performance impact on smaller ensembles than larger
ones. This is because in a larger ensemble, a poorly performing ensemble member
does not have a large impact on overall performance. On the other hand, in a
small ensemble, one poorly performing ensemble member can degrade ensemble
performance significantly. In the extreme case, where a single ND is trained,
there is no need for ensemble diversity, so a technique for improving the pre-
dictive performance of an individual ND should be effective. Therefore, we first
compare the performance of single NDs for different values of λ.

Figure 4 shows critical difference plots for both subset selection methods.
Class balanced selection shows a clear trend that increasing λ improves the
RMSE, with the average rank for λ = 1 being exactly 4. For random-pair selec-
tion, choosing λ = 3 is shown to be statistically indistinguishable from λ = 1,
while higher values of λ give superior results on average.

4.2 Ensembles of Nested Dichotomies

Typically, NDs are utilised in an ensemble, so we investigate the predictive per-
formance of ensembles of ten NDs with multiple subset evaluation, with bagging
and AdaBoost employed as the ensemble methods.
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Fig. 4: Critical differences charts for individual NDs. Left: Class balanced selec-
tion. Right: Random-pair selection.
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Fig. 5: Effect of changing the class threshold on RMSE for ensembles of NDs.

Class Threshold. The number of binary problems is reduced when multiple
subset evaluation is applied, which can have a negative effect on ensemble diver-
sity, potentially reducing predictive performance. To investigate this, we built
ensembles of NDs with multiple subset evaluation by introducing a class thresh-
old, the number of classes present at a node required to perform multiple subset
evaluation, and varying its value from one to seven. We plot the test RMSE, rela-
tive to having a class threshold of one, averaged over all the datasets in Figure 5.
Interestingly, the RMSE increases monotonically, showing that the potentially
reduced ensemble diversity does not have a negative effect on the RMSE for en-
sembles of this size. Therefore, we use a class threshold of one in our subsequent
experiments. However, note that increasing the class threshold has a positive
effect on training time, so it may be useful to apply it in practice.

Number of Subsets. We now investigate the effect of λ when using bagging
and boosting. Figure 6 shows critical difference plots for bagging. Both sub-
set selection methods improve when utilising multiple subset selection. When
class-balanced selection is used, as was observed for single NDs, the average
ranks across all datasets closely correspond to the integer values, showing that
increasing the number of subsets evaluated consistently improves performance.
For random-pair selection, a more constrained subset selection method, each
value of λ > 1 is statistically equivalent and superior to the single subset case.

The critical difference plots in Figure 7 (left) show boosted NDs are signif-
icantly improved by increasing the number of subsets sufficiently when class-
balanced NDs are used. Results are less consistent for random-pair selection,
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Fig. 6: Critical differences charts for ensemble of ten bagged NDs. Left: Class
balanced selection. Right: Random-pair selection.

1234

CD = 1.06

λ = 7

λ = 5

λ = 1

λ = 3

1234

CD = 1.06

λ = 7

λ = 3

λ = 5

λ = 1

Fig. 7: Critical differences charts for ensemble of ten NDs, ensembled with Ad-
aBoost. Left: Class balanced selection. Right: Random-pair selection.

reflected in the critical differences plot (Fig. 7, right), which shows single subset
evaluation statistically equivalent to multiple subset selection for all values of
λ, with λ = 7 performing markedly worse on average. As RMSE is based on
probability estimates, this may be in part due to poor probability calibration,
which is known to affect boosted ensembles [24] and NDs [18].

5 Related Work

Splitting a multiclass problem into several binary problems in a tree structure is a
general technique that has been referred to by different names in the literature.
For example, in a multiclass classification context, NDs in the broadest sense
of the term have been examined as filter trees, conditional probability trees,
and label trees. Beygelzimer et al. proposed algorithms which build balanced
trees and demonstrate the performance on datasets with very large numbers of
classes. Filter trees, with deterministic splits [3], as well as conditional probability
trees, with probabilistic splits [2], were explored. Bengio et al. [1] define a tree
structure and optimise all internal classifiers simultaneously to minimise the tree
loss. They also propose to learn a low-dimensional embedding of the labels to
improve performance, especially when many classes are present. Melnikov and
Hullermeier [23] also showed that a method called best-of-k models—simply
sampling k random NDs and choosing the best one based on validation error—
gives competitive predictive performance to the splitting heuristics discussed
so far for individual NDs. However, it is very expensive at training time, as k
independent NDs must be built and tested on a held-out set.

A commonality of these techniques is that they attempt to build a single ND
structure with the best performance. NDs that we consider in this paper, while
conceptually similar, differ from these methods because they are intended to be
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trained in an ensemble setting, and as such, each individual ND is not built
with optimal performance in mind. Instead, a group of NDs is built to maximise
ensemble performance, so diversity amongst the ensemble members is key [17].

NDs based on clustering [9] are deterministic and used in an ensemble by
resampling or reweighting the input. They are built by finding the two classes
(c1, c2) ∈ Ci for which the centroids are furthest from each other, and grouping
the remaining classes based on the distance of their centroids from c1 and c2.

Wever et al. [29] utilise genetic algorithms to build NDs. In their method,
a population of random NDs is sampled and is evolved for several generations.
The final ND is chosen as the best performing model on a held-out validation
set. An ensemble of k NDs is produced by evolving k populations independently,
and taking the best-performing model from each population.

6 Conclusion

Multiple subset selection in NDs can improve predictive performance while re-
taining the particular advantages of the subset selection method employed. We
present an analysis of the effect of multiple subset selection on expected RMSE
and show empirically in our experiments that adopting our technique can im-
prove predictive performance, at the cost of a constant factor in training time.

The results of our experiments suggest that for class-balanced selection, per-
formance can be consistently improved significantly by utilising multiple subset
evaluation. For random-pair selection, λ = 3 yields the best trade-off between
predictive performance and training time, but when AdaBoost is used, multiple
subset evaluation is not generally beneficial.

Avenues of future research include comparing multiple subset evaluation with
base learners other than LR. It is unlikely that training RMSE of the internal
models will be a reliable indicator when selecting splits based on more com-
plex models such as decision trees or random forests, so other metrics may be
needed. Also, it may be beneficial to choose subsets such that maximum ensem-
ble diversity is achieved, possibly through information theoretic measures such
as variation of information [22].
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