
State of the Art on Formal Methods for

Interactive Systems

Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Abstract This chapter provides an overview of several formal approaches for the

design, specification and verification of interactive systems. For each approach

presented, we describe how they support both modelling and verification activities. We

also exemplify their use on a simple example in order to provide the reader with a better

understanding of their basic concepts. It is important to note that this chapter is not self-

contained and that the interested reader should get more details looking at the references

provided. The chapter is organized to provide an historical perspective at the main

contributions in the area of formal methods in the field of Human-Computer Interaction.

The approaches are presented in a semi-structured way identifying their contributions

alongside a set of criteria. The chapter is concluded by a summary section organizing

the various approaches in two summary tables reusing the criteria previously derived.

1. Introduction

Building reliable interactive systems has been identified as an important and difficult

tasks form the late 60s on (Parnas 1969) and methods and techniques developed in

computer sciences have been applied, adapted or extended to fit the need of interactive

systems since then. Those needs have been thoroughly studied over the years and the

complexity of interactive system have followed or even pre-empted the non-interactive

part of computing systems. Such evolution is mainly due to the technological

progression of input and output devices and their related interaction techniques.

Another important aspect is related to the intrinsic nature of the interactive systems

as clearly identified in Peter Wegner’s paper (Wegner 1997) as the input chain is not

defined prior to the execution and the output chain is processed (by the users) before the

“machine” (in the meaning of Turing machine) halts.

Two books ((Harrison and Thimbleby 1990) and (Palanque and Paternó 1997)) have

been proposed to gather contributions related to the adaptation and extension of

computer science modelling and verification techniques to the field of interactive

systems. Contributions in these books were covering the interaction side, the

computation side (usually called functional core) but also the human side by presenting

2 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

modelling techniques applied, for instance, to the description of the user’s mental

models.

Over the years, the community in Engineering Interactive Computing Systems has

been investigating various ways of using formal methods for interactive systems but has

also broadened that scope proposing architectures, processes or methods addressing the

needs of new application domains involving new interaction techniques.

Simultaneously, the Formal Methods for Interactive Systems community has been

focusing on the use of formal methods in the area of interactive computing systems.

This chapter summaries selected contributions from those two communities over the

past years. For each approach presented, we describe how they both support modelling

as well as verification activities. We also exemplify their use on a simple example in

order to provide the reader with a better understanding of their basic concepts. It is

important to note that this chapter is not self-contained and that the interested reader

should get more details looking at the references provided. The chapter is organized to

provide an historical perspective at the main contributions in the area of formal methods

in the field of Human-Computer Interaction. Lastly, the approaches are presented in a

semi-structured way identifying their contributions alongside a set of criteria. The

chapter is concluded by a summary section organizing the various approaches in two

summary tables reusing the criteria previously used.

2. Modelling and Formal Modelling

In systems engineering, modelling activity consists of producing a theoretical view of

the system under study. This modelling activity takes place using one or several

notations. The notation(s) allows engineers to capture some part of the system while

ignoring other ones. The resulting artefact is called a model and corresponds to a

simplified view of the real system.

In the field of software engineering, modelling is a well-established practice that was

very successfully adopted in the area of databases (Chen 1976). More recently it has

been widely advertised by the UML standard (Booch 2005). It is interesting to see that

UML originally proposed nine different notations and thus to produce as many different

models to capture the essence of software systems. SysML (OMG 2010) the recent

extension to UML proposes two additional notations to capture elements that were

overlooked by UML as, for instance, a requirements notation. Modelling is advocated

to be a central part of all the activities that lead up to the production of good software

(Booch 2005). It is interesting to note that recent software engineering approaches such

as agile processes (Schwaber 2004) and extreme programming moved away from

modelling considering that on time delivery of software is a much more important

State of the Art of Formal Methods in the area of Interactive Systems 3

quality than correct functioning, as bugs can always be fixed in the next delivered

version.

However, building models in the analysis, specification, design, and implementation

of software bring a lot of advantages (Booch 2005; Turchin and Skii 2006):

 to abstract away from low level details;

 to focus on some aspects while avoiding other (less relevant ones);

 to describe and communicate about the system under design with the various

stakeholders;

 to better understand the system under development and the choices that are made;

 to support the identification of relationships between various components of the

system.

Beyond these advantages, modelling (when supported by notations offering

structuring mechanisms) helps designers to break complex applications into smaller

manageable parts (Navarre et al. 2005). The extent to which a model helps in the

development of human understanding is the basis for deciding how good the model is

(Hallinger et al. 2000).

When the notation used for building models has rigorous theoretical foundations,

these models can be analysed in order to check soundness or detect flaws. Such activity,

which goes beyond modelling, is called verification and validation and is detailed in the

next section.

3. Verification and Validation

The notation used for describing models can be at various levels of formality that can

be classified as informal, semi-formal, and formal (Garavel and Graf 2013):

 informal models are expressed using natural language or loose diagrams, charts,

tables, etc. They are genuinely ambiguous, which means that different readers may

have different understanding of their meaning. Those models can be parsed and

analysed (e.g. spell checkers for natural text in text editors) but their ambiguity will

remain and it is thus impossible to guarantee that they do not contain contradictory

statements;

 semi-formal models are expressed in a notation that has a precise syntax but has no

formal (i.e. mathematical-defined) semantics. Examples of semi-formal notations are

UML class diagrams, data flow diagrams, entity relationship graphical notation,

UML state diagrams, etc.;

4 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

 formal models are written using a notation that has a precisely-defined syntax and a

formal semantics. Examples of formal specification languages are algebraic data

types, synchronous languages, process calculi, automata, Petri nets, etc.

Thus, formal models are built using formal notations and are unambiguous system

descriptions. Such formal models can then be analysed to assess presence or absence of

properties, analyse performance issues (if the formal notation can capture such

elements), possibly simulate the models to allowing designer checking their behaviour,

generate descriptions in extension (such as state space or test cases) if the formal

notation represents such elements in intention (e.g. set of states represented in intention

in Petri nets while represented in extension in an automata).

Figure 1. Iterative cycle of models construction and analysis from (Palanque et al. 2009)

Formal verification involves techniques that are strongly rooted in mathematics.

Defects in models can be detected by formal verification. In such cases, either the model

has to be amended (to remove the defect) or the system under analysis has to be modified

for instance by adding barriers (Basnyat et al. 2007). Such a modified system can then

be modelled and analysed again to demonstrate that the modifications have not

introduced other (unexpected) problems. This cycle (presented in Figure 1) is repeated

until the analysis results match the expectations. Examples of formal verification

techniques are model checking, equivalence checking, and theorem proving.

Theorem proving is a deductive approach for the verification of systems (Boyer and

Moore 1983). Proofs are performed in the traditional mathematical style, using some

formal deductive system. Both the system under verification and the properties that have

to be verified are modelled usually using different types of formal notations. Properties

are usually expressed using declarative formal notations (e.g. temporal logics (Clarke et

al. 1986)) while system behaviours are usually represented using procedural formal

notations such as automata. Checking that the properties are true on a formal model of

the systems is done as a theorem demonstration using the deductive proof calculus (see

for instance verification of temporal logics formulas over Petri nets (Sifakis 1979)).

State of the Art of Formal Methods in the area of Interactive Systems 5

Proofs progress by transforming a set of premises into a desired conclusion, using

axioms and deduction rules and possibly integrating previously demonstrated theorems.

Such a proof production process is usually not fully automated: analyst guidance is

required, for instance regarding the proof strategy to be followed. Good user interfaces

for theorem provers can significantly reduce the burden of the users as argued in

(Merriam and Harrison 1996). Some formal methods have been adapted to address the

specificities of interactive systems and if they are specifically supporting theorem

proving results, they have been tuned to address interactive systems properties such as

the adaptation of B presented in (Aït-Ameur et al. 2003a).

Model checking (Figure 2) allows verification of whether a model satisfies a set of

specified properties. A property is a general statement expressing an expected behaviour

of the system. In model checking, a formal model of the system under analysis must be

created, which is afterward represented as a finite-state machine (FSM). This FSM is

then subject to exhaustive analysis of its entire state space to determine whether the

properties hold or not. The analysis can be fully automated and the validity of a property

is always decidable (Cofer 2010). Even though it is easier for a human being to express

properties in natural language, it can result in imprecise, unclear and ambiguous

properties. Expected properties should, thus, be also formalized by means of, for

instance, a temporal logic. The analysis is mainly supported by the generation of counter

examples when a property is not satisfied. A counter example can be a sequence of state

changes that, when followed, leads to a state in which the property is false.

Figure 2. Principle of model checking as defined in DO-178C aeronautics standard – HLR stands for

High Level Requirements, LLR stands for Low Level Requirements (and correspond to procedural

systems descriptions)

Since the introduction of model checking in the early 80s, it has advanced

significantly. The development of algorithmic techniques (e.g., partial-order reduction,

compositional verification, etc.) and data structures (e.g., binary decision diagrams)

6 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

allow for automatic and exhaustive analysis of finite-state models with several

thousands of state variables (Ameur et al. 2010). For this reason, model checking has

been used in the past years to verify interactive systems in safety-critical systems of

several domains, such as avionics (Degani and Heymann 2002), radiation therapy

(Turner 1993), healthcare (Thimbleby 2010), etc. In the field of interactive systems,

several model checking approaches have been proposed. With respect to mainstream

software engineering, such approaches have been focussing on interactive systems

specific properties (such as predictability (Dix 1991) or human errors identification

(Curzon and Blandford 2004)).

Rather than verifying the satisfiability of properties, equivalence checking (Figure 2)

provides the ability to formally prove whether two representations of the system exhibit

exactly the same behaviour or not. In order to verify whether two systems are equivalent

or not, a model of each system should also be created, and then both models are

compared in the light of a given equivalence relation. Several equivalence relations are

available in the literature (e.g., strong bi-simulation (Park 1981) and branching bi-

simulation (van Glabbeek and Weijland 1996)). Which relation to choose depends on

the level of details of the model and the verification goals. As for model checking and

theorem proving, results of the analysis are exploited to identify where the models have

to be amended in order to ensure their behavioural equivalence. In the field of interactive

systems, this can be done for checking that two versions of an interactive software

exhibit the same behaviour or to check that the descriptions of user tasks are equivalent

to the behaviour of the system (Palanque et al. 1995).

Figure 3. Equivalence checking

These three different approaches to formal verification have been applied to

interactive systems in various works. In section 6, we present those approaches by

describing how formal models are described and how verification is addressed.

State of the Art of Formal Methods in the area of Interactive Systems 7

4. Criteria to Describe and Analyse the State of the Art

Each approach is presented with respect to the following structure: after a brief

introduction of the approach, it is unfolded step by step, identifying which

language/formalism is used to model the interactive system. Then, the properties

addressed by the approach are listed, together with the language/formalism used to

describe them, the verification technique employed and whether the approach is tool

supported or not. It is important to note that the approaches might be more powerful

than presented here. Indeed, we only gather information that the authors were

demonstrating in their publications. Thus, instead of presenting what an approach can

do, we present what the authors have been doing with it.

After the description of each approach, an analysis is performed according to the

following criteria:

 Modelling coverage: the verification of the system relies on the system model. For

this reason, the model coverage should be large enough for the verification to be

useful. It is analysed whether the studied approach covers aspects of the functional

core and the user interfaces or not. The functional core of a system implements the

domain-dependent concepts and functions, and the user interfaces implement the

look and feel of the interactive system (Bass et al. 1991). We call a “user interface”

(UI) the information that is presented to the user with which the users can interact.

In addition, it is also analysed if aspects of the users are included in the model, in

order to take into account user behaviours. The more sophisticated the interaction

techniques used to interact with these user interfaces, the more expressive power is

required for the formal description technique. For instance, in multimodal

interactions, fusion of event is usually based on a temporal window in which the

events have been received. If the events are too far away (in quantitative time) then

they will not be fused. In order to describe such behaviour, the formal methods must

allow engineers to describe quantitative temporal information (such as timed

automata or Temporal Petri nets).

 Kinds of properties: one kind of analysis that can be performed over a system model

is property verification. In the context of safety-critical interactive systems, we

believe that the focus should be directed both towards dependability (to ensure that

the functioning of the system is correct), to usability (to ensure that the system is

usable; effective, efficient and satisfactory), and to prevent users from making errors.

For each author, the kinds of properties that have been demonstrated as verifiable

using their approach are analysed.

 Application to safety-critical systems: whether each approach is applied to safety-

critical domains or not. We provide here examples of the domains addressed, e.g.

healthcare, air traffic management, avionics, or nuclear power.

8 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

 Scalability: while a lot of work has been performed on simple examples, we will

identify approaches that have been applied to industrial applications or at least have

demonstrated means (e.g. structuring mechanisms) for dealing with real-life systems.

5. Modelling and Verification

Interactive systems models can deal with the various aspects of interactive systems. Low

fidelity prototypes usually deal with their presentation part (i.e. how they look and how

information is presented to users) while behavioural models usually address interaction

or dialog descriptions. While a model at specification level would describe what the

system is supposed to do, models at design levels would describe how the system is

supposed to behave. In the area of interactive systems, formal models have been

proposed at different levels. Properties are closer to the specification level as they

express constraints on system presentation or behaviour. A presentation property would

require, for instance, that all the user interface buttons have the same size. A behavioural

property, for instance, could require that all buttons are always available. Verification

activity aims at assessing whether or not a property holds on a given system as discussed

above.

Several authors propose different categories of properties. For instance, three kinds

of properties are identified in (Campos and Harrison 1997): visibility properties, which

concern the users’ perception, i.e., what is shown on the user interface and how it is

shown; reachability properties, which concern the user interfaces, and deal with what

can be done at the user interface and how it can be done (in the users’ perspective); and

reliability properties, which concern the underlying system, i.e., the behaviour of the

interactive system.

6. Succinct presentation of the approaches

This section will briefly describe the approaches reviewed for this chapter. The current

FoMHCI community and many of the strands of work in this review largely owe their

origin to a number of projects funded by the Alvey Programme in the UK in the 1980s,

and particularly the 'York Approach' (see Dix et al. below). However, it is possible to

trace the roots deeper, in particular Reisner's (Reisner 1981) use of BNF to describe the

'action language' (what we would now call dialogue) of an interactive graphics

programme, and Sufrin's (Sufrin 1982) use of the Z specification language to specify a

simple display editor (see (d’Ausbourg 1998) for an early review).

State of the Art of Formal Methods in the area of Interactive Systems 9

Both Reisner's and Sufrin's work used existing formal notations. This use of existing

notations or creation of specialised notations or methods for interactive systems has

always been one of the main strands of FoMHCI research. Many of the approaches

below and in this book use existing notations (e.g. LOTOS, Petri Nets); however, these

often either need to extend or create new notations in order to be able to effectively

specify behaviours and properties of interactive systems.

While this has emerged as the dominant strand of work in the area and the main focus

of this review, there are a number of other strands that have influence the field, elements

of which can be seen in various chapters of this book (see also (Dix 2012)).

 Abstract models: this used a variety of notations, but with the aim of describing

classes of systems to define generic properties and prove generic properties (see Dix

et al. below). The main legacy of this approach is the formulation of properties

including variations of predictability and observability that are adopted by many

system modelling approaches, which can be seen in many if the approaches below.

 Architectural models: early user interface implementers reflected on their

experience. The MVC (Model View Controller) paradigm grew out of the Smalltalk

programming environment (Kieras and Polson 1985), and a workshop of those

developing user interface management systems (UIMS) led to the Seeheim Model

(Pfaff and Hagen 1985). The former has been particularly influential in subsequent

practical UI development, and the latter in framing a language for interaction

architecture, especially the formulation of the presentation–dialogue-functionality

distinction. Within the formal modelling community, this work was especially

strongly associated with the work of Coutaz, Nigay and others at Grenoble including

the development of the PAC model (Coutaz 1987), which itself fed into ARCH

Slinky metamodel (Bass et al. 1991). The main legacy of this work has been in its

inputs into modelling of multi-modal systems and plasticity. Oddly many current

systems that describe themselves as MVC are actually unintentionally following

PAC model (Dey 2011)!

 User and task modelling: the cognitive modelling and task analysis communities

have often used models that have a formal nature, although come from different roots

and have had different concerns to those adopting a more computer science formal

modelling approach. However, there have been many overlaps including CCT

(Cognitive Complexity Theory), which used a dual system and cognitive model

(Kieras and Polson 1985), and TAG (Task Action Grammar), which expressed

system descriptions in ways that made inconsistencies obvious (Payne and Green

1986). Of course, the CTT task modelling approach (see Paterno et al. below) has

been very influential in the FoMHCI community, and, while having its roots in the

LOTOS specification notation, it is very similar to pure task analysis notations such

as HTA (Shepherd 1989).

10 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Abowd et al. (USA, 1991–1995)

Early approaches to applying formal notations to the study of human-machine

interaction and the modelling of interactive systems paved the way for other researchers

to explore different alternatives to assess the quality of such systems. In (Abowd 1991),

a framework for the formal description of users, systems and user interfaces is proposed.

Modelling

In (Abowd 1991), the interactive system is modelled as a collection of agents. The

language to describe the agents borrows notations from several formal languages, such

as Z, VDM, CSP and CSS. Such agent language contains identifiers to describe internal

(types, attributes, invariants, initially, and operations), and external specifications of

agents, as well as communication between agents (input / output). Therefore, data,

states, and events can be modelled in this language. When describing the operations

agents can execute, it is possible to define pre- and post-conditions for each operation,

which may be used to define a given ordering of actions, allowing qualitative time to be

represented. The external specification of the language allows description of

synchronous parallel composition, which can express concurrent behaviour. Finally,

multi-touch interactions can be implicitly modelled by agents: each finger could be

represented by a given agent.

Alternatively, another approach is proposed in (Abowd at al. 1995; Wang and Abowd

1994), in which interactive systems are described by means of a tabular interface using

Action Simulator, a tool for describing PPS (Propositional Production System)

specifications. In PPS, the dialog model is specified as a number of production rules

using pre- and post-conditions. Action Simulator permits such PPS specification to be

represented in a tabular format, in which the columns are the system states, and the

production rules are expressed at the crossings of lines and columns. It is possible to

represent multimodality using this approach by identifying the states related to each

modality, and how they relate to each other using the production rules. However, it does

not allow concurrent behaviour to be expressed: production rules are executed

sequentially. The approach covers the modelling of the functional core and the UIs, and

to some extent the modelling of the users, by describing the user actions that “fire” the

system state changes.

Verification

State of the Art of Formal Methods in the area of Interactive Systems 11

The verification of specifications written using the agent language described in (Abowd

1991) can be tool supported, for instance by using ProZ for Z specifications. However,

such a verification is not described in (Abowd 1991).

A translation from the tabular specification of the interactive system proposed in

(Abowd at al. 1995; Wang and Abowd 1994) into SMV input language is described in

(Wang and Abowd 1994). The CTL temporal language is used to formalize the

properties, allowing the following usability properties to be verified:

 Reversibility (Abowd at al. 1995): can the effect of a given action be reversed in a

single action?

 Deadlock freedom (Abowd at al. 1995): from an initial state, is it true that the dialog

will never get into a state in which no actions can be taken?

 Undo within N steps (Wang and Abowd 1994): from any state of a given state set,

if the next step leads the system out of the state set, can a user go back to the given

state set within N steps?

In addition, the following functional properties can be verified:

 Rule set connectedness (Abowd at al. 1995): from an initial state, can an action be

enabled?

 State avoidability (Wang and Abowd 1994): can a user go from one state to another

without entering some undesired state?

 Accessibility (Wang and Abowd 1994): from any reachable state, can the user find

some way to reach some critical state set (such as the help system)?

 Event constraint (Wang and Abowd 1994): does the dialog model ensure/prohibit

a particular user action for a given state set?

 Feature assurance (Wang and Abowd 1994): does the dialog model guarantee a

desired feature in a given state set?

 Weak task completeness (Abowd at al. 1995): can a user find some way to

accomplish a goal from initialization?

 Strong task completeness (Abowd at al. 1995): does the dialog model ensure that

a user can always accomplish a goal?

 State inevitability (Abowd at al. 1995): from any state in the dialog, will the model

always allow the user to get to some critical state?

 Strong task connectedness (Abowd at al. 1995): from any state, can the user find

some way to get to a goal state via a particular action?

The automatic translation of the tabular format of the system states into the SMV

input language is an advantage of the approach, since it allows model checking of

properties to be performed. The tabular format of the system states and the actions that

trigger state changes provide a reasonable compact representation in a comprehensible

form. However, it looks like the approach does not scale well to larger specifications,

12 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

unless an alternative way to store a large sparse matrix is provided. Besides, no

application to safety-critical systems is reported.

Dix et al. (United Kingdom, 1985–1995)

Modelling

The PIE model (Dix et al. 1987) considers interactive systems as a “black-box” entity

that receives a sequence of inputs (keystrokes, clicks, etc.) and produces a sequence of

perceivable effects (displays, LEDs, printed documents, etc.). The main idea is to

describe the user interfaces in terms of the possible inputs and their effects (Dix 1991).

Such practice is called surface philosophy (Dix 1988) and aims at omitting parts of the

system that are not apparent to the user (the internal details of systems, such as hardware

characteristics, languages used, or specification notations). The domain of input

sequences is called P (standing for programs), the domain of effects is called E and both

are related by an interpretation function I that determines the effects of every possible

command sequence (Figure 3). In this sense, the interpretation function I can be seen as

a means to represent events of the modelled system, data cannot be represented, and

internal states of the system are inferred by what is called observable effects (Dix 1991).

Figure 4. The PIE model (Dix 1991)

The effects E can be divided into permanent results (e.g., print-out) and ephemeral

displays (the actual UI image). Such specialization of the effects constitutes another

version of the PIE model, called the Red-PIE model (Dix 1991).

The PIE model is a single-user single-machine model, and does not describe

interleaving and the timing of the input/output events (Dix 1991). However extensions

of the basic PIE model dealt with multi-user behaviour (including the first formulations

of collaborative undo (Abowd and Dix 1992)); the first formal work on real-time

interactive behaviours (Dix 1991); continuous interaction (such as mouse dragging)

through status-event analysis (Dix 1991); and non-deterministic external behaviours

(e.g., due to concurrency or race conditions) (Dix 1991). Multimodality can be expressed

State of the Art of Formal Methods in the area of Interactive Systems 13

by describing the input / output and interpretation function for each modality, the status–

event analysis extensions would allow multi-touch applications.

The PIE model is focused on the external behaviour of the system as perceived by

the user, it does not model the users themselves, nor more than minimal internal details.

Because of this the external effects of internal behaviour such as concurrency behaviour

or dynamic instantiation can be modelled, but not their internal mechanisms.

Verification

The PIE model provides a generic way of modelling interactive systems and permits the

following usability properties to be formalized:

 Predictability (Dix 1995): the UI shall be predictable, i.e., from the current effect it

should be possible to predict the effect of future commands.

 Simple reachability (Dix 1991): all system effects can be obtained by applying some

sequences of commands;

 Strong reachability (Dix 1988): one can get anywhere from anywhere;

 Undoability (Dix et al. 1987): for every command sequence there is a function

“undo” which reverses the effect of any command sequence;

 Result commutativity (Dix et al. 1987): irrespective of the order in which different

UIs are used, the result is the same.

The PIE and Red-PIE models are ones of the first approaches that used formal

notations for the modelling of interactive systems and desired properties. As abstract

models, their role in respect to verification is therefore more in formulating the user

interaction properties that subsequent system modelling and specification approaches

(such as Abowd et al., above and Paterno et al., below) seek to verify for specific

systems.

Some proofs and reasoning about PIEs are quite extensive, notably Mancini's

category theoretical proof of the universality of stack and toggle based undo (Mancini

1997). However, the mathematical notations are very abstract, and no tool support is

provided, instead proofs follow a more traditional mathematical form.

Paterno et al. (Italy, 1990–2003)

Modelling

14 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Interactive systems can be formally described as a composition of interactors (Hardin et

al. 2009). Interactors are more concrete than the agent model described in section 5.1,

in that they introduce more structure to the specification by describing an interactive

system as a composition of independent entities (Markopoulos 1997).

The interactors of CNUCE (Paternó and Faconti 1992) provide a communication

means between the user and the system. Data manipulated by the interactors can be sent

and received through events in both directions: towards the system and towards the user

(Paternó 1994), which are both abstracted in the model by a description of the possible

system and user actions.

The CNUCE interactors are specified using LOTOS (ISO 1989), which has

concurrent constructs. However, since LOTOS is a language with action-based

semantics, the system states cannot be represented. Besides, only qualitative time can

be modelled, dynamic instantiation cannot be modelled, neither multimodality. Multi-

touch interactions can be modelled by defining one interactor for each finger, and by

integrating these interactors to other interactors of the system. Despite the fact that the

approach covers mainly the modelling of user interfaces, a mathematical framework is

provided to illustrate how to model the user and the functional core too (Paternó 1994).

Verification

Fig.4 illustrates how a formal model using CNUCE interactors be used afterward for

verification (Paternó 1997).

Figure 5. The TLIM (Tasks, LOTOS, Interactors Modelling) approach (Paternó 1997).

This approach has been used to verify the following usability properties:

State of the Art of Formal Methods in the area of Interactive Systems 15

 Visibility (Paternó and Mezzanotte 1994): each user action is associated with a

modification of the presentation of the user interface to give feedback on the user

input;

 Continuous feedback (Paternó and Mezzanotte 1994): this property is stronger

than visibility; besides requiring a feedback associated with all possible user actions,

this has to occur before any new user action is performed;

 Reversibility (Paternó and Mezzanotte 1994): this property is a generalization of

the undo concept. It means that users can perform parts of the actions needed to fulfil

a task and then perform them again, if necessary, before the task is completed in order

to modify its result;

 Existence of messages explaining user errors (Paternó and Mezzanotte 1994):

whenever there is a specific error event, a help window will appear.

In addition, the following functional property can be verified:

 Reachability (Paternó and Mezzanotte 1994): this property verifies that a user

interaction can generate an effect on a specific part of the user interface.

The approach has been applied to several case studies of safety-critical systems in the

avionics domain (Navarre et al. 2001; Paternó and Mezzanotte 1994; Paternó and

Mezzanotte 1996; Paternó 1997; Paternó and Santoro 2001; Paternó and Santoro 2003).

These examples show that the approach scales well to real-life applications. Large

formal specifications are obtained, which describe the behaviour of the system,

permitting meaningful properties to be verified.

Markopoulos et al. (United Kingdom, 1995–1998)

Modelling

ADC (Abstraction-Display-Controller) (Markopoulos 1995) is an interactor model that

also uses LOTOS to specify the interactive system (specifically, the UIs). In addition,

the expression of properties is facilitated by templates.

The ADC interactor handles two types of data: display data, which come (and are

sent to) either directly from the UI or indirectly through other interactors, and

abstraction data, which are sustained by the interactor to provide input to the application

or to other interactors (Markopoulos et al. 1998). A UI can be modelled as a composition

of ADC interactors. Once formalized in LOTOS, the ADC interactors can be used to

perform formal verification of usability properties using model checking.

16 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

The ADC approach concerns mostly the formal representation of the interactor

model. Regarding the coverage of the model, the focus is to provide an architectural

model for user interface software. The functional core and the user modelling are not

covered. ADC emphasizes the architectural elements of the interactor: its gates, their

role, their grouping to sides, the separate treatment of dialogue and data modelling and

the composition of interactors to form complex interface specifications (Markopoulos

et al. 1998). When connected to each other, ADC interactors exchange data through

gates. Connection types (aout, dout), (dout, dout) and (aout, aout) concern pairs of

interactors which synchronize over common output gates. These can be useful for

modelling multi-modal output where different output modalities synchronize, e.g.,

sound and video output (Markopoulos et al. 1998). Touch interactions can also be

modelled by the combination of such interactors.

Verification

The properties to be verified over the formal model are specified in the ACTL temporal

logic. For example, the following properties can be verified:

 Determinism (Markopoulos 1997): a user action, in a given context, has only one

possible outcome;

 Restartability (Markopoulos 1995): a command sequence is restartable if it is

possible to extend it so that it returns to the initial state;

 Undoability (Markopoulos 1995): any command followed by undo should leave

the system in the same state as before the command (single step undo);

 Eventual feedback (Markopoulos et al. 1998): a user-input action shall eventually

generate a feedback.

In addition, the following functional properties can be verified:

 Completeness (Markopoulos 1997): the specification has defined all intended and

plausible interactions of the user with the interface;

 Reachability (Markopoulos 1997): it qualifies the possibility and ease of reaching

a target state, or a set of states, from an initial state, or a set of states.

In this approach, the CADP (Garavel et al. 2013) toolbox is used to verify properties by

model checking (Markopoulos et al. 1996). Specific tools to support the formal

specification of ADC interactors are not provided (Markopoulos et al. 1998).

No case study applying the approach to the verification of critical systems is reported.

In fact, the approach is applied to several example systems (Markopoulos 1995) and to

a case study on a graphical interface of Simple Player for playing movies (Markopoulos

State of the Art of Formal Methods in the area of Interactive Systems 17

et al. 1996), which makes it difficult to measure whether it can scale up to realistic

applications or not.

Duke and Harrison et al. (United Kingdom, 1993–1995)

Modelling

Another interactor model is proposed by the University of York (Duke and Harrison

1995) to represent interactive systems. Compared to the CNUCE interactor model

(below), the main enhancement brought by the interactors of York is an explicit

representation of the state of the interactor.

The York interactor (Figure 6) has an internal state and a rendering function (i.e., rho

in Figure 6) that provides the environment with a perceivable representation (P) of the

interactor internal state. The interactor communicates with the environment by means

of events. Two kinds of events are modelled:

 Stimuli events: come from either the user or the environment, and modify the

internal state of the interactor. Such state changes are then reflected to the external

presentation through the rendering function.

 Response events: are events generated by the interactor and sent to the user or to the

environment.

Figure 6. The York interactor (Harrison and Duke 1995)

York interactors are described using the Z notation (Spivey 1989). This notation

facilitates the modelling of the state and operations of a system, by specifying it as a

partially ordered sets of events in first-order logic (Duke and Harrison 1993).

Multimodality can be represented (Duke and Harrison 1995) as each action has an

associated modality from the given set [modality]. Besides, the authors describe two

approaches to define a notion of interaction: the one-level model and the two-level

model, which bound several interactors (Duke and Harrison 1993). This allows multi-

touch interactions to be represented by this approach. In addition, the York interactor

model provides an abstract framework for structuring the description of interactive

18 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

systems in terms of layers. It encapsulates two specific system layers: the state and the

display (Harrison and Duke 1995), thus covering both the functional core and the UIs

in the modelling. However, concurrent behaviour cannot be expressed, neither it

supports dynamic instantiation (even though instantiation is proposed to compose

interactors (Duke and Harrison 1993), it seems that the interactors are not dynamically

instantiated).

Verification

This approach permits usability properties to be verified. Properties are also specified

in first-order logic formulas. Unlike the previous approaches, the York interactor model

uses theorem proving as formal verification technique. Examples of properties that can

be verified are (Duke and Harrison 1995):

 Honesty: the effects of a command are intermediately made visible to the user;

 Weak reachability: it is possible to reach any state through some interaction;

 Strong reachability: each state can be reached after any interaction p;

 Restartability: any interaction p is a prefix of another q such that q can achieve any

of the states that p initially achieves.

The approach is applied to a case study in a safety-critical system, an aircraft’s fuel

system (Fields et al. 1995) in which the pilot’s behaviour is modelled, thus showing that

the approach also covers the modelling of users. No further case studies applying the

approach were found in the literature, which makes it difficult to tell whether the

approach scales up to larger interactive systems or not. Besides, no application was

found in the nuclear plant domain.

Campos et al. (Portugal, 1997–2015)

Modelling

The York interactor model is the basis of the work proposed in (Bumbulis et al. 1995b).

Here, Campos chooses MAL (Modal Action Logic) language to implement the York

interactor model, since MAL’s structure facilitates the modelling of the interactor

behaviour. The use of MAL allows data to be represented, since attributes can be

expressed in the language. In (Campos and Harrison 2001), the authors propose the

MAL interactor language to describe interactors that are based on MAL, propositional

State of the Art of Formal Methods in the area of Interactive Systems 19

logic is augmented with the notion of action, and deontic operators allows ordering of

actions to be expressed.

The approach covers the three aspects we are considering: in (Campos and Harrison

2011), the approach is used to model the functional core and user interfaces of an

infusion pump; and assumptions about user behaviours are covered in (Campos and

Harrison 2007), by strengthening the pre-conditions on the actions the user might

execute.

A tool called i2smv is proposed in (Campos and Harrison 2001) to translate MAL

specifications into the input language of the SMV model checker. However, concurrent

behaviour cannot be modelled. Although the stuttering in the SMV modules allows

interactors to evolve independently, a SMV module will engage in an event while

another module does nothing (Campos and Harrison 2001).

Verification

The approach is applied to several case studies. An application of both model checking

and theorem proving to a common case study is described. Further, deeper

investigations are performed (and tools developed) into the usage of model checking

(only), in order to verify interactive systems.

To support the whole process, a toolbox called IVY is developed (Campos and

Harrison 2009). In this framework, the properties are specified using the CTL

(Computational Tree Logic) temporal logic, allowing the verification of usability and

functional properties (Campos and Harrison 2008). Particularly, the following usability

properties can be expressed:

 Feedback (Campos and Harrison 2008): a given action provides a response;

 Behavioural consistency (Campos and Harrison 2008): a given action causes

consistent effect;

 Reversibility (Campos and Harrison 2008): the effect of an action can be

eventually reversed/undone;

 Completeness (Campos and Harrison 2009): one can reach all possible states with

one action.

The approach is applied to several case studies (Campos and Harrison 2001; Harrison

et al. 2013), specifically, in safety-critical systems (e.g., healthcare systems (Campos

1999; Campos and Harrison 2009; Campos and Harrison 2011; Harrison et al. 2015)

and avionics systems (Campos and Harrison 2007; Doherty et al. 1998; Sousa et al.

2014)), showing that the approach scales well to real-life applications.

20 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

D’Ausbourg et al. (France, 1996–2002)

Modelling

Another approach based on the York interactor model is proposed in (d’Ausbourg 1998;

d’Ausbourg et al. 1998). These authors push further the modelling of an interactive

system by events and states initially proposed by the York approach.

Their interactor model is called CERT. It also contains an internal state, and the

interface between an interactor and its environment consists of a set of input and output

events. Both internal state and events are described as Boolean flows. Such

representation of interactors by flows allows their specification using the LUSTRE data

flow language. A system described in LUSTRE is represented as a network of nodes

acting in parallel, which allows concurrent behaviour to be represented. Each node

transforms input flows into output flows at each clock tick.

The approach can handle data in the system modelling. However, a drawback is that

it does not handle sophisticated data types. The representation of the internal system

state and events by Boolean flows considerably limits the modelling capabilities of the

approach. In LUSTRE, a flow variable is a function of time, denoting the sequence of

values that it takes at each instant (d’Ausbourg et al. 1998). Specifically, two LUSTRE

operators allows qualitative time to be represented: the “previous” operator pre and the

“followed-by” operator →. Besides, quantitative time can also be represented: the

expression occur-from-to(a, b, c) is a temporal operator whose output is true when “a”

occurs at least once in the time interval [b..c] (d’Ausbourg et al. 1998).

Verification

The LUSTRE formal model is then verified by model checking. Verification is achieved

by augmenting the system model with LUSTRE nodes describing the intended

properties, and using the Lesar tool to traverse the state space generated from this new

system. The properties can be either specific or generic properties.

Specific properties deal with how presentations, states, and events are dynamically

linked into the UIs, and they are automatically generated from the UIL file (they

correspond to functional properties). Generic properties might be checked on any user

interface system, and they are manually specified (they correspond to usability

properties). The verification process allows the generation of test cases, using the

behaviour traces that lead to particular configurations of the UI where the properties are

satisfied.

In particular, the following usability properties are verified (d’Ausbourg et al. 1998):

State of the Art of Formal Methods in the area of Interactive Systems 21

 Reactivity: the UI emits a feedback on each user action;

 Conformity: the presentation of an interactor is modified when its internal state

changes;

 Deadlock freedom: the impossibility for a user to get into a state where no actions

can be taken;

 Unavoidable interactor: the user must interact with the interactor at least once in

any interactive session of the UIs.

As well as the following functional property:

 Rule set connectedness: an interactor is reachable from any initial state.

The approach was applied to the avionics field (d’Ausbourg 2002). In this case study,

the interactions of the pilot with the system and the behaviour of the functional core are

modelled. Unfortunately, no evidence is given that the approach scales well to real-life

applications.

Bumbulis et al. (Canada, 1995–1996)

Modelling

Similar to the interactor models (Campos and Harrison 2001; d’Ausbourg et al. 1998;

Duke and Harrison 1995), user interfaces can be described by a set of interconnected

primitive components (Brat et al. 2013; Bumbulis et al. 1995a). The notion of

component is similar to that of interactor, but a component is more closely related to the

widgets of the UI. Such component-based approach allows both rapid prototyping and

formal verification of user interfaces from a single UI specification.

In Bumbulis et al.’s approach, user interfaces are described as a hierarchy of

interconnected component instances using the Interconnection Language (IL).

Investigations have been conducted into the automatic generation of IL specifications

by re-engineering the UIs (Bumbulis et al. 1995a). However, such automatic generation

is not described in the paper. From such component-based IL specification of the UI, a

Tcl/Tk code is mechanically generated, in order to provide a UI prototype for

experimentation, as well as a HOL (Higher-Order Logic) specification for formal

reasoning using theorem proving (Bumbulis et al. 1995a).

The approach covers only the modelling and verification of user interfaces. The user

and the functional core are not modelled. Besides, the Interconnection Language does

not provide means to represent multimodality, multi-touch interactions, concurrent

behaviour, or time.

22 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Verification

Properties are specified as predicates in Hoare logic, a formal system with a set of logical

rules for reasoning about the correctness of computer programs. Proofs are constructed

manually, even though investigations to mechanize the process have been conducted

(Bumbulis et al. 1995a). No usability properties are verified in this approach. Instead,

the approach permits functional properties to be verified, which are directly related to

the expected behaviour of the modelled UI.

No application to safety-critical systems was found in the literature. Besides, it is not

clear how to model more complex UIs in this approach, since UI components are not

always bound to each other. In addition, it is not clear how multiple UIs could be

modelled, neither the navigation modelling between such UIs. All these aspects indicate

that the approach does not scale well for larger applications.

Oliveira et al. (France, 2012–2015)

Modelling

In (Oliveira et al. 2015a) a generic approach to verifying interactive systems is proposed,

but instead of using interactors, interactive systems are described as a composition of

modules. Each system component is described as such a module, which communicate

and exchange information through channels. This approach allows plastic UIs to be

analysed. Plasticity is the capacity of a UI to withstand variations in its context of use

(environment, user, platform) while preserving usability (Thevenin and Coutaz 1999).

In this approach, interactive systems are modelled according to the principles of the

ARCH architecture (Bass et al. 1991), and using LNT (Champelovier 2010), a formal

specification language derived from the ELOTOS standard (ISO 2001). LNT improves

LOTOS (ISO 1989) and can be translated to LOTOS automatically. LOTOS and LNT

are equivalent with respect to expressiveness, but have a different syntax. In (Paternó

1997) the authors point out how difficult it is to model a system using LOTOS, when

quite simple UI behaviours can easily generate complex LOTOS expressions. The use

of LNT alleviates this difficulty.

The approach enhances standard LTS to model interactive systems. An LTS

represents a system by a graph composed of states and transitions between states.

Transitions between states are triggered by actions, which are represented in LTS

transitions as labels. Intuitively, an LTS represents all possible evolutions of a system

modelled by a formal model. The approach enhances LTS by proposing the ISLTS

(Interactive System LTS) (Yin and Knight 2010), in which two new sets are added: a

State of the Art of Formal Methods in the area of Interactive Systems 23

set C of UI components and a set L of action names. In addition, the set A of actions of

standard LTS is enhanced to carry a list of UI components, representing the UI

appearance after the action is performed.

The approach covers aspects of the users, the user interfaces, and the functional core

of the system. Data and events of the system can be modelled by the ISLTS, but not the

state of the system. The ordering of transitions of the LTS can represent qualitative time

between two consecutive model elements, and LNT contains operators that allow

concurrent behaviour to be modelled. Models described with this approach were of

WIMP-type and no evidence was given about the ability of the approach to deal with

more complex interaction techniques such as multi-touch or multi-modal UIs

(especially, dealing with quantitative time required for fusion engines).

Verification

The approach is twofold, allowing: usability and functional properties to be verified

over the system model (Oliveira et al. 2014). Using model checking, usability properties

verify whether the system follows ergonomic properties to ensure a good usability.

Functional properties verify whether the system follows the requirements that specify

its expected behaviour. These properties are formalized using the MCL property

language (Mateescu and Thivolle 2008). MCL is an enhancement of the modal mu-

calculus, a fixed point-based logic that subsumes many other temporal logic, aiming at

improving the expressiveness and conciseness of formulas.

Besides, different versions of UIs can be compared (Oliveira et al. 2015b). Using

equivalence checking, the approach verifies to which extent UIs present the same

interaction capabilities and appearance, showing whether two UI models are equivalent

or not. When they are not equivalent, the UI divergences are listed, providing the

possibility of leaving them out of the analysis (Oliveira et al. 2015c). In this case, the

two UIs are equivalent less such divergences. Furthermore, the approach shows that one

UI can contain at least all interaction capabilities of another (UI inclusion). Three

abstraction techniques support the comparison: omission, generalization and

elimination. This part of the approach can be used to reason of multimodal user

interfaces, by verifying the level of equivalence between them.

The approach is supported by CADP (Garavel et al. 2013), a toolbox for verifying

asynchronous concurrent systems: systems whose components may operate at different

speeds, without a global clock to synchronize them. Asynchronous systems suit the

modelling of human-computer interactions well: the modules that describe the users, the

functional core, and the user interfaces can evolve in time at different speeds, which

reflects well the unordered sequence of events that take place in human-machine

interactions. Both parts of the approach can be used either independently or in an

24 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

integrated way, and it has been validated in three industrial case studies in the nuclear

power plant domain, which indicates the potential of the approach with respect to

scalability (Oliveira 2015).

Knight et al. (USA, 1992–2010)

Modelling

Another example of the application of formal methods to safety-critical systems,

specifically, to the nuclear power plant domain, can be found in (Knight and Brilliant

1997). The authors propose the modelling of user interfaces in three levels: lexical,

syntactic, and semantic levels. Different formalisms are used to describe each level. For

instance, the lexical level is defined using Borland's OWL (Object Windows Library),

allowing data and events to be represented. The syntactic level in the approach is

documented with a set of context-free grammars with one grammar for each of the

concurrent, asynchronous dialogues that might be taking place. Such syntactic level

imposes the required temporal ordering on user actions and system responses (Knight

and Brilliant 1997). Finally, Z is used to define the semantic level. The notion of user

interfaces as a dialog between the operator and the computer system consisting of three

components (lexical, syntactic, and semantic levels) is proposed by (Foley and Wallace

1974).

Each of these three levels is specified separately. Since different notations are used,

the communication between these levels is defined by a set of tokens (Knight and

Brilliant 1997). The concept of a multi-party grammar is appropriate for representing

grammars in which tokens are generated by more than one source (Knight and Brilliant

1997). Such representation could allow multimodality to be covered by the approach.

However, the authors have elected to use a conventional context-free grammar

representation together with a naming convention to distinguish sources of tokens

(Knight and Brilliant 1997).

Following this view of user interface structure, the authors develop a formal

specification of a research reactor used in the University of Virginia Reactor (UVAR)

for training nuclear engineering students, radiation damage studies, and other studies

(Loer and Harrison 2000). In order to illustrate the specification layers, the authors focus

on the safety control rod system, one of the reactor subsystems. They give in the paper

the three specifications for this subsystem.

The approach is also applied to other safety-critical systems, such as the Magnetic

Stereotaxis System (MSS), a healthcare application for performing human neurosurgery

(Elder and Knight 1995; Knight and Kienzle 1992). UIs, users and the functional core

State of the Art of Formal Methods in the area of Interactive Systems 25

of systems are covered by this approach. The UI syntactic level in their approach defines

valid sequences of user inputs on the UIs, which is to some extent the modelling of the

users, and the cypher system case study described in (Yin et al. 2008) verifies the

correctness of the functional core. Finally, the approach covers the representation of

dynamic reconfiguration (Knight and Brilliant 1997).

Verification

However, the formal specification is not used to perform formal verification. According

to the authors, the main goal is to develop a formal specification approach for user

interfaces of safety-critical systems. Concerning verifiability, the authors claim that the

verification of a UI specification using this approach is simplified by the use of an

executable specification for the lexical level, and by the use of a notation from which

an implementation can be synthesized for the syntactic level. For the semantic level,

they argue that all the tools and techniques developed for Z can be applied (Knight and

Brilliant 1997).

Later, a toolbox called Zeus is proposed to support the Z notation (Knight et al. 1999).

The tool permits the creation and analysis of Z documents, including syntax and type

checking, schema expansion, precondition calculation, domain checking, and general

theorem proving. The tool is evaluated in a development of a relatively large

specification of an international maritime software standard, showing that Zeus meets

the expected requirements (Knight et al. 1999).

Following such a separation of concerns in three levels, the authors propose another

approach called Echo (Strunk et al. 2005), this time applied to a case study in the

avionics domain. In order to decrease complexity with traditional correctness proofs,

the Echo approach is based on the refactoring of the formal specification (Yin et al.

2009a; Yin at al. 2009), reducing the verification burden by distributing it over separate

tools and techniques. The system model to be verified (written in PVS) is mechanically

refactored. It is refined into an implementable specification in Spark Ada by removing

any un-implementable semantics. After refactoring, the model is documented with low-

level annotations, and a specification in PVS is extracted mechanically (Yin et al. 2008).

Proofs that the semantics of the refactored model is equivalent to that of the original

system model, that the code conforms to the annotations, and that the extracted

specification implies the original system model constitute the verification argument

(Yin et al. 2009a).

An extension of the approach is proposed in (Yin and Knight 2010), aiming at

facilitating formal verification of large software systems by a technique called proof by

parts, which improve the scalability of the approach for larger case studies.

26 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

The authors did not clearly define the kinds of properties they can verify over

interactive systems with their approach. The case studies to which the approach is

applied mainly focused on the benefits of modelling UIs in three layers using formal

notation.

Miller et al. (USA, 1995–2013)

Modelling

Also in the safety-critical domain, but in avionics, deep investigation has been

conducted at Rockwell Collins of the usage of formal methods for industrial realistic

case studies. Preliminary usage of formal methods aimed at creating consistent and

verifiable system specifications (Hamilton et al. 1995), paving the way to the usage of

formal methods at Rockwell Collins. Another preliminary use of formal methods was

the usage of a synchronous language called RSML (Requirements State Machine

Language) to specify requirements of a Flight Guidance System. RSML is a state-based

specification language developed by Leveson's group at the University of California at

Irvine as a language for specifying the behaviour of process control systems (Miller et

al. 2006). Algorithms to translate specifications from this language to the input

languages of the NuSMV model checker and the PVS theorem prover have been

proposed (Miller et al. 2006), enabling one to perform verification of safety properties

and functional requirements expressed in the CTL temporal logic (i.e., functional

properties). Afterward, deeper investigations are conducted to further facilitate the

usage of formal methods.

According to (Miller 2009), relatively few case studies of model checking to

industrial problems outside the field of engineering equipment are reported. One of the

reasons is the gap between the descriptive notations most widely used by software

developers and the notations required by formal methods (Lutz 2000). To alleviate the

difficulties, as part of NASA’s Aviation Safety Program (AvSP), Rockwell Collins and

the research group on critical systems of the University of Minnesota (USA) develop

the Rockwell Collins Gryphon Translator Framework (Hardin et al. 2009), providing a

bridge between some commercial modelling languages and various model checkers and

theorem provers (Miller et al. 2010). The translation framework supports Simulink,

Stateflow, and SCADE models, and it generates specifications for the NuSMV, Prover,

and SAL model checkers, the ACL2 and PVS theorem provers, and generates C and

Ada code (Miller et al. 2010) (BAT and Kind are also included as target model checkers

in (Cofer et al. 2012)). Alternatively, Z specifications are also covered by the approach

State of the Art of Formal Methods in the area of Interactive Systems 27

as an input language, since Simulink and Stateflow models can be derived from Z

specifications (Hardin et al. 2009).

Algorithms to deal with the time dependencies were implemented in the translator,

allowing multiple input events arriving at the same time to be handled (Miller et al.

2006). Concerning the modelling coverage, the approach covers only the functional core

of the avionics interactive systems that were analysed (Combéfis 2013; Miller 2009;

Miller et al. 2010), but not the user interfaces nor the user behaviour.

Tools were also developed to translate the counter examples produced by the model

checkers back to Simulink and Stateflow models (Cofer 2012), since for large systems

it can be difficult to determine the cause of the violation of the property only by

examining counter examples (Whalen et al. 2008).

Verification

The technique is applied to several case studies in the avionics (Cofer 2012; Combéfis

2013; Miller 2009; Miller et al. 2010; Whalen et al. 2008). The first application of the

NuSMV model checker to an actual product at Rockwell Collins is the mode logic of

the FCS 5000 Flight Control System (Miller 2009): 26 errors are found in the mode

logic.

The largest and most successful application is the Rockwell Collins ADGS-2100

(Adaptive Display and Guidance System Window Manager), a cockpit system that

provides displays and display management software for commercial aircraft (Miller et

al. 2010). The Window Manager (WM) ensures that data from different applications are

displayed correctly on the display panel. A set of properties that formally expresses the

WM requirements (i.e., functional properties) is developed in the CTL and LTL

temporal logic: 563 properties are developed and verified, and 98 design errors are

found and corrected.

The approach is also applied to an adaptive flight control system prototype for

unmanned aircraft modelled in Simulink (Cofer 2012; Whalen et al. 2008). During the

analysis, over 60 functional properties are verified, and 10 model errors and 2

requirement errors are found in relatively mature models.

These applications to the avionics domain demonstrates that the approach scales well.

Even if the approach does not take user interfaces into account, it is a good example of

formal methods applied to safety-critical systems. In addition, further investigations of

the usage of compositional verification are conducted (Cofer et al. 2008; Murugesan et

al. 2013), to enhance the proposed techniques.

28 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Loer and Harrison et al. (Germany, 2000–2006)

Modelling

Another approach to verifying interactive systems is proposed in (Loer and Harrison

2002; Loer and Harrison 2006), also with the goal of making model checking more

accessible to software engineers. The authors claim that in the avionics and automotive

domains requirements are often expressed as Statechart models (Loer and Harrison

2002). With statecharts, a complex system can be specified as a number of potentially

hierarchical state machines that describe functional or physical subsystems and run in

parallel (Loer and Harrison 2000). Such parallelism could represent concurrent

behaviour. The ordering of events which change the machine from one state to another

can be used to represent qualitative time. Furthermore, in the Statechart semantics, time

is represented by a number of execution steps, allowing to express the formulation

“within n steps from the current state...” (Loer and Harrison 2000).

To introduce formal verification in the process, they propose an automatic translation

from Statechart models (created with the Statemate toolkit) to the input language of the

SMV model checker, which is relatively robust and well supported (Loer and Harrison

2006). Such translation is part of the IFADIS toolbox, which also provides guided

process of property specifications and a trace visualization to facilitate the result

analysis of the model checker.

Concerning the modelling coverage of the approach, the authors describe five pre-

defined elements in which the formal model is structured (Loer and Harrison 2000):

 Control elements: description of the widgets of the UIs;

 Control mechanism: description of the system functionality;

 Displays: description of the output elements;

 Environment: description of relevant environmental properties;

 User tasks: sequence of user actions that are required to accomplish a certain task.

Therefore, their model covers the three aspects we are analysing: the user, UIs, and

the functional core. However, aspects such as multimodality and multi-touch

interactions are not covered.

Verification

The properties can be verified using Cadence SMV or NuSMV model-checking tools.

Depending on the type of property, the model checker can output traces that demonstrate

why a property holds or not (Loer and Harrison 2006).

State of the Art of Formal Methods in the area of Interactive Systems 29

The property editor helps designers to construct temporal-logic properties by making

patterns available and helping the process of instantiation (Loer and Harrison 2006).

Temporal-logic properties can be specified either in LTL (Linear Temporal Logic) or

CTL (Computational Tree Logic). The following usability properties can be verified:

 Reachability (Loer and Harrison 2000): are all the states reachable or not?

 Robustness (Loer and Harrison 2000): does the system provide fallback

alternatives in the case of a failure? or, alternatively, are the guards for unsafe states

foolproof?

 Recoverability (Loer and Harrison 2000): does the system support undo and redo?

 Visibility of system status (Loer and Harrison 2000): does the system always keep

the users informed about what is going on, through appropriate feedback within

reasonable time?

 Recognition rather than recall (Loer and Harrison 2000): is the user forced to

remember information from one part of the dialog to another?

 Behavioural consistency (Loer and Harrison 2006): does the same input always

yield the same effect?

In particular, the reachability property here is classified as a usability property

because it is defined as generic property, which can be applied to any interactive system

(i.e., “are all the states reachable or not?”). This is in contrast to the classification of the

reachability property, for instance, where it is classified as a functional property because

it expresses what can be done at the UI, and how can it be done, which is something that

is usually defined in the system requirements.

Although the approach is not applied to many case studies (i.e., only to the avionics

domain (Loer and Harrison 2006)), several reasons indicate that the approach scales

well to real-life applications. The approach is supported by a tool that provides a

translation from engineering models (Statecharts) to formal models (SMV

specifications), a set of property patterns to facilitate the specification of properties, and

a trace visualizer to interpret the counter examples generated by the model checker. It

is used in the case study described in (Loer and Harrison 2006) and an evaluation shows

that the tool improves the usability of model checking for non-experts (Loer and

Harrison 2006).

Thimbleby et al. (United Kingdom, 1987–2015)

Modelling

30 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

In the healthcare domain, several investigations of medical device user interfaces have

been conducted at Swansea University and Queen Mary University of London.

Specifically, investigations are conducted on interactive hospital beds (Acharya et al.

2010), for user interfaces of drug infusion pumps (Cauchi et al. 2012a; Masci et al. 2015;

Masci et al. 2014a; Thimbleby and Gow 2008), and interaction issues that can lead to

serious clinical consequences.

Infusion pumps are medical devices used to deliver drugs to patients. Deep

investigation has been done of the data entry systems of such devices (Cauchi et al.

2012b; Cauchi et al. 2014; Gimblett and Thimbleby 2013; Li et al. 2015; Masci et al.

2011; Oladimeji et al. 2011; Oladimeji et al. 2013; Thimbleby 2010; Thimbleby and

Gimblett 2011; Tu et al. 2014). If a nurse makes an error in setting up an infusion (for

instance, a number ten times larger than the necessary for the patient’s therapy), the

patient may die. Under-dosing is also a problem: if a patient receives too little of a drug,

recovery may be delayed or the patient may suffer unnecessary pain (Masci et al. 2011).

The authors report several issues with the data entry system of such pumps (Masci et

al. 2014a). Several issues are detected (Masci et al. 2014a) using the approach depicted

in Figure 7. In this approach, the C++ source code of the infusion pump is manually

translated into a specification in the PVS formal language ([a] in Figure 7).

Concerning the modelling coverage, the approach deals with the display and

functionality of the devices, but does not cover the modelling of the users interacting

with such devices. In addition, no references were found describing the modelling of

concurrent behaviour, multimodality, nor multi-touch interactions.

Verification

Usability properties such as consistency of actions and feedback are formalized ([b] in

Figure 7) as invariants to be established using theorem proving:

 Consistency of actions: the same user actions should produce the same results in

logically equivalent situations;

 Feedback: it ensures that the user is provided with sufficient information on what

actions have been done and what result has been achieved.

A behavioural model is then extracted ([c] in Figure 7), in a mechanized manner,

from the PVS formal specification. This model captures the control structure and

behaviour of the software related to handling user interactions. Theorem proving is used

to verify that the behavioural model satisfies the usability properties. Lastly, the

behavioural model is exhaustively explored to generate a suite of test sequences ([d] in

Figure 7) (Masci et al. 2014a).

State of the Art of Formal Methods in the area of Interactive Systems 31

Figure 7. Verification approach using PVS, adapted from (Masci et al. 2014a)

A similar approach is described in (Masci et al. 2013), in which the PVS specification

is automatically discovered (Gimblett and Thimbleby 2010; Thimbleby 2007a) from

reversely engineering the infusion pump software. Besides, functional properties are

extracted from the safety requirements provided by the US medical device regulator

FDA (Food and Drug Administration), to make sure that the medical device is

reasonably safe before entering the market (Masci et al. 2013). This approach allows

quantitative time to be modelled, and property such as “The pump shall issue an alert if

paused for more than t minutes” to be verified (Masci et al. 2013).

The same FDA safety requirements are used to verify a PVS formal model of another

device, the Generic Patient Controlled Analgesia (GPCA) infusion pump (Masci et al.

2013). In this work, the authors propose the usage of formal methods for rapid

prototyping of user interfaces. Once verified, the formal model of the infusion pump is

automatically translated into executable code through the PVS code generator,

providing a prototype of the GPCA user interface from a verified model of the infusion

pump.

An approach to integrating PVS executable specifications and Stateflow models is

proposed in (Masci et al. 2014b), aiming at reducing the barriers that prevent non-

experts from using formal methods. It permits Stateflow models to be verified, avoiding

the hazards of translating design models created in different tools.

All the work mentioned in this subsection is based on the PVS theorem prover.

Nevertheless, model checking can also be used in order to formally verify medical

devices (Masci et al. 2011; Masci et al. 2015; Thimbleby 2007b). For example, the

authors model the Alaris GP in (Masci et al. 2015), and the B-Braun Infusomat Space

infusion pumps in the higher-order logic specification language SAL (Symbolic

Analysis Laboratory) (De Moura et al. 2004). Afterward, model checking is applied to

verify the predictability of user interfaces, a usability property expressed in the LTL

temporal logic. Predictability is defined in (Masci et al. 2011) as “if users look at the

device and see that it is in a particular display state, then they can predict the next display

state of the device after a user interaction”.

The maturity of the approach described here, and its applications to numerous case

studies are evidences that the approach scales well to real-life applications.

32 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Palanque et al. (France, 1990–2015)

Modelling

In (Palanque and Bastide 1995), another approach is proposed to modelling and

verifying interactive systems with a different formalism: Petri nets (Petri 1962). Being

a graphical model, Petri nets might be easier to understand than textual descriptions.

Originally, the work was targeting at modelling, implementation and simulation of

the dialog part of event-driven interfaces (Bastide and Palanque 1990) it nowadays

covers the modelling of the entire interactive system. Early notation was called Petri

nets with Objects (Bastide and Palanque 1990) (which belongs to the high-level Petri

nets class) and was an extension of Petri nets in order to manipulate tokens which were

references to objects (in the meaning the object oriented paradigm). This has been

further extended over the years to the ICO formalism (Navarre et al. 2009) (Interactive

Cooperative Objects) which permits applications to be prototyped and tested but also

can be fully implemented by integrating Java code in the models.

A system described using ICOs is modelled as a set of objects that cooperate to

perform the system tasks. ICO uses concepts borrowed from the object-oriented

formalism (such as inheritance, polymorphism, encapsulation, and dynamic

instantiation) to describe the structural or static aspects of systems, such as its attributes

and the operations it provides to its environment.

Through the Petri net formalism and objects, data, state and events can be modelled,

as well as concurrent behaviour. Dynamic reconfiguration of user interfaces are

proposed in (Navarre et al. 2008), allowing operators to continue interacting with the

interactive system even though part of the hardware side of the user interface is failing.

Besides, the formalism also allows the modelling of low level behaviour of interaction

techniques including multi-touch interactions (Hamon et al. 2013). In the multi-touch

context, new fingers are detected at execution time. Thus, the description language must

be able to receive dynamically created objects. In Petri nets, this can be represented by

the creation/destruction of tokens associated to the objects (Hamon et al. 2013). The

notation has been used to model WIMP interfaces (Bastide and Palanque 1990) and

post-WIMP ones including multimodal interaction with speech (Bastide et al. 2004),

virtual reality (Navarre et al. 2005) or bimanual interactions (Navarre et al. 2009).

Once the system is modelled using the ICO formalism, it is possible to apply model

checking to verify usability and functional properties. How modelling, verification and

execution is performed using Petshop (for Petri net Workshop) (Bastide et al. 2002;

Bastide et al. 2004) (the CASE tool supporting the ICO formal description technique)

is illustrated in chapter 20 of this book.

State of the Art of Formal Methods in the area of Interactive Systems 33

This work allows the integration of two different representations: tasks models and

interactive systems models as described in (Palanque et al. 1996). Than work has been

extended to describe constructs in task models as Petri nets structures. This was first

done using UAN notation (Hix and Hartson 1993) as demonstrated in (Palanque et al.

1996), allowing for the verification of compatibility between the two representations

using Petri nets based bi-simulation (Bourguet-Rouger 1988). Then connection with

CTT notation (Paternó et al. 1997) was made using scenarios as a connection artefact

(Navarre et al. 2001). Such work has been extended by developing integration of models

at the syntactic level allowing for co-simulation of models (Barboni et al. 2010) and

more recently using the HAMSTERS notation that allows structuring of models

(Martinie et al. 2011a) and enables explicit representation of data, errors, and knowledge

in task models (Fahssi et al. 2015). This work focusses on the use of multiple models

jointly as presented in (Martinie et al. 2014).

Verification

For instance, the following usability properties can be verified (Palanque and Bastide

1995):

 Predictability: the user is able to foresee the effects of a command;

 Deadlock freedom: the impossibility for a user to get into a state where no actions

can be taken;

 Reinitiability: the ability for the user to reach the initial state of the system.

 Exclusion of commands: commands which must never be offered at the same time

(or, on the contrary, must always be offered simultaneously);

 Succession of commands: the proper order in which commands may be issued; for

instance, a given command must or must not be followed by another one,

immediately after or with some other commands in between;

 Availability: a command is offered all the time, regardless of the state of the system

(e.g., a help command).

The specification is verified using Petri net property analysis tools (Palanque et al.

1996). In order to automate the process of property verification, the ACTL temporal

logic can be used to express the properties, which are then proved by model checking

the Petri net marking graph (Palanque et al. 1999).

The ICO approach also permits user’s cognitive behaviour to be modelled by a

common Petri net for system, device and user (Moher et al. 1996). As previously

mentioned, Petshop supports the design of interactive systems according to the ICO

methodology. Alternatively, the Java PathFinder model checker is used to verify a set

34 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

of properties on a safety-critical application in the interactive cockpit systems modelled

with ICO (Boyer and Moore 1983).

The approach has been applied to case studies and real applications in safety-critical

systems in the space domain (for instance: (Bastide et al. 2003; Bastide et al. 2004;

Boyer and Moore 1983; Palanque et al. 1997)) but also Air Traffic Management and

more recently aircraft cockpits. These case studies and the maturity of the tools show

that the approach scales well to real-life applications.

However, the verification based on Petri net properties has limitations exposed in

(Navarre et al. 2009). The analysis is usually performed on the underlying Petri net (a

simplified version of the original Petri net). A drawback is that properties verified on

the underlying Petri net are not necessarily true on the original Petri net. Thus, the results

of the analysis are essentially indicators of potential problems in the original Petri net.

This is due to the fact that the team involved is the ICO notation has not extended work

for properties verifications in Petri nets to encompass extensions (e.g. the use of

preconditions).

Aït-Ameur et al. (France, 1998–2014)

Modelling

An alternative approach is proposed in (Aït-Ameur et al. 1998b; Aït-Ameur et al. 1999;

Aït-Ameur et al. 2003a), this time relying on theorem proving using the B method

(Abrial 1996) to specify the interactive system. The approach permits task models to be

validated. Task models can be used to describe a system in terms of tasks, sub-tasks,

and their temporal relationships. A task has an initial state and a final state, and is

decomposed in a sequence of several sub-tasks.

The approach uses the B method for representing, verifying and refining

specifications. The authors use the set of events to define a transition system that permits

the dialog controller of the interactive system to be represented. The CTT (Concur Task

Trees) notation (Paternó et al. 1997) is used to represent task models. In (Aït-Ameur et

al. 2003a), only the CTT operator called “sequence” between tasks is covered. In further

work (Aït-Ameur et al. 2005a; Aït-Ameur et al. 2005b; Aït-Ameur et al. 2009), the

authors describe how every CTT construction can be formally described in Event B

(including the concurrency operator) allowing to translate, with generic translation

rules, every CTT construction in Event B, which is the event-based definition of B

method.

The case study described in (Aït-Ameur et al. 1998a) shows that the approach

covers the modelling of users, UIs and the functional core. In this approach,

State of the Art of Formal Methods in the area of Interactive Systems 35

qualitative time can be modelled using the PRE THEN substitution, which allows one

to order operations (Aït-Ameur et al. 1998b). Multi-touch interactions are also covered

by modelling each finger as a machine, and by integrating these machines (using the

EXTENDS clause) in another machine that would represent the whole hand used for

interaction (Aït-Ameur et al. 1998b). However, there is no possibility to account for

quantitative time which is needed for the description of fine grain interaction in

multimodal interactions.

Verification

This usage of Event B to encode CTT task models is described in several case studies

(Aït-Ameur et al. 2006; Aït-Ameur and Baron 2004; Aït-Ameur and Baron 2006;

Cortier et al. 2007). In particular, the approach is used to verify Java/Swing user

interfaces (Cortier et al. 2007), from which Event B models are obtained. Such Event B

models encapsulate the UI behaviour of the application. Validation is achieved with

respect to a task model that can be viewed as a specification. The task model is encoded

in Event B, and assertions ensure that suitable interaction scenario are accepted by the

CTT task model. Demonstrating that the Event B formal model behaves as intended

comes to demonstrate that it is a correct refinement of the CTT task model.

Moreover, the following usability properties can be verified:

 Robustness (Aït-Ameur et al. 2003b): these properties are related to system

dependability;

 Visibility (Aït-Ameur et al. 1999): relates to feedback and information delivered to

the user;

 Reachability (Aït-Ameur et al. 1999): these properties express what can be done at

the user interface and how can it be done;

 Reliability (Aït-Ameur et al. 1999): concerns the way the interface works with the

underlying system;

 Behavioural properties (Aït-Ameur and Baron 2006): characterize the behaviour

of the UI suited by the user.

The proof of these properties is done using the invariants and assertions clauses of

the B method, together with the validation of specific aspects of the task model (i.e.,

functional properties), thus, permitting a full system task model to be validated. The

Atelier B tool is used for an automatic proof obligation generation and proof obligation

checking (Aït-Ameur 2000).

In order to compare this theorem proving-based approach to model checking-based

approaches, the authors show how the same case study is tackled using both theorem

proving (with Event B) and model checking (with Promela/SPIN) (Aït-Ameur et al.

36 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

2003b). The authors conclude that both techniques permit the case study to be fully

described, and that both permit robustness and reachability properties to be verified. The

proof process of the Event B-based approach is not fully automatic, but it does not suffer

from the state-space explosion of model-checking techniques. The Promela-SPIN-based

technique is fully automatic, but limited to finite-state systems on which exhaustive

exploration can be performed. The authors conclude that a combined usage of both

techniques would strengthen the verification of interactive systems.

An integration of the approach with testing is also presented in (Aït-Ameur et al.

2004). Here, the informal requirements are expressed using the semi-formal notation

UAN (Hix and Hartson 1993) (instead of CTT), and the B specifications are manually

derived from this notation. To validate the formal specification, the authors use a data-

oriented modelling language, named EXPRESS, to represent validation scenarios. The

B specifications are translated into EXPRESS code (the B2EXPRESS tool (Aït-Sadoune

and Aït-Ameur 2008)). This translation gives data models that represent specification

tests and permits Event B models to be animated.

The approach is applied to several case studies in the avionics domain (Aït-Ameur et

al. 2014; Jambon et al. 2001). Specifically, the authors illustrate how to explicitly

introduce the context of the systems in the formal modelling (Aït-Ameur et al. 2014).

The approach is also applied to the design and validation of multi-modal interactive

systems (Aït-Ameur et al. 2006; Aït-Ameur et al. 2010; Aït-Ameur and Kamel 2004).

The numerous case studies and the maturity of the approach suggests that it might scale

to real-life applications even though no evidence was given in the papers.

Bowen and Reeves (New Zealand, 2005–2015)

Modelling

The main focus of the approach proposed by Bowen and Reeves is the use of lightweight

models of interfaces and interactions in conjunction with formal models of systems in

order to bridge the gap between the typical informal UI design process and formal

methods (Bowen and Reeves 2007a). UIs are formally described using a presentation

model (PM) and a presentation and interaction model (PIM) while the underlying

system behaviour is specified using the Z language (ISO 2002). The lightweight models

allow UI and interaction designers to work with their typical artefacts (prototypes,

storyboards etc.) and a relation (PMR) is created between the behaviours described in

the UI models and the formal specification in Z which gives a formal meaning (and

therefore the semantics of) the presentation models. The formal semantics also then

enables a description of refinement to be given which can guide the transformation from

State of the Art of Formal Methods in the area of Interactive Systems 37

model to implementation. Again this is given at both a formal and informal level so can

be used within both the design and formal processes (Bowen and Reeves 2006).

While the primary use of the models is during the design process (assuming a

specification-first approach) it is also possible to reverse-engineer existing systems into

the set of models. Most examples given of this rely on a manual approach, which can

be error-prone or lead to incomplete models. Some work has been done on supporting

an automated approach. Using a combination of dynamic and static analysis of code and

Java implementations has been investigated and this allows UI widgets and some

behaviours to be identified which can be used to partially construct models and support

their completion (Bowen 2015).

The presentation model uses a simple syntax of tuples of labels and the semantics of

the model are based on set theory. It is used to formally capture the meaning of an

informal design artefact such as a scenario, a storyboard, or a UI prototype by describing

all possible behaviours of the windows, dialogues or modes of the interactive system

(Bowen and Reeves 2007a). In order to extend this to represent dynamic UI behaviour

a PIM (presentation interaction model) is used. This is essentially a finite-state machine

where each state represents one window, dialogue or mode (i.e. individual presentation

model) of the system with the transitions representing navigational behaviours. The PIM

can be visualised using the μCharts language (Reeve and Reeves 2000) which has its

own Z semantics (and which is based on Statecharts) and which therefore enables a

complete model of all parts of the system to be created and ultimately translated into Z.

Although the approach mainly focuses on modelling the user interfaces, the

presentation model can also be used to model the user operations. The main goal is to

ensure that all user operations described in the formal specification have been described

in the UI design, again the PMR is used to support this. The models can also be used

post-implementation to support testing. A set of abstract tests can be generated from the

presentation models which describe the requirements of the UI widgets and behaviours

and these can then be concretised into testing frameworks such as JUnit and UISpec4J

(Bowen and Reeves 2013b).

Verification

The approach has been applied to several case studies. In (Bowen and Reeves 2007b),

the authors use the models in the design process of UIs for the PIMed tool, a software

editor for presentation models and PIMs. However, in this work, no automated

verification of the presentation model and the PIMs of the editor is proposed. The formal

models are manually inspected. For example, in order to verify the deadlock freedom

property, the authors use a manual walk-through procedure in the PIMs. In later work

(e.g. (Bowen and Reeves 2012)), the verification is automated by the ProZ tool, allowing

38 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

both usability properties and functional properties to be verified using model checking.

The kinds of usability properties that can be verified are:

 Total reachability: one can get to any state from any other state;

 Deadlock freedom: a user cannot get into a state where no action can be taken;

 Behavioural consistency: controls with the same behaviour have the same name;

 Minimum memory load on user: do not have to remember long sequences of

actions to navigate through the UI.

Another case study to which these formal models have been applied relates to a

safety-critical system in the healthcare domain (Bowen and Reeves 2012) . Again the

verification is supported using ProZ. The authors model a syringe pump, a device

commonly used to deliver pain-relief medication in hospitals and respite care homes.

The device has ten widgets, which include the display screen, eight soft keys and an

audible alarm (multimodality). Temporal safety properties and invariants (to check

boundary values) are verified against the formal models using ProZ and LTL.

Typically, the PIMs that are generated are relatively small. This is because the

number of states and transitions are bounded by the number of

windows/dialogues/modes of the system rather than individual behaviours as seen in

other uses of finite-state machines. This abstraction of presentation models into states

of PIMs prevents state explosion and enables a combination of both manual and

automatic verification (as appropriate) with reasonably low overhead. The presentation

models and system specification are created manually as part of the development and

specification process. Whilst the creation of models of systems can be seen as an

additional overhead to a development process, the benefits provided both by the creation

and use of the models more than compensates for this later in the process. Once the

presentation models and PMR have been created, the PIM can be automatically

generated and translation between the models, μCharts and Z is automated using several

tools. The individual models can be used independently, or in combination to verify

different aspects of the system under consideration. Most recently this work has

focussed on safety-critical systems, and an example of this is given in chapter 7.

Weyers et al. (Germany, 2009–2015)

Modelling

In (Weyers 2012; Weyers et al. 2012), a formal modelling approach has been proposed,

which is based on a combination of the use of a domain specific and visual modelling

language called FILL with an accompanied transformation algorithm mapping FILL

State of the Art of Formal Methods in the area of Interactive Systems 39

models onto a well-established formal description concept: Petri nets. In contrast to the

works by Bastide and Palanque (1990) who extended basic coloured Petri nets to the

ICO formalism, the modelling is done in a domain specific description, which is not

used directly for execution or verification. Instead, it is transformed into an existing

formalism called reference net (Kummer 2002) (a special type of Petri net) providing a

formal semantic definition for FILL, making FILL models executable using existing

simulators (e.g., Renew (Kummer et al. 2000)) and offering the possibility for the

application of verification and validation techniques for Petri net-based formalisms. As

a modelling approach, FILL has been used in research on collaborative learning systems

in which students created an interface for simulating a cryptographic algorithm (Weyers

et al. 2009; Weyers et al. 2010).

As the work focuses on the model-based creation of interactive systems and less on

the creation of formal models used for their verification as done in various related works,

Weyers (Weyers 2015) extended the basic approach with concepts from software

development. The main extension, which is described in chapter 5 of this book,

addresses a component-based modelling as it offers reusability of certain components

and capabilities to structure the overall model by means of functional and conceptual

entities. The latter enables the modeller to create more complex (scalable) models and

to be able to split the model into semantically meaningful parts. It further offers the

description of complex user interfaces, which are not restricted to basic graphical user

interfaces but include multi-user user interfaces as well as mobile and other interaction

devices. This is covered by a software infrastructure that offers capabilities to run

mobile devices with models generated using FILL and its associated transferred

reference nets. All is embedded into a coherent software tool called UIEditor (Weyers

2012).

An application context in which the component-based model description plays a

central role is that of gaze guiding as a job aid for the control of technical processes

(Kluge et al. 2014; Weyers et al. 2015). Gaze guiding as a method refers to a technique

for visualizing context-dependent visual aids in the form of gaze guiding tools into

graphical user interfaces that guide the user’s attention and support her or him during

execution of a control task. Gaze guiding tools are visual artefacts that are added to a

graphical user interface in the case the user is expected to apply a certain operation

(according to a previously defined standard operating procedure) but the system does

not recognize this awaited input. This work facilitates the component-based description

as the model describing the behaviour of the gaze guiding is embedded as a component

into the user interface description. The model specifies in which cases or context gaze

guiding tools are faded into the user interface.

Model Reconfiguration and Formal Rewriting

40 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

As the work by Weyers et al. does not focus on the verification of interactive systems

but on the modelling and creation of flexible and executable model-based descriptions

of such systems, a formal approach for the reconfiguration and rewriting of these models

has been developed. This enables the specification of formal adaptation of the models

according to user input or algorithmic specifications and makes the models flexible. In

this regard, the main goal is to maintain the formal integrity of a model during an

adaptation. Formal integrity refers to the requirement that an adaptation approach needs

to be formally well defined as well and keeps the degree of formality on the same level

with that of the model description. This should prevent any gaps in the formalization

during adaptation of a model and thus prevent the compromise of any following

verification, testing, or debugging of the rewritten model. Therefore, Weyers et al.

(Weyers et al. 2010; Weyers et al. 2014) developed a reconfiguration concept based on

pushouts, a concept known from category theory for the rewriting of reference nets.

Together with Stückrath, Weyers extended a basic approach for the rewriting of Petri

nets based on the so called double pushout approach to a method for coloured Petri nets

equipped with a rewriting of XML-based specification of inscriptions (Stückrath and

Weyers 2014).

The application of formal rewriting that is driven by the user has been investigated

in the context of the monitoring and control of complex technical and safety critical

systems (Burkolter et al. 2014; Weyers et al. 2012). In these works, the reconfiguration

of a given user interface for controlling a simplified nuclear power plant was

reconfigured by the user according to his or her own needs as well as to the standard

operating procedures which were presented. These adaptations of the user interface not

only include a change in the visual layout of widgets but also in the functional behaviour

of the interface using the rewriting of the underlying reference net model. Operations

were offered to the user, e.g. to generate a new widget which triggers a combination of

two existing operations. For example, it was possible to combine the opening and

closing of different valves into one new operation, which was accessible through a new

single widget, e.g. a button. By pressing this button, the user was able to simultaneously

open and close the dedicated valves with one click instead of two. Weyers at al. were

able to show that this individualization of a user interface reduces errors in the

accompanied control task. A detailed introduction into the rewriting concept is

presented in Chapter 10 of this book.

Combéfis et al. (Belgium, 2009–2013)

Modelling

State of the Art of Formal Methods in the area of Interactive Systems 41

In (Combéfis 2013) a formal framework for reasoning over system and user models is

proposed, and the user models can be also extracted from user manuals. Furthermore,

this work also proposes the automatic generation of user models. Using his technique,

“adequate” user models can be generated from a given initial user model. Adequate user

models capture the knowledge that the user must have about the system, i.e., the

knowledge needed to control the system, using all its functionality and avoiding

surprises. This generated user model can be used, for instance, to improve training

manuals and courses (Combefis and Pecheur 2009).

In order to compare the system and the user model, and to verify whether the user

model is adequate to the system model, both models should be provided. With this goal,

in this approach system and user are modelled with enriched labelled transition systems

called HMI LTS (Combéfis et al. 2011a). In HMI LTS, three kinds of actions are defined

(Combéfis et al. 2011a):

 Commands: actions triggered by the user on the system;

 Observations: actions triggered by the system, but that the user can observe;

 Internal actions: actions that are neither controlled nor observed by the user.

To be considered “adequate”, user models are expected to follow two specific

properties: full-control and mode-preserving. Intuitively, a user model allows full

control of a system if at any time, when using the system according to the user model

(Combefis and Pecheur 2009): the commands that the user model allows are exactly

those available on the system; and the user model allows at least all the observations

that can be produced by the system (Combefis and Pecheur 2009). A user model is said

to be mode-preserving according to a system, if and only if, for all possible executions

of the system the users can perform with their user model, given the observation they

make, the mode predicted by the user model is the same as the mode of the system

(Combefis and Pecheur 2009). Model-checking is used to verify both properties over

the user model.

Concerning the approach’s coverage regarding modelling, the users, the user

interfaces and the functional core are modelled and compared to each other, the user

model being extracted from the user manual describing the system. However, there is

no indication that the approach supports concurrent behaviour, multimodality or multi-

touch interactions.

Verification

The verification goal of this approach is to verify whether the user model is adequate to

the system model, rather than to verify properties over the system model. In order to

automatically generate adequate user models, the authors propose a technique based on

42 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

a derivative of weak bi-simulation, in which equivalence checking is used (Milner

1980). This is called “minimization of a model modulo an equivalence relation”.

Intuitively, using equivalence checking, they generate a user model U2 from the initial

user model U1, i.e., U2 is equivalent to U1 with respect to specific equivalence relations

introduced by the authors.

Two equivalence relations are proposed: full-control equivalence and mode-

preserving equivalence. Full-control equivalence distinguishes commands and

observations: two equivalent states must allow the same set of commands, but may

permit different sets of observations. Minimization modulo this equivalence produces a

minimal user model that permits full-control of the system. A mode-preserving

equivalence is then derived from the full-control equivalence, by adding an additional

constraint that the modes of two equivalent states must be the same (Combefis and

Pecheur 2009). Using these equivalence relations, the authors can generate mode-

preserving-fully-controlled user models, which can then be used to design user

interfaces and/or training manuals. Both properties (i.e., mode-preserving and full-

control) and their combination are interesting because they propose that different levels

of equivalence can be shown between system models.

A tool named jpf-hmi has been implemented in Java and uses the JavaPathfinder

model checker (Combéfis et al. 2011a), to analyse and generate user models. The tool

produces an LTS corresponding to one minimal fully-controlled mental model, or it

reports that no such model exists by providing a problematic sequence from the system

(Combéfis et al. 2011a).

The approach is applied to several examples that are relatively large (Combéfis et al.

2011b). In the healthcare domain, a machine that treats patients by administering X-ray

or electron beams is analysed with the approach, which detects several issues in the

system. In the avionics domain, the approach is applied to an autopilot system of a

Boeing airplane (Combéfis 2013), and a potential mode confusion is identified. These

are evidences that the approach scales well to real-life applications.

Synthesis

This section presents a representative list of approaches to verifying interactive systems

with respect to the specifications, i.e., general statements about the behaviour of the

system, which are represented here as desired properties, and analysed afterward using

formal methods. The approaches diverge on the formalisms they use for the description

of interactive systems and for the specification of properties.

Some authors use theorem proving to perform verification, which is a technique that

can handle infinite-state systems. Even though a proof done by a theorem prover is

State of the Art of Formal Methods in the area of Interactive Systems 43

ensured to be correct, it can quickly become a hard process (Bumbulis et al. 1995b): the

process is not fully automated, user guidance is needed regarding the proof strategy to

follow. Simulation can also be used to assess the quality of interactive systems.

Simulation provides an environment for training the staff before starting their daily

activities (Martinie et al. 2011b). However, simulated environments are limited in terms

of training, since it is impossible to drive operators into severe and stressful conditions

even using a full-scale simulator (Niwa et al. 2001). Simulation explores a part of the

system state space and can be used for disproving certain properties by showing

examples of incorrect behaviours. To the contrary, formal techniques such as model

checking, equivalence checking, etc., consider the entire state space and can thus prove

or disprove properties for all possible behaviours (Garavel and Graf 2013).

The presented approaches allow either usability or functional properties to be verified

over the system models. We believe that in case of safety-critical systems, the

verification approach should cover both such properties, due to the ergonomic aspects

covered by the former and the safety aspects covered by the latter. Some approaches

cover the modelling of the users, the user interfaces, and the functional core.

Summary

A representative list of approaches for assessing the quality of interactive systems is

presented in this chapter, divided in two main classes: property verification approaches,

in which a set of properties are verified over the system model, and approaches to

assessing consistency, which compare either different versions of the system of the

system with its user manual.

Different formalisms are used in the system modelling (and property modelling,

when applied). Numerous case studies have shown that each formalism has its strengths.

The criteria to choose one over another would be more related with the knowledge and

experience of the designers in the formalisms. Different formal techniques are

employed, such as model checking, equivalence checking and theorem proving. Most

of the works presented here are tool supported, even though some authors still use

manual inspection of the models to perform verification.

Table 1and Table 2 bellow summarize these approaches: the former gives an overview

of the modelling coverage of the approaches, and the latter an overview of their

verification capabilities.

44 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Table 1: Modelling coverage of the approaches

Agent language

(Abowd et al.)

PPS-based

(Abowd et al.)

Red-PIE

(Dix et al.)

TLIM

(Paterno et al.)

ADC

(Markopoulos et al.)

York

(Duke et al.)

MAL

(Campos et al.)

Lustre-based

(d’Ausbourg et al.)

IL-based

(Bumbulis et al.)

LNT-based

(Oliveira et al.)

ECHO

(Knight et al.)

Gryphon

(Miller et al.)

IFADIS

(Loer et al.)

PVS-based

(Thimbleby et al.)

ICO

(Palanque et al.)

B-based

(Aït-Ameur et al.)

PM, PIM

(Bowen et al.)

HMI LTS

(Combéfis et al.)

FILL

(Weyers et al.)

Z
SM

V
M

at
h

C
TT

,

Lo
to

s
Lo

to
s

Z

M
A

L,

SM
V

,

P
V

S
Lu

st
re

IL
,

H
O

L
LN

T

Z,
 P

V
S,

Sp
ar

k

A
D

A

R
SM

L,

Lu
st

re
SM

V

P
V

S,

SA
L

P
e

tr
i

n
e

ts

an
d

O
O

B
,

Ev
e

n
t

B
,

Ex
p

re
ss

Z,
 m

u

C
h

ar
ts

,

FS
M

H
M

I

LT
S

R
e

fe
r

e
n

ce

n
e

ts

-
C

TL
M

at
h

A
C

TL
A

C
TL

Fi
rs

t-

o
rd

e
r

lo
gi

c
C

TL
Lu

st
re

H
o

ar
e

lo
gi

c
M

C
L

-

C
TL

,

LT
L

C
TL

,

LT
L

LT
L,

in
va

ri

an
ts

A
C

TL

C
TL

*
B

LT
L,

in
va

ri
a

n
ts

-
-

W
id

ge
ts

In
pu

t
de

vi
ce

s

R
ec

on
fi

gu
ra

ti
on

 o
f

 I
nt

er
ac

ti
on

 t
ec

hn
iq

ue

R
ec

on
fi

gu
ra

ti
on

 o
f

lo
w

 le
ve

l e
ve

n
ts

Im
pl

ic
it

Ex
pl

ic
it

N
o

C
on

cu
rr

en
t

B
eh

av
io

r

D
yn

am
ic

 In
st

an
ti

at
io

n

M
ul

ti
m

od
al

it
y:

 f
us

io
n

of
 s

ev
er

al
 m

od
al

it
ie

s

D
yn

am
ic

 f
in

ge
r

cl
us

te
ri

ng

Ca
p

ab
ili

ty
 t

o
 d

ea
l w

it
h

 m
u

lt
i-

to
u

ch
 in

te
ra

ct
io

n
s

Ye
s

(p
re

se
n

te
d

 in
 p

ap
e

rs
)

So
m

e
 (

p
o

ss
ib

le
)

D
at

a
D

es
cr

ip
ti

on

St
at

e
 R

ep
re

se
n

ta
ti

on

Ev
en

t
R

ep
re

se
n

ta
ti

on

Ti
m

e

Q
ua

lit
at

iv
e

be
tw

ee
n

 t
w

o
co

ns
ec

ut
iv

e
m

od
el

 e
le

m
en

ts
Q

ua
nt

it
at

iv
e

 b
et

w
ee

n
 t

w
o

co
ns

ec
ut

iv
e

m
od

el
 e

le
m

en
ts

Q
ua

nt
it

at
iv

e
ov

er
 n

on
 c

on
se

cu
ti

ve
 e

le
m

en
ts

La
n

gu
ag

e

U
nd

er
ly

in
g

la
ng

ua
ge

 u
se

d
 f

or
 m

od
el

lin
g

(m
os

t
of

 t
he

 t
im

e

ex
te

n
de

d
)

La
ng

ua
ge

 f
or

 d
es

cr
ib

in
g

pr
op

er
ti

es

Co
ve

ra
ge

us
er

s

us
er

 in
te

rf
ac

es

fu
nc

ti
on

al
 c

or
e

State of the Art of Formal Methods in the area of Interactive Systems 45

Table 2: Verification capabilities of the approaches

Agent language

(Abowd et al.)

PPS-based

(Abowd et al.)

Red-PIE

(Dix et al.)

TLIM

(Paterno et al.)

ADC

(Markopoulos et

al.)

York

(Duke et al.)

MAL

(Campos et al.)

Lustre-based

(d’Ausbourg et al.)

IL-based

(Bumbulis et al.)

LNT-based

(Oliveira et al.)

ECHO

(Knight et al.)

Gryphon

(Miller et al.)

IFADIS

(Loer et al.)

PVS-based

(Thimbleby et al.)

ICO

(Palanque et al.)

B-based

(Aït-Ameur et al.)

PM, PIM

(Bowen et al.)

HMI LTS

(Combéfis et al.)

FILL

(Weyers et al.)

A
na

ly
si

s

Te
ch

ni
qu

e

-

m
o

d
e

l

ch
e

ck
in

g
-

m
o

d
e

l

ch
e

ck
in

g

m
o

d
e

l

ch
e

ck
in

g

th
e

o
re

m

p
ro

vi
n

g

m
o

d
e

l

ch
e

ck
in

g,

th
e

o
re

m

p
ro

vi
n

g

m
o

d
e

l

ch
e

ck
in

g

th
e

o
re

m

p
ro

vi
n

g

m
o

d
e

l

ch
e

ck
in

g,

e
q

u
iv

al
e

n

ce

ch
e

ck
in

g

th
e

o
re

m

p
ro

vi
n

g

m
o

d
e

l

ch
e

ck
in

g,

th
e

o
re

m

p
ro

vi
n

g

m
o

d
e

l

ch
e

ck
in

g

m
o

d
e

l

ch
e

ck
in

g,

th
e

o
re

m

p
ro

vi
n

g

m
o

d
e

l

ch
e

ck
in

g

th
e

o
re

m

p
ro

vi
n

g

(i
n

va
ri

an
ts

)

th
e

o
re

m

p
ro

vi
n

g

m
o

d
e

l

ch
e

ck
in

g

m
o

d
e

l

ch
e

ck
in

g,

e
q

u
iv

al
e

n
c

e
 c

h
e

ck
in

g

m
o

d
e

l

ch
e

ck
in

g

To
ol

 s
up

po
rt

-

SM
V

,

A
ct

io
n

Si
m

u
la

to
r

-

C
TT

E,
 L

IT
E,

C
A

D
P

C
A
D
P

Z

i2
sm

v,

IV
Y,

 S
M

V
,

P
V

S

U
IM

/X
,

C
e

n
ta

u
r,

Le
sa

r

H
O

L

sy
st

e
m

C
A

D
P

Z,
 Z

e
u

s,

Ec
h

o

N
u

SM
V

,

P
V

S,

R
e

ac
ti

s,

G
ry

p
h

o
n

St
at

e
m

at

e
, I

FA
D

IS
,

C
ad

e
n

ce

SM
V

,

N
u

SM
V

P
V

S,
 S

A
L,

St
at

e
fl

o
w

P
e

tS
h

o
p

,

Ja
va

P
at

h
Fi

n
d

e
r

A
te

li
e

r
B

,

B
2E

X
P

R
ES

S

, P
ro

m
e

la
-

SP
IN

P
IM

e
d

,

P
ro

Z,

Z/
EV

ES

jp
f-

h
m

i,

Ja
va

P
at

h
fi

n
d

e
r

SA
T

So
lv

e
r

Ty
pe

s
of

 P
ro

pe
rt

ie
s

-

u
sa

b
il

it
y,

fu
n

ct
io

n
a

u
sa

b
il

it
y

u
sa

b
il

it
y,

fu
n

ct
io

n
al

u
sa

b
il

it
y,

fu
n

ct
io

n
al

u
sa

b
il

it
y

u
sa

b
il

it
y,

fu
n

ct
io

n
al

u
sa

b
il

it
y,

fu
n

ct
io

n
al

fu
n

ct
io

n
al

u
sa

b
il

it
y,

fu
n

ct
io

n
al

-
fu

n
ct

io
n

al
u

sa
b

il
it

y

u
sa

b
il

it
y,

fu
n

ct
io

n
al

u
sa

b
il

it
y,

fu
n

ct
io

n
al

u
sa

b
il

it
y,

fu
n

ct
io

n
al

u
sa

b
il

it
y,

fu
n

ct
io

n
al

-
fu

n
ct

io
n

al

A
pp

lic
at

io
n

n
o

n
-

cr
it

ic
al

n
o

n
-

cr
it

ic
al

n
o

n
-

cr
it

ic
al

av
io

n
ic

s

n
o

n
-

cr
it

ic
al

av
io

n
ic

s

av
io

n
ic

s,

h
e

al
th

ca
re

av
io

n
ic

s

n
o

n
-

cr
it

ic
al

n
u

cl
e

ar

av
io

n
ic

s,

n
u

cl
e

ar
,

h
e

al
th

ca
re

av
io

n
ic

s
av

io
n

ic
s

h
e

al
th

ca
r

e

av
io

n
ic

s,

sp
ac

e
, A

ir

Tr
af

fi
c

M
an

ag
m

e
n

t
av

io
n

ic
s

sa
fe

ty
-

cr
it

ic
al

av
io

n
ic

s,

h
e

al
th

ca
re

ci
ri

tc
al

,

n
o

n
-

cr
it

ic
al

Sc
al

ab
ili

ty

Ye
s

(p
re

se
n

te
d

 in
 p

ap
e

rs
)

So
m

e
 (

p
o

ss
ib

le
)

N
o

t
d

e
m

o
n

st
ra

te
d

46 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

References

Abowd GD (1991) Formal Aspects of Human-computer Interaction. Dissertation, University of Oxford

Abowd GD, Dix AJ (1992) Giving undo attention. Interacting with Computers 4(3):317-342

Abowd GD, Wang H-M, Monk AF (1995) A Formal Technique for Automated Dialogue Development.

In: Proceedings of the 1st conference on Designing interactive systems: processes, practices,

methods, & techniques. ACM, p 219-226

Abrial J-R (1996) The B-book: Assigning Programs to Meanings. Cambridge University Press, New

York

Acharya C, Thimbleby HW, Oladimeji P (2010) Human Computer Interaction and Medical Devices.

In: Proceedings of the 2010 British Computer Society Conference on Human-Computer Interaction,

p 168-176

Aït-Ameur Y, Girard P, Jambon F (1998a) A Uniform Approach for Specification and Design of

Interactive Systems: The B Method. In: Proceedings of the Fifth International Eurographics

Workshop on Design, Specification and Verification of Interactive Systems, p 51-67

Aït-Ameur Y, Girard P, Jambon F (1998b) A Uniform Approach for the Specification and Design of

Interactive Systems: The B Method. In: Eurographics Workshop on Design, Specification, and

Verification of Interactive Systems, p 333-352

Aït-Ameur Y, Girard P, Jambon F (1999) Using the B Formal Approach for Incremental Specification

Design of Interactive Systems. In: Engineering for Human-Computer Interaction. Springer, p 91-

109

Aït-Ameur Y (2000) Cooperation of Formal Methods in an Engineering based Software Development

Process. In: Proceedings of Integrated Formal Methods, Second International Conference, p 136-

155

Aït-Ameur Y, Baron M, Girard P (2003a) Formal Validation of HCI User Tasks. In: Software

Engineering Research and Practice, p 732-738

Aït-Ameur Y, Baron M, Kamel N (2003b) Utilisation de Techniques Formelles dans la Modelisation

d’Interfaces Homme-machine. Une Experience Comparative entre B et Promela/SPIN. In: 6th

International Symposium on Programming and Systems, p 57-66

Aït-Ameur Y, Kamel N (2004) A Generic Formal Specification of Fusion of Modalities in a Multimodal

HCI. In: Building the Information Society. Springer, p 415-420

Aït-Ameur Y, Baron M (2004) Bridging the Gap Between Formal and Experimental Validation

Approaches in HCI Systems Design: Use of the Event B Proof based Technique. In: International

Symposium on Leveraging Applications of Formal Methods, p 74-80

Aït-Ameur Y, Breholee B, Girard P, Guittet L, Jambon F (2004) Formal Verification and Validation of

Interactive Systems Specifications. In: Human Error, Safety and Systems Development. Springer,

p 61-76

Aït-Ameur Y, Baron M, Kamel N (2005a) Encoding a Process Algebra Using the Event B Method.

Application to the Validation of User Interfaces. In: Proceedings of 2nd IEEE international

symposium on leveraging applications of formal methods, p 1-17

Aït-Ameur Y, Idir A-S, Mickael B (2005b) Modelisation et Validation formelles d’IHM: LOT 1

(LISI/ENSMA). Technical Report. LISI/ENSMA.

Aït-Ameur Y, Aït-Sadoune I, Mota J-M, Baron M (2006) Validation et Verification Formelles de

Systemes Interactifs Multi-modaux Fondees sur la Preuve. In: Proceedings of the 18th International

Conference of the Association Francophone d’Interaction Homme-Machine, p 123-130

Aït-Ameur Y, Baron M (2006) Formal and Experimental Validation Approaches in HCI Systems

Design based on a Shared Event B Model. International Journal on Software Tools for Technology

Transfer 8(6):547-563

State of the Art of Formal Methods in the area of Interactive Systems 47

Aït-Sadoune I, Aït-Ameur Y (2008) Animating Event B Models by Formal Data Models. In:

Proceedings of Leveraging Applications of Formal Methods, Verification and Validation, p 37-55

Aït-Ameur Y, Baron M, Kamel N, Mota J-M (2009) Encoding a Process Algebra Using the Event B

Method. International Journal on Software Tools for Technology Transfer 11(3):239-253

Aït-Ameur Y, Boniol F, Wiels V (2010) Toward a Wider Use of Formal Methods for Aerospace

Systems Design and Verification. International Journal on Software Tools for Technology Transfer

12(1):1-7

Aït-Ameur Y, Aït-Sadoune I, Baron M, Mota J-M (2010) Verification et Validation Formelles de

Systemes Interactifs Fondees sur la Preuve: Application aux Systemes Multi-Modaux. Journal

d’Interaction Personne-Systeme 1(1):1-30

Aït-Ameur Y, Gibson JP, Mery D (2014) On Implicit and Explicit Semantics: Integration Issues in

Proof-based Development of Systems. In: Leveraging Applications of Formal Methods,

Verification and Validation. Specialized Techniques and Applications. Springer, p 604-618

Barboni E, Ladry J-F, Navarre D, Palanque PA, Winckler M (2010) Beyond modelling: an integrated

environment supporting co-execution of tasks and systems models. In: Proceedings of ACM EICS

conference, p 165-174

Basnyat S, Palanque PA, Schupp B, Wright P (2007) Formal socio-technical barrier modelling for

safety-critical interactive systems design. Safety Science 45(5):545-565

Bass L, Little R, Pellegrino R, Reed S, Seacord R, Sheppard S, Szezur MR (1991) The ARCH model:

Seeheim Revisited. In: User Interface Developpers’ Workshop.

Bastide R, Palanque PA (1990) Petri Net Objects for the Design, Validation and Prototyping of User-

driven Interfaces. In: IFIP INTERACT 1990 conference, p 625-631

Bastide R, Navarre D, Palanque PA (2002) A model-based tool for interactive prototyping of highly

interactive applications. In: CHI Extended Abstracts, p 516-517

Bastide R, Navarre D, Palanque PA (2003) A Tool-supported Design Framework for Safety Critical

Interactive Systems. Interacting with computers 15(3):309-328

Bastide R, Navarre D, Palanque PA, Schyn A, Dragicevic P (2004) A Model-based Approach for Real-

time Embedded Multimodal Systems in Military Aircrafts. In: Proceedings of the 6th International

Conference on Multimodal Interfaces, p 243-250

Beck K (1999) Extreme Programming Explained: Embrace Change. Addison-Wesley

Booch G (2005) The Unified Modelling Language User Guide. Pearson Education, India

Bourguet-Rouger A (1988) External Behaviour Equivalence between Two Petri Nets. In: Proceedings

of Concurrency. Lecture Notes in Computer Science, vol 335. Springer, p 237-256

Bowen J, Reeves S (2006) Formal Refinement of Informal GUI Design Artefacts. In: Proceedings of

17th Australian Software Engineering Conference, p 221-230

Bowen J, Reeves S (2007a) Formal Models for Informal GUI Designs. Electr. Notes Theor. Comput.

Sci. 183:57-72

Bowen J, Reeves S (2007b) Using Formal Models to Design User Interfaces: A Case Study. In:

Proceedings of the 21st British HCI Group Annual Conference on HCI, p 159-166

Bowen J, Reeves S (2012) Modelling User Manuals of Modal Medical Devices and Learning from the

Experience. In: Proceedings of ACM SIGCHI Symposium on Engineering Interactive Computing

Systems, p 121-130

Bowen J, Reeves S (2013b) UI-Design Driven Model-Based Testing. Innovations in Systems and

Software Engineering, volume 9(3):201-215

Bowen J (2015) Creating Models of Interactive Systems with the Support of Lightweight Reverse-

Engineering Tools. In: Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, p 110-119

Boyer RS, Moore JS (1983) Proof-Checking, Theorem Proving, and Program Verification. Technical

Report, DTIC Document

48 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Brat G, Martinie C, Palanque P (2013) V&V of Lexical, Syntactic and Semantic Properties for

Interactive Systems through Model Checking of Formal Description of Dialog. In: Proceedings of

the 15th International Conference on Human-Computer Interaction, p 290-299

Bumbulis P, Alencar PSC, Cowan DD, Lucena CJP (1995a) Combining Formal Techniques and

Prototyping in User Interface Construction and Verification. In: Proceedings of 2nd Eurographics

Workshop on Design, Specification, Verification of Interactive Systems, p 7-9

Bumbulis P, Alencar PSC, Cowan DD, de Lucena CJP (1995b) A Framework for Machine-Assisted

User Interface Verification. In: Proceedings of the 4th International Conference on Algebraic

Methodology and Software Technology, p 461-474

Burkolter D, Weyers B, Kluge A, Luther W (2014) Customization of user interfaces to reduce errors

and enhance user acceptance. Applied Ergonomics 45(2):346-353

Campos JC, Harrison MD (1997) Formally Verifying Interactive Systems: A Review. In: Proceedings

of Design, Specification and Verification of Interactive Systems, p 109-124

Campos JC (1999) Automated Deduction and Usability Reasoning. Dissertatoin, University of York

Campos JC, Harrison MD (2001) Model Checking Interactor Specifications. Automated Software

Engineering 8(3-4):275-310

Campos JC, Harrison MD (2007) Considering Context and Users in Interactive Systems Analysis. In:

Proceedings of the Joint Working Conferences on Engineering Interactive Systems, p 193-209

Campos JC, Harrison MD (2008) Systematic Analysis of Control Panel Interfaces Using Formal Tools.

In: Interactive Systems. Design, Specification, and Verification. Springer, p 72-85

Campos JC, Harrison MD (2009) Interaction Engineering Using the IVY Tool. In: Proceedings of the

1st ACM SIGCHI Symposium on Engineering Interactive Computing Systems, p 35-44

Campos JC, Harrison MD (2011) Modelling and Analysing the Interactive Behaviour of an Infusion

Pump. Electronic Communications of the EASST 45

Petri CA (1962) Kommunikation mit Automaten. Dissertation, University of Bonn

Cauchi A, Gimblett A, Thimbleby HW, Curzon P, Masci P (2012a) Safer ”5-key” Number Entry User

Interfaces Using Differential Formal Analysis. In: Proceedings of the 26th Annual BCS Interaction

Specialist Group Conference on People and Computers, p 29-38

Cauchi A, Gimblett A, Thimbleby HW, Curzon P, Masci P (2012b) Safer ”5-key” Number Entry User

Interfaces Using Differential Formal Analysis. In: Proceedings of the 26th Annual BCS Interaction

Specialist Group Conference on People and Computers, p 29-38

Cauchi A, Oladimeji P, Niezen G, Thimbleby HW (2014) Triangulating Empirical and Analytic

Techniques for Improving Number Entry User Interfaces. In: Proceedings of ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, p 243-252

Champelovier D, Clerc X, Garavel H, Guerte Y, Lang F, Serwe W, Smeding G (2010) Reference

Manual of the LOTOS NT to LOTOS Translator (Version 5.0). INRIA/VASY

Chen P (1976) The Entity-Relationship Model - Toward a Unified View of Data. ACM Transactions

on Database Systems 1(1):9-36

Clarke EM, Emerson EA, Sistla AP (1986) Automatic verification of finite-state concurrent systems

using temporal logic specifications. ACM Transactions on Programming Languages and Systems

8(2):244-263

Cofer D, Whalen M, Miller S (2008) Software Model Checking for Avionics Systems. In: Digital

Avionics Systems Conference, p 1-8

Cofer D (2010) Model Checking: Cleared for Take-off. In: Model Checking Software. Springer, pp 76-

87

Cofer D (2012) Formal Methods in the Aerospace Industry: Follow the Money. In: Proceedings of the

14th International Conference on Formal Engineering Methods: Formal Methods and Software

Engineering. Springer, p 2-3

State of the Art of Formal Methods in the area of Interactive Systems 49

Cofer D, Gacek A, Miller S, Whalen MW, LaValley B, Sha L (2012) Compositional Verification of

Architectural Models. In: Proceedings of the 4th International Conference on NASA Formal

Methods. Springer, p 126-140

Combefis S, Pecheur C (2009) A Bisimulation-based Approach to the Analysis of Human-computer

Interaction. In: Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, p 101-110

Combéfis S, Giannakopoulou D, Pecheur C, Feary M (2011a) A Formal Framework for Design and

Analysis of Human-machine Interaction. In: Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, p 1801-1808

Combéfis S, Giannakopoulou D, Pecheur C, Feary M (2011b) Learning System Abstractions for Human

Operators. In: Proceedings of the International Workshop on Machine Learning Technologies in

Software Engineering, p 3-10

Combéfis S (2013) A Formal Framework for the Analysis of Human-machine Interactions.

Dissertation, Universite catholique de Louvain

Cortier A, d’Ausbourg B, Aït-Ameur Y (2007) Formal Validation of Java/Swing User Interfaces with

the Event B Method. In: Human-Computer Interaction. Interaction Design and Usability. Springer,

p 1062-1071

Coutaz J (1987) PAC, an object oriented model for dialogue design. In: Bullinger H-J, Shackel B (eds),

Human Computer Interaction INTERACT’87, p 431-436

Curzon P, Blandford A (2004) Formally Justifying User-Centred Design Rules: A Case Study on Post-

Completion Errors. In: Proceedings of IFM 2004, p 461-480

d’Ausbourg B (1998) Using Model Checking for the Automatic Validation of User Interface Systems.

In: Proceedings of the Fifth International Eurographics Workshop on the Design, Specification and

Verification of Interactive Systems, p 242-260

d’Ausbourg B, Seguin C, Durrieu G, Roche P (1998) Helping the Automated Validation Process of

User Interfaces Systems. In: Proceedings of the 20th international conference on Software

engineering, p 219-228

d’Ausbourg B (2002) Synthetiser I'Intention d'un Pilote pour Definir de Nouveaux Équipements de

Bord. In: Proceedings of the 14th French-speaking Conference on Human-computer Interaction, p

145-152

De Moura L, Owre S, Rueß H, Rushby J, Shankar N, Sorea M, Tiwari A (2004) SAL 2. In: Proceeidngs

of Computer Aided Verification, p 496-500

Degani A, Heymann M (2002) Formal Verification of Human-automation Interaction. Human Factors:

The Journal of the Human Factors and Ergonomics Society 44(1):28-43

Dey T (2011) A Comparative Analysis on Modelling and Implementing with MVC Architecture. In:

Proceedings of the International Conference on Web Services Computing, vol 1, p 44-49

Dix AJ (1988) Abstract, Generic Models of Interactive Systems. In: Proceedings of Fourth Conference

of the British Computer Society Human-Computer Interaction Specialist Group, University of

Manchester, p 63-77

Dix AJ, Harrison MD, Cunciman R, Thimbleby HW (1987) Interaction Models and the Principled

Design of Interactive Systems. In: Proceedings of the 1st European Software Engineering

Conference, p 118-126

Dix AJ (1991) Formal methods for Interactive Systems. Academic press, London

Dix AJ (1995) Formal Methods. In: Monk A, Gilbert N (eds), Perspectives on HCI: Diverse

Approaches, Academic press, London, p 9-43

Dix AJ (2012) Formal Methods. In: Soegaard M, Dam R (eds), Encyclopedia of Human-Computer

Interaction

Doherty G, Campos JC, Harrison MD (1998) Representational Reasoning and Verification. Formal

Aspects of Computing 12:260-277

50 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Duke DJ, Harrison MD (1993) Abstract Interaction Objects. Computer Graphics Forum 12:25-36

Duke DJ, Harrison MD (1995) Event Model of Human-system Interaction. Software Engineering

Journal 10(1):3-12

Elder MC, Knight J (1995) Specifying User Interfaces for Safety-critical Medical Systems. In:

Proceedings of the 2nd Annual International Symposium on Medical Robotics and Computer

Assisted Surgery, p 148-155

Fahssi R, Martinie C, Palanque PA (2015) Enhanced Task Modelling for Systematic Identification and

Explicit Representation of Human Errors. In: Proceedings of INTERACT, p 192-212

Fields B, Wright P, Harrison M (1995) Applying Formal Methods for Human Error Tolerant Design.

In: Software Engineering and Human-Computer Interaction. Springer, pp 185-195

Foley JD, Wallace VL (1974) The Art of Natural Graphic Man-machine Conversation. Computer

Graphics 8(3):87-87

Garavel H, Graf S (2013) Formal Methods for Safe and Secure Computer Systems. Federal Office for

Information Security

Garavel H, Lang F, Mateescu R, Serwe W (2013) CADP 2011: A Toolbox for the Construction and

Analysis of Distributed Processes. International Journal on Software Tools for Technology Transfer

15(2):89-107

Gimblett A, Thimbleby HW (2010) User Interface Model Discovery: Towards a Generic Approach. In:

Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Computing System,

EICS 2010, Berlin, Germany, p 145-154

Gimblett A, Thimbleby HW (2013) Applying Theorem Discovery to Automatically Find and Check

Usability Heuristics. In: Proceedings of the 5th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, p 101-106

Hallinger P, Crandall DP, Seong DNF (2000) Systems Thinking/Systems Changing & A Computer

Simulation for Learning How to Make School Smarter. Advances in Research and Theories of

School Management and Educational Policy 1(4):15-24

Hamilton D, Covington R, Kelly J, Kirkwood C, Thomas M, Flora-Holmquist AR, Staskauskas MG,

Miller SP, Srivas MK, Cleland G, MacKenzie D (1995) Experiences in Applying Formal Methods

to the Analysis of Software and System Requirements. In: Workshop on Industrial-Strength Formal

Specification Techniques, p 30-43

Hamon A, Palanque PA, Silva JL, Deleris Y, Barboni E (2013) Formal description of multi-touch

interactions. In: Proceedings of the 5th ACM SIGCHI symposium on Engineering interactive

computing systems, p 207-216

Hardin DS, Hiratzka TD, Johnson DR, Wagner L, Whalen MW (2009) Development of Security

Software: A High Assurance Methodology. In: Proceedings of 11th International Conference on

Formal Engineering Methods, p 266-285

Harrison M, Thimbleby HW (eds) (1990) Formal Methods in HCI. Cambridge University Press

Harrison MD, Duke DJ (1995) A Review of Formalisms for Describing Interactive Behaviour. In:

Software Engineering and Human-Computer Interaction. Springer, p 49-75

Harrison MD, Masci P, Campos JC, Curzon P (2013) Automated Theorem Proving for the Systematic

Analysis of an Infusion Pump. Electronic Communications of the EASST 69

Harrison MD, Campos JC, Masci P (2015) Reusing Models and Properties in the Analysis of Similar

Interactive Devices, p 95-111

Hix D, Hartson RH (1993) Developing User Interfaces: Ensuring Usability Through Product Process.

John Wiley & Sons, New York

ISO/IEC (1989) LOTOS — A Formal Description Technique Based on the Temporal Ordering of

Observational Behaviour. International Standard 8807

ISO/IEC (2001) Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001

State of the Art of Formal Methods in the area of Interactive Systems 51

ISO/IEC (2002) 13568, Information Technology - Z Formal Specification Notation - Syntax, Type

System and Semantics

Jambon F, Girard P, Aït-Ameur Y (2001) Interactive System Safety and Usability Enforced with the

Development Process. In: Proceedings of 8th IFIP International Conference on Engineering for

Human-Computer Interaction, p 39-56

Kieras DE, Polson PG (1985) An approach to the formal analysis of user complexity. International

Journal of Man-Machine Studies, 22:365-94

Kluge A, Greve J, Borisov N, Weyers, B (2014) Exploring the usefulness of two variants of gaze-

guiding-based dynamic job aid for performing a fixed sequence start up procedure after longer

periods of non-use. Human Factors and Ergonomics 3(2):148-169

Knight JC, Kienzle DM (1992) Preliminary Experience Using Z to Specify a Safety-critical System. In:

Proceedings of Z User Workshop, p 109-118

Knight JC, Brilliant SS (1997) Preliminary Evaluation of a Formal Approach to User Interface

Specification. In: The Z Formal Specification Notation. Springer, pp 329-346

Knight JC, Fletcher PT, Hicks BR (1999) Tool Support for Production Use of Formal Techniques. In:

Proceedings of the World Congress on Formal Methods in the Development of Computing Systems,

p 242-251

Kummer O, Wienberg F, Duvigneau M, Köhler M, Moldt D, Rölke H (2000) Renew–the reference net

workshop. In: Proceedings of 21st Int. Conference on Application and Theory of Petri Nets-Tool

Demonstrations, p 87-89

Kummer O (2002) Referenznetze. Disseration, Universität Hamburg

Li K-Y, Oladimeji P, Thimbleby HW (2015) Exploring the Effect of Pre-operational Priming

Intervention on Number Entry Errors. In: Proceedings of the 33rd Annual ACM Conference on

Human Factors in Computing Systems, p 1335-1344

Loer K, Harrison MD (2000) Formal Interactive Systems Analysis and Usability Inspection Methods:

Two Incompatible Worlds? In: Interactive Systems: Design, Specification, and Verification, p 169-

190

Loer K, Harrison MD (2002) Towards Usable and Relevant Model Checking Techniques for the

Analysis of Dependable Interactive Systems. In: Proceedings of Automated Software Engineering,

p 223-226

Loer K, Harrison MD (2006) An Integrated Framework for the Analysis of Dependable Interactive

Systems (IFADIS): Its Tool Support and Evaluation. Automated Software Engineering 13(4):469-

496

Lutz RR (2000) Software Engineering for Safety: A Roadmap. In: Proceedings of the Conference on

The Future of Software Engineering, p 213-226

Mancini R (1997) Modelling Interactive Computing by Exploiting the Undo. Dissertation, University

of Rome

Markopoulos P (1995) On the Expression of Interaction Properties within an Interactor Model.

In: Interactive Systems: Design, Specification, and Verification, p 294-310

Markopoulos P, Rowson J, Johnson P (1996) Dialogue Modelling in the Framework of an Interactor

Model. In: Pre-conference Proceedings of Design Specification and Verification of Interactive

Systems. Namur, Belgium, Vol. 44

Markopoulos P (1997) A Compositional Model for the Formal Specification of User Interface Software.

Dissertation, University of London

Markopoulos P, Johnson P, Rowson J (1998) Formal Architectural Abstractions for Interactive

Software. International Journal of Human-Computer Studies 49(5):675-715

Martinie C, Palanque PA, Navarre D, Winckler M, Poupart E (2011) Model-based training: an approach

supporting operability of critical interactive systems. In: Proceedings of ACM EICS conference, p

53-62

52 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Martinie C, Palanque PA, Winckler M (2011) Structuring and Composition Mechanisms to Address

Scalability Issues in Task Models. In: Proceedings of IFIP TC 13 INTERACT, p 589-609

Martinie C, Navarre D, Palanque PA (2014) A multi-formalism approach for model-based dynamic

distribution of user interfaces of critical interactive systems. International Journal of Human-

Computer Studies 72(1):77-99

Masci P, Ruksenas R, Oladimeji P, Cauchi A, Gimblett A, Li Y, Curzon P, Thimbleby H (2011) On

Formalising Interactive Number Entry on Infusion Pumps. Electronic Communications of the

EASST 45

Masci P, Ayoub A, Curzon P, Harrison MD, Lee I, Thimbleby H (2013a) Verification of Interactive

Software for Medical Devices: PCA Infusion Pumps and FDA Regulation as an Example. In:

Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems

p 81-90

Masci P, Zhang Y, Jones PL, Oladimeji P, D’Urso E, Bernardeschi C, Curzon P, Thimbleby H (2014a)

Formal Verification of Medical Device User Interfaces Using PVS. In: Proceedings of the 17th

International Conference on Fundamental Approaches to Software Engineering. Springer, p 200-

214

Masci P, Zhang Y, Jones PL, Oladimeji P, D’Urso E, Bernardeschi C, Curzon P, Thimbleby H (2014b)

Combining PVSio with Stateflow. In: Proceedings of NASA Formal Methods - 6th International

Symposium, p 209-214

Masci P, Ruksenas R, Oladimeji P, Cauchi A, Gimblett A, Li AY, Curzon P, Thimbleby HW (2015)

The Benefits of Formalising Design Guidelines: A Case Study on the Predictability of Drug Infusion

Pumps. Innovations in Systems and Software Engineering 11(2):73-93

Mateescu R, Thivolle D (2008) A Model Checking Language for Concurrent Value-Passing Systems.

In: Cuellar J, Maibaum T, Sere K (eds) Proceedings of the 15th international symposium on Formal

Methods. Springer, p 148-164

Merriam NA, Harrison MD (1996) Evaluating the Interfaces of Three Theorem Proving Assistants. In:

Proceedings of DSV-IS conference, Springer, p 330-346

Miller SP, Tribble AC, Whalen MW, Heimdahl MPE (2006) Proving the Shalls. International Journal

on Software Tools for Technology Transfer 8(4-5):303-319

Miller SP (2009) Bridging the Gap Between Model-based Development and Model Checking. In: Tools

and Algorithms for the Construction and Analysis of Systems. Springer, p 443-453

Miller SP, Whalen MW, Cofer DD (2010) Software Model Checking Takes off. Communication of the

ACM 53(2):58-64

Milner R (1980) A Calculus of Communicating Systems. Springer

Moher T, Dirda V, Bastide R (1996) A Bridging Framework for the Modelling of Devices, Users, and

Interfaces. Technical Report

Murugesan A, Whalen MW, Rayadurgam S, Heimdahl MPE (2013) Compositional Verification of a

Medical Device System. In: Proceedings of the 2013 ACM SIGAda annual conference on High

integrity language technology, p 51-64

Navarre D, Palanque PA, Paterno F, Santoro C, Bastide R (2001) A Tool Suite for Integrating Task and

System Models through Scenarios. In: Proceedings of the 8th International Workshop on Interactive

Systems: Design, Specification, and Verification-Revised Papers. Springer, p 88-113

Navarre D, Palanque PA, Bastide R, Schyn A, Winckler M, Nedel LP, Freitas CMDS (2005) A Formal

Description of Multimodal Interaction Techniques for Immersive Virtual Reality Applications. In:

Proceedings of the 2005 IFIP TC13 International Conference on Human-Computer Interaction.

Springer, p 170-183

Navarre D, Palanque PA, Basnyat S (2008) A formal approach for user interaction reconfiguration of

safety critical interactive systems. In Computer Safety, Reliability, and Security. Springer, p 373-

386

State of the Art of Formal Methods in the area of Interactive Systems 53

Navarre D, Palanque PA, Ladry J-F, Barboni E (2009) ICOs: A Model-based User Interface Description

Technique Dedicated to Interactive Systems Addressing Usability, Reliability and Scalability. ACM

Trans. Comput.-Human Interaction 16(4):1-56

Niwa Y, Takahashi M, Kitamura M (2001) The Design of Human–Machine Interface for Accident

Support in Nuclear Power Plants. Cognition, Technology & Work 3(3):161-176

Oladimeji P, Thimbleby HW, Cox AL (2011) Number Entry Interfaces and Their Effects on Error

Detection. In: Proceedings of Human-Computer Interaction - INTERACT 2011 - 13th IFIP TC 13

International Conference, p 178-185

Oladimeji P, Thimbleby HW, Cox AL (2013) A Performance Review of Number Entry Interfaces. In:

Proceedings of Human-Computer Interaction - INTERACT 2013 - 14th IFIP TC 13 International

Conference, p 365-382

Oliveira R, Dupuy-Chessa S, Calvary G (2014) Formal verification of UI using the power of a recent

tool suite. In: Proceedings of the ACM SIGCHI symposium on Engineering interactive computing

systems, p 235-240

Oliveira R (2015) Formal Specification and Verification of Interactive Systems with Plasticity:

Applications to Nuclear-Plant Supervision. Dissertation, Université Grenoble Alpes

Oliveira R, Dupuy-Chessa S, Calvary G (2015a) Verification of Plastic Interactive Systems. i-com

14(3):192-204

Oliveira R, Dupuy-Chessa S, Calvary G (2015b) Equivalence checking for comparing user interfaces.

In: Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing

Systems, p 266-275

Oliveira R, Dupuy-Chessa S, Calvary G (2015c) Plasticity of user interfaces: formal verification of

consistency. In: Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, p 260-265

OMG (2010) Systems Modelling Language (OMG SysML™), version 1.2

Palanque PA, Bastide R, Sengès V (1995) Validating interactive system design through the verification

of formal task and system models. In: Proceedings of IFIP WG 2.7 conference on Engineering

Human Computer Interaction, p 189-212

Palanque PA, Bastide R (1995) Petri Net based Design of User-driven Interfaces Using the Interactive

Cooperative Objects Formalism. In: Interactive systems: Design, specification, and verification.

Springer, p 383-400

Palanque PA, Bastide R, Senges V (1996) Validating Interactive System Design through the

Verification of Formal Task and System Models. In: Proceedings of the IFIP TC2/WG2.7 Working

Conference on Engineering for Human-Computer Interaction, p 189-212

Palanque PA, Paternó F (eds) (1997) Formal Methods in HCI. Springer Verlag

Palanque PA, Bastide R, Paternó F (1997) Formal Specification as a Tool for Objective Assessment of

Safety-critical Interactive Systems. In: Proceedings of the IFIP TC13 International Conference on

Human-Computer Interaction, p 323-330

Palanque PA, Farenc C, Bastide R (1999) Embedding Ergonomic Rules as Generic Requirements in a

Formal Development Process of Interactive Software. In: Human-Computer Interaction

INTERACT ’99: IFIP TC13 International Conference on Human-Computer Interaction, p 408–416

Palanque PA, Winckler M, Ladry J-F, ter Beek M, Faconti G, Massink M (2009) A Formal Approach

Supporting the Comparative Predictive Assessment of the Interruption-Tolerance of Interactive

Systems. In: Proceedings of ACM EICS 2009 conference, p 46-55

Payne SJ, Green TRG (1986) Task-action grammars: a model of mental representation of task

languages. Human-Computer Interaction 2(2):93-133

Park D (1981) Concurrency and Automata on Infinite Sequences. In: Proceedings of the 5th GI-

Conference on Theoretical Computer Science. Springer, p 167-183

54 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Parnas DL (1969) On the use of transition diagrams in the design of a user interface for an interactive

computer system. In: Proceedings of the 24th National ACM Conference, p 379-385

Paternó F, Faconti G (1992) On the Use of LOTOS to Describe Graphical Interaction. People and

computers VII, Cambridge University Press, p 155-155

Paternó F (1994) A Theory of User-interaction Objects. Journal of Visual Languages & Computing

5(3):227-249

Paternó F, Mezzanotte M (1994) Analysing MATIS by Interactors and ACTL. Technical Report

Paternó F, Mezzanotte M (1996) Formal Verification of Undesired Behaviours in the CERD Case

Study. In: Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-

Computer Interaction, p 213-226

Paternó F (1997) Formal Reasoning about Dialogue Properties with Automatic Support. Interacting

with Computers 9(2):173-196

Paternó F, Mancini C, Meniconi S (1997) ConcurTaskTrees: A Diagrammatic Notation for Specifying

Task Models. In: Proceedings of the IFIP TC13 International Conference on Human-Computer

Interaction, p 362-369

Paternó F, Santoro C (2001). Integrating Model Checking and HCI Tools to Help Designers Verify

User Interface Properties. In: Proceedings of the 7th International Conference on Design,

Specification, and Verification of Interactive Systems. Springer, p 135-150

Paternó F, Santoro C (2003) Support for Reasoning about Interactive Systems through Human-

computer Interaction Designers’ Representations. Comput. J. 46(4):340-357

Pfaff G, Hagen P (eds) (1985) Seeheim Workshop on User Interface Management Systems. Springer,

Berlin

Reeve G, Reeves S (2000) μCharts and Z: Hows, Whys, and Wherefores. In: Integrated Formal

Methods: Second International Conference. Springer, Berlin

Reisner P (1981) Formal Grammar and Human Factors Design of an Interactive Graphics System. IEEE

Trans. Softw. Eng. 7(2):229-240

Schwaber K (2004) Agile Project Management with Scrum. Microsoft Press

Sifakis J (1979) Use of Petri nets for performance evaluation. In: Beilner H, Gelenbe E (eds),

Proceedings of 3rd International symposium on modelling and performance of computer systems

Shepherd A (1989) Analysis and training in information technology tasks. In Diaper D (ed), Task

Analysis for Human-Computer Interaction, p 15-55

Sufrin B (1982) Formal specification of a display-oriented text editor. Science of Computer

Programming 1:157-202

Sousa M, Campos J, Alves M, Harrison M, (2014) Formal Verification of Safety-critical User

Interfaces: A Space System Case Study. In: Proceedings of the AAAI Spring Symposium on Formal

Verification and Modelling in Human Machine Systems, p 62-67

Spivey MJ (1989) The Z Notation: A Reference Manual. Prentice-Hall, Upper Saddle River

Strunk EA, Yin X, Knight JC (2005) ECHO: A Practical Approach to Formal Verification. In:

Proceedings of the 10th International Workshop on Formal Methods for Industrial Critical Systems,

p 44-53

Stückrath J, Weyers, B (2014) Lattice-extended Coloured Petri Net Rewriting for Adaptable User

Interface Models. Electronic Communications of the EASST 67(13):13 pages, http://journal.ub.tu-

berlin.de/eceasst/article/view/941/929

Thevenin D, Coutaz J (1999) Plasticity of User Interfaces: Framework and Research Agenda. In: Sasse

A, Johnson C (eds) Proceedings of Interact, p 110-117

Thimbleby H (2007a) Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems. In:

Interactive Systems. Design, Specification, and Verification. Springer, p 52-66

Thimbleby H (2007b) User-centered Methods Are Insufficient for Safety Critical Systems. In:

Proceedings of the 3rd Human-computer Interaction and Usability Engineering of the Austrian

State of the Art of Formal Methods in the area of Interactive Systems 55

Computer Society Conference on HCI and Usability for Medicine and Health Care. Springer, p 1-

20

Thimbleby H, Gow J (2008) Applying Graph Theory to Interaction Design. In: Gulliksen J, Harning

MB, Palanque P, Veer GC, Wesson J (eds), Engineering Interactive Systems. Springer, p 501-519

Thimbleby H (2010) Think! Interactive Systems Need Safety Locks. Journal of Computing and

Information Technology 18(4):349-360

Thimbleby HW, Gimblett A (2011) Dependable Keyed Data Entry for Interactive Systems. Electronic

Communications of the EASST 45

Tu H, Oladimeji P, Li KY, Thimbleby HW, Vincent C (2014) The Effects of Number-related Factors

on Entry Performance. In: Proceedings of the 28th International BCS Human Computer Interaction

Conference, p 246-251

Turchin P, Skii R (2006) History and Mathematics. URSS.

Turner CS (1993) An Investigation of the Therac-25 Accidents. COMPUTER 18, 9I62/93, 0700–

001830300

van Glabbeek RJ, Weijland WP (1996) Branching Time and Abstraction in Bisimulation Semantics. J.

ACM 43(3):555-600

Wang H-W, Abowd G (1994) A Tabular Interface for Automated Verification of Event-based Dialogs.

Technical Report. DTIC Document.

Wegner P (1997) Why Interaction Is More Powerful Than Algorithms. Commun. ACM 40(5): 80-91

Weyers B, Baloian N, Luther W (2009) Cooperative Creation of Concept Keyboards in Distributed

Learning Environments. In: Borges MRS, Shen W, Pino JA, Barthès J-P, Lou J, Ochoa SF, Yong J

(eds), Proceedings of 13th International Conference on CSCW in Design, p 534-539

Weyers B, Luther W, Baloian N (2010) Interface creation and redesign techniques in collaborative

learning scenarios. Journal for Future Generation Computer Systems 27(1):127-138

Weyers B, Burkolter D, Kluge A, Luther W (2010) User-centered Interface Reconfiguration for Error

Reduction in Human-Computer Interaction. In: Proceedings of the third international conference on

Advances in Human-Oriented and Personalized Mechanisms, Technologies and Services, pp 52-55

Weyers B, Luther W, Baloian N. (2012) Cooperative Reconfiguration of User Interfaces for Learning

Cryptographic Algorithms. Journal of Information Technology and Decision Making 11(6):1127-

1154

Weyers B (2012) Reconfiguration of User Interface Models for Monitoring and Control of Human-

Computer Systems. Dissertation, University of Duisburg-Essen. Dr. Hut, Berlin

Weyers B, Burkolter D, Luther W, Kluge A (2012) Formal Modelling and Reconfiguration of User

Interfaces for Reduction of Human Error in Failure Handling of Complex Systems. Journal of

Human Computer Interaction 28(1):646-665

Weyers B, Borisov N, Luther W (2014) Creation of Adaptive User Interfaces Through Reconfiguration

of User Interface Models Using an Algorithmic Rule Generation Approach. International Journal

on Advances in Intelligent Systems 7(1&2):302-336

Weyers B (2015) FILL: Formal Description of Executable and Reconfigurable Models of Interactive

Systems. In: Proceedings of the Workshop on Formal Methods in Human Computer Interaction, p

1-6

Weyers B, Frank B, Bischof K, Kluge A (2015) Gaze Guiding as Support for the Control of Technical

Systems. International Journal of Information Systems for Crisis Response and Management

7(2):59-80

Whalen M, Cofer D, Miller S, Krogh BH, Storm W (2008) Integration of Formal Analysis into a Model-

based Software Development Process. In: Formal Methods for Industrial Critical Systems. Springer,

p 68-84

Yin X, Knight JC, Nguyen EA, Weimer W (2008) Formal Verification by Reverse Synthesis. In:

Proceedings of International Conference on Computer Safety, Reliability, and Security, p 305-319

56 Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen, Alan Dix

Yin X, Knight J, Weimer W (2009a) Exploiting Refactoring in Formal Verification. In: Proceedings of

Dependable Systems & Networks, p 53-62

Yin X, Knight JC, Weimer W (2009b) Exploiting Refactoring in Formal Verification. In: Proceedings

of the 2009 IEEE/IFIP International Conference on Dependable Systems and Networks, p 53-62

Yin X, Knight JC (2010) Formal Verification of Large Software Systems. In: Proceedings of Second

NASA Formal Methods Symposium, p 192-201

