

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

THE UNIVERSITY OF

WAIKATO
Te Whare Wananga o Ufzikato

Compilation Of Bottom-Up
Evaluation For A Pure Logic

Programming Language

Roger Clayton

This thesis is submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy m Computer Science at the University Of Waikato.

1999 - 2005

© Roger Clayton 2005

Abstract

Abstraction in progranuning languages is usually achieved at the price of run
time efficiency. This thesis presents a compilation scheme for the Starlog logic
programming language. In spite of being very abstract, Starlog can be compiled
to an efficient executable form. Starlog implements stratified negation and in
cludes logically pure facilities for input and output, aggregation and destructive
assignment. The main new work described in this thesis is (1) a bottom-up
evaluation technique which is optimised for Starlog programs, (2) a static in
dexing structure that allows significant compile time optimisation, (3) an inter
mediate language to represent bottom-up logic programs and (4) an evaluation
of automatic data structure selection techniques. It is shown empirically that
the performance of compiled Starlog programs can be competitive with that of
equivalent hand-coded programs.

Acknowledgements

This thesis was only possible with the wisdom, patience, and optimism of my
supervisor, John Cleary.

I would also like to thank the other members of the Starlog project (some
of which have come and gone over the years). Thanks to Mark Utting and
Bernhard Pfahringer for their support, insightful criticisms and for offering as
sistance whenever I needed it. Thank you to Don Smith and Lunjin Lu for their
invaluable contributions to my early work.

I would like to thank my family, the Hyde family, and my friends for their
unwavering support, patience, and optimism throughout this long process.

Most of all, I thank Tracy who has been the light of my life during good
times and bad. You will never know how much you mean to me. We did it!

Contents

1 Introduction
1.1 Where in the World is Starlog?
1.2 Issues with Logic Programming Languages.
1.3 The Starlog Approach

1.3.1 Bottom-Up Evaluation
1.3.2 Negation and Strong Stratification

1.4 Programming in Starlog
1.4.1 Syntax
1.4.2 Input and Output
1.4.3 Aggregation
1.4.4 Destructive Assignment

1.5 Data-Structure-Free Programming
1.5.1 Types

1.6 Applications of Starlog . . .
1. 7 Organisation of this Thesis

2 Abstract Bottom-up Evaluation
2.1 Semi-Naive Evaluation

2.1.1 Example Evaluation ..
2.2 Stratified Semi-Naive Evaluation

2.2.1 Example Evaluation ...
2.2.2 Early Failure of Negated Goals

2.3 Triggering Evaluation
2.3.1 Triggering Transformation .. .
2.3.2 Optimising Triggered Programs .
2.3.3 Example Evaluation
2.3.4 Early and Late Evaluation of Negated Goals
2.3.5 Optimisation for Non-Trigger Rule Heads . .
2.3.6 Optimisation for Exclusive Trigger Rule Heads

2.4 Conclusions

3 Indexing
3.1 Starlog's Index Structures and Discrimination Trees

3.1.1 Static Labelled Branches
3.1.2 Argument Reordering
3.1.3 Labelled Boolean Values
3.1.4 Labelled Values for Functional Relationships
3.1.5 Multiple Argument Orders for Predicates ..

ii

1
1
3
6
6
7
9
9

13
14
15
18
20
20
21

23
24
26
26
30
30
32
32
34
36
37
39
41
42

45
46
48
49
51
52
53

3.2 Example of an Index Structure for Starlog
3.3 Operations on Starlog Index Structures

3.3.1 Searching for Tuples in Starlog's Indexes.
3.3.2 Inserting Tuples into Starlog's Indexes .
3.3.3 Deleting Tuples from Starlog's Indexes .
3.3.4 Comparisons to Relational Databases

3.4 Index Structure Path Definitions
3.5 Automatic Construction of Index Structures ..

3.5.1 Efficient Argument Index Ordering fort:::.
3.5.2 Efficient Argument Index Ordering for r .
3.5.3 Argument Order Definitions .
3.5.4 Combining Index Structures

3.6 Conclusions

4 Starlog Data Structure Language (SDSL)
4.1 SDSL concepts

4.1.1 Comments
4.1.2 Index Structure Definition .
4.1.3 Index Variables ..
4.1.4 Program Variables ..
4.1.5 Code Blocks
4.1.6 Negated Code Blocks

4.2 SDSL Instructions
4.2.1 Dynamic Argument Index Instructions .
4.2.2 Labelled Branch Instructions
4.2.3 Labelled Boolean Value Instructions
4.2.4 Built-ins .

4.3 Summary

5 SDSL Triggered Programs
5.1 Triggering Evaluation Overview .
5.2 Adding Facts to t:::. . • . . • • . .
5.3 Finding and Deleting Minimum Tuples .
5.4 Delayed Querying of Negated Goals
5.5 Adding True Tuples to r
5.6 Activation of Rules
5.7 Example Triggered SDSL Program .
5.8 SDSL Triggered Programs with Combined t:::. and r Sets
5.9 Optimisations

5.9.1 Removal of Repeated Instructions Within Code Blocks .
5.9.2 Factorisation of Repeated Prefixes Across Code Blocks .
5.9.3 Deletion Completion
5.9.4 Removal of Redundant Code Block Nesting
5.9.5 Extracting Deterministic Instructions from Code Blocks
5.9.6 Order of Optimisation

5.10 Conclusions

iii

54
56
56
57
58
58
59
61
62
63
64
68
71

73
74
74
74
74
75
76
77
78
80
87
91
93
95

96
97
97
98

102
102
102
106
109
110
110
116
119
122
125
125
129

6 Compilation of SDSL to Java 131
6.1 Implementation of Index Structures 132
6.2 Index Variables . . 135
6.3 Program Variables . . 135
6.4 Code Blocks 135
6.5 Negated Code Blocks . 136
6.6 SDSL Instructions . . 137

6.6.1 Dynamic Argument Index Instructions . 137
6.6.2 Labelled Branch Instructions 142
6.6.3 Labelled Boolean Value Instructions 144
6.6.4 Built-ins 144

6.7 Example of Compiled SDSL Code 148
6.8 Conclusions 151

7 Data Structure Selection 152
7.1 Data Structure Implementations 153
7.2 Problems with Generic Data Structures and Manual Data Struc-

ture Selection
7.3 Automatic Selection

7.3.1 Static Selection Techniques ..
7.3.2 Dynamic Selection Techniques
7.3.3 Data Structure Selection at Run Time

7.4 Evaluation of Automatic Data Structure Selection
7 .5 Conclusions .

8 Conclusions and Future Work
8.1 Comparison of Efficiency
8.2 Future Work

8.2.1 Detecting Functional Relationships .
8.2.2 Memory Usage and Garbage Collection
8.2.3 Sharing Index Nodes between ~ and r .
8.2.4 Skipping Duplicate Detection
8.2.5 Automatic Use of Multiple Indexing Orders
8.2.6 Parallel Execution

8.3 Summary

Appendices

A Starlog Syntax Reference

B Data Structure Implementations
B.1 Empty Data Structure
B.2 Unsorted List
B.3 Sorted List
B.4 Balanced Binary Tree
B.5 Hash Table . .
B.6 Flexible Array

iv

155
156
157
161
168
170
172

174
175
178
178
178
180
180
181
181
182

182

183

187
187
187
188
189
190
191

C Case Studies in Automatic Data Structure Selection 193
C.l Hamming Number Program 193
C.2 Prime Number Program ... 197
C.3 Shortest Path Program 200
C.4 Pascal's Triangle Generation 204
C.5 Transitive Closure 208
C.6 Game of Life 212
C.7 N-Queens 217

Bibliography 218

V

List of Figures

1.1 Example stratification priorities and stratification order. 10
1.2 Starlog prime number program. 12
1.3 Destructive assignment program. 16
1.4 Comparison between Starlog data structures and other represen-

tations. 19
1.5 Overview of the Starlog compilation pipeline. 22

2.1 Semi-Naive Evaluation of positive programs. . 25
2.2 Semi-Naive Evaluation of an example path finding program. . 27
2.3 Stratified Semi-Naive Evaluation. 29
2.4 Modification to Stratified Semi-Naive Evaluation to optimise strongly

stratified programs. 30
2.5 Stratified Semi-Naive Evaluation of an example path finding pro-

gram. 31
2.6 Modification to Semi-Naive Evaluation for early failure of negated

goals. 32
2.7 Early failure for an example program. 33
2.8 Adding triggers to rules for (a) the general case and (b) an ex

ample rule (where triggers are bold positive goals). 34
2.9 Modification to Semi-Naive Evaluation to evaluate triggered rules. 34
2.10 Removing redundant rules based on the satisfaction order of pos-

itive goals. 36
2.11 Triggered version of the path finding program from Figure 2.5

with trigger goals in bold. 37
2.12 Modifications to Triggering Evaluation for early and late evalu-

ation of negated goals. (Includes early failure for negated goals
that are not definitely stratified before or after the trigger.) . . . 38

2.13 Example uses of early /late evaluation and early failure of negated
goals based on the stratification order of goals. 39

2.14 Example of Non-trigger and Exclusive Trigger Heads optimisation. 43
2.15 Triggering Evaluation with all optimisations. 44

3.1 Specification of index structures in Starlog's compilation pipeline. 46
3.2 Example of indexing tuples in a discrimination tree. 48
3.3 Two index structure instances with different argument orderings. 50
3.4 Labelled branch optimisation where p/3 is the default predicate. 51
3.5 Using labelled boolean values to distinguish tuples subsumed in

an index. 52
3.6 Example program and a possible index instance. 54

vi

3. 7 Index schema. 55
3.8 BNF grammar of index path definitions. 59
3.9 Path definitions corresponding to index structure in Figure 3.6 61
3.10 Finding the minimum stratified element using two different argu-

ment orders. 63
3.11 An algorithm to find efficient argument order definitions. 66
3.12 Example of generating argument order definitions. (Triggers are

shown in bold). 67
3.13 Merging Indexes Algorithm. 69
3.14 Combining four example index structures. 70

4.1 Use of SDSL in Starlog's compilation pipeline. 73
4.2 Example use of index variables $0 - $3 in a Starlog index. 75
4.3 Semantics of SDSL code blocks in Prolog. 76
4.4 Example code blocks and their processing sequence. 77
4.5 Semantics of SDSL negated code blocks in Prolog. . 77
4.6 Example index structure instance for demonstrating SDSL in-

5.1

5.2
5.3
5.4
5.5
5.6

5.7
5.8
5.9

5.10
5.11

5.12

5.13
5.14
5.15
5.16

5.17

5.18

5.19
5.20

6.1

structions. 80

SDSL code generation and optimisation in Starlog's compilation
pipeline
Finding and deleting the minimum element in b. using SDSL.
Example Starlog rule and equivalent SDSL code.
Example Starlog and equivalent SDSL program.
Index structure schema used by example program in Figure 5.4 ..
Example Starlog and equivalent unoptimised SDSL program with
all index nodes shared between b. and r.

96
100
105
108
109

111
Index structure used by example program in Figure 5.6 112
Logical definition of the non-interference operator. 114
Optimisations to remove repeated SDSL instruction within code
blocks where S1 represents zero or more instructions or nested
code blocks, and (} represents a set of variable bindings. 115
Example SDSL program after the removal of repeated instructions.117
Factorisation of identical prefixes of code blocks in an SDSL pro
grams where X represents zero or more code blocks of any type. 118
Factorisation of common prefixes for non-identical instructions
where X represents zero or more code blocks of any type. . 119

120
121
123

Example SDSL program after common prefix factorisation.
Deletion Completion optimsation.
Example SDSL program after Deletion Completion.
Rules to remove redundant code block nesting where To and T1
are sequences of at least one instruction and/or code blocks. . . . 123
Example SDSL program after redundant code nesting has been
removed. 124
Extraction of deterministic instructions from the beginning of
code blocks 125
Example program after all optimisations have been applied 126
Flow diagram showing one order that optimisations may be applied.128

Java code generation in Starlog's compilation pipeline 131

vii

6.2 The Node interface. 133
6.3 Example index structure and Java implementation. 134
6.4 The Nodelterator interface. . 138
6.5 The Builtinlterator interface. 147

7.1 Data structure selection in Starlog's compilation pipeline. 152
7.2 Formula for selecting a data structure using static cost analysis .. 160
7.3 Formula for selecting a data structure using data gathered from

a single run. 165
7.4 Example records used in regression analysis for two indexes. 167

A.I BNF grammar of Starlog. . 186

C.l Hamming number program. 194
C.2 Hamming number program performance. . 195
C.3 Prime number program. 197
C.4 Index structure schema used for the prime number program.. 198
C.5 Prime number program performance. 199
C.6 Index structure schema used for the shortest path program. 201
C.7 Shortest path program. 201
C.8 Shortest path program performance (random graph). 202
C.9 Shortest path program performance (chain graph). 203
C.10 Index structure schema used for the Pascal's triangle generation

program. 205
C.11 Pascal's triangle program. 206
C.12 Pascal's triangle program performance. 207
C.13 Index structure schema used for the transitive closure program. 209
C.14 Transitive closure program. 209
C.15 Transitive closure program performance (random graph). 210
C.16 Transitive closure program performance (chain graph). 211
C.17 Index structure schema used for the game of life. . . 213
C.18 Game of life program. 214
C.19 Game of life program performance (rabbit pattern). 215
C.20 Game of life program performance (traffic light pattern). . 216
C.21 Index structure schema used for the N-queens program. 218
C.22 N-Queens program source for 6x6 board. . 219
C.23 N-Queens program performance. 220

viii

List of Tables

4.1 SDSL instruction summary table ..
4.2 SDSL built-in operations.

5.1 Performance comparisons for optimised and unoptimised SDSL

79
94

programs 129

7 .1 Available data structure implementations and a summary of their
time complexities. 154

7.2 Sets of instructions and data structures 158
7.3 Instruction costs used for static cost analysis 160
7.4 Instruction cost formula using random data for cost analysis after

a single run 163
7.5 Amendments to instruction cost formula in Table 7.4 for ascend-

ing data sets. 163
7 .6 Amendments to instruction cost formula in Table 7.4 for descend-

ing data sets. 163

8.1 Comparison between Starlog programs and similar hand-coded
Java programs. 177

ix

Chapter 1

Introduction

This thesis describes the process of compiling Starlog programs. Starlog [22, 23,
24, 71] is a general-purpose logic programming language designed to overcome
some of the problems inherent in other logic programming languages.

Compilation is necessary for Starlog to evolve beyond the status of a "toy"
language. Interpreters which are capable of running Starlog programs have ex
isted since 1993 and have shown Starlog to be an effective language for rapid
prototyping and implementation of reactive systems. Many students have suc
cessfully used Starlog to implement a variety of course related programs. How
ever, because the implementations of the interpreters have never been focused
on efficiency, all but the simplest Starlog programs are excruciatingly slow to
execute. Therefore the aim of this thesis is to show that compilation of Starlog
programs is not only possible, but can be made efficient so that the potential of
Starlog may be realised.

This chapter initially describes research relevant to the compilation of Star
log and discusses problems which plague traditional approaches to logic pro
gramming. With reference to these problems, the Starlog language is presented
as an alternative approach. The data-structure-free style of programming is
introduced with comments on its expressiveness and its advantages for logic
programs. The final section gives an overview of the remainder of the thesis
and of the compilation process.

1.1 Where in the World is Starlog?

This section discusses research fields relevant to the compilation of Starlog. The
concepts that are briefly discussed here are revisited in greater detail throughout
this thesis. The term "world" in the title of this section refers to the "world" of
databases, programming languages and their compilers.

Logic programming has been a recognised field of computer science for more
than 20 years. The ideas behind logic programming were laid out in Kowalski's
seminal papers [66] and [40], and then reviewed later by the work of Lloyd in
[68]. (For an in-depth account of the history of Prolog the reader is referred to
[28].) In the earlier works the concept of bottom-up evaluation (also known as
forward-chaining [39]) is closely connected to the theories of logic programming.
However the majority of logic programming implementations use the alternative

1

top-down evaluation technique (known also as backward-chaining (391). This is
true of Prolog [82, 26], Mercury (56], Godel [15], XSB (96] and Lygon (116].

In contrast, Starlog uses the bottom-up evaluation technique. Although
bottom-up evaluation of logic programs has a reasonable depth of research
(e.g. [85, 88, 10, 86, 20, 90, 84, 71), complete implementations of bottom-up
languages are rare. Logic programming languages which evaluate programs
bottom-up are obscure, but include Tokio [44], Chronolog (whose evaluation of
finite-proportions of relations approximates bottom-up evaluation) (112], Tem
plog [1], and OIL [117]. With the exception of the latter, these languages use
temporal logic to control the execution of programs by way of "next", "always"
and "sometimes" operators. In this respect Starlog differs from most bottom-up
logic programming languages since it does not support these operators.

Instead of temporal operators, the execution of Starlog programs is con
trolled through program stratification. Stratification has been researched and
used extensively in the field of deductive databases [68, 39, 30]. The Aditi,
CORAL, LogicBase, DECLARE and Sunburst deductive databases all use var
ious forms of stratification to control bottom-up evaluation [91]. However im
plementors of deductive databases have different goals than implementors of
logic programming languages. In general, deductive databases are focused on
efficient query processing [39] rather than exhaustive program evaluation. As
a result, research into bottom-up evaluation of stratified programs has been
somewhat neglected by the deductive database community in favour of query
transformations and optimisation. Also, deductive databases favour persistent
(or disk-based) data stores (sometimes with a client/server architecture [89])
instead of in-memory storage, and optimise their evaluation techniques accord
ingly [91].

Since many deductive databases use the Datalog query language [39, 30]
to formalise programs, it is worth pointing out the similarities and differences
between Datalog and Starlog. Both Datalog and Starlog programs consist of
rules based on Horn clauses [39]. However Starlog programs allow a greater va
riety of functions to be used within rules - including non-deterministic functions
and arithmetic operations. Like Datalog, the arguments of predicates in Star
log programs are either variables or primitive types, rather than the arbitrary
terms that are possible in predicate logic. Datalog has been extended to allow
both well-founded negation and stratified negation [48, 51] whereas Starlog only
permits stratified negation.

The process of building compilers for imperative and procedural languages
is well understood (see [2]). Techniques for lexical and syntax analysis already
exist which can be used for Starlog programs. However compilation of more
abstract languages (such as functional or logic programming languages) require
some analysis tools, transformations and optimisations different to those of im
perative and procedural languages. For example, the Mercury compiler requires
determinism analysis [57] and performs complex transformations involving con
tinuations to be compiled to C [59]. Also, like many other logic and functional
programming languages, Mercury implements tail-recursion optimisations to
transform recursion into iteration [59]. Compilers for abstract programming lan
guages sometimes target intermediate languages [2] rather than an executable
language to simplify transformations. For example, the C programming lan
guage is considered as an intermediate language for Mercury. WAM code [3] is
an intermediate language used by some implementations of Prolog. However it

2

appears there are no intermediate languages specifically designed to represent
bottom-up evaluated programs (such as Starlog programs).

The possibility of automatic data structure selection by a compiler has also
been proposed. In Tarjan's Turing Award interview he stated that,

"It would be wonderful in the long run to have some kind of su
percompiler that would select, off-the-shelf, the appropriate data
structure to plug in to implement very high-level quasi-algorithmic
specifications. Ultimately, things have to go in this direction." [43]

Although a few compilers attempt some type of automatic data structure
selection (see [70, 97, 9, 13] for a selection) it is still rare, and its effectiveness
is virtually unknown.

Due to the diverse issues explored in this thesis, no further background is
given here. Instead, additional research relevant to this thesis is described in
each chapter. In the next section we discuss problems faced by the designers of
logic programming languages prior to the introduction of Starlog.

1.2 Issues with Logic Programming Languages

The design of a logic programming language is constrained by two factors. On
the one hand there is the desire to give logic programs a declarative and ab
stract semantics which allows programmers to be oblivious to the underlying
mechanics of their programs. To this end, declarative languages define program
specifications rather than a set of instructions [31, 26, 49]. Languages which are
abstract and declarative offer several advantages for both programmers and im
plementors of languages. Declarative languages are usually easier to learn since
programs can be interpreted in a simplified, abstract form. Abstract interpre
tation of declarative programs can be used by programmers to prove programs
correct and by implementors of declarative languages to prove program trans
formations and optimisations correct. The second constraining factor is that
logic programming languages seek run time efficiency in order to be practical
and competitive with other language paradigms. Historically these two con
straints have conflicted with each other such that logic programming languages
which focus on one of these features have difficulty achieving the other. To
demonstrate this and other points in this chapter we consider two successful
logic programming languages: Prolog and Mercury.

Prolog is the most famous logic programming language in use today and it is
assumed that it is familiar to the reader. (In this section Prolog is discussed in
general terms without reference to any particular implementation.) Pure Prolog
[11] was designed as an executable language based on Horn clauses [31]. Because
of pure Prolog's declarative semantics, programmers do not need to know any
details of SLD (linear derivation with selection function) resolution to write
correct programs1 if they are familiar with Horn clauses and predicate logic.
However to improve the efficiency of Prolog programs requires understanding
the order that clauses and conditions within clauses are queried. To further
improve efficiency the cut operator (!) can be used to limit searching [33].

1 Note that Prolog programs which enter infinite loops may be correct but have prohibitive
efficiency problems.

3

Few logic programming constructs have been so widely disparaged and yet so
universally used as the cut operator [96]. One negative aspect of cuts is that
programs which use them lose their declarative semantics since cuts are non
logical operators (sometimes referred to as extra-logical operators) that can not
be expressed in Horn clauses [33]. Instead, the effect of a cut can only be
interpreted when clauses are considered as sequences of procedures [65, 26].
The effect of adding cuts to programs demonstrates the conflict between having
a declarative semantics and striving for efficiency.

In response to the inefficient implementations of logic programming lan
guages produced in the mid 1980's, the Mercury logic programming language
was developed with the key goal of high performance [58]. Mercury programs are
written in a declarative semantics and, unlike Prolog, there are no non-logical
operators [102]. However to achieve high performance programmers must spec
ify some low-level details of their programs - namely the types, modes and
determinism of all predicates [56]. Such declarations have a positive effect on
the software development process for large applications since many bugs that
would otherwise slip through are caught by the compiler [29, 102] and this is
respected as a design decision. However these declarations expose program
mers to some of the more complex implementation details of their programs.
For example, asking programmers who are only familiar with predicate logic to
declare their predicates deterministic, semi-deterministic, multi-deterministic or
non-deterministic (see [56] for definitions of each) requires them to gain an addi
tional level of understanding. As such, although more efficient than pure Prolog,
Mercury is not as abstract or expressive [29] and still requires programmers to
understand more than first order logic and predicate calculus to write correct
programs.

Another problem faced by implementors of logic programming languages
concerns negation. Negation-as-failure [77, 68, 82, 65], which is a commonly
used operator in logic programming languages, differs from negation in classical
logic in two ways.

The use of negation-as-failure in logic programs breaks the declarative se
mantics since the order that variables are bound in a clause can be the difference
between negated queries succeeding or failing. The following Prolog program
demonstrates this problem.

soln(O).
soln(3).

p :- X=2, \+ soln(X).
q :- \+ soln(X), X=2.

In this program querying p will result in 'yes' whereas q answers 'no'. q fails
because X is unbound when expressions are evaluated left to right. This is
probably not what was intended by the programmer. To avoid such problems,
Prolog manuals recommend that negation-as-failure be used only on ground
terms given that programs are interpreted left to right [65], although this is a
convention and is not enforced by implementations.

However there are also problems with negation-as-failure when negated queries
are ground. In classical logic, queries are either provable, refutable, or unde
cidable [47]. However typical logic programming languages evaluate queries to
either 'yes' or 'no' by applying the closed world assumption [114, 68] where all

4

ground atoms that do not follow from the facts in the program are assumed
false. Negated queries in a closed world system answer 'no' to any query which
does not succeed. This includes negated goals which are undecidable. Both
Prolog and Mercury assume a closed world when evaluating negated goals and
are insufficient when failure is not finite or when programs are non-monotonic
[68].

The use of input and output in logic programs is another issue of contention.
These facilities have never really fitted into the structure of logic programs in
spite of the prevalence of input and output operators in other programming
paradigms. Like the cut operator, adding non-logical operations to perform
input and output in Prolog programs breaks the declarative semantics since the
details of SLD resolution must be known to predict when each operation takes
effect. The Mercury approach has a much better declarative base where input
and output is achieved by passing the previous and next states of the external
world as parameters to clauses [29]. Although the extra parameters can be
hidden in the Mercury source code using DCG notation [57] the extra parameters
may still be passed through intermediate clauses that do not directly affect the
state of the world. For example, the following Mercury program fragment passes
variables representing the state of the world through the sum_oLsquares/4
predicate even though this predicate does not use input or output directly.
(The syntax and predicate names used in this example are based on an example
in [57]).

main(StateO, State) :- sum_of_squares(10, X, StateO, State!),
vrite_string('' Sum: '', State!, State2),
vrite_int(X, State2, State).

sum_of_squares(O, 0, State, State).
sum_of_squares(X, Y, StateO, State) X > 0, square(X, Z, StateO, State!),

X1 is X-1,
sum_of_squares(X1, Z1, State!, State),
Y is Z+Z1.

square(X, Z, StateO, State) :- Z is X•X,
vrite_string('' Square: '', StateO, State!),
vrite_int(Z, State!, State).

Although logically sound, passing arguments transparently through predicates
makes programs more difficult to interpret by programmers and, if approached
naively by the compiler, the extra storage and unification operations required
can add run time overhead.

Logic programming languages have trouble representing destructive assign
ment while remaining logically pure. This is because classical logic has logical
omniscience [4] and can not model an environment where previously true facts
are modified or removed. The addition of non-monotonic operators assert
and retract to Prolog which allows for destructive assignment has been met
with dissatisfaction amongst logic programmers since programs that use such
operators are no longer declarative (since they do not respect the commuta
tivity of logical conjunctions [4]) and are not semantically well behaved [37]
making proving programs correct more difficult. However it can not be denied
that destructive assignment is an attractive feature for programming languages.
Among the several reasons given in [55] for the inclusion of destructive assign-

5

ment in logic programming languages, improved efficiency and easy translation
of conventional algorithms to logic programs are probably the most significant.
Mercury is capable of destructive assignment of relations through its extended
mode system [102]. As with most features that improve efficiency in Mercury,
the use of destructive assignment must be explicitly specified by programmers.

Given these issues, designing logic programming languages which are log
ically pure and efficient is difficult. In this thesis we explain how the logic
programming language Starlog solves many of these problems and give the tech
niques necessary to compile Starlog into an efficient executable form. We do not
claim that Starlog is better or worse than existing languages (indeed its poten
tial is still unknown) however its approach to program evaluation is undeniably
different from other logic programming languages.

1.3 The Starlog Approach

The increased use of non-logical operators in logic programs prompted the de
sign of the Starlog language in 1988. Starlog was designed from the ground
up as a general-purpose programming language with a logically pure frame
work that would also support facilities common to most other programming
languages. This section describes the core concepts behind Starlog which allow
these facilities. The following section gives the specifics of the Starlog language
and demonstrates how Starlog can implement features which are problematic in
other logic programming languages.

Since its inception the Starlog language has evolved in response to advance
ment in theory or for pragmatic reasons. Consequently the specification of the
language given in this thesis may differ from that in previous works such as
[71, 24, 23, 22]. Although some facilities have been generalised in the latest
version {i.e. current versions support multiple stratifiable arguments - see be
low), other facilities have been removed for simplicity (i.e. the use of top-down
clauses in conjunction with bottom-up rules is considered beyond the scope of
this thesis). Further infomation about the current state of the Starlog project is
available from the Starlog web page (www.cs.waikato.ac.nz/research/starlog).

1.3.1 Bottom-Up Evaluation

The mechanism which gives Starlog such a workable framework is the use of
bottom-up evaluation with stratified programs. Bottom-up evaluation [66] is
a more general term for the fixed-point evaluation described in [68] where the
fixed-point can be transfinite. Bottom-up evaluation is a data-driven technique
rather than goal-oriented approach [91]. That is, evaluation proceeds by au
tomatically deriving new facts (referred to as tuples) in a database from rules
without the need for top-level queries. Bottom-up evaluation is an efficient
technique when programs have considerably more facts than rules [62] and it
has been argued that bottom-up logic programs are both clearer and easier to
analyse, both for correctness and complexity, than classical pseudo-code presen
tations [75]. In spite of such benefits, the use of bottom-up evaluation is still
rare in the field of logic programming.

An abstract definition of bottom-up evaluation can be given through the
use of the immediate consequence operator Tp. The immediate consequence

6

operator Tp associated to a logic program P is a function that points out which
consequences are deduced from a given set of tuples by the program P in a
single inference step [6]. By repeatedly applying the Tp operator to a set of
tuples, a model of all the true tuples is constructed.

During bottom-up evaluation there is the potential for many redundant tu
ples to be derived which can cripple the efficiency of these systems [88, 39]. In
response to this problem, many bottom-up applications apply the magic sets
and magic templates transformations [91] to their rule systems that allow their
evaluation to be goal-directed when it derives tuples. This permits queries to be
evaluated on demand and automatically tables previous results. These transfor
mations add a magic predicate to each rule to restrict when rules are eligible for
evaluation [62]. Examples of applications where the magic sets or magic tem
plates transformations are fundamental to the evaluation of programs include
the CORAL [87] and Aditi [107] deductive databases and the OIL bottom-up
logic programming language [117].

The magic sets and magic templates transformations are not applied to
Starlog programs for two reasons. The first is that the purpose of Starlog
(as a general-purpose programming language) is to execute programs rather
than answer queries. As such, Starlog programmers are free to define programs
which can produce redundant tuples in the same way that programs in other
languages can define infinite loops or add superfluous code which makes pro
grams inefficient. Conversely, fastidious Starlog programmers have the power
to write programs that do not produce redundant tuples. (This may involve
writing rules which include the equivalent of magic predicates.) The second
reason to avoid these transformations is that the introduction of goal-oriented
behaviour reorders the production of tuples. For negated goals to be evaluated
correctly Starlog programs are stratified (as described in the next section). The
application of the magic sets transformation to a stratified programs does not
preserve the stratification order in general (although the problem of evaluat
ing unstratified magic programs has received considerable attention) [61, 88].
In Starlog we prioritise program control using a stratification order over goal
directed evaluation. Thus we consider the automatic application of the magic
sets transformation unsuitable for Starlog.

1.3.2 Negation and Strong Stratification

To perform negation according to the well-founded semantics, Starlog programs
are stratified [91]. That is, new tuples are produced by a program in a pre
determined order. If a tuple is not produced at its appropriate position in
the stratification order then it will never be produced. Using this property the
evaluation of any negated goal becomes decidable in the negated goal's stratum.

Programs which are stratified ensure that there is no recursion through nega
tion [88]. This is achieved when the head of any rule is later in the stratification
order than (or "stratified after") the rule's negated goals. During evaluation of
a rule, a rule's negated goals are decidable when the head is produced. This
is because the heads of all rules are produced in stratification order and the
negated goals in a rule are stratified before the head.

Note that not all programs that contain negation are stratified. Conversely,
for those programs that can be stratified there is often more than one valid
stratification order. However the choice of the stratification order will not affect

7

which tuples are produced, but may changed the order that they are generated.
In the deductive database and logic programming literature different types

of stratification have been explored (see [91] and [83] for a selection). Starlog
programs are modularly stratified [88]. In other words, the stratification order
between rule heads can depend on the bindings of variables, but only when the
body of each rule is true. However we also specify that Starlog programs are
strongly stratified [101]. That is, Starlog programs do not allow any uncontrolled
recursion in rules by ensuring all rule heads are stratified after all positive and
negative goals in the rule's body. (This is a similar to requiring all rules to be
Y-stratified given the definitions of XY-stratification in [120].) To illustrate,
although the following rule may be modularly stratified (because there is no
recursion through negated goals) it is not strongly stratified because the head
is identical to the positive body goal and therefore belongs in the same stratum
(we use Prolog syntax here for simplicity).

p(N) :- p(N). (1)

However this next rule is strongly stratified if q/1 tuples are stratified using the
natural ordering of their numeric arguments.

q(M) :- q(N), Mis N+1. (2)

To determine if a program is strongly stratified we first generate axioms de
scribing the stratification order between the heads of rules and their bodies. In
this thesis the notation for the binary stratification order operators are A « B
and B » A where term A is stratified before B, and C«D and D»C denotes
that C belongs in either a stratum before D or the same stratum as D. The
stratification axoims generated for a program that contains rules of the form
H:-B0 , ... Bn are B « H, where B represents any goal in the rule. A program
is strongly stratified if the set of all stratification axioms does not contain any
contradications. That is, when all axioms are considered as transitive relations,
there are no cases where S « T and T « S, or where U « U. It can be seen
that rule (1) will fail this test since q(N} « q(N}. To avoid such contradiction it
is often possible to infer conditions from the rules when generating stratification
axioms. For example, given rule (2), the stratification order between q/1 tu
pies can be defined as q(N} « q(M} <= N < M because the relationship M is N + 1
implies that N < M. Although some investigation into automatic checking and
inferring valid stratification orders from programs has begun, it is a topic that
requires more attention. However it is considered beyond the scope of this thesis
since it is not a requirement for compilation.

Strongly stratified programs reduce the opportunities for duplicate tuples to
be produced. This is because it is impossible to define a recursive rule where
all arguments are invariant since the head must always be stratified later than
all body goals. When describing the evaluation of strongly stratified programs,
it will be seen that this property leads to significant optimisation.

Since negated goals must be stratified before the head of the rule, any ar
guments which decide the stratification order of a negated goal must be ground
before it can be satisfied. This means that a negated goal's arguments which
are involved in the stratification order are either constants or appear elsewhere
in the rule body in a positive goal or as output to a built-in operation. However
any arguments which do not affect the stratification order of a negated goal do

8

not have to be ground. Moreover, free variables appearing in negated goals can
be constrained within the negated goal using built-in operations (see the next
section for examples).

1.4 Programming in Starlog

The specifics of the Starlog programming language are now discussed. Starlog
is capable of representing common programming features in a declarative and
logically pure syntax. In this section we first describe Starlog's syntax and
then give examples of programs which demonstrate the various features. To
clarify many of the issues discussed in this section it may be useful to examine
examples of Starlog programs. Two examples of Starlog programs can be found
in this chapter in Figures 1.2 and 1.3 and seven further examples are included
in Appendix C.

1.4.1 Syntax

Many syntactic features of Starlog are borrowed from the Edinburgh style syn
tax [26] [23] which has been incorporated into the ISO-Prolog standard. Conse
quently Starlog programs should look familiar to logic programmers. We assume
a familiarity with syntactic elements of other logic programming languages in
cluding terms, constants, variables, predicates and clauses (see [26] or [65] for
definitions of each).

This section gives an overview of the Starlog syntax. For a more compre
hensive definition of the Starlog language see Appendix A.

Starlog Rules

Starlog programs include rules based on Horn clauses. The head of a rule is
a tuple that corresponds to the rule's output. The body of a rule can contain
positive goals, negated goals and built-in operations. Positive and negated goals
are satisfied by the presence or absence of tuples in the tuple database, respec
tively. Built-in operations perform logical tests and operations on variables. All
variables used by a rule must appear in a positive goal or as the output to a
built-in operation in the body. This condition ensures that the heads of rules
are completely ground when each rule body is evaluated.

Starlog rules rely on bottom-up evaluation and require a different style of
programming than Prolog clauses. Therefore Starlog rules are syntactically
distinguished from Prolog clauses. A Starlog rule takes the form "H <- B."
where H is the head of the rule and B represents the body. If the body of a rule
is empty, the rule is called a fact and is represented as "H.".

Positive goals are predicates whose arguments are either constant symbols
or variables (more on types later). Negated goals are predicates encapsulated
in a "not (...) " structure.

To reduce the size of programs we permit a code optimisation for negated
goals. Negated goals can include existential variables and may apply built-in
operations within the "not (...) " structure. The ability to use existential
variables in negations reduces the number of auxiliary predicates that would
otherwise be required. For example, the two versions of the following program
are equivalent.

9

Stratification Priorities (for inclusion in a Starlog program):
stratify r(X,Y,Z) [Y,Z,r].
stratify s(X,Y,Z) [X,Z,s].
stratify s << r.

Equivalent Stratification Order:
r(_, Y1, _) « r(_, Y2, _) <= Y1 < Y2
r(_, Y, _) « s(X, -, _) <= Y < X
s(X, _, _) « r(_, Y, _) <= X < Y
s(X1, -, -) « s(X2, -, _) <= X1 < X2
r(_, Y, Z1) « r(_, Y, Z2) <= Z1 < Z2
r(_, Y,Z1) « s(Y,-,Z2) <= Z1 < Z2
s(X,-,Zl) « r(-,X,Z2) <= Z1 < Z2
s(X,-,Z1) « s(X,-,Z2) <= Z1 < Z2
s(X, -, Z) « r(_, X, Z)

Stratification Order of Selected Tuples
s(O, 7, 4) « r(2, O, 4) « r(2, 0, 5) « s(1, 0, 3) « s(3, 0, 2) « r(O, 3, 2) « r(5, 4, 1)

Figure 1.1: Example stratification priorities and stratification order.

(1) p(X) <- q(X), not(s(X)).
s(X) <- r(X,Y), Y > 5.

(2) p(X) <- q(X), not(r(X,Y), Y > 5).

The second program is the result of unfolding the definition of s (X). (A similar
transformation is discussed in [33] with respect to Prolog programs.) Note that
such a transformation is only possible when the negated goal is satisfied by a
single rule. This optimisation can significantly reduce the size of programs and
can improve program evaluation when the number of predicates is reduced. Al
though this code optimisation is reasonably transparent and is applied to many
of the example programs in this thesis, it is not considered during the definitions
of bottom-up evaluation in Chapter 2. The omission of this optimisation greatly
simplifies the definitions of the evaluation strategies.

Stratification Priorities

Starlog programs include stratification priorities which are the programmer de
fined specification of the stratification order. By convention stratification priori
ties are grouped together at the start of Starlog programs to ease understanding.
Each predicate appearing in a program is used in at most one stratification pri
ority. To assist explanation, an example set of stratification priorities is included
in Figure 1.1.

Stratification priorities are identified by the keyword stratify at the be
ginning of a line in a Starlog program. An abstract tuple definition follows this
keyword to identify the predicate whose stratification order is being defined.
An abstract tuple definition is an instance of a predicate whose arguments are
all represented by locally unique variable names. The order that the constants
and arguments of a predicate are prioritised in the stratification order is given
as a list of terms where those elements earlier in the list are more significant. A
variable occurring in the list indicates that the stratification order depends on

10

the value of the corresponding argument. The values of arguments are stratified
using "standard" orderings where smaller numeric values are stratified before
larger ones.

Constant values in the stratification priority list indicate that the stratifi
cation order depends on static elements from the predicate. The stratification
order between constants can be made explicit in other stratification definitions
using the « operator. For example, when the stratification order between two
predicates (e.g. t/0 and u/1) depends on their predicate name, constant terms
representing the predicate are included at an appropriate position in the prior
ity list (e.g. tO and u1 might occur in the respective stratification priority lists
of the t/0 and u/1 predicates). While attempting to find an ordering between
the two tuples, when constant values are encountered in both priority lists the
ordering between these is resolved by consulting the stratification priorities for
constant terms (e.g. if there exists a stratification priority stratify tO « u1
then tuples from the t/0 are stratified before tuples of u/1). If no stratifica
tion priority exists for the two constant terms (or if only one term is constant
and the other is a variable) then the tuples are unordered with respect to each
other, and the remainder of the stratification priority lists need to be consulted
to resolve the ordering.

To reduce the size of programs, stratification priorities do not have to be
included for predicates which are stratified before all the other predicates in the
program. All predicates which do not have stratification priorities are stratified
before those which do. This allows any predicate which holds a static set of
facts that are true for the life of the program to omit its stratification priority
and so reduce the size of the program.

Figure 1.1 demonstrates how stratification priorities can succinctly specify
a complex stratification order. The stratification priority for the r/3 predicate
initially stratifies tuples on their second argument (as indicated by the use of
the Y argument as the first element in the priority list) and then ordered on
their third argument (using the Z argument). The stratification priority for
the s/3 predicate stratifies tuples on their first argument (that denoted by X)
and then on their last argument (using z). In the event that the values of
arguments for r/3 and s/3 tuples would place these tuples in the same stratum,
a final stratification priority ensures that s/3 tuples are stratified before r/3
tuples. Although stratification priorities are precise they can be opaque when
trying to assess the order of tuples from different predicates. For this reason
the stratification orders given in this thesis use the expanded «, », «, »
operator notation in places where a clear understanding of the stratification
order is required.

Example Program

To further demonstrate the syntax of Starlog programs, Figure 1.2 introduces
the Star log Prime Number program. This program is a variant of the well known
"Sieve of Eratosthenes" which finds prime numbers (in this case) between 2 and
10,000. The program contains three predicates: each num/1 tuple is generated
with its argument bound to an integer from 2 to 10,000, each mul t/ 1 tuple holds
a multiple of a prime number as its argument (with an upper limit of 10,000),
and each prime/1 tuple holds a prime number between 1 and 10,000.

To understand this program it is best to first look at its rules. There are two

11

Y. Prime Number Program

%--
% Generates prime numbers between 2 and 10,000 by finding all multiple
Y. values and then using negation to find values that are not multiple
Y. values.

stratify num(N) [N ,nu.ml.
stratify mult(N) [N,mult].
stratify prime(N) [N,prime].
stratify num << prime.
stratify mult << prime.

num(2).
num(M) <- num(N), Mis N+l,

M < 10000.

Y. Order all tuples on their arguments

Y. Ensure primes are stratified late

Y. Generate all numbers in range

mult(M) <- num(N), prime(P), N >= P, Y. Generate multiple values
Mis N•P, M < 10000.

prime(N) <- num(N), not(mult(N)). Y. Deduce prime numbers

Figure 1.2: Starlog prime number program.

ways in which num/1 tuples can be produced. The first tuple is produced as a
fact whose argument is bound to the value 2. The second way to produce num/1
tuples is from the rule with the num/1 predicate for its head. This rule should
be interpreted as, given a previously true num/1 tuple, increment the value of
its argument (N) to find M and, so long as M is smaller than 10,000, generate a
new num/1 tuple with M as its argument. The rule to generate mult/1 tuples
can be interpreted in a similar fashion: Given a true num/1 tuple with N for its
argument and a true prime/1 tuple with P as its argument, if N >= P find the
product of N and P as M and, so long as M is less than 10,000, generate a new
mult/1 tuple with Mas its argument. The final rule in the program determines
if an integer is a prime using deduction. This rule finds a true num/1 tuple with
N as its argument and tests if there already exists a mult/1 tuple with the same
argument value. If no such mult/1 tuple exists then a new prime/1 tuple is
produced with N as its argument.

Starlog requires all rules to be strongly stratified. The stratification order
used for the Prime Number program initially orders all tuples by their argument
value. This has the effect of interleaving the production of tuples from each
predicate without, for example, all num/1 tuples being produced before any
prime numbers are deduced. Stratification based on argument values is sufficient
for all but the last rule to be strongly stratified. The last rule (which generates
prime/ 1 tuples) uses the same argument in the head as it does in each of its body
goals. To make this rule strongly stratified constants are added to each of the
lists in the stratification priorities, and two stratification rules specify a partial
order over these constants. The stratification rules ensure that num/1 tuples and

12

mul t/1 tuples are stratified before prime/1 tuples when their argument value
is shared.

1.4.2 Input and Output

We have seen that adding input and output to other logic programming lan
guages can affect a program's declarative semantics or complicate program defi
nitions. This is because logic programs which are evaluated top-down generally
follow a single path of execution through the clauses of a program in an attempt
to prove queries. However programs that are evaluated bottom-up are not con
strained to such behaviour. Programs evaluated bottom-up are free to explore
alternative paths of execution (simultaneously if desired) without confinement
to search spaces that satisfy queries. Consequently, input and output in pro
grams evaluated bottom-up can be performed in different paths of the execution
which, depending on the program's design, may or may not affect the rest of
the program.

In Starlog, output is achieved when rules produce output tuples that perform
a side-effect. In this thesis the only output tuples are instances of either the
print/1 or print..string/2 predicates. The arguments of an output tuple
specifies the format of the output. Output tuples are similar to the other tuples
used by a program and are produced in stratification order. The two different
output predicates are explained below with examples.

The ability to add new rules to produce output rather than changing the
original program is an attractive feature of Starlog output. Separation of rules
that produce output from the core rules of a program assists understanding
and maintenance of Starlog programs. In [23] this approach to output has been
shown effective for debugging purposes. A universal debugger which provides
a trace of all tuples derived by a Starlog program can be achieved by adding a
single rule2 •

To demonstrate output in a Starlog program the Prime Number program
from Figure 1.2 displays each prime number in the standard output by adding
the following lines.

stratify print(P) [P,print].
stratify prime<< print.

print(P) <- prime(P). % Output prime numbers

The rule declares that the argument value of each new prime/1 tuple will be
used as the argument in a new print/1 tuple. The print/1 tuple automati
cally outputs its argument to the standard output. The stratification priorities
specify that these print statements are performed after each prime/1 tuple is
produced. If more formatting or output is required when printing then we could
use print..string/2 output tuples instead, as shown below.

stratify print..string(_,P) [P,print..string].
stratify prime<< print..string.

print..string(Line, P) <- prime(P), Line is "\n Prime Number: "+P.
print..string(Line, M) <- mult(M), Line is "\n Multiple:"+M.

2 Note that this universal debugger requires meta-programming facilities that we do not
consider in this thesis. To achieve the same result without such facilities requires a rule for
each unique predicate in the program.

13

The last argument of print..Btring/2 output tuples is used only to stratify
these output tuples and does not appear in the output. Note the use of string
concatenation by the "+" operator which assists formatting output.

Input in Starlog is more complicated and has two parts. To initiate input
an input request tuple is produced as the head of a rule. Input request tuples
are similar to output tuples and, in fact, may perform output such as defining
a prompt or, in other versions of Starlog, give the specification of a dialog box.
After an input request tuple has been produced in stratification order, input is
generated from some source (typically the user). The input is packaged as an
argument of an input tuple. Input tuples are automatically generated by the
program as soon as the input is received (although their effect may be delayed
due to stratification). Any rule can refer to an input predicate in its body. To
associate input tuples with their input request tuples, both tuples can include
additional identifier arguments.

An extension to the Prime Number program from Figure 1.2 is given here
to introduce both input and output. The first rule requests prompted input
from the user by producing an input.request/1 tuple whenever a new prime
number is produced. When the user provides input it automatically appears
as an input/2 tuple where the first argument is the user's input value and the
second argument is a key used to associate each input with its request, and
to strongly stratify rules. The second rule takes any newly generated input/2
tuple and compares the input value with the set of previously determined prime
numbers. If the user's input value is a prime number then the second rule
reports this fact using an output tuple.

stratify input.request(_,P) [P,input.request].
stratify print..Btring(_,P) [P,print..Btring].

input.request(Prompt, Key)<- prime(P), Key is P+1,
Prompt is "Enter a number between 1 and"+Key.

print..Btring("Is Prime", N) <- input(Input, Key), Input< Key,
N is Key+1, prime(Input).

A criticism of this approach is that because both input and output predicates
can be generated independently of each other, it may be impossible to predict
the order that input will be requested or output will be produced. For example,
consider adding all the extensions from this section to the Prime Number pro
gram. However this can be seen as an advantage. Output can be displayed as
soon as it is generated rather than waiting for other components of a program
to finish. Multiple input requests could all generate dialog boxes at the same
time allowing the user to decide which ones are most relevant to respond to.
Alternatively, if the order that input and output is performed is critical then
the stratification order within the program can be strengthened.

1.4.3 Aggregation

Aggregation (or set-grouping) [91] is the ability to combine or summarise collec
tions of information using a function. Typical aggregate operators include sum,
average, count [67] as well as max and min. The ability to aggregate sets of
tuples in Starlog programs simplifies many programs and reduces the complex
ity of many operations. For example, to find the maximum value for X in a set
of q (X) tuples using the following logical definition requires comparing every

14

q/1 tuple with every other q/1 tuple (stratification priorities are omitted due
to their irrelevance).

max(X) <- q(X), not(q(Y), Y > X).

If implemented naively, such an operation can require quadratic time. However
other algorithms can find the maximum value in a set of elements in linear time.

Although Starlog's aggregate operators have not yet been optimised, a pro
tocol for their use has been established. This protocol is similar to that used
for input. The first stage in performing an aggregate operation is to specify the
operation type and the set of values to be considered. This is achieved by gener
ating an aggregate request tuple. Aggregate request tuples define the aggregate
operator as the functor and give a member of the operand set as the argument.
A separate aggregate request tuple is generated for each member of the operand
set. The output of the aggregate operation is automatically returned as an ar
gument in an aggregate result tuple. The result can be queried in the bodies of
rules. In general, aggregate operations can not be performed until the entire
input set is available. For this reason aggregate result tuples are stratified after
their aggregate request tuples.

The max aggregate operator is demonstrated by the following Starlog pro
gram fragment. These rules generate a max_request/1 tuple for every q/1 tuple
produced. When all possible request tuples have been generated (i.e. when the
stratum that produces q/2 tuples has passed) the result is generated as a single
max_result/1 tuple which is used in the second rule.

max_request(X) <- q(X).
print(X) <- max_result(X).

There are two cases which require aggregate request tuples to have extra ar
guments. When multiple aggregate operations are performed an extra identifier
(or key) argument is necessary in both the request and result tuples to asso
ciate one with the other. That is, an extra argument is used to group sets of
max_request tuples together and associate the result tuple with each set. The
second requirement for an extra parameter in aggregate request tuples avoids
identical tuples being removed via automatic duplicate removal. For exam
ple, sum_request (5) and sum_request (5) are the same tuple so the summed
output would be sum(5). When identical operands of an aggregate operator
are packaged into aggregate request tuples, if the distinction of each element
is important then an extra index parameter is used which is distinct for each
operand. Because each of these arguments is distinct, aggregate request tuples
are distinct and are not considered duplicates. Using the previous example but
with additional unique arguments with each request, sum_request (5, idl) and
sum_request(5,id2) are different resulting in sum(lO). Distinguishing each
operand is important when using a sum, average, or count operator but unnec
essary for min and max operations.

1.4.4 Destructive Assignment

It was previously stated that destructive assignment is an attractive facility
for programming languages, however, it is problematic for logic programming
languages that wish to remain logically pure. Yet destructive assignment can
be implemented in Starlog without the addition of ad-hoe mechanisms.

15

% Destructuve Assignment Program

%--
% Models a destructive assignment system where labelled variables can be
% assigned, reassigned, inspected and deleted.

stratify value_request(_,T)
stratify assign(_,_,T)
stratify delete(_,T)
stratify value(_,_,T)

[T,value_request].
[T,assign].
[T,delete].
[T,value].

stratify assign<< delete.
stratify value_request << value.

% The current value has been assigned, but not deleted.
value(K,V,T) <- value_request(K,T), assign(K,V,TO), T>TO,

not(delete(K,Tl), TO<Tl, Tl<T).

delete(K,TO) <- assign(K,_,TO).

% Test commands
assign(x, 100, 0).
value_request(x,2).
assign(x, 300, 3).
assign(y, 200, 3).
value_request(x,4).
value_request(y,4).
assign(y, 400, 4).
value_request(x,5).
value_request(y,5).
delete(y, 5).
delete(x, 6).
value_request(x,7).

% New assignments automatically
% delete previous values.

Figure 1.3: Destructive assignment program.

16

Consider the Starlog program from Figure 1.3. This program describes a
typical destructive assignment system where assignments are made to labelled
variables and hold their values until the variable is overwritten or deleted. As
signments are made using assign(K, V, T) tuples. The first argument (K) of
this predicate specifies the label of the variable, the second (V) is the new value
and the final argument (T) indicates when in the stratification order the assign
ment should take effect. Variables are deleted using the delete (K, T) predicate
where the K argument is the variable name and T is the stratification value. To
access the current binding of a destructive variable the value is requested by
producing a value..request (K, T) tuple where K is the label of the variable and
T specifies when in the stratification order the request is made. A corresponding
value (K, V, T) is produced by the first rule of this program where V is the most
recent value of the variable. Given the test commands at the end of Figure 1.3,
this program generates the following sequence of value/3 tuples.

value(x, 100, 2).
value(x, 300, 4).
value(y, 200, 4).
value(x, 300, 5).
value(y, 400, 5).

In spite of Starlog's bottom-up evaluation being monotonic, destructive as
signment is simulated by this program without retracting or modifying previ
ously derived tuples. Instead, rules are constructed that refer only to the most
recent value/3 tuples in their bodies because the view of the data is restricted
to the current stratum. Since the current stratum changes as the program ex
ecutes, the value of a variable can change in each stratum. For example, the
following (somewhat artificial) rule accesses only the most recent value/3 tuples
since using any previous value/3 tuple would reproduce a previously derived
tuple.

sum_of_two_variables(Sum,T) <- value(K1,V1,T), value(K2,V2,T),
K1 =\= K2, Sum is V1+V2.

Using the set of test commands from Figure 1.3 this rule produces two new tu
ples: sum_oLtwo_variables(500,4) when the current value of the primary
stratification argument is "4" and sum_oLtwo_variables(700,5) when the
stratification argument is "5".

Previous values of the assignment variables can also be accessed by a rule.
This is possible when value/3 goals are not restricted to accessing the most
recently asserted value/3 tuples. The following rule demonstrate how any pre
vious values can be accessed.

sum_of_two_variables(Sum,T) <- value(K1,V1,T1), value(K2,V2,T2),
K1 =\= K2, T is T1+T2, Sum is V1+V2.

When the example data in Figure 1.3 is used with this rule the following tuples
are derived:

sum_of_two_variables(300,6). sum_of_two_variables(500,7).
sum_of_two_variables(500,8). sum_of_two_variables(700,9).
sum_of _two_variables (500, 9). sum_of _two_variables (700, 10).

17

The destructive assignment program given in Figure 1.3 creates many tuples
and performs many comparisons during the life of a program and consequently
may be inefficient. Research into making destructive assignment efficient by
compiling the code into updates and accesses of a single memory location is
on-going. In Chapter 8 gives some insights into this problem, however it is not
pursued to its conclusion in this thesis.

1.5 Data-Structure-Free Programming

Notice that the example programs explored so far have not used any recursive
types or explicitly defined data structures within their rules. This is not by
accident. Using Starlog, we advocate a data-structure-free programming style.

In [23] it was observed that students who are familiar with predicate logic
are often shocked to find that logic programming requires so much effort to
design data structures and the code to manipulate them3 . However since data
structures are pervasive in other languages, it is often conceded that they are
necessary to write all but trivial programs.

Yet there is another approach to data storage which has had considerable
success. Since relational databases were first proposed by Codd in [27] they have
seen widespread use in commercial and administrative domains [105]. Over the
last three decades many users have accepted the relational data model for data
representation in many different applications.

The Starlog approach to data representation follows the relational model.
That is, tuples represent individual relations between argument values. In the
relational model arguments contain only simple values rather than complex
structured objects [105]. As such, Starlog tuples do not contain any complex
structures (i.e. terms with functors and arguments) as their arguments. This
restriction makes Starlog easier to learn for programmers familiar with the re
lational model.

The restriction to the relational model does not limit the expressiveness of
Starlog. Indeed, data structures commonly used by other programming lan
guages could be represented as relations - although the use of such data struc
tures in Starlog programs is discouraged (for reasons explained later in this
section). Figure 1.4 shows three different data structures which could be used
in Java or Prolog programs and their relational equivalents in Starlog. An ar
ray in Java is represented by a set of value (K, V) tuples where K is the key
(or index) of each V value. The indexes of each value are labelled O to 3 for
convenience. Starlog represents a Prolog list using two additional predicates.
The list...root/1 predicate holds the index of the first element in the list.
next(I,J) tuples identify parent and child elements in the list with I and J
respectively. The relational representation of the binary tree given in Figure 1.4
is similar to the list. However the parent-child relationship tuple has now been
split into left and right branches. Note that if data structure need to be dynamic
then the relations describing their links and values can be assigned, updated or
deleted using the programming techniques for destructive assignment that were
discussed in the previous chapter.

The relational approach to data representation could offer several advan
tages. For example, the value/2 relations in Figure 1.4 are identical for all

3 In this discussion we do not consider flat relations as data structures.

18

Java:
String value[] ={"a","b","c","d"};

Starlog:
value(O,a).
value(1,b).
value(2,c).
value(3,d).

Prolog:
[a,b,c,d] (equivalent to . (a, . (b, . (c, . (d, [])))))

Starlog:
list.root (0).
value(O,a).
next(0,1).
value(1,b).
next(1,2).
value(2,c).
next(2,3).
value(3,d).

Prolog:
tree(c, tree(a, null, tree(b, null, null)), tree(d, null, null))

Starlog:
tree.root (2) .
value(2,c).
left_branch(2,0).
right_branch(2,3).
value(O,a).
right_branch(0,1).
value(1, b).
value(3,d).

Figure 1.4: Comparison between Starlog data structures and other representa
tions.

19

these data structures. Therefore this data can be represented simultaneously
in these data structures without duplicating the values themselves. Another
advantage is that if the order of elements is irrelevant then the data structures
do not need to be traversed to find each value/2 relation. Also, since the links
between list elements and the branches of the tree are separated from their val
ues, operations such as sorting the list or balancing the tree are simplified since
only the links and branches would require updating, thus the values remain un
affected. Yet inspite of such advantages the creation of explict data structures
as sets of relations is not encouraged in Starlog.

Although explicit representations of data structures are necessary for some
algorithms (e.g. building a Huffman tree), the most common motivation for
advanced data structures is to improve efficiency. However the relational rep
resentations of data structures in Starlog incurs additional run time overhead
due to the extra relations. More importantly, the logic of the program may be
obscured. Instead, the approach taken in many Starlog programs is to avoid
using any explicit data structures in favour of storing and accessing relations
in the tuple database without any concerns for efficiency. For example, rather
than walking through each link or branch which makes up the data structures
in Figure 1.4, the following rule accesses all values with no regard for the data
structure.

p(V) <- value{_,V).

Note that programs which do not use explicitly defined data structures in
their source code are not restricted from using advanced data structures in their
tuple database. In fact, the tuple database which holds value/2 tuples could use
an array, a list, or a binary tree to construct the same structures as those given
in Figure 1.4. It will be seen in later chapters that much of the research into
compiling Starlog is centred around finding efficient representations for run time
data. It is even argued that automated techniques to specify data structures
can be more appropriate than manual selection in the context of Starlog. The
benefit of ignoring the factors which affect run time efficiency is that Starlog
programs are more understandable to programmers.

1.5.1 Types

Given that Starlog programs assume a data-structure-free programming style,
Starlog's type system is very simple. Each predicate's arguments are either
integers, strings or floating point numbers. Each argument in a predicate has
only one type.

To remain abstract, types are inferred from Starlog programs. In this thesis
we ignore the issue of type inference. In the few places where types are necessary
for compilation to proceed it is assumed that types are provided as some form
of declared relations, such as:

type p(int,string,float).

1.6 Applications of Starlog

The Starlog programming language has been used for a number of years (us
ing interpreted environments) and has been shown effective for representing a

20

variety of programs. Some of the more interesting programs involve:

• Reactive graphics

• MIDI-music generation

• Robotics using Lego MindStorm© Robots

• Biology simulations

• Optimisation and search problems

With the availability of a Starlog compiler, it is expected that the range and
complexity of Starlog programs will increase.

1. 7 Organisation of this Thesis

This thesis describes a process for compiling Starlog programs as they have been
described in this chapter. The compilation techniques are focused on efficient
run time performance at all stages. This section forms a guide to the remaining
chapters, while pointing out the unique aspects of the compilation process along
the way.

The second chapter reviews the Semi-Naive algorithm for bottom-up evalu
ation which is currently used by many deductive database applications. Semi
Naive evaluation is then refined for strongly stratified programs with negation.
Using Semi-Naive Evaluation as a base, we describe a new optimisation called
"Triggering" which can significantly reduce the number of unifications that a
stratified program performs at run time. Using Triggering Evaluation allows
additional optimisations to improve the evaluation of negated goals and to spe
cialise predicates for how they are used. Chapter 2 provides the foundation for
the chapters which follow.

The remaining chapters describe noteworthy stages in the compilation pro
cess. To see how each component contributes to the whole process Figure 1.5
shows the compilation pipeline. Significant stages are numbered and are referred
to throughout this section.

Chapter 3 describes the database used to hold tuples at run time. Starlog
programs use a unique variant of a discrimination tree (see Chapter 3) whose
structure is statically defined at compile time. The tuple database's schema is
specialised for improved efficiency either by the programmer (see 1 in Figure
1.5), by a heuristic which observes how each predicate is used by the program
(2), or a combination of the two. Observing how data is used by a program to
automatically customise a database schema is believed to be a first in the field
of compiler design.

Chapter 4 gives a definition of the Starlog Data Structure Language (SDSL)
which provides insert, delete and query instructions for use on a tuple database

21

Java Code
G-(6)

DataStructwc
Sclcclioa (7)

Figure 1.5: Overview of the Starlog compilation pipeline.

(3). SDSL is an intermediate language used only during compilation of Starlog
programs.

In Chapter 5 it is shown how SDSL is used to implement Triggering Eval
uation (4). The use of a static tuple database schema allows many instances
of term matching to be performed statically at compile time. As such, pro
grams are optimised by avoiding comparisons which never succeed. Chapter 5
concludes with six optimisations that can be applied to SDSL programs (5).
Although most of these are variations on recognised optimisations for impera
tive programs, the scope of these optimisations is often different. The degree of
optimisation achieved is evaluated using a suite of test programs.

Chapter 6 describes the process of translating SDSL programs into Java
source code (6). This includes the definition of the tuple database in Java as
well as the translation scheme for all SDSL instructions and facilities.

Chapter 7 argues that, given the data-structure-free style of programming,
efficiency can be reintroduced to Starlog programs by customising the low-level
data structures which make up the tuple database (7). Reasons are given why
manual selection of data structures is unsuitable for Starlog. We present five
techniques for automatically selecting data structures. Two selection techniques
are given that observe only the properties of a program's source. Two more se
lection techniques are given that execute the program before making a selection.
The final data structure selection technique delays making a selection until run
time. The various automatic data structure selection techniques are evaluated
using a suite of test programs. Although automatic data structure selection has
been used in other contexts and compilers, this is the only known investigation
which compares different approaches. Moreover, Starlog is the only instance of
a logic programming language known to use automatic data structure selection.

The final chapter comments on the applicability of techniques described in
this thesis to other domains. To assess the efficiency of Starlog, examples of
compiled Starlog programs are compared with equivalent hand-coded programs.
The chapter concludes with a discussion on future directions for research which
would improve the efficiency and practicality of compiled Starlog programs.

22

Chapter 2

Abstract Bottom-up
Evaluation

The first section of this chapter reviews Semi-Naive Evaluation - a bottom
up evaluation technique currently used by many deductive databases. Semi
Naive Evaluation is then extended for evaluation of stratified programs. Using
Stratified Semi-Naive Evaluation as a foundation, the third section introduces
the Triggering Evaluation technique used for Starlog programs.

To aid the understanding of bottom-up evaluation techniques we introduce
a notation for bottom-up evaluated rules. Rules are generalised to the following
format:

h - a1, ... am, not(c1), ... not(cn), b1, ... bk,

That is, for any rule there are m positive body goals, n negative body goals
and k built-in calls all of which must be satisfied before the head tuple h is
produced.

Alternatively, all positive goals, negative goals and built-ins of a given rule
can be combined into a set called /3 (such that h - /3), and /3 is partitioned as
follows:

/3 =
13+ =
13- =
13>. =
13- =

{a1 1 ... am, not(c1), ... not(Cn), b1, ... bk}
{ai, ... am}
{not(c1), ... not(Cn)}
{b1, .. ,bk}
{c1, .. ,Cn}

(All elements in the body)
(Positive goals)
(Negated goals)
(Built-ins)
(Negated goals without

the not(...) structures)

Positive goals (those in 13+) are satisfied by tuples produced by the program.
These goals can be satisfied either as soon as the matching tuple is proven true
or, if tuples are tabled, at any later time.

Negated goals (those in 13-) can only be satisfied when a matching tuple has
not been previously generated by the program, and when there is no chance of a
matching tuple being produced at any time in the future. For unrestricted logic
programs this is undecidable. However, as described in the previous chapter,
this can be overcome by restricting programs to those that obey a stratification
order. Stratified programs will produce tuples according to a predefined partial

23

order. Any tuple which is not generated at its time in the stratification order
will never be produced. In this way negated goals can be satisfied if no matching
tuples have been produced previously, and the time where any satisfying tuple
could have been produced (according to the stratification order) has elapsed.

As described in Chapter 1, negated goals in Starlog may contain existen
tial variables and built-in operations. However, for the purposes of describing
bottom-up evaluation techniques, this code optimisation is ignored. As a result
the definitions of bottom-up evaluation techniques are significantly simplified.

In this chapter, symbols () and ,0 represent variable substitutions. Given a
variable substitution 9, an instance of the term t is generated by t(). Note that
variable substitutions are automatically constructed when terms are unified.
(Although full unification is used throughout this chapter to produce variable
substitutions, the following chapters which are specific to Starlog require only
term matching. This property is because all Starlog tuples are ground and
only goals in rules can contain variables. The use of unification in this chapter
generalises the algorithms.)

2.1 Semi-Naive Evaluation

Semi-Naive Evaluation [39, 30] (sometimes called .6.-iteration [1001) has been
presented previously in many different contexts and is widely used in the de
d uctive database community [91]. The Aditi [108], CORAL [89], DECLARE [63]
and Glue-Nail [35] deductive databases all use Semi-Naive Evaluation strategies.
In most systems, refinements and new variants of Semi-Naive Evaluation have
emerged to suit the intended application. The advantage of Semi-Naive evalua
tion over Naive Evaluation (a direct implementation of the fixed-point semantics
from [681) is that Semi-Naive Evaluation maintains the non-repetition property
to avoid producing identical tuples in subsequent iterations [85]. For a proof
that Semi-Naive and Naive Evaluation are equivalent see [10].

To begin, Semi-Naive Evaluation will be introduced for definite programs
only (i.e. where rules do not have negated goals). Stratified Semi-Naive Eval
uation that evaluates rules with negated goals is discussed later. This thesis
presents Semi-Naive Evaluation as a set-processing procedure (similar to that
in [85] and [1061) rather than a logical definition, since our goal is an imple
mentation rather than a proof of correctness. For alternative definitions of the
evaluation techniques presented in this thesis see [25].

Rules are said to be activated when they are selected to produce output.
Semi-Naive Evaluation activates program rules only when a new tuple is gener
ated that satisfies a positive goal in a rule's body. This ensures any new output
of a rule will be based on new input, reducing repeated tuple derivations. In this
chapter, new tuples derived from Semi-Naive Evaluation are distinguished from
previously generated tuples using separate tables. Previously generated tuples
exist in the r set whereas new tuples are stored in the .6. set. In this context r
is sometimes called the true set whereas .6. may be referred to as the new set
[111 J. In both r and .6. duplicate tuples are eliminated to ensure correct and
efficient evaluation.

Evaluation proceeds by taking a newly generated tuple from .6. and finding all
the rules in the program where this tuple satisfies a positive goal. The remaining
positive body goals are searched for in r. Any tuples generated from these rules

24

are added to D. to await processing and the tuple used to activate these rules is
moved from D. to r. In this way D. stores tuples that are considered true but
have not yet been used to activate or contribute to solving any program rules.
r holds the set of true tuples after they have activated rules. This system will
produce all possible tuples because the tuples in D. that unify with the body
goals in a rule will eventually activate the rule, and all previously generated
tuples remain accessible through tabling in r.

Given Program P
let Rules= {(h +- {3) I (h +- {3) E P I\ 13+ I- 0}
let Facts= {(h +- {3) I (h +- {3) E P I\ 13+ = 0}
let S = the set of all true, ground built-ins
letfun conseq(h,r) = {hr9 I (hr +-f3r) E Rules/\

hE/3;9 I\ ({3;9-{h})~r I\ f3;9~S1\
hr9 (/. r}

D.o = { h9 I (h +- {3) E Facts I\ 13>..9 ~ S}
ro = 0
< D.;+1 ' ri+l > = if D.; I- 0 then

choose h E D.;
< (D.; u conseq(h, ri)) - {h}, r; u {h} >

else
< 0, r; > (Termination)

fi

Figure 2.1: Semi-Naive Evaluation of positive programs.

A definition of Semi-Naive Evaluation is shown in Figure 2.1. Semi-Naive
Evaluation makes a distinction between rules and facts. A fact is any program
rule that has no positive goals in the body. Without positive goals, built-ins can
be immediately evaluated because variable bindings do not depend on dynamic
information generated at run time. A set of built-ins 13>.. is true when 13>..9 ~ S
where 9 is a variable substitution and S is the set of all true ground built-ins.
The ground heads of true facts are added to D.. When D. becomes empty no
more rules will be activated and no more tuples are produced, thus the program
can safely terminate. When D. is not empty, evaluation continues by repeatedly
selecting an arbitrary tuple h from D. and moving it to r. h is also used to
activate rules. The conseq(h, r) function finds all rules for which one goal
matches hand corresponding instances of all other goals are in r. The output
(or heads) of these rules are collected in the output set. In the conseq(h, r)
function, successful unification between a body goal and new tuples creates
a variable substitution 9 and ensures that only relevant rules are activated.
The remaining positive goals are searched for in r using (/3; 9 - { h}) ~ r.
The exclusion of h from the goals satisfied by r is an optimisation that avoids
repeatedly evaluating the goal matching h. Rules where all positive goals are
satisfied, built-in operations are true and whose output is not already in r,
produce true head tuples that are added to D. ready for the next iteration.

The "Basic Semi-Naive Evaluation Algorithm" (BSN) given in [85, 10] as well
as other definitions of Semi-Naive Evaluation (such as that in [106]) differ from
the definition presented in Figure 2.1. These other definitions use all new tuples
in D. to activate rules (i.e. are set-oriented) rather than non-deterministically

25

choosing one (tuple-oriented [1181). Evaluation using these different techniques
gives the same output, however BSN will have fewer, but more computationally
expensive, top level iterations. However the tuple-oriented representation of
Semi-Naive Evaluation allows Starlog programs to be optimised using the trig
gered program transformation presented later. Although the tuple-oriented ap
proach has been criticised for introducing a potential bottleneck [91], in general,
it allows simpler implementation. Furthermore, the benefits of a set-oriented
approach are greatly diminished for Starlog because rules can assert tuples ar
bitrarily later in the stratification order. This means that in any Semi-Naive
iteration only a subset of the new tuples in A may activate rules. The additional
partitioning required over the A set reduces efficiency in set-oriented evaluation.
This problem is alluded to (but not thoroughly discussed) in [86].

2.1.1 Example Evaluation

To demonstrate Semi-Naive Evaluation an example program is given in Figure
2.2. This contrived example program finds some paths in a directed graph.
Before evaluation begins, each edge in the graph is represented by a path/3 fact
where the first and second arguments are the source and destination nodes in
the graph and the third argument is the cost (or weight) associated with the
edge. The rule in the example program creates new path/3 tuples when one
path ends on the node where another path starts. However, built-in operations
in the rule ensure that the cost of the first path must be greater than the cost
of the second. The derivations made during evaluation are presented using a
format similar to that of [85]

The Semi-Naive Evaluation of the program shown in Figure 2.2 begins by
assigning A to the set of facts in the program. To ground the arguments of fact
path(a, d, C) +- C is 5 * 2, the built-in operation C is 5 * 2 is solved before the
head is added to A. r is initially empty. From A the tuple path(a, b, 4) is chosen
as h. (In this example the first element in A will be consistently chosen for h.)
To find all consequences of path(a, b, 4) the conseq(h, r) applies all rules in the
program where this tuple unifies with one of the positive goals. The remaining
goals in the rule are searched for in r. In this case, because r is empty, all
applications of rules fail to produce new tuples. path(a, b, 4) is removed from the
A set and added to r before the next iteration. In each iteration, any new tuples
generated by the conseq(h, r) function (such as path(a, c, 7) in iteration 2) are
added to A. Eventually the A set becomes empty at which point termination
occurs.

Semi-Naive Evaluation can now be modified to allow negated goals to be
correctly evaluated.

2.2 Stratified Semi-Naive Evaluation

A stratification order is often used when evaluating negated goals to allow termi
nation of programs using the fixed-point semantics [93]. By restricting programs
so there is no recursion through negation, programs have an intuitive semantics,
corresponding to the well-founded semantics [91]. However the evaluation tech
niques must respect the stratification order for an equivalent two-valued model

26

Program P:
path(a,b,4}.
path(a, d, c) +- c is 5 * 2.
path{b, c, 3).
path(c, d, 5).
path(From, To,Cost) +- path(From, X, C1), path(X, To, C2), C1 > C2,

Cost is C1 + C2.

Ao= {path(a, b,4),path(a, d, 10),path{b, c, 3),path(c, d, 5)}
ro = 0
choose h = path(a, b, 4)
conseq(h, r 0) = 0
A1 = {path(a,d, 10),path{b, c,3),path(c,d,5)}
r 1 = {path(a, b, 4)}
choose h = path(a, d, 10)
conseq(h, r1) = 0
A2 = {path{b,c,3),path(c,d,5)}
r 2 = {path(a, b, 4), path(a, d, 10)}
choose h = path{b, c, 3)
conseq(h, r 2) = {path(a, c, 7)}
A3 = {path(c, d, 5), path(a, c, 7)}
r 3 = {path(a, b, 4), path(a, d, 10), path(b, c, 3)}
choose h = path(c, d, 5)
conseq(h, r 3) = 0
A4 = {path(a, c, 7)}
r4 = {path(a, b, 4), path(a, d, 10),path(b, c, 3),path(c, d, 5)}
choose h = path(a, c, 7)
conseq(h,r4) = {path(a,d,12)}

As = {path(a, d, 12)}
r 5 = {path(a, b, 4), path(a, d, 10),path(b, c, 3),path(c, d, 5)

path(a, c, 7)}
choose h = path(a, d, 12)
conseq(h, r 5) = 0
A5 =0
r6 = {path(a, b, 4), path(a, d, 10), path(b, c, 3), path(c, d, 5),

path(a, c, 7), path(a, d, 12)}

Figure 2.2: Semi-Naive Evaluation of an example path finding program.

27

to be generated. It appears this area has been neglected in the bottom-up
evaluation literature.

Semi-Naive Evaluation, as presented in Figure 2.1, correctly evaluates strat
ified programs that include negated goals when the h tuples chosen from A
are chosen according to the stratification order (rather than arbitrarily). (That
is, negation within Semi-Naive Evaluation can be made equivalent to the well
founded semantics.) For proof, assume that stratified program P (with ground
completion p• and 3 is the set of all true, ground built-ins) has the usual
stratification property:

\/(hr +-- /3r) E P*, (3 P /3;) => (\/b E /3't, hr»b) I\ (\/n E /3';, hr » n) (1)

When a tuple h (chosen from A) successfully unifies with a goal in f3't and all
built-ins are true, given h E /3't, then (3 p /3;) => hr»h. If the only elements
added to r are h where h E A such that "t,h' E A, h' « h (i.e. h is a minimal
stratified tuple in A), and the only elements added to A are hr where hr»h,
then \/d E A, \/g E r, g«d. In other words, the set of tuples derived by the
program is partitioned according to the stratification order where all tuples in
A are later in the stratification order than (or unordered with respect to) hand
all tuples in rare earlier than (or unordered with respect to) h. When querying
a negated goal n E /3';, if n « h I\ n <J. r then n will never be derived by the
program and not(n) is conclusively true. Otherwise, if n « h I\ n E r then
not(n) is false.

To ensure n « h, querying negated goals is delayed [20]. A first approxima
tion of a stratum that is known to be later than n in the stratification order is
the stratum of hr. Because hr » n (from (1)), delaying evaluation of n until
h = hr ensures that n « h. That is, when the head of the rule hr +-- /3r becomes
a minimal element in A, it is safe to query all negated goals in the rule (/3';)
because the head of a stratified rule is later in the stratification order than its
negated goals. Notice that this property holds for strongly stratified programs
also. That is, programs that satisfy:

\/(hr +--/3r) E P*, (3 p /3;) => (\/b E /3't, hr » b) I\ (\/n E /3';, hr » n) (2)

Although the evaluation techniques presented in the remainder of this chap
ter assume modular stratification, they do not require strongly stratified pro
grams to function. However opportunities for optimisation due to strongly strat
ified programs are pointed out along the way.

When choosing a minimal stratified tuple from A to activate rules there may
be more than one candidate. This is because the stratification order may be
a partial order. For now we require the evaluation technique to be fair when
choosing tuples from A. The issue of fairness in the resulting implementation
is solved in later sections.

To facilitate the delayed querying of negated goals, A holds head tuples
together with their unresolved negated goals. Previously for Semi-Naive Evalu
ation, tuples were considered unconditionally true in both A and r. In Stratified
Semi-Naive Evaluation the definition of A differs. Here the A set holds tuples
which have not yet been used to activate program rules and that may be con
strained by unresolved negated goals. For this reason tuples in A are no longer
considered unconditionally true since they may yet be contradicted when these
negated goals are queried. In this context A is referred to as the pending set.

28

Given Program P
let Rules = { (h +- ,B) I (h +- ,B) E P I\ ,a+ # 0}
let Facts = { (h +- ,B) I (h +- ,B) E P I\ ,a+ = 0}
let 3 = the set of all true, ground built-ins

let fun conseq(h, r) = { (hrB +- ,8;8) I (hr +- .Br) E Rules I\
h E .B:8 " (.B;t-8- {h}) ~ r ",8;8 ~ 2"
hr8 ffi r}

let fun min(A) = {(h +- .B) I (h +- ,B) E A/\
~(h; +- ,B;) E A, h; « h}

Ao = { (h8 +- ,a-8) I (h +- .B) E Facts I\ ,a>.9 ~ 3}
ro = 0
< A;+ 1 , r i+l > = if A; ;6 0 then

choose (h +- ,B) E min(A;)
if ,a- n r; ;6 0 then

< A; - {(h +- ,B)} , r; >
else

< (A; u conseq(h, r;)) - {(h +- ,B)}, r; u {h} >
fi

else
< 0, r; > (Termination)

fi

Figure 2.3: Stratified Semi-Naive Evaluation.

The definition of Stratified Semi-Naive Evaluation in Figure 2.3 makes a
number of changes to Semi-Naive Evaluation. Instead of choosing any tuple from
A as h at the beginning of an iteration, a tuple is selected from the set of minimal
tuples found using the min(A) function. The h tuple may be constrained by
negated goals remaining in ,B. (In fact only negated goals can exist in ,B when
h +-,Bis held in A. Therefore ,B = ,a- in A.) Querying the negated goals in r
is safe at this time for reasons given previously. If h is contradicted by a tuple
in r then h is not derived and is eliminated from A before the next iteration.
Otherwise his moved tor. The conseq(h, r) function generates new tuples as
before, however these are now constrained by their negated goals.

To optimise this evaluation technique for strongly stratified programs re
quires a subtle change to the conseq(h, r) function. When a program is strongly
stratified the head of any rule is stratified later than all its goals, as in (2). If all
true tuples that satisfy the goals of hr +- .Br are either h - a minimally stratified
element in A - or are in r, then given that hr »hand Vg E r, h~, then
Vg Er, hr » g =} hr (fir. As a consequence, the test in the conseq(h,r)
function for hr in r will always fail and so can be omitted. The definition
of conseq(h, r) that does not search r for the existence of rule heads is given
in Figure 2.4. Although this optimisation is applied by the implementation of
Starlog, all later definitions of the conseq(h, r) function given in this chapter
do not apply this optimisation. As such, they are more general purpose.

29

letf un conseq(h, r) = {(hrO +- /3; 0) I (hr +- f3r) E Rules A
hE(3"j:0 A (/3"j:0-{h})<;r A /3;0<;3}

Figure 2.4: Modification to Stratified Semi-Naive Evaluation to optimise
strongly stratified programs.

2.2.1 Example Evaluation

Figure 2.5 gives an updated version of the program from Figure 2.2. In this new
version negation is used to ensure that for any new path created, an equivalent
path has not already been derived whose cost is two units less. This example is
contrived for sure, but succinctly demonstrates Stratified Semi-Naive Evaluation
for programs with negation. To ensure we prioritise the cost of a path, tuples
are stratified on their cost argument. Because costs can only be positive values,
the paths with the lowest costs will be generated first.

Stratified Semi-Naive Evaluation of this program repeatedly selects a mini
mum stratified element from fJ.. (interpreted as the path with the lowest cost)
to activate rules. In iteration 1 the first new tuples are produced from the
conseq(h, r) function. The new path/3 tuples generated are constrained by un
resolved negated goals. These tuples are added to fJ.. still constrained by these
negated goals. In iteration 3 the first path/3 tuple constrained by a negated
goal is selected to activate relevant program rules. Before this tuple is consid
ered true the negated goals must be resolved. By comparing the negated goal
p(a, c, 5) with the true tuples in r it can be determined that no other paths
exist from node b to d with a cost of 5. Therefore this tuple is true and can be
used to activate rules. Iteration 5 is of interest as it demonstrates the failure of
a negated goal. The tuple path(a, d, 12) is only considered true if path(a, d, 10)
is false. However the tuple path(a, d, 10) which exists in r contradicts this goal.
Therefore the tuple path(a, d, 12) is not derived in this iteration and is removed
from fJ.. without activating any rules.

In Stratified Semi-Naive Evaluation delaying evaluation of negated goals
until the rule's head is the minimum tuple in fJ.. may be unnecessary. Next we
present an optimisation that avoids storing some false tuples in fJ...

2.2.2 Early Failure of Negated Goals

In some cases Semi-Naive Evaluation can be optimised to allow for the early fail
ure of negated goals. In the previous definition (Figure 2.3), querying negated
goals in r is delayed until the head tuple is minimal in fJ... Without infer
ring more information from the program, this is the first time when queries on
negated goals can give definite results. If such queries were performed earlier
it is possible that tuples generated in the future would contradict the results of
this query. However if a negated goal is queried earlier and fails due to some
tuple in r then, because tuples are never removed from r, the negated goal
will always fail. By testing for failure of negated goals early (before tuples are
added to tJ..) Stratified Semi-Naive Evaluation may be optimised so that fewer
irrelevant tuples are added to fJ... This reduces the space required for fJ.. and
improves the performance of operations on fJ... Yet to be correct, negated goals
which do not fail early will also require querying when tuples become minimal
in fJ... In cases where early failure does not occur, the extra queries performed

30

Program P:
path(a,b,4).
path(a, d, C) +- C is 5 * 2.
path(b, c, 3).
path(c, d, 5).
path(From, To, Cost)+- path(From, X, C1), path(X, To, C2), C1 > C2,

Cost is C1 + C2, Prev is Cost - 2,
not(path(From, To,Prev)).

Stratification Order:
path(_,-, C1) « path(_,-, C2) <= C1 < C2

~o = {path(a, b, 4), path(a, d, 10), path(b, c, 3), path(c, d, 5)}
ro = 0
choose min h = path(b, c, 3)
conseq(h, ro) = 0
~ 1 = {p(a, b,4),path(a, d, 10),path(c, d, 5)}
r1 = {path(b, c, 3)}
choose min h = path(a, b, 4)
conseq(h, r1) = {(path(a, c, 7) - not(path(a, c, 5)))}
~2 = {path(a, d, 10), path(c, d, 5), (path(a, c, 7)- not(path(a, c, 5)))}
r 2 = {path(b,c,3),path(a,b,4)}
choose min h = path(c, d, 5)
conseq(h, r2) = 0
~3 = {path(a, d, 10), (path(a, c, 7)- not(path(a, c, 5)))}
ra = {path(b, c, 3), path(a, b, 4), path(c, d, 5)}
choose min (h +- (3) = (path(a, c, 7) +- not(path(a, c, 5)))
{3- nra = 0 => h is a true tuple
conseq(h, ra) = { (path(a, d, 12)- not(path(a,d, 10)))}

~4 = {path(a, d, 10), (path(a, d, 12)- not(path(a,d, 10)))}

r4 = {path(b, c, 3),path(a, b, 4),path(c, d, 5),path(a, c, 7)}
choose min h = path(a,d, 10)
conseq(h, r 4) = 0
~5 = { (path(a, d, 12)- not(path(a,d, 10)))}

r 5 = {path(b, c, 3),path(a, b, 4),path(c, d, 5), path(a, c, 7),path(a, d, 10)}
choose min (h +- (3) = (path(a, d, 12) +- not(path(a, d, 10)))
{3- n rs =/a 0 =>his a false tuple (contradicted by path(a,d, 10) E r 5)

~6 =0
r 6 = {path(b, c, 3),path(a, b, 4),path(c, d, 5),path(a, c, 7),path(a, d, 10)}

Figure 2.5: Stratified Semi-Naive Evaluation of an example path finding pro
gram.

31

letf un conseq(h, r) = { (hrO ._ /3; 0) I (hr ._ /3r) E Rules I\
he/3-;0" (/3-;0-{h}H;;r" f3;0~B1\
hrO rt r /\
/3;-'0 n (r u {h}) = 0}

Figure 2.6: Modification to Semi-Naive Evaluation for early failure of negated
goals.

may make the program less efficient.
Modification to the Semi-Naive algorithm in Figure 2.3 for the early failure

of negated goals involves adding an extra test when finding the consequences of
a tuple. As shown in Figure 2.6, the negated goals (in the form /3;') are queried
against the set of true tuples that are stratified before the rule's head (r U { h}).

Figure 2.7 gives an example how of early failure affects program evaluation.
The example program creates a new p/2 tuple when there is an equivalent q/2
relation whose two arguments are not commutative. From inspection it can be
determined that the program rule will fail because the provided q/2 relation is
commutative. Stratified Semi-Naive Evaluation begins by adding the two q/2
facts to A. The q(a, b) tuple is selected from A in the first iteration to activate
the (only) rule. After unifying this tuple with the positive goal in the rule, the
negated goal not(q(b, a)) is evaluated by searching r. Because a contradicting
tuple is not present, early failure does not occur. The head of the rule p(a, b)
is added to A, still constrained by the unresolved negated goal. In the next
iteration q(b, a) is selected from A and is unified with the positive goal in the
program rule. In this case the negated goal is instantiated to not(q(a, b)).
Because the contradicting tuple q(a, b) exists in r the negated goal fails early
and so the head tuple of this rule is not added to A. In the final iteration
the element (p(a, b) ._ not(q(b, a))) is selected from A. Before the head tuple
is considered true the negated goal must be resolved. By searching r, the
contradicting tuple q(b, a) is found. If early failure did not occur in iteration 1
then an extra tuple would have been present in A and an extra iteration would
have been required to extract this and resolve the negated goal.

In practice, early failure provides optimisation as the efficiency of operations
performed on a smaller A sets usually outweigh the extra tests. For this reason
we consider early failure a valid optimisation and it is applied whenever possible.

2.3 Triggering Evaluation

To introduce the next evolution of Stratified Semi-Naive evaluation we first mod
ify the bottom-up evaluated program and the Stratified Semi-Naive Evaluation
technique.

2.3.1 Triggering Transformation

In the previous sections it has been shown that both Semi-Naive and Stratified
Semi-Naive evaluation will activate a rule when a true tuple taken from A unifies
with one of the positive body goals in the rule. In the conseq(h, r) functions
of Figures 2.1, 2.3, 2.4 and 2.6 this is performed when h E /3-;0. However

32

Program P:
q(a,b).
q(b,a).
p(X,Y) +- q(X,Y),not(q(Y,X)).

Stratification Order:
q(_, -) « P(-, _)

60 = {q(a,b),q(b,a)}
ro = 0
choose min h = q(a, b)
conseq(h, ro) = {(p(a, b)- not(q(b, a)))}
because ({q(b,a)} n (r0 U {h}) = 0) => Early Failure of p(a, b) does not occur

61 = {q(b,a),(p(a,b)-not(q(b,a)))}
r1 = {q(a, b)}
choose min h = q(b, a)
conseq(h, r 1) = 0
because ({q(a, b)} n (r1 U {h}) =/a 0) => Early Failure of p(b,a) does occur
62 = {(p(a, b)- not(q(b,a)))}
r2 = { q(a, b), q(b, a)}
choose min (h +- /3) = (p(a, b) +- not(q(b, a)))}
13- n (r2 u {h}) =/a 0 => h is a false tuple (contradicted by q(b, a) E r 2)

Figure 2.7: Early failure for an example program.

another approach that simplifies the conseq(h, r) function is to transform the
input program to explicitly define the positive goals that activate a rule.

For now we assume that any positive goal can activate a rule. Each program
rule can be transformed into a set of rules where each new rule variant in the
set is activated by a different positive goal. The number of rule variants is the
same as the number of positive goals in the original rule. The positive goal that
activates each variant is called the 1'rigger1 and requires distinction from other
positive goals in the rule. The trigger of the rule h +- f3 is identified by {3T where
the {3T goal has been removed from 13+. Figure 2.8 shows how a single program
rule is transformed into a set of triggered rules for both the general case and an
example rule. In examples of rules, the trigger goals are given in bold font.

By transforming all the rules in a program to use triggers the conseq(h, r)
function can be simplified. This function now compares only the trigger goals
(rather than all positive goals) with the newly derived input tuple h before a rule
is activated. The updated conseq(h, r) function is shown in Figure 2.9. (Note
that this version of the conseq(h, r) is for Stratified Semi-Naive Evaluation using
the early failure of negated goals optimisation.) One difference to note is that
the new definition of conseq(h, r) satisfies all the positive goals in f3: using
the set (r U { h}). This is because the trigger goal has been removed from f3:

1 Although the trigger terminology is used in both relational and deductive database liter
ature it differs here. In relational databases, triggers activate programs or procedures when
database tables or other components are used [54]. Deductive databases often use triggers
to enforce integrity constraints or to periodically interact with the external environment [95].
However in both cases, triggers are specifically designed and assigned to databases by users
[53, 34].

33

(a) Given R = (h <-- (3)
Rtriggered = { (h <-- f3new) I a E fJ+ I\ f3;;,ew = {3- I\ f3~ew = f3" I\

13;.ew = a I\ f3tew = f3+ - {a}}

(b) Given R = (p(X, Y) <-- q(X), r(Y), s(Z),not(t(Z)).
Rtriggered = {(p(X, Y) <-- q(X), r(Y), s(Z), not(t(Z))),

(p(X, Y) <-- q(X), r(Y), s(Z), not(t(Z))),
(p(X, Y) <-- q(X), r(Y), s(Z), not(t(Z)))}

Figure 2.8: Adding triggers to rules for (a) the general case and (b) an example
rule (where triggers are bold positive goals).

letfun conseq(h,f) = {(hr9 <-- f3;9)1(hr <--f3r) E Rules/\
h = (3;9 I\ f3-:9 <;, (r u {h}) /\ f3;9 <;, s /\
hr9 <I. r /\
f3;"9 n (r u {h}) = 0}

Figure 2.9: Modification to Semi-Naive Evaluation to evaluate triggered rules.

and other positive goals are able to match with h. When this new conseq(h, f)
function is used the resulting evaluation technique is called "Triggering".

The number of unifications performed by the new conseq(h, r) function in
Figure 2.9 is identical to the the previous function given in Figure 2.6. For a
program with N rules and an average of M positive goals per rule, Stratified
Semi-Naive Evaluation will attempt to unify all positive goals in all rules with
the new tuple h, requiring NM comparisons2• For every triggered rule, only
one positive body goal (the trigger) is unified with the newly derived tuple h.
But when using triggers, for each N rules in the original program, there are (on
average) M new rule variants. Therefore triggered programs also perform NM
comparisons in conseq(h, f).

The Triggering transformation presented here is similar to the rewriting of
mutually recursive rules in [85] for Basic Semi-Naive Evaluation. In both trans
formations new versions of rules are created with different evaluation patterns
in the bodies. But instead of requiring only one (the ith) positive body goal to
be satisfied by a newly derived tuple, BSN requires all positive goals left of the
ith goal to unify with newly derived tuples.

With Stratified Semi-Naive evaluation modified for triggered rules, a number
of optimisations are possible.

2.3.2 Optimising Triggered Programs

To optimise Triggering Evaluation we observe that any rule which has a positive
goal whose satisfying tuples are produced later than the trigger tuple will always
fail. This is because if any positive goals can not be satisfied when the rule's
trigger goal is produced the rule will fail. Any rule that always fails can be
safely removed from the program.

2 Implementations of these evaluation techniques may not perform this many comparisons
since functor matching between goals and tuples may be performed statically. However, static
functor matching can be used to optimise any of the evaluation techniques presented here,
independent of any other optimisation.

34

Removing rules from the triggered program improves the efficiency of the
conseq(h, r) function. In the best case each of the N rules in the original
program will have exactly one triggered rule. In this case, conseq(h, r) will
perform only N unifications between trigger goals and any new tuple h. For
many programs this is a significant improvement.

Determining the order that positive goals are satisfied is trivial when the
stratification order between goals is determined by static information (such as
the functor). But when the stratification order of tuples depends on the values
of their arguments, the order that positive goals are satisfied is less obvious.
This is because arguments in positive goals may be free variables over which
there is no obvious ordering. Yet by using theorem proving techniques the
orderings between free variables may be inferred from relationships within the
rule. Built-in operations in a rule may define the ordering between variables
that must occur for the rule to succeed. These orderings may be explicit, such
as stating X > Y in the rule, or implicit such as X is Y + K in a rule implies
that X > Y if K > 0.

For Starlog, the stratification order between positive goals is proven using the
Simplify theorem prover[79]3 In a nut shell, the background axioms encapsulate
the stratification order as defined by the program's stratification priorities and
the theorem to be validated is that one of the positive goals is stratified later
than all others given the conditions (i.e. the builtin operations) within each
rule.

To demonstrate when rules can be removed from a program an example
program is given in Figure 2.10. In this example the triggered rule definitions
and stratification order combine to find the trigger goals that are not the last
goal satisfied. In step 1, the order of goals q(X, Z) and r(Y, Z) in rule R1 is given
by rule C in the stratification order, ruling out q(X, Z) as the last goal. Conse
quently rule R1 is removed from the program. For step 2 the built-in operation
in R2 that ensures W > Z combines with stratification rule A. The result is that
r(Y, Z) is not the last goal satisfied making rule R2 redundant. Finally, step 3
infers that V > W from the built-in Vis W + 1 in R3 • When combined with rule
B in the stratification order it is inferred that s(X, W) is not the last and rule R3

is removed. By deduction the last positive goal to be satisfied, and therefore
the only valid trigger for this rule, is t(Y, V). The rule triggered by this positive
goal (R4) remains in the program.

In some cases it is difficult or impossible to find the order that the positive
goals in a rule can be satisfied. When this occurs fewer triggered rules can be
removed from the program. For rules where positive goals are unordered due to
a partial stratification order, or where no ordering relationship between argu
ment variables exists, finding the last goal satisfied is impossible. Alternatively,
the ordering relations between positive goals may depend on complex formulas
or information only available at run time. Either way, finding the order that
positive goals are satisfied may not be practical. When a trigger goal can not
be ruled out as being the last positive goal satisfied then the rule must remain
in the program. Performance degrades when each rule in the original program
requires more than one triggered variant because, for any tuple produced, all
but one of the triggered rules will always fail.

3 Simplify was used because it has a Java implementation and so reduces the prerequistes
for running Starlog.

35

Program P:
R1 = (p(X, Y) ._ q(X, Z), r(Y, Z), s(X, W), W > Z, Vis W + 1, t(Y, V))
R2 = (p(X, Y) ._ q(X, Z), r(Y, Z), s(X, W), W > Z, Vis W + 1, t(Y, V))
R3 = (p(X, Y) ._ q(X, Z), r(Y, Z), s(X, W), W > Z, Vis W + 1, t(Y, V))
R4 = (p(X, Y) ._ q(X, Z), r(Y, Z), s(X, W), W > Z, Vis W + 1, t(Y, V))
Partial Stratification Order:
A. r(-, X) « s(_, Y) {= X < Y
B. s(_, X) « t(_, Y) {= X < Y
C. q(_, X) « r(_, X)

Optimisation stages:
1. Using rule C, q(X, Z) « r(Y, Z)

=> q(X, Z) is not the last to be satisfied, R1 can be removed.
2. Using rule A, (r(Y, Z) « s(X, W) where W > Z)

=> r(Y, Z) is not the last to be satisfied, R2 can be removed.
3. Using rule B and the additional rule (Vis W + 1 => V > W),

(s(X, W) « t(Y, V) where V > w)
=> s(X, W) is not the last to be satisfied, R3 can be removed.

By deduction t(Y, V) is the last positive goal satisfied and R4 remains.

Figure 2.10: Removing redundant rules based on the satisfaction order of posi
tive goals.

The concept of activating rules using triggers has been previously seen in
Pseudo-Naive Evaluation, introduced in (101]. This paper outlines the require
ments for automatically determining trigger tokens (a new tuple's predicate
name and arity) but few details are given. However, because Pseudo-Naive
Evaluation is a refinement of Naive rather than Semi-Naive Evaluation, the non
repetition property no longer holds. Therefore, though fewer rules are activated
using triggers than in Naive evaluation, Pseudo-Naive Evaluation frequently re
applies rules to the same data and so may be dramatically less efficient. (101]
also mentions the possibility and advantages of identifying multiple triggers for
a rule - the same concept explored here where multiple versions of a rule each
have a different trigger.

An alternative approach to optimising Semi-Naive Evaluation is to use left
to-right modularly stratified programs described in (94]. These process rule
bodies in ascending stratification order such that earlier goals are solved before
later ones (20]. This is the opposite approach to the Triggering optimisation
presented here, where the first positive goal to be satisfied is the last in the
stratification order. Yet the technique needed to find the stratification order
of goals from a static program is identical. Here we have shown analysis of
variable relationships (given by built-in operations in rules) can help clarify
such orderings.

2.3.3 Example Evaluation

The path finding program previously demonstrated in Figure 2.5 has been trans
formed into an optimised triggered program in Figure 2.11. To make this trans
formation two triggered versions of the program rule were created where one

36

Program P:
path(a, b, 4).
path(a, d, C) +- C is 5 * 2.
path{b, c, 3).
path(c,d,5).
path(From, To, Cost)+- path(From, X, Cl), path(X, To, C2),

Cost is Cl + C2, Prev is Cost - 2,
not(path(From, To,Prev)).

Stratification Order:
path(-,-,Cl) « path(-,-,C2) {=Cl< C2

Figure 2.11: Triggered version of the path finding program from Figure 2.5 with
trigger goals in bold.

uses the positive goal path(From, X, Cl) and the other uses path(X, To, C2) for
the trigger goals. From the stratification order given with the program (where
path/3 tuples with a lower cost are produced first) and the built-in constraint
Cl > C2 that orders the positive goals, the rule activated by path(X, To, C2) will
always fail to produce output. This rule is removed from the program so that
only one triggered rule remains, as shown in Figure 2.5.

Evaluation of the optimised triggered program will have an identical se
quence of tuple derivations as that of Stratified Semi-Naive Evaluation (Figure
2.5), however each application of the conseq(h, r) function is now more efficient.
New path/3 tuples are no longer unified with both positive goals in the pro
gram's rule. Instead new tuples are unified with only the single trigger goal.
This not only halves the number of comparisons performed on each tuple in !::i,.
but also reduces the searching in r for tuples that have not yet been generated.

With the basic Triggering optimisation in place additional optimisations are
now possible.

2.3.4 Early and Late Evaluation of Negated Goals

Early failure of negated goals has been addressed with respect to Stratified
Semi-Naive Evaluation. It was shown that failure of negated goals may be
detected before the head tuple becomes the minimum of t::i,., but since tuples
that satisfy the negated goals may still be produced, definite evaluation of these
is not possible.

Yet in Triggering, negated goals stratified before the trigger can be evaluated
correctly when the rule is activated. This is called Early Evaluation. A rule
hr +- /3r is activated when tuple h (a minimal element in !::i,.) unifies with the
rule's trigger /3;. For each negated goal n E /3;:, if it can be proven that when
all positive goals are satisfied and all built-ins are true, n « 13; (i.e. all true
tuples capable of satisfying a negated goal have already been generated when
the rule is activated) then n can be safely queried in r when h unifies with /3;.
This is because tuples are added to r strictly in stratification order and any
negated goal that is stratified before the trigger of the rule can only be satisfied
by tuples in r.

The converse situation is where negated goals can only be evaluated late -

37

let fun canseq(h, r) = { (hrB +- f3;;ew) I (hr +- f3r) E Rules I\
h = /3;B I\ f3:B ~ (r u {h}) /\ /3;B ~ B /\
hrB ~ r /\
(Ve E /3';:'B, (c « /3;B =} C ,er) V

(C ~ /3; (} =} C ,e (f U { h}))) /\
/3:;;ew = {not(c) I c E /3';:'B I\ (c » f3;B V

(c ~ /3;B I\ c ,e(r u {h})))}

Figure 2.12: Modifications to Triggering Evaluation for early and late evaluation
of negated goals. (Includes early failure for negated goals that are not definitely
stratified before or after the trigger.)

when hr, the head of a rule, becomes the minimum in D.. Given the negated
goal n E /3';, Late Evaluation optimises programs when it is proven n » f3;
when all positive goals are satisfied and all built-ins are true (i.e. n can only
be satisfied after the trigger goal is satisfied). In these cases the early failure
optimisation will never optimise the program and the additional early tests are
removed.

To maximise optimisation, the use of early evaluation, early failure or late
evaluation of negated goals should be specific to the negated goal being evalu
ated. For example, different negated goals in the same rule may apply different
optimisations depending on when they are satisfied.

Changes made to the definition of the canseq(h, r) function allowing for early
and late evaluation of negated goals are shown in Figure 2.12. Note that the
~ operator used in this definition succeeds only when its operands are neither
stratified before or after each other (i.e. a ~ b <=} --i(a « b) I\ --i(a » b)). All
negated goals that are stratified before the trigger goal (/3;B) use early evaluation
and so are queried within the set of true tuples stratified before the trigger goal
(r). In these cases, if no contradicting tuple exists then one will never exist so
after the negated goal is queried it is discarded (i.e. does not appear in /3:;;ew).
Negated goals stratified after the trigger goal require late evaluation since these
can not fail or be evaluated early. These negated goals are added to /3:;;ew and
are queried when the head tuple becomes the minimum of D.. Negated goals that
are not definitely stratified before or after the trigger are still queried within the
set of true tuples (r U { h}) to check for early failure. If no contradicting tuple
exists one may still be generated in the future. The negated goal is stored in
/3:;;ew to await evaluation when the head tuple becomes minimal in D..

The effect of early evaluation of negated goals is that tuples in D. have fewer
negated goals constraining them. The result is that D. will be smaller due to
fewer redundant tuples existing and, in cases where all negated goals in a rule
can be evaluated early, a simpler data structure can be used (since tuples in
D. are unconstrained, specifying the types and arguments of remaining negated
goals in D. is now unnecessary). Using late evaluation reduces the number of
redundant searches in r for tuples that have not yet been produced.

The example program rule in Figure 2.13 demonstrates when each of the
negation optimisations can be applied. Rule R contains only one positive goal
which is the trigger - q(X, Y). Using the stratification order provided, the first
negated goal not(r(X)) is satisfied by r/1 tuples that are generated strictly
before any q/2 trigger tuples. This means that when this rule is activated by

38

Rule R:
p(X, Y) +- q(X, Y), not(r(X)), not(s(Y)), not(q(Y, X)).

Stratification Order:
q(-, A) « q(_, B) <= A < B
r(_) « q(_, -)
q(_, _) « s(_)

Negated Goal in R Optimisation
not(r(X)) Early Evaluation
not(s(Y)) Late Evaluation
not(q(Y,X)) Early Failure

Figure 2.13: Example uses of early/late evaluation and early failure of negated
goals based on the stratification order of goals.

a new q/2 tuple all true r/1 tuples will already exist in r. In this case we
apply the early evaluation optimisation to not(r(X)) and query r only when
the rule is activated. The second negated goal, not(s(Y)), is satisfied by tuples
generated after all q/2 tuples. Late evaluation of this negated goal will delay
querying r until the head tuple of this rule is the minimum tuple in t:i.. The
final negated goal in this rule, not(q(Y, X)), is unordered with respect to the
trigger goal q(X, Y). This means that it is unclear whether this negated goal
is satisfied by tuples generated before or after the rule is activated. We apply
the early failure optimisation to this negated goal to allow the rule to fail if a
contradicting tuple exists in r when the rule is activated, and query r a second
time when the head tuple of the rule becomes the minimum of t:i..

2.3.5 Optimisation for Non-Trigger Rule Heads

In the definition of Triggering Evaluation, rules are activated when the trigger
goal successfully unifies with a minimal true tuple in t:i.. However it is possible
to generate tuples that do not trigger any rules. Programs can be optimised
so that these tuples are never treated as triggers and instead are passive tuples
used only to solve the remaining body goals (after a rule is triggered).

To detect if the head of a rule (including facts, which, for this optimisation,
are considered rules without any positive goals in their bodies) is a non-trigger
tuple in program P the following condition is used. Note that head tuples
constrained by negated goals (i.e. when a negated goal is not evaluated early)
must always be added to t:i. to delay their evaluation. Given a rule h +- /3, his
a non-trigger head iff:

(\:In E 13-, WJ, n9 « {f'(J) I\ (\:/(h; +- /3;) E P, ~(}, /3[9 = h)

To ensure non-trigger head tuples are never treated as triggers, non-trigger
heads are never added to t:i. - the set of tuples waiting to activate rules. Instead
non-trigger head tuples are added tor as soon as they are generated by a rule.
The r set is exclusively used for non-trigger goal evaluation. The effect of adding
tuples to r immediately is that tuples are no longer added to r in stratification
order - non-trigger tuples may be added early. Yet the addition of future tuples
to r will not affect the correctness of programs with stratified negation if the
stratification order is enforced in rules. That is, for all rules (hr +- /3r) E P, it

39

must be true that if /3;9 s;; 3 then Vn E f3;:, n9 « hr(}, Therefore this optimi
sation is valid only when each rule includes the stratification conditions on the
argument variables used by the rule's head and all negated goals. To illustrate,
if the stratification order between p/1 and q/1 is given as p(X) « q(Y) <= X < y
then any rule with a q (Y) as a head and not (p (X)) in the body must include
the condition that X < Y. The conditions from the stratification order can be
added to Star log programs without changing their evaluation4 •

In some cases the early addition of non-trigger tuples tor will increase the
early failure rate of negated goals. Adding non-trigger tuples to r early allows
some positive goals to be satisfied earlier. However the early satisfaction of
positive goals does not alter the correctness since any consequence of a head
tuple produced early is delayed until the head tuple is a minimal element in t::..

Tuples from built-in predicates that cause external side-effects (such as print
ing to standard output) are never considered non-trigger rule heads. This is
because although the program may never refer to built-in predicates in any rule
bodies, these built-in predicates trigger external operations where the order of
operations may be important.

Optimisation of non-trigger rule heads can not be expressed as an incre
mental modification to the previous definition of Triggering Evaluation given in
Figure 2.9. Instead, all the optimisations described in this chapter (including
the optimisation in the next section) are given in the definition in Figure 2.15.
This figure represents the version of the bottom-up evaluation technique that is
used to evaluate Starlog programs throughout the remainder of this thesis. To
implement the optimisation for non-trigger rule heads the canseq(h, r) function
has been split to separate the new tuples that will be added to the t::. and r
sets. In addition, non-trigger tuples are added r instead oft::..

This optimisation improves evaluation in three ways. By adding tuples di
rectly to r instead of processing head tuples through t::. first, the number of
tuple insert and delete operations is reduced. Also, attempts to unify non
trigger head tuples with trigger goals are skipped since these will always fail.
By reducing the number of tuples in t::., finding the minimum element should
be more efficient. However, as t::. gets smaller r gets larger. Tuples stored in r
earlier than if they had been processed through t::. are usually not immediately
used to satisfy goals. Therefore it is possible that the additional tuples in r
(that remain unused) will saturate this set and can reduce efficiency of other
searches in r. However by using specialised data structures to implement the r
set the inefficiency of saturated data structures can be minimised (see Chapter
7).

An example of a program containing non-trigger heads is given in Figure
2.14. (This example program is also used to demonstrate optimisation of exclu
sive trigger heads discussed in the next section.) Notice that the stratification
order between any negated goals and the head of a rule is explicit in each rule
through the use of built-in tests. This satisfies the precondition for this optimi
sation mentioned previously. For each rule (including facts), if the head can not
unify with any trigger goals in the program then the head is a non-trigger. In
the example program, rule 1 is activated when a tuple matching q(2, -) is gen
erated whereas rule 2 is activated by any q/2 tuple. Because the first two rule

4 If existential variables are used by negated goals the conditions on such variables must be
included inside the not(...) structure.

40

heads q(l, 2) and q(2, 1) can unify with at least one of these trigger goals, these
rule heads are not non-trigger goals. However, the rule heads r(3) and r(2) do
not unify with any trigger goals, making these non-trigger heads. Although the
rule head p(X, Y) is not used as a trigger in any rules, this rule head can not
be optimised. The rule which produces p(X, Y) tuples includes the negated goal
not(r(Y)) which is not stratified before the trigger of this rule. Consequently,
the p(X, Y) rule head must wait in A until the unresolved negated goal can be
correctly evaluated.

Evaluation of the program in Figure 2.14 is optimised by inserting new tuples
generated by non-trigger rule heads directly into r instead of A. This occurs in
iterations O and 2 when tuples r(3) and r(2) are added to r.

2.3.6 Optimisation for Exclusive Trigger Rule Heads

In contrast to non-trigger tuples, exclusive trigger tuples are those that are only
ever used as triggers in a program. These tuples are never used as negated
goals and any positive goal references are always as the trigger of the rule.
Optimisation can occur when these tuples are omitted from the r set. For a
given rule h +- {3, h is an exclusive trigger head iff:

('</ (h; +- {3;) E P, (WiJ, h() , /3[iJ) /\ (WiJ, h() , {3'(iJ))

Excluding a tuple from r optimises future searches in r. It should be noted
that r was originally considered the model or set of all true tuples a program gen
erates. By applying this optimisation this property no longer holds. However,
as this optimisation is intended for a programming language implementation
rather than a theorem prover or database system, there is no value in keeping
all tuples indefinitely.

The definition of semi-naive evaluation given in Figure 2.15 implements the
optimisation for exclusive trigger rule heads. In this figure, the storeGamma(h)
function is used to update r when h is used as a trigger in some rules. Otherwise
storeGamma(h) excludes h from r.

This optimisation is actually a form of garbage collection as any tuples that
are not referenced by the program in the future are deleted (or, in this case,
simply not stored). Chapter 8 discusses generalisations of this form of garbage
collection in the future work section.

In Figure 2.14 the rule heads q(l,2), q(2, 1) and p(X, Y) in the example
program do not unify with any non-trigger body goals in any program rules.
Therefore these are exclusive trigger heads. When evaluating the example pro
gram, in iterations 0, 1 and 2 tuples q(l, 2), q(2, 1) and p(2, 1) are the minimum
tuples in A, respectively. After these tuples have activated rules they are re
moved from A but not added tor. The result is that the r set is smaller and
does not hold tuples that can not contribute to the derivation of other tuples.

An interesting property of combining exclusive trigger and non-trigger head
optimisations is that together they can remove redundant tuples from a program.
Tuples that are not used as triggers are never added to A (excluding those
constrained by negated goals and those causing external side-effects). Tuples
that are never referenced by a program in non-trigger goals are never added
to r. As a consequence, tuples which satisfy both conditions are never added
to A or r. Although not considered in this thesis, this optimisation could be
further expanded to remove any tuples that are constrained by negated goals

41

but are not used by the program. Furthermore, such an optimisation could
be recursively applied so that the removal of one set of redundant tuples from
a program can prompt the removal of others. The ultimate result of such an
optimisation would be the removal of all rules that do not (eventually) result in
a side-effect. For all the example programs in this thesis that do not generate
side-effects, this optimisation would remove all the rules.

2.4 Conclusions

In this chapter it has been shown how bottom-up evaluation of stratified pro
grams is possible. The Triggering Evaluation technique used to evaluate Starlog
programs is based on Semi-Naive Evaluation which is used by many deductive
database systems. However Triggering is optimised for stratified programs in
ways not previously seen in the bottom-up evaluation literature. Triggering
Evaluation can reduce the number of unifications between goals and new tuples
by a factor of M, where M is the average number of positive goals in each rule.
Additional optimisations of rule heads and negated goals are also possible.

Triggering Evaluation improves the efficiency of Starlog programs, making
Starlog a more attractive language for programmers. In addition to improving
bottom-up logic programming languages, new bottom-up evaluation techniques
may benefit deductive databases, theorem provers and planners. The fact that
Triggering Evaluation takes advantage of a stratification order makes this an
appealing technique for applications where stratification is already necessary
for well-founded negation.

The use of sets in the definitions of Triggering Evaluation does not prohibit
the use of more advanced data structures. Indeed, to be more efficient, indexing
techniques can be used to optimise operations performed over the various sets
of tuples. The next chapter describes an indexing technique used to hold and
access tuples efficiently during Triggering Evaluation.

42

Program P:
q(l, 2). q(2, 1). r{3).
r(2) +- q(2, _).
p(X, Y) +- q(X, Y), X > Y, not(r{Y)).

Stratification Order:
q(X, _) « r(X)
q(X, Y) « p(X, Y)
r(Y) « p{X, _) +- Y < X

Finding Non-Trigger Heads:

%Facts
%Rule1
%Rule2

Head q{l, 2) = trigger goal (q(X, Y))9 => q(l, 2) is not a non-trigger head.
Head q(2, 1) = trigger goal (q{X, Y))9 => q{2, 1) is not a non-trigger head.
Head r(3) =I any trigger goal => r(3) is a non-trigger head.
Head r(2) =I any trigger goal => r(2) is a non-trigger head.
Head p(X, Y) is constrained by negated goal not(r{Y)) => not a non-trigger head.

Finding Exclusive Trigger Heads:
Head q{l, 2) =I any non-trigger body goal => q{l, 2) is an exclusive trigger head.
Head q(2, 1) =I any non-trigger body goal => q{2, 1) is an exclusive trigger head.
Head r{3) = negated goal {r{Y))9 => r(3) is not an exclusive trigger head.
Head r{2) = negated goal (r(Y))9 => r(2) is not an exclusive trigger head.
Head p(X, Y) =I any non-trigger body goal => p(X, Y) is an exclusive trigger head.

Ao= {q{1,2),q{2, 1)}
ro = {r(3)}
choose min h = q{l, 2)
conseq(h, fo) = 0
A1 = {q{2, 1)}
r1 = {r{3)}
choose min h = q{2, 1)
conseq(h, ri) = {r(2), (p{2, 1)+- not(r(1)))}

A2 = {(p{2, 1)+- not(r(l)))}

r2 = {r{3), r(2)}
choose min (h +- /3) = (p{2, 1) +- not(r(l)))
13- n r2 = 0 => h is a true tuple
conseq(h, f2) = 0

I A3=0
f3 = { r{3), r(2)}

Figure 2.14: Example of Non-trigger and Exclusive Trigger Heads optimisation.

43

Given Program P
let Rules = { (h +- /3) I (h +- /3) E P A 13+ f. 0}
let Facts= {(h +- /3) I (h +- /3) E P A 13+ = 0}
let B = the set of all true, ground built-ins

let fun conseqGamma(h, r) = { hrfJ I (hr +- f3r) E Rules A
((VnE/3;:, WJ, mJ«f3;{})A
(V(h; +- /3;) E Rules,~' /3[{} = hr)) A
h = 13;0 A 13-:0 <;, (ru {h}) A /3;9 <;, BA
(/3;:0n (ru {h})) = 0

let fun conseqDelta(h, r) = {(hr(J +- f3;;ew) I (hr +- /3r} E Rules A
-i((Vn E /3;:, WJ, n{} « f3;{}) A

(V(h; +- /3;) E Rules,~' {3[{} = hr)) A
h = /3;9 A {3-:(J <;, (r U {h}) A /3;9 <;,BA
(Ve E /3;:9, (c « {3;9 => c ~r) V

(c ~ /3;9 => c ~(r U {h}))) A
f3;;ew = {not(c) I c E 13;:o A (c :» !Ji.9 v

(c~{3;o Ac ~(ru{h})))}
letfun min(A) = {(h +- {3) I (h +- /3) E AA

,lJ(h; +- /3;) E A, h; « h}
letfun stareGamma(h) = {h I (V(h; +- {3;) E Rules,

(\;/(J{}, h(J ~f3i{}) A (\;/(J{}, h(J ~{3'({}))

Ao= {(hO +- 13-0) I (h +- /3) E Facts A 13- f. 0 A {3"9 <;, B}

ro = {hll I (h +- /3) E Facts A 13- = 0 A {3"9 <;, B}

< A;+1 , ri+1 > = if A; f. 0 then
choose (h +- {3) E min(A;)
if 13- n r; f. 0 then

< A; - {(h +- {3)} , r; >
else

< (A; u conseqDelta(h, r;)) - {(h +- {3)} ,
r; u stareGamma(h) u conseqGamma(h, r;) >

fi
else

< 0, r; > (Termination)
fi

Figure 2.15: Triggering Evaluation with all optimisations.

44

Chapter 3

Indexing

The previous chapter described Triggering Evaluation for Starlog programs.
Two critical components of Triggering Evaluation are the l::i,. and r sets. There
fore, before any evaluation of Starlog rules can begin, the implementation of
these sets must be defined.

Recall from the previous chapter that the r set holds a set of ground tuples,
where a tuple is made up of predicate name and a number of primitive argu
ments. Similarly, the l::i,. set holds a set of ground tuples, however tuples in the
l::i,. set can be constrained by unresolved negated goals.

For clarity a few terms used throughout this chapter are defined. An index
structure is a description of the global database schema. Diagrams of index
structures use variables to indicate how a tuple's arguments are stored. An
index node is a component of the index structure that holds the different possible
values of an argument. An index branch is a directed edge down which one value
of an argument is stored. A path is a collection of branches used to index all
arguments in a tuple. An index node is an abstraction of a data structure which
is a concrete storage device used to hold the values of an argument. An index
structure that stores ground Starlog tuples in data structures is called an index
structure instance.

As with all database related applications, for Starlog programs to be efficient,
efficient access to data is crucial [90]. Starlog programs use fast in-memory
(or primary storage) databases for the l::i,. and r sets, rather than slower disk
based solutions. The majority of deductive database systems are disk-based [91]
which allows for larger volumes of data that will persist when the application
terminates. However, because Starlog is intended as a programming language,
the loss of run time data when the program terminates is permitted, as it is in
other language implementations. (Persistence of selected data could be restored
by adding file reading and writing facilities to Starlog.) The efficiency of the
in-memory database is improved by optimising tuple storage devices for how
they are used. Statically defining the database schema also reduces run time
overhead.

In this chapter, the discrimination tree origins of Starlog's index structures
are discussed and reasons are given why dynamic discrimination trees are unnec
essarily complex for storing Starlog tuples. Various optimisations for Starlog's
index structures are described. Operations performed on index structure in
stances are discussed before comparisons are made between Starlog's indexes

45

11111111 ~ .. -.- --~·--

Figure 3.1: Specification of index structures in Starlog's compilation pipeline.

and relational database systems. Section 3.4 introduces a syntax to describe
index structures. Section 3.5 goes on to describe one approach to automatically
constructing efficient index structures based on how programs use tuples. Fig
ure 3.1 shows where the specialisation of index structures occurs in the Starlog
compilation pipeline.

3.1 Starlog's Index Structures and Discrimina
tion Trees

Previous speed ups in indexing have been achieved for a variety of applications
from the use of discrimination trees (76] (sometimes generalised to discrimina
tion nets (17, 8] or refined to tabling tries (841). Experiments using the auto
mated deduction system OTTER showed that discrimination trees significantly
improved indexing for generalisation retrieval and gave promising results for in
stance retrieval when compared with the alternative path indexing strategy (76]
(although only the retrieval of instances is relevant to the Starlog database).
Logic programming languages Quintus Prolog and XSB use tabling tries by ex
tending the WAM instruction set to access terms [84]. This is an improvement
over the much berated first-argument-indexing that was prevalent in early im
plementations of Prolog. However discrimination trees still require programmers
to be aware of the indexing scheme to be able to take advantage of it. The the
orem prover REVEAL uses Associative-Commutative (AC) discrimination nets
to improve the efficiency of "many-to-one AC matching" (19, 18]. TRAM {Term
Rewriting Abstract Machine), used to evaluate lazy functional languages 0BJ3
and CafeOBJ, has been optimised by indexing rule heads in discrimination trees
[81]. Discrimination nets are displayed to guide user queries performed on the
COREL retrieval system (36] {not to be confused with the CORAL deductive
database). More recently, discrimination trees have been incorporated into the
KRHyper theorem prover to hold facts derived during Semi-Naive Evaluation
[115]. Performance comparisons between regular discrimination trees and alter
native indexing techniques (context trees and code trees) have been documented
in (80] for a variety of theorem proving benchmarks.

To clarify the discussion on discrimination trees, an example is given in
Figure 3.2 that shows how the following set of tuples is stored.

{p(a,b,c), p(b,b,c), q(a,2), q(c,1), q(c,2)}

46

To add tuples to a discrimination tree, each tuple is decomposed into a sequence
of atomic components that describe the predicate and arguments of the tuple in
a left-to-right order. For example, the tuple p(a,b,c) is decomposed into the
following sequence of atoms: p, a, b, c. The discrimination tree itself is a multi
branched tree capable of storing these atoms. However discrimination trees do
not hold duplicate branches in any sub-tree. When a sequence of atoms is added
to a discrimination tree, each atom corresponds to a branch that is followed to
find the next atom in the sequence. If there is no existing branch that represents
the atom then a new branch is created (initially referencing an empty sub-tree).
In [32] the process of building a discrimination tree from the set of literals in a
relation is described as: "Write the literals in prefix notation. Then build a tree
structure combining all initial segments of literals that are equal." A successful
traversal from the root of the tree to a leaf indicates the presence of a relation
with the values of the functor and arguments determined by the branches taken.
For an excellent introduction to discrimination trees see [17].

In the example in Figure 3.2 the atoms indexed in the tree are given in the
node at the end of each branch. That is, when searching for an atom (such as
p) in a sub-tree (such as the Root node), the values associated with each branch
are presented with the node at the end of the branch rather than beside the
branch itself. This notation simplifies the layout of these diagrams. Note that
in all tree diagrams in this thesis the tuples that are indexed at the end of each
path are not explicitly stored in the leaf nodes - in spite of their inclusion in
the diagrams (e.g. the inclusion of p(a,b,c) at the end of the left-most path of
Figure 3.2). The tuples are included at the end of each path only as an aid to
understanding. When a tree is searched, tuples must be recomposed using the
atoms found in the path from the root to a leaf.

Discrimination trees are dynamic indexes capable of storing arbitrary rela
tions. Each node of a discrimination tree is implemented by a dynamic data
structure (e.g. KRHyper uses list or hash table implementations [115]) which
we refer to as a dynamic aryument index (or an aryument index for short).

In spite of the well documented advantages of discrimination trees, regular
discrimination trees are unnecessarily complex for Starlog tuples for two rea
sons. First, discrimination trees are capable of holding and indexing variable
arguments [76, 17]. All arguments stored during Triggering Evaluation of Star
log programs are ground. As a result the tree structure and the search process is
greatly simplified because special variable entries that unify with any goal term
are not required, and additional filtering of query results to ensure unification
of shared variables [80, 17] is unnecessary. Second, current implementations of
Starlog do not allow arguments to contain nested structures (sub-terms) with
their own functors and additional arguments for reasons discussed in Chapter
1. This means that every level of the tree will hold only simple terms, mak
ing the process of unifying these with goal arguments simpler - normally when
a nested structure is unified with a variable, many levels of the tree may be
used to build up the structure (i.e. functor+ argument! + argument2 ...) [17].
Without nested structures each level of the tree will consistently index the same
arguments.

The use of discrimination trees as a base for Starlog's indexes may be crit
icised since the overriding advantage of discrimination trees is their ability to
index nested structures and store variables - neither of which is necessary for
Starlog. However discrimination trees are very effective for storing sets of rela-

47

• p(a,b,c)

Root

• p(b,b,c)
'f

q(a,2)
'f

q(c,1)
'f

q(c,2)

Figure 3.2: Example of indexing tuples in a discrimination tree.

tions since all duplicated relations share the same path ([17] describes relations
as being "uniquified"). Moreover, the hierarchical nature of discrimination trees
can be taken advantage of to minimise the overhead of backtracking through
multiple solutions (see Section 3.5.1). This type of indexing also allows optimi
sation of operations on related tuples (see Chapter 5) in ways that would not
be possible in other indexing frameworks.

The following sections present a series of optimisations for discrimination
trees that improve their performance for Starlog.

3.1.1 Static Labelled Branches

In the last section it was stated that each node of a discrimination tree is im
plemented by a dynamic data structure that is capable of inserting and deleting
values at run time. However, instead of using dynamic structures for every
node in a discrimination tree, static indexes can be used for data with a small
domain. In these indexes, each possible value is represented by a corresponding
static labelled branch. As will be seen in Chapter 6, the implementation of and
operations performed on statically labelled branches can be made very efficient.

Static branches are particularly useful for discriminating between tuples from
different predicates. This is because the set of predicates used by a program

48

is finite and usually small. Figure 3.3 (a) shows how static labelled branches
are presented in diagrams of index structures. Static labelled branches are
represented by curving, think, dashed arrow, with the label given in quotes. In
Figure 3.3 (a), static labelled branches are used to distinguish between tuples
with p and q as their functors.

Unlike dynamic argument indexes, the sub-indexes associated with static
labelled branches can be customised for the set that they index. For exam
ple, because some predicates have more arguments, or arguments of a different
type than others, each sub-index pointed to by a statically labelled branch can
be specialised for the predicate it holds. Static indexes are also useful for dis
criminating between tuples in the t. and r sets, and for customising dynamic
argument indexes for specific data types. For example, if both integers and
strings are expected for an argument then two static labelled branches can each
reference a dynamic argument index holding a different argument type. The
ability to store arguments of different types down different paths will be revis
ited later in this chapter and allows for further optimisations given in Chapter
8.

Although the labelled branches are static in each index node, the index nodes
that they point to are not. When an index node is created, all labelled branches
originating from this node point to a void (i.e. null) memory location. Labelled
branches can be reassigned to index nodes when tuples are added.

By not storing nested terms and using static labelled branches to discrimi
nate between predicates/sets with different sub-index structures, the structure
of the discrimination tree can be statically defined. That is, for any predicate
used by a program, how it is indexed (i.e. its path in the index structure) is
already defined before any tuples are added to the index structure. Insert oper
ations into a statically defined index structure are more efficient than those for a
dynamic structure (such as a regular discrimination tree) because allowances do
no have to be made for tuples from unknown predicates with unknown argument
types.

3.1.2 Argument Reordering

The order that arguments are indexed in Starlog's index structures does not
affect correctness of this system. During compilation the argument order can
be entirely ignored so long as tuple arguments are unified with those of goals
consistently. To achieve this, each predicate (distinct in t. and r) has a map
of how their arguments are arranged in the index structure. These maps are
called index path definitions and will be explained later in this chapter. This
is a significant departure from regular discrimination trees which have a strict
left-to-right indexing order and would require transformation of predicates at
the source level to achieve the same result.

Argument reordering also applies to static indexes. For example it is possible
to change when predicate names are indexed within the index structure. When
different predicates have arguments with similar properties (such as the same
types and ranges of terms), these arguments can be indexed together in the same
index node for greater efficiency. This frequently occurs when one predicate is
a consequence of the other where variables are shared. Combining arguments
from different predicates not only reduces the amount of space required for an
index structure instance but is the basis of some code optimisations given in

49

Root

~~/qflAg) ~

' p(a,b,c)
• 't' • 'f'

p(b,b,cl Q(a,21 Q(c, 11 q(c,21

(a) (b)

Figure 3.3: Two index structure instances with different argument orderings.

Chapter 5.
To illustrate how the order of the functor and arguments can change an

index structure instance, Figure 3.3 shows two structures storing the same tuples
with different argument orders. (Note that both structures use static labelled
branches to index the functors of tuples.) Figure 3.3 (a) is a structure resulting
from a simple left-to-right argument priority (starting with the functor). In
(b) tuples of type p/3 are ordered initially on their third argument, then the
functor, their second argument, and finally on their first argument. q/2 tuples
are ordered on their first argument and functor before the second argument.
The result, in this case, is that (b) is a smaller index instance because more
arguments are combined together. Whether this optimised index structure leads
to more efficient execution depends on how it is used by the program. This is
discussed further in this and other chapters.

When arguments are reordered, index structures that include static labelled
branches can be optimised. Static labelled branches can exist in conjunction
with a dynamic argument index to reduce the size of an index structure. The
values stored in a dynamic argument index are independent of any labelled
branches that exist at the same index node. By allowing labelled branches in
dynamic argument index nodes, some index paths may follow these labelled
branches whereas others can follow branches in the dynamic argument index.
The advantage of this is that index nodes may have a default dynamic argument
index where the arguments of some tuples are stored. Labelled branches can
be used to separate arguments from different predicates that are not stored in
the default index (perhaps due to type conflicts). This system allows only those
predicates that are considered exceptions to follow a labelled branch whereas
other predicates do not perform the additional branching operation.

When this optimisation is applied to Figure 3.3 (b) only one labelled branch
is required to discriminate p/3 tuples from q/2 tuples. Figure 3.4 shows the
index where p/3 tuples are automatically indexed in level 2 of the index structure
and q/2 tuples are considered the exception that require an additional labelled
branch to reach.

50

Level 1
p/3_ Arg3 _l_ql2_Argl ...

' ' : , p(a,b,c) p(b,b,c), ,
q(a,2) q(c,1) q(c,2)

Figure 3.4: Labelled branch optimisation where p/3 is the default predicate.

3.1.3 Labelled Boolean Values

By indexing compatible arguments from different predicates in the same index
nodes it is possible that all the arguments of one predicate will be indexed
together with the arguments of another. When this occurs one predicate is said
to be subsumed by another. To distinguish subsumed predicates in an index
structure a static labelled branch could be inserted after the last argument is
indexed. However, because all the arguments have been indexed, using a labelled
branch that points to an index node is excessive since no additional values will
be stored. Instead, a labelled boolean value is added to indicate the presence of
a tuple from the subsumed predicate. The boolean value is true when a tuple
of the particular type {identified by the boolean value's label} exists and false
when the tuple is not present.

Figure 3.5 gives an index structure instance that uses labelled boolean values
to discriminate two predicates. In diagrams of index structures, labelled boolean
values are presented as a rectangle with rounded corners that is connected to the
index structure by a dotted arrow. In this example the r/2 predicate subsumes
the s/1 predicate after the first argument of each is indexed. This is common
when arguments from one predicate contain a subset of the arguments from
another predicate. A generalised program rule that may generate the r/2 and
s/1 tuples in this way is:

s(X) <- ... , r(X,Y), ...

The labelled boolean value is placed in the index node after all arguments from
s/1 tuples have been indexed, in order to distinguish s/1 tuples from r/2 tuples.
The labelled boolean value is used only when searching for or inserting an s/1
tuple. When searching or inserting r /2 tuples the dynamic argument index
holds the second argument.

When one predicate is a complete projection of and subsumed by another
predicate, using a labelled boolean value is redundant. For example, this is the
case if the index path for t (X) tuples is subsumed by the index path of u (X, Y)
tuples, and the only rule producing t (X) tuples is:

51

• •••••. II s II

•• •• •
[~ue)

• s(a) • r(b,l)

.• •••••• "s" • • • • •
[lise)

• r(b,2)

Figure 3.5: Using labelled boolean values to distinguish tuples subsumed in an
index.

t(X) <- u(X,Y).

A labelled boolean value is redundant because the presence of one tuple im
plies the presence of the projected tuple and the labelled boolean value would
always hold true. To optimise programs, subsumed, projected tuples need not
be represented in the index structure. Any projected predicate referred to in
a goal can be satisfied by searching for a subset of the arguments from the
larger predicate on which the projection is based. Because a projected tuple
has been subsumed, its arguments will occur in the index structure before any
non-projected arguments. Therefore projected, subsumed tuples can be found
by searching for the "non-projected" tuple but then truncating the search when
the projected arguments have been found. It should be noted that this opti
misation could be performed at source level by removing all references to the
projected predicate and instead using the predicate on which the projection is
based. Any arguments which do not appear in the projection are represented
by arbitrary variables during queries. Although the removal of subsummed,
projected tuples from an index structure is a valid optimisation, techniques for
detecting these cases have not been investigated further in order to reduce the
scope of the project.

3.1.4 Labelled Values for Functional Relationships

Another potential optimisation that reduces the number of index nodes in an
index structure is to replace some index nodes with a single value. Dynamic
argument indexes generally store multiple terms for an argument. However
predicates may possess functional relationships between their arguments such

52

that, given a subset of the arguments in a predicate, there is only one possible
value for each of the remaining arguments (see [33] for a more formal description
of functional dependency in the logic programming context). This relationship
could be exploited in the index structure when the functionally dependent ar
guments are indexed after the arguments they depend on by representing each
functional argument with a single labelled value rather than a complex argument
index.

Unfortunately it has been found that proving functional relationships be
tween groups of arguments from a static program is complicated by recursion
and negation. This is discussed during the optimisation of destructive assign
ment in [23]. For this reason it is not yet possible to replace index nodes with
single values. The future work section of Chapter 8 discusses how some common
functional relationships may be detected using pattern matching on a program's
source code and outlines necessary extensions to index structure implementa
tions and the SDSL language (see Chapter 4) to facilitate this optimisation.

3.1.5 Multiple Argument Orders for Predicates

To increase the efficiency of searching, tuples may be indexed using multiple
argument orders [17]. Although a single argument ordering may be the optimal
choice for one mode of access used by the program, it can be inefficient for
others. (Searching for tuples in index structure instances using argument orders
is discussed later in this chapter.) Using argument orders that are specialised for
each mode of access improves efficiency of searching (although it does increase
the memory requirements of an index structure instance).

Alternative argument orderings are separated in the index structure using
statically labelled branches. When a tuple is added down one index path it must
be added down all relevant paths to ensure data integrity. If index paths end
with the same sequence of arguments then it is possible to store these common
arguments in the same index nodes, since they will contain the same set of
tuples. Labelled branches that point to existing nodes in the index are used
to join indexes together to form a graph, (as shown by the "rejoin" branch in
the example index structure in Figure 3.6). This removes duplication of indexes
thus reducing the number of insert operations and memory requirements.

However the benefit of optimised searching with multiple argument orders
may still be outweighed by the additional insert operations or by the increased
memory requirements. Whether the use of multiple argument orders improves
performance is still dependent on how tuples are used by the program. Con
sequently the algorithms described later in this chapter which automatically
define index structures do not create multiple argument orders. However the
use of multiple argument orders in user-defined index structures is permitted.

To summarise, index structures are statically defined yet remain highly cus
tomisable. Customisation can occur (1) when choosing the order in which argu
ments are indexed, and (2) by combining or separating arguments from different
predicates or sets. Many of the concepts discussed in this chapter are difficult
to understand. The next section gives a detailed example to help clarify what
is posible using Starlog's indexing structures.

53

Program:
p(X,Y,Z) <- q(X,Z), q(Z,Y), Z>Y, q(Y,N), Z>N, not(q(X,N)).
q(X,S) <- p(Y,X,Z), p(X,W,U), Z>U, p(V,X,T), Z>T, Sis Z+l.

Stratification Order:
p(_,_,Zl)»p{_,_,Z2){:::Z1 > Z2
qC,Zl) » qC,Z2) {::: Zl > Z2
p(_,X,Z) >> q(X,Z)

"delta", -

/
r----L _____L._
:~ true

' g(7,2)

1s]

J ' g(6, 3)

' p (5, 7, 2)
~

not (q (5, 4)) ' p(7,9,6)

p(_,Yl,Z)>>p(_,Y2,Z){:::Y1 > Y2
q(Xl,Z) >> q(X2,Z) {::: Xl > X2

- "q_p_index"

' ~9':,5 •q• l<l)JA
"rejoin" ·

' ' q(9,4) q(S,l) ' q(S,8)

Figure 3.6: Example program and a possible index instance.

3.2 Example of an Index Structure for Starlog

To clarify the discussion on indexing, an example program and one possible
index structure are given in Figures 3.6 and 3.7. The index structure shown
here demonstrates what is possible using the indexing system that has been
described previously in this chapter.

The top sections of Figure 3.6 give the definition of a Starlog program and
its stratification order. Note that it is not necessary to understand the program
or its stratification order to interpret this index structure. The program is
included only as a reference to why such an index structure would exist. The
lower section of Figure 3.6 gives an example of how a set of tuples could be
stored in a Starlog index. To complete the example of the index structure,
Figure 3.7 gives the schema for the index structure instance given in Figure 3.6.

A schema of an index structure provides a generalised model of all instances
of an index structure. That is, the schema specifies how all tuples that can be
generated by a program will be stored in a given index structure. A schema

54

' q{X,Z)

"delta', -

' p{Y,X,Z)
t

{not (q(Y,N)) JI
'-----~v

A

..., 'q_p_index"

- -•rejoin"

' p{X,Y,Z)

r

'q' -,

}

' q{Y,Z)

Figure 3.7: Index schema.

55

___,. Index branch

;j • ... Labeled branch

.:i.: ... Labeled boolean value

of an index structure is an index structure that holds a tuple from each of the
program's predicates (distinct in A and r}, where the tuple's arguments are
replaced by variables capable of holding all possible bindings. Schemas are used
in the remainder of this thesis to graphically describe index structures. For
more examples of schemas of index structures see Appendix C.

The index structure instance in Figure 3.6 and schema in Figure 3.7 present
an index structure capable of holding tuples from the q/2 and p/3 predicates.
These tuples can exist in both the A and r sets. To distinguish between these
two sets, all tuples that are stored in the A set are stored down the static
labelled branch named "delta" that originates from the root node. All tuples
in the r set are stored down the other paths that originate from the root node.
This partitioning is indicated in Figure 3. 7 using the A and r symbols.

Of the tuples in the A set (those stored down the "delta" path), the ar
guments of q/2 tuples are subsumed by the arguments of p/3 tuples. That is,
when the arguments of q/2 tuples are stored in the index, the path used to
store q/2 tuples is a subset of the path used to store p/3 tuples. To distinguish
q/2 tuples from p/3 tuples, a labelled boolean value exists at the point in the
index structure where all the arguments of q/2 tuples have been indexed. Con
sequently, for the A set, the boolean value labelled "q" is set to true to indicate
the presence of q/2 tuples, and / alse otherwise.

From the program, when p/3 tuples are stored in the A set they are con
strained by an unresolved negated goal (for reasons discussed in Chapter 2). To
allow for the negated goal to be queried at some point in the future, the bind
ings of variables used by negated goals must be maintained. For this reason,
although there are only three arguments in any p/3 tuple, the binding of the
extra variable that is required for the negated goal is also stored.

Tuples in the r set are located down those paths from the root node that do
not follow the "delta" static labelled branch. All q/2 tuples are stored down
the "q_p_index", where the first argument is indexed, and then down the "q"
static labelled branch, where the second argument is indexed. p/3 tuples are
indexed in the r set in two ways. The series of dynamic argument indexes that
start at the root node index the first, the second and then the third arguments of
p/3 tuples. However, p/3 tuples are also stored down the path starting with the
"q_p_index" static labelled branch at the root node. Down this path, p/3 tuples
are indexed initially by their second argument, then by their first argument. To
reduce the size of the index structure, indexing of the third argument of p/3
tuples is performed in the same dynamic argument index for both paths.

3.3 Operations on Starlog Index Structures

We now outline how to perform a few of the more frequent operations using
Starlog's indexing system.

3.3.1 Searching for Tuples in Starlog's Indexes

To search for a tuple in an index structure instance requires searching each level
for argument bindings unifiable with those in the query term, starting from the
Root index node and ending at a leaf. The order that the functor and arguments
are indexed is given in the index path definitions of each predicate. Following

56

the index path definition, when the value is an instantiated argument the index
branch associated with this value is followed to its "child" index node (the sub
index). Here the next term identified by the index path definition is searched
for. Similarly, statically labelled branches are followed when their label occurs
in the index path definition. If at any time a branch is undefined in a dynamic
index or the sub-index of a labelled branch is undefined (i.e. is a null value) the
search process is aborted and fails.

When attempting to satisfy a goal which contains a free variable for an argu
ment, the argument unifies with any term in the appropriate dynamic argument
index. In fact, to ensure that all possible output is produced from the program's
rules, all possible bindings for the argument must be used. The chosen technique
to ensure every binding is considered is backtracking. Initially the free variable
in the goal is unified with the first term in the appropriate argument index. The
search process continues (as does any subsequent evaluation) with this variable
binding until the rule succeeds or fails. When backtracking occurs the variable
binding made previously is removed. Unification occurs between the variable
and the next term in the argument index. This process continues until all pos
sible terms in the argument index (and therefore all possible matching tuples)
have been used.

When a leaf node is encountered during a search all the arguments of the
tuple will have been found. If the leaf node is a labelled boolean value, a
true value indicates the sought tuple is present in the index structure instance
whereas false indicates its absence. Otherwise, if the leaf node is not a labelled
boolean value, the sought tuple is present.

3.3.2 Inserting Tuples into Starlog's Indexes

The functor and arguments of tuples are inserted into an index structure in
stance in the order specified by the predicate's index path definition. If an
argument value to be inserted does not exist in the argument index then a new
index branch associated with this value is added. A new "child" index node
(the sub-index) is created at the end of the new branch, in which the next
term identified in the path definition is inserted. In the event that the value of
the argument already exists in a dynamic index, the value's existing branch is
followed to reach the relevant sub-index where the insertion of the next term
continues.

When the path definition indicates a statically labelled branch is followed,
the labelled branch will exist in the current index node reached during the inser
tion process (the index structure would be invalid if it did not exist). However
if this is the first insertion to follow this labelled branch then its sub-index will
be undefined (i.e. the branch will point to a null value). Before the insertion
process can proceed a new index node is created as the sub-index of the labelled
branch. When the sub-index of the labelled branch is defined, the next term
specified by the index path definition is inserted into this index node.

After the last argument has been indexed, it may be necessary to distinguish
the new tuple from any others that have been indexed using the same path. A
tuple that is subsumed by others in the index must assign "true" to the labelled
boolean value that represents this tuple.

57

3.3.3 Deleting Tuples from Starlog's Indexes

To delete a tuple we find the leaf which defines the presence of that tuple. In
the case where the leaf is a labelled boolean value, the value is changed to false.

Individual argument values can be removed from dynamic argument indexes.
When all argument values have been deleted from an argument index the index
is referred to as empty.

Statically labelled branches can never be removed from their parent index
- they originate from static indexes. However the sub-index beneath a labelled
branch can be removed by setting it to a null value.

To remain efficient an index structure instance should remove any redundant
index nodes that exist after tuples have been deleted (called "dead" branches in
[171). A redundant index node contains an empty argument index, all labelled
boolean values hold false and any labelled branches point only to null values.
The process of deleting one redundant index node may cause the parent to
become redundant. The single exception is that although the Root of an index
structure instance may become redundant, it is never deleted.

To find the parents of index nodes requires maintaining references to previ
ous index nodes encountered in the path. Because the definition of the index
structure is static there is a finite and constant number of index nodes encoun
tered when finding any tuple from a given predicate, making the use of a stack
unnecessary. Instead a reference to each index node is maintained in a different
variable. (This approach also leads to additional code optimisations discussed
in Chapter 6}.

When an index node J has multiple parents (i.e. when paths to the same
predicate converge) deletion proceeds as normal. If J becomes redundant then
all references to J in all parent indexes must be removed. To find all parents
of a redundant index node extra searching may be required to follow all paths
that include the redundant index node.

3.3.4 Comparisons to Relational Databases

Most relational databases are disk-based, allowing persistent storage in files [39].
In contrast Starlog uses an in-memory database. The values of a Starlog tuple's
arguments are stored at each index, making it unnecessary to store full tuples
as records. As a consequence, many of the issues associated with maintaining
database files (even when kept in main-memory) are not relevant to the Starlog
database.

Yet the concept of nested indexes is similar to hierarchical files in [74]. In
this system records are indexed on various fields, one at a time, to form a tree
structure. Indexing on one field may lead to a different subset of later fields
in the same way that indexing over functors often results in a different set of
arguments in the sub-indexes.

In general, Starlog tuples do not have a unique key field used to distinguish
different records. Two Starlog tuples are distinct if any of their arguments (or
functors) are different. Therefore it is often impossible to uniquely identify
tuples using a single key value. Like Clustering Indexes in relational databases
where a key value may refer to more than one record [39], a value stored in
a dynamic index may represent more than one tuple. However, Starlog uses
nested indexes (not to be confused with multilevel indexes used in relational

58

<index_path> ··= index <set> <abstract_tuple_with_negation>
<branch_list> '.'

<set> : := delta I gamma
<abstract_tuple_with_negation>: := <abstract_tuple_definition>

['<-' <negated_goals>J
<abstract_tuple_definition> ::= <functor> ['('<variable>

{','<variable>}')']
<negated_goals> ::= <negated_goal> {' ,' <negated_goal>}
<negated_goal>: := 'not(' <abstract_tuple_definiton>

{' ,' <built_in>} ')'
<branch_list> ::='['<branch>{',' <branch>}

[' ,' <boolean_value>] ']'
<branch>::= <argument_index> I <static_branch> I <name_definition>
<argument_index>: := <variable>
<static_branch> ::= 'branch(' <label>')'

I 'join(' <label>',' <label>')'
<name_definition> ::= 'name(' <string>')'
<boolean_value> ::= 'boolean(' <label>')'

Figure 3.8: BNF grammar of index path definitions.

databases) to distinguish similar tuples - each index operates on one of the
fields (arguments and functors) and points to a sub-index that indexes the next
field. By indexing on all fields, tuples are uniquely identified.

In the same way that multiple, secondary indexes (or multiple hierarchy
files) are used in relational databases to index records with multiple keys fields,
multiple index paths are used in a Starlog index structure to access the different
fields of a tuple more efficiently.

3.4 Index Structure Path Definitions

Every Starlog program requires an instance of an index structure to store tuples
at run time. However the static nature of the index structure requires it to be
defined at compile time. Although much of the design of index structures can be
automated it should also be possible for programmers to specify the design for
fine tuning. For this reason an index structure specification syntax is introduced.

Starlog index structure instances store all tuples from the same predicate
(distinct in .1. or r) alike. Each predicate stored in .1. and r has an index path
definition that lists which branches are taken to get from the root to a leaf when
storing tuples from this group.

Figure 3.8 gives path definitions in BNF format. (Non-terminals <variable>,
<functor>, <built...in>, <label> and <string> have not been defined since
they conform to definitions in Appendix A, conform to Prolog's standard syn
tax, or are explained in the text.) Figure 3.9 gives an example of the path
definitions used to describe the index structure in Figure 3.6.

By convention, programmer defined index path definitions are placed after
the stratification priorities but before any program rules in a Starlog program
file. This grouping allows immediate comparison between all path definitions,

59

reducing design errors. The order of path definitions in a program's source code
is irrelevant.

The structure of index path definitions is similar to the stratification prior
ities described in Chapter 1. An index path definition starts with the keyword
index. Each path definition then uses the keywords delta or gamma to indicate
which of the ~ or r sets will be indexed in this particular definition. Next,
the predicate to be indexed is given as an abstract tuple definition where each
argument is represented by a locally unique variable name (see Appendix A for
more details on abstract tuple definitions). Because tuples in ~ may be con
strained by negated goals, these are included in the abstract tuple definitions.
In any negated goal, arguments which are existential variables and arguments
bound by a value in the head tuple are represented using an underscore("-"),
whereas other arguments are represented by unique variables. When tuples from
the same predicate can be constrained by different negated goals depending on
the rule which generated them, each different constraint requires a different
index path definition. After the predicate to be indexed has been sufficiently
identified, the path through the index structure is given as a list.

There are four elements that can exist in the path: argument indexes, la
belled boolean values, labelled branches, and index names. Argument indexes
discriminate on the values of a tuple's arguments. To indicate when these occur
in a path we use a variable that occurs in the abstract tuple definition. Since all
variables in an abstract tuple definition are unique, each represents an argument
without ambiguity.

Labelled boolean values distinguish tuples from each other. These only occur
at the end of a path definition as boolean_value/1 relations, where the value's
labe!1 is the parameter.

There are two types of labelled branches in path definitions. Labelled
branches that point to a sub-index are identified using branch/1 relations where
the static label is the parameter. The second type oflabelled branch also points
to a sub-index however these branches point to sub-indexes that are already de
fined elsewhere in the index structure. This is useful when multiple index paths
to the same predicate converge to reduce the size of the index. This second
type of labelled branch points to an index specified in another path definition.
j oin/2 relations identify branches that point to existing indexes. The parame
ters used here are a label, to identify the branch, and the name assigned to the
destination node in the index structure.

For nodes to be named so they can be referred to in join/2 relations in
other path definitions, name/ 1 relations hold a globally unique name assigned
to the index node that immediately follows it in a path definition.

Any predicate in either ~ or r may have any number of index path defi
nitions. If a predicate does not have a path definition for ~ or r then tuples
from this predicate will not be stored in this set. By omitting path definitions
of predicates from a program, the exclusive trigger and non-trigger rule head
optimisations from sections 2.3.5 and 2.3.6 can be achieved. Each path defi
nition stores predicates according to one argument ordering whereas multiple
path definitions allow indexing using different argument orderings.

1 For implementation reasons, labels of any labelled boolean value or labelled branch must
obey Java's variable naming rules where labels can consist of any combination of letters,
numbers and underscore characters, but must begin with a letter.

60

index delta p(Y,X,Z) :-not(q(-,N)) [branch(delta), Z, X, Y, N].
index delta q(X, Z) [branch(delta), Z, X, boolean(q)].
index gamma p(X,Y,Z) [X, Y, name(lastarg..p), Z].
index gamma p(X,Y,Z) [branch(q..p_index), Y, X,

join(rejoin, lastarg..p), Z].
index gamma q(Y,Z) [branch(q..p_index), Y, branch(q), Z].

Figure 3.9: Path definitions corresponding to index structure in Figure 3.6

Although index path definitions can be supplied by Starlog programmers, it
is often preferable for the compiler to automatically infer appropriate definitions.
This is especially useful during initial code development (when efficiency is of a
lesser concern than correctness) or for Starlog users who do not know (or do not
want to know) how their program stores or uses run time data. Next we present
a heuristic for automatically defining an appropriate (and relatively efficient)
index structure from a Starlog program file.

3.5 Automatic Construction of Index Structures

Constructing an index structure capable of storing all the tuples in a program
is trivial. Each predicate appearing in a program may be distinguished by
labelled branches at the root of the index structure. (For each predicate one
labelled branch is used for tuples in t:,. and one labelled branch for those in
r.) Arguments can then be indexed one at a time in a simple left to right
order. Although sufficient for correct execution, the resulting index structure
will rarely be efficient since there is no sharing of arguments indexes between
predicates, and no attention has been given to how predicates are used by the
program.

Yet to construct a very efficient index structure at compile time is difficult.
The most efficient index structures may use multiple index paths when there are
different modes of access to a predicate. However, as has been described earlier,
a tradeoff exists that is dependent on run time data. Therefore it is difficult to
know when to apply this feature at compile time.

It is possible that by executing the program (perhaps using the naive index
structure described previously) that run time statistics can be gathered to help
make a more informed choice about when multiple indexes are useful. However
there are two cases when this may prove inadequate or even misleading. When
programs receive input from an external source, such as standard input or from
a file, then run time performance may change as the input changes. Also, when
programs are non-terminating, gathering run time characteristics for the entire
run is impossible so a subset of the execution must be used (i.e. termination
must be forced). However, depending on the subset, the run time data collected
may not be representative of actual run time characteristics. Because of these
problems we do not use run time data to influence the design of the index
structure. Instead we use a very simple but effective heuristic to design the
index structure from only the Starlog source code. In Chapter 7 the problems
associated with running a program to measure performance reemerge when using

61

run time data to help select efficient data structures. The effectiveness of such
approaches is evaluated and the conclusions reached may have implications in
the context of index structure design. However the use of run time data to
influence the design of the index structure is considered beyond the scope of
this project and is addressed in Chapter 8 as future work.

There are many ways that an index structure could be constructed based
only on the program. Some approaches may prioritise space rather than time
complexity or optimise index structures for some operations rather than others.

The following sections describe a simple approach to automatically con
structing an efficient index structure by referring to the stratification order and
mode information to find efficient argument index orders for all predicates in 6.
and r. This system prioritises efficient searching while combining compatible
indexes (to reduce space or facilitate code optimisations discussed in Chapter
5) is a secondary concern. Indexing the same tuples using multiple paths is not
used. The 6. and r sets are separated by a labelled branch ("delta") at the root
of the index structure. This allows optimised searching in each set, however
there is no argument sharing between 6. and r requiring more operations to
move tuples from 6. to r. Initially each predicate in 6. and r is treated inde
pendently of others while efficient argument index orderings are inferred. All
argument index orders of predicates in 6. and r are then merged together into
a single index structure using labelled branches to separate non-comparable ar
guments from different predicates and boolean values to distinguish subsumed
predicates.

3.5.1 Efficient Argument Index Ordering for 6.

The efficient ordering of argument indexes for the 6. set is now discussed. As
seen in Chapter 2, when a stratification order is present in a bottom-up program
6. stores new tuples and extracts tuples individually when they become minimal
elements.

When inserting a tuple into or deleting a tuple from 6., the efficiency differs
only slightly when the order of arguments is changed because only one path is
traversed through an index. However the efficiency of finding the minimum ele
ment in 6. is much more dependent on the order of arguments and so optimising
6. for this operations is important.

The minimal tuples in 6. are found by working through the argument strat
ification priority and taking the subset of tuples that are in the minimal strata
at each level. If tuples are indexed in the same order as their argument strat
ification priority then finding the minimum tuples requires exploring a single
path. An index order that ignores the argument stratification priorities will still
locate minimal tuples but will require backtracking to explore alternative paths
down which minimal tuples may exist. In the worst case, where the first element
in the argument stratification priority is the last to be indexed, an exhaustive
traversal of the 6. index may be required.

Figure 3.10 demonstrates of how changing the argument index ordering for a
set oftuples affects the performance when finding the minimal element. The p/2
tuples are stratified primarily on their second argument and then, assuming the
second arguments of two of these tuples are identical, on their first argument.
Index instance (a), which indexes the arguments of p/2 tuples left-to-right,
requires exploring all the branches originating from the root node in order to

62

Stratification Order:
p(_, X} » p(_, Y) <= X > Y
p(X, Z) » p(Y, Z} <= X > Y

,. ,. 'I' • 'I' •
p(2,3) p(2,9) p(S,l) p(7,l) p(7,3) p(7,9)

(a)

: :

'I' t 'I' t t ,.
p(S,ll p(7,1) p(2,3)p(7,3) p(2,9) p(7,9)

(b)

Figure 3.10: Finding the minimum stratified element using two different argu
ment orders.

find the minimum value for the tuple's second argument. As a result, three
paths are fully explored from the root to a leaf. However index instance (b),

which indexes the two arguments from right-to-left, can conclusively determine
the minimum argument at each level, thus requires exploring only one path.

3.5.2 Efficient Argument Index Ordering for r
Efficiently indexing of tuples in the r set requires a different approach. Oper
ations in r involve tuple inserts and tuple searches. Searching for the values
of a tuple's arguments in an index can take two forms: known value lookup
and unknown value lookups. A known value lookup is used when the value of
an argument in a goal has been instantiated. In an index this can be achieved
using (at worst) a semi-deterministic operation (where the sought value either
exists or does not). An unknown value lookup attempts to instantiate a variable
with all possible values of an argument (one value at a time) that exist in an
argument index. This operation uses backtracking to ensure all alternatives are
considered.

The design of the index structure requires all arguments to be indexed se
quentially in some order specific to each predicate. Considering the two forms
of lookups, the most efficient strategy is to perform known value lookups earlier
in the index structure before unknown value lookups.

To prove this, let us consider the case where A and B are dynamic argument
indexes where the A index is used exclusively for unknown value lookups and
the B index is used for known value lookups. An index structure that positions
index A before B will perform an unknown value lookup first during a search.
The unknown value search will instantiate variable X and continue searching B
for a known value before backtracking occurs and X is instantiated with another
value. In this situation when N instantiations of X are possible in A, N known
value lookups will be performed in B. The alternative, where the B index occurs
before A, will perform only one known value lookup in B, after which (assuming
the known value lookup is successful) X is instantiated N times. When N > 1

63

there is a clear improvement in efficiency. Therefore, if we assume indexes hold
more than one element (a reasonable assumption at this stage of compilation),
performing known value lookups before unknown value lookups in the index
structure wilt reduce the number of operations performed at run time.

Known value and unknown value lookups are used when an argument in a
body goal is ground or free, respectively. This is equivalent to the mode of a
variable before the goal has been satisfied. With the exception of trigger goals
(which are always the first goal to be instantiated) and negated goals whose
evaluation is delayed, the remaining body goals and built-ins are evaluated in
a left-to-right order. Arguments occurring in a goal are bound if they are a
constant or are a variable that has been ground previously in the rule. Otherwise
arguments are free variables. When describing the mode of variables for this
analysis, as is usual in the mode analysis literature, a program's variables are
adorned with a ' - ' when a variable is free before the goal is satisfied or with
a '+' to indicate it is ground. This mode information is inferred automatically
and does not have to be provided by the programmer.

Using a moded Starlog program, an indexing order of arguments can be
chosen to maximise the efficiency of queries in r. For any given predicate, a
count is made of the number of ground occurrences of its arguments in the
moded program. Arguments that are more often ground are indexed earlier in
the index structure. Arguments that are ground the same number of times are
ordered arbitrarily.

Next we define a syntax to describe these argument orders in preparation
for the automatic definition of an index structure.

3.5.3 Argument Order Definitions

To express the order of each predicate's arguments in the index, a variation
on the path definition syntax is used to create an argument order definition.
By including argument order definitions in programs, programmers can control
indexing of some or all predicates yet do not have to specify the complete index
structure. Alternatively, argument order definitions can be generated automat
ically using the program analysis outlined in the previous sections. Later in this
section we give the automated process as an algorithm.

Argument index orders may be considered an abstraction of path indexes
without labelled boolean values and with (in general) fewer labelled branches.
Examples of argument order definitions can be seen in Figure 3.12. (This ex
ample demonstrates the process of automatically defining these definitions and
is discussed in detail later.) By convention, argument order definitions are in
cluded between the stratification priorities and the rules in a Starlog program's
source code. An argument order definition is identified in a Starlog program
by the keyword order. Like path definitions, the keywords delta and gamma
are used to identify the set being indexed. The predicate to be indexed is given
as an abstract tuple definition. The order that arguments should be indexed
is given as a list of variables (corresponding to variables in the abstract tuple
definition) and labelled branches. Labelled branches are used only to distin
guish the ~ set and to distinguish between different predicates when tuples are
stratified on their predicate names.

The algorithm in Figure 3.11 uses a moded bottom-up program and argu
ment stratification priorities to infer efficient argument order definitions for all

64

predicates, for both t1 and r. The algorithm takes each predicate appearing in
the head of a rule and generates an efficient argument ordering for r by counting
the number of ground occurrences each argument has when used in body goals.
Arguments are sorted so those that are more often ground occur earlier in the
argument order definition.

Argument order definitions for t1 are distinguished from r using a
branch(delta) branch as the first element. Although this reduces index shar
ing between the t1 and r sets, it leads to a much simpler evaluation system
than when these indexes are combined. {The class of program where indexes
of t1 and r are combined are discussed in Chapters 5 and 8.) For each pred
icate, the argument order definition for the t1 set initially indexes arguments
as they appear in the argument stratification priority. The static fields of a
predicate that are used in the stratification order (such as the predicate names)
that sometimes occur in the argument stratification priorities become the labels
of labelled branches. Because some arguments do not appear in the argument
stratification priority, the additional arguments are appended to the argument
order definition in a left to right order. When a head predicate is constrained
by unresolved negated goals, any negated goal arguments that are not bound to
an argument in the head predicate must be stored separately in !i. These argu
ments are appended to the end of the argument order definition. By including
the extra arguments for negated goals after the head predicate's arguments and
consistently indexing unordered head arguments left to right, any instances of
a predicate that are constrained by negated goals and instances that are un
constrained will have the same argument order prefix. When constructing an
index structure from the argument order definitions the shared prefix will result
in shared indexes. Exact duplicates of argument order definitions are removed
using the set insertion operation.

Figure 3.12 gives an example of automatically generating efficient argument
order definitions. The modes of the non-trigger body goals have been sum
marised in the table. Arguments in r are ordered according to the number of
ground occurrences in body goals, where those arguments that are more often
ground occur first. Argument index orders for predicates stored in t1 are de
termined by the predicate's stratification priority. In this example all tuples
are stratified primarily on one of their arguments (the last argument for q/2
and p/3 and the first argument of r/2) after which the predicate name is used
(where, r{A, _) « q(_, A) « p{-, -, A)). The argument order definitions for t1 are
distinguished from the r set using a branch{delta) term. Following this the ar
guments of each predicate are ordered according to the predicate's stratification
priority, where variables representing arguments remain unchanged in the ar
gument order definition, and constant values (such as predicate names) become
the labels of labelled branches. The remaining arguments in a predicate that do
not occur in the predicate's stratification priority now appear in the argument
order definition in a left to right order. Finally, for the head predicate r{X, Y)
that is constrained by unresolved negated goal not(q{Z, Y)), the additional ar
gument {Z) that is necessary to instantiate the negated goal is appended to the
argument order definition.

65

Algorithm
let P denote the set of moded triggered program rules
let T denote the set of all head predicates used in P together with any unresolved

negated goals. All arguments are represented by different variable names (except
arguments in negated goals that are already bound by a head argument)

let head(x) give the only head predicate of x ET, i.e. ignore unresolved negated goals
let negbody(x) return the unresolved negated goals of x ET
let arity(y) be the arity of a predicate y
let arg(y, i) be the ith argument of predicate y
let args(y) be the set of all arguments in predicate y
let strat(y) be the sequence of terms in the argument stratification priority for

predicate y (where each term is either a constant or a unique variable name
representing an argument of y)

let graund(h, i, P) be the number of ground references to the ith argument of predicate
h in program P

let Vars be the set of all variable names, excluding"-"
let sorted(X) be the descending sorted version of list X, where X contains elements

structured (A, B) and in sorted(X) these are sorted on field A
let + be list/string concatenation

llet ArgumentlndexOrders = 0
lfor all r ET loop
I let h = head(r)
I let G = 0
I for i = 0 to arity(h) loop
I G =GU {(ground(h, i, P), arg(h, i))}
I end loop
I let OrderGamma = 0
I for all (J, v) E sorted(G) loop
I OrderGamma = OrderGamma + { v}
I end loop
I ArgumentlndexOrders = ArgumentlndexOrders U {' 'order gamma ''+h+

' • • • +OrderGamma}
let Order Delta= {branch(delta)}
for all k E strat(h) loop

if k E Vars then
Order Delta = Order Delta + { k}

else
Order Delta = Order Delta + { branch(k)}

fi
end loop
for all variables v E args(h) A v ft strat(h) loop

Order Delta = Order Delta + { v}
end loop
for all not(n) E negbody(r) loop

for all variables u E args(n) loop
if u E Vars then

Order Delta = Order Delta + { u}
fi

end loop
end loop
ArgumentlndexOrders = ArgumentlndexOrders U {''order delta '' +r+

• ' • • +Order Delta}

lend loop
!exit

Figure 3.11: An algorithm to find efficient argument order definitions.
66

Moded Program Rules:
(The '+' and '-' preceding each variable represents the mode immediately before
the goal has been satisfied assuming a left-to-right sideways information passing
strategy)
p(X, Y, Z) +

q(X, Z) +

q(X, Y) +

r(X, Y) +-

q(+X,+Y), r(-Z,+Y), p(+Y,+Z,-W), +w < +Y.
r(+Y,+X), p(-z,+v,-w), q(-v,+w), +w < +x.
r(+X,+Y), p(-z,+x,-w), +w < +Y.
p(+Y,+X,+Z), not(q(+Z,+Y)), +z < +Y, +Y < +x.

Argument Stratification Priorities:

stratify p(-,-,A) [A, p].
stratify q(-, A) [A, q].
stratify r(A, -) [A, r].
stratify r << q.
stratify q << p.

Goal arguments
searched in r

Argument Index Orders:

order gamma q(X,Y)
order delta q(X,A)
order gamma r(X,Y)

q/2 Arg 1
Arg 2

r/2Argl
Arg 2

p/3 Arg 1
Arg 2
Arg 3

order delta r(A, Y) +- not(q(Z,_))
order gamma p(X,Y,Z)
order delta p(X,Y,A)

Free Ground

1 1
0 2

1 0
0 1

2 1
0 3
3 0

[Y,X].
[branch(delta), A, branch(q), X].
[Y,X].
[branch(delta), A, branch(r), Y, Z].
[Y,X,Z].
[branch(delta), A, branch(p), X, Y].

Figure 3.12: Example of generating argument order definitions. (Triggers are
shown in bold).

67

3.5.4 Combining Index Structures

Argument order definitions can combine to produce a single index structure.
There are many approaches that will produce a correct index however we present
a scheme that maximises sharing of argument indexes without contradicting the
argument order definitions.

Each argument order definition can be interpreted as an index structure
holding one predicate. Multiple index structures are combined by repeatedly
applying a simple grafting algorithm similar to those used to extend decision
trees [113]. The output is a set of index path definitions representing a single
index structure.

The algorithm used to combine two index structures is given in Figure 3.13
but its operation is best demonstrated graphically. Figure 3.14 gives an example
where four index structures are combined. The disjoint index structures that
each hold a single predicate are given as argument index orders. The types
of arguments in each predicate are given as a type declaration statement. It
is assumed type declarations are inferred automatically from the program (see
Chapter 1).

When combining two indexes, one index structure will be the base structure
to which extra branches will be added. (Base structures are represented as a set
of index path definitions.) The other index (a single path definition) is called
the new structure.

Initially the base structure and new structures are arbitrarily selected from
the set of argument order definitions. In the example in Figure 3.14 the p/2
index is the first base structure and the q/2 index is the first new structure.
As shown in Figure 3.14 (a), the roots of both the base and new structures are
merged together. When both the base and new structures have an argument
index (represented by a variable in the argument index order) at the next level,
the types of the arguments are compared. If the two arguments have comparable
types then the two indexes are combined to increase sharing. In Figure 3.14 (a)
the X arguments from both p/2 and q/2 are combined in this way. In the event
that the two types of arguments are incompatible for sharing (as with arguments
Y and Z) these must be separated using a labelled branch. The labelled branch
"idO" is automatically generated for this purpose. Indexing of all remaining
arguments in the new structure (e.g. Z) occurs below the new labelled branch.

In Figure 3.14 (b) the root and X index nodes ofr/2 are merged with those in
the base structure (now indexing both p/2 and q/2 predicates). When attempt
ing to merge the second index (holding Z arguments) with the base structure
there is a clash of variable types between Z (a string) in r/2 and Y (an integer)
in the base structure. Rather than generating a new labelled branch to separate
r/2 tuples in the base index, the existing labelled branches in the base structure
are explored. The branch labelled "idO" already specifies an index storing string
values so this branch is shared between the q/2 and r/2 tuples. All arguments
of r/2 have now been indexed in the base structure. However, the r/2 and q/2
predicates now have exactly the same index paths (i.e. they are both indexed on
their first argument, both follow the labelled branch "idO" and finally are both
indexed on their second argument). This means that there is no way to distin
guish q/2 tuples from r/2 tuples in the index structure - their index paths are
subsumed by each other. To indicate the presence oftuples from each predicate,
labelled boolean values are added to the final index nodes of subsumed tuples.

68

Algorithm
let B denote set of path definitions in the base structure
let n denote the new path definition
let size(X) be the number of elements in the list of path definition X
let X(i] denote the ith element in the list of path definition X
let Vars denote the set of all variable names, excluding "-"
let type(X) be the type of an argument represented by variable X
let unique/ D generate a unique label each time it is used
let - denote the set exclusion operator

let i = 1
let S = B
main: loop while i <= size(n)

for all s E S loop
if size(s) >= i then

if s(i] E Vars A n(i] E Vars then
if type(s(il) = type(n(il) then

S = S - {t It ES, t[i] Ii! Vars V (t(i] E Vars A type(t(i]) 1' type(n(i]))}
i = i+ 1
continue main

ft
for all b E S loop

if b(i] = branch(A) then
if b(i + l] E Vars then

if type(b(i + 11) = type(n(i]) then
insert branch(A) into n before n(i]
S = S - {t It E S, t[i] 1' branch(A)}
i = i + 1

fi

ft
fi

continue main

end loop
let A = unique/ D
insert branch(A) into n before n(i]
B=BU{n}
exit

else if s(i] = branch(A) A n(i] = branch(A) then
S = S - {t It E S, t(i] 1' branch(A)}
i=i+l
continue main

else
S = S - {s}

ft
else

fi

if size(n) = size(s) then
let A = unique/ D
add boolean_value(A) to the end of n

fi
let C = unique/ D
add boolean_value(C) to the end of s
B = B u {n}
exit

end loop
B = B u {n}
exit

lend loop
lfor all s E S loop
I if size(s) = size(n) then
I let A = unique/ D
I add boolean_value(A) to the end of s
I Ii
I let C = unique/ D
I add boolean-value(C) to the end of n
I B = B u {n}
lend loop
lexit

Figure 3.13: Merging Indexes Algorithm.

69

Argument Order Definitions: Type Declarations:
order gamma p(X, Y) [X, Y]. type p(integer, integer)
order gamma q(X, Z) [X, Z]. type q(integer, string)
order gamma r(X, Z) [X, Z]. type r(integer, string)
order delta r(X, Z) [branch(delta), X, branch(r), Z].

(a)

I

Base Sttucture

T
~
$
p(X,Y)

New Sttucture

T
T

l·=·tr11111
qCX,Z)

-+ -+

p(X,Y) q(X,Z) p(X,YI q(X,Z)

-+

I Base Sll'Ucture New Sll'Ucture -+ bi &. 2ad Levell Mapd --+ 3nl Level Mapd -+ ~,
(b) ,.:·~·,

1·r1 1 .. r .. 1
p(X,Y) q(X,ZI r(X,Z) r(X,Z) p(X,Y) q(X,Z)

p(X,Y) q(X,Z)

S.bnmmod-Dblinpiuod
(Combined ladex s >

lloo

•JdO•

--~

.,i.!tic~F:; :
p(X,Y) q(X,ZI r(X,Z)

r----- ------------1
Base Sttucture New Sttucture

:.ry,
(c) ,.:·~·,
T~

Jdl". • •JcU·

(bo~~Hn)(bo+•n)
• • p(X,Y) q(X,Z) rCX,Z)

Combined Index Path Definitions:
index gamma p(X, Y) [X, Y].
index gamma q(X, Z) [X, branch(idO), Z, value(idl, boolean)].
index gamma r(X, Z) [X, branch(idO), Z, value(id2, boolean)].
index delta r(X, Z) [branch(del ta), X, branch(r), Z].

Figure 3.14: Combining four example index structures.

70

The labels are automatically generated such that q/2 tuples are identified by
the boolean value "idl", and r/2 tuples with "id2".

The final new index to be combined in Figure 3.14 (c) contains a labelled
branch allowing distinction between the r and b. sets. To combine this new
index with the base index the roots are merged together. The labelled branch
"delta" is added to the root node in the base structure when it does not already
exist. The remaining index nodes from the new structure are added under the
"delta" branch, making r /2 tuples in b. distinct from all others.

The output of this algorithm is the set of index path definitions given at the
end of Figure 3.14. These represent the final combined index derived in (c). It
should be noted when using this index structure combining algorithm the order
of arguments specified by the argument order definitions is always the same as
those in the final index paths.

The order in which indexes are merged has an effect on the final index struc
ture. Generally, indexes added earlier will have fewer labelled branches added to
their paths, making accessing their associated tuples more efficient. Therefore,
one way to optimise a program would be to sort the input indexes (or argument
orders) so that those used more frequently occur earlier. Although the frequency
of use of an index is associated with the number of times a predicate is used
in the source code, it is also dependent on a program's run time characteristics
(i.e. the amount of backtracking that occurs in a rule using a particular index).
Moreover, statically labelled branches can be implemented very efficiently (see
Chapter 6) such that the improvement in performance is only very slight. For
these reasons the order that indexes are combined remains arbitrary.

3.6 Conclusions

It has been shown it is possible to create index structures that maintain those
indexing properties of discrimination trees that are important to Starlog, yet
whose structure is statically defined. Static definitions of these structures leads
to more efficient implementations. However unlike discrimination trees, the or
der that a predicate's arguments are indexed can be selected to further improve
efficiency.

The process of mapping predicates from both b. and r to efficient Starlog
index structures has been discussed. Starlog programmers can influence the
design of the index structure by defining it directly using index path definitions,
or by specifying argument order definitions. This is useful when programmers
have an insight into the run time characteristics of their programs or when
they wish to use advanced features such as multiple indexes. Alternatively,
efficient argument orders can be defined automatically for tuples in both the b.
and r sets based on how predicates are used in the program. A single index
structure can be created by merging all the argument order definitions. The final
result will share indexes where possible, and ensure that different predicates are
distinguished. It is noted that this is only one heuristic for determining an
efficient index structure using simple program analysis and many alternatives
are possible.

The use of an efficient index structure is paramount to efficient execution of
bottom-up programs. A compiler that automatically infers an index structure
frees the programmers from specifying the underlying representations of their

71

data. As a consequence, Starlog programs remain abstract. In the next chapter
we introduce a language that uses Starlog index structures to maintain run time
data, and show how the use of these indexes allows high-level optimisation of
programs.

72

Chapter 4

Starlog Data Structure
Language (SDSL)

The Starlog Data Structure Language (SDSL) is an intermediate representation
of Starlog programs that allows high level analysis and optimisation. In this
chapter we describe SDSL in preparation for a description of Triggering Evalu
ation using Starlog index structures. Figure 4.1 shows SDSL to be the medium
used to express Starlog programs at various stages of the compilation pipeline.

In a nut shell, SDSL provides facilities to "walk" through an index struc
ture instance using semi-deterministic or non-deterministic operations whenever
choice points are encountered. By examining the state of an index structure in
stance the state of the tl and r sets can be determined, leading to correct
evaluation of programs. SDSL also provides a selection of built-in operations
for the manipulation and inspection of program variables.

SDSL exists at a level of abstraction between Star log and the target language,
Java. Unlike Starlog, whose programs consist of rules, SDSL programs consist
of sequences of instructions. However, unlike Java, SDSL instructions can be
deterministic, semi-deterministic or non-deterministic, where backtracking is
used to access multiple solutions. Although SDSL instructions are polymorphic,
type information is specified whenever a new program variable is declared.

Intermediate languages are frequently used during compilation or interpreta
tion of programming languages. Early Lisp compilers transformed programs into
LAP (Lisp Assembly Language) code which continued to use Lisp's high-level
data structures before a final pass generated machine code [17]. [2] describes

Figure 4.1: Use of SDSL in Starlog's compilation pipeline.

73

the three-address code intermediate representation where complex, built-up ex
pressions are represented as binary and unary expressions with the aid of tem
porary variables. Some just-in-time Java compilers translate bytecode to these
expressions to allow optimisation [5, 109]. The most well known intermediate
language developed for the field of logic programming is WAM code. This in
struction set implements the operations necessary to evaluate Prolog programs
on a stack-based machine, with particular emphasis on the unification of terms
[3]. Although originally interpreted by the Warren Abstract Machine, current
versions of Prolog which generate WAM code tend to compile it to executable
languages to improve efficiency. SDSL's point of departure from other interme
diate languages is that SDSL uses the index structure instances described in the
previous chapter to store run time data in addition to a stack (which is used for
local program variables).

This chapter outlines the fundamental concepts and constructs of the SDSL
language. The set of SDSL instructions is introduced with explanations about
the purpose, syntax and semantics of each. The semantics of SDSL 's instructions
and control facilities are described using Prolog. Prolog is used because it has
some of the properties of SDSL (such as backtracking and built-in operations)
and because it is familiar to most logic programmers. How SDSL instructions
are used to evaluate a Starlog program and their translation to executable code
is given in Chapters 5 and 6.

4.1 SDSL concepts

Before the SDSL instruction set is given, some of the logic, control and docu
mentation facilities are discussed.

4.1.1 Comments

Because SDSL is intended to be an intermediate language only produced by
a compiler and interpreted by another compiler, annotating programs for pro
grammers is not a priority. However, to clarify the SDSL programs presented
in this thesis, a syntax for comments in SDSL programs is provided. As with
Prolog, comments in SDSL begin with a "%" and continue to the end of the line.

4.1.2 Index Structure Definition

Recall from Chapter 3 that index structures can be described using a set of
index path definitions. Index path definitions are included at the beginning
of SDSL programs. After the index structure has been defined, the predicate
that a particular index path belongs to is irrelevant, since each rule statically
knows the types of branches to be followed to satisfy goals or assert rule heads.
However in this thesis the predicate definitions remain in each of the index path
definitions to clarify the link between the Starlog and SDSL programs.

4.1.3 Index Variables

The majority of instructions in SDSL provide a mapping from one index node
to another in a Starlog index structure instance. To keep track of these nodes

74

• • p(b, 6, 8) p(a,2,7)

-------------------- $0

··-··-··-··-··-··-··· $1

··-··-··-··· $2

·-··-··-··· $3

• • p(a,5,3) p(c,5,4)

Figure 4.2: Example use of index variables $0 - $3 in a Starlog index.

in an SDSL program index variables are used. Index variables are distinguished
from other variables in an SDSL program by a '$' prefix.

Like pointers in imperative programming languages, index variables refer
ence nodes that already exist and are connected in the index structure instance.
However, unlike pointers, index variables can not be updated after they have
been assigned (although their bindings are removed when backtracking occurs).

Figure 4.2 shows the bindings of index variables that might result from
traversing one path of an index structure instance. The convention is that all
index variable names are numbers. The first index variable used during the
traversal in Figure 4.2 is $0 which points to the root index node. For programs
to access the root of the index structure from any context the $0 index variable
is globally defined. This is the only global index variable. Index variables $1,
$2 and $3 are specific to this traversal of the index structure instance.

4.1.4 Program Variables

Starlog rules use variables extensively to generalise their use. These variables
also exist in SDSL programs.

In SDSL, program variables keep the variable names from the Starlog source
program but append a rule identifier index. The original variable names can
be useful for debugging programs. Rule identifiers are necessary to avoid name
clashes if the scope of variables changes during optimisation (discussed later in
this chapter). This is because variable names in Starlog programs have only
a local context (i.e. they are only visible within a single rule). Optimisation
of SDSL programs may change the scope of a program variable so that it is
accessed by multiple rules.

To ensure that type information inferred from a Starlog program can be used
in later phases of the compilation process, the types of program variables are
given when a variable is first used in an SDSL program. Types are included after

75

SDSL Prolog
A { B } C A, ((B, fail); true), C.

Figure 4.3: Semantics of SDSL code blocks in Prolog.

the variable name and separated by a colon(:). For example, the first use of an
integer X1 will be given as X1: int. Like index variables, the values assigned to
program variables do not change except when the program backtracks over the
first use of the variable.

4.1.5 Code Blocks

Code Blocks are used in SDSL to enforce exhaustive backtracking through non
deterministic operations. When a Starlog rule can succeed using different vari
able bindings, all valid bindings are made to ensure the program is complete
with respect to the well-founded model. Code blocks are surrounded by the
braces { and }. For an example of code blocks used in real SDSL programs see
Figure 5.4.

The semantics of a code block is comparable to failure-driven-loops in Prolog
programs [104, 82] as shown in Figure 4.3. In this Figure, variables A, B and C
represent any number of instructions. An implicit fail statement exists before
the closing brace of a code block to ensure backtracking occurs. When all
operations in a code block have been performed exhaustively the code block is
said to succeed and any operations following the closing brace are performed.

A sequence of code blocks is a useful way of distinguishing different sets
of independent operations - such as independent rules. Each code block in the
sequence is evaluated independently until all non-deterministic alternatives have
been considered. At this point the next code block in the sequence is processed.
Code blocks are independent of each other because variables created in them
are local to the code block and can not be accessed by any external operations,
and because backtracking is performed locally in each code block.

When backtracking through a series of SDSL instructions, any code block
encountered is considered to be deterministic (containing no choice points) since
any possible backtracking within the code block has already occurred. For this
reason, backtracking skips backward over code blocks and continues searching
for the last choice point.

Code blocks may also be nested. Nested code blocks are useful for optimising
programs (as will be seen later in this chapter). Nested code blocks can access
any variables created in any of their outer code blocks.

Figure 4.4 gives an example of how the presence and order of code blocks
can be used to control the flow of an SDSL program. In Figure 4.4 (2) the
order that the labels <a> to <d> are processed assumes that each label has
exactly two non-deterministic alternatives (or two variable binding sets) that
are explored using backtracking. Each label is annotated with either (1) or (2)

to distinguish each binding set. Beginning at the start (or top) of the program,
both binding sets for label <a> are found in the first code block. After entering
the second code block the first binding for label is found. The first nested
code block containing <c> is entered where both binding sets are found before
exiting this block. The second nested code block containing <d> is processed

76

I{
I <a>
I}
I{
I

(1) I {

I <c>
I }

I {

I <d>
I }

I}

(2) [<a(l)>, <a(2)>, <b(l)>, <c(l)>, <c(2)>, <d(l)>, <d(2)>,
<b(2)>, <c(l)>, <c(2)>, <d(l)>, <d(2)>]

Figure 4.4: Example code blocks and their processing sequence.

SDSL Prolog
A not{ B} C A,\+ (B), C.

Figure 4.5: Semantics of SDSL negated code blocks in Prolog.

where again all binding sets are found. When the end of the second top-level
code block is encountered backtracking is enforced. The last unexplored choice
point remaining is the second variable binding of . After making this binding
the following code blocks containing <c> and <d> are processed as they were in
the first pass.

Any variables created in <a> are local to this block and can not be accessed
in any other code blocks. But any variables created and bound in can be
accessed by nested code blocks <c> and <d>.

4.1.6 Negated Code Blocks

For negated goals to be evaluated correctly in an SDSL program a different form
of code block is required. Negated Code Blocks (or "not-blocks") are identified
in an SDSL program by the annotated set of braces not { and } .

The semantics of a negated code block are that the block fails if there exists
any variable bindings where all the internal operations succeed, and succeeds
otherwise. Until a negated block is proven false by some variable binding, back
tracking occurs within the block to consider all non-deterministic alternatives.
The fact that only one contradicting variable binding is necessary for the negated
block to fail means the exhaustive searching is not always required. Negated
code blocks have the same semantics as the negation-as-failure operator in Pro
log [77] as shown in Figure 4.5.

Like regular code blocks, any variables created within a negated code block
can not be accessed by external operations. This enforces the restricted scope

77

of existential variables in negated goals.

4.2 SDSL Instructions

In SDSL there are 15 instruction. A summary of the SDSL instructions appears
in Table 4.1 where each instruction's name, syntax and a brief description of its
function are given. The remainder of this section gives a detailed description of
each instruction including their purpose, syntax, valid determinism, input and
output variables, and semantics.

To aid understanding, the semantics of the first 14 SDSL instructions are
described using operations performed on a Prolog database system. (The 15th
instruction is used to perform builtin operations on variables which do not
require such a database.) A Prolog database is chosen to describe semantics
because its facilities (such as backtracking and untyped variables) are already
well documented allowing a simplified discussion. To be consistent with the
Starlog index structure, the Prolog database holds each argument element in a
data(Parent, Value, Subindex) dynamic predicate where Parent is the unique
identifier of the parent index node, Value is a value held in the dynamic index
and Subindex is the unique identifier of the index node associated with Value.
To model statically labelled branches and boolean values in a Prolog database
we use two different dynamic predicates. A branch (Parent, Label, Subindex)
defines a static branch (labelled Label) that points to a sub-index whereas
boolean(Parent ,Label, Value) holds the boolean Value identified by Label.
In this data model each sub-index is functional given its parent and value or
static label, and boolean values are functional given their parent index and static
labels.

For the purposes of describing semantics, the asserts and retracts used to
update the database hold to the "immediate update" view where predicates may
be updated while in use, and the changes are immediately noticed by all running
copies of the predicate [82]. This specification is necessary because Triggering
Evaluation frequently adds tuples to the r and ~ sets and removes elements
from the ~ while non-deterministic searches are in progress. The alternative
"logical" view requires a more complex index structure to record when values
are inserted and deleted. When used for strongly stratified programs, Triggering
Evaluation inserts and deletes tuples which are irrelevant to existing searches
(i.e. all new tuples produced are stratified later than their contributing goals,
and all values deleted from ~ have been previously found during searches),
therefore the "immediate update" view is sufficient.

To generate new, globally unique identifiers for index nodes the following
clauses are used. Note that it is an error for unique/1 to be called with a
ground argument.

:- mode unique(-).
unique(ID) :- retract(current.num(Old)),

ID is Old+1, assert(current.num(ID)), !.
unique(O) :- assert(current.num(O)).

With the exception of the builtin instruction, SDSL instructions perform
actions on an index structure instance. To illustrate these actions we introduce

78

-.J
co

Name

Look

Scan

Insert

Minimum

Next-Minimum

Delete
Empty

Follow

Establish

Prune

Is-Pruned

Link

Test

Set

Built-in

! Syntax
look:<DET>(<PARENT INDEX>, <VALUE>, <SUBINDEX>)

scan:<DET>(<PARENT INDEX>, <VALUE>, <SUBINDEX>)

insert:<DET>(<PARENT INDEX>, <VALUE>, <SUBINDEX>)

minimum:<DET>(<PARENT INDEX>, <VALUE>, <SUBINDEX>)

nextminimum:<DET>(<PARENT INDEX>, <VALUE>, <SUBINDEX>)

delete:<DET>(<PARENT INDEX>, <VALUE>)
empty:<DET>(<SUBJECT INDEX>)
follow:<DET>(<PARENT INDEX>, <LABEL>, <SUBINDEX>)

establish:<DET>(<PARENT INDEX>, <LABEL>, <SUBINDEX>)

prune:<DET>(<PARENT INDEX>, <LABEL>)

ispruned:<DET>(<PARENT INDEX>, <LABEL>)

link:<DET>(<PARENT INDEX>, <LABEL>, <SUBINDEX>)

test:<DET>(<PARENT INDEX>, <LABEL>, <BOOLEAN VALUE>)

set:<DET>(<PARENT INDEX>, <LABEL>, <BOOLEAN VALUE>)

builtin:<DET>(<BUILTIN NAME>, <INPUT VARS>, <OUTPUT VARS>)

Table 4 .1: SDSL instruction summary table.

Description
Searches for known value specified by <VALUE> in

<PARENT INDEX>
Binds variable <VALUE> with values in in

<PARENT INDEX>
Inserts the value specified by <VALUE> into

<PARENT INDEX>.
Binds <VALUE> to the minimum value from

<PARENT INDEX>.
Binds <VALUE> to the next smallest unseen value in

<PARENT INDEX>.
Removes <VALUE> from <PARENT INDEX>.
Tests if an index <SUBJECT INDEX> is empty.

Follows a statically labelled branch <LABEL> in the
<PARENT INDEX>.

Creates a new sub-index associated with <LABEL>
in the <PARENT INDEX>.

Removes the sub-index associated with <LABEL> in
the <PARENT INDEX>.

Tests if a sub-index of <LABEL> in the
<PARENT INDEX> does not exists.

Joins the labelled branch <LABEL> to an existing
<SUBINDEX>.

Tests the truth value of a labelled boolean value
<LABEL> against <BOOLEAN VALUE>.

Sets the truth value of a labelled boolean value
<LABEL> to <BOOLEAN VALUE>.

Performs built-in operation specified by
<BUILTIN NAME>.

$4 ----·---

$3 - - -·-··- -·---8
' . q(6,8) p(b,6,8) • p(a,5,3)

··-··-··-··-··-··-··-··-··--- $ 0

.. -.. -.. _ .. _.,_ .. ____ .. _ .. _______ $1

.. _ .. ________ ., _______ $ 2

• p(c,5,4)

Figure 4.6: Example index structure instance for demonstrating SDSL instruc
tions.

an example index structure instance in Figure 4.6. Index nodes that are used
in the examples have been assigned to index variables $0, $1, $2, $3 and $4.

In this section we categorise SDSL instructions into four groups: (1) those
instructions that perform operations on the dynamic argument indexes in an
index node, (2) those which operate on the statically labelled branches, (3) those
which operate on the statically labelled boolean values and (4) those which do
not perform operations on index nodes (the built-ins).

4.2.1 Dynamic Argument Index Instructions

Look

Purpose: A look instruction is used to find the sub-index associated with a
known value in a dynamic argument index.

Syntax: look:<DET>(<PARENT INDEX>, <VALUE>, <SUB-INDEX>)

Determinism: Look instructions have two possible modes of determinism for
<DET>. They can be det (deterministic) when the look operation is known to
succeed, or semidet (semi-deterministic) if the look operation can fail to find
the known value.

Input and Output Parameters: The <PARENT INDEX> parameter is a pre
viously defined index variable pointing to the index node to be searched. The
<VALUE> parameter is the known value to be searched for. This value can be
in the form of a constant or a ground program variable. The final parameter,
<SUB- INDEX>, is the output of the operation. This must be the name of a new
(unbound) index variable that, when the operation succeeds, will be bound to
the sub-index associated with the <VALUE>.

80

Semantics: The semantics of a look instruction can be compared to a known
record search in a Prolog database where the parent index and value are always
ground. The look instruction returns only one sub-index as each data record is
functional given a ground parent and value. It is an error to call look/3 with
unbound Parent or Value arguments, or with a ground Subindex argument.

:- mode look(+,+,-).
look(Parent,Value,Subindex) :- data(Parent,Value,Subindex).

Examples: Using the Starlog index from Figure 4.6 we demonstrate a look
instruction that is performed on the node pointed to by $1.

look:semidet($1,c,$4)

This instruction searches the values in the dynamic index $1. In this case the
sought value, c, exists. The operation succeeds with the output index variable
$4 bound to the sub-index containing c. Here is another example of a look
instruction.

look:semidet($1,b,$5)

This operation fails because nob value exists in the index pointed to by $1.
Failure of an operation initiates backtracking through the preceding instructions.

Scan

Purpose: A scan instruction is used to find possible bindings for a free pro
gram variable (and the associated sub-indexes) in a given index.

Syntax: scan: <DET> (<PARENT INDEX>, <VALUE>, <SUB-INDEX>)

Determinisms: There are three possible determinisms for scan instructions.
A scan that is looking for exactly one binding and that can not fail is det. A scan
looking for exactly one binding but may fail is semidet. Scans that are nondet
(non-deterministic) find multiple bindings for a variable using backtracking to
find each case. (Usually scans need to be declared nondet.)

Input and Output Parameters: Like the look instruction, the <PARENT
INDEX> parameter is a previously defined index variable pointing to the index
node to be searched. However, unlike the look instruction, the <VALUE> pa
rameter is a new output program variable that is bound when the operation
succeeds. (New program variables created here must also specify their type.)
The <SUB- INDEX> output parameter is a new index variable that points to the
sub-index associated with the binding of <VALUE>.

The order that values are retrieved from an index during a non-deterministic
scan is unspecified as this will depend on the data structure implementation.
The only condition is that all values stored in the argument index for the dura
tion of the scan must be returned exactly once.

81

Semantics: A scan operation is equivalent to searching the Prolog database
for an unknown value given a known parent index. It is an error for scan/3 to
be called with ground Value or Subindex arguments.

:- mode scan(+,-,-).
scan(Parent,Value,Subindex) :- data(Parent,Value,Subindex).

Examples: When a non-deterministic scan instruction is performed on the
index node referenced by $1 in Figure 4.6, all values and sub-indexes contained
in the argument index are found. Such an instruction would appear as follows:

scan:nondet($1,X:string,$6)

We assume that this instruction first binds the new variable X to a and $6 to
the sub-index containing a. The instructions following this scan are performed
until backtracking occurs. When this non-deterministic scan instruction is en
countered during backtracking, the program variable X is bound to c and index
variable $6 now points to the sub-index containing c. The instructions following
the scan are repeated using the new variable bindings. This time when failure
occurs and this scan instruction is backtracked through, the scan operation fails
because there are no unused bindings for X, and backtracking continues.

Insert

Purpose: Insert instructions are used to add values to a dynamic argument
index. When a new value is inserted then a new sub-index associated with this
value is created. In this way the sub-index is initialised for the insert operations
that follow. If a value is already present in the target index, the duplicate value
to be inserted is ignored.

Syntax: insert:<DET>(<PARENT INDEX>, <VALUE>, <SUB-INDEX>)

Determinisms: The determinism of insert operations can only be det (de
terministic). The <DET> parameter is included in the syntax definition for con
sistency.

Input and Output Parameters: Like look or scan instructions, inserts are
performed on the argument index in the index node pointed to by the ground
index variable <PARENT INDEX>. The <VALUE> parameter is the known value
(constant or ground program variable) to be added. The output of this op
eration is the <SUB- INDEX> - a new index variable that points to the index
node associated with <VALUE>. This may be a new sub-index created by this
operation or (when attempting to a add duplicate value) an existing sub-index.

Semantics: The insert instruction is equivalent to the following clauses in the
Prolog database. If a sub-index already exists then it is returned. Otherwise a
sub-index is created. All insert operations must provide ground parent indexes
(Parent) and ground insert values, while the output sub-index must be unbound
before the operation is performed.

mode insert(+,+,-).

82

insert(Parent,Value,Subindex) :- data(Parent,Value,Subindex),!.
insert(Parent,Value,Subindex) :- unique(Subindex),

assert(data(Parent,Value,Subindex)).

Note that the use of assert/1 under the "immediate update" view makes
no assumptions that a newly inserted value will be returned by any scans that
are still in progress (that is, non-deterministic scans which have not exhausted
all the values in an index). Triggered, strongly stratified programs can be struc
tured in such a way that the exclusion or inclusion of new values in the set of
results does not affect its correctness since any new values added will represent
tuples that are irrelevant to the existing scans (see Chapter 5).

Examples: To insert a new value (and create a new sub-index) in the root
node in Figure 4.6 we use the following instruction.

insert:det($0,7,$7)

The new entry in the root index node ($0) is indexed by the value 7 and
contains a new (empty) sub-index. Although not shown in the Prolog semantics
for clarity, the new index node is based on a template that all child indexes of
$0 use. This template describes the implementation of the sub-index including
any labelled branches or boolean values that exist. The output index variable
$7 is bound to the new sub-index created during this operation. Now consider
the instruction:

insert:det($0,5,$8)

This instruction attempts to add a duplicate value to the root index node
($0). Because the value 5 already exists in the dynamic argument index we do
not create a new value or sub-index. Instead, the operation succeeds by binding
the output index variable $8 to the existing sub-index containing 5. In this way
arguments with identical values are combined together to maximise sharing and
each value stored in an argument index is unique.

Minimum

Purpose: The minimum instruction is required by Stratified Semi-Naive Eval
uation (and consequently is required by Triggering Evaluation) to ensure tuples
in t::,,. are processed in stratification order. This instruction selects and outputs
the minimum element that exists in an index node's argument index. A prede
fined order over the values held in an argument index is used to find a minimal
element.

Syntax: minimum: <DET> (<PARENT INDEX>, <VALUE>, <SUB- INDEX>)

Determinisms: When used in triggered programs, minimum instructions are
nondet (non-deterministic) where each time they are encountered during back
tracking they rescan the subject argument index and recompute the current
minimum value (since previous minimum values are usually deleted during eval
uation). A minimum operation fails when the argument index it is searching
becomes empty. Both det (deterministic) and semidet (semi-deterministic)
versions of the minimum instruction are also possible where one, or at most

83

one, minimum element is output respectively, however these have not yet been
used in any SDSL programs.

Input and Output Parameters: The <PARENT INDEX> input parameter is
the index variable pointing to the index node to be searched. The <VALUE>
output parameter is a new program variable that is bound to the minimum value
in the index after the operation succeeds. The <SUB-INDEX> output parameter is
a new index variable that points to the index node associated with the minimum
value in the <PARENT INDEX>.

Semantics: The Prolog database would perform a minimum operation of this
kind using the following clause.

:- mode minimum(+,-,-).
minimum(Parent,Value,Subindex) :- data(Parent,Value,Subindex),

\+ (data(Parent,Value2,_), Value2 < Value).

Note that this is a very inefficient implementation (O(N2) where N is the
number of elements in the argument index) but is logically correct. The im
plementations of this operation used in compiled programs can be much more
efficient (see Appendix B).

Examples: The following instruction finds the rmmmum value (and sub
index) in the index node pointed to by $1 in Figure 4.6.

minimum:notdet($1,Y:string,$9)

Assuming the strings indexed at $1 are ordered lexicographically, this oper
ation will bind program variable Y to value a and the index variable $9 to the
sub-index associated with value a. If index node $1 remains unchanged then the
minimum value will remain a each time this instruction is encountered during
backtracking. This example will be continued in conjunction with an example
of the delete operation in the next subsection.

Next-Minimum

Purpose: The next-minimum instruction searches a dynamic argument index
and returns values one at a time in ascending order. Unlike the minimum
instruction, a next-minimum operation maintain a reference to the last element
found and will return the next smallest value from an argument index. In
this way a next-minimum operation is equivalent to an ordered scan. This
instruction is necessary when the index structure used by an SDSL program
shares argument indexes between both the t:,,. and r sets. (See Chapter 5 for
details of its application.)

Syntax: nextminimum:<DET>(<PARENT INDEX>, <VALUE>, <SUB-INDEX>)

Determinisms: Next-minimum instructions are always nondet
(non-deterministic) to ensure all values are found. A next-minimum operation
fails after it has returned all values from an argument index.

84

Input and Output Parameters: The <PARENT INDEX> input parameter is
the index variable pointing to the index node to be searched and the <VALUE>
output parameter is a new program variable that is bound to the next minimum
value in the argument index when the operation succeeds. The <SUB-INDEX>
output parameter is a new index variable that points to the index node associ
ated with the minimum value in the <PARENT INDEX>.

Semantics: The semantics of the next-minimum instruction are equivalent
to the following Prolog clauses. Note that, unlike scan instructions, when next
minimum instructions are used to optimise programs (see Chapter 5) it is impos
sible for multiple instances of these instructions to be working on the same index
node at the same time. This simplifies the implementation of this instruction
in the underlying data structures and simplifies the semantic definition given
here. Like the minimum instruction, the Prolog clauses given to describe the
semantics of next-minimum instructions are correct but inefficient.

:- mode nextminimum(+,-,-).
nextminimum(Parent,Value,Subindex) :

retract(next..m.in(Parent,OldValue)), !,
data(Parent,Value,Subindex), Value> OldValue,
\+ (data(Parent,Value2,_),

Value2 > OldValue, Value2 < Value),
assert(next..m.in(Parent,Value)).

nextminimum(Parent,Value,Subindex) :- data(Parent,Value,Subindex),
\+ (data(Parent,Value2,Subindex), Value2 < Value),
assert(next..m.in(Parent,Value)).

Examples: When the following instruction is applied to the index structure
instance in Figure 4.6 all values indexed at $1 will be found.

nextminimum:notdet($1,Y:string,$9)

When strings in $1 are ordered lexicographically Y will be bound to value a
in the first iteration. The index variable $9 is bound to the sub-index associated
with value a. When this instruction is encountered during backtracking then
(assuming index $1 has not been not updated) Y is bound to c - the next lowest
element in the index - and $9 is updated to the sub-index associated with c.
When encountered during backtracking a second time this operation fails as all
values have been explored.

Delete

Purpose: To remove values (and their associated sub-indexes) from a dynamic
argument index the delete instruction is used. Usually deletions are performed
on "leaf" sub-index nodes that represents a tuple, or when the sub-index is
redundant (see Section 3.3.3). (To test whether an index is redundant before
deleting it requires the empty, is-null and test instructions introduced later in
this section.)

Syntax: delete:<DET>(<PARENT INDEX>, <VALUE>)

85

Determinisms: The determinism of all delete instructions is det (determin
istic).

Input and Output Parameters: The <PARENT INDEX> parameter is a previ
ously defined index variable referencing an index node. The parameter <VALUE>
is the known value to be removed from <PARENT INDEX>. <VALUE> is either a
constant or a ground program variable.

Semantics: The semantics of the delete operation when performed on the
Prolog database are defined by the following clause. Note that this implementa
tion explicitly deletes any remaining sub-indexes, labelled branches and labelled
boolean values held beneath the deleted node. Such resource management could
be performed by an automatic garbage collector.

:- mode delete(+,+).
delete(Parent,Value) :- retract(data(Parent,Value,Subindex)),

(data (Sub index, Value,..) ,
delete(Subindex,Value), fail

true),
(branch(Subindex,Label,..),

retract (branch (Sub index, Label,..)) , fail

true),
(boolean (Sub index, Label,..) ,

retract(boolean(Subindex,Label,..)), fail

true).

Examples: The following delete instruction can be performed on the index
in Figure 4.6.

delete:det($1,a)

Used by itself, this delete instruction will remove the sub-index associated
with the value a from the index node referenced by $1 even when the sub-index
contains many tuples. When used in conjunction with a minimum operation,
deleting values from an index node can change the minimum value found in each
iteration. Consider:

minimum:nondet($1,Y:string,$9)
delete:det($1,Y)
In Figure 4.6, when the argument values held in the index node $1 are

ordered lexicographically, the first minimum value bound to Y is a. Using this
binding of Y, the delete operation removes a from the argument index at $1
and removes any associated sub-indexes. When backtracking occurs over these
instructions the non-deterministic minimum operation searches index node $1
again and finds now, with a removed, the minimum value in the argument
index is c. The process of finding the next minimum value and deleting it from
an index node can continue until the argument index is empty. This is the
mechanism used to process tuples in the D. set in stratification order.

86

Examples of how an index node is tested for redundancy are given as the
testing instructions are introduced.

Empty

Purpose: The empty instruction succeeds only when the argument index of
the subject index node contains no elements. This instruction helps determine
whether an index node is redundant and should be deleted.

Syntax: empty: <DET> (<SUBJECT INDEX>)

Determinisms: The determinism of an empty instruction is semidet (semi
deterministic) where it succeeds if the argument index in question is empty, and
fails otherwise.

Input and Output Parameters: The index node whose contents are being
examined is specified by the <SUBJECT INDEX> index variable. This variable
must have been instantiated previously.

Semantics: The empty SDSL instruction is equivalent to the following clause
in the Prolog database.

:- mode empty(+).
empty(Index) :- \+ data(Index,_,_).

Examples: The following instruction can be performed on the index structure
instance given in Figure 4.6.

empty:semidet($1)

This operation fails because the index node pointed to by $1 is not empty.
Empty instructions are used to test the redundancy of an index node before its
deletion. For example:

scan:nondet($1,Y:string,$9)
empty:semidet($9)
delete:det($1,Y)
This set of instructions processes all sub-indexes of $1 that are found during

a scan operation and tests if each sub-index is empty. If the sub-index is empty
the delete instruction will remove it from its parent index.

4.2.2 Labelled Branch Instructions

Follow

Purpose: A follow instruction is used when a static labelled branch should
be followed to a sub-index. This instruction is used when searching for tuples.

Syntax: follow:<DET>(<PARENT INDEX>, <LABEL>, <SUB-INDEX>)

87

Determinisms: Follow instructions that are semidet (semi-deterministic)
fail when a sub-index associated with a label does not exist (i.e. before the
labelled branch has been initialised using the establish instruction, described
later). Alternatively when the sub-index of a labelled branch is known to exist
a det (deterministic) version is available.

Input and Output Parameters: The <PARENT INDEX> is a previously de
fined (ground) index variable whose index node must contain the labelled branch
identified by <LABEL>. Labels are constant values. The naming convention of
labels adhere Java's variable naming conventions for implementation reasons
(discussed in Chapter 6). The <SUB-INDEX> output variable is a new index
variable that points to the index node associated with the <LABEL> branch.

Semantics: Following a labelled branch in the Prolog database can be achieved
using the following clause.

:- mode follow(+,+,-).
follow(Parent,Label,Subindex) branch(Parent,Label,Subindex).

Examples: In Figure 4.6, the following instruction is used to follow the "delta"
labelled branch in the index node referenced by $0.

follow:semidet($0,delta,$10)

The output index variable $10 is bound to the sub-index at the end of the
"delta" branch. If no sub-index existed at the end of the "delta" branch then
this operation would fail.

Establish

Purpose: An establish instruction creates and returns a new sub-index for a
labelled branch if one does not already exist. Given a labelled branch, before any
follow instruction can succeed on this branch an establish operation must have
been performed. If a sub-index does exist then the establish operation simply
follows the labelled branch and returns the associated sub-index (equivalent
to a follow instruction). This instruction is used when adding a new tuple to
an index structure instance where the tuple's index path definition contains a
labelled branch.

Syntax: establish:<DET>(<PARENT INDEX>, <LABEL>, <SUB-INDEX>)

Determinisms: The determinism of an establish instruction is always det
(deterministic).

Input and Output Parameters: Like the follow instruction, the <PARENT
INDEX> is a previously defined (ground) index variable referencing an index node
that contains a labelled branch identified by <LABEL>. The label is a constant
value. The <SUB-INDEX> is a new index variable that points to the index node
associated with the <LABEL> branch.

88

Semantics: Establishing a labelled branch in the Prolog database uses the
following clauses. The second clause completes the initialisation of a labelled
branch if a sub-index does not exist.

:- mode establish(+,+,-).
establish(Parent,Label,Subindex)

branch(Parent,Label,Subindex),!.
establish(Parent,Label,Subindex) :- unique(Subindex),

assert(branch(Parent,Label,Subindex)).

Examples: In Figure 4.6, to establish the "delta" labelled branch in the
index pointed to by $0 the following instruction is used:

establish:det($0,delta,$11)

Because the sub-index associated with "delta" already exist in Figure 4.6,
index variable $11 is bound to this existing sub-index. If no sub-index were
beneath the "delta" labelled branch this instruction would generate a new
sub-index according to a sub-index template.

Prune

Purpose: To remove an index node from the end of a labelled branch we use a
prune instruction. After this operation has been performed the labelled branch
will still exist, but it will not point to an index node. Prune instructions are
used to remove redundant index nodes that are pointed to by labelled branches.

Syntax: prune: <DET> (<PARENT INDEX>, <LABEL>)

Determinisms: The determinism of a prune instruction is always det (de
terministic).

Input and Output Parameters: The <PARENT INDEX> must be a previ
ously defined (ground) index variable referencing an index node with a <LABEL>
branch. The <LABEL> is a constant.

Semantics: In the Prolog database a prune instruction would be equivalent
to the following clause.

:- mode prune(+,+).
prune(Parent,Label) :- (retract(branch(Parent,Label,J) ; true),!.

Examples: In Figure 4.6 the "delta" branch can be removed using the fol
lowing instruction.

prune:det($0,delta)

After this instruction is performed the "delta" branch will no longer point
to an index node and any subsequent follow instructions will fail. (To create
another index node the establish instruction must be used.)

A sequence of SDSL instructions which will remove the "delta" branch only
when it becomes redundant is given below.

89

follow:semidet($0,delta,$9)
empty:semidet($9)
prune:det($0,delta)

This sequence of SDSL instructions will not change the index structure in
stance in Figure 4.6 since the index pointed to by the "delta" labelled branch
is not redundant.

Is-Pruned

Purpose: During deletion of nodes it may be necessary to determine when an
index pointed to by a labelled branch is redundant. The is-pruned instruction
tests a labelled branch to see if a sub-index exists. Although this is the equivalent
to a negated follow instruction, a new instruction is used to optimise both SDSL
program size and its implementation.

Syntax: ispruned:<DET>(<PARENT INDEX>, <LABEL>)

Determinisms: Because this operation performs a test, the determinism of
this instruction is always semidet (semi-deterministic).

Input and Output Parameters: <PARENT INDEX> represents a previously
defined (ground) index variable referencing an index node containing a <LABEL>
branch. <LABEL> is a constant.

Semantics: The is-pruned instruction is equivalent to the following clause in
the Prolog database.

:- mode ispruned(+,+).
is pruned (Parent, Label) : - \ + branch (Parent, Label,_) .

Examples: An is-pruned instruction performed on the example index in Fig
ure 4.6 is given.

ispruned:semidet($0,delta)

This instruction would fail since the "delta" branch on the root node has a
valid sub-index.

Link

Purpose: A link instruction is used to allow multiple indexing paths within
an index structure to merge. This instruction takes two existing index variables
and assigns a labelled branch as a one directional link from one to the other.

Syntax: link:<DET>(<PARENT INDEX>, <LABEL>, <SUB-INDEX>)

Determinisms: Link instructions are always det (deterministic).

90

Input and Output Parameters: The <PARENT INDEX> and <SUB-INDEX>
are two previously generated (ground) index variables. The <LABEL> is a con
stant. After the operation is complete, following the <LABEL> branch in the
<PARENT INDEX> will lead to the <SUB-INDEX>.

Semantics: In the Prolog database, a link instruction can be implemented
as follows.

:- mode link(+,+,+).
link(Parent,Label,Subindex)

link(Parent,Label,Subindex)
branch(Parent,Label,Subindex),!.

assert(branch(Parent,Label,Subindex)).

Examples: The example index structure instance in Figure 4.6 does not con
tain two index nodes that require linking. However the following example in
struction would still be valid.

link:semidet($0,delta,$3)

The wisdom in performing such an operation is questionable since the index
structure instance will be mutilated, but the outcome would be that the "delta"
labelled branch would now point to the subject of index variable$3.

4.2.3 Labelled Boolean Value Instructions

Test

Purpose: Test instructions are used to determine the truth value of labelled
boolean values. This operation succeeds when the labelled boolean value is
equal to the sought truth value and fails otherwise. This operation is used to
detect the presence of a tuple represented by a labelled boolean value during
tuple searches, and can help determine whether an index node is redundant
before deleting it.

Syntax: test:<DET>(<PARENT INDEX>, <LABEL>, <BOOLEAN VALUE>)

Determinisms: The determinism of test operations is always semidet (semi
deterministic) since tests that can not fail and tests that have multiple solutions
are of no use.

Input and Output Parameters: The <PARENT INDEX> parameter is a previ
ously defined (ground) index variable that references an index node containing a
labelled boolean flag identified by the <LABEL> constant. The <BOOLEAN VALUE>
is the constant value true or false depending on how it is being used.

Semantics: In Prolog a test instruction would be performed as follows. The
second clause ensures that all uninitialised boolean values hold false.

:- mode test(+,+,+).
test(Parent,Label,Value) :- boolean(Parent,Label,V2),!,

Value= V2.
test(Parent,Label,false).

91

Examples: In Figure 4.6, to test the truth value of the labelled boolean value
"idO" in the index node referenced by $3 requires the following instruction:

test:semidet($3,id0,true)

In this case the boolean value labelled "idO" is true, therefore this operation
succeeds.

Test instructions are used to determine if an index node containing labelled
boolean values is redundant and can be safely deleted. The following sequence
of instructions performs this operation on the index in Figure 4.6.

scan:nondet($4,Y:int,$9)
empty:semidet($9)
test:semidet($9,id0,false)
delete:det($4,Y)

This sequence of instructions will not remove any index nodes from the index
in Figure 4.6 primarily because the only sub-index of $4 is not empty. However
even if the dynamic argument index were empty, the test instruction would fail
since the labelled boolean value is true.

Set

Purpose: The set instruction is used to modify the contents of labelled boolean
values. By setting a labelled boolean value to true the presence of a tuple can
be added to an index structure instance. Setting a labelled boolean value to
false removes the tuple it represents from the index structure instance.

Syntax: set:<DET>(<PARENT INDEX>, <LABEL>, <BOOLEAN VALUE>)

Determinisms: All set operations are det (deterministic).

Input and Output Parameters: The <PARENT INDEX> input parameter is a
ground index variable pointing to an index node. This index node contains a la
belled boolean value identified by the <LABEL> constant. The <BOOLEAN VALUE>
is the value true or false depending on the intended use of this operation.

Semantics: To update a labelled boolean value in the Prolog database would
require the following clause. By insisting that only one value exist is in the
database by retracting any previous values, the first boolean/3 relation en
countered is always the most recent assignment.

:- mode set(+,+,+).
set(Parent,Label,Value)

set(Parent,Label,Value)

retract (boolean (Parent, Label,..)) , ! ,
assert(boolean(Parent,Label,Value)).
assert(boolean(Parent,Label,Value)).

Examples: To change the truth value of the labelled boolean value "idO" in
Figure 4.6 we use:

set:det($3,id0,false)

92

This operation assigns the value of the "idO" labelled boolean value in the
index pointed to by $3 to false. Future test instructions which search for a
true value in this labelled boolean value would now fail as a result of this set
operation.

4.2.4 Built-ins

Purpose: The purpose of this instruction is to execute built-in operations.
More precisely, built-in operations allow programs to test the values of program
variables, declare and assign values to new variables or generate side effects
within SDSL programs. (See Figure 4.2 for the complete range of available
operations.)

Syntax:

builtin:<DET>(<BUILTIN NAME>, <INPUT VARIABLES>, <OUTPUT VARIABLES>)

Determinisms: The particular built-in operation specified by the <BUILTIN
NAME> parameter dictates whether the operation can be det (deterministic),
semidet (semi-deterministic) or nondet (non-deterministic).

Input and Output Parameters: The <BUILTIN NAME> is the description of
a built-in (a constant) taken from a library. The input parameters to be used by
the built-in operation are given in <INPUT VARIABLE LIST>. This is a comma
separated list enclosed in symbols "[" and "]", of previously defined (ground)
program variables or constant values. The <OUTPUT VARIABLE LIST> is a list
of new program variables that will be bound during the built-in operation. As
with all occurrences of new program variables, types are included.

Semantics: The names of built-ins are usually overloaded for different input
variable types, for different determinisms and for different modes. Figure 4.2
gives a list of all built-in operations currently supported with their types, modes,
determinisms and Prolog semantics. Some of the uses of determinism for built-in
operations requires additional explaination. Semi-deterministic arithmetric op
erations (i.e. add, divide, multiply, sqrt, and subtract) are used to test that the
inputs form a valid equation. For example, builtin: semidet (add, [A,B,C], [])
is true iff the equation C = A+B is true. The non-deterministic version of the
square-root (sqrt) operation returns both the positive and negative square roots
the input (when they exist).

Examples: Some examples of using SDSL built-ins are given here. The se
mantic definitions of each built-in given in Figure 4.2 should be used to interpret
each example.

builtin:semidet(greaterThan, [X,5], [])
builtin:det(add, [X,Y], [Z:int])
builtin:semidet(add, [X,Y,42], [])
builtin:nondet(sqrt, [X], [W:int])
builtin:det(print, [''hello world''], [])

93

Instruction
Prolog•
Semantics Comment

builtin :det (add, [(int)A, (int}BJ , L(int)CJ) C ia A+B
builtin:det(add, [(double)A, (double)&], [(double)C]) C ia A+B
builtin :det(add, [(string)A, (otrilll[)B], [(atring)C]) concat(A,B,C) String concatenation
builtin:aamidet(add, L(int)A, (int)B, Cint)C], []) C ia A+B
builtin:aamidet(add, [(double)A, (double)&, (double)C], []) C ia A+B
builtin:aamidet(add, [Cstrilll[)A, (atring)B, (atring)C], D) C ia A+B
builtin:det(aaaign, [(int)A], [(int)B]) A • B
builtin:det(asaign, [(double)A], [(double)&]) A • B
builtin:det(assign, [(string)A], [(string)&]) A• B
builtin:det(divide, [(int)A, (int}BJ, L(int)CJ) C is A/IB Integer division
builtin:det(divide, [(double)A, (double)&], [(double)C]) C is A/B
builtin:aamidet(divide, LCint)A, Cint)B, (int)CJ, []) C is A//B Integer aivision
builtin:aamidet(divide, [(double)A, (double)&, (double)C], []) C is A/B
builtin:det(equals, [(int)A], [(int)BJ) A• B
builtin:det(equals, [(double)A], [(double)&]) A• B
builtin:det(equals, [(string)A], [(atring)B]) A• B
builtin:aamidet(equals, LCint)A, (int)BJ, []} A•:• B
buil tin: aamidet (equals , [(double) A, (double) B] , []) A•:• B
builtin:aamidet(equals, [Catrilll[)A, (strilll[)B], []) A• B
buil tin: aamidet C fail , [] , []) fail Unconditional failure
builtin:aamidet(graaterlban, [(int)A, (int)BJ, []) A > B
builtin:aamidet(greaterlban, [(double)A, (double)B], []) A > B
buil tin: aamidet (greaterTbanOrEqual, L Cint) A, (int) BJ , U) A >• B
builtin: aemidet (greaterlbanOrEqual, [(double) A, (double) B] , []) A >• B
builtin:det(input, [], [(string)C]) read(C) Inputs string from

standard input
builtin:det(multiply, [(int)A, (int)B], [(int)C]) C is A•B
builtin:det(multiply, [(long)A, (long)B], [(long)C]) C is A•B
builtin:det(multiply, [(double)A, (double)&], [(double)C]) C is A•B
builtin:aamidet(multiply, L(int)A, (int)B, Cint)CJ, U) C is A•B
builtin:aamidet(multiply, [(double)A, (double)&, (double)C], []) C is AoB
builtin:aamidet(notEquals, L(int)A, (int)BJ, LJ) A•\• B
built in: aamidet(notEquala, [(double)A, (double)B] , []) A•\• B
builtin:aamidet(notEquals, [(string)A, (atring)B], []) A \•• B
builtin:det(print, L(atring)AJ, LJ) print(AI uutputs string to

standard output
builtin:det(sqrt, [(int)A], [(int)B]) B is sqrt (A) , Integer square root

round(B,O)
builtin:det(sqrt, [(double)A], [(double)&]) B is sqrt(A)
builtin:aamidet(sqrt, [(int)A], [(int)B]) B is sqrtCA) Fails when A is negative
builtin:semidet(aqrt, [(double)A], [(double)&]) B is aqrt(A) Fails when A is negative
buil tin: semidet (sqrt, [(int) A, (int) BJ) , [] CB ia aqrt(A) ;

B is -sqrt (A))
builtin:samidet(aqrt, [(double)A, (double)&],[]) CB ia sqrt (A) ;

B ia -sqrt (A))
builtin:nondet(aqrt, [(int)A], [(int)B]) (B ia sqrt (A) ;

B ia -sqrt (A))
builtin:nondet(aqrt, [(double)A], [(double)&]) CB ia sqrt (A) ;

B is -sqrt (A))
builtin:det(aubtract, [Cint)A,(int)BJ, [(int)Cl) C is A-B
builtin:det(subtract, [(double)A, (double)&], [(double)C]) C is A-B
builtin:aamidetcsubtract, [(int)A, Cint)B, (int)CJ, [J) C is A-B
buil tin: aamidet (subtract, [(double)A, (double) B, (double) Cl , []) C ia A-B
builtin:aamidet(subtract, [(string)A, (atring)B, (atring)C], []) C is A-B

1 The semantics of these operators, functions and comparators are equivalent to those given m the
definition of Arity /Prolog in (73).

Table 4.2: SDSL built-in operations.

94

4.3 Summary

With the features of SDSL described, the implementation of triggered programs
which operate on a Starlog's index structures can be explained. The next chap
ter describes the layout of SDSL's code blocks, negated code blocks and instruc
tions necessary to correctly evaluate a given program using Triggering Evalua
tion. In addition, the structure of SDSL programs can allow for many high-level
optimisations which would be difficult to realise in other representations.

95

Chapter 5

SDSL Triggered Programs

In Chapter 4 the SDSL language was described with vague references to how
each instruction can contribute to the evaluation of a bottom-up program. We
now discuss specifics of how Starlog is compiled to SDSL.

This chapter gives an overview of the steps necessary to evaluate a bottom
up programs using Triggering Evaluation. A description of each of these steps
is given with example SDSL code provided for the less trivial steps. A complete
Starlog example program and the equivalent SDSL program are introduced in
Figure 5.4 to demonstrate the integration of each step in a complete SDSL pro
gram. Finally, an extensive set of SDSL code optimisations is given which reduce
both code size and run time overhead of Starlog programs. Each optimisation is
described for the general and an example case, and when possible, comparisons
are made between the SDSL optimisations and code optimisations used by other
languages. Figure 5.1 indicates the stages in the Starlog compilation pipeline
that are discussed in this chapter.

For clarity, SDSL triggered programs are first described for index structures
that do not combine the arguments of the t:J.. and r sets. That is, the t:J.. set is
distinguished from r by a labelled branch before any arguments are indexed.
When t:J.. and r share argument indexes the resulting program may be more
efficient. However the operations required on such index structures are more
complicated. Details of the extra requirements are given later in this chapter.

"~· ~ ~
Figure 5.1: SDSL code generation and optimisation in Starlog's compilation
pipeline.

96

5.1 Triggering Evaluation Overview

In Chapter 2 the Triggering Evaluation algorithm was introduced and, through a
series of optimisations, it evolved to become the algorithm given in Figure 2.15.
This chapter shows how this algorithm is implemented using SDSL. To introduce
Triggering Evaluation using SDSL we will divide the process into a number of
steps. Each of these steps is represented by a series of SDSL instructions and/or
code blocks which appear in an SDSL program in roughly the order given here.

The first step to evaluating a triggered bottom-up program (1) adds facts
(rules without positive goals) to the A set. Next, (2) the A set is repeatedly
searched for a minimal stratified tuple h (which may be constrained by un
resolved negated goals such that h +- 13-). Because of the static nature of
the index structure, the predicate that tuple h belongs to is determined by the
path followed to find it. Consequently the static code used to process each tuple
depends on the path followed to find h. (3) Based on the predicate that the min
imum tuple belongs to (where tuples with the same functor but constrained by
different negated goals are considered from different predicates) the unresolved
negated goals of the minimum tuple are queried in r. (4) If the minimum tuple
h is not contradicted by a negated goal from 13- then it is added to r. h, the
new unconditionally true tuple, is now used to activate rules. Because rules
are activated only when the tuple h matches the trigger goal, only rules where
the trigger is from the same predicate as h need to be considered. (The subset
of rules activated by tuples from each predicate is statically defined.) (5) For
each rule, tuple h is matched with the trigger tuple. If matching is successful
the other goals in the body are queried one at a time. If the conjunction of all
goals is true, the head of the rule is inserted into A (constrained by unresolved
negated goals where necessary). (6) When all relevant rules have been activated
by tuple h, h is deleted from A so that a new minimum tuple will be found in
the next iteration. The details of each of these steps is given over the next few
sections.

It should be noted that although SDSL does allow different versions of
some instructions with different determinisms, the determinisms of instructions
used for Triggering Evaluation are fixed for each instruction. All look instruc
tions are semi-deterministic, scans are non-deterministic, minimums are non
deterministic and follows are semi-deterministic. The determinisms of built-in
instructions is specific to the operation performed, however the most general
determinism will be used when there is more than one alternative. For exam
ple, built-ins will be nondet if a non-determinstic version of the built-in exists,
otherwise will be semidet if a semi-determinisitc version exist. The inclusion
of the multiple determinisms for instructions in the previous chapter allows for
future optimisations.

5.2 Adding Facts to~

Triggered programs begin by adding all facts to A that are true at the start
of the SDSL program. The definition of a fact in Starlog is a rule with no
positive body goals. To allow semi-deterministic and non-deterministic built-in
operations to fail or give multiple variable bindings without affecting the rest
of the program, each fact is evaluated in a separate code block. The built-in

97

operations in the fact's body are represented by their equivalent SDSL built-in
operations (see Chapter 4) in the code block. All negated goals constraining
facts are delayed until the fact becomes a minimal element in A. The head of
a fact is added to A using insert, establish or set (to true) SDSL instructions
depending on the contents of the fact's path definition (see Section 3.3.2 for how
tuples are inserted into an index structure instance).

To illustrate this process, the first code block of the SDSL program in Figure
5.4 shows how a fact is added to the A set for a given index structure.

5.3 Finding and Deleting Minimum Tuples

We have seen in Chapter 2 that a key step in the evaluation of stratified pro
grams with negation is to extract tuples from the A set in stratifiaction order.
That is, at each top level iteration of either Stratified Semi-naive or Trigger
ing Evaluation a minimal stratified element in A is found (refered to ash). In
Chapter 1 it was shown that the stratification order of tuples can be determined
by their argument values, the tuple's functor, or any sequence of these. In this
section we show how we can extract elements from A in stratification order
when this set has been automatically defined in a Starlog index structure using
techniques from Chapter 3.

In Chapter 3 the automatic definition of argument orders arranged the argu
ments and functors in the A set according to their stratification priority. That
is, arguments or functors which are more significant to determining the order of
tuples are indexed first. It was shown that this reduces the amount of searching
required to locate a minimal tuple. The index structures derived automatically
using techniques from Chapter 3 maintain these argument/functor orders.

To repeatedly find the minimum tuple in A we perform an in-order traversal
of the A set in the index structure instance, deleting the tuple after it is found.
For this operation to be performed repeatitively it is encapsulated in a code
block which enforces backtracking and therefore exploration of all tuples in A.
To perform such a traversal requires different SDSL instructions depending on
the properties of the index nodes encountered.

Starting from the root index node of the A set, if an argument index is en
countered which holds arguments that are involved in the stratification order for
some tuples (i.e. if the argument indexed appears in an argument stratification
priority) then a non-deterministic minimum instruction is used to locate the
minimum value of this argument. If an argument index is encountered whose
values do not affect the stratification order of tuples then a non-deterministic
scan instruction is used to return argument values in an arbitrary order. The
variables used to hold the binding of these arguments are automatically gener
ated so that they are distinct from other program variables used in rules. By
convention we label these variables as MinVar# where # is a globally unique
integer value identifying the argument.

Labelled branches and labelled boolean values in A represent static infor
mation about each tuple - usually the predicate name. Each labelled branch
is traversed independently using a semi-determinisitic follow instruction which
fails when the sub-index referenced by the branch does not exist (i.e. there
are no tuples represented in the sub-index). Likewise, labelled boolean values
which indicate the presence of tuples in A are queried independently using semi-

98

deterministic test (for true) instructions. To ensure independence of the follow
and test instructions each appears in a new code block so that the failure of one
set of instructions does not affect others. When stratification priorities specify
the stratification order of predicate names, care must be taken to order the in
dependent code blocks accordingly. That is, if a predicate p is stratified before
predicate q then the follow or test instructions which search for p tuples must
occur in the SDSL program before instructions that search for q tuples.

Using a consistent and predetermined order for processing the minimum
tuples in 6 ensures fairness with respect to the stratification order. By testing
the contents of the argument index, all labelled branches and all labelled boolean
values in a consistent order, the evaluation of any sub-set of rules which can
produce an infinite chain of tuples is interleaved with the evaluation of the
remaining rules. Of course, other stratification orders can be specified that
allow programs to be evaluated unfairly.

After a tuple has been identified as the minimum in 6 in some code block it
is used to activate rules (see the next section). When rule activation is complete
it is necessary to delete the tuple before the next iteration. At the end of the
code block which identifies the minimum tuple in 6, a delete instruction can
remove values from argument indexes which represent tuples. After the delete
is performed, the value will no longer exist in the argument index and so the
tuple will not be found in successive searches.

Although we use delete instructions to remove each minimal value from
an argument index, we can optimise the deletion of unordered values found
using non-deterministic scans by removing the entire index node after all sub
indexes have been explored. Ordinarily, multiple delete operations are necessary
to remove all elements from an argument index. However if the entire index
node is removed after the scan is complete only 1 instruction is required in the
SDSL code. Another important advantage of this optimisation is that because
deletion of elements in an argument index does not occur during a scan, the data
structures representing argument indexes and their associated scan operations
are simplified (i.e. the size of the data structure is not reduced during scans).
To allow the deletion of the entire index node to occur after the scan is complete,
the scan instruction and any subsequent instructions associated with the values
it finds are encapsulated in a code block. When the code block exits after
all values have been found by the scan, the index node where the scan was
performed is removed using a single instruction.

To remove a tuple represented by a labelled boolean value, the boolean value
is assigned false using a set instruction.

The process of removing tuples from an index node may cause the par
ent nodes to become redundant and so be deleted. To determine if a node
is redundant we test that (1) the argument index is empty using the empty
instruction, (2) all labelled boolean values are false using the test (for false)
instruction, and (3) all labelled branches do not reference any index nodes using
the is-pruned instruction. In the event that the redundant index node is the
sub-index associated with a labelled branch, the sub-index referenced by the
branch is removed using the prune instruction. By convention the index node
referenced by the "delta" labelled branch is not removed even when it becomes
redundant because an empty 6 set will cause termination in the next iteration.

This is a confusing process that is best explained using an example. In
Figure 5.2 the 6 set holds tuples from two predicates. (Program rules have

99

Stratification Priorities:
stratify p(X) [X,p].
stratify q(_,X) [X,q].
stratify p << q.

Example Index Structure Instance:

["Root]
"delt~·,. • - -~

•p• -- •q• , , -
~A~~

. ~ ~ ~
' p(4) ' q(3,4) ' q(l,4) ' q(2,7)

SDSL code to find and delete minimum tuples from ~:

{

}
}

follow:semidet(SO, delta, $1)
m1n1mum:nondet(S1, MinVarO:int, $2) 'X Found minimum argument value
{

}
{

test:sem1det(S2, p, true) 'X Teat for p(MinVarO)
{

'X Found b tuple aa p(MinVarO)

}
aet:det(S2, p, false)
ispruned: semidet ($2, q)
test:sem1det(S2, p, false)
delete:det($1, MinVarO)

follow:sem1det($2, q, $3)
{

'X Delete p(MinVarO) tupla
'X Test if $2 is redundant

'X Delete $2

'X Test for q(_ ,MinVarO)

scan:nondet($3, MinVar1:1nt, $4) lt Finding q(M1nVar1,M1nVar0)
{

'X Found b as tuple q(M1nVar1 ,MinVarO)

}
prune:det($2, q)
is pruned: semidet ($2, q)
test:sem1det($2, p, false)
delete: det ($1, MinVarO)

'X Delete all q(_,MinVarO)
lt Test if $2 1 a redundant

'X Delete $2

Figure 5.2: Finding and deleting the minimum element in ~ using SDSL.

100

been omitted in this example due to their irrelevance when finding and deleting
a minimum tuple.) We arrange each tuple in D. where arguments or functors that
occur earlier in the stratification priorities occur earlier in the index structure.
In Figure 5.2 the stratification order of arguments and predicate names are
represented in the index structure instance using a left-to-right order, where
values or predicate names that are on left branches are stratified before those
to their right (with the exception of the first argument of q/2 tuples, which are
unordered). The SDSL code necessary to repeatedly find and remove minimal
elements from D. is given below the index structure instance.

Using the given index structure instance, the code first locates the t:,. set
using a follow instruction from the root index node ($0). The first argument
indexed in D. is used to stratify tuples from both p/1 and q/2 predicates. There
fore a minimum instruction is used to locate the smallest value for the variable
MinVarO (in this case it will be bound to 4) and binds the new index variable
$2 to its sub-index. At the index node referenced by $2 the set of tuples is
split into two subsets (representing tuples from the two different predicates)
using a labelled branch and a labelled boolean value. Because each predicate is
processed independently each is encapsulated in its own code block. The order
that predicates are processed depends on how they are stratified. In this case,
the p/1 predicate is explicitly stratified before the q/2 predicate, as shown in
the stratification priority. The presence of a p/1 tuple is determined using a
test instruction on the labelled boolean value that represents p/1 tuples. If a
p/1 tuple is found (i.e. if the boolean value representing it is true) then, after
it has been used to activate rules (see the next section), it is deleted by setting
the labelled boolean value to false. Any index nodes which are made redun
dant by the removal of this p/1 tuple are found and removed from the index
structure instance. The ispruned and test instructions check for the absence of
a sub-index beneath the q labelled branch and test that the p labelled boolean
value is false in the index node referenced by $2. The index node referenced
by $2 is removed by a delete instruction performed on the parent of $2. When
the end of the code block is reached backtracking is enforced, however because
there are no non-deterministic choice points in the block where p/1 tuples are
found this code block is exited.

The next code block in the sequence is entered which searches for the pres
ence of q/2 tuples. q/2 tuples are found using two instructions: a follow in
struction is used to locate $3 - the sub-index where q/2 tuples are stored -
followed by a non-deterministic scan operation to find all possible binding of
Minvar1 - q/2's first variable. A scan is used here rather than a minimum since
the values of Y do not affect the stratification order of q/2 tuples so can be pro
cessed in an arbitary order. After all q{_,MinVarO) tuples have been found and
used to activate rules they can be deleted from D.. Rather than delete these
tuples individually when they are found during the scan, the entire index node
is removed after the scan is complete. This is achieved using a prune instruction
because the index node to be deleted is referenced by a labelled branch. Any
index nodes that are made redundant from the deletion of q/2 tuples are found
and deleted using the same set of instructions as in the previous code block.

101

5 .4 Delayed Querying of Negated Goals

Before the minimal tuple in b. (h) is used to activate rules, any unresolved
negated goals which constrain this tuple must be evaluated. The reasons for
delaying evaluation of the negated goals of a rule are given in Chapter 2. Note
that the delayed evaluation of negated goals is not necessary when they can be
optimised using early evaluation (see Section 2.3.4).

To satisfy negated goals they are queried in the r set. To ensure negated
goals fail when all internal instructions succeed, the SDSL instructions associ
ated with each negated goal are encapsulated in a negated code block. Using
the path defintion in r of the goal's predicate as a guide, semi-deterministic
look and non-deterministic scan instructions are used when performing known
value and unknown value searches for argument values, respectively. Semi
deterministic follow instructions are used to follow labelled branches that occur
in the goal's path definition. Semi-deterministic test instructions are used to
determine whether labelled boolean values which represents a tuples contain
the value true. For more details about querying an index structure instance
see Section 3.3.1. Built-in operations that are included with negated goals are
translated to their SDSL equivalents and included in the negated code block.

The SDSL program in Figure 5.4 gives an example of the delayed querying
of a negated goal. Approximately two-thirds of the way through the SDSL
program a negated goal is queried inside a negated code block. Note that this
example program also attempts early failure of the negated goal in another
negated code block earlier in the program.

5.5 Adding True Tuples to r
After all unresolved negated goals associated with h (the minimum tuple in b.)
have been successfully evaluated, h is an unconditionally true tuple and can be
added to r. However if h is an exclusive trigger head (as described in Section
2.3.6) the program is optimised by omitting this step.

The process of adding a tuple into an index structure is described in detail in
Section 3.3.2. In this case the index path definition associated with the predicate
of h in r determines the instructions used during the insertion process. More
precisely, insert instructions are used to insert argument values into index nodes,
establish instructions ensure that sub-indexes associated with labelled branches
exist, and set instructions assign true to any labelled boolean value. Because all
these operations are deterministic there is no need to isolate these instructions
in a separate code block.

The SDSL program in Figure 5.4 has two occurrences where minimal tuples
are added to r. These are commented for ease of reference.

5.6 Activation of Rules

Given that h is a new, true tuple, h is now used to activate program rules
(denoted as hr ._ /Jr). Each rule is encapsulated in its own code block to
prevent interference with others. The code blocks for all rules activated by h
are ordered arbitrarily because the output of one rule (hr) will be irrelevant to
the evaluation of the other rules because hr is always stratified after the positive

102

body goals of rules activated by h, and the evaluation of negated goals stratified
after their trigger goal are delayed. The first stage of activating a program rule
using Triggering Evaluation is to match h with the trigger goal in each rule
({3T).

Because the predicate names of all goals and tuples are static fields, some
of the matching can be performed at compile time. It should be noted that
with all negated goals associated with h now resolved, the predicate of a tuple
or goal reverts to its traditional interpretation as the static elements of a term
{i.e. the combination of the functor and arity). In SDSL triggered programs,
separate code blocks are used to deal with new tuples from each predicate (from
Section 5 .3). For each of these code blocks the only rules that can be successfully
activated by an h tuple are those whose trigger goal is from the same predicate
as h. Since the predicates of goals and any h tuple are known in the predicate's
code block at compile time, the set of rules to be activated in each code block
is reduced, resulting in more efficient compiled programs.

Assuming the predicate of a rule's trigger goal and the predicate of h are
identical, the arguments of the trigger goal are now matched with the ground
arguments of h. Arguments in h are represented by bound program variables in
the SDSL program. Matching arguments which are free variables in a trigger
goal with arguments in h can be achieved at a syntactic level by replacing all
occurances of the trigger goal's variable with the variable in h throughout the
SDSL representaion of the rule. Matching arguments with constant terms in
the trigger goal and arguments in h requires using a built-in equality test, such
as buil tin: semidet (equals, [X, 5) , []) where X is the argument in h and 5 is
the constant argument in a trigger goal.

After the SDSL code to ensure a match between h and the trigger goal, the
remaining positive and negated goals (those in 13+, 13-) are queried in r, and
built-in operations (/3>.) are evaluated to determine if the rule's body is true.
Searching for tuples matching a single goal in an index structure instance has
been described previously in Section 3.3.1, and more recently in this chapter
when describing the evaluation of negated goals. However this discussion needs
to be extended for evaluating a set of goals. All SDSL instructions necessary to
evaluate the rule body are added sequentially one after the other so that the fail
ure of any element in the body will invoke backtracking though all instructions
in the rule's body. With the exception of the trigger goal and negated goals
which are evaluated late (see Section 2.3.4), body goals and built-in operations
are satisfied in a left-to-right order (a continued assumption from Chapter 3).
With the previously noted exceptions, program variables are only free the first
time they are encountered in a left-to-right ordering because all goals and built
in operations bind new program variables when they are satisfied. The binding
patterns of variables affects the instructions used in the SDSL program such
that when searching in r for the value of a program variable, a scan instruction
is used the first time the variable is encountered (since it is free), however a look
instruction is used for all subsequent searching (since the program variable is
bound by the scan). Similarly, the variables used in built-in operations appear
in the set of output parameters when they are first encountered however will
occur in the set of input parameters when the variable is bound.

The instructions necessary to satisfy negated goals in a rule body are evalu
ated in negated code blocks. The use of negated code blocks restricts the scope
of existential variables created within the negated goal. However if evaluation of

103

the negated goal is optimised by late evaluation (see Section 2.3.4), the negated
goal does not need to be queried with the other body goals, and instead is
delayed.

Following the instructions which evaluate the body of a rule, the rule's head
(hr) is inserted into ~- Using the head predicate's index path definition in the
~ set as a guide, tuples are inserted into the index structure instance using the
same set of instructions as previously described when adding new tuples tor.
When hr is a non-trigger head then it is inserted into r rather than~- This is
achieved by following the index path definition for hr in r instead of that for ~
(See Section 2.3.5 for more details and the preconditions of this optimisation.)

When all instructions necessary for the evaluation of a rule body and as
sertion of its head are complete, the rule's code block is closed. This enforces
backtracking within the rule so that multiple outputs can be generated from a
rule when it is activated by a new tuple.

Any side-effects associated with h tuples (i.e. side effects generated by the
head of a rule} are performed in a new code block, and included beside the
code blocks that activate and evaluate rules. Tuples from output predicates use
the SDSL built-in print instruction to output terms to the standard output.
For example, if the current minimal tuple in ~ is found as print (MinVarO)
then MinVarO is printed by including incuding the SDSL built-in operation
buil tin: det (print, [MinVarO] , []) in a new code block together with the
code blocks for the rules that print(MinVarO) activates. Input request tuples
use the SDSL built-in instruction buil tin: det (input, [] , [Input: string])
in a new code block to collect input from the user. (Note that an SDSL print
instruction can be inserted before the input instruction when a prompt is re
quired.) When input is received it is bound to the Input variable and inserted
into the index structure according to the index path definition of the input's
result tuple. In this way user input can be referred to by other rules in the
program.

To illustrate the evaluation of a rule in SDSL we provide Figure 5.3. The
given rule in this figure has a trigger tuple (shown in bold} with a constant value
for its first argument. The remainder of the body contains a positive goal, a
built-in operation and a negated goal. To clarify the choice of SDSL instructions
the mode of each variable is given before each variable using'+' and'-' symbols
for ground and free, respectively. The index path definitions are sufficient to
express this rule in SDSL.

Before the SDSL code is given for the program rule we must assume that h,
the minimum tuple found in ~. is from predicate p/2 and its first argument is
represented by the variable MinVarO and the second by variable MinVar1 (such
that it forms the term p(MinVarO ,MinVar1)). Because of this assumption, the
SDSL code which represents the rule must exist inside the code block where
minimum tuples in ~ belonging to the p/2 predicate are processed. The SDSL
representation of the rule is encapsulated in a code block so that its evaluation
is independent of other rules.

The first SDSL instruction in Figure 5.3 ensures a match between the first
argument of the trigger goal (3) and the first argument of the minimum p/2
tuple (MinVarO}. This is necessary because neither term is a free variable and
is achieved using a semi-deterministic built-in which succeeds only when the
two terms are equal. The second argument of the trigger goal is a free variable,
therefore a second equality test is unnecessary to prove it matches with MinVar1.

104

Stratification Priorities:

index gamma q(X,Y) [X, Y].
index gamma r (X) [X, boolean (r)] .
index delta s(X,Y) [branch(delta), X, Y].

Starlog rule with modes:
s(Y,Z) <- p(3,Y"), q(-Y,+Z), +W is -Z+l, not(r(-W)). Y. Rule 1

SDSL code for Rule 1:
(assumes p(MinVarO,MinVarl) has been found as a minimal element in A)

{

}

builtin:semidet(equals, [MinVar0,3], []) Y. Match trigger goal with
Y. minimum delta tuple:

look:semidet($0, MinVarl, $1)
scan:nondet($1, Zl:int, $2)

Y. MinVarO = 3,
Y. MinVarl = Y

Y. Query gamma for q(MinVar1,Z1)

builtin:det(add, [Zl,1], [Wl:int]) Y. Perform built-in Wl is Z1+1

not{

}

look:semidet($0, Wl, $3)
test:semidet($3, r, true)

establish:det($0, delta, $4)
insert:det($4, MinVarl, $5)
insert:det($5, Zl, $6)

Y. Begin negated goal
Y. Query gamma for r(Wl)

Y. Insert s(MinVar1,Z1)
Y. into delta

Figure 5.3: Example Starlog rule and equivalent SDSL code.

105

Instead, matching the free variable Y with MinVar1 is achieved statically by
replacing the variable Y with MinVar1 everywhere in the rule. After matching
h with the trigger goal, the remainder of the body is evaluated.

The first non-trigger goal requires searching the r set for a q/2 tuple. Using
the index path definition for q/2 tuples in r, tuples from this predicate are
indexed from the root of the index structure initially on their first argument
and then on their second. The first argument of the q/2 goal (MinVar1) is
ground by the instantiation of the trigger goal. Therefore a semi-deterministic
look instruction is used to determine if r holds this value. If successful, the
next instruction searches in the sub-index returned by the look for the second
argument of the q/2 goal. Recall from Chapter 4 that new program variables
appearing in SDSL programs append a rule identifier to distinguish variables
if their scope changes due to optimisation. This is the case for the Z variable
in the rule which has become Z1 in the SDSL code. Because this variable is
unbound in the rule a non-deterministic scan instruction is necessary to explore
all variable bindings within the argument index.

The next element to be evaluated from the body of the rule is the addition
operation. The Starlog operation is mapped to its SDSL equivalent built-in
using the predefined mapping from Table 4.2. By analysing the binding patterns
of the variables the correct sequences of input and output variables is used.

The final element in the body is a negated goal. Negated goals are evaluated
inside negated code blocks which invert the success or failure of the internal op
erations. This negated goal succeeds if there are no r/1 tuples whose argument
is W1. To query r for the presence of r/1 tuples we follow the r/1 predicate's
index path definition. The path definition indicates that the argument bindings
of r/1 tuples are stored in the root index. Because the sought argument (W1) is
ground a semi-deterministic look instruction is used. The final element in the
path definition indicates that a labelled boolean value specifies the presence of
r/1 tuples. This labelled boolean value is queried using a test instruction which
succeed when the value is true.

When all body goals have been satisfied the head of the rule is asserted in
.6.. The index path definition associated with the head predicate (s/2) directs
the insertion operations. According to the path definition, s/2 tuples stored in
.6. are stored down the static branch labelled as "delta". Because there is no
guarantee that a sub-index exists for this labelled branch an establish instruction
is used. The first and second arguments of the head tuple are inserted into the
index structure instance separately using insert instructions.

5.7 Example Triggered SDSL Program

To demonstrate the integration of each step of a Triggered SDSL program we
present a complete example program that is compiled to SDSL in Figure 5.4.

This program generates tuples from the two predicates p/1 and q/1. The
stratification order specified by the stratification priorities indicates that all
tuples are initially stratified on their argument value and then on their predicate
name where q/1 tuples are stratified before p/1 tuples when their arguments
are equal.

The index definitions given at the start of the SDSL program have been
generated automatically using techniques from Chapter 3. (A diagram of the

106

index structure used in this program is given in Figure 5.5.) The first code block
in the SDSL program uses the path definition of q/1 tuples in 6. to store fact
q (0). Program rules are repeatedly applied in the second code block. The first
set of operations find the minimum argument value in the 6. set and assign this
value to MinVarO. These operations fail only when 6. becomes empty.

Given that t:i.. contains at least one tuple, the program checks to see if there is
a q/1 tuple in t:i.. with the value of MinVarO as its argument. The q/1 predicate
is processed before p/1 as specified by p » q in the stratification order. To
determine whether a q/1 tuple exists with the value of MinVarO as an argument,
the boolean value labelled id3 in the sub-index associated with the MinVarO
branch is tested. Minimum q/1 tuples are immediately added tor by inserting
the value of MinVarO into the first index of r and setting the labelled boolean
value id2 to true. Rule 1 is the first (and only) rule that is activated by a
new q/1 tuple. The negated goal not(q(Y), Y>l) in the body of Rule 1 is
evaluated by searching for q (Y) tuples in r where Y > 1, within a negated
code block. This search allows for early failure of the negated goal rather than
conclusive evaluation because the goal is unstratified with respect to the trigger
goal. Because there are no other goals in Rule 1, the remaining program variable
operations are translated into their built-in equivalents.

Once the body of Rule 1 is proven true the rule's head tuple is added to
t:i.. by following the path definition of p(X) in 6.. To ensure that a sub-index
exists beneath the delta labelled branch an establish instruction is used. When
all program rules activated by a q/1 tuple have been processed, the minimum
q/1 tuple is deleted from 6.. This is achieved by first setting the boolean value
labelled id3 to false and then, if the index node containing id3 has become
redundant, deleting the index node.

After q/1 tuples have been processed the program attempts to find a min
imum p/1 tuple. If a minimum tuple from predicate q/1 exists it will be con
strained by the unresolved negated goal not(q(Y), Y>lO) that occurs in the
body of the only rule capable of producing q/1 tuples.

This negated goal is evaluated by searching r for a contradicting tuple within
a negated code block. This query could be omitted if the early evaluation opti
misation were applicable (where the negated goal can be proven to be stratified
before the rule's trigger).

When no contradicting tuple exist, the minimum q/1 tuple is considered
unconditionally true and is added to r by inserting MinVarO into the root node
of r and setting the sub-index's boolean value labelled idO to true.

The remaining positive body goal in Rule 2, q (X), is searched for in r given
that X has been matched with the argument of the trigger goal (now represented
by MinVarO in the SDSL program). The additional operations are translated
into their built-in equivalents. The output q/1 tuple from Rule 2 is added
to t:i.. using the establish, insert and set instructions. Finally the p/1 tuple
found as the minimum of t:i.. is deleted from this set by setting the boolean
value representing it to false and then removing the value of MinVarO from
the argument index in t:i.. if its sub-index has become redundant.

Next we discuss the modifications necessary to SDSL triggered programs
that allow t:i.. and r to share index nodes.

107

Starlog program:
p(X)
q(X)

[X, p].
[X, q].

stratify
stratify
stratify q << p.
q(O).

p(Z) <- q(:X:), not(p(Y), Y>l), Z is 2•X.
q(Z) <- p(X:), q(X), X<10, Z is X+l.
SDSL Program:

% Rule 1
% Rule 2

index gamma p (X) (X, boolean_value(idO)]
(branch(delta), X, boolean_value(idl)]
(X, boolean_value(id2)]
(branch(delta), X, boolean_value(id3)]

index delta p(X) <- not(q(_), _>1)
index gamma q (X)
index delta q(X)

}
{

establish:det($0, delta, $1)
insert:det($1, 0, $2)
set:det($2, id3, true)

follov:semidet(SO, delta, $3)
minimum: nondet($3 MinVarO: int, $4)
{

test:semidet(S4, id3, true)
{

insert: det ($0, MinVarO, $5)
set: det ($5, id2, true)
{

not{

% Add fact q (0) to delta

X Find minimum timestu,p value

% Test if a minimum q/1 tuple exiata

% Add minimum tuple to gamma

% Evaluate Rule 1
% Teat negated goal for early failure

scan:nondet($0, Yl:int, $6)
test: semidet ($6, id2, true)
built in: aemidet (greaterTban, (Yl,1], D)

}

}

builtin:det(multiply, (HinVar0,2],
establish:det($0, delta, $7)
insert :det($7, Zl, $8)
aet:det($8, idl, true)

(Zl: int])
% Add head to delta

set:det($4, id3, false)
test:semidet($4, idl, false)
delete: det ($3, HinVarO)

X Delete minimum from delta

test: semidet ($4, idl, true) % Test if a minimum p/1 tuple exists
{

not{ X Evaluate unresolved negated goal late
scan:nondet(SO, HinVarl:int, $9)
test: aemidet ($9, id2, true)
built in: semidet (graaterThan, (HinVarl, 1] , (])

insert:dat(SO, HinVarO, $10)
sat: det ($10, idO, true)

X Add minimum tupla to gamma

{
look:semidet(SO, HinVarO, $11) % Evaluate Rule 2
test: samidet (Sil, id2, true)
builtin:semidat(greatarThan, (10,HinVarO], (])
builtin:det(add, (HinVar0,1], (Z2:int])
establish:dat(SO, delta, $12) % Add head to delta
insert :det(S12, Z2, $13)
sat:dat(S13, id3, true)

set: det ($4, idl, false)
test: samidet ($4, id3, false)
delate:dat($3, HinVarO)

% Delete minimum from dal ta

Figure 5.4: Example Starlog and equivalent SDSL program.

108

·delt:,·- - - - .. , Root -----$0

$2,$4 X

, , ,

$~~$~~d
$8,$13 ,- ... id]' ~

·idl·' ' ~

[boof_n] [boo!on]

' p(X)

t
• q(X)

1not(q(_), _>1)

v~--~
!:l.

' p(X)

r

~~~$5,$6,$9 

' q(X) 

$10,$11 

Figure 5.5: Index structure schema used by example program in Figure 5.4. 

5.8 SDSL Triggered Programs with Combined 
~ and r Sets 

In Chapter 3 the advantages and disadvantages of combining index nodes for the 
~ and r sets were discussed. Sharing index nodes between these two sets can 
lead to a smaller index structure and fewer instructions needed to move tuples 
from one set to another, however each set is no longer specialised for its partic
ular mode of access. Because the degree of optimisation is difficult to predict -
and in many cases may be detrimental to performance - we disallowed sharing 
index nodes between ~ and r in automatically generated index structures. 

However programmers may wish to manually define an index structure where 
such index node sharing occurs when they have an insight into the performance 
of their program. For the correct evaluation of these programs the translation 
of programs from Starlog to SDSL must be modified. Although this section 
explores the requirements for SDSL programs with shared indexes, the remain
ing thesis does not consider these programs further. It is included here for 
completeness. 

When the ~ and r sets are combined in the index structure, finding mini
mum values of each argument from ~ is more difficult than when the sets are 
separated. This is because the minimum value in any index may point to a sub
index that does not contain any tuples from ~. and instead holds only r tuples. 
In these cases the next lowest minimum value must be repeatedly explored un
til a value is located that holds at least one ~ tuple. To perform this type of 
searching requires using next-minimum instructions rather than minimum in
structions when finding the minimum value for an argument. Next-minimum 
instructions return all values in an argument index in ascending order, one value 
at a time. In this way an index can hold both the argument values of tuples in 
rand the argument values in~. however the next-minimum operation restricts 
searches to unseen values (i.e. only those in ~). 

To illustrate the difference between SDSL programs that share index nodes 

109 



between b. and r and those that do not, we provide Figure 5.6. This figure is the 
same example program used in Figure 5.4 but uses a different index structure. 
A diagram of the index structure is given in Figure 5.7. The major distinction 
between the two SDSL programs in these figures is the use of a next-minimum 
instruction rather than using a minimum when finding the lowest value of a 
tuple's argument. As written, the SDSL program which shares index nodes 
between b. and r is no smaller than the original SDSL program where these 
sets are disjoint. However the new program does contain more redundant in
structions than the original which can be removed using optimisation techniques 
from the next section. By applying these code optimisation techniques to the 
two programs the new program with index nodes shared between b. and r will 
contain three fewer instructions than when the original is optimised (22 versus 
25). Whether this leads to a more efficient execution depends on the program 
since the complexities of operations performed on shared indexes are likely to 
increase. 

Following the guidelines in the previous sections, triggered programs can be 
implemented in SDSL. However these programs may contain redundant opera
tions which reduce efficiency. The next sections discuss a number of optimisa
tions that can be applied to SDSL programs. 

5.9 Optimisations 

The automatic generation of SDSL programs from Starlog programs may gener
ate sub-optimal code. That is, the SDSL program is likely to repeat instructions 
or perform redundant operations. We now present a series of optimisations to 
remove redundant or repeated instructions from SDSL programs. 

Each optimisation is demonstrated on the example SDSL program in Figure 
5.4. To assist with understanding this example, a diagram of the program's 
index structure is provided in Figure 5.5. The index variables used throughout 
the program are included in this diagram with references to the index nodes 
they will hold. As the various optimisations are applied, new SDSL programs 
are produced. To reduce space the newly derived, optimised programs do not 
include the index definitions as these remain unchanged in all versions. 

All the optimisations presented in this section are safe for SDSL programs 
that implement Triggering Evaluation as presented earlier in this chapter. Such 
programs are said to follow the Triggering Template. In spite of this, the con
ditions that must be satisfied before the optimisation is considered safe are 
explicitly defined to allow optimisation of more general SDSL programs. 

5.9.1 Removal of Repeated Instructions Within Code Blocks 

Automatically generated code blocks frequently repeat operations. This often 
occurs within rules where tuples satisfying different goals share indexes. By 
removing repeated instructions, programs may be optimised without affecting 
their correctness. 

SDSL instructions do not have to be identical to consider one a repetition of 
another. Any instruction that will always generate the same output as a previous 
instruction is redundant. For example, after a scan instruction instantiates 
the program variable X and binds $7 to the sub-index, any look instruction 

110 



Starlog program: 
q(O). 
p(Z) <- q(:X), not(p(Y), Y>l), Z is 2•X. 
q(Z) <- p(:X), q(X), X<lO, Z is X+l. 

% Rule 1 
% Rule 2 

SDSL Program: 

index gamma p(X) ex, boolean_value(idO)] 
ex, boolean_value(id1)] 
ex. boolean_value(id2)] 
ex, boolean_ value ( id3)] 

index delta p(X) <-- not(q(_), _>1) 
index gamma q (X) 
index delta q(X) 

{ 

} 
{ 

% Add fact q(O) to delta 
insert:det($0, 0, $1) 
set:det($1, id3, true) 

naxtminimum: nondet ($0, MinVarO: int, $2) 
{ 

% Find minimum timestamp 

} 
{ 

teat:aemidet($2, id3, true) 
{ 

insert:det(SO, MinVarO, $3) 
set:det($3, id2, true) 
{ 

not{ 
scan:nondet(SO, Y1:int, $4) 
teat:semidet($4, id2, true) 
buil tin: semidet (greaterTban, 

1' Teat if a minimum q/1 tuple exists 

'X Add minimum tuple to gamma 

% Evaluate Rule 1 
1' Teat negated goal for early failure 

ev1,1], D) 

builtin: det (multiply, eMinVarO, 2). ez1: int] ) 
insert :det(SO, Z1, $5) 'X Add head to delta 

} 
} 

aet:det($6, id1, true) 

set: det ($2, id3, false) % Delete minimum from delta 
teat:aemidet($2, idO, false) 
teat:aemidet($2, id1, false) 
teat:aemidet(S2, id2, false) 
delete: det ($0, MinVarO) 

teat:aemidet($2, id1, true) 'X Teat if a minimum p/1 tuple exists 
{ 

not{ 'X Evaluate unreaol ved negated goal late 
acan:nondet($0, MinVar1:int, $6) 
teat: aamidet ($6, id2, true) 
builtin:aemidet(greaterTban, eMinVar1,1], eJ) 

} 
insert:det(SO, MinVarO, $7) 
sat: det ($7, idO, true) 

1' Add minimum tuple to gamma 

{ 
look:aemidet(SO, MinVarO, SB) 'K Evaluate Rule 2 
teat:aemidet(SB, id2, true) 
builtin:aemidet(graaterTban, [10,MinVarO], eJ) 
builtin:det(add, eMinVar0,1], ez2:int]) 
insert:det($0, Z2, $9) 'X Add head to delta 
aet:det($9, id3, true) 

set:det(S2, id1, false) 
teat:aemidet($2, idO, falaa) 
teat: aemidet ($2, id2, false) 
teat:aemidet($2, id3, falaa) 
delete: det ($0, MinVarO) 

% Delete minimum from delta 

} 
} 

Figure 5.6: Example Starlog and equivalent unoptimised SDSL program with 
all index nodes shared between t::.. and r. 

111 



Root 

"idl', - - - -, , , , 
(boo! ... ] 

T 
p(X) 

t 
not(q(_), 

• id];, 

I 

T 
q(X) 

_>1) 

V 
~ 

X ---... ... .. ,"id2" 

' "idO" ' .. \ 
\ \ 

(boo! .... ] (boot ... ] 

' p(X) 

V 
r 

' q(X) 

Figure 5.7: Index structure used by example program in Figure 5.6. 

performed on the same index searching for ground variable X will find the same 
sub-index held by $7. Therefore the look instruction is redundant. 

When a repeated instruction is removed from a program, subsequent in
structions that use the output of the removed instruction must be updated. 
Instructions that use the output of a removed instruction are modified to use 
the output of the instruction that is equivalent to that which was removed. 
That is, if the operations of instruction Q are later repeated by instruction R 
then any instructions that use the output of instruction R must instead use the 
output of Q when R is removed. To allow instructions that originally used the 
output of R to use the output of Q, the output variables of Q must be accessi
ble. Therefore two instructions can be optimised only when the later (repeated) 
instruction lies within the variable scope of the first instruction. Variables in 
SDSL programs are only accessible in the code block where they first occur, or 
in any code block which is nested within the code block where the variable first 
occurs. Therefore this is the scope of the repeated instruction optimisation. 

Two instructions are repetitions of each other if they always produce the 
same output. However if the data accessed by these instructions is updated 
between the repeated instructions then their output may differ. Therefore re
peated SDSL instructions that operate on some value are removed only when 
no other instructions "interfere" with the value between the repeated instruc
tions. Interference between instructions occurs when the first instruction adds 
or modifies data which is examined by the second instruction. Interference is 
detected when there is an intersection between the values added or removed 
and those searched for in the same argument indexes, same labelled branches 
or same labelled boolean values. By analysing constraints on the variables in 

112 



an SDSL program, potential intersections can be identified statically and this 
optimisation can be restricted to safe cases. 

However such safety conditions are unnecessary for SDSL programs that fol
low the Triggering Template. In these programs there is no single code block 
where the contents of an argument index, labelled branch or labelled boolean 
value are modified in a way which affects repeated searches. For proof we con
sider all the steps in which the index structure instance is modified by Triggering 
Evaluation. The addition of facts tot::,,. occurs before either t::,,. or rare queried, 
therefore there are no prior search instructions which are repetitions of later 
instructions. New tuples (h) are added to r after they have been found as a 
minimum tuple in t::i., but only after all negated goals are satisfied. This update 
of r does not interfere with repeated instructions because the instructions prior 
to this insertion code involve searching t::,,. - a set unaffected by the addition 
of tuples in r - and searching r to satisfy the unresolved negated goals asso
ciated with h (h +- ~-). Although the instructions used to perform negated 
goals appear inside a negated code block, for the moment we will assume that 
the instructions appear outside of the block, which can happen as a result of 
other code optimisations. The instructions used to add h tor do not interfere 
with those used to solve negated goals since h » n where n E ~- such that all 
newly added h tuples are irrelevant to n. The addition of new tuples into t::,,. 
as the output of a rule also does not interfere with any later searches because 
the instructions to add tuples to t::,,. always appear at the end of a code block. 
Likewise, the code to delete the minimum tuple from t::,,. occurs toward the end 
of a code block where the only other searches test the redundancy of an index 
node, a process which is not repeated previously in the code block. 

Figure 5.9 shows the complete set of repeated instruction optimisations that 
can be performed on an SDSL program. These optimisations are given as rewrite 
rules which map programs with a repeated instruction to those without that re
peatition. Here T --+ U means that T is rewritten to U [22]. The brackets 
{ and } represent code blocks of any type. Variables of type S1 represent se
quences of SDSL instructions (which may include nested code blocks). The 
non-interference operator is denoted as # such that V # W is true if all the 
SDSL instructions in set V do not interfere with the SDSL instructions in set 
W, and is false otherwise. 

The non-interference operator ( #) is defined in Figure 5.8. Informally stated, 
V interferes with W if there is an update instruction (either an insert, delete, 
establish, prune, link or set) in Vanda read instruction (a look, scan, minimum, 
nextminimv.m, empty, follow, ispruned or a test) in W which access the same 
value in an argument index, the same labelled branch or the same labelled 
boolean value. For example, if a delete instruction removes value X from an 
argument index then any subsequent scan instructions operating on the same 
argument index will not find X. Likewise, any look instruction searching for 
X will fail. In this example the delete interferes with the scan and the look 
instructions. (Depending on the update instruction, insert, establish and set 
instructions are sometimes considered read instructions since they access data 
and can produce different output when interfered with, as indicated in Figure 
5.8.) 

To clarify the optimisations in Figure 5.9 the first optimisation is explained 
in detail. This optimisation removes a look instruction if an equivalent look 
instruction appears earlier in a code block. The pattern of SDSL instructions 

113 



V#W <=}(If insert: det($E,F,$G) E V,,ll look: R($E,F,$J) E W /\ 
,ll scan : R($E, I, $J) E W /\ 
,ll minimum: R($E, I, $J) E W /\ 
,ll nextminimum : nondet($E, I, $J) E W /\ 
,ll empty : semidet($E) E W) /\ 

(V delete : det($E, F, $G) E V,,ll look: R($E, F, $J) E W /\ 
,ll scan: R($E, I, $J) E W /\ 
,ll insert : det($E, F, $J) E W /\ 
,ll minimum: R($E, I, $J) E W /\ 
,ll nextminimum: nondet($E, I, $J) E W /\ 
,ll empty : semidet($E) E W) /\ 

(V establish: det($E, L, $G) E V,,ll follow: R($E, L, $J) E W /\ 
jl ispruned: semidet($E, L) E W) /\ 

(V prune: det($E, L) E V,,ll follow: R($E, L, $J) E W /\ 
,ll establish: det($E, L, $H) E W /\ 
,ll ispruned: semidet($E, L) E W) /\ 

(V link : det($E, L, $G) E V,,ll follow: R($E, L, $J) E W /\ 
,ll ispruned: semidet($E, L} E W) /\ 

(V set : det($E, L, T) E V,,ll test : semidet($E, L, S) E W /\ 
,ll set : det($E, L, S) E W) 

Figure 5.8: Logical definition of the non-interference operator. 

relevant to this optimisation is given as: 
{So look :M($A, B, $C) S1 look :N($A, B, $D) S2 } 

The interpretation of this pattern is that within a single code block ( denoted by 
{ and } ) there must exist two look instructions. The use of variable S0 (which 
can represent any number of instructions) means that the first look instruction 
does not have to be the first instruction in the code block. Variable S1 allows the 
two look instructions to be separated in the code by zero or more intermediate 
instructions. S2 at the end of the sequence means the second look instruc
tion does not have to be the last instruction in the code block. The sharing of 
index variable $A and program variable B between the two look instructions 
ensures these operations are performed on the same index node and are search
ing for the same value. The use of different variables M and N to represent 
the determinisms of the look instructions means that the determinism can be 
different for each instruction. The conditions for this optimisation are given by 
39 ($C =$DO)/\ (S1 #[look: N($A, B, $D)J). The first part of this conjunction 
creates the variable substitution 9 in which index variable $D is assigned to 
index variable $C (this is not really a condition because it can never fail but it 
is a necessary step). The second part of the conjunction ensures that the second 
look instruction is not interfered with by any instructions in S1 . If interference 
does occur then this condition is false and the optimisation is not safe. The 
output of this optimisation is given by {So look :M($A, B, $C) S1 S28} which 
is the original code block but with the second look instruction removed, and all 
the occurrences of its output ($D) replaced in S2 with $C by applying variable 
substitution 9. 

114 



Identical Instruction Optimisations 

So insert : dat 

o minimum : nondet , , 1 minimum. : nondet , B, D S:;a ----+ 

{So minimum : nondet(SA, B, SC)S1 S28} 

S1# Ht : dat SA, L, V 
So set : dat , L, V S1 set : dat , L, V S2 ___, 

38 0 = PB 
{So builtin :M(B, I, 0) S1 builtin :M(B, I, P) S2} ___, {So builtin :M(B, I, O)S1 S28} 

Equivalent Instruction Optimisation 

So look: M 

38 (SC = $DB) A (S1 #!establish : dat(SA, L, SD)I) 
{So tollov : aamidat(SA, L, SC) 81 establish : dat(SA, L, SDJ 82} ___, 

{So tollov: samidat(SA, L, SC) S1 S28} 

So teat : aemidat 

Figure 5.9: Optimisations to remove repeated SDSL instruction within code 
blocks where S1 represents zero or more instructions or nested code blocks, and 
(} represents a set of variable bindings. 



To demonstrate the effect of removing repeated instructions, this optimisa
tion is applied to the example program from Figure 5.4. Figure 5.10 gives the 
new optimised version of this program. In this case two establish instructions 
and a look instruction have been removed from the program. The establish 
instructions were removed using the 15th optimisation rule whereas the look 
instruction was removed using the 10th optimisation rule from Figure 5.9. This 
would yield a small performance improvement. In general, applying this opti
misation to more complex SDSL programs containing rules with more goals can 
result in much greater optimisation. 

This optimisation is a variant of local common sub-expression elimination 
performed during optimisation of imperative languages, where re-computation 
of expressions is avoided by using previously computed values [2]. This varia
tion differs from the traditional optimisation because the degree of optimisation 
depends on the sharing of index nodes or boolean values, not just variables. 
Generally, when groups of related tuples share index nodes then more code 
optimisation is possible. 

5.9.2 Factorisation of Repeated Prefixes Across Code Blocks 

Another optimisation that can be applied to SDSL programs factorises out 
common sequences of instructions occurring at the beginning of different code 
blocks. Including these common instructions only once in the program reduces 
code size and improves performance. 

For this optimisation, two code blocks that exist in the same parent code 
block must begin with the same sequence of instructions. The largest sequence 
of instructions shared between the code blocks is identified as the prefix. 

Prefixes do not have to be identical to be considered common. As seen in the 
previous optimisation, two instructions are equivalent if they always produce the 
same output. Yet because the scope of variables is restricted to the code block 
where they were initialised, the set of non-identical but equivalent instructions 
is reduced in this optimisation. 

When factorising two code blocks that are not consecutive, the intermedi
ate code blocks are moved so that they occur after the factorised block. This 
means that the order code blocks are evaluated changes when non-consecutive 
blocks are factorised. For general SDSL programs, reordering code blocks may 
compromise the semantics of the original program. 

As with the removal of repeated instructions, to ensure correctness of general 
SDSL programs we restrict factorising to cases where any code blocks that 
are moved do not interfere with those that they are migrated over. Cases of 
interference can be detected by finding an intersection between the set of tuples 
generated by one code block and the set of tuples accessed by another. The 
non-interference operator is defined in Figure 5.8. 

However, if programs follow the Triggering template, code blocks that can 
be factorised never interfere with any other blocks. This is because the order 
of many code blocks appearing in an SDSL triggered program is arbitrary and 
therefore can be reordered without consequence. The only code blocks that 
have a necessary order process tuples from each predicate in stratification order. 
However these are immune to reordering: if two predicate code blocks (A and C) 
are to be factorised then they will share the first i instructions. Any intermediate 
code block (B) that exists between A and C, whose order with C is significant 

116 



} 

'X Add fact q(O) to delta 
establiab:det(SO, delta, $1) 
insert:det($1, 0, $2) 
aet:det(S2, id3, true) 

follow:aemidet(SO, delta, S3) 
minimum: nondet ($3 MinVarO: int, $4) 
{ 

'X Find minimum timastamp value 

} 
{ 

teat:aemidet(S4, id3, true) 
{ 

inaart:det(SO, MinVarO, $5) 
aet:det(S5, id2, true) 
{ 

not{ 

} 

acan:nondet(SO, Yl:int, $6) 
teat:semidet(S6, id2, true) 
built in: semidet (greaterTban, 

'X Teat if a minimum q/1 tuple exists 

'X Add minimum tupla to gamma 

'X Evaluate Rule 1 
'X Teat negated goal for early failure 

[Yl, 1], Cl) 

builtin:det(multiply, CMinVar0,2], [Zl:int]) 

<Deleted establish:det(SO, delta, $7), $7 = $3> 

} 

insert:det(S3, Zl, SB) 
aat:det(SB, 1d1, true) 

aet:det($4, id3, false) 
teat:aemidet(S4, idl, false) 
delete :det (S3, MinVarO) 

'X Add bead to delta 

'X Delete minimum from delta 

taat:aemidet(S4, idl, true) 'X Teat if a minimum p/1 tuple exists 
{ 

not{ 'X Evaluate unrasol ved negated goal late 
acan:nondet(SO, MinVarl:int, S9) 
teat:aemidet(S9, id2, true) 
builtin:semidet(greaterTban, [MinVarl,1], []) 

} 
inaert:det(SO, MinVarO, $10) 
sat: det ($10, idO, true) 

'X Add minimum tuple to gamma 

{ 

<Deleted look:semidet(SO, MinVarO, $11), Sll = SlO> 

tast:aamidet(S10, id2, true) 'X Evaluate Rule 2 
builtin:semidet(greaterTban, [10,MinVarO], []) 
builtin:det(add, [MinVar0,1], [Z2:int]) 

<Deleted establish:det(SO, delta, $12), $12 = S3> 

inaert:det(S3, Z2, $13) 
sat:det(S13, id3, true) 

'X Add bead to delta 

} 
} 
aat:det(S4, idl, false) 
tast:semidet($4, id3, false) 
delete: det ($3, MinVarO) 

'X Delete minimum from delta 

Figure 5.10: Example SDSL program after the removal of repeated instructions. 

117 



39 (Preflxo = Preflx16 A ((So U X)#Preflx1) 
Preflxo So X Prefix, S 1 --+ Preflxo So 19 X 

39 (Preflxo = Preflx19) A ((S0 U X)#Preflx1) 
not{Preflxo So} X not{Preflx1 Si} --+ not{Preflxo not{not{So} not{S19}}} X 

Figure 5.11: Factorisation of identical prefixes of code blocks in an SDSL pro
grams where X represents zero or more code blocks of any type. 

(C is the code block which would be migrated over B during factorisation), 
will share the first i instructions with C. If it did not, the order between 
B and C would be arbitrary since the order would be based on some other 
argument values rather than the static predicate ordering. If B shares the first 
i instructions with C, and A shares the first i instructions with C (since A 
and C were to be factorised), then A, B and C can be factorised together and 
their suffixes remain in their original order. Because we are only considering 
triggered programs in this thesis, no further investigation into detecting code 
block interference has been undertaken. 

Figure 5.11 defines this optimisation for code blocks where the variables 
used in Prefix1 are replaced by those in Preflx0 . Notice that this optimisation 
preserves the order of instruction sequences S0 and S1 . Depending on the types 
of code blocks involved, this optimisation generates different output. In these 
rules, X represents zero or more intermediate standard or negated code blocks. 
Factorisation of negated code blocks is based De Morgan's laws. The safety 
condition restricting reordering of code blocks that interfere with each other is 
given as V#W where V and Ware sets of code blocks that will be reordered 
after optimisation. Such safety conditions are redundant when following the 
Triggering Template. 

To determine if code blocks share a common prefix the instructions in each 
prefix must be equivalent. Instructions that are identical and whose program 
and index variables match are obviously equivalent because they produce the 
same output. However, non-identical instructions that produce the same out
put are also considered equivalent. Figure 5.12 gives factorisation rules for 
non-identical instructions and the conditions under which they are considered 
equivalent. For the first factorisation rule, an establish instruction is equiva
lent to a follow instruction that appears later in the code block when the two 
operations are performed on the same index node and same labelled branch. 
Similarly, a set instruction that updates a labelled boolean value to V is equiv
alent to a test instruction that tests the same labelled boolean value for V in 
a later code block. The third optimisation transforms a look instruction into 
a scan and an equality test when the scan operation is already performed in 
another code block. (Note that this optimisation trades a look instruction for 
N equality tests, where N is the number of elements held in the index. If N is 
sufficiently large then efficiency may deteriorate.) The final three rewrite rules 
give three equivalent optimisations for factorising negated code block. 

The results of applying these optimisations to the example SDSL program 
in Figure 5.10 is given in Figure 5.13. The optimised program has factorised 
out an establish instruction (by matching it with an equivalent follow ). In the 
case of this program this optimisation will have very little effect on the run time 
performance. 

118 



38 (Preflxo = PreflxB8) /I (SA= SCB I\ (SB= SDB) /I ( So U X)#(Preflx1 u follow: aemidet(SC, L, SD)})) 
Pre Xo establish: dat , L, o Pre X1 follow: aemidet , L, D 

{Preflxo aatabliah: dat(SA, L, SB) {So} {S18}} X 

38 Preflxo = Preflx18 /I SA = SCB I\ Sou X # Prefix, u taat : aamidat SC, L, V 
Preflxo set : dat A, L, V So X Prefix, teat : aamidat , L, V S1 -

{Preflxo aat: dat(SA, L, V) {So} {S18}} X 

38 (Preflxo = Preflx18) /I (SA = SDB) /I (SC= SIB) /I ((Sou X)#(Preflx1 u look :N(SD, H, SI))) 
{Preflxo scan: nondat(SA, E : T, SC) So} X {Preflx1 look :N(SD, H, SI) S1} -

{Preflxo scan: nondat(SA, E: T, SC) {So} {builtin: aamidat(equals, [E, HI,[]) St}B} X 

38 (Preflx0 = PreflxB8 /I (SA = $CB) I\ ($8 = $DB) I\ ((So U X)# Preflx1 U follow: aemidat(SC, L, SD))) 
not Preflxo establish: dat A, L, B So X not Prefix, follow: aemidat C, L, D S1 -

not{Preflxo establish: dat(SA, L, SB) not{not{So} not{S18}}} X 

Figure 5.12: Factorisation of common prefixes for non-identical instructions 
where X represents zero or more code blocks of any type. 

Factorisation of common prefixes in SDSL is similar to the construction 
of code trees which have been used to implement bottom-up systems. How
ever, unlike SDSL programs which are statically defined at run time, code trees 
are dynamically changing programs which represent "the dynamically changing 
databases of clauses" [110]. 

In other ways the factorising optimisation is similar to the if-optimisation 
used when compiling imperative programming languages. The if-optimisation 
combines the bodies of two or more if statements if their truth conditions are 
identical. Performance improves because only one if test is performed. Com
mon prefixes in SDSL code blocks are equivalent to repeated if statements 
because the code immediately following any SDSL prefix is executed only when 
all operations in the prefix are successful. 

5.9.3 Deletion Completion 

A common artifact of Triggering Evaluation is the insistence that deletions of 
tuples in .:l occur at the end of each predicate's code block. Yet it is usually 
unnecessary to delete tuples individually. Optimisation occurs by combining 
the deletion code after the complete set of predicates have used the common 
arguments in trigger tuples1 . After an argument binding has been used by all 
predicates it is deleted. 

The combining of deletion code frequently causes auxiliary code to become 
redundant. For example, if a delete operation is performed on a value in an 
index node and then the index node itself is entirely deleted, the first delete 
operation is unnecessary. Instead, by deleting all references to the index node 

1 Because this optimisation assumes that a minimum argument value is only used once 
by all predicate code blocks, this optimisation is unsafe for programs that are not strongly 
stratified, and programs which share indexes between .0. and r. 

119 



establish:det($0, delta, $1) 

insert:det(Sl, 0, $2) 
set :det ($2, 1d3, true) 

m1n1mum:nondet($1 HinVarO:int, $4) 
{ 

test: sem1det(S4, 1d3, true) 
{ 

1nsert:det($0, HinVarO, $5) 
set:det($5, 1d2, true) 
{ 

not{ 
scan:nondet(SO, Yl:int, $6) 
test: sem1det($6, 1d2, true) 

'X Add fact q(O) to delta 

X Factorised prefix 

X Find minimum timestamp value 

X Teat if a minimum q/1 tuple exists 

X Add minimum tuple to gamma 

X Evaluate Rule 1 
X Teat negated goal for early failure 

builtin: aemidet (greaterThan, [Yl, 1] , []) 

builtin :det (multiply, [HinVarO, 2]. [Zl: int]) 
inaert:det(Sl, Zl, $8) X Add head to delta 
aet:det($8, idl, true) 

aet:det($4, 1d3, false) 
teat: aemidet ($4, idl, falae) 
delete: det($1, HinVarO) 

X Delete minimum from delta 

teat: aemidet ($4, idl, true) Y. Teat if a minimum p/1 tuple exists 
{ 

not{ 'X Evaluate unresolved negated goal late 
scan: nondet ($0, HinVarl: int, $9) 
teat:aemidet($9, id2, true) 
builtin: aemidet(greaterThan, [HinVarl, 1], []) 

inaert:det($0, HinVarO, $10) 
aet:det($10, idO, true) 

X Add minimum tuple to gamma 

{ 
teat:aem1det($10, id2, true) Y. Evaluate Rule 2 
builtin:semidet(greaterThan, [10,HinVarO], []) 
builtin:det(add, [HinVar0,1], [Z2:1nt]) 
inaert:det(Sl, Z2, $13) Y. Add head to delta 
set:det($13, 1d3, true) 

set:det($4, idl, false) 
test: semidet ($4, 1d3, false) 
delete:det($1, HinVarO) 

'X Delete minimum from delta 

Figure 5.13: Example SDSL program after common prefix factorisation. 

120 



{minimum: nondet(SA, B, SC) So (Vi){Pred1 delete : det(SA, B)}} ___, 
{minimum: nondet(SA, B, SC) {So (Vi){Pred1}} delete : det(SA, B)} 

{minimum: nondet(SA, B, SC) {So (Vi){Pred1 delete: det(SC, D)} Si} delete: det(SA, B)} ___, 
{minimum: nondet(SA, B, SC) {So (Vi){Predi} Si} delete: det(SA, B)} 

{minimum: nondet(SA, B, SC) {So (Vi){Pred1 prune: det(SC, D)} S 1 } delete: det(SA, B)} ___, 
{minimum : nondet(SA, B, SC) {So (Vi){Pred1} Si} delete : det(SA, B)} 

{minimum: nondet(SA, B, SC) {So (Vi){Pred1 aat: det(SC, D, E)} Si} delete: det(SA, B)} ___, 
{minimum: nondet(SA, B, SC) {So (Vi){Predi} Si} delete : det(SA, B)} 

{minimum: nondet(SA, B, SC) {So (Vi){Pred1 empty: semidet(SC)} Si} delete : det(SA, B)} ___, 
{minimum: nondet(SA, B, SC) {So (Vi){Pred1} Si} delete : det(SA, B)} 

{minimum: nondet(SA, B, SC) {So (Vi){Pred1 iaprunad: aamidet(SC, D)} Si} delete: det(SA, B)} ___, 
{minimum: nondet(SA, B, SC) {So (Vi){Predi} Si} delete : det(SA, B)} 

{minimum: nondet(SA, B, SC) {So (Vi){Pred1 teat: aamidet(SC, D, E)} Si} delete: det(SA, B)} ___, 
{minimum: nondet(SA, B, SC) {So (Vi){Pred1} Si} delete: det(SA, B)} 

Figure 5.14: Deletion Completion optimsation. 

will make it a candidate for the automatic garbage collection processes of the 
target environment. (Note that this form of optimisation would not be ap
plicable in environments without automatic garbage collection.) Redundant 
instructions that delete tuples by removing argument values from sub-indexes, 
setting labelled boolean variables to false or by pruning labelled branches are 
unnecessary given that their parent index node is scheduled for deletion {before 
the program accesses their values again). Likewise, any additional tests to check 
if an index node is redundant before deleting it are unnecessary after this opti
misation. This is because after all predicate code blocks have used an argument 
value from t:::.. which determines the stratification order of tuples, this value is 
redundant and should be deleted so that a new minimum value is selected in 
the next iteration. 

Figure 5.14 gives the definition of this optimisation as rewrite rules. In this 
definition variables S0 , S1 and Pred1 represent any number of instructions or 
nested code blocks. The first rewrite rule replaces all identical delete instructions 
appearing at the end of all predicate code blocks with a single delete instruction 
performed after all predicates have been processed. After this optimisation, any 
instructions associated with the deletion of a tuple in a predicate code block are 
redundant and are removed by the remaining six rewrite rules. For example, the 
second rule removes all delete operations that are performed on the index node 
$C when this index node itself is subsequently removed by a delete instruction 
performed on the index node $A {where $A is the parent of $C). Similarly, the 
third rule removes all prune instructions that are performed on an index node 
that is deleted. If tuples are stratified on more than one argument then this 
optimisation can be repeatedly applied. 

Deletion Completion has been applied to the example program from Figure 
5.13 and the new optimised program is given in Figure 5.15. In this case the six 
SDSL instructions that remove tuples one argument at a time from the t:::.. set 
have been replaced by one delete instruction performed after all the predicate's 

121 



code blocks. 

5.9.4 Removal of Redundant Code Block Nesting 

When an SDSL program has been automatically generated it may encapsulate 
instructions in two or more nested code blocks where one would be sufficient. 
The addition of extra code blocks not only reduces run time performance of 
programs but obfuscates cases where prefix factorisation is possible. 

Rules used to remove unnecessary code block nesting are given in Figure 
5.16. In each rule, To and T 1 represent a sequence of at least one instruction 
or code block. Applying the first rewrite rule from Figure 5.16 removes double 
nesting of code blocks. This clarifies cases where factorisation is possible and 
so can be applied before factorisation for increased optimisation. 

The second rule removes any extra unnecessary code block nesting at the 
end of a parent code block to reduce run time overhead. This optimisation 
is valid because all operations at the end of a code block are exhaustively per
formed (before backtracking to the previous operations) whether they are inside 
a code block or not. Because this transformation extracts instructions from code 
blocks it may prevent the factorising of code blocks. For this reason the second 
rule is best applied after factorisation has occurred. (More on the ordering of 
optimisations later.) 

The last three rules perform general code clean up of cases where empty 
code blocks are created. When an empty standard code block ( {}) occurs in a 
program this can be deleted outright since it will always succeed. However the 
occurrence of an empty negated code block is equivalent to a fail statement 
in Prolog where the negated code block can never succeed because none of the 
internal instructions can fail. The final rewrite rule generalises this optimisation 
for programs where instructions follow an empty negated code block. Because 
the empty negated code block will always fail, any instructions that occur after 
the block (To) will never be executed. Therefore removing these instructions is 
correct and will reduce code size. Figure 5.17 shows the example program from 
Figure 5.15 after all redundant code block nestings have been removed. 

Note that no rule exists to remove extra nesting at beginning of a code block 
(i.e. code blocks of the form { {T0 }Tt} ). This is because these code blocks spec
ify that all operations in the nested code block must be exhaustively performed 
via backtracking before any of the operations that follow are performed. By 
removing nesting from the beginning of a code block the order of operations is 
changed and the program's correctness may be compromised. 

The first rewrite rule in Figure 5.16 is similar to loop collapsing performed 
when compiling imperative languages where a single loop replaces multiple 
nested loops that have the same escape conditions. The second rewrite rule 
has properties of a tail recursion optimisation because the last nested code 
block in a sequence is now immediately evaluated rather than entering and ac
cumulating extra overhead from a new, nested code block. The remaining three 
rewrite rules exhibit behavior equivalent to dead code removal where code blocks 
and instructions that will never have an effect on the state of the program are 
removed. 

122 



{ 

} 

eatablish:det(SO, delta, Si) 
{ 

X Add fact q(O) to delta 
X Factoriaed prefix 

inaert:det(S1, 0, $2) 
aet:det($2, icl3, true) 

} 
{ 

min1mum:nondet($1 MinVarO: int, $4) X Find minimum timeatamp value 
{ 

{ 

} 
{ 

teat:semidet($4, id3, true) 
{ 

X Teat 1f a minimum q/1 tuple exists 

X Add minimum tuple to gamma inaert:det($0, MinVarO, $5) 
set : det ($5, id2, true) 
{ 

not{ 
X Evaluate Rule 1 
X Teat negated goal for early failure 

scan:nondetCSO, Y1:int, $6) 
teat: semidet ($6, id2, true) 
builtin: aemidet (graaterThan, [Y1,1]. 0) 

} 

builtin:det(multiply, CMinVar0,2], 
inaart:det($1, Zi, $8) 
aet:det(SB, id1, true) 

[Z1: int]) 
X Add head to delta 

teat:aemidet($4, id1, true) X Teat 1f a minimum p/1 tuple exists 
{ 

not{ X Evaluate unraaolved negated goal late 
scan:nondet(SO, MinVar1:int, $9) 
teat: aemidet ($9, id2, true) 
builtin:aemidet(graaterThan, CM1nVar1,1], 0) 

inaert:det(SO, MinVarO, $10) 
aet:det($10, idO, true) 

X Add minimum tuple to gamma 

{ 

} 

taat:semidet($10, id2, true) X Evaluate Rule 2 
builtin: aemidet (graaterThan, [10 ,MinVarO]. []) 
builtin:det(add, [MinVar0,1], [Z2:int]) 
insert:det(S1, Z2, $13) X Add head to delta 
aet:det(S13, id3, true) 

} 
} 

delete:det($1, Min VarO) X Combined Delete instruction 

Figure 5.15: Example SDSL program after Deletion Completion. 

{{To}} ---+ {To} 

{To {T1}} ---+ {To T1} 

{} ---+< empty > 

not{} ---+ builtin:aemidet(fail, [], []) 

not{} To---+ builtin:aemidet(fail, D, []) 

Figure 5.16: Rules to remove redundant code block nesting where To and T 1 

are sequences of at least one instruction and/or code blocks. 

123 



establ1sh:det($0, delta, $1) 
{ 

insert:det($1, 0, $2) 
set:det($2, id3, true) 

minimum:nondet($1 MinVarO:int, $4) 
{ 

test: semidet ($4, id3, true) 
insert: det($0, MinVarO, $5) 
set:det($5, id2, true) 
not{ 

scan:nondet($0, Y1:int, $6) 
test: semidet ($6, id2, true) 
builtin: semidet(greaterThan, [Y1, 1]. D) 

builtin:det(multiply, [MinVar0,2]. [Z1: int]) 

X Add fact q(O) to delta 
,: Factorised prefix 

,: Find minimum timeatamp value 

X Teat if a minimum q/1 tuple exists 
X Add minimum tuple to gamma 

,: Teat negated goal for early failure 

insert:det($1, Z1, $8) X Add head to delta 
set:det($8, id1, true) 

test:semidet($4, id1, true) 
not{ 

scan:nondet($0, MinVar1:int, $9) 
teat: semidet($9, id2, true) 

X Test if a minimum p/1 tuple exists 
% Evaluate unresolved negated goal late 

buil tin: semi dot (greaterThan, [MinVar1, 1]. [] ) 

insert:det($0, MinVarO, $10) 
set: dot ($10, idO, true) 
test:semidet($10, id2, true) 
builtin:semidet(greaterThan, [10,MinVarO], 
builtin:det(add, [MinVar0,1]. [Z2:int]) 
insert:det($1, Z2, $13) 
set: dot ($13, id3, true) 

delete:det($1, MinVarO)} 

[]) 

,: Add minimum tuple to gamma 

X Evaluate Rule 2 

X Add head to delta 

X Combined Dalata instruction 

Figure 5.17: Example SDSL program after redundant code nesting has been 
removed. 

124 



{A: det(B,C,D) S0 } -- A: det(B,C,D) {So} 
not{A: det(B,C,D) So} -- A: det(B,C,D) not{So} 

Figure 5.18: Extraction of deterministic instructions from the beginning of code 
blocks. 

5.9.5 Extracting Deterministic Instructions from Code Blocks 

Programs are sometimes optimised when deterministic instructions are removed 
from the beginning of code blocks. Because deterministic instructions that exist 
at the beginning of a code block do not recompute their outputs when encoun
tered during backtracking, these can be safely moved from inside the code block 
to immediately before the code block. One advantage of moving deterministic 
instructions out of a code block is that the scope of the instruction's output is in
creased which may enable further optimisation of repeated instruction. Another 
advantage is if all instructions in a code block are deterministic then the pres
ence of the code block is redundant and can prompt removal of redundant code 
block nesting. This optimisation is particularly useful for optimising negated 
code blocks, or for extracting all instructions that initialise facts inside a code 
block. The definition of this optimisation is given in Figure 5.18. A SDSL 
instruction is deterministic iff its determinism property is set to det. 

Note that this optimisation does not remove arbitrary deterministic instruc
tions from code blocks - only those at the beginning of a code block. This is 
because dependencies can exist between the variable bindings used by deter
ministic instructions in the middle of a code block and those used in previous 
instructions, making reordering instructions unsafe. To perform a more sophis
ticated optimisation that detects when instruction reordering is safe would re
quire building a dependency graph for all variables in each code block. Although 
such an optimisation is reasonably simple to understand, its implementation is 
complicated and so it has not been explored further. 

The results of this optimisation (together with all other optimisations) can 
be seen Figure 5.19. In this example the instructions used to add the q(O) fact 
to Di. have been removed from their code block. (The empty code block has been 
removed using the previous optimisation.) 

This optimisation is a limited form of the hoisting optimisation that moves 
invariant operations out of loops in imperative programs. 

5.9.6 Order of Optimisation 

With the exception of redundant nested code block removal, the order that op
timisations should be applied has been ignored. In many cases the order does 
not matter as the optimisations are commutative and will produce the same 
result no matter which order they are applied. (This is the case for redundant 
instruction removal and prefix factorisation.) But to ensure maximal optimi
sation for non-commutative optimisations the best approach is to repeatedly 
apply all optimisations in a predetermined order until no further transforma
tions are possible (i.e. the program definition reaches a fixed-point). Because no 
combination of optimisations are complementary, optimisation will never enter 
an infinite loop and a fixed-point will be found. This is true because all optimi-

125 



{ 
establish:det($0, delta, $1) 
insert: det CS 1, 0, $2) 
sat:det($2, id3, true) 
minimum: nondet ($1 "inVarO: int, $4) 
{ 

test:aemidet($4, id3, true) 
insart:det($0, "inVarO, $5) 
sat: det ($5, id2, true) 
not{ 

acan:nondet($0, Y1:int, $6) 
test:aemidet($6, id2, true) 
buil tin: semidet (greaterThan, [Y1 ,11. []) 

} 

} 
builtin:det(multiply, ["inVar0,2], 
insart:det($1, Z1, $8) 
sat:det($8, id1, true) 

test:semidet($4, id1, true) 
not{ 

scan: nondet ($0, "inVar1: int, $9) 

[Zl: int]) 

1' Add fact q(O) to delta 
1' Factorised prefix 

1' Find minillWll timaatamp value 

lt Test if a minimum q/1 tuple exists 
lt Add minimum tuple to gamma 

1' Teat negated goal for early failure 

1' Add head to delta 

1' Teat if a minimum p/1 tuple exiata 
1' Evaluate unresolved negated goal late 

test: semidet ($9, id2, true) 
builtin:semidet(greaterThan, ["inVar1,1], Dl 

} 
insart:det($0, "inVarO, $10) 
set:det($10, idO, true) 
test:semidet($10, id2, true) 
builtin:samidet(greaterThan, [10,"inVarO], 
buil tin: det (add, [MinVarO, 11. [Z2: int] l 
insart:det($1, Z2, $13) 
set:det($13, id3, true) 

delete :det($1, "inVarO)} 

[]) 

lt Add minimum tuple to gamma 

lt Evaluate Rule 2 

lt Add head to delta 

lt Combined Delete instruction 

Figure 5.19: Example program after all optimisations have been applied. 

126 



sations can only reduce code size or replace expensive instructions with simple 
ones, so no cycles are possible. 

By carefully ordering the optimisations the number of iterations performed 
to find the fixed-point can be minimised. Figure 5.20 gives one order that the 
optimisations may be applied which, in practice, quickly produces significantly 
optimised code for SDSL programs. The number of iterations performed before 
the program code reaches a fixed-point will depend on the degree and types of 
optimisation possible in the SDSL program. Therefore there are many other 
orders apart from Figure 5.20 in which may be equally or more efficient. 

The result of applying all optimisations repeatedly to the example program 
in Figure 5.4 can be seen in Figure 5.19. By applying the optimisations in 
the order specified in Figure 5.20 three top-level iterations are required for the 
program to reach a fully optimised state. The original program was 54 lines 
long comprising of 34 SDSL instructions. The optimised program is only 35 
lines long with 25 SDSL instructions. In practice, executing these two programs 
(using the same data structures for each argument index) reveals the optimised 
program to be 8% faster than the unoptimised variant. Although an improve
ment, the change in execution speed will not usually be proportional to the 
code size reduction. The two major reasons for this is that some instructions 
are performed more than others ( due to differing numbers of non-deterministic 
alternatives), and some instructions are more computationally expensive than 
others. In this case both programs are occupied for a disproportional amount 
of time constructing the same data structures in memory. 

Table 5.1 demonstrates the effect of the code optimisations on code size and 
run time performance on a set of programs. Details of each example program are 
included in Appendix C (where these and other programs are used to demon
strate the various data structure selection techniques given in Chapter 7). Note 
that optimal data structures are selected for each argument index to maximise 
the effect of the code optimisations. In some cases the example data sets used 
in these experiments differ from those described in Appendix C so that the code 
size is not overwhelmed by the number of facts. Table 5.1 shows that the ap
plication of the optimisations described in this chapter reduces code size and 
run times for all these example programs. However the degree of optimisation 
varies greatly as some programs share more index nodes between different sets 
of tuples or contain rules with greater redundancy than others - in some cases 
run times improve by less than 1 % however other programs result are more than 
20% faster. 

Although the SDSL code optimisations do reduce run times, these results 
are still disappointing considering the amount of work required to perform each 
optimisation. It is believed that the disappointing results are due to the high 
degree of optimisation already achieved in the example Starlog programs. This 
due to the programmer's extensive experience and knowledge of how Starlog pro
grams are compiled influencing their design. For example, these programs do 
not include redundant predicates and impose strict stratification orders to max
imise efficiency. Consequently these Starlog programs may not be considered 
typical. It is believed that programs produced by less experienced program
mers will experience far greater optimisation using the techniques given in this 
chapter. 

127 



P0 = SDSL Program 
h=O 

Q,., = Removal or Redundant 
Instructions from Q 1 

Q,., != O; 

RJ••= Removal or Code Block 
Nesting in using rule (IA}} ={Al 

R;+i !=R; 

V !=V 
n+I n 

Optimised SDSL Program= Ph 

h =h+l 

Figure 5.20: Flow diagram showing one order that optimisations may be applied. 

128 



Unoptimised Optimised 
Program Applicable Optimisations Code Size Run Time Code Size I Run Time 
Hamming Removal of Code Block Nesting 25 lines 16 ms 21 lines 

Extracting Det Instructions 
Primes n.eaundant instruction Removal 68 lines 12.3 sec 53 lines 

Factorisation of Code Blocks 
Deletion Completion 

Shortest Path Factorisation of Code Blocks 74 lines 31 ms 69 lines 
Removal of Code Block Nesting 

Pacal's Triangle Redundant instruction Removal 70 lines 44 ms 66 lines 
Factorisation of Code Blocks 
Removal of Code Block Nesting 

Transitive Closure Redundant instruction Removal 134 lines 496 ms 120 lines 
Factorisation of Code Blocks 
Removal of Code Block Nesting 

Game of Life Redundant Instruction Removal 250 lines 766 ms 173 lines 
Factorisation of Code Blocks 
Deletion Completion 
Removal of Code Block Nesting 

N-Queens Redundant Instruction Removal 381 lines 245 ms 299 lines 
Factorisation of Code Blocks 
Deletion Completion 
Removal of Code Block Nesting 

Table 5.1: Performance comparisons for optimised and unoptimised SDSL pro
grams. 

5.10 Conclusions 

In this chapter we have shown that triggered programs which use Starlog index 
structures can be represented in SDSL. The SDSL programs are efficient because 
they allow some matching of terms to be performed at compile time, and because 
specialised code is produced to evaluate each rule for each trigger goal. These 
properties are a consequence of the static definition of the index structures. 

After a triggered SDSL program has been defined we can apply a number of 
optimisations. These reduce the number of redundant or repeated instructions, 
or replace expensive instuctions with simple ones. Although these optimisa
tions are given with reference to triggered programs, all the optimisations are 
applicable to general SDSL programs which may implement different evaluation 
techniques. The optimisations presented here (1) remove redundant operations 
which occur in the same code block, (2) combine common prefixes to factorise 
instructions performed in multiple code blocks, (3) remove redundant instruc
tions associated with index nodes that will be deleted, (4) remove redundant 
code block nesting and (5) extract deterministic instructions from the begin
nings of code blocks. These are the only opportunities for optimisations that 
are currently apparent for SDSL programs. However it is possible that more 
may be discovered in future work. Using an example SDSL program the effect 
of each optimisation is shown on the program's source code. It has also been 
shown that run times are reduced as a result of these optimisations. 

Although the optimisations presented here are restricted to SDSL programs 
they would be applicable to other langauges with similar semantics or control 
facilities. For example, the non-interference condition upheld when factorising 
common prefixes is valid for the if-optimisation in imperative languages. There
fore, by better understanding the interference conditions if-optimisations may 
be more widely used. Another interesting application of these optimisation may 
improve the performance of Prolog programs. Optimisations on code blocks 

129 

13 ms 

12.1 sec 

28 ms 

41 ms 

492 ms 

662 ms 

193 ms 



(such as prefix factoring) are applicable to Prolog since the semantics of a code 
block is equivalent to Prolog's failure-driven-loop. The same is true of optimisa
tions performed on negated code blocks since their semantics are equivalent the 
negation-as-failure operator. The effectiveness of these optimisations in other 
contexts is yet to be determined. 

The next stage of compilation is to translate SDSL programs into an exe
cutable form. In the next chapter we discuss Java implementations of SDSL 
programs. 

130 



Chapter 6 

Compilation of SDSL to 
Java 

The Starlog Data Structure Language (SDSL) can be used as an intermediate 
representation of bottom-up programs, allowing high-level analysis and optimi
sation. However, to run programs, SDSL must be compiled to an executable 
form. In this chapter the process of compiling SDSL programs to Java is dis
cussed. Figure 6.1 shows this stage in Starlog's compilation pipeline. 

In the context of the Mercury compiler, [58] argues that compilers of logic 
languages should target high-level, imperative programming languages (in their 
case, they choose C). This is because such languages are high-level enough to 
make code generation easy but low-level enough to express low-level optimi
sations. In this thesis the chosen target language for the Starlog compiler is 
Java. Java provides a comfortable platform to reach from the SDSL intermedi
ate form. Although Java is procedural, the addition of object orientation and 
garbage collection are useful facilities. For example, object orientation allows 
all index nodes to have a consistent interface for indexing argument values, yet 
remain expandable for the more specific labelled branches and boolean values. 
Java's platform independence is also an attractive feature for propagating Star
log. The current popularity of Java is also an important factor for this project 
because other researchers will be expected to modify and improve the compiler 
in the future. By using a language which is already being taught to new many 
researchers reduces the obstacles that these researchers face when contributing 

Figure 6.1: Java code generation in Starlog's compilation pipeline. 

131 



to the Starlog compiler. 
Although using Java as a target simplifies many aspects of the Starlog com

piler, Java programs are often criticised for lacking the run time efficiency of 
other languages. Consequently, compiled Starlog programs may not be as effi
cient as if another language were targeted (e.g. C). However Starlog programs 
compiled to Java will still be a massive improvement over the Starlog inter
preters previously used. Therefore the use of Java, although probably not the 
optimal target language, is considered sufficiently efficient. 

Yet Java compiler technology is currently evolving and improving. This 
means that Starlog programs will benefit from any efficiency improvements de
veloped for Java. On the other hand, some libraries and methods are deprecated 
in each revision and will not be supported in later versions of the language. For 
this reason we are careful to use only the core Java library (java. lang) which 
is unlikely to change. 

Care has been taken to provide efficient Java implementations of SDSL in
structions. Priority has been given to reducing the number of objects generated 
by the Java programs since our early experiments showed that their creation is 
expensive in both initialisation time and memory (a fact acknowledged in [38] 
and [1031). To improve performance, primitive data types are used instead of 
objects where possible, in spite of complicating many of the instruction trans
lations. Because casting objects is another source of inefficiency the Java code 
avoids this where possible. 

Of course Java is not the only suitable target language to which SDSL pro
grams can be compiled. This guide to compilation would be relevant when 
compiling SDSL to most modern procedural languages such as C, C++, Pascal 
or Smalltalk. The use of classes is necessary only for implementing the index 
nodes of the index structure that extend existing data structures. Without au
tomatic garbage collection, memory locations need to be explicitly deleted when 
they become obsolete. 

This chapter initially discusses the implementation of index structures in 
Java, provides general discussions about index and program variables, and then 
gives the Java code translations of code blocks and SDSL instructions. Finally, 
to demonstrate the complete compilation process, the Java implementation is 
given of the fully optimised program generated in the previous chapter (Figure 
5.19). 

6.1 Implementation of Index Structures 

Each node of an index structure is represented in Java by an object. To allow 
customisation of nodes, each type of node that can appear in an index struc
ture is represented by a different class. Each class representing a node in the 
index structure is based on the Node interface. This interface, shown in Figure 
6.21 , dictates methods that all index nodes must implement. Classes which im
plement the Node interface include look, insert and delete methods for all 
the primitive types required by Starlog programs ( currently ints, strings and 
doubles). In addition, methods exist to find the sub-index associated with the 

1The interface shown in Figure 6.2 is a simplification of the actual interface used. The 
actual interface includes additional method names to allow experimentation with garbage 
collection. 

132 



public interface Node{ 
Node look(int N); 
Node look(String N); 
Node look(double N); 

} 

Node insert(int N, NodeFactory nf); 
Node insert(String N, NodeFactory nf); 
Node insert(double N, NodeFactory nf); 
boolean delete(int N); 
boolean delete(String N); 
boolean delete(double N); 
Node minimum(); 
int minimumValue_int(); 
String minimumValue_String(); 
double minimumValue_double(); 
Nodelterator getlterator(); 
boolean isEmpty(); 

Figure 6.2: The Node interface. 

minimum value of an argument, and methods to return the minimum value of 
the expected type. These are necessary when finding a minimal element in the 
~ set. To allow nested scan operations on an argument index the getlterator 
method produces a new Nodelterator object (introduced later in Figure 6.4). 
Finally, the isEmpty method tests if the argument index contains no values. 
Although the operation of some of these methods is transparent, all will be 
described in greater detail as necessary. 

To store argument values in each index node, a data structure class imple
ments the methods of the Node interface. These implementations differ depend
ing on their design and purpose. For example, a balanced binary tree allows 
efficient searching in large quantities of data whereas an unsorted list is more 
efficient for very small data sets. The details of some data structures are de
scribed in Chapter 7 with various approaches to their selection. For now it is 
sufficient to assume that argument values are available through the methods in 
the Node interface. 

To allow specialisation of index nodes, each index node extends the data 
structure class in which its argument values are stored. Statically labelled 
branches and labelled boolean values are implemented as fields (or member vari
ables) within these index node objects. The static labels of these become the 
variable names. Naturally, labelled boolean values become boolean primitives. 
Labelled branches take on the types of other index node classes, all derived from 
the Node interface. 

Figure 6.3 demonstrates the implementation of index nodes in Java. The 
names of each class are derived from the SDSL program's file name concatenated 
with a unique identifier. The data structures used in this example are balanced 
binary trees for all indexes that hold argument values, and special empty nodes 
for those that do not. (Again, the selection of these data structures is discussed 
in Chapter 7.) 

133 



Index Structure: 
"delta• Root ""<1c-----ExamplclndcxO 

- - - h::-----1 

Examplelndex2 ;:;.. £' .,. 
Examplelndex3 ----'>=- X 

"idl ., - "id2" , .· ... 
... EIE------ Examplelndexl 

- .,."idO" 

' 
[bo!ean] [booi!an) [bo;ean) 
~~ 

' r(X) 

Index Path Definitions: 

index gamma r(X) 
index delta r(X) 
index gamma s(X,Y) 
index delta t(X) 

Java Classes: 

' t(X) 

i \ Examplelndex4 

' . s(X,Y) r(X) 

[X, boolean(idO)] 
[branch(delta), X, boolean(idl)] 
[X, Y] 
[branch(delta), X, boolean(id2)] 

class ExampleindexO extends BalancedBinaryTree{ 
public Example!ndex2 delta; 

} 

class Example!ndexl extends BalancedBinaryTree{ 
public boolean idO; 

} 

class Example!ndex2 extends BalancedBinaryTree{ 
} 

class Example!ndex3 extends EmptyNode{ 
public boolean idl; 
public boolean id2; 

} 

class Example!ndex4 extends EmptyNode{ 
} 

Figure 6.3: Example index structure and Java implementation. 

134 



6.2 Index Variables 

Index variables are renamed from their SDSL representation to a "Java friendly" 
syntax. The '$' that prefixes SDSL index variables is replaced with the identifier 
"node". For example the SDSL variables $0, $1 and $2 become nodeO, node1 
and node2, respectively. 

With the exception of the the root (nodeO), all index variables are generated 
as the results of SDSL operations. All new index variables used in the Java 
program belong to the Node interface. Declaring index variables as Node ( e.g. 
Node node1 = ... ) avoids specifying an index variable's derived class when it 
is initialised, and so reduces the amount of object casting. 

In logic programming, variables can only be bound to a single value unless 
backtracking removes the binding. To ensure index variables are not reassigned 
after they have been initialised, index variables are declared final when as
signed a value. 

6.3 Program Variables 

The names of program variables used in an SDSL program remain unchanged in 
the equivalent Java program. The convention that Java variable names always 
begin with a lowercase letter conflicts with the variable naming requirements 
of Starlog, SDSL and most other logic programming language. However since 
the Java code produced by the Starlog compiler is not intended for human 
interpretation, Java's variable naming conventions are not enforced. However, 
when displaying Java code in this thesis, variable names will conform to the Java 
variable naming conventions to aid interpretation. The original Starlog variable 
names can be reproduced by converting the first character of a program variable 
to uppercase. 

For efficiency, program variables are typed. In an SDSL program, the first oc
currence of a program variable includes type information {that is either inferred 
from or declared in the original Starlog program). This type information is used 
during Java's declaration of program variables such that a variable X :<type> 
in an SDSL program becomes <type> X in Java. 

As with index variables, program variables are declared final to enforce a 
single assignment. 

6.4 Code Blocks 

A code block controls the flow of an SDSL program and has an effect on the 
scope of variables. In Java, each code block is implemented as a compound 
statement block (enclosed in braces { <code> } ) that will execute once. Any 
variables declared within the block are not accessible outside. Code blocks 
are also used to enforce exhaustive backtracking. The Java implementation of 
this this backtracking is performed during the translation of non-deterministic 
instructions and so is discussed in the following sections. 

The translation of a code block from SDSL to Java is given as follows. 

135 



SDSL: 
{ s } 

1 
Java: 
{ 

<translation of S> 
} 

6.5 Negated Code Blocks 

The Java implementations of negated code blocks are more complex. A negated 
goal must exhaustively execute all internal instructions. If the conjunction of 
instructions always fails the negated goal succeeds and the instructions follow
ing the negated goal are executed. Otherwise, if there exists a solution to the 
negated goal such that all internal operations succeed, the program must back
track to the last non-deterministic choice point encountered before the negated 
goal. 

Like regular code blocks, negated code blocks are implemented as compound 
statement blocks. However, each block is labelled because in some cases outer 
blocks must be "broken" out of from inner blocks. Since Java does not support 
a goto statement, this can only be achieved using labelled blocks or loops. 

As shown in the translation below, the block begins by executing the in
structions in the negated goal (S0 ). If all instructions succeed then the negated 
goal fails and backtracking occurs by breaking out of the negated block and not 
executing those instructions that immediately follow. Any loops or compound 
statements associated with the instructions in So are closed after the break 
statement. (In this translation S1 represents all the instructions or nested code 
blocks which occur after the negated goal, but exist in the same code block as 
the negated goal.) Assuming the negated goal succeeds, the instructions occur
ring after it (S1 ) are executed. The extra unlabelled statement block around So 
ensures that variables declared in the negated goal are not visible to or conflict 
with those of later instructions. 

SDSL: 
not{ So } S1 

1 
Java: 

negCodeBlock<id>: { 
{ 

<translation of So> 
break negCodeBlock<id>; 

<closing brackets associated with So> 
} 
<translation of S1 > 

} 

136 



6.6 SDSL Instructions 

The Java representation of each SDSL instructions is now given. 

6.6.1 Dynamic Argument Index Instructions 

Look 

An SDSL look instruction is represented in Java as a call to the look method 
in an object implementing the Node interface. The object on which the look 
method is called is the subject index variable used in the look instruction. The 
input to this method is the known value to be searched for. The output is a new 
Node object corresponding to the sub-index and is assigned to the output index 
variable. By overloading look methods for all types, the SDSL compiler does 
not need to specify the correct method to call. When the SDSL look instruction 
is semi-deterministic a test is required to detect when the operation fails. When 
the output of the look method is null no matching value has been found in the 
subject index. Look instructions known to be deterministic skip this test. 

The translation of both deterministic and semi-deterministic SDSL look in
structions to Java follows. 

SDSL: 
look : semidet($A, B, $C) So 

1 
Java: 

final Node nodeC = nodeA.look{B); 
if (nodeC == null){ 

<translation of So> 
} 

Scan 

SDSL: 
look: det($A, B, $C) So 

1 
Java: 

final Node nodeC = nodeA.look(B); 
<translation of So> 

Because scan operations can be nested, it must be possible for multiple scans 
to be active at any one time. Each instance of a scan must maintain a reference 
to the previous values returned so that each element is returned at most once 
by each scan. If the data set is modified while a scan operation is active there 
is no requirement for the scan to return any newly added values and there is no 
requirement for the scan to omit any newly deleted values. 

To perform each scan an iterator is used. Each scan operation creates an 
instance of a class implementing the Nodeiterator interface, shown in Figure 
6.4, that is specialised for the argument index's data structure implementation. 
Nodeiterator objects must provide definitions for the hasNext method, which 
determines whether there are any more values that can be returned from the 
argument index, the nextNode method, which returns a sub-index from the 
argument index and locates the next element ready for the next iteration, and 
all relevant nextValue methods. The nextValue methods are used to return 
each value, given the expected type. Note that not all data structures have 
suitable definitions for all data types. For example, array values can not be 
accessed using double or String arguments. Other data structures may be 
optimised for one type of input data. In these cases the irrelevant methods have 
default implementations to appease the Java compiler. 

137 



public interface Nodeiterator{ 
boolean hasNext(); 

} 

Node nextNode(); 
int nextValue_int(); 
String nextValue_String(); 
double nextValue_double(); 

Figure 6.4: The Nodelterator interface. 

The order that an iterator's methods are called is important for correctness. 
The first method that must be called is hasNext to guard the iterator against 
accessing a data structure whose values have all been seen, or attempting to 
access an empty data structure. Next, the appropriate nextValue method is 
called based on the type of the expected output. Finally the nextNode method 
is called which has the side effect of updating the iterator object. 

The concept of iterators is based on Java's Iterator interface2 • However 
the Nodeiterator was defined to allow Starlog programs more specialised (and 
therefore more efficient) methods of access to the values and sub-indexes within 
data structures (e.g. casting is avoided}. Therefore Nodeiterator does not 
extend Iterator. 

The translation of an SDSL scan instruction into Java is given below. For 
each scan operation a new <id> value is automatically generated to identify 
the iterator. Having a different name for each iterator ensures that one iterator 
can not interfere with the running of another. For a non-deterministic scan 
instruction, a loop is used to access all values in an index. This loop is a choice 
point in the program and will be iterated through when backtracking occurs. A 
scan instruction that is semi-deterministic uses an if statement in place of the 
loop. Deterministic scan instructions do not require any loops or conditions for 
the operation to succeed. The variable S0 represents the set of instructions and 
code blocks following the scan. 

SDSL: 
scan: nondet($A, B: <type>, $C) So 

1 
Java: 

final Nodeiterator iterator <id>= nodeA.getiterator(}; 
while (iterator <id> .hasNext()}{ 

} 

final <type> B = iterator <id> .nextValue_ <type>(}; 
final Node nodeC = iterator <id> .nextNode(}; 
<translation of So> 

2The Iterator interface first appeared in Java 1.2. Previous to this the Enumerator inter
face served the same purpose, although both are currently supported (38]. 

138 



SDSL: 
scan: semidet($A, B : <type>, $C) So 

l 
Java: 

final Node!terator iterator <id>= nodeA.getiterator(); 
if (iterator <id> .hasNext()){ 

final <type> B = iterator <id> .nextValue_ <type>(); 
final Node nodeC = iterator <id> .nextNode(); 
<translation of So> 

} 

SDSL: 
scan : det($A, B : <type>, $C) So 

l 
Java: 

final Node!terator iterator <id>= nodeA.getiterator(); 
final <type> B = iterator <id> .nextValue_ <type>(); 
final Node nodeC = iterator <id> .nextNode(); 
<translation of So> 

Insert 

The semantics of the SDSL insert instruction require a new value to be added 
to an argument index only when the value does not already exist. Otherwise 
the existing sub-index associated with the value is returned. This operation is 
performed within the insert methods implemented by classes derived from the 
Node interface. 

However using insert methods require creating auxiliary objects. When a 
new value is successfully added to an argument index, a new sub-index is created 
associated with the value. Yet because insert methods are not specialised for 
each index node, they do not automatically know the class of the sub-index to be 
created. (To create specialised implementations of the insert method would re
quire the compiler rewriting every insertion method for whatever data structures 
implement the Node interface. This approach is not modular when new data 
structures are added, and would complicate the automatic data structure selec
tion process discussed in Chapter 7.) Instead, when calling an insert method, 
the type of the sub-index is passed as a NodeFactory object. A NodeFactory 
object has one method, newNode O, which generates a new Node object of a spe
cific type. When an insert method finds that the insert value does not exist in 
the argument index it needs to create a new sub-index of the appropriate type. 
To do this the insert method calls the newNode method from the NodeFactory 
object it has been passed. The definitions of NodeFactory classes, that together 
generate all possible sub-indexes, are created automatically during SDSL com
pilation. Instances of NodeFactory objects are created for all sub-indexes when 
the program is initialised and reused whenever an insert occurs. In this way 
the overhead of these extra objects is minimised. For simplicity, instances of 
each NodeFactory are given names corresponding to the type of index node 
they generate. For example, the node factory generating ExampleindexO index 

139 



nodes from Figure 6.3 would be named ExampleindexOFactory. 
When inserting a value into an argument index, the correct NodeFactory 

object must be passed to the insert method. To determine which node factory 
should be used, the class of each index variable is maintained during compilation 
of SDSL instructions. By simulating execution of instructions on a model of the 
index structure, the class of each new output index variable is determined. 
When the class of the sub-index is found, the appropriate NodeFactory object 
is derived by simply appending the sub-index class name with the "Factory" 
extension. 

Given that the appropriate node factory object exists for a new index vari
able, an SDSL insert instruction can be translated to Java as follows. 

SDSL: 
insert: det($A, B, $C) 

! 
Java: 

final Node nodeC = nodeA.insert(B, <Node factory object for 
generating C index>); 

Minimum 

Each class that implements the Node interface defines a set of methods to find 
the minimum elements. To find the minimal sub-index the minimum method is 
called. If the argument index is empty this method will return a null value. 
When a minimum element does exist in the argument index, its value is found 
by calling a minimumValue method. As with scan operations, there are different 
methods to allow different types of values to be returned. By appending the 
expected variable type to the minimumValue_ prefix the appropriate output is 
returned. 

For a minimum operation to be non-deterministic these method calls are 
encapsulated in a loop. The failure (or escape) condition is when the argument 
index becomes empty. 

Unlike scans, minimum instructions do not require iterator objects for nested 
searching. This is because non-deterministic minimum operations only reference 
the current state of an argument index and do not keep a record of previously 
returned results. (The implementation of the next-minimum instruction would 
be very close to that of scans, however we do not include the translation since it 
is unused by the Starlog programs described in this thesis.) When following the 
Triggering Template (see Chapter 5), minimum elements are deleted from the 
argument index after they are found so that a new minimum element is found 
in each iteration. 

The Java implementations of the variants of the minimum instruction are 
given below. 

140 



SDSL: 
minimum: nondet($A, B: <type>, $C) So 

! 
Java: 

Node nodeC; 
while ((nodeC = nodeA.minimum()) ! = null){ 

} 

final <type> B = nodeA.minimumValue_ <type> (); 
< translation of So> 

SDSL: 
minimum: semidet($A, B: <type>, $C) So 

! 
Java: 

final Node nodeC = nodeA.minimum(); 
if (nodeC ! = null){ 

final <type> B = nodeA.minimumValue_ <type> (); 
< translation of So> 

} 

SDSL: 
minimum: det($A, B: <type>, $C) So 

! 
Java: 

final Node nodeC = nodeA.minimum(); 
final <type> B = nodeA.minimumValue_ <type> (); 
< translation of So> 

Delete 

The Java implementation of a delete instruction involves calling the delete 
method defined in an index node class. Java's run time garbage collection en
sures that the sub-indexes of any deleted value are deleted when all references to 
them are removed. Thus run time garbage collection simplifies the implemen
tation of the delete methods. The translation of a delete instruction follows. 

SDSL: 
delete : det($A, B) 

! 
Java: 

nodeA.delete(B); 

Empty 

An empty SDSL instruction becomes a call to the isEmpty method defined in 
an index node class. Depending on the boolean output of this method the 

141 



instructions following this may or may not be executed. 

SDSL: 
empty : semidet($A) So 

L 
Java: 

if (nodeA.isEmpty()){ 
<translation of S0 > 

} 

6.6.2 Labelled Branch Instructions 

In Java each static labelled branch and labelled boolean value is represented 
in an index node's class as a field variable. To find the sub-index or boolean 
value we access these fields. However, the fields in the derived classes are not 
immediately accessible because all index variables are declared as Node objects, 
which do not have these fields. Therefore index variables must be cast to their 
derived classes to make their fields accessible. Since object casting is expensive, 
it is more efficient to use casting only when the fields are required, rather than 
every time an index variable is assigned. For this reason the Java implemen
tations of labelled branch instructions and labelled boolean value instructions 
perform object casting. 

The derived class of each index variable is found during compilation by cre
ating a model of the index structure and simulating the execution of instructions 
on this model. 

Follow 

The follow instruction simply accesses a field within an index node object. A 
semi-deterministic follow instruction will fail if the sub-index of a branch has 
not been initialised (i.e. is a null value). A deterministic follow instruction does 
not require testing the contents of the sub-index. 

SDSL: 
follow : semidet($A, L, $C) So 

L 
Java: 

final Node nodeC = (( <index type> )nodeA).L; 
if (nodeC ! = null){ 

<translation of So> 
} 

SDSL: 
follow : det($A, L, $C) So 

L 
Java: 

final Node nodeC = (( <index type> )nodeA).L; 
<translation of So> 

142 



Establish 

To ensure a labelled branch is initialised an establish instruction is used. This 
instruction examines the field variable representing the labelled branch, and if 
its value is null then a new sub-index is created. 

The Java code for an SDSL establish instruction is shown below. This code 
appears to be sub-optimal since it makes an unnecessary number of casts. Al
though the use of a temporary variable could improve performance it would 
obfuscate the code. Moreover, it is believed to be an unnecessary optimisation 
since Java compilers perform Common Subexpression Elimination [2] on the 
code and introduce such temporary variables automatically. 

SDSL: 
establish : det($A, L, $C) 

l 
Java: 

if (( <index type> )nodeA).L == null){ 
(( <index type> )nodeA).L = new <sub-index type> (); 

} 
final Node nodeC = (( <index type> )nodeA).L; 

Prune 

To remove the sub-index associated with a labelled branch the prune instruction 
is used. In Java this translates into setting an index node's field variable to null. 
Java's run time garbage collection reclaims the removed sub-indexes when no 
references remain. The translation of prune instructions to Java follows. 

SDSL: 
prune: det($A, L) 

l 
Java: 

(( <index type> )nodeA).L = null; 

Is-Pruned 

Testing if a labelled branch is empty is achieved using an is-pruned instruction. 
The Java implementation of this instruction is a null check on the field variables 
corresponding with the labelled branch. 

SDSL: 
ispruned: semidet($A, L) So 

l 
Java: 

if ((( <index type> )nodeA).L == null){ 
<translation of So> 

} 



Link 

The link instruction is used to reference an existing index node with a labelled 
branch. In Java this becomes a simple assignment of the field variable repre
senting a labelled branch to an existing index node. 

SDSL: 
link: det($A, L, $C) 

l 
Java: 

((<index type>)nodeA).L = nodeC; 

6.6.3 Labelled Boolean Value Instructions 

Test 

Testing the contents of a labelled boolean value is achieved with the test instruc
tion. In Java, the boolean value held in a labelled field variable is compared 
with the query value. 

SDSL: 
test : semidet($A, L, V) So 

l 
Java: 

if (((<index type>)nodeA).L == V){ 
<translation of So> 

} 

Set 

The set instruction updates a labelled boolean value in a given index node. This 
becomes a simple assignment statement when translated to Java. 

SDSL: 
set : det($A, L, V) 

l 
Java: 

(( <index type> )nodeA).L = V; 

6.6.4 Built-ins 

Each built-in instruction used in SDSL programs has a Java implementation. 
Built-in instructions are used in the bodies of Starlog rules or used to perform 
side-effects associated with the heads of some rules. 

To support modularity, each of the basic types of built-ins (e.g. add, sub
tract, multiply etc.) is implemented as a class of static, final methods, all of 
which make up the Builtin package. The static, final declaration of these meth
ods allows the Java compiler to perform in-lining code optimisation for most 
instances. The method names correspond to the determinism of the built-in 
and the input variables are overloaded for all types applicable to the operation. 

144 



For compilation purposes, built-ins can be divided into deterministic, semi
deterministic and non-deterministic operations, and then further categorised by 
the number of output variables they produce (none, one or many). Although 
some of these cases are rarely used, the Java representations of all possible types 
of built-ins are now discussed. 

Deterministic built-in operations with no output simply become void method 
calls, as follows. These built-ins usually perform side-effects, such as printing 
to the standard output. 

SDSL: 
builtin: det(B, [lo, ... Inl, []) 

! 
Java: 

B.det(Jo, ... In); 

For deterministic built-in operations with a single output variable, the output 
becomes the method's returned variable. 

SDSL: 
builtin: det(B, [lo, ... Inl, [O: <type>]) 

! 
Java: 

final <type> 0 = B.det(Io, ... In); 

When a deterministic built-in has multiple output variables, these are pack
aged together in a variable return object, whose class has been constructed 
specifically for this built-in. The outputs are stored as public field variables 
and named argO, arg1, arg2 and so on, in accordance with the order, types 
and cardinality of the output variables in the SDSL built-in instruction. These 
field variables are re-mapped to program variables before they are used. The 
additional objects and re-mapping of variables makes built-ins with multiple 
outputs more expensive to evaluate, however such operations are rarely defined 
or used. 

SDSL: 
builtin: det(B, [lo, ... In], [Oo : <typeo>, ... Om : <typem>]) (m > 0) 

! 
Java: 

final BVariableReturnObject output<id> = B.det(I0 , .•. In); 
final <type0> 0 0 = output<id> .argO; 

final <typem> Om = output<id> .argm; 

A semi-deterministic operation needs to communicate its success or failure 
back to the parent program. A built-in that has no output takes advantage 
of the unused return value and returns a boolean value indicating success or 
failure. 



SDSL: 
builtin: semidet(B, [lo, ... In], []) So 

1 
Java: 

if (B.semidet(Io, ... In)){ 
< translation for So> 

} 

Semi-deterministic built-ins that output a single value already return values 
from their respective Java methods when successful. To indicate that such a 
method has failed reserved values are used. (For integers the reserved value is the 
fringe value Integer. MIN_VALUE, the reserved double value is Double. MIN_VALUE, 
and the reserved string is null.) The parent program does not need to know 
the reserved values of all types because each class which implements this type 
of built-in instruction provides a valid method that is overloaded to take all 
possible output types from the built-in. By passing the value returned from 
the built-in to the valid method, the success or failure of the built-in can be 
determined. 

SDSL: 
builtin: semidet(B, [lo, ... In], [O: <type>]) So 

1 
Java: 

final <type> 0 = B.semidet(Io, ... In)i 
if (B.valid(O)){ 

< translation for So> 
} 

A semi-deterministic built-in operation which has multiple output variables 
returns a variable return object when successful and a null value upon failure. 

SDSL: 
builtin: semidet(B, [lo, ... In], [Oo: <typeo>, ... Om: <typem>]) So 

(m > 0) 
1 

Java: 
final BVariableReturnObject output<id> = B.semidet(Io, ... In)i 
if (output<id> ! = null){ 

} 

final <type0 > 0 0 = output<id> .argO; 

final <typem> Om = output<id> .argm; 
< translation for So> 

Non-deterministic built-ins use iterators - similar to those used to scan 
through an index - to return all valid variable bindings. The appropriate 
iterator object is automatically generated when a non-deterministic built-in's 
method is called. Although all iterator classes used for built-ins are derived 
from a Builtinlterator interface (see Figure 6.5) and must provide a hasNext 

146 



method, each iterator specifies its own next method whose output type is cus
tomised for the built-in operation. The names of all classes derived from the 
Builtin!terator interface consist of the built-in operation's name concate
nated with "Builtin!terator" in order to simplfy the Java translations. 

public interface Builtin!terator{ 
boolean hasNext(); 

} 

II The output of the next() method is specific 
II to the built-in so is not defined here. 

Figure 6.5: The Builtinlterator interface. 

If the built-in has only one output variable then the next method in the 
iterator returns a variable of a primitive type, as shown here. (Notice that the 
iterator is declared as BBuiltiniterator so that the next method is accessi
ble.) 

SDSL: 
builtin: nondet(B, [lo, ... In], [O: <type>]) So 

l 
Java: 

final BBuiltiniterator bi!terator<id> = B.nondet(/0 , ••• In); 
while(bi!terator<id> .hasNext()){ 

} 

final <type> 0 = bi!terator<id> .next(); 
< translation for So> 

Otherwise, when a non-deterministic built-in instruction has multiple output 
variables, the output from the iterator's next method is a variable return object 
from which variable bindings are extracted. Again, the creation of extra iterator 
objects and variable return objects will affect the performance of programs. 
However, non-deterministic built-ins are rarely defined and non-deterministic 
built-ins that return multiple output variables are even more scarce. 

SDSL: 
builtin: nondet(B, [lo, ... In!, [Oo: <typeo>, ... Om: <typem>I) So 

(m > 0) 
l 

Java: 
final BBuiltiniterator bi!terator<id> = B.nondet(/0 , •.• In); 
while(biiterator<id> .hasNext() ){ 

} 

final BVariableReturnObject output<id> = bi!terator<id> .next(); 
final <type0 > Oo = output<id> .argO; 

final <typem> Om = output<id> .argm; 
< translation for So> 

147 



6. 7 Example of Compiled SDSL Code 

Compilation of an SDSL program to Java is demonstrated using the fully op
timised program defined in the previous chapter (Figure 5.19}. Although this 
is a compact example in both Starlog and SDSL, its Java implementation is 
much larger. It is for this reason we do not give the translation of more complex 
example programs that demonstrates translation of all the instructions. 

The first lines of any Java program declare which external classes are nec
essary to run the program. In addition to the j ava. lang standard package, 
programs translated from SDSL must import the builtin and datastructures 
packages. These include custom made classes that streamline the compilation 
of SDSL programs. The builtin package contains classes that implement all 
built-in operations possible in an SDSL program, whereas the datastructures 
package contains a library of data structure implementations {including their 
iterators) on which each node of the index structure is based. 

Each type of node in the index structure is implemented as a class that ex
tends a class from the datastructures package. (Selecting which data structure 
to extend is discussed in the next chapter.) The names of each new class are cre
ated automatically from the program's file name {here called ExampleProgram} 
and an identifier. In this program, class ExampleProgramO is the root node 
{shown in the index structure diagram of Figure 5.5). ExamplePrograml is the 
sub-index of the root holding r tuples, each identified with a boolean field. 
The labelled branch "delta" in the root node is implemented as a field of type 
ExampleProgram2. The sub-index of ExampleProgram2 is ExampleProgram3, 
which contains two boolean fields that identify each of the tuples in l::,,., 

The next set of classes are the node factories used to generate correct sub
indexes during an insert. Each node factory implements a newNode method that 
returns a new object from the appropriate class. 

The final class contains the main method where instructions from the SDSL 
program are implemented. The initialisation of this program involves gener
ating instances of node factories that can be passed as a parameter to insert 
operations, and the declaration and initialisation of the root node of the index 
structure instance. The root node of any SDSL program (named nodeO} is ini
tialised before the first code block to give it a global scope. Initialisation is 
achieved using a call to the newNode method in the appropriate node factory 
object. 

Each instruction and control element in an SDSL program is now translated 
into its Java equivalent using the previously described mappings. In this ex
ample we have included the original instruction as a comment before its Java 
representation to aid understanding. 

As mentioned previously, there is a clash between the variable naming con
ventions of Java and Starlog. The program variables used in this example con
form with Java's convention that every variable begins with a lowercase letter. 
Oridinarily the automatically generated Java code will use the Starlog variable 
naming conventions. 

import j ava. lang. •; 
import builtin.•; 
import dataatructuraa. •; 

// Index Structure Node class definitions 
class ExampleProgramO extends SortedLiatNode{ 

148 



public ExamplaProgram2 delta; 

clan ExamplaPrograml extends EmptyNoda{ 
public boolean idO; public boolean id2; 

class ExamplaProgram2 extends SortadLiatNoda{ 
} 

claBB ExamplaProgram3 axtands EmptyNoda{ 
public boolean idl; public boolean id3; 

} 

// Noda Factory clan dafinitiona 
claas ExampleProgramOFactory implements NodeFactory{ 

public Node navNoda () { 
return nav ExampleProgramO () ; 

class ExamplaProgramlFactory implements NodeFactory{ 
public Noda nevNoda () { 

return nav ExamplaPrograml () ; 

} 

claBB ExamplaProgram2Factory implements NodaFactory{ 
public Noda nevNoda () { 

return nav ExamplaProgram2 () ; 

class ExamplaProgram3Factory implements NodeFactory{ 
public Noda nevNoda () { 

return nav ExampleProgram3 () ; 

} 

// Program implementation class 
public claaa ExamplaProgram{ 

public atatic void main(String[] argv){ 
final NodaFactory axamplaProgramOFactory • nav ExamplaProgramOFactory () ; 
final NodaFactory axamplaProgramlFactory • nav ExampleProgramlFactory () ; 
final NodaFactory axamplaProgram2Factory • nev ExampleProgram2Factory () ; 
final NodaFactory axampleProgram3Factory • nav ExamplaProgram3Factory () ; 

final Noda nodaO • axamplaProgramOFactory. navNoda () ; 

/ / Beginning of SDSL Coda 
{ 

//aatablish :dat(SO,delta,$1) 
1f (( (ExamplaProgramO)nodaO) .delta •• null){ 

((ExamplaProgramO)nodaO) .delta• nav ExamplaProgram20; 

final Noda nodal • ( (ExamplaProgramO)nodaO) .delta; 
//insert :dat($1,0 ,$2) 
final Noda noda2 • noda1.inaart(O,axamplaProgram3Factory); 
//aat :dat($2, id3, true) 
((ExamplaProgram3)noda2). id3 • true; 
//minimum:nondat($1,MinVarO: int ,$4) 
Noda noda4; 
vhila ((noda4 • nodal.minimum()) ! • null){ 

final int minVarO • nodal .minimumValua_int (); 
{ 

//teat: semidat ($4, id3, true) 
1f (( (ExamplaProgram3) noda4) . id3 •• true){ 

//inaart :dat(SO ,MinVarO ,$5) 
final Noda noda5 • nodaO. inaart(minVarO,axamplaProgramlFactory); 
//aat :det($5,id2,trua) 
( (ExamplaPrograml)noda5). id2 • true; 
//not{ 

149 



} 

} 

negCodeBlock5: { 
{ 

} 

//scan:nondet($0, Y1: int,$6) 
final Nodeltarator iterator& • nodeO.getiteratorO; 
nondetLoop6 : vhile C i terator6 . has Next() ) { 

final 1nt 71 • 1tarator6.nenValua_1ntO; 
final Node noda6 • 1tarator6.nalttNode(); 
//test: sem1dat ($6, 1d2, true) 
1f CC (EzamplaProgram1)noda6) .1d2 •• true){ 

//bu11 tin: sem1det (greaterThan: Hmidat , [Yl , 1] , [] ) 
if (graatarThan.aam1dat(71, 1)){ 

break negCodeBlock5 ; 

// not} 
//bu1ltin:det(mult1ply:dat, [M1nVarO, 2], [Z1:1nt]) 
final 1nt z1 • mult1pl7.det(111nVar0, 2); 
//insert :dat ($1,Z1 ,$8) 
final Noda nodaB • node1.1naert(z1 ,HamplaProgram3Factory); 
//set :dat($8, 1d1,true) 
CCEzampleProgram3)noda8) .1d1 • true; 

//teat: aam1dat ($4, 1d1, true) 
if CC (EzampleProgram3)noda4). id1 •• true){ 

// not{ 
negCodeBlock7: { 

} 

} 

{ 

} 

//scan :nondat($0,M1nVar1: 1nt ,$9) 
final Nodelterator iterators • nodeO.gatitarator(); 
vh1le C 1 terator8. haaNHt C)) { 

final 1nt m1nVar1 • 1teratorB.nextValua_1ntO; 
final Node node9 • 1 terator8. nextNoda () ; 
//teat: sem1dat($9, 1d2, true) 
1f CCCEzamplaProgram1)noda9).1d2 - true){ 

//bu1lt1n:sam1dat(GraatarThan:sam1det, [M1nVar1, 1], []) 
1f (graaterThan. sam1det Cm1nVar1, 1) ){ 

} 
} 

break nagCodaBlock7; 

// not} 
//insert :dat($0 ,M1nVar0 ,$10) 
final Noda noda10 • node0.1naert(m1nVarO,aumplaProgram1Factory); 
//aat:det($10,1d0,trua) 
C (EzampleProgram1)node10) .1d0 • true; 
//test: samidet($10, 1d2, true) 
if CC (EzampleProgram1)node10) .1d2 •• true){ 

//bu11 tin: aam1dat (greaterThan :sam1det, [10, MinVarO] , D) 
1f (greaterThan. sam1det C 10, minVarO) ){ 

//bu1lt1n:det(add:det, [M1nVarO, 1], [Z2:1nt]) 

} 

final 1nt z2 • add. det (m1nVarO, 1) ; 
//1nsert:det($1,Z2,$13) 
final Noda noda13 • noda1.1nsert(z2,exampleProgram3Factory); 
//sat :det($13,1d3,true) 
CCEzampleProgram3)noda13) .1d3 • true; 

//delete: dat ($1, M1nVarO) 
node1 .dalata(m1nVarO); 

150 



6.8 Conclusions 

The translation scheme for compiling SDSL programs into Java source code has 
been given. The compiled programs take advantage of Java's object orientation 
and class hierarchies to specialise the index structure nodes, which are based on 
predefined data structures. This has the effect of simplifying the SDSL compiler 
while promoting a modular design. For example, to add a new data structure 
to the index library or a new built-in operation to the language, a new class can 
be added to the appropriate package. The compiler's code remains unchanged. 

Effort has been made to produce efficient Java programs from SDSL by 
reducing the number of expensive operations performed whenever possible. In 
Chapter 8 the efficiency of some compiled Starlog programs is shown to be 
competitive with that of hand-coded programs. To further improve the efficiency 
of compiled SDSL programs a different target language could be chosen. Most of 
the translations presented in this chapter would be relevant when compiling to 
other imperative programming languages. However targeting languages which 
are not object oriented or do not provide automatic garbage collection would 
make compilation more complicated. 

The next chapter discusses the process of Data Structure Selection that allow 
Java programs produced by the SDSL compiler to be further optimised. 

151 



Chapter 7 

Data Structure Selection 

During the design of the index structure it was assumed that the values of each 
argument were stored in a set. Later, during compilation of SDSL programs 
to Java, argument indexes were refined to use a common interface. As yet the 
implementation of the indexes has not been addressed. 

Substituting different data structures into each index can alter the efficiency 
of programs. As shown in the compilation pipeline in Figure 7.1, using SDSL 
- a data structure independent language - the assignment of data structures 
can be delayed until after the SDSL program is compiled. This situation has 
two advantages. The implementation of each index can be based on properties 
of the program, thus more efficient data structures may be selected. In other 
languages, programs depend on data structures which may have been selected 
prematurely by the programmer, perhaps before the use of each data struc
ture has been adequately defined [97]. The second advantage is that changing 
programs to use different data structures is simpler than in other languages. 
In most other languages, changing data structures usually requires large-scale 
rewriting of programs [22, 98], which reduces the ability to experiment with dif
ferent the data structures. (Although changing data structures can be simplified 
when different data structures have a common interface.) 

In this chapter we argue that the best solution for declarative languages 
is to allow the compiler to select the data structures. The concept of auto
matic data structure selection has previously been experimented with for some 
other languages and applications. For instance, [70] describes a compiler for 
the Algol-like language SAIL which automatically chooses its data structures 

._ ......... ~ ....... 
Figure 7.1: Data structure selection in Starlog's compilation pipeline. 

152 



by estimating the costs of operations. The feasibility of automatic selection of 
high-level data structures such as sets, lists and triples is demonstrated, however 
no evaluation of its effectiveness is given. More details of SAIL's data structure 
selection technique are discussed later in this chapter. 

SETL, a "very high level programming language supporting set theoretical 
syntax and semantics", selects between bit arrays, hashed bit arrays or hashed 
bit arrays with dynamic links by propagating the local hashing requirements of 
operations to a global context [97, 9]. This language uses abstract data struc
tures explicitly in its programs but automatically assigns their implementations 
to optimise their hashing requirements [98]. The algorithm to select data struc
tures for SETL programs assigns a local "base" implementation to each data 
set mentioned in a program. "Base" implementations are said to allow access 
to data in an especially efficient manner. Global analysis then merges equiv
alent "base" implementations with respect to the combination of operations 
performed on each set. This technique does not take into account any charac
teristics of the data set to make its selection. The SETL data structure selection 
technique has been applied to several test programs and has been said to have 
"produced very satisfactory results" [98]. SETL has been extended to the SETM 
language which uses more data structures but uses type inference to select data 
structures where each data structure is considered a sub-type [16]. 

More recently, work on data structure selection performed at run time has 
been documented in [21]. The technique described uses Markov processes with 
random choices. Although the results of this technique are shown to be promis
ing, the differences in performance are from simulations and do not take into 
account all overhead incurred by the selection technique. Later in this chapter 
a similar run time selection technique is described and evaluated. 

There has also been research into optimising programs with sparse matrices 
into programs that use dense data structures (see [13] and [141). This involves 
not only a change to the data structure implementation but also to the program 
itself. 

In spite of automatic data structure selection being recognised as a desirable 
feature for high-level programming languages, it appears this is the first work of 
its kind for a logic programming language. We begin this chapter by describing 
the data structures implemented for Starlog's argument indexes and discuss why 
generic data structures and manual selection of data structures are unsuitable 
for Starlog. We then give automated strategies for selecting implementations 
and report on experiments that use these strategies. 

7 .1 Data Structure Implementations 

Before details of the data structure selection strategies are discussed, the set 
of data structures used to implement argument indexes is given. The six data 
structures given in Figure 7.1 represent common data structure paradigms. To 
allow comparison, the worst case time complexities are given for the operations 
used by Starlog programs. 

For a detailed discussion about these data structures see Appendix B. Al
though there are many other relevant data structure implementations - and in 
future releases of the compiler more will appear - for now these six data struc
tures are all that are necessary to test the concept of automatic data structure 

153 



Data Structure look scan insert delete 
.. 

minimum 
Empty Data Structure No operations are valid for the Empty Data Structure 
Unsorted List O(N) O(N) O(N) O(N) O(N) 
Sorted List O(N) O(N) O(N) O(N) 0(1) 
Balanced Tree O(logN) O(NlogN) O(logN) O(logN) O(logN) 
Hash Table* 0(1) O(N) 0(1) 0(1) O(N) 
Flexible Array 0(1) O(M) 0(1) 0(1) O(M) .. 
* Time complexities for the Hash Table assume a perfect hashmg function and a 

constant sized table. 

N is the number of elements stored in the data structure. 
M is the difference between the maximum and minimum integers represented in the 

Flexible Array. 

Table 7.1: Available data structure implementations and a summary of their 
time complexities. 

selection. 
In general the chosen data structures provide robustness and predictable 

complexities rather than striving for optimal efficiency in a few cases. For ex
ample, it is well known that searching a regular binary tree has an O(logN) 
complexity when the data set is randomly distributed but the complexity be
comes O(N) when the data is sorted. Yet a balanced binary tree will have 
similar complexities irrespective of the data set. Therefore our binary tree im
plementation performs balancing. 

An important requirement of the data structures is that no duplicate ele
ments are stored. This is because Starlog's index structures, like discrimination 
trees, need to combine equal terms to optimise the term retrieval process. To 
ensure duplicate values are not introduced, data structures perform additional 
tests during insert operations. Although in some cases (such as the unsorted 
list) the duplicate checking requirement adds a significant overhead, for most 
data structures it can be achieved by adding lightweight equality checks to the 
insert operations. Optimised versions of insert operations could be implemented 
which do not perform a duplicate check. The conditions for using these opti
mised insert operations are outlined in Chapter 8 in the future work section. 

Although examples of these and other data structures appear in the Java 
standard libraries, these existing implementations were not used because stan
dard implementations do not have all the functionality required for argument 
indexes. For example, to ensure duplicates are not added during an insert of
ten requires an additional search that, in general, would double the operation's 
complexity. Also the methods to find the minimum element do not exist for all 
standard data structures. Another problem with data structures from standard 
libraries is that they are often too general at the cost of efficiency. Standard 
data structures store objects of any type and incur overhead for methods that 
are unnecessary for an argument index. The data structure implementations 
described here were constructed from the ground up with the goal of efficiently 
indexing arguments. As a result the implementations are lean and have known 
and predictable complexities. 

154 

empty 

0(1) 
0(1) 
0(1) 
0(1) 

O(M) 



7.2 Problems with Generic Data Structures and 
Manual Data Structure Selection 

High-level applications (including deductive databases) often avoid data struc
ture selection by using generic data structures to store run time data. For 
example, both standard Prolog and XSB use hash tables to index all predicates 
[84, 96]. The CORAL deductive database uses hash tables for all in-memory 
relations and B-trees for persistent relations [89]. 

Although these data structures scale well for large data sets, they are often 
less efficient than more specialised implementations. To illustrate, the use of 
a hash table is unnecessarily complex if the data set contains only a few ele
ments. Usually the inefficiency of generic data structures for small data sets is 
not a great concern since programs that generate small data sets are usually 
sufficiently efficient. However this is not true for Starlog's nested index struc
tures where, although each argument index may only hold a few elements, there 
can be a many instances of an argument index. Because using generic data 
structures in Starlog index structures can result in very inefficient programs, 
specialised data structures are preferable. 

In low-level programming languages it is always possible for programmers 
to specify the data structures used to store run time data. This is a good idea 
because programmers usually have an intuition about the data stored in low
level programs and can make informed decisions that an automated system may 
not. For example, a programmer will know from their program specification 
that the size of a data set will remain unchanged after a quicksort has been 
applied. However for a compiler to infer this same property from the quicksort's 
source code requires proof by induction. Because compilers are not yet capable 
of proving such properties an automated selection technique might assume a 
dynamic structure is necessary. This selection may be inferior to that made by 
the programmer who will know a structure with a static size is sufficient. 

However as languages become more abstract the programmer is less likely to 
know details of their program's run time data. This is especially true for declar
ative languages where programmers describe a program specification [49] and 
are not required to understand the execution model in order to produce correct 
programs [78]. (A current problem with Prolog is that programmers must be 
aware of the indexes and instantiation patterns when constructing a query to 
generate an efficient program [96, 22].) Furthermore, applications which rep
resent data as relations deliberately hide the underlying implementations from 
users. As a result, programmers find that declarative programs are easy to 
write, yet hard to optimise. 

Another factor is that human error can contribute to a poor selection of 
data structures. Programming languages often provide abstract data structures 
either built-in to the language (e.g. lists in Lisp) or as external modules (e.g. 
Java's Collection classes). When selecting a predefined data structure the pro
grammer is usually unaware of the specifics of the implementation and so may 
be surprised by its performance, or lack thereof. Although it is prudent for pro
grammers to be familiar with the implementations of any data structures that 
they use, it is often impractical and instead programmers rely on documentation 
which may be insufficient to assess run time performance. 

The index structures used by Starlog programs compound the problems of 

155 



manual data structure selection. Each argument index in a Starlog index struc
ture holds only the argument values of tuples given the previously indexed 
arguments. For example, if predicate fib(X, Y) holds elements in the Fibonacci 
series where Y is the Fibonacci value and X is its index in the series, given a 
value of X there will be at most one Y value. It is more difficult for programmers 
to predict the properties of an argument's data set relative to those arguments 
already indexed than properties of the argument's data set itself. Also, the 
issue of manual data structure selection is complicated because the order that 
arguments are indexed is decided by the compiler (see Chapter 3). 

Above all, automatic data structure selection is in keeping with the philos
ophy of declarative programming, where programmers are abstracted from the 
underlying mechanics of their programs and instead are only concerned with its 
logic. 

7.3 Automatic Selection 

An alternative approach to generic data structures and manual selection is to 
allow the compiler to select the data structures. We present five techniques for 
automatically selecting data structures. 

The efficiency of a data structure in a particular situation depends on two 
factors: (1) how the data structure is used (i.e. the operations performed on it) 
and (2) what is stored (i.e. the characteristics of the data set). For example, an 
unsorted list would seem a very inefficient choice for most situations, however, 
if the data set is very small, or if the only operations performed on it are scans, 
then the unsorted list is the best choice. For now we assume that (2), details 
about the data, can only be accurately determined by running the program. 

How a data structure is used can be predicted from a program's source code. 
SDSL programs contain all the operations that can be performed on argument 
indexes. We introduce two techniques that analyse an SDSL program and draw 
conclusions about the operations performed at run time. These two techniques 
make different assumptions about the frequency of operations appearing in a 
programs and the characteristics of the data. 

In general, to select more efficient data structures it is necessary to have 
more information about the run time characteristics of the program. We have 
developed two data structure selection techniques that execute the program and 
record statistics. The first technique uses a single program run to collect the 
number of operations performed as well as details about the data sets stored 
in each argument index. This data is entered into a model which computes 
the best data structure for each index. The second technique records multiple 
execution times of the program using different combinations of data structures 
and applies regression analysis. The regression analysis calculates how each data 
structure contributes to the total complexity and the data structures resulting 
in the lowest predicted run time are selected. 

A different approach to automatic data structure selection is to delay the 
selection process until run time and use actual properties of the program rather 
than estimates or averages. We present a data structure which is capable of 
analysing its performance and changing its underlying implementation on the 
fly to improve efficiency. 

From this point onward, efficiency only refers to the time complexity of 

156 



programs. This is the priority for programs which do not require prohibitive 
amounts of memory to function. Chapter 8 discusses modifications to the data 
structure selection techniques to minimise the memory usage of programs. 

Each of the data structure selection techniques is discussed over the next few 
sections. The data structure selection techniques are applied to seven example 
programs in Appendix C to compare their performance in realistic applications. 
After analysing the performance of each selection technique on each example 
program we evaluate each selection technique in the context of Starlog pro
grams. The machines used during all the experiments in this chapter were AMD 
Athlon(TM) XP 1600+ with 256MB of main memory and 256 KB of cache. 
These were running Linux version 2.4.17 and use the Java compiler from the 
Java(TM) 2 SDK, Standard Edition Version 1.3.1 and the Java HotSpot(TM) 
Client VM (build 1.3.1). 

7.3.1 Static Selection Techniques 

Static data structure selection is the process of choosing data structures using 
only the program's source code as a guide. In other words, the program is not 
executed to collect run time performance information. 

Set-Based Approach 

The first static selection technique analyses a program's SDSL code to determine 
the set of instructions performed on an argument index. This set of instructions 
is mapped to what is considered the most appropriate data structure. The 
advantage of this approach is that the analysis required is very simple. 

The data structures associated with each set of instructions were chosen 
after analysis of each data structure's performance using general assumptions 
about an instruction's frequency and what constitutes a typical data set from 
a Starlog program. The general assumptions were based on data sets sampled 
from previous Starlog programs, experience with implementations of Starlog 
programs, and knowledge of each data structure's implementation. 

Table 7.2 gives the chosen mapping from a set of instructions to a data 
structure. Notice that all valid sets must contain an insert operation and at least 
one "read" type instruction (look, scan or minimum). Any other combination 
of instructions is assigned an empty data structure since an index that never 
has an item added or an index whose data is never examined is redundant. 

The flexible array data structure is absent from this list. This is because the 
complexity of some operations depends on the maximum and minimum elements 
in the array. Flexible arrays are not used because these values are not estimated 
by this selection strategy. 

This selection technique is the closest to that implemented in the SETL 
compiler (see [9, 97, 98]) in that only the set of instructions performed on an 
index affects the choice. However the technique given here is considerably sim
pler than that used for SETL since the effect of assigning each data structure 
does not have to be propagated throughout the program. Instead, the set-based 
data structure selection technique performs a global analysis which takes all 
instructions in the program into account before choosing data structures. 

Due to the very general assumptions made by this strategy, the data struc
tures selected for a program are not expected to be optimal. Indeed the main 

157 



Set of Instructions Selected Data Structure 
[insert, look] Hash Table 
[insert, look, empty] Hash Table 
[insert, look, delete] Hash Table 
[insert, look, delete, empty] Sorted List 
[insert, minimum] Sorted List 
[insert, minimum, empty] Sorted List 
[insert, minimum, delete] Sorted List 
[insert, minimum, delete, empty] Sorted List 
[insert, scan] Unsorted List 
[insert, scan, empty] Unsorted List 
[insert, scan, delete] Unsorted List 
[insert, scan, delete, empty] Unsorted List 
[insert, look, scan] Hash Table 
[insert, look, scan, empty] Hash Table 
[insert, look, scan, delete] Hash Table 
[insert, look, scan, delete, empty] Hash Table 
[insert, look, minimum] Balanced Tree 
[insert, look, minimum, empty] Balanced Tree 
[insert, look, minimum, delete] Sorted List 
[insert, look, minimum, delete, empty] Sorted List 
[insert, scan, minimum] Sorted List 
[insert, scan, minimum, empty] Sorted List 
[insert, scan, minimum, delete] Sorted List 
[insert, scan, minimum, delete, empty] Sorted List 
[insert, look, scan, minimum] Balanced Tree 
[insert, look, scan, minimum, empty] Balanced Tree 
[insert, look, scan, minimum, delete] Balanced Tree 
[insert, look, scan, minimum, delete, empty] Balanced Tree 

Other Empty Data Structure 

Table 7.2: Sets of instructions and data structures. 

158 



advantage of this approach is the simple analysis required. 

Static Cost Analysis 

A more sophisticated approach to static data structure selection observes the 
number of occurrences of each instruction type in an SDSL program. The 
number of occurrences in the source code may be an indication of the frequency 
that operations are performed at run time. For example, if there are two look 
instructions and only one scan instruction in a program then a conclusion may 
be drawn that look operations are performed more often than scans. Of course, 
due to non-deterministic loops in the program, the number of occurrences of 
instructions can be unrelated to the actual number of operations performed. 

The infinite combinations of instructions that can exist in a program means 
that mapping every case to a data structure is impossible. Instead we use a 
quantitive approach where the time cost of each data structure in each argu
ment index is estimated and the data structure with the lowest estimated cost 
is selected. To estimate the time cost, each type of operation has been bench
marked using what is considered typical data. The assumptions made during 
these benchmarks are as follows. 

• All data structures hold an average of 100 elements. 

• The data set consists of randomly distributed integers between O and 200. 

• All look operations have a 50% success rate. 

• All insert operations have a 0% duplicate rate. 

In retrospect, the last assumption is particularly inaccurate for most programs, 
however it was made before the significance of duplicated inserts was known. 
Whether any of these assumptions approximate the behaviour of typical Starlog 
programs will be seen in the next section. 

Based on these assumptions, Table 7.3 gives the time estimates for each 
operation in each data structure. These values are dependent on the architecture 
of the subject machine and, for improved accuracy, should be recalculated when 
this selection technique is migrated to different machines. However, in general, 
the relationships between time estimates should remain relatively unchanged on 
most machines. 

The operation times in Table 7.3 were calculated using Java's 
System. currentTimeMillis () built-in method, where precision was improved 
by performing each operation multiple times (between 10,000 and 1,000,000 
times depending on the execution time of the operation). Care was taken to 
subtract any loop overhead required for multiple operations and the time re
quired to access any input data. The times for operations on the Empty Data 
Structure are set to infinity so that this data structure is not chosen if there are 
any operations performed on it. 

Selecting the data structure with the lowest cost estimate is outlined in Fig
ure 7 .2. To estimate the total time cost of using a data structure for an argument 
index, the number of occurrences of each instruction is multiplied by the esti
mated cost of the operation it performs. The sum of all the individual operation 
costs is the total cost estimate of the data structure. The data structure with 

159 



Data Structure: look scan insert delete minimum empty 
Empty Data Structure 00 00 00 00 00 00 

Flexible Array 0.194 105.0 0.692 0.345 0.540 0.310 
Unsorted List 7.09 38.5 9.84 5.58 17.6 0.0732 

Sorted List 6.85 38.6 10.6 8.53 0.268 0.0727 
Balanced Tree 1.03 264.0 6.18 11.9 0.674 0.0733 

Hash Table 1.10 78.0 4.16 1.50 36.7 0.270 
Cost values are microseconds (µs). 

Table 7.3: Instruction costs used for static cost analysis. 

selected(index) = argminweDS totalCost(index,w) 

totalCost(index,ds) = I:oEOps (occurrences(index,o) •cost(ds,o)) 

Let DS be the set of all available data structures. 
Let Ops be the set of all data structure operations. 
Let occurrences(A, B) denote the number of occurrences of instruction of 

type B operating on index A in the program's source. 
Let cost(A, B) denote the average time taken to perform operation Bon data 

structure A. (This is equivalent to a table lookup in Table 7.3.) 

Figure 7.2: Formula for selecting a data structure using static cost analysis. 

the minimum cost estimate is selected to implement the argument index. In the 
event that two or more data structures have the same cost estimate the first 
implementation is chosen as listed in Table 7.3. This ensures the empty data 
structure is used when appropriate. 

To improve this selection strategy it was speculated that the number of 
occurrences of an operations could be modified according to the number of non
deterministic loops the operation was embedded in. That is, more emphasis 
could be placed on instructions that are inside loops than those that are not. The 
number of occurrences of each instruction in the program is equivalent to each 
non-deterministic loop succeeding exactly once. Depending on the data set, this 
would be an under-estimate in some cases and an over-estimate for others (when 
the loop never succeeds or is never entered). By making the assumption that all 
non-deterministic loops would iterate either 2, 5 or 10 times, the results were 
promising for the few programs for which this was true. However the programs 
that had loops which iterate fewer times than these estimates made increasingly 
poor selections. For this reason and because emphasising instructions performed 
within non-deterministic loops is actually a form of data set prediction (which 
our static selection strategies do not attempt), it has not been pursued further. 

Static cost analysis is designed to make a better selection than set-based 
selection by inferring more information from the program. However it requires 
modelling the time costs of operations using very general assumptions about the 
data set. Unlike set-based selection which is designed to make a conservative 
selection, the effectiveness of this approach is dependent on how well the cost 
model fits the actual properties of the program. 

160 



7.3.2 Dynamic Selection Techniques 

Without execution it is difficult to infer the run time properties of a program. 
Therefore a different approach to automatic data structure selection is to execute 
the program and record details about its operation to aid the selection process. 
By observing the properties of an executing program, more accurate measures of 
the effect and significance of each operation can be found. Moreover, properties 
of the data set can be accurately measured to improve the selection. 

This approach is not without problems. The first is that it requires the 
program to terminate in a reasonable time. Without the program terminating 
the selection process can not continue. To avoid problems with non-terminating 
programs (or programs with very long execution times) artificial termination 
conditions can be added or termination can be forced so that data structure 
selection can proceed. However, changing the termination condition of a pro
gram may alter the properties of a program - now it may not be considered a 
typical run since the properties of the program and its data sets may change 
dramatically without this termination. 

A second disadvantage of dynamic selection techniques is that to execute 
a program adds additional overhead to the compilation process. For the re
gression based selection technique that requires multiple runs, the overhead can 
be excessive for program development. Unfortunately, this can not be avoided 
since decreasing the run time of a program alters the run time properties and 
reduces the precision of program timing. 

One major difference from the static analysis techniques is that the dynamic 
selections are specific to the data sets used during the trial executions. For 
programs which change their data sets from run to run (such as those that take 
input from an external source) the data structure selection may be based on non
typical data and consequently may produce inefficient programs. Alternatively, 
tuning programs for particular data set may be considered as an advantage since 
it can select more efficient data structures when the trial data sets are typical 
for the program. 

We now introduce two different techniques for dynamic data structure selec
tion. 

Cost Analysis using a Single Run 

To accurately estimate the time cost of using a data structure for an argument 
index the run time properties of the argument index are needed. Properties 
such as the number and type of operations performed and various measures of 
the data sets held in each argument index can help estimate the cost. 

Values collected at run time are entered into formulas which model the time 
complexity of each operation. To approximate the time complexity of a data 
structure's operations, each operation has been executed many thousands of 
times in isolation1 for a variety of data sets and operation properties. The 
formulas for each operation were inferred by varying a number of parameters 
and applying regression analysis. The parameters necessary to estimate the 
time complexity of operations are: 

1 Programs generating statistics on data structure operation times were given large volumes 
of memory (150MB) upon initialisation to avoid excessive overhead from memory allocation 
and run time garbage collection. Code was added that ensured no other processes were active 
during the experiments to avoid skewed results. 

161 



• the average size of the data sets (used for the flexible array, both lists, the 
balanced tree and the hash table) 

• the average log2 of the size of the data sets (used for the balanced tree) 

• the average of the maximum and minimum values in the data sets (used 
for the flexible array) 

• the look operation's success rate 

• the insert operation's duplicate rate 

After experimenting with different data sets, significant differences in effi
ciency became apparent when storing ordered data compared with randomly 
distributed data. As a consequence, detecting when an index stores ordered 
data is necessary for the model to be accurate. Therefore the two additional 
parameters used are: 

• the proportion of inserts adding a maximum value 

• the proportion of inserts adding a minimum value 

Special case formulas are required to estimate the costs associated with or
dered data sets. The proportion that each formula (i.e. that for ascending data, 
descending data and random data) contributes to the total cost is given by the 
proportion of each insert type (i.e. maximum value inserts, minimum value 
inserts and intermediate value inserts). 

The model which estimates time costs for random data sets is given in Table 
7.4. Tables 7.5 and 7.6 give any new formulas necessary to model the costs of 
ascending and descending data sets. For ascending and descending data sets, 
delete operations were timed removing the minimum and maximum elements in 
the set, respectively. This is the typical behaviour of triggered programs. 

Some of the cost formulas given in Table 7.4 may strike the reader as peculiar 
and may require explanation. The time to scan through all values in a sorted list 
is consistently longer than for an unsorted list despite the code being identical 
for both. This is attributed to the caching effect (described in Appendix B) 
that favours the unsorted list structure. Another feature of the model is that 
most data structures are more efficient performing look operations that succeed 
rather than a failing operation. This is due to the additional (sometimes exhaus
tive) searching required. Similarly, the time for each insert decreases as more 
duplicate values are inserted due to the additional object creation that occurs 
when a new value is inserted. The max function (distinct from the Max variable 
used in Tables 7.4, 7.5 and 7.6) is necessary to model the initial capacities of 
hash tables and flexible arrays. 

The empty data structure is not included in Table 7.4. The empty data 
structure is used only when no operations (or no useful operations) are per
formed on an index. The number and type of the operations gathered from 
a program run is not a conclusive indication of all operations possible for an 
index. In some cases the measured program run may not have exercised all 
the operation types in the program. Selecting an empty data structure for an 
argument index where valid data is stored will compromise the correctness of 
the program. To avoid this, static set-based data structure selection is used 

162 



Data Structure: I look scan 

Flexible Array 0.19 0.10+0.60N +0.21 •max(IO, Max, (Max- Min)) 
Unsorted List 0.24 + (0.089 - 0.039RJN 0.50 + 0.38N 
Sorted List 0.17+0.067N 0.54 + 0.38N 
Balanced Tree 0.12 + (0.15 - 0.023R)(log2N) 32 + 0.36N(log2NJ 
Hash Table 0.8 + (0.0021 - 0.0021R)N 8.6 + 0.78 • max(75, N) 

Data Structure: I delete minimum 

Flexible Array 0.35 
Unsorted List 0.35 + 0.054N 
Sorted List 0.52 + 0.078N 
Balanced Tree 5.5 + 0.97(1og2N) 
Hash Table 1.7 

0.28 + 0.13.U.,lU,.MGZ,~.MQZ ·.Min}} 

0.40 + 0.17N 
0.27 
0.31 + 0.056(1og2N) 
5.9 + 0.36N 

Cost values are microseconds (µs ). 
N represents the number of elements stored in the data structure. 

Max is the maximum value stored in the data structure. 
Min is the minimum value stored in the data structure. 

R is the lookup success rate between O and 1 
D is the duplicate insert rate between O and 1 

insert 

0.80 - 0.53D 
1.2 + (0.044 - 0.022DJN 
1.2 + 0.047N 
2.0 - 1.6D + (0.55 - 0.070D)llog2NJ 
1.0 + (0.41 - 0.41Dlllog2Nl 

isEmpty . -
O.l 4 + 0.093 au.11u,Maz, ._';'oz ·M1n 

0.083 
0.083 
0.083 
0.28 

mu(A, B, ... ) is a function which selects the maximum value of its arguments. 

The machines used for measurements were AMO Athlon(TM) XP 1600+ with 256MB of main memory and 256 KB of cache, running Linux version 2.4.17 with the Java 
.... compiler from Java(TM) 2 SOK, Standard Edition Version 1.3.1 and the Java HotSpot{TM) Client VM {build 1.3.1). 
0, 
w 

Table 7.4: Instruction cost formula using random data for cost analysis after a single run. 

Data Structure: I insert delete 

Flexible Array 0.80 - 0.45D -
Unsorted List 1.2 - 0.93D + 0.044N 0.35 
Sorted List 1.1 - 0.85D 0.35 + 0.16N 
Balanced Tree 2.0 - 1.6D + (0.82 - 0.15D)llog2NJ 4.3 + 0.85(1og2NJ 

Table 7.5: Amendments to instruction cost formula in Table 7.4 for ascending data sets. 

! Data Structure: I insert ~ete 
Flexible Array 0.67-0.34D -
Unsorted List 1.2 - 0.93D + 0.044N 0.35 
Sorted List I. I - 0.85D + 0.094N 0.35 
Balanced Tree 2.0 - 1.6D + (0.82 - 0.15D)(log2N) 4.3 + 0.85(1og2N) 

Table 7.6: Amendments to instruction cost formula in Table 7.4 for descending data sets. 



to assign empty data structures to such argument indexes since this approach 
considers all the operations in the program's source code. Run time statistics 
are used to select data structures for the remaining indexes. 

With the time cost formula of each operation established, data is collected 
and entered into the model. To gather run time statistics a new version of 
the program is produced by the SDSL compiler. The new program counts 
the number of operations of each type performed on an argument index by 
incrementing an integer variable immediately before the operation. In addition, 
a count is made of the number of successful look operations. The number of 
inserts that attempt to add duplicate, maximum and minimum values to an 
index are also recorded by searching the index before the insert operation is 
performed. (Note that this additional search does not affect the program's 
operation count.) 

The new version of the program also examines the program's argument in
dexes regularly {before each new trigger tuple is extracted from the ~ set) to 
determine properties of the data sets. Using special purpose query functions 
that can recursively traverse the index structure, a record of the number of 
values (N), the log of the number of values (log2N), and the maximum (Max) 
and minimum (Min) values are determined for each index. Due to nesting of 
argument indexes within the index structure, many instances of an argument 
index can exist at one time. In these cases these values are averaged over all 
instances. Finally, when the program terminates, the average of each measure
ment is calculated. An alternative strategy could examine each index after an 
operation is performed on it. This alternative strategy may produce more ac
curate statistics from the indexes but has not been pursued further due to time 
constraints. 

The statistics collected at run time are entered into the models in Tables 
7.4, 7.5 and 7.6. The time cost of each operation is found using the argument 
index's average N, log2N, Max, Min, R {look operation's success rate) and 
D (insert operation's duplicate rate) values. Where applicable, the costs of 
random, ascending and descending data sets are combined in the proportion 
that each type of insert occurs. The cost of each operation is multiplied by the 
number of times the operation is actually performed. The total cost estimate of 
a data structure in a particular argument index is found by summing the cost 
estimates of all its operations. Finally, when the time cost has been estimated for 
all data structures, the data structure with the lowest estimate is selected. This 
process is applied to all argument indexes independently. Figure 7 .3 formalises 
this process. 

In theory, this selection technique is capable of accurately selecting efficient 
data structures since the model takes into account many factors of an executing 
program. However it is possible to select inefficient data structures if the time 
cost formulas given by Tables 7.4, 7.5 and 7.6 do not represent the run time 
behaviour accurately. Moreover, if the N, log2N, Max and Min values collected 
at run time do not adequately represent each index then data structure selection 
may be mislead. This can occur when there are multiple instances of an index, 
each holding very different data sets, whose individual run time properties are 
lost through averaging. 

The time cost formula given in Tables 7.4, 7.5 and 7.6 are machine specific. 
To maintain accuracy when migrating this data structure selection technique 
to other platforms additional benchmarks and analysis are required to discover 

164 



selected(index) = argminwevs totalCost(index, w) 

totalCost(index, ds) = EoeOps (per formed(index, o) * cost(ds, o, index)) 

cost(ds, o, index) = ascendinglnserts(index) * ascendingCost(ds, o, index) 
+descendinglnserts(index) * descendingCost(ds, o, index) 
+randomlnserts(index) * randomCost(ds, o, index) 

Let DS be the set of all available data structures. 
Let Ops be the set of all data structure operations. 
Let per formed(A, B) denote the number of B operations performed 

on index A at run time. 
Let ascendinglnserts(A), descendinglnserts(A) and randomlnserts(A) be 

the proportion of inserts that add a maximum, minimum 
and intermediate values to index A, respectively. 

Let ascendingCost(A, B, C),descendingCost(A, B, C) and randomCost(A, B, C) 
be the time cost of performing operation B on data 
structure A, using parameters from index C, from the 
ascending, descending and random data set models. 
(This is equivalent to table lookups on Tables 7.4, 7.5 
and 7.6 where the equations are solved by substituting 
the parameters of index C). 

Figure 7.3: Formula for selecting a data structure using data gathered from a 
single run. 

each formula. However, depending on the chosen platform, the existing formulas 
could be used and may make a reasonable choice of data structures. Currently 
there is no frame of reference for such migration and clearly more research is 
required to determine how universal the time cost formulas are. 

Data structure selection using cost analysis has been suggested in [70] for the 
programming language SAIL. The SAIL compiler uses a time cost model similar 
to that in Figure 7.4, albeit for a different set of instructions. Sample executions 
are used to determine the frequency of each operation, however the parameters 
of the data sets are found by interrogating the user. Although no explanation is 
given, the motivation for this interaction may be that recording the properties 
of actual data sets may yield misleading results, and that users are more likely 
to know the parameters of each data set in the SAIL programs. The latter is 
not true for Starlog programs because the nesting of argument indexes change 
the parameters of an argument's data sets. The system described in [70] does 
not extend the data structure model for ordered data sets - perhaps because 
these do not often occur or are not detected in SAIL programs. 

Regression Analysis 

An alternative to estimating how data structures contribute to the total run 
time is to measure the effect of each data structure using different runs. By 
recording the run times of a program using different data structures and applying 
regression analysis, the effect of a data structure used for an argument index 
can be inferred. In general, the more runs performed the more accurate the 
measurement is. 

165 



To measure the run time of a compiled program a new version of the program 
is produced by the SDSL compiler. The new version starts a timer shortly after 
initialisation and stops it immediately before termination2 • The run times and 
data structures used in each argument index are output to a predefined file. 

To determine the contribution of each data structure to the total run time 
the data structures are varied. Depending on the chosen analysis scheme, the 
data structures implementing each argument index are either randomly chosen, 
or one argument index is varied while the others are left constant. The process 
of assigning data structures to argument indexes and measuring the run times 
that result is repeated until sufficient data is gathered. Empty data structures 
are not assigned to argument indexes in this way as attempting to hold data 
in these affects the correctness of the program. Instead argument indexes that 
do not perform any useful combination of instructions are discovered using set
based data structure selection and implemented by empty data structures. 

As shown in Figure 7 .4, each run of the program produces a run time together 
with a description of the data structures used for each argument index. In this 
figure and throughout this chapter the abbreviations FA is used for a flexible 
array, UL for an unsorted list, SL for a sorted list, BT for a balanced tree and 
HT for a hash table. 

To allow the contribution of each data structure to be modelled by a linear 
formula, each data structure in each argument index is represented by a numeric 
variable where '1' indicates the use of the data structure and 'O' when the data 
structure is not used. However, because each of these variables is a linear 
combination of the others (e.g. FA = 1-UL-SL-BT-HT), one variable can be 
removed without loss of information. Consequently some variable representing 
a data structure in each argument index is always set to 'O' in every record 
- even when the data structure is used. The data structure whose variable is 
consistently 'O' is the reference that all other data structures will be measured 
against. The use of reference data structures makes the linear model more 
robust since it does not have co-linear attributes, and means that fewer records 
are required to infer coefficients. 

To demonstrate regression analysis, the two argument indexes given in Fig
ure 7.4 use the flexible array as a reference and so this data structure is always 
represented with a 'O'. All variables representing the argument index's data 
structures are 'O' when the flexible array is used. 

When records such as those in Figure 7.4 are analysed using linear regression 
(where the run time is the subject), coefficients of each argument index's data 
structure variables are calculated. Each coefficient corresponds to the cost of 
using the associated data structure for the argument index. The times found 
from the coefficients are relative to the reference data structure where a negative 
coefficient indicates the associated data structure is faster than the reference 
data structure. For example, when linear regression is applied to the records in 
Figure 7.4 the result is the following equation. 
time = O • lndaxO..FA - 400 • lndaxO_UL - 1900 • lndaxO..SL - 800 • lndaxO..BT - 800 • lndaxO.JIT 

+o • lndaxl..FA + 100 • lndaxl..lJL - 400 • lnda:d..SL + 1000 • lndaxl.JIT - 600 • lndaxl.JIT 

+3400 

To minimise the run time generated from this equation, the data structure with 
the lowest coefficient is selected for each argument index. In this example, the 

2 It is necessary to record times from inside the program as the initialisation times of Java 
programs vary, making external timing difficult. 

166 



Argument Index 0 Argument Index 1 
FA UL SL BT HT FA UL SL BT HT RunTime 
0 1 0 0 0 0 0 0 1 0 4000ms 
0 0 1 0 0 0 0 0 1 0 2500ms 
0 1 0 0 0 0 0 0 0 0 3000ms 
0 0 0 0 1 0 0 1 0 0 2200ms 
0 0 0 0 0 0 1 0 0 0 3500ms 
0 0 0 1 0 0 0 0 0 1 2000ms 
0 0 0 0 0 0 0 1 0 0 3000ms 
0 0 0 1 0 0 0 0 0 0 2600ms 
0 0 0 0 1 0 0 0 0 1 2000ms 
0 0 1 0 0 0 1 0 0 0 1600ms 

Figure 7.4: Example records used in regression analysis for two indexes. 

most efficient data structure for argument index O is the sorted list (with a 
coefficient of -1900) and argument index 1 is best implemented by a hash table 
(coefficient of -600). Notice that the selected combination of data structures is 
not in the original sample. 

A criticism of this approach is that linear regression assumes the input vari
ables are independent. In spite of using a reference data structure, the binary 
variables representing the use of each data structure in each argument index are 
slightly correlated with the other variables from the argument index. More pre
cisely, when one data structure variable is set to '1' all other variables relevant 
to the argument index are set to 'O'. After analysis it was found that any two 
data structure variables have a R-squared value of less than 0.0625 rather than 
0.0 that results from completely independent variables. Although correlation 
does affect the accuracy of the linear regression models produced, such a low 
value is considered insignificant for our purposes. Moreover, we will see that 
the linear models generated are accurate in practice. 

To select efficient data structures for the argument indexes of a program 
requires executing the program multiple times. In general, the more run times 
collected, the more accurate the cost estimates will be. Of course, executing 
the program multiple times can be very inconvenient for the programmer so it 
is often useful to know the minimum number of times a program should be run 
in order to make a reasonable selection. An important consideration is that 
the number of variables increases with the number of argument indexes in a 
program. For the regression analysis to distinguish the contribution of each 
variable, the number of records must be more than the number of independent 
variables ( other sources claim that the number of records should be at least ten 
times the number of independent variables to generate accurate results but here 
only the minimum number of records is sought). A record produced from a trial 
execution contains DS•lndexes variables (excluding the run time) where DS is 
the number of data structures and Indexes is the number of argument indexes 
where this data structure selection is performed (this excludes those argument 
indexes which are assigned empty data structures). However variables associated 
with reference data structures are redundant since their values are always 'O'. 
Having a reference data structure for each argument index means that we can 

167 



reduce the minimum number of required records to ((DS-l)•lndexes)+l. This 
number of records is adequate when the data structures used in each run are 
carefully chosen so that the presence of each is equally represented. But when 
data structures are randomly selected it is recommended that more records are 
used. This is because equal representation of each data structure cannot be 
guaranteed when a random selection of data structures is made. From previous 
experience it is recommended that at least DS * Indexes records are generated 
when timing randomly selected data structures. 

The requirement of running a program multiple times during compilation 
has a number of disadvantages. The most obvious is the additional compile 
time which can make this selection technique impractical in many situations. 
However another disadvantage of regression analysis is that it requires each 
run of the program to be identical except for the data structures implementing 
each argument index. This technique becomes inaccurate when timing each 
run is imprecise (usually due to very short run times) or when other processes 
use resources in an inconsistent manner. Moreover, programs which contain 
random elements or programs which use other external elements that change 
over time are problematic. For example, a quick sort program which uses a 
random element for its pivot values, or whose data is generated externally may 
have different characteristics from run to run. To avoid such problems even more 
trial runs are necessary to find the average-case characteristics of the program. 

Programs that are most unsuitable for regression analysis are those which 
require user interaction. A program that needs users to interact with it will 
require the the same input for each run. To repeat this process a minimum of 
((DS - 1) *Indexes)+ 1 times is not only tedious but may be impossible - for 
example real-time games that rely on reflexes. To avoid this problem without 
changing the program's source code, external scripts might be used to mimic 
the actions of a user. 

Data structure selection using regression analysis also has many advantages. 
First, this approach scales well. If a rapid compile time is not essential then 
data structure selection can be improved using more program runs. If optimal 
data structures are desired then this approach can execute the program for all 
combinations of data structures (although this is seldom feasible for programs 
with more than a few argument indexes). Another advantage is that the re
gression analysis is automatically configured to the machine it is operating on. 
This is an attractive feature for Starlog which, when compiled to Java, is al
ready platform independent. Finally, this technique prioritises argument indexes 
where the choice of data structure makes the greatest difference to the total run 
time. Therefore, with only the minimum number of runs, the most efficient data 
structures are usually found for the most significant argument indexes. 

7.3.3 Data Structure Selection at Run Time 

In cases where selecting efficient data structures at compile time is difficult, it is 
possible to delay the choice until run time. Selecting data structures at run time 
simplifies the compilation process and can select more efficient data structures 
than compile time approaches when the run time properties inferred by the 
compiler are not accurate. However selecting data structures at run time incurs 
additional overhead such that the resulting program is unlikely to be optimal. 

To allow the choice of data structure to be delayed until run time, argument 

168 



indexes of a program are implemented by dynamic data structures that are capa
ble of changing their underlying implementation. The dynamic data structure is 
implemented as a 'wrapper' object whose data may be stored in a flexible array, 
unsorted list, sorted list, balanced tree or hash table. Initially dynamic data 
structures store data in an unsorted list however a more sophisticated approach 
could initialise these to an implementation selected by a compile time method. 
At run time, when the dynamic data structure detects its performance is sub
optimal, the underlying data structure is re-targeted for improved efficiency. To 
ensure data integrity when changing implementations, all elements stored in the 
original data structure are copied into the new data structure. 

To determine when the dynamic data structure's underlying implementa
tion is sub-optimal, statistics are collected. These statistics include the actual 
number of elements in the data set, the maximum and minimum elements in
serted, the number of each type of operation performed, the success rate of look 
operations and the duplicate rate of inserts. Using these statistics this tech
nique estimates the time costs of each data structure using formulas developed 
for single run cost analysis (for now only Table 7.4 is used because accurately 
calculating the cost of ordered data sets is considered too expensive). The cost 
estimates also take into account overhead incurred from copying existing data 
from one representation to another. The data structure with the lowest cost 
estimate is considered the most efficient. 

Run time overhead is incurred whenever the underlying data structure changes 
due to the reinsertion of data. However the process of recording and analysing 
statistics is another source of inefficiency. Whenever an operation is performed, 
at least one integer value is incremented so that the frequency of operations 
of each type is recorded. During insert and delete operations the number and 
properties of elements stored in the data structure are maintained. Further
more, many arithmetic operation are required to estimate the performance of 
each data structures using the run time statistics. 

Precautions are made during run time data structure selection to avoid 
thrashing. Time cost estimates for all data structures are recalculated only 
when the number of elements doubles or halves. This reduces the possibility of 
the dynamic data structure oscillating between two or more implementations, 
and reduces the frequency of implementation changes as the number of elements 
to be reinserted increases. 

Deciding when run time data structure selection should be used instead of 
a compile time approach is difficult. Run time selection is useful when the run 
time properties of an argument index are either unknown, can not be inferred 
or can not be adequately represented at compile time. For example, if 50 is 
the average number of elements in an argument index measured at run time, 
this value will not accurately represent a data set when one instance of the 
argument index holds 3 elements on average while another holds 97. However 
to detect such inadequacies is difficult. Static data structure selection techniques 
especially have no means to measure the accuracy of the assumptions made at 
compile time. This means that it is best for the programmer to decide when to 
use run time data structure selection. 

Due to the increased overhead associated with run time data structure se
lection, this technique is considered a secondary approach to compile time se
lection. This means it should be employed when the programmer considers the 
data structure selections made at compile time to be inefficient or too specific 

169 



to the trial runs analysed by the dynamic selection techniques. 

7.4 Evaluation of Automatic Data Structure Se
lection 

In [80] it has been stated that asymptotic worst-case or average-case analysis 
of indexing techniques used when theorem proving is "not a very realistic en
terprise". Based on a survey of indexing techniques they go on to say "the 
only reasonable method is to apply a statistical analysis of the empirical be
haviour of the different techniques on benchmarks corresponding to real runs of 
real systems on real problems" 3 • Following this recommendation, the various 
data structure selection techniques used have been evaluated using real Starlog 
programs. 

Appendix C gives seven example programs and the results obtained by the 
data structure selection techniques described in this chapter. These are the 
Hamming number program, prime number program, shortest path, Pascal's tri
angle, transitive closure, game of life, and the N-queens program. The seven 
example programs in Appendix C are sufficient to evaluate the automatic data 
structure selection techniques. To begin with, the index structures vary in com
plexity from programs with only one argument index to complicated programs 
with 13 or more. In total, the data structure selection techniques are applied 
to 75 individual argument indexes. By examining the tables of data collected 
during runs of each program, the combinations of operations performed on in
dividual argument indexes are shown to be extremely diverse, as are the data 
sets held in each. By comparing the performance of the data structure selection 
techniques across all the example programs a number of conclusions are drawn. 

When all example programs in Appendix C are considered, the average run 
time resulting from set-based selection is 185% slower than the fastest observed 
run time. A normalised average has also been calculated as an alternative means 
of comparison. The normalised average is a measure of run times with respect 
to the best and worst run times produced for each experiment. Normalised 
average values are interpreted on a linear scale between 0% and 100% where 
0% is the fastest (best case) run time and 100% is the slowest (worst case) run 
time. When using set-based selection the normalised average is 6%. Set-based 
selection chose very inefficient data structures for the two shortest path pro
grams. The reason for these poor selections are partly caused by the set-based 
approach being unable to choose a flexible array - a data structure necessary 
for maximum efficiency in the shortest path programs. The effectiveness of this 
technique indicates that automatic data structure selection based only on the 
program source is feasible, and supports the results of experiments using the 
SETL compiler that are briefly discussed in [98]. 

Relatively speaking, static cost analysis frequently selected inefficient data 
structures. On average run times are 203% slower than the fastest run times. 
The normalised average indicates that static cost analysis produces programs 
with run times 22% along the scale between the fastest (0%) and slowest (100%) 
run times. The poor selections are the result of assumptions made by static cost 
analysis being inconsistent with the actual run time properties. For example, 

3However [80] also notes that one should not draw too many conclusions from such analysis. 

170 



the assumption that argument indexes hold around 100 elements is almost al
ways contradicted by the actual average number of elements. In particular, a 
disproportional number of argument indexes hold only one element at run time 
due to functional relationships between arguments. Also, assuming that a flexi
ble array will have a 50% density is almost always inaccurate. Generally, when 
data sets from Starlog programs are stored in an array they are either very dense 
( at or close to 100%) or very sparse {less than 10%) but infrequently in between. 
Without knowing the density of a data set, the efficiency of a flexible array can 
not be accurately estimated by this selection strategy. This problem is high
lighted by the Hamming number program where, by assuming 50% density, the 
flexible array selected by static cost analysis is actually the worst case. To avoid 
such inaccuracy the flexible array should not be assigned by static cost analysis. 
However this will result in using sub-optimal data structures when the flexible 
array actually is the most efficient. Because of the problems associated with 
accurately representing a typical data set, static cost analysis is not considered 
a useful technique for data structure selection. 

When a single run of a program is used to collect run time properties, in 
general, the resulting data structures selected are very efficient. The average run 
time resulting from this selection technique is 36% slower than the fastest run 
time. The normalised average is 5%. For the two programs where this technique 
selects relatively inefficient data structures (prime number and N-queens), the 
cost estimate model is inaccurate. Yet inaccuracy of the cost estimate model 
is inevitable because each formula (and each parameter entered into a formula) 
is only an approximation of the actual behaviour. To improve the reliability 
of data structure selection using this technique the time cost formulas could 
be improved (perhaps by using special case formulas when only one element is 
stored) or by taking more run time parameters into account (e.g. the variance 
of the data set). Alternatively the method by which run time parameters are 
computed could be refined. The results presented in this thesis would be of 
interest to researchers of the SAIL compiler which also uses a single run and 
cost analysis to select data structures. The more advanced properties of the 
cost models described in this chapter (such as the detection of ordered data 
sets and failure rates of instructions) could be incorporated into SAIL's data 
structure selection technique to improve accuracy. However the results of our 
experiments have shown that - even with many parameters - modelling the run 
time behaviour of data structures is difficult. 

Regression analysis consistently selected efficient data structures for all the 
example programs. When all regression results are considered the average run 
times are 39% slower than the fastest observed run times. The normalised aver
age for regression-based selections lies at 4% between the fastest and slowest run 
times. Unlike the other data structure selection techniques, regression analysis 
prioritises argument indexes which make the greatest contribution to the total 
run time. Consequently, less dominant indexes may be assigned arbitrary data 
structures when their contribution to the total run time is lost in the margin of 
error. As shown in Appendix C, to improve selection using regression requires 
analysing more combinations of data structures. Using specifically chosen com
binations of data structures has mixed results when compared with random 
combinations. For most example programs, analysing chosen combinations of 
data structures makes a better selection than when random combinations are 
analysed. This is impressive since there were far fewer chosen records than 

171 



randomly selected records. However, in other cases, when the measured run 
times have a significant margin of error, there are not enough specifically cho
sen records to make an accurate selection. To improve regression analysis, both 
chosen and random combinations of data structures should be used. By first 
measuring the run times of the chosen combinations and then adding records 
from random combinations, the chosen combinations quickly find an efficient 
selection of data structures while the random combinations should compensate 
for the margin of error. 

In all cases data structures selected at run time are not as efficient as those 
selected at compile time. This is evident from the example programs where the 
run times generated using dynamic data structures were seldom near optimal. 
Indeed, in half of the examples, data structure selection at run time produced 
the worst run times of any of the automatic selection techniques. However 
a trend apparent in these examples is that the performance of the dynamic 
data structure deteriorates as the complexity of the index structure increases. 
This is attributed to complex examples with more argument indexes having 
fewer elements in each argument index. Consequently the frequency that a data 
structure's performance is evaluated by the dynamic data structure is increased, 
resulting in additional overhead. It seems that evaluating performance when the 
number of elements doubles or halves is too frequent when there is a low number 
of elements. However further research to find the best conditions for run time 
data structure selection has not been attempted in this work. 

7.5 Conclusions 

The choice of data structures can greatly affect the efficiency of a program - in 
some of our example programs the run times varied by more than a factor of 
20 depending on the data structures. Rather than use a generic data structure 
which will often be sub-optimal, or rely on manual selection which is problematic 
for high-level languages, we allow the compiler to choose the most appropriate 
data structures. 

This chapter has discussed and evaluated a variety of techniques for auto
matic data structure selection. The first techniques presented are designed to 
select data structures during compilation of a program, and can be divided into 
two categories - those which requires the program to be executed (dynamic), 
and those which do not (static). By executing a program more information can 
be collected about its run time characteristics and, in general, more efficient 
data structures are likely to be selected. A key difference between static and 
dynamic selection techniques is that the data structures chosen using dynamic 
techniques will be specifically tuned for the program's trial runs. 

For comparison, the possibility of delaying data structure selection until run 
time has been investigated. Although this approach is useful in some situations 
(e.g. when the data sets held in an index vary greatly) the overhead of choosing 
data structures at run time had a significant impact on performance. It is 
believed that alternative strategies for data structure selection at run time may 
reduce this overhead, however it will never be removed completely. 

The compile time data structure selection techniques presented here are 
effective for the example Starlog programs. None of the selection techniques 
consistently chose inefficient data structures. Based on the evaluation in this 

172 



chapter a number of recommendations can be made regarding data structure 
selection. The most accurate, consistent and robust technique of those evaluated 
is regression analysis - it seems there is no substitute to running a program to 
determine its bottlenecks. Although this technique does not always choose the 
optimal data structure for every index, it always prioritises those indexes that 
most affect the run time. Regression analysis is also scales well, allowing users 
to decide the degree of optimisation they require for their programs. For these 
reasons regression analysis is the primary technique choosen for selecting data 
structures for Starlog programs. 

The greatest disadvantage of regression analysis is that it requires multiple 
program runs and therefore is unsuitable in situations where a fast compile time 
is required. A fast compile time is particularly desirable when programs are be
ing developed where the efficiency of a program is secondary to its correctness. 
It is recommended that the simpler set-based approach is used during program 
development since it is the more effective of the two static selection techniques. 
It is also immune to changes in the data sets which frequently occur during pro
gram testing and, unlike regression analysis, can be applied to non-terminating 
programs. After using the set-based selection technique to ensure that a pro
gram is correct, the more sophisticated regression analysis technique may be 
used (via compiler switch) to assign data structures prior to the release of the 
program. 

The data structure selection techniques did not attempt to optimise the 
memory usage of a program. However all the techniques presented in this chap
ter could be modified to prioritise memory usage instead of run time. Chapter 
8 describes such modifications in the future work section. 

Automatic data structure selection is the last stage in the compilation of 
Starlog programs. In the next chapter the efficiency of compiled Starlog pro
grams is compared with that of equivalent hand-coded programs. 

173 



Chapter 8 

Conclusions and Future 
Work 

The Starlog programming language is of interest because it is logically pure and 
abstract. Its purity extends to all language facilities, including negation, input 
and output, aggregation, and destructive assignment. Therefore logic program
ming using Starlog is distinguished from Prolog whose logical semantics have 
been compromised to include these facilities. Logical purity allows programs 
to have a declarative semantics and to be proven correct. Abstraction allows 
programmers to be oblivious to the execution details of their programs. Thus, 
abstract languages tend to be easier to learn, represent programs more efficiently 
and usually allow easier interpretation of programs by programmers than lower 
level languages. In Starlog programs run time data is abstracted using rela
tions. Relations have seen widespread success in the field of databases and have 
been accepted by users as a natural form of data abstraction since Codd's land
mark paper in 1970. However abstraction in programming languages is usually 
achieved at the price of run time efficiency. 

This thesis has shown how it is possible to compile Starlog programs to 
an executable form (Java). The compilation process can be completely auto
mated. Moreover, the compilation process presented here is focused on efficient 
execution at all stages. 

Four important features of the Starlog compilation process that improve 
efficiency are (1) the use of Triggering Evaluation, (2) the use of static index 
structures, (3) automatic construction of efficient instances of these static index 
structures, and (4) the automatic selection of efficient low-level data structures 
to implement the static index structures. As well as providing efficiency to 
Starlog these features are also applicable to a variety of other fields. 

As shown in Chapter 2, Triggering Evaluation can optimise the evaluation 
of rule systems which obey a stratification order. In [84] the use of top-down 
evaluation in the XSB system was justified by its raw speed. Top-down eval
uation is used for XSB in spite of decidability problems when solving negated 
queries and infinite recursing queries. If the efficiency of bottom-up evaluation 
is improved then it may become more competitive with top-down techniques 
and allow such problems to be avoided. Triggering Evaluation improves run 
time performance of bottom-up evaluation when programs are monotonic and 

174 



obey a stratification order. In general, the more complete the stratification or
der, the more optimisation Triggering Evaluation allows. Triggering Evaluation 
would be of interest as an addition to forward-chaining theorem-provers (such as 
SATCHMO [69]} and planners (such as TLPLAN [7]) as well as the monotonic 
deductive database systems Aditi, COL, LogicBase, DECLARE, Hy+, LOLA, 
and Starburst [91]. 

The static nature of Starlog's index structures allows an efficient implemen
tation of programs in three ways: (1) Starlog's index structures can be stati
cally defined in the target language, (2) the order that arguments and predicate 
names are indexed can be optimised at compile time to improve access to tuples 
and (3) when programs search or update instances of Starlog's index structures 
specialised code is used for trigger /tuple matching and for rule evaluation. 

Further reduction of run time overhead is possible when Starlog index struc
tures are automatically constructed using techniques from Chapter 3. The re
ordering of arguments from each predicate can result in an unbounded reduction 
in searching. Reordering arguments can improve the efficiency of any program 
that uses discrimination trees (such as XSB programs) and could be achieved in 
other systems using a source transformation. By sharing index nodes between 
different predicates within an automatically constructed index structure, the 
size of the index is reduced, and when related predicates share indexes, further 
optimisations are possible (as described in Chapter 5). These optimisations 
would be applicable to other systems which use static discrimination trees. 

Chapter 7 argues that both manual selection and generic data structures 
produce less efficient programs than automatic selection for abstract languages. 
The automatic data structure selection techniques presented in Chapter 7 are 
also useful to any languages or applications where data structures are abstracted. 
These include logic and functional languages, most modern imperative lan
guages, and all database applications. 

Automatically selecting implementations for data structures after their usage 
has been determined is an approach uncommon in compilers. To achieve this 
in an object-oriented target language, the Starlog compiler uses a very general 
data structure interface which specifies the necessary methods that the parent 
program may require. Based on the number and type of the methods which are 
used, a previously developed implementation can be selected. This strategy al
lows automated systems to avoid premature selection of implementations which, 
after optimisations have been applied, may have very different preconditions or 
usage patterns. Allowing the compiler to delay its selection of implementations 
is useful for any facilities that can have multiple implementations - not just 
data structures. 

8.1 Comparison of Efficiency 

To rate the efficiency of compiled Starlog programs Table 8.1 compares the 
example Starlog programs from Appendix C with hand-coded implementations. 
The hand-coded programs were collected from web-sites which are unrelated to 
the Starlog project and so should be reasonable subjects for comparison. Note 
that these hand-coded programs may not be the most efficient implementations 
available, however they represent the typical efforts of programmers to solve 
each problem. Due to the differences in programming style between Java and 

175 



Starlog, some of the algorithms used by the hand-coded programs are very 
different from the Starlog programs. 

To avoid the contentious issues of comparing the run time behaviour of 
programs written in different languages, all the hand-coded implementations 
are written in Java and executed on the same platform as that used to evaluate 
the Starlog programs. For consistency between the Starlog implementations and 
the hand-coded examples, some of the hand-coded programs have been modified 
to remove user interfaces and other superfluous features. 

The efficiency of hand-coded programs is a bold target for compiled code to 
strive for. In general the hand-coded programs have used customised evalua
tion techniques and/or data structures which, by the general purpose nature of 
the Starlog compiler, are unavailable to compiled Starlog programs. Table 8.1 
summarises the differences between the Starlog and hand-coded programs. A 
few details about the significant differences are discussed here. 

The complexity of the Starlog prime number program is an order of magni
tude larger than the hand-coded example (the exact complexity is difficult to 
determine). This is because the Starlog prime number program investigates N 2 

integers when inferring multiples rather than the N multiples that are investi
gated by the hand-coded program. 

Both the hand-coded shortest path program and the transitive closure pro
grams use an array of integers for an adjacency matrix to determine paths in 
the graph. Therefore these require very little overhead for storing data. 

To generate Pascal's Triangle the hand-coded program uses a ragged, two 
dimensional array of integers resulting in very little overhead. 

The hand-coded Game of Life holds only the current and previous genera
tions of cells in two integer arrays whereas the Starlog implementation maintains 
all previous generations. However, like the Star log implementation, the hand
coded program is capable of representing cells on an infinite board. 

When the N-Queens program is hand-coded in Java a top-down, depth-first 
search is used to find all solutions. Using recursive calls and in-place updates on 
a single integer array that represents the chess-board, the hand-coded program 
is very efficient when compared to the Starlog solution. The Starlog N-Queens 
program performs a breadth first search and generates copies of the board at 
each node of the search tree. 

In spite of such differences in algorithms and data structures there are some 
promising results in Table 8.1. The efficiencies of the Hamming Number, Short
est Path and Game of Life programs when written in Starlog are competitive 
with the equivalent hand-coded programs (and in two cases are even more effi
cient). 

Although these results give an indication of the performance of Starlog pro
grams, these results do not conclusively prove that Starlog programs are as 
efficient as equivalent programs in other languages. To prove this would re
quire analysing the complexity of Starlog programs and comparing that with 
alternative implementations. Such an evaluation is beyond the scope of this 
thesis. 

To further improve the efficiency of programs produced by the Starlog com
piler (so that more Starlog programs may become competitive with their hand
coded equivalents) the compiler could be extended in a number of ways. Several 
potential extensions are described in the next section as future work with com
ments about which of the example programs they would benefit. 

176 



---1 
--1 

Program 

Hamming Numbers 

Primes 

Shortest Path 
(Random Graph) 
Shortest Path 
(Chain Graph) 
Pascal's Triangle 
Transitive Closure 
(Random Graph) 
Transitive Closure 
(Chain Graph) 
Game of Life 
(Rabbit Pattern) 
Game of Life 
(Traffic Light) 
N-Queens 

Starlog Hand-Coded Java 
Code Size Run Time Gode Size Run Time Source 

3 Rules 

3 Rules 

1 Rule 

1 Rule 

3 Rules 
1 Rule 

1 Rule 

3 Rules 

3 Rules 

7 Rules 

12 ms 168 lines 71 ms bttp://gauH,ecece.uc.edu/Ueere/ 
Franco/Streame/etream-explaln.btml 

11,894 ms 36 lines 108 ms http://www.maca.bw.ac.uk/ 
pj bk/ca3/3PD 1 / Java/N aleve.Java 

145 ms 142 lines 119 ms http:/ /www.ca.rpi.edu/ punlnj/XMLJ/ 
projecta/atuproj/turned/XMLProject/ 

89 ms 140 lines 346 ms bt.tp://www.ca.rpi.edu/ punlnj/XMLJ / 
projecta/atuproJ/turned/XMLProject/ 

55 ms 24 lines 0.7 ms bttp://occa.ca.oberlin.edu/faculty/Jdonalda/150/lecture21.btml 
464 ms 33 lines 45 ms Adapted from (99) 

242 ms 32 lines 11 ms Adapted from (99) 

728 ms 124 lines 178 ms bttp://www.aceabardware.com/artlclea/tecbnlcal/ 
Java..va..c/fllea/tnflllfe.java 

298 ms 127 lines 159 ms bttp://www.aceabardware.com/arttclea/technical/ 
Java..va..c/fllea/lnfllife.Java 

266 ms 96 lines 2 ms http://webater.ca.qa.edu/ arford/NQ/NQueena.Java 

Key to Differences: 
A - Algorithmic differences which affects the complexity 

P - Arrays of primitive types used in hand-coded program 
M - Single data structure equivalent to combined 6 and r in hand-coded program 

G - Garbage collection of redundant relations in hand-coded program 
F - Functional relationships exploited in hand-coded program 

Table 8.1: Comparison between Starlog programs and similar hand-coded Java programs. 

Differences 

-
A,P,M 

A,P,M,F 

A,P,M,F 

P,M,F 
A,P,M 

A,P,M 

A,P,G 

A,P,G 

A,P 



8.2 Future Work 

Although Starlog programs can be compiled with the techniques given in this 
thesis, there are additional optimisations and extensions that could further im
prove the quality of the compiled code. 

8.2.1 Detecting Functional Relationships 

In Chapter 3 it was stated that dynamic argument indexes could be replaced 
by single values if functional relationships were proven between arguments held 
in the index structure. Programs that use specialised data structures that hold 
only one element would be more efficient because operations performed on a 
single value are more efficient than those performed on more sophisticated data 
structures. 

It is reported in [33] that finding functional relationships is undecidable in 
the general case. However the statistics gathered from data sets during data 
structure selection (Section 7.3.2) may be useful for identifying potential func
tional relationships. Using the number of elements held in each argument index 
during run time, argument indexes that consistently hold one element are likely 
to be functionally dependent on the previously indexed arguments. A special 
purpose functional dependency analysis tool could then be used to confirm the 
relationship. 

This technique for detecting potential functional relationships is similar to 
the dynamic invariant detection performed by the Diakon tool [41, 42]. Diakon 
uses program runs to infer program properties which may be later proven cor
rect. For Starlog, the invariant to be proven is that each argument index holds 
exactly one element. 

Alternatively, specialised data structures which hold one element can be 
used to automatically garbage collect redundant tuples (see the next section for 
more garbage collection issues). In some programs (e.g. those which implement 
destructive assignment) only the most recent values added to an argument index 
are ever accessed. In these cases there is no reason to maintain previous values 
and any previous value stored can be overwritten with a new value. Although 
it is difficult to determine when previous values of an argument are irrelevant to 
a program, some occurrences could be detected using pattern matching within 
the Starlog source code to find rules that constitute the destructive assignment 
program (or a close approximation). 

The detection of functional relationships would improve the efficiency of two 
of the example programs described in Table 8.1. The Shortest Path program 
would benefit from the observation that there exists at most one minimal cost 
value between any two nodes. Similarly, Pascal's Triangle would benefit when 
it is known that for each valid row and column in the triangle there is exactly 
one binomial coefficient. In both cases, the use of specialised data structures 
would improve performance. 

8.2.2 Memory Usage and Garbage Collection 

When optimising Starlog programs the time complexity took priority over the 
memory usage. This is usually the preference for applications which do not 
require a prohibitive amount of memory to function. However the ability to 

178 



control the memory usage is essential when large data sets are produced or when 
running Starlog programs on platforms with low memory. The two approaches 
to reduce the memory used by Starlog programs are to (1) reduce the memory 
requirements of Starlog index structures and (2) perform garbage collection. 

Starlog index structures occupy less space when more predicates share index 
nodes. To increase the sharing of index nodes, the arguments from each pred
icate can be ordered so that arguments with compatible types appear at the 
same level of the index structure. This is an alternative heuristic to that de
scribed in Chapter 3 which prioritises efficient searching. A single Starlog index 
structure can then be constructed using the existing algorithm from Chapter 3 
that merges independent index structures. 

A second approach to reducing the memory requirements of Starlog index 
structures is to reduce the memory requirements of each argument index. Chap
ter 7 gave techniques to select data structures which minimised the time com
plexity of programs, however all of the techniques could be modified to select 
data structures based on their memory requirements ([70] discusses this modifi
cation for one selection technique). To minimise the memory requirements the 
time cost estimate tables are replaced with memory cost estimate tables or, in 
the case of regression analysis, programs are created which can measure their 
own memory usage. With the exception of the set-based selection technique, 
all the data structure selection techniques can prioritise both the run time and 
memory requirements when given a user-defined space/time tradeoff. 

Garbage collection is another technique for reducing the memory require
ments of programs. Moreover, garbage collection in Starlog is essential to reduce 
memory requirements to that of other languages so that, for example, Starlog 
may be used for server applications which must guarantee reasonable memory 
usage over long time periods. [2] defines garbage as "storage that a program 
allocates but can not refer to". Unreferenced data occurs in the Java implemen
tation of Starlog programs when program and index variables are reclaimed, and 
when sections of a Starlog index structure instance are pruned, however such 
data is reclaimed periodically by Java's automatic garbage collection process. 

Yet there is a another form of data which is not referred to by Starlog pro
grams but can not be reclaimed by Java's automatic garbage collector. Tuples 
in r become garbage when their presence or absence can no longer contribute 
to the production of new tuples. Typically, tuples become garbage when the 
constraints within all rules makes them irrelevant. These can be safely deleted 
from r without affecting the correct evaluation of the program. However, in 
other cases, tuples never become garbage because they contribute to one or 
more rules for the life of the program. 

To describe garbage collection of tuples in r it must be understood how they 
are used. Tuples in rare accessed as the result of non-trigger goal queries. We 
have seen in Section 2.3.6 that tuples from predicates that are never queried as 
non-trigger goals are always garbage in rand can be safely omitted from this set. 
Although research continues on general purpose garbage collection of tuples, no 
satisfactory solution has been discovered which is both thorough and practical. 
The only way to conclusively prove which tuples are used by a program is to 
run the program and so far our attempts to approximate the usage of tuples 
is limited to a few simple cases. Clearly more research is necessary to find a 
practical solution to the garbage collection problem. 

An alternative strategy would be to allow the programmer to annotate their 

179 



programs with the garbage collection properties of tuples. For example, data re
garding the persistence of each predicate could be consulted to determine which 
tuples should be removed from r. Unfortunately such an approach exposes the 
programmer to complex details about the execution of their programs, break
ing the declarative semantics of Starlog. Moreover, programmers can make 
erroneous assumptions regarding the garbage collection of tuples and so may 
compromise the correctness of their program. 

Without garbage collection, there are some programs that use unboundedly 
more memory than when garbage collection is used. Garbage collection would 
reduce the memory requirements and run time of the Game of Life program. 
For the Game of Life to function only the current and previous generations of 
cells are required at any time. Therefore all preceding generations can be safely 
discarded. On average, our example programs maintain 75 generations of cells 
that could be discarded. The Pascal's Triangle Starlog program could also ben
efit from garbage collection since only the previous row of binomial coefficients 
is necessary to calculate the next row. (Although this is an optimisation not 
implemented in the hand-coded Pascal's Triangle program.) 

8.2.3 Sharing Index Nodes between 6. and r 
Chapters 3, 4 and 5 discussed the possibility of sharing dynamic argument 
indexes between the A and r sets. In these chapters it was concluded that, 
although the index structure would be smaller and moving tuples from A to 
r would be more efficient, the shared argument indexes can not be specialised 
for one type of access. Instead, to minimise the cost of all operations, these 
argument indexes would have to be implemented by generic data structures, 
which ultimately may result in less efficient programs (see Chapter 7). 

However the advantages of sharing index nodes between A and r could be 
exploited with more analysis. By gathering the frequency and type of operations 
performed on each argument index and properties of the data set held in each 
argument index, cost estimates can be made for programs with shared index 
nodes and for those without. The run time properties of each argument index 
can be found using techniques employed during data structure selection. By 
comparing the cost estimate of the programs with argument indexes shared 
between A and rand the cost estimate for programs where A and rare distinct, 
the most efficient version can be selected. 

By sharing argument indexes between A and r the Starlog versions of the 
Prime Number, Shortest Path, Pascal's Triangle and Transitive Closure pro
grams would become closer to the hand-coded versions identified in Table 8.1. 
Yet it is unclear whether such modification would result in faster run times 
for these programs. For example the Shortest Path program written in Star
log is already competitive with the hand-coded implementation and combining 
argument indexes may actually reduce its efficiency. 

8.2.4 Skipping Duplicate Detection 

One of the requirements of the SDSL insert instruction is that it searches the 
dynamic argument index for the value to be inserted before it actually inserts the 
value. This requirement maximises sharing within argument indexes. However 
such duplicate detection adds to the run time overhead of the operation. To 

180 



avoid the extra overhead it may be possible to use a different version of the insert 
instruction which skips searching for duplicate values in an argument index (we 
shall refer to this instruction as insert-unique). 

An insert-unique instruction can only be used in place of an insert instruction 
when it is impossible to insert a duplicate value. To prove this property requires 
sophisticated static analysis: Given a set of rules with the same head predicate, 
it must not be possible for corresponding arguments in the heads to overlap 
values. Furthermore, any single rule which includes non-deterministic searches 
must not be able to reproduce the same values for an argument in the rule's 
head. This requires global analysis of all rules in the program using theorem 
proving techniques to ensure there is not an overlap of argument values in a 
argument index. 

The effect of skipping the duplicate detection phase when inserting values 
into an argument index is different for each data structure. For example, testing 
for the presence of a value requires almost no overhead for an array, however 
requires an exhaustive search when performed on an unsorted list. 

8.2.5 Automatic Use of Multiple Indexing Orders 

One of the advantages of using Starlog's index structures that was discussed in 
Chapter 3 was the use of multiple indexing orders for predicates. The benefit 
of multiple indexing orders is that different index paths can be specialised for 
different modes of access. This can result in an unbounded reduction of the 
time complexity of searches (e.g. an operation that has O(Ni) complexity may 
become O(N) using a different indexing order). However, because each tuple 
is stored in multiple ways, the cost of inserting a tuple into the index structure 
is proportional to the number of index paths travelled. Consequently, the au
tomatic construction of Starlog's index structures described in Chapter 3 does 
not allow multiple index orders because the degree of optimisation (if any) is 
difficult to predict. 

Multiple indexing orders for predicates can be used to optimise programs if 
we can predict both the number of searches which would benefit and the number 
of additional inserts required. The analysis required to make such predictions is 
similar to that used to automatically select data structures (e.g. the number of 
occurrences of each instruction in the SDSL program is an indication of which 
operations are performed at run time, or the number of operations performed 
at run time can be measured). All of the techniques described in Chapter 
7 could be modified for this purpose. If running the program is required to 
estimate the number of searches which would be improved and the number of 
additional inserts required by multiple indexes, a rudimentary Starlog index 
structure (such as one which does not use multiple indexes) would be sufficient 
during this analysis. 

8.2.6 Parallel Execution 

Two reasons to use parallel execution in a system are (1) because the nature of 
the application demands it (e.g. for multiple, independent, real-time processes) 
or (2) to improve time efficiency. Reason (1) is not important for Starlog be
cause the computations performed in rules can be easily interleaved, simulating 

181 



parallel processes. Therefore, in this section we are only concerned with using 
parallel execution to make Starlog programs faster. 

The declarative nature of Starlog programs makes few requirements on the 
order that rules and goals are evaluated. So long as the stratification order 
(usually a partial order) is obeyed then program evaluation will be correct with 
respect to the well-founded semantics. However to implement Starlog programs 
in SDSL the partial order is arbitrarily strengthened when converted to a se
ries of SDSL code block (see Chapter 5) to simplify serial execution on a Von 
Neumann architecture. The implementations of Starlog programs in SDSL (and 
subsequently in Java) follow this total order to evaluate rules and goals. 

However if explicit parallel execution is desired then there is no need to 
totally order the evaluation of Starlog programs. When Starlog programs are 
translated to SDSL, parallelisation can occur in three places: (1) the solving of 
goals in the body of a rule, (2) the evaluation of rules activated by the same 
trigger tuple, and (3) the selection and use of multiple minimal tuples in ~ 
as trigger tuples. Parallel evaluation of goals (1) is an application of And
Parallelism1 [50, 92). The remaining opportunities for parallelisation of Starlog 
programs ((2) and (3)) correspond to Or-Parallelism [50, 92). Note that this is 
only a preliminary assessment of how parallelisation can be exploited by Starlog 
programs and further instances may become clear in time. In fact there is ample 
scope for another PhD thesis on the parallelisation of Starlog. 

When compiled to Java, each parallel code block can be evaluated by a 
separate thread. The use of threads allows the operating system to dispatch 
jobs to different processors as they become available, potentially making the 
whole program run much faster [38). 

8.3 Summary 

New programming languages have the potential to introduce greater produc
tivity to each new generation of programmers. Traditionally this productivity 
has manifested itself in either the efficient and clear representation of programs 
or through a program's efficient run time behaviour. In Starlog we value both 
these properties. The design of the Starlog language allows declarative and ab
stract representations of programs, whereas the compilation techniques given in 
this thesis are focused on efficient run time behaviour. Algorithms in Starlog 
are often much different from the equivalent algorithms in other languages. In 
some cases the Starlog programs are more elegant and readily understandable 
by programmers, leading to faster development and better quality programs. 

The goal of developing compilation techniques for Starlog has been achieved. 
Moreover, the compilation of Starlog is focused on efficient execution of pro
grams. Results given in this thesis indicate that some (but not all) compiled 
Starlog programs are more efficient than equivalent hand-coded programs. How
ever it remains to be proven if such results are typical. Nonetheless, this thesis 
has shown that run time efficiency does not have to be sacrificed when compiling 
a declarative and abstract language. 

1The Bernstein condition (12] would restrict or complicate the parallel solving of goals that 
share unbound variables. 

182 



Appendix A 

Starlog Syntax Reference 

Starlog programs consist of rules, to define the logic of the program, and stratifi
cation priorities, to specify the stratification order (and therefore the behaviour) 
of the program. 

Stratification Priorities 

The stratification order for the program is specified using stratification priorities. 
By convention the stratification priorities are included at the beginning of a 
Starlog program. The order of stratification priorities is irrelevant. There are 
two types of stratification priorities. 

Stratification Orders of Predicates 

Each predicate in a program appears in at most one stratification priority. A 
stratification priority for a predicate takes the form "stratify Pred Order.". 

Pred represents an abstract tuple definition where all the arguments of the 
predicate are represented by locally unique variable names. (Any arguments ir
relevant to the stratification order can be represented by the anonymous variable 
"-" .) 

Order is a list of comma-separated terms that represents the stratification 
order of the Pred predicate. Elements in the list are either variable names 
corresponding to arguments in Pred or constant symbols. Elements earlier in 
the list are more significant than those later in the list. 

Any predicate not used in a stratification priority is stratified before those 
which do appear in a stratification priority. 

Stratification Orders of Constants 

Constant symbols used in the predicates' stratification priorities are explicitly 
ordered. Constants are ordered using a "stratify Canstl « Canst2" state
ment where the constant symbol C anstl is ordered before constant symbol 
Canst2. 

183 



Rules 

A Starlog rule is represented as "H <- B." where H is the rule's head and B 
is the rule's body. When B is empty the rule is referred to as a fact and is 
represented by only the rule's head as "H.". 

Rule Heads 

H is a non-variable term whose functor and arguments specify the tuples that 
the rule produces as output. Tuples from some "built-in" predicates perform ad
ditional operations or side-effects when generated as the head of a rule. Current 
built-in predicates include: 

• print (N) which outputs the value N to the standard output. 

• print....string(Str ,N) outputs Str to the standard output and is stratified 
by N when necessary. 

• input...request (Prompt, N) outputs a command-line prompt specified by 
Prompt and waits for input. These tuples are stratified by N when neces
sary. 

• input...request (Prompt, N, Key) is the same as the previous predicate 
however the Key argument is used to associate the request with its in
put. 

Rule Bodies 

B - the body of a rule - is either a single goal or a comma separated conjunction 
of goals (e.g. "Goall ,Goal2,Goal3."). There are three types of goals: built-in 
operations, positive goals, and negated goals. 

Built-in Operations 

Built-in operations in the body of a rule perform operations on the rule's local 
variables. The set of available built-in operations is given below. For the most 
part the semantics of these built-in operations coincide with those in Prolog. 
(The "C is sqrt (A)" operation for Starlog differs from that of Prolog because 
Starlog produces both the positive and negative square roots of its input.) Be
cause built-in operations are evaluated in a left-to-right order, the binding orders 
of variables must be considered when writing rules. 

C is A 
C is A - B 

A > B 

A=\= B 
C is A• B 

A < B 

C is -A 
C is A/ B 

A>= B 
C is sqrt(A) 

C is A+ B 
C is A // B 

A=< B 

A and B represent either ground variables or constants. 
C represents either a ground or free variable, or a constant. 

184 



Positive Goals 

Positive goals are predicates whose arguments are either constant symbols or 
variables. A positive goal is satisfied when a tuple is produced by the program 
that matches with the predicate. 

Negated Goals 

Negated goals are predicates encapsulated in a "not( ... )" structure. Negated 
goals are satisfied when no tuples that match the predicate can be produced by 
the program. Variables occurring in negated goals which do not occur elsewhere 
in the rule are automatically existentially quantified. Built-in operations may 
be performed on these existential variables inside the "not ( ... ) " structure. 

Local Variables in Rules 

There are some constraints on the use of local variables in rules. All variables 
occurring in the head of a rule must also occur in a positive context in the body. 
That is, variables in the head must be either an argument in a positive goal or 
the output of a built-in operation in the body. 

All variables used to determine the stratification order of negated goals must 
either appear in a positive context in the body, or be constrained by built-in 
operations that ensure the negated goal is stratified before the rule's head. 

Stratification of Rules 

All rules in a Starlog program must be strongly stratified with respect to the 
program's stratification priorities. To ensure this some rules require built-in 
operations (such as A> B) which explicitly define orderings for arguments and, 
consequently, defines the stratification order between goals and the heads of 
rules. 

Comments 

Comments in Starlog follow the Prolog convention. A comment is preceded by 
a'%' symbol and continues until the end of the line. 

Backus-Naur Form 

The BNF of the Starlog language is given in Figure A.1. Non-terminal symbols 
<variable>, <constant> and <functor> are undefined but correspond to their 
usual definitions in Prolog. The BNF is incapable of describing constraints on 
the use of variables and the stratification of rules that were previously described 
in this section. The use of comments is also omitted from this definitions as, 
like Prolog, comments can occur in almost any context. 

185 



<program> : := { <stratification_priority>} { <fact_or_rule>} 
<stratification_priority>: := <predicate_ordering> I 

<constant_ordering> 
<predicate_ordering>: := ''stratify'' <abstract_tuple_definition> 

<element_list> ''.'' 
<abstract_tuple_definition> ::=<functor>[''('' <variable> 

{'',••<variable>} '')''] 
<element_list> ::= ''['' [<argument>{'','' <argument>}] '']'' 
<constant_ordering> ::= ''stratify'' <constant>''<<'' <constant> 
<fact_or_rule> ::= <fact> I <rule> 
<fact>::= <predicate>'' •• 
<rule>::= <predicate>''<-'' <rule_body> '' '' 
<rule_body>: :=<goal>{'',•• <goal>} 
<goal> ::= <built_in> I <positive_goal> <negated_goal> 
<positive_goal> ::= <predicate> 

'' 'J 

<negated_goal> ::= ''not(•• <predicate>{'','' <built_in>} '')'' 
<predicate>::= <functor>[''('' <argument>{'','' <argument>}'')''] 
<argument>··= <variable> I <constant> 
<built_in> ::= <equals> I <not_equals> I <negated> I <addition> 

<subtraction> I <multiplication> I <division> I 

<int_division> I <greater> I <less> I 

<greater_equal> I <less_equal> I <square_root> 
<equals> : : = <argument> ' 'is' • <argument> 
<not_equal> ::=<argument>''=\='' <argument> 
<negated>::= <argument> ''is -''<argument> 
<addition>::= <argument> ''is'' <argument>''+'' <argument> 
<subtraction>::= <argument> ''is'' <argument>''-'' <argument> 
<multiplication>::= <argument> ''is'' <argument>''•'' <argument> 
<division>::= <argument> ''is'' <argument>''/'' <argument> 
<int_division> ::= <argument> ''is'' <argument>''//'' <argument> 
<greater>::= <argument>''>'' <argument> 
<less>::= <argument>''<'' <argument> 
<greater_equal>: :=<argument>''>='' <argument> 
<less_equal> ::=<argument>''=<'' <argument> 
<square_root> ::= <argument> ''is sqrt('' <argument>'')'' 

Figure A.I: BNF grammar of Starlog. 

186 



Appendix B 

Data Structure 
Implementations 

In this appendix we present the six data structures that are used to implement 
argument indexes. Each of the following sections describes the design of a data 
structure and, when relevant, gives an insight into how each of the insert, look, 
scan, delete, minimum and isempty operations are performed. A commentary 
on the time complexities of each valid operation is provided. When describing 
complexities of operations N will refer to the number of items in the data 
structure, unless otherwise stated. For the source code of these implementations 
see www. cs. waikato. ac. nz/ -r j c4/. 

B.1 Empty Data Structure 

Empty Data Structures do not hold any argument values. Instead these ob
jects implement those nodes in an index structure on which no operations are 
performed. Although all operations in the Node interface have default imple
mentations in the empty data structure, calling these has no effect. Empty data 
structures are required for the leaf nodes of an index structure so that all ar
gument indexes point to objects of type Node. The empty data structure class 
is often extended to hold labelled branches or boolean values for specific index 
nodes. 

B.2 Unsorted List 

An unsorted dynamically-linked list is a very simple way to store data of any 
type. The implementation encapsulates each data value in an object with a 
"next" handle to locate the next element in the list. As usual with linked lists, 
the "next" handle of the last element in the list holds a null value. 

Inserting a value into an unsorted list is not as efficient as other list imple
mentations due to the duplicate detection phase. To ensure that a value to be 
added does not already exist, the new value is compared with those elements al
ready in the list (giving a O(N) complexity). If the new value is not a duplicate 
it is inserted onto the end of the list. 



To search for a specific value in an unsorted list requires a linear search 
(O(N)) where an equality test is performed on the sought value and each value 
in the list until they are equal, or the end of list is reached {indicating failure). 
When the value is present in the list then, on average, half the elements will 
have been processed. 

An iterator for an unsorted list maintains a "current position" handle point
ing to the next element to be returned. Each time the nextNode method is 
called the "current position" handle is incremented to the next element in the 
list. When the "current position" element becomes null all elements have been 
visited. Consequently, scan operations on lists are very efficient since they re
quire only one variable update per element. 

The deletion of an element from an unsorted list initially involves finding the 
parent of the element to be deleted (O(N)) and reassigning the "next" handles 
to skip over the deleted node. Java's automatic garbage collection process will 
reclaim any non-referenced list element. 

To find the minimum element in an unsorted list requires an exhaustive 
search of all elements (O(N)). The value of each element in the list is compared 
with the current minimum value, which is updated whenever a lower value is 
encountered. 

Finally, to test if an unsorted list is empty a null test is performed on the 
list's start (or root) handle. This is a very inexpensive operation requiring only 
one variable test (0(1)). 

B.3 Sorted List 
In contrast to unsorted lists, sorted lists maintain the list invariant where the 
value of an element is greater than the values of all elements later in the list 
(i.e. values in the list are descending1 ). This has a number of advantages over 
unsorted lists which improves the performance of some operations. 

On average, search operations have less complexity for sorted lists than un
sorted lists. Although the worst case for a search operation remains O(N), the 
average case of searching for a value which is not present in the sorted list will 
require processing only half the elements. Searches can be truncated when the 
current value in the sorted list becomes less than the sought value due to the 
sorted list invariant. At each node visited an extra test is necessary on to de
tect when truncation can occur. This improvement is also used to optimise the 
duplicate detection phase of insert operations. 

Although the complexities of the scan, delete and empty operations are 
equivalent to the unsorted list, the minimum operation is much improved. In
stead of performing an exhaustive search on all elements, the sorted list main
tains a handle to the last (minimum) element in the list. Therefore finding the 
minimum element in a sorted list is a single variable fetch (0(1)). 

One interesting disadvantage a sorted list has over an unsorted list occurs 
when memory architecture is considered. When inserting values into an un
sorted list new elements are always added to the end of the list. If consecutive 
inserts are performed the elements will occupy adjacent memory locations. The 

1 A descending list is used because experience has shown that these are frequently more 
efficient than ascending lists for arguments in Starlog programs. This is because arguments 
are more often processed from the lowest to the highest value in Triggering Evaluation. 

188 



advantage is that when a memory block containing an unsorted list element is 
cached there is a greater chance that elements from the tail of the list will be 
cached also, making processing the list faster. When considering sorted lists, 
because new elements are often inserted between existing elements their mem
ory layout is likely to be much more random and, as a result, caching a memory 
block has less effect. The effect of memory caching is seen when modelling time 
complexities for some of the data structure selection strategies. 

B.4 Balanced Binary Tree 

Binary trees are used frequently in applications where large number of records 
are stored which must be searched efficiently. To improve the robustness and 
reduce the worst case complexities of binary trees, balancing is performed. The 
balanced binary tree implementation used for Starlog's argument indexes is a 
red-black tree derived from that described in [99]. (Note that this implementa
tion does not require parent pointers.) 

The complexity of searching for or inserting a value into a balanced binary 
tree is O(logN) in spite of the balancing performed on each node visited during 
the insert. 

To scan through all values in the balanced binary tree is expensive when 
compared to other data structures. To scan through values in a tree structure 
usually requires a stack holding the sequence of parent nodes visited in the 
traversal so backtracking can occur when all nodes in a sub-tree have been 
visited. However, due to ongoing experiments involving modularly stratified 
programs, an iterator was developed that would continue to work correctly when 
new data is added to the data structure2 . Using the stack approach, when new 
data is added to the tree and balancing occurs the parent nodes held in the 
stack may not exist in the same locations. As a result the scan may fail to 
return some values or repeatedly return others. To avoid such situations the 
balanced tree iterator maintains a reference to the last value returned. A call 
to the nextNode method searches the tree for the next largest value. The result 
is an in-order traversal that is unaffected by re-balancing. The searching that 
occurs with every call to nextNode makes scanning a balanced tree expensive -
for each element in the tree O(logN) nodes are processed. 

Deletion of a node in a red-black tree involves replacing the deleted node 
with its successor node and traversing both up and down the tree to restore 
balance. Deletes have O(logN) complexity. However, to maintain the sequence 
of parent nodes visited when searching for the node to be deleted, a stack is 
used. Due to the overhead of objects in Java, adding elements to and accessing 
elements in the stack are expensive operations. 

To find the minimum element stored in the balanced binary tree, O(logN) 
nodes are visited during repeated "left" branch searches. 

2 If an insert is performed on a data structure while a scan is in progress there is no 
requirement that the new data be returned by the scan, however all data that exists during 
the entire scan must still be returned. 

189 



B.5 Hash Table 

The implementation of the hash table used here is known as a double hash table. 
A double hash table initially indexes records on a primary hash of their key field. 
However when a collision occurs a secondary hashing function generates a fixed 
increment for each additional probe. In this way the hash table avoids problems 
with clustering and, on average, requires fewer probes than linear probing [99]. 
This property allows the computational complexity to be less dependent on the 
data set and therefore is easier to model. 

The hash table itself is a fixed sized array of elements where each element 
holds the actual value stored (the key field) and the relevant sub-index. Initially 
the table can hold 101 elements. 

To insert an element into the table the two hashing functions calculate the 
initial location and the increment for each probe, and step through the table. 
Assuming a perfect hashing function where no collisions occur, the complexity of 
an insert is 0(1) [72]. If ineffective hashing functions are used that always return 
the same value the complexity rises to O(N). In practice, carefully chosen hash 
functions (like those implemented for this data structure) result in a complexity 
between these two extremes. To avoid the hash table becoming saturated with 
data it will double3 its size when it becomes more than 75% full. All values in the 
original table are individually inserted into the new table. Although resizing the 
table becomes less frequent as its size increases, each additional resize is more 
expensive than the last. The result is that insert operations which require a 
table resize have an O(N) complexity but when this is amortised over all insert 
operations a typical insert is O(logN). 

To find an element in a hash table using a perfect hashing function is 0(1). 
However if the hashing functions are ineffective then the complexity becomes 
O(N). In practice, the average number of probes required is usually a low 
constant if the table is regularly resized before it is saturated. 

To scan through all elements in a hash table requires visiting all locations in 
the table. With a table size doubling at 75% capacity, the table will be between 
37.5% and 75% full (except when there are less than 38 elements). Therefore, 
in most cases, finding each additional element in the table can be approximated 
by a constant (0(1)). 

Deleting an element from a hash table is achieved by reassigning the el
ement's table location to a special deleted record. The deleted record is used 
instead of a null value to allow known value searches to skip over it and continue 
to probe locations later in the table. An insert operation overwrites the deleted 
record with a valid record if one is encountered during probing. When resizing 
a table the deleted records are ignored so they do not appear in the new table. 
The complexity of a delete operation is proportional to the search process which 
finds the relevant record (0(1) to O(N) depending on the hashing functions). 

Because the data in a hash table is unordered, finding the minimum element 
requires an exhaustive search. Complexity is related to the number of table 
locations and the number of elements in the table. If we assume that the 
number of table locations is roughly proportional to the number of elements 
then the complexity is O(N). 

3To allow the size of the table to be "probably prime" (i.e. have few multiples) the size of 
the original table is doubled and then decremented. This avoids infinite-loops when probing. 

190 



A hash table is empty if it does not contain any records. To test for emptiness 
the table is searched for an entry that is not null and does not contain an empty 
object resulting from a delete operation. Because the search can terminate when 
the first element is found the complexity of an empty operation is proportional 
to the number of elements in the hash table (O(M - N) where Mis the size 
of the table). However, when the hash table is resized regularly so that it is 
always between 37.5% and 75% full, the complexity of testing for an empty data 
structure is approximated with a constant (0(1)).4 

B.6 Flexible Array 

Arrays have been a part of programming languages since they were introduced 
to COBOL (and later versions of Fortran) in the 1950s. Arrays are still com
mon in modern programming languages due to their simplicity and efficient 
access properties. In terms of data access and update speed, bit arrays have 
unparallelled efficiency making them an excellent choice for many applications. 

However bit arrays have several preconditions that can make them unsuitable 
in many situations. First, the index values must be of integer type making 
them unsuitable for indexing non-integer values. The second precondition is 
that arrays in Java are indexed from zero making it impossible to use negative 
integers as a index. Finally, the size of an array must be known in advance. 
In some situations it is difficult to predict the maximum size of the data set 
until it is generated. With the exception of the first, these preconditions can be 
overcome by adding "wrapper" code around an array which controls how and 
where data is stored (similar to a Java vector). The resulting data structure is 
called a Flexible Array. 

The flexible array implementation is initialised to hold up the values between 
0 and 9. When values are inserted that can not be indexed in this array the 
array is resized to accommodate the new value. (The new array is twice as 
large as it needs to be to hold the new value in order to optimise inserting 
other values of a similar magnitude.) To allow negative integers to be stored, 
an offset value is added to the array's indexess. (Note that this offset is at most 
0. This is because the offset is only used to accommodate negative integers and 
not to improve the performance of an array holding only high positive values. 
Whenever the offset value changes the array is resized and the original values 
are copied into their appropriate location in the new array.) 

One disadvantage of the array data structure (flexible or otherwise) is that 
memory usage is very inefficient for sparse data sets [13]. That is, when there 
are large gaps between stored records the array requires memory for all the 
unused values between these records. When the difference between the maxi
mum and minimum value in the array becomes sufficiently large there will not 
be enough memory, irrespective of the number of actual records stored in the 
array. Moreover, when memory is sufficient to hold the sparse data set in the ar-

4 An alternative approach would be to maintain a count of the number of elements in the 
table. This differs from the count which is used to detect when resizing should occur as this 
count includes the deleted records held in the table. Although such a change would improve 
the isEmpty operation it would increase overhead in the insert and delete operations. Since 
isEmpty operations are rarely performed in programs compared to inserts and deletes this 
approach was not implemented. 

191 



ray, operations that involve searching multiple locations (i.e. scans, minimums 
and isemptys) are very inefficient. 

The insert operation performed on the flexible array initially compares the 
new value (modified by the offset value) with the upper and lower bounds of the 
array. If the new value falls outside this range then an array resize is required. 
The process of resizing the flexible array involves initialising a new array and 
then copying the contents of the original array in to the new array ( optimised 
using a built-in array copy method). When the size of the array is sufficient, 
and the value does not already exist, the new value (modified by the offset) is 
inserted into its appropriate array location. Inserting a new value into an array 
of sufficient size is very efficient (0(1}} since there is no searching required. 
Resizing an array is O{M) where Mis the the size of the original array, but the 
frequency of resizes depend on the data set. 

To search for an item in a flexible array the value to be searched for is 
modified by the offset, compared with the upper and lower bounds of the array, 
and then used to access a location in the array (0(1)}. 

The iterator for a flexible array maintains a reference to the next location 
to be visited during a scan. After a record has been retrieved, this reference 
is updated to the next record in the array by incrementally searching through 
the array locations. When the end of the array is reached the scan is complete. 
The worst case complexity of a scan operation is O{M) where Mis the size of 
the array. 

Deleting a record from a flexible array involves locating the sought value in 
the array and setting the object at this location to a null value (0(1)}. 

To find the minimum element in a flexible array requires searching multiple 
locations. Starting from location zero, all locations in the array are searched 
until one is found which holds a record. In the worst case the number oflocations 
visited when finding the minimum element will be O(M} with M the size of the 
array. 

The isempty operation performs the identical search as the minimum op
eration to find the first array location containing a record. Consequently the 
complexity is O(M). 

192 



Appendix C 

Case Studies in Automatic 
Data Structure Selection 

To demonstrate the effectiveness of the data structure selection techniques we 
present seven example programs. The programs use increasingly complex index 
structures from a program with only one argument index through to one with 
13 argument indexes. A brief explanation of each program's purpose and origin 
is included before the Starlog source code is given. The performance results and 
the data structure selections made by each technique are given for each example 
program. An evaluation of the data structure selection techniques is given in 
Chapter 7 based on this appendix. 

To strengthen the argument that generic data structures can be inefficient 
in Starlog programs, the run times of programs using generic data structures 
are included with the graphed results. In these experiments the balanced tree 
is considered the most general-purpose data structure available since it scales 
well for most operations. Therefore is used as the generic data structure. 

All tuples in the example programs have integer arguments. This ensures 
that the flexible array, which can only hold integer values, can be used in all 
argument indexes. More general programs with arguments of other types would 
restrict the use of flexible arrays. 

The example programs included in this section do not generate any side
effects. Consequently, their usefulness is questionable since they do not commu
nicate their results to the user. However the Starlog source code (and in many 
cases the index structures) required for each program are simplified without side
effects. Moreover, inconsistent completion times of side-effects can distort the 
results of program benchmarking. If programmers wish to produce side-effects 
from these programs additional program rules need to be added, however the 
accuracy of dynamic data structure selection techniques can not be guaranteed. 

C.1 Hamming Number Program 

The Hamming number series was first described by R. W. Hamming and is 
frequently used in textbooks that teach recursive programming [119]. Hamming 
numbers are defined as any number that has only 2, 3 and 5 as its prime factors. 
More precisely: 

193 



Y. Hamming Number Program 

%----------------------------------------------------------------------
% Generates all numbers between 1 and 100,000 whose prime factors are 
Y. only 2, 3 and 5, in ascending order. 

stratify hamming(N) [N). Y. Order hamming numbers on their value 

hamming(1). Y. Initial Fact 
hamming(New) <- hamming(Old), Y. Generates multiples 

New is Old•2, New< 100000. 
hamming(New) <- hamming(Old), Y. Generates multiples 

New is Old•3, New < 100000. 
hamming(New) <- hamming(Old), Y. Generates multiples 

New is Old•S, New< 100000. 

Figure C.l: Hamming number program. 

HammingNumbers = {2; • :V * 5k Ii~ 0 Aj ~ 0 A k ~ O} 

What is interesting about Hamming numbers is not so much the series itself, 
but the method by which values are generated. The Hamming number series can 
be computed as follows: the first Hamming number is 1 and all other Hamming 
numbers are the product of a previously found Hamming number and integers 
2, 3 or 5. To generate the complete series in ascending order, each Hamming 
number is considered in ascending order and multiplied by 2, 3 and 5. Each 
of these new Hamming numbers is inserted into its appropriate location in the 
ordered series. Because each Hamming number is greater than its Hamming 
factors, all Hamming numbers can be generated in order. 

Figure C.l shows the Starlog program to generate Hamming numbers to be 
very compact. This is because it uses Starlog's internal database and the strat
ification order to ensure each Hamming number is processed in order. Other 
programming languages require a queue to be explicitly defined making the 
program more complicated (see [64, 112, 119] for examples of alternative repre
sentations). 

To allow termination there is an upper limit for the Hamming numbers pro
duced. All three rules that generate new Hamming numbers will succeed only 
when the new value is less than 100,000. Termination is essential for dynamic 
data structure selection and to evaluate the performance of the program. There
fore all programs evaluated in this section terminate. 

The SDSL version of this program stores all program tuples in a single 
index. This is because there are no non-trigger goals in any rules, making a r 
set unnecessary. In SDSL form the Hamming number program is optimised so 
that the three rules that share the same trigger goal are factorised together. 

The performance results of the Hamming number program are given in Fig
ure C.2. In this Figure (and in the performance results of other programs) the 
first table gives details of the operations performed by the program. For each 
operation type, the 'occurrences' column represents the number of occurrences 
of the operation in the SDSL program source. The number of occurrences is 
necessary for data structure selection using static cost analysis. The 'performed' 

194 

of 2 

of 3 

of 5 



Index look scan minimum 
occurrences performed occ. per. occ. 

In exO 0 0 0 0 1 

Average# of Average Mu Min Succeeaful Duplicate Max Value 
Index Element• ( N) log N Value Value Look• (R) Inaerta (D) ln11erta 

IndexO 53.7 5.47 46407 19655 56.5 o 30.1 o 

Data Structure Selection for the Hamming Number Program 
80 r;.:::;::::;;;;::::;:::::;;;::::;:::::::i:::===::;.::::::::i;::::==:::::;:::z::::;~~-,-~~--, 

70 

60 

Flexible Array 

40 

30 
Hash Table 

Balanced Tree 

20 Unsorted List + 
Sorted list W 

10 .................. 5 ................ ± ............................................................................... . 
0 .__ __ __. ___ _._ ___ ........ ___ _.__ ___ ..._ __ __, 

2 3 4 

Rank of Execution Time 

Worst Data Structure Selection: 
Generic Data Structure: 
Best Data Structure Selection: 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection (5 runs): 

Run Time Selection: 

Flexible Array 
Balanced Tree 
Sorted List 
Sorted List 
Flexible Array 
Sorted List 
Sorted List 

5 

(75ms) 
(16ms) 
(12ms) 
(12ms) 
(75ms) 
(12ms) 
(12ms) 

(36ms) 

Figure C.2: Hamming number program performance. 

195 

6 

5 

~ 4 
] 

3 0 
.!! 

f 
2 ::i; 

perf. 
313 

empty 
occ. perf. 

0 0 



column gives the actual number of operations performed at run time. These val
ues are used when making a selection with single-run cost analysis. The second 
table gives details about the data set and additional properties of the program's 
operations also required for single-run cost analysis. 

The graphs show the results of data structure selection using the automated 
techniques described in Chapter 7. For each graph, the run times resulting 
from different data structures have been sorted and ranked for clarity. The 
two measures of run times are the time in milliseconds and the multiple of 
the best run time. The performance of the data structures selected using the 
various techniques are highlighted in the graphs with large symbols. A selection 
technique that chooses efficient data structures will highlight values in the lower 
left corner whereas a poor choice will have a run time in the upper right corner of 
the graph. Finally, the data structures which give the best and worst run times 
are given followed by the data structures chosen by the automated selection 
techniques. 

To generate the graph in Figure C.2 the single argument index was im
plemented by all data structures in the library and the run time of the each 
program measured. The fastest data structure for this program is the sorted 
list which resulted in a run time of 12ms. The slowest data structure is the 
flexible array which took 75ms to complete. From analysis of the operations 
performed and the data set generated during execution these results are reason
able: Although there are 312 Hamming numbers between O and 100, OOO, the 
index holds an average of 53.7 elements at any one time (see Table 2 in Figure 
C.2). This means that data structures that scale well for large volumes of data 
(i.e. balanced binary trees or hash tables) are unnecessary and less efficient 
than lists. Also, a minimum operation is frequently performed on the index. 
Unsorted lists are less inefficient than sorted lists for minimum operations since 
unsorted lists require exhaustive searching. The flexible array data structure is 
very inefficient because the data set is sparse. The 53. 7 elements stored have an 
average maximum value of 46,407 and a minimum value of 19,655. The min
imum operations on a flexible array is inefficient since many empty locations 
may have to be searched before the first (minimal) element is found. 

The effectiveness of the data structure selection techniques for the Hamming 
program is shown in the graph in Figure C.2. Set-based selection, single run 
cost analysis and regression analysis all choose the optimal data structure (the 
sorted list) from the library. The regression analysis requires at least one run 
time from each data structures to make any selection so it is not surprising 
that it makes a good selection. Static cost analysis selects the worst case data 
structure (flexible array) for this program. This is attributed to the Hamming 
number data set being inconsistent with the assumptions made during static 
cost analysis. This is particularly true for the density of the data set where 
static cost analysis assumes a 100 elements are stored with values between 0 
and 200. Run time data structure selection initially used an unsorted list to 
store Hamming numbers, until 32 elements are stored when the implementation 
changes to a sorted list. However, due to the overhead of recording statistics, 
calculating cost estimates and copying data from one data structure to another, 
the resulting run time is relatively high at 36ms. 

To test the robustness of the data structure selection techniques the ter
mination condition of the Hamming program was modified. By changing the 
program so that it generated Hamming numbers up to 1,000 and, in another 

196 



% Prime Number Program 
%----------------------------------------------------------------------
% Generates prime numbers between 2 and 10,000 by finding all multiple 
% values and then using negation to find values that are not multiple 
% values. 

stratify num(N) 
stratify mult(N) 
stratify prime(N) 

[N ,num]. 
[N,mult]. 
[N,prime]. 

stratify num << prime. 
stratify mult << prime. 

num(2). 
num(M) <- num(N), Mis N+1, 

M < 10000. 

% Order all tuples on their arguments 

% Ensure primes are stratified late 

% Generate all numbers in range 

mult(M) <- num(N), prime(P), N >= P, % Generate multiple values 
Mis N•P, M < 10000. 

prime(N) <- num(N), not(mult(N)). % Deduce prime numbers 

Figure C.3: Prime number program. 

test, up to 400,000,000, the programs' run times were decreased and increased 
respectively. However the order of efficiency of the data structures remained 
unchanged. This is because the set of Hamming numbers has a logarithmic 
growth rate related to the maximum value of the set. Because the size of the 
data sets do not change dramatically for this range of values, the efficiency of 
each dynamic data structure remains in its relative position. (The flexible array 
becomes more inefficient as the upper limit increases due to the increasingly 
sparse data set - but is consistently the least efficient data structure.) Testing 
the Hamming number program with more extreme termination conditions (i.e. 
outside of the range 1,000 to 400,000,000) is impossible due to the lack of pre
cision in program timing at the low end, and the insufficient precision of Java's 
integers at the high end. 

C.2 Prime Number Program 

The prime number program used in these experiments was introduced and dis
cussed in Chapter 1. The Starlog source code is repeated here in Figure C.3 
for reference. The index structure that stores the run time data of this pro
gram contains two argument indexes as shown in Figure C.4. To optimise this 
program, indexes holding the arguments of num/1, mult/1 and prime/1 tuples 
are automatically combined using techniques discussed in Chapter 3. Note that 
mult/1 tuples do not need to be added to the D. set because they are not used 
as triggers in any rules. 

The results of automated data structure selection are shown in Figure C.5. 

197 



"num''., -, 
(boo~an) 

' num(N) 

-----.... 
Root 

(Index 0) 

(2) 

(3) N (1) 

"num" - · . ~ - "prime" "prime" ' 
' '"mult' ' 

(bo~ean) (boo~an) (bo~ean) (bo~ean) 

' prime (N) 

. . . 

• num(N) 

. . 

• mult(N) • prime(N) 

Figure C.4: Index structure schema used for the prime number program. 

The two tables at the top of Figure C.5 indicate that the two indexes have very 
different properties. Index 0, which holds the arguments of tuples in the r set, 
performs look, scan and insert operations. Index 2, containing arguments of 
tuples in .1., performs inserts, deletes and minimum operations. The data set 
held in Index O contains 8,611 elements on average, compared to Index 2's one 
element. When comparing run time statistics, the different sizes of the data sets 
is a significant factor. The run times produced by this program are dominated 
by the cost of operations on Index 0. Consequently, the choice of data structure 
for Index O is paramount for efficiency, whereas the data structure selected for 
Index 2 is all but inconsequential to the total run time. The dominance of 
Index O is characterised by the step-wise graphs in Figure C.5 where all run 
times with the same data structure for Index O are almost identical, irrespective 
of Index 2's data structure. The most efficient data structures for Index O are 
those with efficient insert and look operations, making the flexible array very 
effective, followed by the hash table, the sorted list, the unsorted list and finally 
the balanced tree. The balanced tree, whose insert and look operations are not 
particularly inefficient for the number of elements in Index 0, is handicapped by 
slow scan operations which is a secondary bottleneck. 

Set-based data structure selection makes a conservative choice of data struc
tures based on only the operations in the program. By selecting a hash table 
for Index O the run time of the program is 61 % slower than the fastest data 
structure combination. The static cost analysis makes the poorest selection of 
all the selection techniques (at 168% slower than the fastest data structure com
bination). Once again this is attributed to assumptions made by the selection 
technique being inconsistent with the run time properties of the program. 

Using a single run to aid cost analysis also makes a poor selection (again 
168% slower than the fastest combination). This technique selects an unsorted 

198 



Index look scan insert delete minimum empty 
occurrences I performed occ. I perf. occ. I perf. occ. I perf. occ. I perf. occ. I perf. 

lndexO 2 I 11227 1 I 99i8 4 I 28206 0 I 99°98 
0 I 99°99 

0 I 0 
lndex2 0 0 0 2 9998 1 1 0 0 

Average# of Average Mu M<n SucceHful Duplicate Max Value Min Value 
Index Element• ( N) 1092N Value Value Looke (R) lnaerta (D) lnaerta lnaert1 

InaexO 8611 13.0 9931 2.0 lOO'Yo 64.6'Yo 0.47'Yo O.O'Yo 
lndex2 1.0 0.0 5001 5001 - 0% 100% 0.0% 

Data StnlctuR Selection for lhc: Prime Number Pn,gnm Data StructuR: Selection for 1bc Prime Number Program 
70000 

80000 

l 
50000 'A r .0000 .. 

. Ii 30000 

j 
20000 

31 
+~+ 15 

·······································-+++++······································· 2 t 
++e++ 

10000 ·.+++++····---··-·-·· ····-----······-····-··--·····-·----······- 1 

10 15 20 25 
Rank o1 Execution r ...... 

Worst Data Structure Selection: 
Generic Data Structures: 
Best Data Structure Selection: 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection (10 runs): 
Regression Analysis Selection (15 runs}: 
Regression Analysis Selection (20 runs): 
Regression Analysis Selection (25 runs): 
Regression Analysis Selection (9 chosen runs): 

Run Time Selection: 

80000 

l 50000 

r .oooo 
I= 

i 30000 
+++++ 

+++++ 
ill 20000 +++++ 

10000 --~----------

10 15 

RMk of Execution Time 

[Balanced Tree, Unsorted List] 
[Balanced Tree, Balanced Tree] 
[Flexible Array, Balanced Tree] 
[Hash Table, Sorted List] 
[Unsorted List, Flexible Array] 
[Unsorted List, Sorted List] 
[Flexible Array, Sorted List] 
[Flexible Array, Sorted List] 
[Flexible Array, Sorted List] 
[Flexible Array, Sorted List] 
[Flexible Array, Flexible Array] 

20 

Figure C.5: Prime number program performance. 

199 

25 

(66,645ms) 
(66,546ms} 
(ll,803ms} 
(19,055ms} 
(31,652ms} 
(31,608ms} 
(ll,995ms) 
(11,995ms) 
(11,995ms) 
(11,995ms) 
(11,894ms) 

(28,022ms} 



list for Index O because when analysing the data collected at run time it appears 
that the scan operations on Index O dominate the total run time. However, when 
the actual run times are compared this is not the case. This discrepancy shows 
the actual performance of the data structures for Index O does not corresponding 
to that the cost estimate model. This is either because the parameters gathered 
from the single run do not adequately represent the execution of the program 
(perhaps due to averaging) or the formulas themselves are inaccurate for this 
case. 

To thoroughly test the regression analysis technique, the number of data 
structure combinations are varied. Using randomly selected data structures for 
each index, the minimum number of run times that can be analysed is 10. The 
number of measured runs is increased to improve accuracy. Finally, the program 
is run using carefully chosen combinations of data structures (where each data 
structure is equally represented in each index). The regression analysis performs 
very well and consistently selected the optimal data structure (flexible array) 
for Index 0. However the data structure selected for Index 2 is never optimal. 
This is because the contribution that Index 2 makes to the total run times is so 
small it is often lost in the "noise" within the data. 

Using run time data structure selection, the execution time of the prime 
number program is 137% slower than the fastest combination of data struc
tures. Although the data structures selected are reasonably efficient - initially 
an unsorted list followed by a hash table for Index O and constantly an unsorted 
list for Index 2 - the overhead of run time selection reduces efficiency. 

C.3 Shortest Path Program 

The shortest path program finds the shortest path between two points in a 
directed graph. This program is based on the shortest path program given in 
[45] which itself is based on Dijkstra's algorithm. 

The Starlog source code for the shortest path program is given in Figure 
C.7. In this program a directed graph is represented as a set of weighted edges 
edge(X,C, Y) where X is the origin node identifier, Y is the destination node 
identifier and C is the cost associated with the edge. The minimum cost of 
reaching a node is given by cost (X, C) where X is the node and C is the cost 
incurred travelling the shortest path. To begin the program, a node is selected 
from where all paths will originate. This is achieved by adding a cost/2 fact 
containing the originating node identifier and a zero cost value. When all pos
sible shortest paths have been found from the origin node to other connected 
nodes in the graph the program will terminate. The index structure automat
ically generated for this program contains seven argument indexes as shown in 
Figure C.6. 

To test the effectiveness of the data structure selection techniques, this pro
gram has been applied to two graphs. The first is a randomly defined graph 
with 1,000 nodes. The conventions of this graph are that each node has 20 edges 
originating from it to pseudo-random nodes, with cost values between 1 and 20. 
The second graph is a cyclic chain where each of 2,000 nodes is connected to 
the next. 

The results of data structure selection for the shortest path program with 
a random graph are given in Figure C.8. Although set-based selection is de-

200 



"delta·:,..----- .... , , 
(5) 

(6) 

(7) 

' cost(V,D) 

Root (Index 0) --
. --

(8) 

(9) 

' cost(V,D) 

_ "edge" 
.... ' 

' 

' 

(1) 

(2) 

(3) 

(4) 

edge(X,C,Y) 

Figure C.6: Index structure schema used for the shortest path program. 

% Shortest Path Program 
%----------------------------------------------------------------------
% Program to calculate the shortest path between a given node and any 
% other nodes in a directed graph. The graph is defined as a set of 
% weighted edges between nodes, represented in the program as 
% edge(X,C,Y) where X is the origin node, Y is the destination node 
% and C is the cost of the edge. 
% The output is the minimum cost incurred to reach each connected node 
% represented by cost(X,C) where X is the node reached and C is the 
% cost. 

stratify cost(_,C) [CJ . % Order cost tuples on their cost value. 

edge(1,5,2). 
edge(1,7,3). 
edge(3,2,4). 
edge(3,8,2). 

cost(1,0). 

% Sample graph (not used for benchmarks) 

% Node of origin (with zero cost) 

cost(U,NewC) <- cost(V,D), edge(V,C,U), % Find minimum cost to get 
NewC is D+C, % to connected nodes. 
not(cost(U,W), W < NewC). 

Figure C.7: Shortest path program. 

201 



Index look scan insert delete minimum empty 
occurrence• performed occ. pert. occ. 

lndexO 1 9001 0 0 1 
Index! 1 401 0 0 20000 
lndex2 0 0 1 9 20000 
lndex3 0 0 1 9000 20000 
lndex5 0 0 0 0 2 
lndcx6 0 0 1 1326 2 
lndex8 0 0 1 8600 1 

Average# of Average Mn Min Succeeaful 
Index Element• (N) lo92N Value Value Looks (R) 

lndexO 350 8.27 961 1.0 95.5% 
Index! 20.0 4.32 20 1.0 2.2% 
lndcx2 1000 9.97 1000 1.0 -
lndex3 1.0 0.0 499 499 -
lndex5 612 8.86 1274 663 -
lndex6 4.68 1.98 816 199 -
lndex8 1.0 0.0 147 147 -

Data Structure Selection for the Shortest Path Pn>gnm (Random Graph) 

4500 f"jliii'Stiiaiii~iiiiiiii~~===;=~~~-i30 
4000 

J 3500 
25 

! 3000 
20 A 

j 2500 J 
.5 2000 

15 15 

1 
1500 10 I ill 
1000 

500 ·-·---·-·---.. -· .. ·---·---·-·---------·---

------- 1 o,~---~--~---~---~ 
1 20000 40000 eoooo eoooo 

Rank of Execuion Tine 

Worst Data Structure Selection: 
Generic Data Structures: 
Best Data Structure Selection: 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection (35 runs): 
Regression Analysis Selection (70 runs): 
Regression Analysis Selection (140 runs): 
Regression Analysis Selection (280 runs): 
Regression Analysis Selection (29 chosen runs): 

Run Time Selection: 

per!. occ. per!. occ. per!. acc. perf. 
401 0 0 0 0 0 0 

20000 0 0 0 0 0 0 
20000 0 0 0 0 0 0 
20000 0 0 0 0 0 0 
9001 1 1326 1 1327 0 0 
9001 1 9001 0 0 1 9001 
401 0 0 0 0 0 0 

Duplicate Max Value Mln Value 
lnaer'8 (D) lnaerta ln•erta 

0% 24.6% 0.2% 
99.9% 5.1% 5.0% 

0% 100% 0.01% 
0% 100% 100% 

85.3% 0.1% 11.2% 
0% 55.0% 24.7% 
0% 100% 100% 

Cota Structure Selection for the Sbor1Ut Path Pn>gram (Rllldom Graph) 

4500r,;;;r.ii,;;i;;;'iF.~~~s=======:=;~------:i30 
4000 

3500 

! 3000 

! 2500 
I-

i 2000 

ill 1500 

1000 

25 

500~------

o'lit=--=--=-=--·=----=-·-.:::--:.::-·-=·--=----=--=--·=--·::;··=-=----=----=----=--·=--=----::;:--·-:.::·--=--·==:::i 1 
20000 40000 

RMkolex.c..;o,,Timo 

[SL,BT,UL,FA,UL,FA,BT] 
[BT,BT,BT,BT,BT,BT,BT] 
[FA,FA,SL,SL,FA,SL,SL] 
[HT,HT,UL,UL,SL,UL,UL] 
[FA,FA,FA,FA,FA,UL,UL] 
[FA,FA,FA,SL,FA,UL,UL] 
[HT,FA,SL,UL,BT,HT,FA] 
[FA,FA,FA,SL,FA,HT,HT] 
[FA,HT,FA,SL,FA,UL,HT] 
[FA,SL,FA,SL,FA,UL,HT] 
[FA,FA,SL,SL,FA,SL,SL] 

eoooo 80000 

(4,076ms) 
(331ms) 
(145ms) 
(2190ms) 
(975ms) 
(164ms) 
(228ms) 
(254ms) 
(197ms) 
(199ms) 
(145ms) 

(523ms} 

Figure C.8: Shortest path program performance (random graph). 

202 



Index look scan insert delete minimum empty 
occurrences performed acc. perf. occ. perf. occ. perf. occ. perf. occ. perf. 

lndexO 1 2000 0 0 1 2000 0 0 0 0 0 0 
Indexl 1 2000 0 0 2000 2000 0 0 0 0 0 0 
Index2 0 0 1 1999 2000 2000 0 0 0 0 0 0 
lndex3 0 0 1 1999 2000 2000 0 0 0 0 0 0 
Index5 0 0 0 0 2 2000 1 2000 1 2001 0 0 
lndex6 0 0 1 2000 2 2000 1 2000 0 0 1 2000 
lndex8 0 0 1 0 1 2000 0 0 0 0 0 0 

Average# of Average Maz Min SucceHful Duplicate Max Value Min Value 

Index Elements ( N) 1092N Value Value Look11 (R) 

lndexO 1000 9.53 1000 1.0 0% 
lndexl 2000 11.0 1999 0.0 100% 
Index2 1.0 0.0 1.0 1.0 -
lndex3 1.0 0.0 1000 1000 -
lndex5 1.0 0.0 1000 1000 -
lndex6 1.0 0.0 1001 1001 -
lndex8 1.0 0.0 499 499 -

Dota S!NCIUro Selection far !be Sbortc51 Path Program (Chain Graph) 

1600 f"ii;i;'iii~;'!i;i;;;;;;;i~;F==;=,.-----., 

oric Data Slruchno ~ 1400 al-of.lnalructlonl Dala Slruchn Seleclion 25 
tic Cool -lyoio Set-

1200 lnglll R.., Cool Analyoio Se!Klion 
WI Time Selection •·•· •·•·• 

! 1000 
20 ~ 

.t 1s I ,-
600 

i 0 

600 t 
ill 10 I 

400 

200 

60000 60000 
Rank ol Exocuion Time 

Worst Data Structure Selection: 
Generic Data Structures: 
Best Data Structure Selection: 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection (35 runs): 
Regression Analysis Selection (70 runs): 
Regression Analysis Selection (140 runs): 
Regression Analysis Selection (280 runs): 
Regression Analysis Selection (29 chosen runs): 

Run Time Selection: 

Inserts (D) Inserts ln•erta 

0% 100% 0.0% 
0% 100% 0.0% 
0% 100% 100% 
0% 100% 100% 
0% 100% 100% 
0% 100% 100% 
0% 100% 100% 

Data S1n1<:1111"C Selection for !be Shortest Path Program (Chain Graph) 

1600f"iiiiii~ii'if,~iii'ii~~====;==,--;i 

1400 25 

1200 

! 1000 
20 ~ 

I 
I 
ill 

600 

600 

400 

20000 40000 
Rank of Execullon Time 

[FA,UL,FA,UL,UL,UL,SL] 
[BT,BT,BT,BT,BT,BT,BT] 
[SL,FA,SL,SL,SL,SL,SL] 
[HT,HT,UL,UL,SL,UL,UL] 
[FA,FA,FA,FA,FA,UL,UL] 
[FA,FA,SL,SL,SL,SL,SL] 
[UL,HT,HT,HT,SL,FA,UL] 
[BT,BT,SL,SL,UL,FA,SL] 
[BT,HT,SL,SL,UL,BT,SL] 
[SL,HT,SL,SL,UL,FA,SL] 
[UL,BT,SL,SL,UL,SL,SL] 

1s I 
0 

t 
,o I 

·········---- .. ····--··· 1 

60000 60000 

(1,522ms) 
(115ms) 
(56ms) 
(84ms) 
(309ms) 
(66ms) 
(160ms) 
(llOms) 
(118ms) 
(97ms) 
(89ms) 

(119ms) 

Figure C.9: Shortest path program performance (chain graph). 

203 



signed to make a conservative choice, it makes a poor choice of data structures 
(1400% slower than the most efficient data structures) for this program. One 
explanation is that the optimal selection of data structures use flexible arrays 
but the set-based selection technique is not capable of assigning these to in
dexes, thereby forcing the use of a less efficient data structure. The static cost 
analysis technique also makes a poor selection (572% slower than the fastest 
combination of data structures) because it selects a flexible array for Index 3 
which holds only one element. Using a single run to gather run time data is very 
effective in this case and chooses near optimal data structures for every index. 
Regression analysis is also very effective for this program where all selections are 
only 75% slower than the fastest run time. When measuring the performance of 
randomly selected data structures, accuracy tends to improve with additional 
runs. Regression analysis using chosen data structures is noteworthy in this 
case for choosing the optimal data structure combination. 

When data structure selection is applied to the cyclic chain graph (Figure 
C.9), set-based selection and static cost analysis select the same combinations 
of data structures as for the random graph. However the performance of these 
data structures has changed. The data structures chosen by set-based selection 
are now very efficient giving a run time close to the best case (only 50% slower). 
The efficiency of data structures selected using static cost analysis has improved 
slightly for the chain graph, giving a run time 452% slower than the fastest run 
time. This suggests that the assumptions made during static cost analysis are 
modelled more closely when finding the shortest path in the chain graph than the 
random graph. By using a single run to gather data at run time, the optimal 
data structure is selected for all but one index, resulting in a run time 18% 
slower than the fastest. Regression analysis measuring randomly selected data 
structures improves from 185% to only 73% slower than the fastest combination 
as more runs are measured. Choosing data structures deliberately so that all are 
represented in each index makes a further improvement to regression analysis 
however the resulting run time does not eclipse that found using the single run 
cost analysis technique. 

Run time data structure selection out performed both compile time static 
analysis techniques for both example graphs. However, when compared to the 
other selection techniques, this is more likely to be the result of poor selections 
being made by the static analysis rather an effective run time selection. 

C.4 Pascal's Triangle Generation 

Pascal's triangle is a commonly referenced structure used for expansion of poly
nomial algebraic formula and combinatorics. The program to generate Pascal's 
triangle is given in Figure C.11. Each binomial coefficient N, is identified by its 
Ith row, and Jth column as a pascal(I,J,N) tuple. Elements at the begin
ning and end of each row are generated with 1 as their coefficient. All other 
coefficients are generated as the sum of the two coefficients in the previous row 
that occupy the same column and the previous column. To ensure termination 
a limit is imposed on the number of rows generated. For the purposes of these 
experiments 20 rows are generated. The index structure stores run time data 
in seven argument indexes shown in Figure C.10. 

The results of data structure selection are shown in Figure C.12. The step-

204 



Root (Index 0) ---- "rows" 
"delta•:,.. - ----.... .,. - .. 

' ' , 

i 
, 

(1) 
(8) 

(2) (5) (9) 

' (3) (6) 
rows(N) 

(4) (7) 

' ' pascal(I,J,N) pascal(I,J,N) 

Figure C.10: Index structure schema used for the Pascal's triangle generation 
program. 

wise nature of the program's run times shown in the graphs indicates that 
execution is dominated by a few indexes and the remaining indexes are almost 
inconsequential by comparison. However the profile of these graphs also suggests 
that most data structures are equally efficient when they implement the domi
nant indexes and only one data structure is particularly inefficient. By analysing 
the raw data produced by the programs it was found that when either Index 
3 or 5 are implemented by a flexible array the run time increases significantly 
and is responsible for the first step which puts run times over 350ms. When 
both Indexes 3 and 5 are implemented by flexible arrays the second step occurs 
putting run times over 600ms. 

Set-based selection, static cost analysis and cost analysis using a single run 
all select efficient combinations of data structures for this program. The run 
times produced by their selections are very close to optimal (all these techniques 
produced run times that are less than 50% slower than the fastest data structure 
combination). However the regression analysis did not perform as well in these 
experiments. Although the regression analysis consistently avoids implement
ing Indexes 3 and 5 with flexible arrays, it has more difficulty selecting efficient 
data structures for the remaining indexes (producing run times between 78% 
and 48% slower than the fastest run time). This highlights a limitation of re
gression analysis where the dominant effect of some indexes makes selection of 
others difficult. To select more efficient data structures for all indexes using 
regression analysis requires increasing the number of measured runs, as shown 
in the graph. The run time selection technique produces an inefficient program 
when compared to the other techniques (173% slower than the fastest run time). 

205 



% Pascal's Triangle 

%----------------------------------------------------------------------
% Generates X rows of pascals triangle where X is the number specified 
% in rows(X). A pascal(I,J,N) tuple represents each element in the 
% triangle where I is the row, J is the column number and N is the 
% binomial coefficient. In this system the triangle is generated as 
% follows: 1 
% 1 1 
% 1 2 1 
% 1 3 3 1 
% 1 4 6 4 1 
% 

stratify pascal(I,J,_) [I,J]. % Order elements on their row and 
% then column indexes. 

rows(20). % Number of rows to generate. 

pascal(0,0,1). % Row O (root of the triangle). 

pascal(I,0,1) <- pascal(J ,0, 1), rows(Nn), % Generate a 1 as the first 
Nn >= J, I is J+1. % element in any row. 

pascal(I,I,1) <- pascal(J,J,1), rows(Nn), % Generates a 1 as the last 
Nn >= J, I is J+1. % elements in any row. 

pascal(Iv,Jh,N) <- pascal(Jv,Jh,N1), rows(Nn), % Generates row elements 
Nn >= Jv, Iv is Jv+1, % as the sum of the two 
J is Jh-1, pascal(Jv,J,N2), % elements in the 
N is N1+N2. % previous row. 

Figure C.11: Pascal's triangle program. 

206 



Index look scan insert delete minimum empty 
occurrences performed occ. perf. occ. perf. occ. perf. occ. perf. occ. perf. 

IndexO I 231 0 0 I 253 0 0 0 0 0 0 
Index! 0 0 0 0 4 253 I 22 I 254 0 0 
Index2 0 0 0 0 4 253 I 253 I 253 I 253 
Index3 0 0 I 253 4 253 0 0 0 0 0 0 
Index5 0 0 I 210 I 253 0 0 0 0 0 0 
Index6 I 1540 0 0 I 253 0 0 0 0 0 0 
Index8 0 0 3 297 I I 0 0 0 0 0 0 

Average# of Average Maz Min Succeaaful Duplicate Max Value Min Value 

Index Elements (N) lo92N Value Value Look11 (R) Inserts (D) lnaerta Inserts 

IndexO 14.0 3.78 13.0 0.0 90.9'10 91.3'10 17.0'10 8. 7'1o 
Index! 1.82 0.827 14.8 13.9 - 91.3% 100% 0.4% 
Index2 7.75 2.77 10.7 3.72 - 0% 92.1% 8.7% 
Index3 1.0 0.0 14682 14682 - 0% 100% 100% 
Index5 6.59 2.55 12967 1.0 - 8.3% 100% 17.0% 
Index6 1.91 0.909 9.85 8.86 13.6% 0% 100% 91.7% 
Index8 1.0 0.0 20.0 20.0 - 0% 100% 100% 

Data Sttucture Selection for Pascal's Triangle Program Data Structure Selection for Pascal's Triangle Program 

25 25 

800 J 20 

I I ! I 
-~ 

800 I 15 J .l ... _J ... 

I 
.,. 

-~ 
400 r- 10 i Q 

.n .n 

800 

800 

400 

J 20 

I ! 
I 15 J 

J .,. . 
r- ,o t 

" 
200 200 

··-··················································· •···•·•·•·•·•·•·•·•·•·•·•·•·•·•·•···• 
···············- 1 o~---~---~---~--~ 

1 20000 40000 80000 80000 20000 40000 80000 80000 

Rank ol Execution rrne 

Worst Data Structure Selection: 
Generic Data Structures: 
Best Data Structure Selection: 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection (35 runs): 
Regression Analysis Selection (70 runs): 
Regression Analysis Selection (140 runs): 
Regression Analysis Selection (280 runs): 
Regression Analysis Selection (29 chosen runs): 

Run Time Selection: 

Rank ot Execution Time 

[HT,FA,FA,FA,FA,SL,UL] 
[BT,BT,BT,BT,BT,BT,BT] 
[UL, UL, UL, UL, UL, UL, UL] 
[HT,SL,SL,UL,UL,HT,UL] 
[FA,FA,FA,UL,UL,FA,UL] 
[FA,SL,FA,SL,SL,FA,UL] 
[FA,SL,HT,UL,UL,UL,HT] 
[FA,SL,UL,UL,UL,UL,HT] 
[BT,SL,UL,UL,UL,BT,SL] 
[BT,UL,BT,UL,UL,UL,FA] 
[FA,FA,FA,UL,SL,FA,FA] 

Figure C.12: Pascal's triangle program performance. 

207 

(865ms) 
(42ms) 
(37ms) 
(55ms) 
(54ms) 
(52ms) 
(64ms) 
(62ms) 
(60ms) 
(55ms) 
(66ms) 

(lOlms) 



During run time data structure selection the flexible array was avoided for In
dexes 3 and 5 however the additional overhead incurred at run time makes this 
approach inefficient for the Pascal's triangle program. 

C.5 Transitive Closure 

The transitive closure of a directed graph calculates the set of nodes reachable 
from any node in the graph. The program to determine the closure is given 
in Figure C.14 and is efficiently represented in Starlog. The single rule finds 
two existing paths which share a source and destination node and creates a new 
path that spans both existing paths. To ensure termination and efficiency for 
finite graphs, a new path is created only if it does not already exist. Paths 
are represented by a path(X, Y, T) tuple where X and Y are the source and 
destination node identifiers and T is the program iteration in which the path was 
created. Ordering paths on their T value ensures that the negation is stratified, 
and that existing paths will not be regenerated in later iterations. 

To improve the performance of this program path (X, Y, T) tuples are indexed 
in two ways in the r set. Arguments are ordered X, then Y, then T in one 
index path and T, then X, then Y in another, as shown in the index structure 
in Figure C.13. The advantage of indexing these tuples in different ways is 
that each is optimised for the two types of searching that occurs at run time. 
The disadvantage is that the two indexes must be updated with any new data. 
Although the use of multiple indexing paths for predicates can not be inferred 
using the techniques given in Chapter 3, this makes an interesting example for 
experiments with data structure selection. 

The transitive closure program is applied to two graphs. The first is a 
pseudo-randomly defined graph containing 200 nodes and 260 edges. The second 
is a cyclic chain of 50 nodes where each node has a single connection to the next 
in the chain. 

Because the index structure used for the transitive closure program contains 
eight argument indexes, it is impractical to explore all combinations of data 
structures in order to rate the data structure selection technique. (With eight 
argument indexes there are 390,625 combinations of data structures.) Instead, 
for the transitive closure program and for programs with even more argument 
indexes, a random sample of all data structure combinations is used. Depend
ing on time constraints, the samples contain between 30,000 and 50,000 data 
structure combinations. 

Figures C.15 and C.16 give the results of data structure selection for the 
random graph and chain graph, respectively. For the random graph, set-based 
data structure selection chooses reasonably efficient data structures with a run 
time 67% slower than the fastest run time in the sample. The data structures 
selected by static cost analysis are slightly less efficient at 77% slower than the 
fastest combination of data structures. Using a single run to aid cost analysis, a 
very efficient combination of data structures is selected - almost identical to the 
best case found in the sample and only 4% slower. When transitive closure is 
applied to the chain graph, set-based selection (whose data structure selection is 
140% slower than the fastest run time) is out performed by static cost analysis 
(only 126% slower than the fastest run time). Using a single run to aid cost 
analysis for the chain graph again results in an efficient combination of data 

208 



Root (Index 0) "t_ then_ 
>--~----<- - - - _ x_then_y" 

"delta ':0- - - - - - - - .,. '"" , 
, ' , 
(12) 

(13) 

(14) 

(15) 

' path(X,Y,T) 

(3) 

(4) 

(5) 

' path(X,Y,T) 

(7) 

(8) 

(9) 

(10) 

' path(X,Y,T) 

Figure C.13: Index structure schema used for the transitive closure program. 

% Transitive Closure 
%----------------------------------------------------------------------
% Finds all paths that exist between any two nodes in a directed graph. 
% path(X,Y,T) is the path between nodes X and Y that was found during 
% iteration T of the program. 

stratify path(_,_,T) [T]. 

path(l,2,0). % Sample graph (not used for benchmarks) 
path(l,3,0). 
path(3,4,0). 
path(3,2,0). 

path(X,Y,TNew) <- path(X,Z,T), path(Z,Y,T2), T >= T2, % Generates a 
not(path(X,Y,T3), T >= T3), % new paths if one 
Tnew is T+l. % does not exist. 

Figure C.14: Transitive closure program. 

209 



Index look scan insert de ete minimum empty 
occurrence• performed occ. perf. OCC, perf, OCC, perf. acc. perf. occ. perf. 

lndexO 6 352965 1 6359 1 6359 0 0 0 0 0 0 
lndex3 6 1293837 1 5093 1 6359 0 0 0 0 0 0 
Index7 2 12718 0 0 1 6359 0 0 0 0 0 0 
lndex8 1 6359 1 6359 1 6359 0 0 0 0 0 0 
Index9 1 274839 1 2038 1 6359 0 0 0 0 0 0 
lndexl2 0 0 0 0 5 47103 1 6 1 7 0 0 
lndexl3 0 0 1 6 264 47362 0 0 0 0 0 0 
lndexl4 0 0 1 604 264 47362 0 0 0 0 0 0 

Average# of Average Maz Min Succeaaful Duplicate Max Value Min Value 
Index Element• (N) lo92N Value Value Looks (R) ln•erta (D) lnaert• lnaerte 

lndexO 127 6.04 163 0.0 99.6'11, 97.6'11> l.1'11, 5.2'11, 
lndex3 9.0 2.22 129 37.8 33.7% 42.6% 6.8% 11.7% 
Index7 2.50 1.15 1.67 o.o 100% 99.9% 100% 4.1% 
lndex8 106 5.81 163 0.0 32.0% 90.5% 1.1% 100% 
lndex9 4.17 1.36 113 47.0 20.9% 0% 9.5% 100% 
Indexl2 1.0 0.0 2.5 2.5 - 100% 100% 0.0% 
Indexl3 101 6.60 196 0.0 - 98.8% 1.0% 1.7% 
lndexl4 12.3 2.78 160 32.8 - 86.6% 0.5% 14.6% 

Da1a S1n1etwo Selection for Transitive Closwe Prosmn (Random Gnpb) 

4000 fri;ir.ii,;;r.;;;'iii~;;;::;'ir.,iS'===;:=,--.--;--, 
001a SlrUCIUrO Selection for Tnnsitive a ... ,. Prosnm (Random Gnph) 

4000 ("naii;'ii;;i;;iii;;E;;:;;'ij~;i====:==r---:-, 

3500 

3000 

! 2500 8~ . 
l ~ 2000 

I 4,, 
:l 

! 1500 '!I 
:I 

2 

0 
1 10000 20000 30000 

Ronkol ExocuUon Tino 

Worst Selection (in sample): 
Generic Data Structures: 
Best Selection (in sample): 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection ( 40 runs): 
Regression Analysis Selection (80 runs): 
Regression Analysis Selection (160 runs): 
Regression Analysis Selection (320 runs): 
Regression Analysis Selection (33 chosen runs): 

Run Time Selection: 

10000 20000 

[UL,UL,HT,FA,UL,FA,UL,HT] 
[BT,BT,BT,BT,BT,BT,BT,BT] 
[FA,FA,UL,SL,FA,SL,FA,FA] 
[HT,HT,HT,HT,HT,SL,UL,UL] 
[HT,HT,FA,UL,UL,FA,FA,FA] 
[FA,FA,FA,UL,FA,SL,FA,FA] 
[HT,HT,FA,UL,BT,HT,FA,FA] 
[FA,FA,HT,FA,HT,UL,FA,BT] 
[FA,FA,SL,FA,FA,HT,FA,HT] 
[FA,FA,HT,SL,FA,HT,FA,UL] 
[FA,FA,FA,SL,FA,SL,FA,FA] 

Figure C.15: Transitive closure program performance (random graph). 

210 

30000 

8~ 

l 
4• 

I 
2 

(3,858ms) 
(1,150ms) 
(446ms) 
(743ms) 
(790ms) 
(490ms) 
(750ms) 
(581ms) 
(503ms) 
(508ms) 
(464ms) 

(1,169ms) 



Index look scan insert delete minimum empty 
occurrences performed occ. perf. occ. perf. occ. perf. occ. perf. occ. perf. 

lndexO 6 465505 1 4799 1 4799 0 0 0 0 0 0 
lndex3 6 699431 1 4798 1 4799 0 0 0 0 0 0 
lndex7 2 9598 0 0 1 4799 0 0 0 0 0 0 
lndex8 1 4799 1 4799 1 4799 0 0 0 0 0 0 
lndex9 1 122739 1 2388 1 4799 0 0 0 0 0 0 
lndex12 0 0 0 0 5 103613 1 8 1 9 0 0 
lndex13 0 0 1 8 54 103662 0 0 0 0 0 0 
lndex14 0 0 1 399 54 103662 0 0 0 0 0 0 

Average# of Average Maz Min SucceHful Duplicate Max Value Min Value 
Index Elements (N) lo92N Value Value Look• (R) Insert• (D) Insert• Insert• 

lndexO 43.8 4.94 42.9 0.0 lOO'Yo 99.0'Yo l.O'Yo 3.0'Yo 
lndex3 14.1 2.58 29.6 12.5 73.7% 47.9% 6.9% 9.5% 
lndex7 3.5 1.54 2.63 0.0 100% 99.8% 100% 1.0% 
lndex8 43.8 4.94 42.9 0.0 49.7% 91.7% 1.4% 100% 
lndex9 3.13 1.09 23.0 18.5 51.9% 0% 8.3% 100% 
lndex12 1.0 0.0 3.5 3.5 - 100% 100% 0.0% 
lndex13 49.9 5.64 48.9 0.0 - 99.6% 0.8% 4.2% 
lndex14 11.5 2.51 32.5 15.6 - 95.4% 3.9% 8.7% 

Data Structure Selection for Transitive Oosun: Prognm (Chain Graph) 

2500 fiiar.ii~=i;;i;;;;;!i'ii;:;;;i====:=c,--, 

9 

A 
a I 

'li 

1 
~ 

3 :I 

500 

........... 1 

o~--~--~--~---~-~ 
1 20000 30000 ,00000 50000 

Rank of Execution Tine 

Worst Selection {in sample): 
Generic Data Structures: 
Best Selection {in sample): 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection ( 40 runs): 
Regression Analysis Selection {80 runs): 
Regression Analysis Selection {160 runs): 
Regression Analysis Selection {320 runs): 
Regression Analysis Selection {33 chosen runs): 

Run Time Selection: 

! 
l 
j 

2000 

1500 

Rank of ExecuUon rime 

[SL,UL,UL,HT,SL,FA,SL,BT] 
[BT,BT,BT,BT,BT,BT,BT,BT] 
[FA,FA,FA,UL,FA,SL,FA,SL] 
[HT,HT,HT,HT,HT,SL,UL,UL] 
[HT,HT,FA,UL,UL,FA,FA,FA] 
[FA,FA,FA,UL,FA,SL,FA,FA] 
[FA,HT,SL,SL,FA,UL,FA,SL] 
[FA,FA,SL,SL,FA,UL,HT,SL] 
[FA,FA,SL,SL,FA,SL,FA,SL] 
[FA,FA,UL,SL,FA,SL,FA,SL] 
[FA,FA,FA,FA,FA,FA,FA,SL] 

Figure C.16: Transitive closure program performance (chain graph). 

211 

····-···- 1 

50000 

{2360ms) 
(743ms) 
{237ms) 
{578ms) 
{536ms) 
{343ms) 
{327ms) 
{274ms) 
{242ms) 
{253ms) 
{250ms) 

{644ms) 



structures - 45% slower than the best in the sample. 
Regression analysis performed well for both the random and the chain graphs, 

typically choosing increasingly efficient data structures as more runs are anal
ysed. This is not surprising because the run times generated by the program 
are not dominated by a few indexes, therefore allowing efficient data structures 
to be found for all indexes. 

Using run time data structure selection produced inefficient run times for 
both graphs and were out performed by the selections made by all compile time 
techniques. 

C.6 Game of Life 

Conway's game of life (an implementation of cellular-automata) was first pro
posed in [46]. The rules of the game are that a cell on a two dimensional board 
lives to the next generation if it has either two or three neighbouring cells, and 
a new cell is produced if there are three cells around an empty location. 

The Starlog implementation of the game of life given in Figure C.18 is un
usual because it uses negation to test the number of cells that exist around a 
location. A cell, represented as cell (X, Y, T), lives to the next generation (T+1) 
if it has 2 (different) neighbouring cells but not a third. A new cell is created at a 
location if it has 3 (different) neighbouring cells but not a forth. The neighbours 
of a cell (represented by neighbour(X, Y ,N, T)) are precomputed where each of 
the eight locations around the cell are given an identifier as the N argument. In 
this way it is possible to distinguish neighbours originating from different cells. 
To ensure termination, an upper limit is imposed on the rules so that no cells 
are created beyond the 150th generation. 

As shown in Figure C.17, the index structure used for the game of life con
tains 14 argument indexes. However, to reduce the number of data structure 
combinations, indexes 10 and 11 which only hold one element are implemented 
by unsorted lists. This allows this analysis of data structure selection to focus 
on the more interesting indexes. 

To test data structure selection, the game of life is given two different starting 
patterns that generate different data sets. The first is known as the rabbits 
pattern (see [60]) which begins as an arrangement of nine cells and, as the name 
suggests, grows quickly over time. The second pattern, known as the traffic light 
(see [60]), is composed of 12 oscillating cells that never increase or decrease in 
number. 

When the data structure selection techniques are applied to the game of life, 
all compile time techniques select reasonable combinations of data structures for 
both the rabbits and the traffic light patterns (see Figures C.19 and C.20). The 
set-based selection technique chose data structures which were 22% and 38% 
slower than the fastest sampled run times. Static cost analysis selected more 
efficient data structures for the rabbits pattern than the set-based approach but 
a slightly less efficient combination for the traffic light. Using a single run to 
aid cost analysis, a very efficient combination of data structures was selected for 
both patterns. 

Although the smooth rate of change in the run time graphs indicates the 
performance of the life program is not dominated by a few indexes, the regres
sion analysis had mixed results. For the rabbits pattern, when a small number 

212 



"delta", - - - - - -.. , 
Root (Index 0) 

- - - - .. "!:earn .. , 
(5) 

(I) 

(13) 
(2) 

(14) 
(3) 

- •,"cell" 

[ b~lean] 
(15) (4) 

' • cell(X,Y,T) 

"rulel • 
, - ... 

[ boo~an] 

• 

(11) ' neighbour(X,Y,N,T) neighbour(X,Y,N,T) 

' 
cell (X, Y,T)+--not(naighbour(X,Y,N4,Tl. N4!=Nl, N4!=N2, N4!=N3) 

cell (X, Y, T) +-- not(neighbour IX, Y,N3,T), N3!=Nl, N3 !=N2) 

.. 

i (16) 

(17) 

' near(X) 

Figure C.17: Index structure schema used for the game of life. 

213 



% Game of Life 

%----------------------------------------------------------------------
% Implementation of Conway's Game of Life. Each live cell in on the 
% board is a cell(X,Y,T) tuple where X and Y are its spacial 
% coordinates and T is the generation that the cell is alive. The eight 
% neighbours of a cell are labelled [-4,-3,-2,-1,1,2,3,4] and a cell 
% which has two unique neighbouring cells will live to the next 
% generation. If an empty location has three neighbouring cells a new 
% cell will be created in the next generation. 

stratify cell(_,_,T) [T]. 
stratify neighbour(_,_,_,!) [T]. 

cell(49,50,0). % Sample board (not used for benchmarks) 
cell(50,50,0). 
cell(51,50,0). 

cell(X,Y,TNew) <- cell(X,Y,T), T < 150, neighbour(X,Y,N1,T), 
neighbour(X,Y,N2,T), N2 > N1, % A cell with 2 but 
not(neighbour(X,Y,N3,T), % not 3 neighbours 

N3 =\= N1, N3 =\• N2), % lives on. 
TNew is T+1. 

cell(X,Y,TNew) <- neighbour(X,Y,N1,T), T < 150, neighbour(X,Y,N2,T), 
N2 > N1, neighbour(X,Y,N3,T), N3 > N2, % A new 
not(neighbour(X,Y,N4,T), N4 =\= N1, % cell is 

N4 =\= N2, N4 =\= N3), TNew is T+1. % born. 

neighbour(XNew,YNew,N,T) <- cell(X,Y,T), near(DX), near(DY), 
N is (DX•3)+DY, N =\= 0, % Generates 
XNew is X+DX, YNew is Y+DY. % neighbours 

near(-1). % Used when generating neighbours. 
near(O). 
near(1). 

Figure C.18: Game of life program. 

214 



Jnoex look scan 
occurrencea performed occ. perf. 

JndexO 2 77467 0 0 
Indexl 2 77467 0 0 
Index2 2 77467 0 0 
Jndex3 0 0 5 296120 
Index5 0 0 0 0 
Jndex6 0 0 0 0 
Jndex7 0 0 1 151 
Index8 0 0 1 16836 
Index9 0 0 2 27878 
Jndex13 0 0 I 1200 
Jndex14 0 0 1 18288 

Average# of Average Maz Min 

Index Elements (N) log2N Value Value 

IndexO 21.1 4.31 63.3 43.2 
Indexl 14.6 3.71 59.5 45.2 
Index2 21.0 4.13 66.4 37.4 
Jndex3 2.01 0.799 0.0 -2.11 
Index5 1.0 0.0 75.0 75.0 
Jndex6 7.95 2.98 3.97 -3.97 
Index7 15.5 3.86 62.1 44.8 
Jndex8 5.26 2.28 56.6 49.0 
Jndex9 1.03 0.0331 1.66 0.205 
Index13 15.1 3.80 61.6 44.5 
Index14 3.18 1.56 56.0 48.9 

Data SttUcture Selection for the Game of Life (Rabbit Pattern) 

3000 f"ii;;;,.;;;;;;;;;a;;;;;;;~r.;;;;;;='==;==,-~--, 

2500 

I 
l 
I- 1500 
-~ 
Q 

1000 ill 

500 

0 
1 10000 20000 30000 

Rank ol Execution Tffle 

Worst Selection (in sample): 
Generic Data Structures: 
Best Selection (in sample): 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection ( 55 runs): 
Regression Analysis Selection (110 runs): 
Regression Analysis Selection (220 runs): 
Regression Analysis Selection ( 440 runs): 

insert oe1ete minimum empty 
occ. 

4 
4 
4 
1 

13 
3 
11 
11 
2 
3 
3 

Succe1111ful 

Look11 (R) 

100'/'o 
100% 
100% 

-
-
-
-
-
-
-
-

perf. acc. perf. acc. perf. occ. perf. 
81806 0 0 0 0 0 
81806 0 0 0 0 0 
81806 0 0 0 0 0 
72640 0 0 0 0 0 
77476 1 151 1 152 0 
72640 1 1200 I 151 0 
77476 0 0 0 0 0 
77476 0 0 0 0 0 
77467 0 0 0 0 0 
72640 0 0 0 0 0 
72640 0 0 0 0 0 

Duplicate Max Value Min Value 
In11ert11 (D) Inserts Insert• 

100'/'o 0.5'7, 0.9'/'o 
99.1% 2.2% 1.8% 
62.2% 100% 1.0% 

0% 100% 42.2% 
99.8% 100% 0.0% 
98.3% 12.5% 13.9% 
97.0% 2.9% 3.1% 
81.3% 15.6% 16.4% 
64.0% 100% 18.7% 
74.8% 3.3% 100% 

0% 25.2% 100% 

Data SttUcture Selection for the Game of Life (Rabbit Pattern) 

3000 ,naia'ii;~~~~iiaa;;;;,=====;==;~--, 

o~---~----~----~-~ 
1 10000 20000 30000 

Rank of Exec\Aion Time 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

[UL,UL,UL,IIT ,UL,BT,UL,BT ,!IT ,FA,IIT) (2,663rns) 
[BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT,BT) (1,754rns) 
[FA,FA,SL,UL,BT ,SL,UL,UL,UL,FA,SL) (595rns) 
[IIT,IIT ,!IT ,UL,SL,SL,UL,UL,UL,UL,UL) (727rns) 
[FA,FA,FA,UL,FA,FA,FA,FA,UL,UL,UL) (643rns) 
[FA,FA ,FA, UL, SL,FA ,FA, UL ,FA,FA, UL) ( 645rns) 
[FA,FA ,SL,FA, IIT ,!IT ,UL, !IT ,UL, SL ,!IT) (789rns) 
[FA,FA,SL,SL,IIT ,UL,SL,IIT ,UL,SL,SL] (640rns) 
[FA,FA,SL,SL,FA,UL,SL,FA,UL,SL,SL) (643rns) 
[FA,FA ,FA, UL ,FA, SL,SL ,UL, UL, SL, SL] ( 628rns) 

Regression Analysis Selection ( 45 chosen runs): [UL,IIT ,SL,SL,UL,SL,SL,SL,SL,SL,SL] (718ms) 

Run Time Selection: (1,197rns) 

Figure C.19: Game of life program performance (rabbit pattern). 

215 



1naex look scan msert aelete minimum empty 
occurrence• performed occ. pe". occ. pe". occ. pert. occ. pert. occ. pert. 

lndexO 2 1800 0 0 4 16212 0 0 0 0 0 0 
lndexl 2 1800 0 0 4 16212 0 0 0 0 0 0 
lndex2 2 1800 0 0 4 16212 0 0 0 0 0 0 
lndex3 0 0 5 37800 1 14400 0 0 0 0 0 0 
lndex5 0 0 0 0 16 1812 1 151 1 152 0 0 
lndex6 0 0 0 0 3 14400 1 1200 1 151 0 0 
lndex7 0 0 1 151 14 1812 0 0 0 0 0 0 
lndex8 0 0 1 2719 14 1812 0 0 0 0 0 0 
lndex9 0 0 2 1800 2 1800 0 0 0 0 0 0 
lndexl3 0 0 1 1200 3 14400 0 0 0 0 0 0 
lndexl4 0 0 1 7200 3 14400 0 0 0 0 0 0 

Averagn # of Average Moz Min Succeaeful Duplicate Max Value Min Value 
Index Element, (N) lo92N Value Value Looks (R) lnaerta (D) lnaerte lnaert• 

lndexO 10.9 3.44 58.6 48.7 lQO'jli 99.9'jli l.4'jli l.5'jli 
lndexl 5.95 2.57 56.6 50.7 100% 99.5% 5.4% 5.4% 
lndex2 53.0 5.25 73.0 0.0 100% 48.1% 100% 8.1% 
lndex3 1.5 0.465 0.0 -1.25 - 0% 100% 58.3% 
lndex5 1.0 0.0 75.0 75.0 - 91.7% 100% 0.7% 
lndex6 7.95 2.98 3.97 -3.97 - 91.7% 12.5% 19.8% 
lndex7 6.01 2.57 57.5 50.5 - 49.9% 41.7% 29.2% 
lndex8 1.50 0.497 55.0 52.0 - 0% 75.2% 66.6% 
lndex9 1.0 0.0 0.993 0.993 - 0% 100% 100% 
lndexl3 5.96 2.55 57.1 50.2 - 50.0% 16.7% 100% 
lndexl4 1.49 0.497 54.6 51.7 - 0% 50.0% 100% 

Data S1n1etun: Selection for the Game of Life (Traffic Light) 
1000 

800 

200 ---·-··-·---··----·-----··-----·--------··---- 1 200 ··---------··-----··---·------··-·····-·-···-····--·····-··--···-· 

o~-----~-----~--~ O'----~-----~--~----' 
1 10000 20000 30000 «JOOO 50000 1 10000 20000 30000 «JOOO 50000 

-kof Execulion T1mo 

Worst Selection (in sample): 
Generic Data Structures: 
Best Selection {in sample): 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis Selection: 
Regression Analysis Selection {55 runs): 
Regression Analysis Selection {110 runs): 
Regression Analysis Selection {220 runs): 
Regression Analysis Selection (440 runs): 
Regression Analysis Selection ( 45 chosen runs): 

[BT ,UL,UL,IIT ,FA,IIT ,SL,UL ,FA,FA,HT] 

[BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT] 

[SL,BT ,SL,SL,UL,UL,SL,UL ,SL, UL,SL] 

[HT ,IIT ,IIT ,UL,SL,SL,UL,UL,UL, UL,UL] 

[FA ,FA ,FA, UL, FA,FA ,FA ,FA, UL, UL, UL] 

[FA,FA,FA,SL,SL,FA,SL,SL,FA,UL,SL] 

[SL,FA,SL,UL,SL,UL,SL,BT ,HT ,UL,SL] 

[IIT ,FA,SL,UL,HT ,FA,IIT ,BT ,UL,IIT ,SL] 

[IIT ,FA,SL,SL,FA,FA,FA,IIT ,UL,SL, SL] 

[HT ,FA,SL,SL,FA,BT ,FA,BT ,UL,UL,SL] 

[SL,SL,SL,UL,UL,UL,SL,UL,FA,SL,SL] 

{915ms) 
{391ms) 
{215ms) 
{297ms) 
{301ms) 
{248ms) 
{333ms) 
{358ms) 
{302ms) 
{337ms) 
{298ms) 

Run Time Selection: {485ms) 

Figure C.20: Game of life program performance (traffic light pattern). 

216 



of measured runs are analysed, the regression analysis selects relatively inef
ficient combinations of data structure when compared to the other selection 
techniques. However, predictably, as the number of runs increases the results of 
regression analysis improve. When regression analysis is applied the traffic light 
pattern the results are inconsistent where larger numbers of measured runs do 
not necessary yield the best selection. Such inconsistencies are due to additional 
degrees of error being introduced into the sample measurements, evident by the 
regression's low multiple R-squared value of 0.56 for the largest sample of run 
times compared to 0.89 for that of the transitive closure program. Although the 
cause of this additional error can not be substantiated, it is probably related to 
the extra memory requirements of the more complex index structure prompting 
a more active (yet inconsistent) garbage collection process. 

Delaying the choice of data structure until run time produced inefficient 
programs for both patterns. Indeed, the run times produced were significantly 
longer than any of the compile time techniques. 

C.7 N-Queens 

The N-queens problem is a common example used for demonstrating advantages 
of logic programming. The Starlog implementation of the N-queens program is 
given in Figure C.22. (For an alternative declarative representation of the N
queens program see [52].) The program builds a search tree where a new queen 
is positioned on a chess-board where it can not attack any other previously 
positioned queen. A positioned queen is represented as q(X,D,I,J) where X 
is the identifier of the node in the search tree, D is the node's depth (which 
corresponds to the number of queens already positioned) and I and J are the 
coordinates of the queen on the board. The child (X, D, Y, E) represent the 
branches of the search tree where X and Y are the identifiers of the parent node 
and child nodes respectively and D and E are their depths. To test if two queens 
can attack each other attack(X, Y) relations are used. To reduce the run time 
of this program a 6 by 6 chess board is used rather than the usual 8 by 8. To 
hold run time data the index structure contains 13 argument indexes, as shown 
in Figure C.21. To simplify Figure C.21, the binding patterns for predicates 
solution/2, child/2, fail/2, node/2 have been omitted. 

The step-wise trend exhibited by the graphs of Figure C.23 indicate that the 
run time of N-queens program is dominated by a few indexes. From analysis of 
the data, the use of flexible arrays for Indexes 2 and 19 is responsible for each of 
the steps. Set-based selection and static cost analysis proved very effective for 
this program, both choosing data structures within 25% of the fastest run time 
in the sample. The selection made by static cost analysis was more efficient 
than its set-based alternative indicating the actual properties of the data sets 
are similar to those assumed in the static cost table. By using a single run to aid 
cost analysis, an uncharacteristically poor selection was made when compared 
to the selections made by the previous techniques. The chosen data structure 
combination was 40% slower than the fastest run time. The reason for the poor 
performance of the chosen data structure combination is because sub-optimal 
data structures were selected for a few indexes - namely Indexes 14, 1 7, 19 and 
20. Because all these indexes store only one element at run time it is believed 
that the formulas used to estimate costs are inaccurate for this case. 

217 



(19) 

(20) 

·delta•_. - - - • - ... , 
(14) 

(IS) 

Root <1nc1e_ ._o>_ • __ _ _ •attack• 

·. ----... ... ... 
·- •ra.ngelt, 

' 

(I) i::: 

' 

(9) 

(10) 

(II) 

' (17) (6) 
range(Xl attack(X,Yl 

(21) 

' child(W,C,I,J) 

(18) 

• q(X,O,I,J) 

(7) 

• q(X,D,Y,W) 

Figure C.21: Index structure schema used for the N-queens program. 

Although regression analysis ensured the most significant indexes were not 
implemented by worst case data structures, the dominance of Indexes 2 and 19 
reduces the effectiveness of this selection technique. Furthermore, additional 
error may be introduced to the measured run times due to the large memory 
requirement of this index structure ( a phenomenon more obvious in the game 
of life program). As a result, the data structures selected for most indexes by 
regression analysis are more inconsistent for this program than the other exam
ple programs. In general, to improve the accuracy of this selection technique 
additional runs must be performed although, as shown by the graphed results, 
an improvement is not always guaranteed. 

Run time selection of data structures was ineffective when compared with 
the compile time selection techniques (but still only 79% slower than the fastest 
run time). In this program, recalculating time cost estimates and subsequent 
reassignment from one data structure to another are frequent because of the 
many, small data sets used throughout execution (see Table 2 of Figure C.23). 
This results in additional overhead that reduces the efficiency of the program. 

218 



% N-Queens Program 
%----------------------------------------------------------------------
% Calculates all the positions that 6 queens can fit on a 6x6 board 
% without attacking each other. attack(I,J) tuples determine all 
% locations where a queen at location (I,J) conflicts with another 
% queen at location (0,0). A positioned queen is given as 
% q(ID,Depth,I,J) where ID is the ID of the node in the search tree, 
% depth is the number of queens already positioned, and (I,J) is the 
% location of the queen. child(ID1,Depth1,ID2,Depth2) are the branches 
% of the search tree where ID1 is the root node where Depth1 queens 
% have been positioned, and ID2 is a child node where Depth2 queens 
% have been positioned. fail(X,D) nodes are generated where two queens 
% conflict. 

stratify child(_,_,_,D) [DJ. 
stratify q(_,D,I,_) [D, IJ. 
stratify node(X,D) [DJ. 
stratify fail(X,D) [DJ. 
stratify solution(X,D) [DJ. 
stratify child(X,D) [DJ. 

range(O). range(1). range(2). 
range(3). range(4). range(5). 

% Order all tuples by the 
% number of queens already 
% positioned and then q/4 
% by its column index. 

% All row/column values on 
% board. 

% Positions on a [-6 .. 6Jx[-6 .. 6J board that a queen can attack (0,0) 
attack(0,1). attack(0,2). attack(0,3). attack(0,4). attack(0,5). 
attack(0,-1). attack(0,-2). attack(0,-3). attack(0,-4). attack(0,-5). 
attack(1,0). attack(2,0). attack(3,0). attack(4,0). attack(5,0). 
attack(1,1). attack(2,2). attack(3,3). attack(4,4). attack(5,5). 
attack(1,-1). attack(2,-2). attack(3,-3). attack(4,-4). attack(5,-5). 

child(1,-1). 

node(X,D) <- q(X,D,_,_). 

solution(X,D) <- node(X,D), 
not(fail(X,D)), Dis 5. 

child(X,D) <- node(X,D), 
not(fail(X,D)), D =\= 5. 

q(Y,E,E,I) <- child(X,D), Eis D+1, 
range(I), gensym(X,I,Y). 

% First node id=1,depth= -1 

% Each node in search tree. 

% All non-attacking queens 
% positioned. 

% Not all non-attacking 
% queens positioned. 

% Position a new queen in 
% every column of row E. 

child(X,D,Y,E) <- child(X,D), Eis D+1, % Creates new search tree 
range(I), gensym(X,I,Y). % node. 

q(X,D,I,J) <- child(W,C,X,D), C < D, 
q(W,C,I,J). 

fail(X,D) <- q(X,D,I,J), q(X,D,K,L), 
K < I, Id is I-K, 
Jd is J-L, attack(!d?Jd). 

% Copy previous queens 
% from previous node. 

% Find two previously 
% previously positioned 

% queens that attack. 

Figure C.22: N-Queens program source for 6x6 board. 



Index look scan insert ae1ete minimum empty 
occurrences performed occ. pert. occ. pert. OCC, pert. occ. perf. occ. pert. 

IndexO 6 6067 0 0 5 6063 0 0 0 0 0 
Indexl 6 6066 0 0 5 6063 0 0 0 0 0 
Index2 0 0 3 5020 2 5016 0 0 0 0 0 
Index6 0 0 3 15426 1 4122 0 0 0 0 0 
Index9 1 8052 0 0 31 31 0 0 0 0 0 
IndexlO 1 8052 0 0 40 40 0 0 0 0 0 
lndexl2 0 0 1 149 6 6 0 0 0 0 0 
lndexl4 0 0 0 0 5 4275 1 7 1 8 0 
Index15 0 0 1 7 5 4275 0 0 0 0 0 
lndexl6 0 0 1 895 2 4122 1 4122 1 5017 0 
lndexl7 0 0 1 5016 2 4122 0 0 0 0 0 
lndexl9 0 0 1 894 1 894 0 0 0 0 0 
lndex20 0 0 1 894 1 894 0 0 0 0 0 

Average# of Average Mu Min Succeaeful Duplicate Max Value Mln Value 
Index Element• (N) lo92N Value Value Looka (R) ln•ett• (D) ln•ena lneerte 

InaexO 178 4.79 4988 0.857 100'11, 85.2'11, 0.5'11, 0.1'11, 
Indexl 1.0 0.0 0.714 0.714 100% 85.2 100% 100% 
lndex2 2.14 0.987 329 0.143 . 0% 85.1% 17.9% 
Index6 1.0 0.0 1.56 1.56 - 0% 100% 100% 
Index9 11.0 3.46 5.0 -5.0 100% 64.5% 25.8% 25.8% 
IndexlO 3.0 1.58 3.0 -3.0 14.5% 0% 62.5% 65.0% 
Index12 6.0 2.58 5.0 0.0 - 0% 100% 16.7% 
Index14 1.0 0.0 2.0 2.0 - 99.8% 50.0% 79.1% 
Index15 128 5.49 34908 20647 - 79.1% 0.5% 21.3% 
Index16 2.95 1.34 3.91 1.95 
Indcx17 1.0 0.0 1.71 1.71 
Indexl9 1.0 0.0 3968 3968 
Index20 1.0 0.0 1.29 1.29 

Data StnK:ture Selection for N-<2-n• Program 
,OOO 

3500 

3000 

I 2500 ,J 
! 2000 _.-) I 1500 I ill 

~ 1000 

500 
. -··-··-··-····-·-·-·····---·-·· ----·---------------·----------

0 
1 10000 20000 30000 

Rank o1 ex-.1on Time 

Worst Selection (in sample): 
Generic Data Structures: 
Best Selection {in sample): 
Set-of-Instructions Selection: 
Static Cost Analysis Selection: 
Single Run Cost Analysis: 
Regression Selection {65 runs): 
Regression Selection {130 runs): 
Regression Selection {260 runs): 
Regression Selection (520 runs): 
Regression Selection {53 chosen runs): 

Run Time Selection: 

- 0% 21.7% 100% 
- 0% 100% 100% 
- 0% 100% 100% 
- 0% 100% 100% 

Data StnK:ture Selection for N-Queens Program 
20 ,OOO 

3500 

15 3000 

! I 2500 ,J 
10 J s 2000 ~ '15 

I 11500 I _.-J 5 1000 

500 

1 ---·-------------··-----------------· 
0 

1 10000 20000 30000 
Rankolex-.ionTlmo 

[UL,FA,FA,HT ,HT ,HT ,SL,BT ,SL,UL,FA,FA,UL] 

[BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT ,BT] 

[BT ,UL,UL,UL,BT ,UL,UL,UL,BT ,SL,SL,SL,UL] 

[HT ,HT ,UL,UL,HT ,HT ,UL,SL,UL,SL,UL,UL,UL] 

[FA ,FA, UL, UL, FA, FA, UL,FA, UL, SL, UL, UL, UL] 

[FA,FA,SL ,UL,FA,FA,UL,SL,HT ,SL,FA,SL,FA] 

[IIT ,UL,BT ,UL,BT ,BT ,FA,HT ,SL,UL,FA,SL,BT] 

[BT ,BT ,SL,FA,FA,HT ,BT ,UL,BT ,FA,BT ,BT ,BT] 

[BT,FA,UL,FA,HT,SL,IIT ,BT ,IIT ,FA,FA,BT ,BT] 

[BT ,FA,UL,UL,IIT ,FA,HT ,UL,HT ,FA,SL,UL,FA] 

[HT ,IIT ,SL,UL,HT ,SL,UL,SL,HT ,UL,UL,BT ,BT] 

{3,730ms) 
{313ms) 
{198ms) 
{247ms) 
{245ms) 
{278ms) 
{311ms) 
{268ms) 
{279ms) 
{266ms) 
{275ms) 

{354ms) 

Figure C.23: N-Queens program performance. 

220 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

20 

15 

! 
10 J 

'15 

I 



Bibliography 

[1] M. Abadi. Temporal logic in programming. In International Symposium 
of Logic Programming, pages 4-16, 1987. 

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi
ples, Techniques, and Tools. Addison-Wesley Publishing, Reading, Mas
sachusetts, 1986. 

[3] Hassan Ait-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction. 
MIT Press, 1991. 

[4] V. Alexiev. Mutable object state for object-oriented logic programming: 
A survey. Technical Report TR93-15, University of Alberta, 1993. 

[5] B. Alpern, A. Cocchi, D. Lieber, M. Mergen, and V. Sarkar. Jalapeno -
a compiler supported Java virtual machine for servers. In Workshop on 
Compiler Support for Software System (WCSSS 99), May 1999. 

[6] D. Aquilino, Patrizia Asirelli, C. Renso, and Franco Turini. An operator 
for composing deductive databases with theories of constraints. In Logic 
Programming and Non-monotonic Reasoning, pages 57-70, 1995. 

[7] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to ex
press search control knowledge for planning. Artificial Intelligence, 116(1-
2):123-191, 2000. 

[8] Leo Bachmair, Ta Chen, and I. V. Ramakrishnan. Associative-
commutative discrimination nets. In Proceedings of the International Joint 
Conference CAAP /FASE on Theory and Practice of Software Develop
ment, pages 61-74. Springer-Verlag, 1993. 

[9] David John Bacon. SETL for internet data processing. PhD thesis, 1998. 

[10] I. Balbin and K. Ramamohanarao. A generalization of the differential 
approach to recursive query evaluation. Journal of Logic Programming, 
4(3), 1987. 

[11] Chitta Baral and Michael Gelfond. Logic programming and knowledge 
representation. Journal of Logic Programming, 19/20:73-148, 1994. 

[12] A. J. Bernstein. Analysis of programs for parallel processing. IEEE '.Irans
actions on Electronic Computers, EC-15(10):757-763, October 1966. 

221 



[13] Aart J. C. Bik and Harry A. G. Wijshoff. On automatic data structure 
selection and code generation for sparse computations. In 1993 Work
shop on Languages and Compilers for Parallel Computing, pages 57-75, 
Portland, Ore., 1993. Springer Verlag. 

[14] Aart J.C. Bik and Harry A. G. Wijshoff. Advanced compiler optimizations 
for sparse computations. Journal of Parallel and Distributed Computing, 
31(1):14-24, 1995. 

[15] Dominic Frank Julian Binks. Declarative Debugging in Godel. PhD thesis, 
University of Bristol, 1995. 

[16] J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg. Type analysis 
and data structure selection. In B. Moller, editor, Constructing Programs 
from Specifications. North-Holland, 1991. 

[17] Eugene Charniak, Christopher K. Riesbeck, and Drew V. McDermott. 
Artificial Intelligence Programming. Lawrence Erlbaum Associates, New 
Jersey, 1980. 

[18] Ta Chen and Siva Anantharaman. STORM: A many-to-one associative
commutative matcher. In 6th International Conference on Rewriting Tech
niques and Applications, pages 414-419, 1995. 

[19] Ta Chen, LV. Ramakrishnan, Siva Anantharaman, and Jacques Chabin. 
Experiments with associative-commutative discrimination nets. In Inter
national Joint Conference on Artificial Intelligence, pages 348-354, 1995. 

[20] Weidong Chen and David S. Warren. Tabled evaluation with delaying for 
general logic programs. Journal of the ACM, 43(1):20-74, 1996. 

[21] Tyng-Ruey Chuang and Wen L. Hwang. A probabilistic approach to the 
problem of automatic selection of data representations. In Proceedings of 
the first ACM SIGPLAN international conference on Functional program
ming, pages 190-200. ACM Press, 1996. 

[22] Roger Clayton, John G. Cleary, Bernhard Pfahringer, and Mark Utting. 
Optimising tabling structures for bottom-up logic programming. In Pre
proceedings of the International Workshop on Logic Based Program De
velopment and Transformations, pages 57-75, 2002. 

[23] J. Cleary, M. Utting, and R. Clayton. Data structures considered harm
ful. In John Lloyd, editor, Proceedings of the Australasian Workshop on 
Computational Logic, pages 111-120, 2000. 

[24] John Cleary and Mark Utting. Verification of Starlog programs. In The 
Australasian Workshop on Computational Logic (AWCL}, 2001. 

[25] John G. Cleary, Roger Clayton, Mark Utting, and Bernhard Pfahringer. 
A semantics and implementation of stratified logic programs. Technical 
Report 03/2004, University of Waikato, Hamilton, New Zealand, 2004. 

[26] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer
Verlag, 1981. 

222 



[27] E. F. Codd. A relational model of data for large shared data banks. 
Communications of the ACM, 13(6):377-387, 1970. 

[28] Alain Colmerauer and Philippe Roussel. The birth of Prolog. In The 
second ACM SIGPLAN conference on History of Programming Languages, 
pages 37-52. ACM Press, 1993. 

[29] Thomas Conway, Fergus Henderson, and Zoltan Somogyi. Code genera
tion for Mercury. In International Logic Programming Symposium, pages 
242-256, 1995. 

[30] C. J. Date. An Introduction to Database Systems, Sixth Edition. Addison
Wesley Publishing, Reading, Massachusetts, 1995. 

[31] R. E. Davis. Logic programming and Prolog: A tutorial. In Ellis Horowitz, 
editor, Programming Languages: A Grand Tour, Third Edition, pages 
493-502, Rockville, MD, 1987. Computer Science Press. 

[32] Hans De Nivelle. An algorithm for the retrieval of unifiers from discrimi
nation trees. Journal of Automated Reasoning, 20(1-2):5-25, 1998. 

[33] Suamya K. Debray and David S. Warren. Towards banishing the Cut 
from Prolog. IEEE Transactions on Software Engineering, 16(3):335-349, 
March 1990. 

[34] S. Deiters and U. Griefahn. Propagation rule compiler: Tool specifica
tion. Technical Report IDEA.DE.22.0.001, University of Bonn, Germany, 
November 1994. ESPRIT project P6333 (IDEA). 

[35] M. A. Derr, S. Morishita, and G. Phipps. The Glue-Nail deductive 
database system: Design, implementation, and evaluation. Very Larye 
Data Base Journal, 3(2):123-160, 1994. 

[36] M. Kathryn Di Benigno, George R. Cross, and Cary G. de Bessonet. 
COREL: a conceptual retrieval system. In Proceedings of the 9th annual 
international ACM SIGIR conference on Research and development in 
information retrieval, pages 144-148. ACM Press, 1986. 

[37] S. Dietzen and F. Pfenning. A declarative alternative to "assert" in logic 
programming. In Vijay Saraswat and Kazunori Ueda, editors, Logic Pro
gramming, Proceedings of the 1991 International Symposium, pages 372-
386, San Diego, USA, 1991. The MIT Press. 

[38] Bruce Eckel. Thinking in Java. Prentice-Hall, New Jersey, 1998. 

[39] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database 
Systems, Second Edition. Addison-Wesley Publishing, Menlo Park, Cali
fornia, 1994. 

[40] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic 
as a programming language. Journal of the ACM, 23(4):733-742, 1976. 

[41] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 
Dynamically discovering likely program invariants to support program 
evolution. In International Conference on Software Engineering, pages 
213-224, 1999. 

223 



[42] Michael Dean Ernst. Dynamically discovering likely program invariants. 
PhD thesis, 2000. 

[43] K. Frenkel. An interview with the 1986 A. M. Turing Award recipients -
John E. Hopcroft and Robert E. Tarjan. CACM, 30(3):214-223, March 
1987. 

[44] M Fujita, S Kono, H Tanaka, and T Moto-oka. Tokio: logic programming 
language based on temporal logic and its compilation to Prolog. In Pro
ceedings on Third international con/ erence on logic programming, pages 
695-709. Springer-Verlag New York, Inc., 1986. 

[45] Harald Ganzinger and David McAllester. Logical algorithms. Lecture 
Notes in Computer Science, 2401:209-233, 2002. 

[46] Martin Gardner. Mathematical games. Scientific American, 223:120-123, 
October 1970. 

[47] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro
grams and disjunctive databases. New Generation Computing, 9{3/4):365-
386, 1991. 

[48] Fosca Giannotti, Dino Pedreschi, and Carlo Zaniolo. Semantics and 
expressive power of nondeterministic constructs in deductive databases. 
Journal of Computer and System Sciences, 62(1):15-42, 2001. 

[49] Steve Gregory. A declarative approach to concurrent programming. In 
Proceedings of the 9th International Symposium on Programming Lan
guages: Implementations, Logics, and Programs, pages 79-93. Springer
Verlag, September 1997. 

[50] Gopal Gupta and Vitor Santos Costa. Cuts and side-effects in and-or 
parallel Prolog. Journal of Logic Programming, 27(1):45-71, 1996. 

[51] Antonella Guzzo and Domenico Sacca. Modelling the future with Event 
Choice DATALOG. In Proceedings of the Joint Conference on Declarative 
Programming, pages 57-70, September 2002. 

[52] Jiawei Han, Ling Liu, and Tong Lu. Evaluation of declarative n-queens 
recursion: A deductive database approach. Information Sciences, 105(1-
4):69-100, 1998. 

[53] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, 
S. Parthasarathy, J. B. Park, and A. Vernon. Scalable trigger processing. 
In Proceedings of the 15th International Conference on Data Engineering, 
pages 266-275. IEEE Computer Society Press, 1999. 

[54] I. T. Hawryszkiewycz. Relational database design: An introduction. 
Prentice-Hall, Sydney, 1990. 

[55] F. Henderson. Strong modes can change the world. Technical Report 
93/25, University of Melbourne, Melbourne, Australia, 1993. 

224 

UNIV";~~I I y UI- vv.~11\ O.H-, 

L!RRA~· 



[56] F. Henderson, T. Conway, Z. Somogyi, and D. Jeffery. The Mercury lan
guage reference manual. Technical Report 96/10, University of Melbourne, 
Melbourne, Australia, 1996. 

[57] F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in the 
Mercury compiler. In Australian Computer Science Conference, pages 
337-346, 1996. 

[58] Fergus Henderson, Thomas Conway, and Zoltan Somogyi. Compiling logic 
programs to C using GNU C as a portable assembler. In ILPS'95 Post
conference Workshop on Sequential Implementation Technologies for Logic 
Programming, pages 1-15, Portland, Or, 1995. 

[59] Fergus Henderson and Zoltan Somogyi. Compiling Mercury to high-level 
C code. In Computational Complexity, pages 197-212, 2002. 

[60] Al Hensel. A brief illustrated glossary of terms in conway's game of life, 
1995. Archived at www.radicaleye.com/lifepage/glossary.html. 

[61] David B. Kemp, Divesh Srivastava, and Peter J. Stuckey. Magic sets 
and bottom-up evaluation of well-founded models. In Vijay Saraswat 
and Kazunori Ueda, editors, Logic Programming, Proceedings of the 1991 
International Symposium, pages 337-354, San Diego, USA, 1991. The MIT 
Press. 

[62] David B. Kemp, Divesh Srivastava, and Peter J. Stuckey. Bottom-up 
evaluation and query optimization of well-founded models. Theoretical 
Computer Science, 146(1-2):145-184, 1995. 

[63] W. Kiebling, H. Schmidt, W. Straub, and G. Dunzinger. DECLARE and 
SDS: Early efforts to commercialize deductive database technology. Very 
Large Data Base Journal, 3(2):211-243, 1994. 

[64] Ulrike Klusik, Rita Loogen, and Steffen Priebe. Controlling parallelism 
and data distribution in Eden. In Proceedings of the Second Scottish Func
tional Programming Workshop, pages 53-64, 2001. 

[65] Feliks Kluzniak and Stanislaw Szpakowicz. Prolog for Programmers. Aca
demic Press, London, 1985. 

[66] Robert Kowalski. Algorithm = Logic + Control. In Communications of 
the ACM, volume 22, pages 424-436, 1979. 

[67] Gabriel M. Kuper. Aggregation in constraint databases. In Principles and 
Practice of Constraint Programming, pages 166-173, 1993. 

[68] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Second, 
Extended Edition, Berlin Heidelberg, 1987. 

[69] Donald W. Loveland, David W. Reed, and Debra Sue Wilson. SATCH
MORE: SATCHMO with Relevancy. Journal of Automated Reasoning, 
14(2):325-351, 1995. 

225 



[70] James Low and Paul Rovner. Techniques for the automatic selection 
of data structures. In Proceedings of the 3rd ACM SIGACT-SIGPLAN 
symposium on Principles on programming languages, pages 58-67. ACM 
Press, 1976. 

[71] Lunjin Lu and John G. Cleary. An operational semantics of Starlog. In 
Principles and Practice of Declarative Programming, pages 294-310, 1999. 

[72] Yannis Manolopoulos, Yannis Theodoridis, and Vassilis J. Tsotras. Ad
vanced Database Indexing. Kluwer Academic Publisher, Boston, 2000. 

[73] Claudia Marcus. Prolog Programming. Addison-Wesley Publishing, Read
ing, Massachusetts, 1986. 

[74] James Martin. Computer Data-Base Organization, Second Edition. 
Prentice-Hall, Englewood Cliffs, New Jersey, 1977. 

[75] David McAllester. On the complexity analysis of static analyses. Journal 
of the ACM, 49(4):512-537, 2002. 

[76] William McCune. Experiments with discrimination-tree indexing and 
path indexing for term retrieval. Journal of Automated Reasoning, 
9(2):147-167, 1992. 

[77] Lee Naish. Negation and control in Prolog. Lecture Notes in Computer 
Science, 238, 1986. 

[78] Lee Naish. A declarative debugging scheme. Journal of Functional and 
Logic Programming, 1997(3), 1997. 

[79] Greg Nelson. Techniques for program verification. PhD thesis, Stanford 
University, Palo Alto, CA, 1980. 

[80] Robert Nieuwenhuis, Thomas Hillenbrand, Alexandre ruazanov, and An
drei Voronkov. On the evaluation of indexing techniques for theorem 
proving. Lecture Notes in Computer Science, 2083:257-271, 2003. 

[81] Kazuhiro Ogata, Shigenori Ioroi, and Kokichi Futatsugi. Optimizing term 
rewriting using discrimination nets with specialization. In Proceedings of 
the 1999 ACM symposium on Applied Computing, pages 511-518. ACM 
Press, 1999. 

[82] Richard O'Keefe. The Croft of Prolog. The MIT Press, Cambridge, MA, 
1990. 

[83] T. C. Przymusinski. Every logic program has a natural stratification and 
an iterated least fixed point model. In Proceedings of the A CM Symposium 
on Principle of Database Systems, pages 11-21, 1989. 

[84] I. V. Ramakrishnan, Prasad Rao, Konstantinos F. Sagonas, Terrance 
Swift, and David Scott Warren. Efficient tabling mechanisms for logic 
programs. In International Conference on Logic Programming, pages 697-
711, 1995. 

226 



[85] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule ordering in 
bottom-up fixpoint evaluation of logic programs. In Proceedings of the 
16th Conference on Very Large Databases, Morgan Kaufman pubs. {Los 
Altos CA}, Brisbane, 1990. 

[86] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Controlling the search 
in bottom-up evaluation. In K. Apt, editor, Proceedings of the Joint Inter
national Conference and Symposium on Logic Programming, pages 273-
287, Washington, USA, 1992. The MIT Press. 

[87] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. CORAL-control, 
relations and logic. In Proceedings of the Eighteenth International Con
ference on Very Large Data Bases, pages 238-250, 1992. 

[88] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Efficient bottom-up 
evaluation of logic programs. In J. Vandewalle, editor, The State of the 
Art in Computer Systems and Software Engineering, 1992. 

[89] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen Se
shadri. Implementation of the CORAL deductive database system. In 
Proceedings of the ACM SIGMOD International Conference on Manage
ment of Data, pages 167-176, 1993. 

[90] Raghu Ramakrishnan and S. Sudarshan. Top-down vs. bottom-up revis
ited. In V. Saraswat and K. Ueda, editors, Proceedings of the 1991 Inter
national Symposium on Logic Programming, pages 321-336. MIT Press, 
1991. 

[91] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research on 
deductive database systems. Journal of Logic Programming, 23(2):125-
149, 1993. 

[92] Desh Ranjan, Enrico Pontelli, and Gopal Gupta. On the complexity of 
or-parallelism. New Generation Computing, 17(3):285-307, 1999. 

[93] Louiqa Raschid and Jorge Lobo. A semantics for a class of stratified 
production system programs. Journal of Automated Reasoning, 12(3):305-
349, 1994. 

[94] Kenneth A. Ross. Modular stratification and magic sets for DATALOG 
programs with negation. In Proceedings of the ninth ACM SIGACT
SIGMOD-SIGART symposium on Principles of Database Systems, pages 
161-171. ACM Press, 1990. 

[95] F. Sadri and F. Toni. Active behaviour in deductive databases. Technical 
report, Imperial College, 1996. 

[96] Konstantinos F. Sagonas, Terrance Swift, and David Scott Warren. XSB: 
An overview of its use and implementation. In Workshop on Programming 
with Logic Databases (Informal Proceedings), ILPS, page 164, 1993. 

[97] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. Automatic 
data structure selection in SETL. In Proceedings of the 6th A CM SIGA CT
SIGPLAN symposium on Principles of Programming Languages, pages 
197-210. ACM Press, 1979. 

227 



[98] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. An auto
matic technique for selection of data representations in SETL programs. 
ACM Transactions on Programming Languages and Systems, 3(2):126-
143, 1981. 

[99] Robert Sedgewick. Algorithms in C++. Addison-Wesley Publishing, 
Reading, Massachusetts, 1992. 

[100] Dietmar Seipel and Helmut Thone. DISLOG - a system for reasoning in 
disjunctive deductive databases. In Deductive Approach to Information 
Systems and Databases, pages 325-343, 1994. 

[101] Don Smith and Mark Utting. Pseudo-naive evaluation. In Proceedings of 
the Tenth Australasian Database Conference, Singapore, 1999. Springer
Verlag. 

[102] Z. Somogyi, F. Henderson, T. Conway, A. Bromage, T. Dowd, D. Jeffery, 
P. Ross, P. Schachte, and S. Taylor. Status of the Mercury system. In 
JICSLP'96 Workshop on Parallelism and Implementation Technology for 
{Constraint) Logic Programming Languages, pages 207-218, 1996. 

[103] Dennis M. Sosnoski. Java performance programming, part 1: Smart 
object-management saves the day. Java World, November 1994. 

[104] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, Cam
bridge, Massachusetts, 1986. 

[105] Rodney W. Topor. Views of objects and rules. In Australasian Database 
Conference, pages 1-13, 1994. 

[106] Jeffrey D. Ullman. Database and Knowledge-base Systems, volume 1. Com
puter Science Press, 1988. 

[107] J. Vaghani, K. Ramamohanaroa, D. B. Kemp, Z. Somogyi, and P. J. 
Stuckey. Design and overview of the Aditi deductive database system. In 
Proceeding of the Seventh International Conference on Data Engineering, 
pages 240-247, 1991. 

[108] Jayen Vaghani, Kotagiri Ramamohanarao, David B. Kemp, Zoltan So
mogyi, Peter J. Stuckey, Tim S. Leask, and James Harland. The Aditi 
deductive database system. Very Large Data Bases Journal, 3(2):245-288, 
1994. 

[109] Raja Vallee-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, 
Patrice Pominville, and Vijay Sundaresan. Optimizing Java bytecode us
ing the SOOT framework: Is it feasible? In Computational Complexity, 
pages 18-34, 2000. 

[110] A. Voronkov. Implementing bottom-up procedures with code trees: a case 
study of forward subsumption. Technical Report 88, Uppsala University, 
Uppsala, Sweden, 1994. 

[111] A. Voronkov. The anatomy of Vampire (implementing bottom-up proce
dures with code trees). Journal of Automated Reasoning, 15(2):237-265, 
1995. 

228 



[112) 0. Wadge and W. Du. Chronolog(z): Linear-time logic programming. 
In Proceedings of the Fifth International Conference on Computing and 
Information, pages 545-549. IEEE Computer Society Press, 1993. 

[113) Geoffrey I. Webb. Decision tree grafting. In Proceedings of the Fifteenth 
International Joint Conference on Artificial Intelligence, pages 846-851, 
1997. 

[114] Daniel S. Weld. Recent advances in AI planning. AI Magazine, 20(2):93-
123, 1999. 

[115] Christoph Wernhard. System description: KRHyper. Technical report, 
Institut fur Informatik, Universitat Koblenz-Landau, 2003. 

[116] Michael Winikoff. Hitch hikers guide to Lygon 0.7. Technical Report 
96/36, University of Melborne, 1996. 

[117] Carl Roger Witty. The Ontic inference language. Master's thesis, Mas
sachusetts Institute of Technology, Dept. of Electrical Engineering and 
Computer Science, 1995. 

[118] Jens E. Wunderwald. Memoing evaluation by source-to-source transfor
mation. In Logic Program Synthesis and Transformation, volume 1048 of 
LNCS, pages 17-32. Springer, 1995. 

[119) C. K. Yuen. Hamming numbers, lazy evaluation, and eager disposal. ACM 
SIGPLAN Notices, 27(8):71-75, 1992. 

[120] Carlo Zaniolo, Natraj Ami, and KayLiang Ong. Negation and aggre
gates in recursive rules: the LDL++ approach. In Deductive and Object
Oriented Databases, pages 204-221, 1993. 

229 


	12915_2R
	12916_2R
	12917_2R
	12918_1L
	12918_2R
	12919_1L
	12919_2R
	12920_1L
	12920_2R
	12921_1L
	12921_2R
	12922_1L
	12922_2R
	12923_1L
	12923_2R
	12924_1L
	12924_2R
	12925_1L
	12925_2R
	12926_1L
	12926_2R
	12927_1L
	12927_2R
	12928_1L
	12928_2R
	12929_1L
	12929_2R
	12930_1L
	12930_2R
	12931_1L
	12931_2R
	12932_1L
	12932_2R
	12933_1L
	12933_2R
	12934_1L
	12934_2R
	12935_1L
	12935_2R
	12936_1L
	12936_2R
	12937_1L
	12937_2R
	12938_1L
	12938_2R
	12939_1L
	12939_2R
	12940_1L
	12940_2R
	12941_1L
	12941_2R
	12942_1L
	12942_2R
	12943_1L
	12943_2R
	12944_1L
	12944_2R
	12945_1L
	12945_2R
	12946_1L
	12946_2R
	12947_1L
	12947_2R
	12948_1L
	12948_2R
	12949_1L
	12949_2R
	12950_1L
	12950_2R
	12951_1L
	12951_2R
	12952_1L
	12952_2R
	12953_1L
	12953_2R
	12954_1L
	12954_2R
	12955_1L
	12955_2R
	12956_1L
	12956_2R
	12957_1L
	12957_2R
	12958_1L
	12958_2R
	12959_1L
	12959_2R
	12960_1L
	12960_2R
	12961_1L
	12961_2R
	12962_1L
	12962_2R
	12963_1L
	12963_2R
	12964_1L
	12964_2R
	12965_1L
	12965_2R
	12966_1L
	12966_2R
	12967_1L
	12967_2R
	12968_1L
	12968_2R
	12969_1L
	12969_2R
	12970_1L
	12970_2R
	12971_1L
	12971_2R
	12972_1L
	12972_2R
	12973_1L
	12973_2R
	12974_1L
	12974_2R
	12975_1L
	12975_2R
	12976_1L
	12976_2R
	12977_1L
	12977_2R
	12978_1L
	12978_2R
	12979_1L
	12979_2R
	12980_1L
	12980_2R
	12981_1L
	12981_2R
	12982_1L
	12982_2R
	12983_1L
	12983_2R
	12984_1L
	12984_2R
	12985_1L
	12985_2R
	12986_1L
	12986_2R
	12987_1L
	12987_2R
	12988_1L
	12988_2R
	12989_1L
	12989_2R
	12990_1L
	12990_2R
	12991_1L
	12991_2R
	12992_1L
	12992_2R
	12993_1L
	12993_2R
	12994_1L
	12994_2R
	12995_1L
	12995_2R
	12996_1L
	12996_2R
	12997_1L
	12997_2R
	12998_1L
	12998_2R
	12999_1L
	12999_2R
	13000_1L
	13000_2R
	13001_1L
	13001_2R
	13002_1L
	13002_2R
	13003_1L
	13003_2R
	13004_1L
	13004_2R
	13005_1L
	13005_2R
	13006_1L
	13006_2R
	13007_1L
	13007_2R
	13008_1L
	13008_2R
	13009_1L
	13009_2R
	13010_1L
	13010_2R
	13011_1L
	13011_2R
	13012_1L
	13012_2R
	13013_1L
	13013_2R
	13014_1L
	13014_2R
	13015_1L
	13015_2R
	13016_1L
	13016_2R
	13017_1L
	13017_2R
	13018_1L
	13018_2R
	13019_1L
	13019_2R
	13020_1L
	13020_2R
	13021_1L
	13021_2R
	13022_1L
	13022_2R
	13023_1L
	13023_2R
	13024_1L
	13024_2R
	13025_1L
	13025_2R
	13026_1L
	13026_2R
	13027_1L
	13027_2R
	13028_1L
	13028_2R
	13029_1L
	13029_2R
	13030_1L
	13030_2R
	13031_1L
	13031_2R
	13032_1L
	13032_2R
	13033_1L
	13033_2R
	13034_1L
	13034_2R
	13035_1L
	13035_2R
	13036_1L



