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Abstract—A key task in processing time-of-flight
images for the detection of asparagus spears is the
identification and segmentation of the ground plane.
In this paper, we aim to compare the performance
of RANSAC with a modified version of an existing
deterministic method, namely Hyun’s method. Each
method is tested on scenes with varying amounts of
field clutter. Additionally, a variety of camera angles
are investigated. We find that both RANSAC and the
proposed method produce ground plane predictions
with a root mean square error of less than 0.05m and
execute at a rate of approximately 0.056s per frame.
However, RANSAC was shown to be much less reliable
in high clutter scenes. The camera mounting angle is
found to significantly affect the density and noise of
points in time-of-flight images. These factors translate
to significantly worse performance for both methods at
low camera angles.

Index Terms—asparagus, asparagus harvesting,
robotics, robotic harvesting, agricultural automation,
point clouds, ground plane segmentation

I. Introduction

Global demand for agricultural automation has grown
in recent years. This growth is fueled by a general decline
of available labour, coupled with significant technologi-
cal growth in the robotics sector. Many crops, such as
asparagus, have yet to receive significant benefits from
such innovations, mainly due to the unique complexities
surrounding each crops biology. For asparagus, these com-
plexities include a propensity for quick, sporadic growth
and difficulty in controlling the structure of the crop bed,
often resulting in large amounts of field clutter from weeds
and foreign debris.

Many attempts have been made to automate the as-
paragus harvest [1]–[6], however, no such device has yet
achieved commercial viability. This is partially due to
shortcomings of the detection system. Excessive field clut-
ter and the unstructured nature of asparagus beds pose a
real challenge for automated detection. Tactile and photo-
electric beam sensors, as well as several stereoscopic and
monoscopic image processing techniques have been applied
to the detection of asparagus spears with varying success
[7]–[14].

An investigation [15] of several technologies concluded
that time-of-flight imaging is a promising technology for
the detection of asparagus spears for robotic harvesting.
Leu et al. [16] have developed a harvester which utilizes
time-of-flight (TOF) imaging for spear detection. A key
aspect of Leu’s detection system is the ground plane
segmentation. This process aims to segment points in
the TOF images that belong to the asparagus bed, from
those that belong to spears and other vegetation. This
segmentation reduces the number of points needed to be
processed by subsequent feature detection methods and
enables the spear bases to be calculated geometrically
based on each spears intersection with the resulting plane
model. To achieve this segmentation Leu’s system uses
random sample consensus (RANSAC).

RANSAC is commonly used for plane detection in
scenes with large outliers. However, the non-determinant
nature of RANSAC means that it is not often implemented
in real-time systems. Hyun et al. [18] proposed a method
for plane detection specifically for real time applications.
Modifications to Hyun’s original method were made to
make it more suited to outdoor, cluttered environments.
This paper aims to find a robust method for the real-
time identification and segmentation of ground planes
in TOF images. Specifically, this paper investigates how
both RANSAC and the modified Hyun’s method (MHM)
perform when applied to scenes with varying amounts of
field clutter. Each method is also tested at varying camera
mounting angles. It is intended that the results of this
analysis be used to aid in the design of a new automated
asparagus harvester.

II. Method

A. Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC) is an iterative
method for estimating the best fitting parameters of a
mathematical model to a set of data-points. Although
Fishler and Bolles’ [17] original formulation of this method
focused primarily on 2D features, the method is easily
applied to 3D geometry making it a useful technique for
detecting ground planes from point cloud data. This paper
focuses on a simple implementation of RANSAC, provided978-1-7281-0125-5/18/$31.00 ©2018 IEEE



by Point Cloud Library v1.8 [20]. The feature model is
defined as a plane of the form:

ax+ by + cz + d = 0 (1)

using PCL’s pcl::SACMODEL PLANE feature model.
The input point cloud is down-sampled using PCL’s
pcl::VoxelGrid filter with a 0.01m cubic leaf prior to being
segmented using RANSAC. This aims to reduce the total
number of points being operated on such that they are
comparable in magnitude to the number of points sampled
by the MHM.

Lost frames or significant error in the estimation of any
given ground plane are undesirable due to the real-time
nature of this application. For this reason, the probability
threshold was set to 0.99 and the distance threshold was
set to be 0.05m (5 times larger than the voxel grid’s
leaf size). The maximum number of iterations allowed by
RANSAC was determined by evaluating the root mean
squared error (RMSE) of planes with respect to a ground
truth plane, calculated using RANSAC on a scene with 0
clutter using 10000 iterations. A detailed explanation of
the RMSE calculation is provided in section II(D). It was
decided that 50 iterations provided an acceptable tradeoff
between execution speed and observed errors.

B. Hyun’s Method

Woo et al. [18] developed a method for detecting planes
in organized point clouds obtained from a Kinect V2 ToF
camera (Microsoft Inc., Redmond, Wa, USA). A point
cloud P is considered organized if each point p, in addition
to being defined by a vector p = (px, py, pz) in 3D space,
can also be uniquely identified by some 2D coordinate
(u, v) in the image space of the camera where u, v ∈ Z.
Organization of a point cloud in this way allows for
efficient neighbourhood searches as there necessarily exists
some set of orthogonal axes on which the relationship
between adjacent points in the projection of the point
cloud are known. Woo’s method begins by sampling a set
of n points S = (s1, ..., sn) uniformly in the image space of
the point cloud such that each si = s(u, v) = pi. For each
of these points Hyun’s method calculates the vectors:

vi1 = p(ui − 1, vi)− s(ui, vi) (2)

vi2 = p(ui, vi + 1)− s(ui, vi) (3)

in 3D space between each sampled point si and the adja-
cent points in P which exist in the −u and +v directions
respectively. A local normal vector at the sampled point
is then calculated as

Ni = vi1 × vi2 (4)

Once all the points have been sampled the normals
associated with each point are clustered into groups G
based on their angular correspondence using a threshold
of 0.3 degrees. This is calculated as:

Ni ·Nj = |Ni||Nj | cos(θ) (5)

Additionally, the co-planarity of each sample point s is
interrogated by checking if a line between each point in G
is orthogonal the to normal vector Ni defined at the point.
This is calculated as:

(Gp −Gq) ·Ni = 0 (6)

where p and q are indicies of two separate points in G.
Points in G that do not satisfy Equation 6 are separated
into a separate group associated with a parallel but non-
coplanar plane.
Each group of normal vectors are then filtered based on

a minimum member threshold. Finally, for each sampled
point si in each cluster G a plane is fitted using QR
decomposition to solve the linear least squares problem.
The resulting model parameters are returned.

C. Modified Hyun’s Method (MHM)

The above formulation is reasonably successful at iden-
tifying plane normals when the precision of the point cloud
is high. In their paper, Hyun et al. were concerned with
detecting planes in point clouds of hull blocks and other
small-scale models. This meant that the imaging done
in their work was relatively close range which allowed
for much more precise range imaging. In our application
scenes are often imaged over several meters, and ultimately
in outdoor environments where background lighting can
be a significant problem. This means that the quality of
data is much lower. When this method is applied to such
a point cloud the results are wildly inaccurate.
A modification to Hyun’s method was made to mitigate

these effects. Instead of calculating v1 and v2 using the
immediate neighbors of each sampled point, the set of
points from the point cloud that exist on the u and v axes
respectively between each sampled point si were found
and a linear least squared regression was performed using
Eigen’s QR decomposition for each set of points. The
result is a v1 and v2 that is much more resilient to noisy
point clouds but has a lower feature resolution. For our
application this is advantageous.
Additionally, the co-planarity check made by the orig-

inal method was not calculated in the modified method.
This is because for the application only the largest plane
in the image was required. This plane was assumed to
represent the ground plane and was calculated based on
fitting a plane to the group of points G with the largest
member count following segmentation via Equation 5.
For inlier segmentation the orthogonal distance d is

calculated for each point p = (px, py, pz) using:

d =
apx + bpy + cpz − d√

(a2 + b2 + c2)
(7)

and applying a threshold t of 0.05m.

D. Experimental Setup

RANSAC and the Modified Hyun’s Method (MHM)
were compared in order to gauge their relative appli-
cability for use in asparagus detection. Specifically, the



Fig. 1: laboratory setup showing the sand-box and Mir-
cosoft Kinect V2 mount

robustness of the methods for various camera mounting
angles and field clutter levels were compared. Figure 1
shows the apparatus used to collect the data. The appara-
tus consists of a MDF sandbox measuring 2.8m × 0.6m
and a camera stand 0.9m above the sand surface. The
Camera mount allows for angles between 25◦ and 65◦

to be achieved. These angles are measured as the angle
between the optical axis of the camera and the horizontal
plane of the sand bed. 3D printed asparagus spears (PLA)
and various plastic shrubbery items were used to simulate
the types of ground clutter present in real-world scenes.
Seven different scenes ranging from no clutter, to extreme
clutter (much worse than real-world scenes) were created.
These scenes were denoted as clutter level 0-6 and can
be seen in Figure 2 (a)-(g). A recording of the cameras
data stream was made of each of these scenes for several
different camera angles (25◦,35◦,45◦,55◦,65◦). An example
of the point clouds generated using a 45◦ camera angle can
be seen in Figure 2 (h)-(n). Generating a dataset in this
way allowed both methods to be tested against the same
scenes in real time while eliminating any variability that
would result from true real-time imaging.

Point clouds were captured using a Kinect V2 ToF
camera. Images were processed with a PC running a
3.5GHz i5-5700k processor and 32GB of RAM under an
Ubuntu 16.04 LS environment. Freenect2 [19] was used
as the hardware driver and a ROS Kinetic environment
was used to control the various data streams and generate
visualizations. Point Cloud Library v1.8 (PCL) [20] was
used for point cloud manipulation, and its constituent
linear algebra library Eigen was used for various numerical
operations.

Both RANSAC and MHM aim to fit a plane of the form
in equation 1 to the input point cloud P ∈ R3. Ground
truth parameters of this model were calculated by applying
each method to the zero clutter scene for each camera
angle. This allowed subsequent clutter levels to be tested

(a) Clutter = 0 (h) Clutter = 0

(b) Clutter = 1 (i) Clutter = 1

(c) Clutter = 2 (j) Clutter = 2

(d) Clutter = 3 (k) Clutter = 3

(e) Clutter = 4 (l) Clutter = 4

(f) Clutter = 5 (m) Clutter = 5

(g) Clutter = 6 (n) Clutter = 6

Fig. 2: Images of experimental setup and related point
cloud for various clutter levels. Images taken at camera
angle of 45◦



Fig. 3: Average RMSE and standard deviation of RMSE of plane predictions made using RANSAC and MHM at
various clutter levels and camera angles.

Fig. 4: Average RMSE and standard deviation of RMSE
of plane predictions made using RANSAC and MHM at
various clutter levels for a 25◦ camera angle. Note that
the y-axis scale is significantly higher than plots for higher
camera angles.

for each method with respect to that methods zero clutter
performance. In order to quantify this performance a set
of sample points, B = (b1, ..., bN ) where:

bi = {(xi, yi)|xmin < xi < xmax, ymin < yi < ymax}

and [xmin, xmax] and [ymin, ymax] denotes the ranges of x
and y values in P was selected. For each plane prediction,
the root mean squared error between the corresponding z
coordinates were calculated as:

E =

√√√√ 1

N

N∑
i=1

(zi − z0)
2

(8)

where N is the number of points in B, and zi and z0 refer
to the z coordinate calculated for a given plane prediction
and corresponding ground truth plane respectively.

For each camera angle and clutter level, both methods
were used to generate 100 plane predictions. From these
predictions, the average RMSE, as well as the standard
deviation of RMSE, was recorded. These results can be
seen in Figure 3.



TABLE I: Average executions times and standard devia-
tion of execution times for RANSAC and MHM across all
clutter levels for various camera angles.

RANSAC
Angle Average Execution time (s) σt (s)
25 0.0296 0.0011
35 0.0385 0.0006
45 0.0508 0.0010
55 0.0578 0.0016
65 0.0557 0.0021

MHM
Average Execution time (s) σt (s)

25 0.0056 0.0002
35 0.0075 0.0002
45 0.0099 0.0003
55 0.0113 0.0003
65 0.0127 0.0005

III. Results and Discussion

Figure 3 shows that the RMSE of planes predicted
using both RANSAC and MHM generally increases with
increasing field clutter. Although this trend is ubiquitous
across all camera angles tested, it is most pronounced at
the extremes, namely at 25◦ and 65◦. The RMSE of each
method at low clutter levels are all consistent and typically
show a RMSE of less than 0.05m for all camera angles
> 25◦ which implies that the amount of field clutter is the
main limiting factor for both methods.

High RMSE is observed for both methods at extreme
camera angles due to the characteristics of the camera.
At high camera angles, the field-of-view of the camera
is focused on a smaller region of the field than for lower
angles. This means that high angle images contain many
densely packed and relatively close range points, while
low angle images contain fewer, more sparsely distributed,
long-range points. Points imaged by the Microsoft Kinect
V2 are less precise at longer range. Low angle images are
therefore lower quality due to the higher average range of
points. This causes large RMSE in plane predictions in
low angle images. This is exemplified by the RMSE values
found at 25◦, shown in Figure 4. RMSE errors for this case
are up to 400% larger than for any other camera angles
tested.

For high camera angles, large RMSE values are observed
for high clutter scenes. This is due to the limited field-of-
view resulting from the range of the imaging. Lower field-
of-view means that the clutter is more predominant in the
scene, resulting in fewer true inliers of the ground plane,
understandably increasing the RMSE of both methods at
high angles and clutter levels.

The standard deviation of the RMSE (σRMSE) for each
method was also investigated. Figure 3 shows that σRMSE

for both RANSAC and MHM are both less than 0.005m
for low clutter levels and camera angles higher than 45◦,

Fig. 5: Execution times of ransac at 55◦ and 65◦. The
plot shows that at high clutter RANSAC’s execution time
increases

but rapidly increase at higher clutter levels. This value
represents a σRMSE of approximately 10%. The rapid
increase in σRMSE can be seen to be much faster for
RANSAC than MHM which means that plane predictions
made by RANSAC are much more unreliable. In high
clutter cases, particularly at extreme camera angles, the
σRMSE of RANSAC is upwards of 100% , signifying very
little confidence in the plane prediction. The σRMSE for the
25◦ case was approximately 200% higher for most clutter
levels. This indicates that low angle images, in addition to
being more error prone, are also more unreliable in general.
This is likely due to a reduction in point cloud quality at
low angles.
The execution times of both methods were found to be

constant over all clutter levels for low to moderate camera
angles, however, execution times for RANSAC at camera
angles of 55◦ and 65◦ seemed to increase at higher clutter
levels. The average execution times over all clutter levels
can be seen in Table I.
It should be noted that the execution times between

methods cannot be directly compared as both RANSAC
and MHM operated on different numbers of points due
to their respective sampling schemes. Trends within each
algorithm can still be observed for various clutter levels
and camera angles. Both methods were able to perform
at a speed of 0.056s per frame (18fps) which was deemed
fast enough for real-time applications. This suggests that,
using the algorithm parameters outlined in this paper, the
execution time is not a limiting factor for the application
of these methods to a real-time system.
MHM exhibited a constant execution time over all clut-

ter levels for each camera angle. In general lower camera
angles resulted in faster execution times, however, this
effect is minimal, with a maximum difference of 0.007
seconds between the 25◦ and 65◦ cases. This is because



MHM samples each scene with the same grid of points.
Low angle images are more sparse, resulting in slightly
fewer points being sampled by MHM. This leads to slightly
faster executions times for low angle images.

RANSAC utilised all 50 iterations for all predictions in
this paper due to the high probability factor of 0.99. Differ-
ences in observed execution times are therefore primarily
due to the varying number of input points in each scene.
Low camera angles were observed to execute the fastest
and to be invariant to various clutter levels. However, at
high camera angles, RANSAC exhibited longer execution
times for high clutter scenes. This trend can be seen in
Figure 5. It can be seen from the figure that at high
clutter RANSAC’s execution time exceeds 0.06s per frame
(approximately 16 fps) which was considered to slow for
real-time applications. This is because points in low angle
scenes tend to be sparse and span far in comparison to
the height of clutter, resulting in fewer points being passed
through the voxel filter. In contrast, high angle images are
dense and span much smaller distances. This means that
the observed perturbations of the points due to clutter are
quite large, resulting in a larger number of points being
selected by the voxel filter.

IV. Conclusion

Ground plane predictions were made by applying
RANSAC and MHM to point clouds taken for a variety of
different camera angles and field clutter levels. The RMSE
of plane predictions made by both methods are similar,
and for clutter level 0 to 5 are generally below 0.05m.
At lower camera angles, and in the presence of extreme
clutter, both methods produce unacceptably large RMSE.

The σRMSE of planes predicted using RANSAC is larger
in general than planes predicted using MHM at the same
camera angle and clutter level. At high clutter levels,
σRMSE of planes predicted using RANSAC become large,
often exceeding the magnitude of the RMSE. This in-
dicates low confidence in the plane prediction, which is
undesirable for real-time applications.

The σRMSE of planes predicted using MHM was shown
to be generally smaller for the 45◦ and 55◦ camera angles,
particularly at high clutter levels. This indicates that at
moderate camera angles MHM is more robust to clutter
than RANSAC.

The execution times of both methods were shown to
be generally within the real-time range of 0.05s per frame
for each scene using the algorithm parameters outlined in
this paper. It was shown that high angle images generally
result in higher execution times due to higher point density
resulting in a higher number of input points.

We conclude that although the RMSE of planes pre-
dicted by both methods is comparable for similar camera
angles and clutter levels, the improved resilience to high
clutter offered by MHM makes it more applicable to the
detection of ground planes for asparagus harvesting.

A. Future Work

A holistic understanding of plane segmentation is re-
quired for developing a robust plane segmentation strat-
egy. Future work will be concerned with generating similar
comparisons with other methods. In particular, Hough
Transform, and region growing based methods will be
investigated.
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