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Abstract   This chapter provides an overview of several formal approaches for the 

design, specification and verification of interactive systems. For each approach 

presented, we describe how they support both modelling and verification activities. We 

also exemplify their use on a simple example in order to provide the reader with a better 

understanding of their basic concepts. It is important to note that this chapter is not self-

contained and that the interested reader should get more details looking at the references 

provided. The chapter is organized to provide an historical perspective at the main 

contributions in the area of formal methods in the field of Human-Computer Interaction. 

The approaches are presented in a semi-structured way identifying their contributions 

alongside a set of criteria. The chapter is concluded by a summary section organizing 

the various approaches in two summary tables reusing the criteria previously derived.  

1. Introduction 

Building reliable interactive systems has been identified as an important and difficult 

tasks form the late 60s on (Parnas 1969) and methods and techniques developed in 

computer sciences have been applied, adapted or extended to fit the need of interactive 

systems since then. Those needs have been thoroughly studied over the years and the 

complexity of interactive system have followed or even pre-empted the non-interactive 

part of computing systems. Such evolution is mainly due to the technological 

progression of input and output devices and their related interaction techniques.  

Another important aspect is related to the intrinsic nature of the interactive systems 

as clearly identified in Peter Wegner’s paper (Wegner 1997) as the input chain is not 

defined prior to the execution and the output chain is processed (by the users) before the 

“machine” (in the meaning of Turing machine) halts.  

Two books ((Harrison and Thimbleby 1990) and (Palanque and Paternó 1997)) have 

been proposed to gather contributions related to the adaptation and extension of 

computer science modelling and verification techniques to the field of interactive 

systems. Contributions in these books were covering the interaction side, the 

computation side (usually called functional core) but also the human side by presenting 
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modelling techniques applied, for instance, to the description of the user’s mental 

models.  

Over the years, the community in Engineering Interactive Computing Systems has 

been investigating various ways of using formal methods for interactive systems but has 

also broadened that scope proposing architectures, processes or methods addressing the 

needs of new application domains involving new interaction techniques. 

Simultaneously, the Formal Methods for Interactive Systems community has been 

focusing on the use of formal methods in the area of interactive computing systems.  

This chapter summaries selected contributions from those two communities over the 

past years. For each approach presented, we describe how they both support modelling 

as well as verification activities. We also exemplify their use on a simple example in 

order to provide the reader with a better understanding of their basic concepts. It is 

important to note that this chapter is not self-contained and that the interested reader 

should get more details looking at the references provided. The chapter is organized to 

provide an historical perspective at the main contributions in the area of formal methods 

in the field of Human-Computer Interaction. Lastly, the approaches are presented in a 

semi-structured way identifying their contributions alongside a set of criteria. The 

chapter is concluded by a summary section organizing the various approaches in two 

summary tables reusing the criteria previously used. 

2. Modelling and Formal Modelling  

In systems engineering, modelling activity consists of producing a theoretical view of 

the system under study. This modelling activity takes place using one or several 

notations. The notation(s) allows engineers to capture some part of the system while 

ignoring other ones. The resulting artefact is called a model and corresponds to a 

simplified view of the real system.  

In the field of software engineering, modelling is a well-established practice that was 

very successfully adopted in the area of databases (Chen 1976). More recently it has 

been widely advertised by the UML standard (Booch 2005). It is interesting to see that 

UML originally proposed nine different notations and thus to produce as many different 

models to capture the essence of software systems. SysML (OMG 2010) the recent 

extension to UML proposes two additional notations to capture elements that were 

overlooked by UML as, for instance, a requirements notation. Modelling is advocated 

to be a central part of all the activities that lead up to the production of good software 

(Booch 2005). It is interesting to note that recent software engineering approaches such 

as agile processes (Schwaber 2004) and extreme programming moved away from 

modelling considering that on time delivery of software is a much more important 
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quality than correct functioning, as bugs can always be fixed in the next delivered 

version.  

However, building models in the analysis, specification, design, and implementation 

of software bring a lot of advantages (Booch 2005; Turchin and Skii 2006): 

 to abstract away from low level details;  

 to focus on some aspects while avoiding other (less relevant ones); 

 to describe and communicate about the system under design with the various 

stakeholders; 

 to better understand the system under development and the choices that are made; 

 to support the identification of relationships between various components of the 

system. 

Beyond these advantages, modelling (when supported by notations offering 

structuring mechanisms) helps designers to break complex applications into smaller 

manageable parts (Navarre et al. 2005). The extent to which a model helps in the 

development of human understanding is the basis for deciding how good the model is 

(Hallinger et al. 2000). 

When the notation used for building models has rigorous theoretical foundations, 

these models can be analysed in order to check soundness or detect flaws. Such activity, 

which goes beyond modelling, is called verification and validation and is detailed in the 

next section.  

3. Verification and Validation 

The notation used for describing models can be at various levels of formality that can 

be classified as informal, semi-formal, and formal (Garavel and Graf 2013): 

 informal models are expressed using natural language or loose diagrams, charts, 

tables, etc. They are genuinely ambiguous, which means that different readers may 

have different understanding of their meaning. Those models can be parsed and 

analysed (e.g. spell checkers for natural text in text editors) but their ambiguity will 

remain and it is thus impossible to guarantee that they do not contain contradictory 

statements; 

 semi-formal models are expressed in a notation that has a precise syntax but has no 

formal (i.e. mathematical-defined) semantics. Examples of semi-formal notations are 

UML class diagrams, data flow diagrams, entity relationship graphical notation, 

UML state diagrams, etc.; 
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 formal models are written using a notation that has a precisely-defined syntax and a 

formal semantics. Examples of formal specification languages are algebraic data 

types, synchronous languages, process calculi, automata, Petri nets, etc. 

Thus, formal models are built using formal notations and are unambiguous system 

descriptions. Such formal models can then be analysed to assess presence or absence of 

properties, analyse performance issues (if the formal notation can capture such 

elements), possibly simulate the models to allowing designer checking their behaviour, 

generate descriptions in extension (such as state space or test cases) if the formal 

notation represents such elements in intention (e.g. set of states represented in intention 

in Petri nets while represented in extension in an automata).  

 

Figure 1. Iterative cycle of models construction and analysis from (Palanque et al. 2009) 

Formal verification involves techniques that are strongly rooted in mathematics. 

Defects in models can be detected by formal verification. In such cases, either the model 

has to be amended (to remove the defect) or the system under analysis has to be modified 

for instance by adding barriers (Basnyat et al. 2007). Such a modified system can then 

be modelled and analysed again to demonstrate that the modifications have not 

introduced other (unexpected) problems. This cycle (presented in Figure 1) is repeated 

until the analysis results match the expectations. Examples of formal verification 

techniques are model checking, equivalence checking, and theorem proving. 

Theorem proving is a deductive approach for the verification of systems (Boyer and 

Moore 1983). Proofs are performed in the traditional mathematical style, using some 

formal deductive system. Both the system under verification and the properties that have 

to be verified are modelled usually using different types of formal notations. Properties 

are usually expressed using declarative formal notations (e.g. temporal logics (Clarke et 

al. 1986)) while system behaviours are usually represented using procedural formal 

notations such as automata. Checking that the properties are true on a formal model of 

the systems is done as a theorem demonstration using the deductive proof calculus (see 

for instance verification of temporal logics formulas over Petri nets (Sifakis 1979)). 
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Proofs progress by transforming a set of premises into a desired conclusion, using 

axioms and deduction rules and possibly integrating previously demonstrated theorems. 

Such a proof production process is usually not fully automated: analyst guidance is 

required, for instance regarding the proof strategy to be followed. Good user interfaces 

for theorem provers can significantly reduce the burden of the users as argued in 

(Merriam and Harrison 1996). Some formal methods have been adapted to address the 

specificities of interactive systems and if they are specifically supporting theorem 

proving results, they have been tuned to address interactive systems properties such as 

the adaptation of B presented in (Aït-Ameur et al. 2003a).  

Model checking (Figure 2) allows verification of whether a model satisfies a set of 

specified properties. A property is a general statement expressing an expected behaviour 

of the system. In model checking, a formal model of the system under analysis must be 

created, which is afterward represented as a finite-state machine (FSM). This FSM is 

then subject to exhaustive analysis of its entire state space to determine whether the 

properties hold or not. The analysis can be fully automated and the validity of a property 

is always decidable (Cofer 2010). Even though it is easier for a human being to express 

properties in natural language, it can result in imprecise, unclear and ambiguous 

properties. Expected properties should, thus, be also formalized by means of, for 

instance, a temporal logic. The analysis is mainly supported by the generation of counter 

examples when a property is not satisfied. A counter example can be a sequence of state 

changes that, when followed, leads to a state in which the property is false.  

 

Figure 2. Principle of model checking as defined in DO-178C aeronautics standard – HLR stands for 

High Level Requirements, LLR stands for Low Level Requirements (and correspond to procedural 

systems descriptions) 

Since the introduction of model checking in the early 80s, it has advanced 

significantly. The development of algorithmic techniques (e.g., partial-order reduction, 

compositional verification, etc.) and data structures (e.g., binary decision diagrams) 
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allow for automatic and exhaustive analysis of finite-state models with several 

thousands of state variables (Ameur et al. 2010). For this reason, model checking has 

been used in the past years to verify interactive systems in safety-critical systems of 

several domains, such as avionics (Degani and Heymann 2002), radiation therapy 

(Turner 1993), healthcare (Thimbleby 2010), etc. In the field of interactive systems, 

several model checking approaches have been proposed. With respect to mainstream 

software engineering, such approaches have been focussing on interactive systems 

specific properties (such as predictability (Dix 1991) or human errors identification 

(Curzon and Blandford 2004)). 

Rather than verifying the satisfiability of properties, equivalence checking (Figure 2) 

provides the ability to formally prove whether two representations of the system exhibit 

exactly the same behaviour or not. In order to verify whether two systems are equivalent 

or not, a model of each system should also be created, and then both models are 

compared in the light of a given equivalence relation. Several equivalence relations are 

available in the literature (e.g., strong bi-simulation (Park 1981) and branching bi-

simulation (van Glabbeek and Weijland 1996)). Which relation to choose depends on 

the level of details of the model and the verification goals. As for model checking and 

theorem proving, results of the analysis are exploited to identify where the models have 

to be amended in order to ensure their behavioural equivalence. In the field of interactive 

systems, this can be done for checking that two versions of an interactive software 

exhibit the same behaviour or to check that the descriptions of user tasks are equivalent 

to the behaviour of the system (Palanque et al. 1995).  

 

Figure 3. Equivalence checking 

These three different approaches to formal verification have been applied to 

interactive systems in various works. In section 6, we present those approaches by 

describing how formal models are described and how verification is addressed.  
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4. Criteria to Describe and Analyse the State of the Art 

Each approach is presented with respect to the following structure: after a brief 

introduction of the approach, it is unfolded step by step, identifying which 

language/formalism is used to model the interactive system. Then, the properties 

addressed by the approach are listed, together with the language/formalism used to 

describe them, the verification technique employed and whether the approach is tool 

supported or not. It is important to note that the approaches might be more powerful 

than presented here. Indeed, we only gather information that the authors were 

demonstrating in their publications. Thus, instead of presenting what an approach can 

do, we present what the authors have been doing with it.  

After the description of each approach, an analysis is performed according to the 

following criteria: 

 Modelling coverage: the verification of the system relies on the system model. For 

this reason, the model coverage should be large enough for the verification to be 

useful. It is analysed whether the studied approach covers aspects of the functional 

core and the user interfaces or not. The functional core of a system implements the 

domain-dependent concepts and functions, and the user interfaces implement the 

look and feel of the interactive system (Bass et al. 1991). We call a “user interface” 

(UI) the information that is presented to the user with which the users can interact. 

In addition, it is also analysed if aspects of the users are included in the model, in 

order to take into account user behaviours. The more sophisticated the interaction 

techniques used to interact with these user interfaces, the more expressive power is 

required for the formal description technique. For instance, in multimodal 

interactions, fusion of event is usually based on a temporal window in which the 

events have been received. If the events are too far away (in quantitative time) then 

they will not be fused. In order to describe such behaviour, the formal methods must 

allow engineers to describe quantitative temporal information (such as timed 

automata or Temporal Petri nets).  

 Kinds of properties: one kind of analysis that can be performed over a system model 

is property verification. In the context of safety-critical interactive systems, we 

believe that the focus should be directed both towards dependability (to ensure that 

the functioning of the system is correct), to usability (to ensure that the system is 

usable; effective, efficient and satisfactory), and to prevent users from making errors. 

For each author, the kinds of properties that have been demonstrated as verifiable 

using their approach are analysed.  

 Application to safety-critical systems: whether each approach is applied to safety-

critical domains or not. We provide here examples of the domains addressed, e.g. 

healthcare, air traffic management, avionics, or nuclear power. 
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 Scalability: while a lot of work has been performed on simple examples, we will 

identify approaches that have been applied to industrial applications or at least have 

demonstrated means (e.g. structuring mechanisms) for dealing with real-life systems.  

5. Modelling and Verification 

Interactive systems models can deal with the various aspects of interactive systems. Low 

fidelity prototypes usually deal with their presentation part (i.e. how they look and how 

information is presented to users) while behavioural models usually address interaction 

or dialog descriptions. While a model at specification level would describe what the 

system is supposed to do, models at design levels would describe how the system is 

supposed to behave. In the area of interactive systems, formal models have been 

proposed at different levels. Properties are closer to the specification level as they 

express constraints on system presentation or behaviour. A presentation property would 

require, for instance, that all the user interface buttons have the same size. A behavioural 

property, for instance, could require that all buttons are always available. Verification 

activity aims at assessing whether or not a property holds on a given system as discussed 

above.  

Several authors propose different categories of properties. For instance, three kinds 

of properties are identified in (Campos and Harrison 1997): visibility properties, which 

concern the users’ perception, i.e., what is shown on the user interface and how it is 

shown; reachability properties, which concern the user interfaces, and deal with what 

can be done at the user interface and how it can be done (in the users’ perspective); and 

reliability properties, which concern the underlying system, i.e., the behaviour of the 

interactive system.  

6. Succinct presentation of the approaches 

This section will briefly describe the approaches reviewed for this chapter. The current 

FoMHCI community and many of the strands of work in this review largely owe their 

origin to a number of projects funded by the Alvey Programme in the UK in the 1980s, 

and particularly the 'York Approach' (see Dix et al. below). However, it is possible to 

trace the roots deeper, in particular Reisner's (Reisner 1981) use of BNF to describe the 

'action language' (what we would now call dialogue) of an interactive graphics 

programme, and Sufrin's (Sufrin 1982) use of the Z specification language to specify a 

simple display editor (see (d’Ausbourg 1998) for an early review). 
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Both Reisner's and Sufrin's work used existing formal notations. This use of existing 

notations or creation of specialised notations or methods for interactive systems has 

always been one of the main strands of FoMHCI research. Many of the approaches 

below and in this book use existing notations (e.g. LOTOS, Petri Nets); however, these 

often either need to extend or create new notations in order to be able to effectively 

specify behaviours and properties of interactive systems. 

While this has emerged as the dominant strand of work in the area and the main focus 

of this review, there are a number of other strands that have influence the field, elements 

of which can be seen in various chapters of this book (see also (Dix 2012)). 

 Abstract models: this used a variety of notations, but with the aim of describing 

classes of systems to define generic properties and prove generic properties (see Dix 

et al. below). The main legacy of this approach is the formulation of properties 

including variations of predictability and observability that are adopted by many 

system modelling approaches, which can be seen in many if the approaches below. 

 Architectural models: early user interface implementers reflected on their 

experience. The MVC (Model View Controller) paradigm grew out of the Smalltalk 

programming environment (Kieras and Polson 1985), and a workshop of those 

developing user interface management systems (UIMS) led to the Seeheim Model 

(Pfaff and Hagen 1985). The former has been particularly influential in subsequent 

practical UI development, and the latter in framing a language for interaction 

architecture, especially the formulation of the presentation–dialogue-functionality 

distinction. Within the formal modelling community, this work was especially 

strongly associated with the work of Coutaz, Nigay and others at Grenoble including 

the development of the PAC model (Coutaz 1987), which itself fed into ARCH 

Slinky metamodel (Bass et al. 1991). The main legacy of this work has been in its 

inputs into modelling of multi-modal systems and plasticity. Oddly many current 

systems that describe themselves as MVC are actually unintentionally following 

PAC model (Dey 2011)! 

 User and task modelling: the cognitive modelling and task analysis communities 

have often used models that have a formal nature, although come from different roots 

and have had different concerns to those adopting a more computer science formal 

modelling approach. However, there have been many overlaps including CCT 

(Cognitive Complexity Theory), which used a dual system and cognitive model 

(Kieras and Polson 1985), and TAG (Task Action Grammar), which expressed 

system descriptions in ways that made inconsistencies obvious (Payne and Green 

1986). Of course, the CTT task modelling approach (see Paterno et al. below) has 

been very influential in the FoMHCI community, and, while having its roots in the 

LOTOS specification notation, it is very similar to pure task analysis notations such 

as HTA (Shepherd 1989). 
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Abowd et al. (USA, 1991–1995) 

Early approaches to applying formal notations to the study of human-machine 

interaction and the modelling of interactive systems paved the way for other researchers 

to explore different alternatives to assess the quality of such systems. In (Abowd 1991), 

a framework for the formal description of users, systems and user interfaces is proposed.  

Modelling 

In (Abowd 1991), the interactive system is modelled as a collection of agents. The 

language to describe the agents borrows notations from several formal languages, such 

as Z, VDM, CSP and CSS. Such agent language contains identifiers to describe internal 

(types, attributes, invariants, initially, and operations), and external specifications of 

agents, as well as communication between agents (input / output). Therefore, data, 

states, and events can be modelled in this language. When describing the operations 

agents can execute, it is possible to define pre- and post-conditions for each operation, 

which may be used to define a given ordering of actions, allowing qualitative time to be 

represented. The external specification of the language allows description of 

synchronous parallel composition, which can express concurrent behaviour. Finally, 

multi-touch interactions can be implicitly modelled by agents: each finger could be 

represented by a given agent. 

Alternatively, another approach is proposed in (Abowd at al. 1995; Wang and Abowd 

1994), in which interactive systems are described by means of a tabular interface using 

Action Simulator, a tool for describing PPS (Propositional Production System) 

specifications. In PPS, the dialog model is specified as a number of production rules 

using pre- and post-conditions. Action Simulator permits such PPS specification to be 

represented in a tabular format, in which the columns are the system states, and the 

production rules are expressed at the crossings of lines and columns. It is possible to 

represent multimodality using this approach by identifying the states related to each 

modality, and how they relate to each other using the production rules. However, it does 

not allow concurrent behaviour to be expressed: production rules are executed 

sequentially. The approach covers the modelling of the functional core and the UIs, and 

to some extent the modelling of the users, by describing the user actions that “fire” the 

system state changes. 

Verification 
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The verification of specifications written using the agent language described in (Abowd 

1991) can be tool supported, for instance by using ProZ for Z specifications. However, 

such a verification is not described in (Abowd 1991). 

A translation from the tabular specification of the interactive system proposed in 

(Abowd at al. 1995; Wang and Abowd 1994) into SMV input language is described in 

(Wang and Abowd 1994). The CTL temporal language is used to formalize the 

properties, allowing the following usability properties to be verified: 

 Reversibility (Abowd at al. 1995): can the effect of a given action be reversed in a 

single action? 

 Deadlock freedom (Abowd at al. 1995): from an initial state, is it true that the dialog 

will never get into a state in which no actions can be taken? 

 Undo within N steps (Wang and Abowd 1994): from any state of a given state set, 

if the next step leads the system out of the state set, can a user go back to the given 

state set within N steps? 

In addition, the following functional properties can be verified: 

 Rule set connectedness (Abowd at al. 1995): from an initial state, can an action be 

enabled? 

 State avoidability (Wang and Abowd 1994): can a user go from one state to another 

without entering some undesired state? 

 Accessibility (Wang and Abowd 1994): from any reachable state, can the user find 

some way to reach some critical state set (such as the help system)? 

 Event constraint (Wang and Abowd 1994): does the dialog model ensure/prohibit 

a particular user action for a given state set? 

 Feature assurance (Wang and Abowd 1994): does the dialog model guarantee a 

desired feature in a given state set? 

 Weak task completeness (Abowd at al. 1995): can a user find some way to 

accomplish a goal from initialization? 

 Strong task completeness (Abowd at al. 1995): does the dialog model ensure that 

a user can always accomplish a goal? 

 State inevitability (Abowd at al. 1995): from any state in the dialog, will the model 

always allow the user to get to some critical state? 

 Strong task connectedness (Abowd at al. 1995): from any state, can the user find 

some way to get to a goal state via a particular action? 

The automatic translation of the tabular format of the system states into the SMV 

input language is an advantage of the approach, since it allows model checking of 

properties to be performed. The tabular format of the system states and the actions that 

trigger state changes provide a reasonable compact representation in a comprehensible 

form. However, it looks like the approach does not scale well to larger specifications, 
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unless an alternative way to store a large sparse matrix is provided. Besides, no 

application to safety-critical systems is reported. 

Dix et al. (United Kingdom, 1985–1995) 

Modelling 

The PIE model (Dix et al. 1987) considers interactive systems as a “black-box” entity 

that receives a sequence of inputs (keystrokes, clicks, etc.) and produces a sequence of 

perceivable effects (displays, LEDs, printed documents, etc.). The main idea is to 

describe the user interfaces in terms of the possible inputs and their effects (Dix 1991). 

Such practice is called surface philosophy (Dix 1988) and aims at omitting parts of the 

system that are not apparent to the user (the internal details of systems, such as hardware 

characteristics, languages used, or specification notations). The domain of input 

sequences is called P (standing for programs), the domain of effects is called E and both 

are related by an interpretation function I that determines the effects of every possible 

command sequence (Figure 3). In this sense, the interpretation function I can be seen as 

a means to represent events of the modelled system, data cannot be represented, and 

internal states of the system are inferred by what is called observable effects (Dix 1991). 

 

Figure 4. The PIE model (Dix 1991) 

The effects E can be divided into permanent results (e.g., print-out) and ephemeral 

displays (the actual UI image). Such specialization of the effects constitutes another 

version of the PIE model, called the Red-PIE model (Dix 1991). 

The PIE model is a single-user single-machine model, and does not describe 

interleaving and the timing of the input/output events (Dix 1991). However extensions 

of the basic PIE model dealt with multi-user behaviour (including the first formulations 

of collaborative undo (Abowd and Dix 1992)); the first formal work on real-time 

interactive behaviours (Dix 1991); continuous interaction (such as mouse dragging) 

through status-event analysis (Dix 1991); and non-deterministic external behaviours 

(e.g., due to concurrency or race conditions) (Dix 1991). Multimodality can be expressed 
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by describing the input / output and interpretation function for each modality, the status–

event analysis extensions would allow multi-touch applications. 

The PIE model is focused on the external behaviour of the system as perceived by 

the user, it does not model the users themselves, nor more than minimal internal details. 

Because of this the external effects of internal behaviour such as concurrency behaviour 

or dynamic instantiation can be modelled, but not their internal mechanisms. 

Verification 

The PIE model provides a generic way of modelling interactive systems and permits the 

following usability properties to be formalized: 

 Predictability (Dix 1995): the UI shall be predictable, i.e., from the current effect it 

should be possible to predict the effect of future commands. 

 Simple reachability (Dix 1991): all system effects can be obtained by applying some 

sequences of commands; 

 Strong reachability (Dix 1988): one can get anywhere from anywhere; 

 Undoability (Dix et al. 1987): for every command sequence there is a function 

“undo” which reverses the effect of any command sequence; 

 Result commutativity (Dix et al. 1987): irrespective of the order in which different 

UIs are used, the result is the same. 

The PIE and Red-PIE models are ones of the first approaches that used formal 

notations for the modelling of interactive systems and desired properties. As abstract 

models, their role in respect to verification is therefore more in formulating the user 

interaction properties that subsequent system modelling and specification approaches 

(such as Abowd et al., above and Paterno et al., below) seek to verify for specific 

systems. 

Some proofs and reasoning about PIEs are quite extensive, notably Mancini's 

category theoretical proof of the universality of stack and toggle based undo (Mancini 

1997). However, the mathematical notations are very abstract, and no tool support is 

provided, instead proofs follow a more traditional mathematical form. 

Paterno et al. (Italy, 1990–2003) 

Modelling 
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Interactive systems can be formally described as a composition of interactors (Hardin et 

al. 2009). Interactors are more concrete than the agent model described in section 5.1, 

in that they introduce more structure to the specification by describing an interactive 

system as a composition of independent entities (Markopoulos 1997). 

The interactors of CNUCE (Paternó and Faconti 1992) provide a communication 

means between the user and the system. Data manipulated by the interactors can be sent 

and received through events in both directions: towards the system and towards the user 

(Paternó 1994), which are both abstracted in the model by a description of the possible 

system and user actions.  

The CNUCE interactors are specified using LOTOS (ISO 1989), which has 

concurrent constructs. However, since LOTOS is a language with action-based 

semantics, the system states cannot be represented. Besides, only qualitative time can 

be modelled, dynamic instantiation cannot be modelled, neither multimodality. Multi-

touch interactions can be modelled by defining one interactor for each finger, and by 

integrating these interactors to other interactors of the system. Despite the fact that the 

approach covers mainly the modelling of user interfaces, a mathematical framework is 

provided to illustrate how to model the user and the functional core too (Paternó 1994).  

Verification 

Fig.4 illustrates how a formal model using CNUCE interactors be used afterward for 

verification (Paternó 1997). 

 

Figure 5. The TLIM (Tasks, LOTOS, Interactors Modelling) approach (Paternó 1997). 

This approach has been used to verify the following usability properties: 
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 Visibility (Paternó and Mezzanotte 1994): each user action is associated with a 

modification of the presentation of the user interface to give feedback on the user 

input; 

 Continuous feedback (Paternó and Mezzanotte 1994): this property is stronger 

than visibility; besides requiring a feedback associated with all possible user actions, 

this has to occur before any new user action is performed; 

 Reversibility (Paternó and Mezzanotte 1994): this property is a generalization of 

the undo concept. It means that users can perform parts of the actions needed to fulfil 

a task and then perform them again, if necessary, before the task is completed in order 

to modify its result; 

 Existence of messages explaining user errors (Paternó and Mezzanotte 1994): 

whenever there is a specific error event, a help window will appear. 

In addition, the following functional property can be verified: 

 Reachability (Paternó and Mezzanotte 1994): this property verifies that a user 

interaction can generate an effect on a specific part of the user interface. 

The approach has been applied to several case studies of safety-critical systems in the 

avionics domain (Navarre et al. 2001; Paternó and Mezzanotte 1994; Paternó and 

Mezzanotte 1996; Paternó 1997; Paternó and Santoro 2001; Paternó and Santoro 2003). 

These examples show that the approach scales well to real-life applications. Large 

formal specifications are obtained, which describe the behaviour of the system, 

permitting meaningful properties to be verified.  

Markopoulos et al. (United Kingdom, 1995–1998) 

Modelling 

ADC (Abstraction-Display-Controller) (Markopoulos 1995) is an interactor model that 

also uses LOTOS to specify the interactive system (specifically, the UIs). In addition, 

the expression of properties is facilitated by templates. 

The ADC interactor handles two types of data: display data, which come (and are 

sent to) either directly from the UI or indirectly through other interactors, and 

abstraction data, which are sustained by the interactor to provide input to the application 

or to other interactors (Markopoulos et al. 1998). A UI can be modelled as a composition 

of ADC interactors. Once formalized in LOTOS, the ADC interactors can be used to 

perform formal verification of usability properties using model checking.  
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The ADC approach concerns mostly the formal representation of the interactor 

model. Regarding the coverage of the model, the focus is to provide an architectural 

model for user interface software. The functional core and the user modelling are not 

covered. ADC emphasizes the architectural elements of the interactor: its gates, their 

role, their grouping to sides, the separate treatment of dialogue and data modelling and 

the composition of interactors to form complex interface specifications (Markopoulos 

et al. 1998). When connected to each other, ADC interactors exchange data through 

gates. Connection types (aout, dout), (dout, dout) and (aout, aout) concern pairs of 

interactors which synchronize over common output gates. These can be useful for 

modelling multi-modal output where different output modalities synchronize, e.g., 

sound and video output (Markopoulos et al. 1998). Touch interactions can also be 

modelled by the combination of such interactors. 

Verification 

The properties to be verified over the formal model are specified in the ACTL temporal 

logic. For example, the following properties can be verified: 

 Determinism (Markopoulos 1997): a user action, in a given context, has only one 

possible outcome; 

 Restartability (Markopoulos 1995): a command sequence is restartable if it is 

possible to extend it so that it returns to the initial state; 

 Undoability (Markopoulos 1995): any command followed by undo should leave 

the system in the same state as before the command (single step undo); 

 Eventual feedback (Markopoulos et al. 1998): a user-input action shall eventually 

generate a feedback. 

In addition, the following functional properties can be verified: 

 Completeness (Markopoulos 1997): the specification has defined all intended and 

plausible interactions of the user with the interface; 

 Reachability (Markopoulos 1997): it qualifies the possibility and ease of reaching 

a target state, or a set of states, from an initial state, or a set of states. 

In this approach, the CADP (Garavel et al. 2013) toolbox is used to verify properties by 

model checking (Markopoulos et al. 1996). Specific tools to support the formal 

specification of ADC interactors are not provided (Markopoulos et al. 1998). 

No case study applying the approach to the verification of critical systems is reported. 

In fact, the approach is applied to several example systems (Markopoulos 1995) and to 

a case study on a graphical interface of Simple Player for playing movies (Markopoulos 
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et al. 1996), which makes it difficult to measure whether it can scale up to realistic 

applications or not. 

Duke and Harrison et al. (United Kingdom, 1993–1995) 

Modelling 

Another interactor model is proposed by the University of York (Duke and Harrison 

1995) to represent interactive systems. Compared to the CNUCE interactor model 

(below), the main enhancement brought by the interactors of York is an explicit 

representation of the state of the interactor. 

The York interactor (Figure 6) has an internal state and a rendering function (i.e., rho 

in Figure 6) that provides the environment with a perceivable representation (P) of the 

interactor internal state. The interactor communicates with the environment by means 

of events. Two kinds of events are modelled: 

 Stimuli events: come from either the user or the environment, and modify the 

internal state of the interactor. Such state changes are then reflected to the external 

presentation through the rendering function. 

 Response events: are events generated by the interactor and sent to the user or to the 

environment. 

 

Figure 6. The York interactor (Harrison and Duke 1995) 

York interactors are described using the Z notation (Spivey 1989). This notation 

facilitates the modelling of the state and operations of a system, by specifying it as a 

partially ordered sets of events in first-order logic (Duke and Harrison 1993). 

Multimodality can be represented (Duke and Harrison 1995) as each action has an 

associated modality from the given set [modality]. Besides, the authors describe two 

approaches to define a notion of interaction: the one-level model and the two-level 

model, which bound several interactors (Duke and Harrison 1993). This allows multi-

touch interactions to be represented by this approach. In addition, the York interactor 

model provides an abstract framework for structuring the description of interactive 
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systems in terms of layers. It encapsulates two specific system layers: the state and the 

display (Harrison and Duke 1995), thus covering both the functional core and the UIs 

in the modelling. However, concurrent behaviour cannot be expressed, neither it 

supports dynamic instantiation (even though instantiation is proposed to compose 

interactors (Duke and Harrison 1993), it seems that the interactors are not dynamically 

instantiated).  

Verification 

This approach permits usability properties to be verified. Properties are also specified 

in first-order logic formulas. Unlike the previous approaches, the York interactor model 

uses theorem proving as formal verification technique. Examples of properties that can 

be verified are (Duke and Harrison 1995): 

 Honesty: the effects of a command are intermediately made visible to the user; 

 Weak reachability: it is possible to reach any state through some interaction; 

 Strong reachability: each state can be reached after any interaction p; 

 Restartability: any interaction p is a prefix of another q such that q can achieve any 

of the states that p initially achieves. 

The approach is applied to a case study in a safety-critical system, an aircraft’s fuel 

system (Fields et al. 1995) in which the pilot’s behaviour is modelled, thus showing that 

the approach also covers the modelling of users. No further case studies applying the 

approach were found in the literature, which makes it difficult to tell whether the 

approach scales up to larger interactive systems or not. Besides, no application was 

found in the nuclear plant domain. 

Campos et al. (Portugal, 1997–2015) 

Modelling 

The York interactor model is the basis of the work proposed in (Bumbulis et al. 1995b). 

Here, Campos chooses MAL (Modal Action Logic) language to implement the York 

interactor model, since MAL’s structure facilitates the modelling of the interactor 

behaviour. The use of MAL allows data to be represented, since attributes can be 

expressed in the language. In (Campos and Harrison 2001), the authors propose the 

MAL interactor language to describe interactors that are based on MAL, propositional 
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logic is augmented with the notion of action, and deontic operators allows ordering of 

actions to be expressed. 

The approach covers the three aspects we are considering: in (Campos and Harrison 

2011), the approach is used to model the functional core and user interfaces of an 

infusion pump; and assumptions about user behaviours are covered in (Campos and 

Harrison 2007), by strengthening the pre-conditions on the actions the user might 

execute.  

A tool called i2smv is proposed in (Campos and Harrison 2001) to translate MAL 

specifications into the input language of the SMV model checker. However, concurrent 

behaviour cannot be modelled. Although the stuttering in the SMV modules allows 

interactors to evolve independently, a SMV module will engage in an event while 

another module does nothing (Campos and Harrison 2001). 

Verification 

The approach is applied to several case studies. An application of both model checking 

and theorem proving to a common case study is described. Further, deeper 

investigations are performed (and tools developed) into the usage of model checking 

(only), in order to verify interactive systems.  

To support the whole process, a toolbox called IVY is developed (Campos and 

Harrison 2009). In this framework, the properties are specified using the CTL 

(Computational Tree Logic) temporal logic, allowing the verification of usability and 

functional properties (Campos and Harrison 2008). Particularly, the following usability 

properties can be expressed: 

 Feedback (Campos and Harrison 2008): a given action provides a response; 

 Behavioural consistency (Campos and Harrison 2008): a given action causes 

consistent effect; 

 Reversibility (Campos and Harrison 2008): the effect of an action can be 

eventually reversed/undone; 

 Completeness (Campos and Harrison 2009): one can reach all possible states with 

one action. 

The approach is applied to several case studies (Campos and Harrison 2001; Harrison 

et al. 2013), specifically, in safety-critical systems (e.g., healthcare systems (Campos 

1999; Campos and Harrison 2009; Campos and Harrison 2011; Harrison et al. 2015) 

and avionics systems (Campos and Harrison 2007; Doherty et al. 1998; Sousa et al. 

2014)), showing that the approach scales well to real-life applications.  
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D’Ausbourg et al. (France, 1996–2002) 

Modelling 

Another approach based on the York interactor model is proposed in (d’Ausbourg 1998; 

d’Ausbourg et al. 1998). These authors push further the modelling of an interactive 

system by events and states initially proposed by the York approach. 

Their interactor model is called CERT. It also contains an internal state, and the 

interface between an interactor and its environment consists of a set of input and output 

events. Both internal state and events are described as Boolean flows. Such 

representation of interactors by flows allows their specification using the LUSTRE data 

flow language. A system described in LUSTRE is represented as a network of nodes 

acting in parallel, which allows concurrent behaviour to be represented. Each node 

transforms input flows into output flows at each clock tick. 

The approach can handle data in the system modelling. However, a drawback is that 

it does not handle sophisticated data types. The representation of the internal system 

state and events by Boolean flows considerably limits the modelling capabilities of the 

approach. In LUSTRE, a flow variable is a function of time, denoting the sequence of 

values that it takes at each instant (d’Ausbourg et al. 1998). Specifically, two LUSTRE 

operators allows qualitative time to be represented: the “previous” operator pre and the 

“followed-by” operator →. Besides, quantitative time can also be represented: the 

expression occur-from-to(a, b, c) is a temporal operator whose output is true when “a” 

occurs at least once in the time interval [b..c] (d’Ausbourg et al. 1998). 

Verification 

The LUSTRE formal model is then verified by model checking. Verification is achieved 

by augmenting the system model with LUSTRE nodes describing the intended 

properties, and using the Lesar tool to traverse the state space generated from this new 

system. The properties can be either specific or generic properties. 

Specific properties deal with how presentations, states, and events are dynamically 

linked into the UIs, and they are automatically generated from the UIL file (they 

correspond to functional properties). Generic properties might be checked on any user 

interface system, and they are manually specified (they correspond to usability 

properties). The verification process allows the generation of test cases, using the 

behaviour traces that lead to particular configurations of the UI where the properties are 

satisfied. 

In particular, the following usability properties are verified (d’Ausbourg et al. 1998): 
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 Reactivity: the UI emits a feedback on each user action; 

 Conformity: the presentation of an interactor is modified when its internal state 

changes; 

 Deadlock freedom: the impossibility for a user to get into a state where no actions 

can be taken; 

 Unavoidable interactor: the user must interact with the interactor at least once in 

any interactive session of the UIs. 

As well as the following functional property: 

 Rule set connectedness: an interactor is reachable from any initial state. 

The approach was applied to the avionics field (d’Ausbourg 2002). In this case study, 

the interactions of the pilot with the system and the behaviour of the functional core are 

modelled. Unfortunately, no evidence is given that the approach scales well to real-life 

applications.  

Bumbulis et al. (Canada, 1995–1996) 

Modelling 

Similar to the interactor models (Campos and Harrison 2001; d’Ausbourg et al. 1998; 

Duke and Harrison 1995), user interfaces can be described by a set of interconnected 

primitive components (Brat et al. 2013; Bumbulis et al. 1995a). The notion of 

component is similar to that of interactor, but a component is more closely related to the 

widgets of the UI. Such component-based approach allows both rapid prototyping and 

formal verification of user interfaces from a single UI specification. 

In Bumbulis et al.’s approach, user interfaces are described as a hierarchy of 

interconnected component instances using the Interconnection Language (IL). 

Investigations have been conducted into the automatic generation of IL specifications 

by re-engineering the UIs (Bumbulis et al. 1995a). However, such automatic generation 

is not described in the paper. From such component-based IL specification of the UI, a 

Tcl/Tk code is mechanically generated, in order to provide a UI prototype for 

experimentation, as well as a HOL (Higher-Order Logic) specification for formal 

reasoning using theorem proving (Bumbulis et al. 1995a). 

The approach covers only the modelling and verification of user interfaces. The user 

and the functional core are not modelled. Besides, the Interconnection Language does 

not provide means to represent multimodality, multi-touch interactions, concurrent 

behaviour, or time. 
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Verification 

Properties are specified as predicates in Hoare logic, a formal system with a set of logical 

rules for reasoning about the correctness of computer programs. Proofs are constructed 

manually, even though investigations to mechanize the process have been conducted 

(Bumbulis et al. 1995a). No usability properties are verified in this approach. Instead, 

the approach permits functional properties to be verified, which are directly related to 

the expected behaviour of the modelled UI. 

No application to safety-critical systems was found in the literature. Besides, it is not 

clear how to model more complex UIs in this approach, since UI components are not 

always bound to each other. In addition, it is not clear how multiple UIs could be 

modelled, neither the navigation modelling between such UIs. All these aspects indicate 

that the approach does not scale well for larger applications. 

Oliveira et al. (France, 2012–2015) 

Modelling 

In (Oliveira et al. 2015a) a generic approach to verifying interactive systems is proposed, 

but instead of using interactors, interactive systems are described as a composition of 

modules. Each system component is described as such a module, which communicate 

and exchange information through channels. This approach allows plastic UIs to be 

analysed. Plasticity is the capacity of a UI to withstand variations in its context of use 

(environment, user, platform) while preserving usability (Thevenin and Coutaz 1999). 

In this approach, interactive systems are modelled according to the principles of the 

ARCH architecture (Bass et al. 1991), and using LNT (Champelovier 2010), a formal 

specification language derived from the ELOTOS standard (ISO 2001). LNT improves 

LOTOS (ISO 1989) and can be translated to LOTOS automatically. LOTOS and LNT 

are equivalent with respect to expressiveness, but have a different syntax. In (Paternó 

1997) the authors point out how difficult it is to model a system using LOTOS, when 

quite simple UI behaviours can easily generate complex LOTOS expressions. The use 

of LNT alleviates this difficulty.  

The approach enhances standard LTS to model interactive systems. An LTS 

represents a system by a graph composed of states and transitions between states. 

Transitions between states are triggered by actions, which are represented in LTS 

transitions as labels. Intuitively, an LTS represents all possible evolutions of a system 

modelled by a formal model. The approach enhances LTS by proposing the ISLTS 

(Interactive System LTS) (Yin and Knight 2010), in which two new sets are added: a 
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set C of UI components and a set L of action names. In addition, the set A of actions of 

standard LTS is enhanced to carry a list of UI components, representing the UI 

appearance after the action is performed. 

The approach covers aspects of the users, the user interfaces, and the functional core 

of the system. Data and events of the system can be modelled by the ISLTS, but not the 

state of the system. The ordering of transitions of the LTS can represent qualitative time 

between two consecutive model elements, and LNT contains operators that allow 

concurrent behaviour to be modelled. Models described with this approach were of 

WIMP-type and no evidence was given about the ability of the approach to deal with 

more complex interaction techniques such as multi-touch or multi-modal UIs 

(especially, dealing with quantitative time required for fusion engines).  

Verification 

The approach is twofold, allowing: usability and functional properties to be verified 

over the system model (Oliveira et al. 2014). Using model checking, usability properties 

verify whether the system follows ergonomic properties to ensure a good usability. 

Functional properties verify whether the system follows the requirements that specify 

its expected behaviour. These properties are formalized using the MCL property 

language (Mateescu and Thivolle 2008). MCL is an enhancement of the modal mu-

calculus, a fixed point-based logic that subsumes many other temporal logic, aiming at 

improving the expressiveness and conciseness of formulas. 

Besides, different versions of UIs can be compared (Oliveira et al. 2015b). Using 

equivalence checking, the approach verifies to which extent UIs present the same 

interaction capabilities and appearance, showing whether two UI models are equivalent 

or not. When they are not equivalent, the UI divergences are listed, providing the 

possibility of leaving them out of the analysis (Oliveira et al. 2015c). In this case, the 

two UIs are equivalent less such divergences. Furthermore, the approach shows that one 

UI can contain at least all interaction capabilities of another (UI inclusion). Three 

abstraction techniques support the comparison: omission, generalization and 

elimination. This part of the approach can be used to reason of multimodal user 

interfaces, by verifying the level of equivalence between them. 

The approach is supported by CADP (Garavel et al. 2013), a toolbox for verifying 

asynchronous concurrent systems: systems whose components may operate at different 

speeds, without a global clock to synchronize them. Asynchronous systems suit the 

modelling of human-computer interactions well: the modules that describe the users, the 

functional core, and the user interfaces can evolve in time at different speeds, which 

reflects well the unordered sequence of events that take place in human-machine 

interactions. Both parts of the approach can be used either independently or in an 
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integrated way, and it has been validated in three industrial case studies in the nuclear 

power plant domain, which indicates the potential of the approach with respect to 

scalability (Oliveira 2015). 

Knight et al. (USA, 1992–2010) 

Modelling 

Another example of the application of formal methods to safety-critical systems, 

specifically, to the nuclear power plant domain, can be found in (Knight and Brilliant 

1997). The authors propose the modelling of user interfaces in three levels: lexical, 

syntactic, and semantic levels. Different formalisms are used to describe each level. For 

instance, the lexical level is defined using Borland's OWL (Object Windows Library), 

allowing data and events to be represented. The syntactic level in the approach is 

documented with a set of context-free grammars with one grammar for each of the 

concurrent, asynchronous dialogues that might be taking place. Such syntactic level 

imposes the required temporal ordering on user actions and system responses (Knight 

and Brilliant 1997). Finally, Z is used to define the semantic level. The notion of user 

interfaces as a dialog between the operator and the computer system consisting of three 

components (lexical, syntactic, and semantic levels) is proposed by (Foley and Wallace 

1974). 

Each of these three levels is specified separately. Since different notations are used, 

the communication between these levels is defined by a set of tokens (Knight and 

Brilliant 1997). The concept of a multi-party grammar is appropriate for representing 

grammars in which tokens are generated by more than one source (Knight and Brilliant 

1997). Such representation could allow multimodality to be covered by the approach. 

However, the authors have elected to use a conventional context-free grammar 

representation together with a naming convention to distinguish sources of tokens 

(Knight and Brilliant 1997). 

Following this view of user interface structure, the authors develop a formal 

specification of a research reactor used in the University of Virginia Reactor (UVAR) 

for training nuclear engineering students, radiation damage studies, and other studies 

(Loer and Harrison 2000). In order to illustrate the specification layers, the authors focus 

on the safety control rod system, one of the reactor subsystems. They give in the paper 

the three specifications for this subsystem. 

The approach is also applied to other safety-critical systems, such as the Magnetic 

Stereotaxis System (MSS), a healthcare application for performing human neurosurgery 

(Elder and Knight 1995; Knight and Kienzle 1992). UIs, users and the functional core 



State of the Art of Formal Methods in the area of Interactive Systems 25 

 

of systems are covered by this approach. The UI syntactic level in their approach defines 

valid sequences of user inputs on the UIs, which is to some extent the modelling of the 

users, and the cypher system case study described in (Yin et al. 2008) verifies the 

correctness of the functional core. Finally, the approach covers the representation of 

dynamic reconfiguration (Knight and Brilliant 1997). 

Verification 

However, the formal specification is not used to perform formal verification. According 

to the authors, the main goal is to develop a formal specification approach for user 

interfaces of safety-critical systems. Concerning verifiability, the authors claim that the 

verification of a UI specification using this approach is simplified by the use of an 

executable specification for the lexical level, and by the use of a notation from which 

an implementation can be synthesized for the syntactic level. For the semantic level, 

they argue that all the tools and techniques developed for Z can be applied (Knight and 

Brilliant 1997). 

Later, a toolbox called Zeus is proposed to support the Z notation (Knight et al. 1999). 

The tool permits the creation and analysis of Z documents, including syntax and type 

checking, schema expansion, precondition calculation, domain checking, and general 

theorem proving. The tool is evaluated in a development of a relatively large 

specification of an international maritime software standard, showing that Zeus meets 

the expected requirements (Knight et al. 1999). 

Following such a separation of concerns in three levels, the authors propose another 

approach called Echo (Strunk et al. 2005), this time applied to a case study in the 

avionics domain. In order to decrease complexity with traditional correctness proofs, 

the Echo approach is based on the refactoring of the formal specification (Yin et al. 

2009a; Yin at al. 2009), reducing the verification burden by distributing it over separate 

tools and techniques. The system model to be verified (written in PVS) is mechanically 

refactored. It is refined into an implementable specification in Spark Ada by removing 

any un-implementable semantics. After refactoring, the model is documented with low-

level annotations, and a specification in PVS is extracted mechanically (Yin et al. 2008). 

Proofs that the semantics of the refactored model is equivalent to that of the original 

system model, that the code conforms to the annotations, and that the extracted 

specification implies the original system model constitute the verification argument 

(Yin et al. 2009a). 

An extension of the approach is proposed in (Yin and Knight 2010), aiming at 

facilitating formal verification of large software systems by a technique called proof by 

parts, which improve the scalability of the approach for larger case studies. 
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The authors did not clearly define the kinds of properties they can verify over 

interactive systems with their approach. The case studies to which the approach is 

applied mainly focused on the benefits of modelling UIs in three layers using formal 

notation. 

Miller et al. (USA, 1995–2013) 

Modelling 

Also in the safety-critical domain, but in avionics, deep investigation has been 

conducted at Rockwell Collins of the usage of formal methods for industrial realistic 

case studies. Preliminary usage of formal methods aimed at creating consistent and 

verifiable system specifications (Hamilton et al. 1995), paving the way to the usage of 

formal methods at Rockwell Collins. Another preliminary use of formal methods was 

the usage of a synchronous language called RSML (Requirements State Machine 

Language) to specify requirements of a Flight Guidance System. RSML is a state-based 

specification language developed by Leveson's group at the University of California at 

Irvine as a language for specifying the behaviour of process control systems (Miller et 

al. 2006). Algorithms to translate specifications from this language to the input 

languages of the NuSMV model checker and the PVS theorem prover have been 

proposed (Miller et al. 2006), enabling one to perform verification of safety properties 

and functional requirements expressed in the CTL temporal logic (i.e., functional 

properties). Afterward, deeper investigations are conducted to further facilitate the 

usage of formal methods. 

According to (Miller 2009), relatively few case studies of model checking to 

industrial problems outside the field of engineering equipment are reported. One of the 

reasons is the gap between the descriptive notations most widely used by software 

developers and the notations required by formal methods (Lutz 2000). To alleviate the 

difficulties, as part of NASA’s Aviation Safety Program (AvSP), Rockwell Collins and 

the research group on critical systems of the University of Minnesota (USA) develop 

the Rockwell Collins Gryphon Translator Framework (Hardin et al. 2009), providing a 

bridge between some commercial modelling languages and various model checkers and 

theorem provers (Miller et al. 2010). The translation framework supports Simulink, 

Stateflow, and SCADE models, and it generates specifications for the NuSMV, Prover, 

and SAL model checkers, the ACL2 and PVS theorem provers, and generates C and 

Ada code (Miller et al. 2010) (BAT and Kind are also included as target model checkers 

in (Cofer et al. 2012)). Alternatively, Z specifications are also covered by the approach 
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as an input language, since Simulink and Stateflow models can be derived from Z 

specifications (Hardin et al. 2009). 

Algorithms to deal with the time dependencies were implemented in the translator, 

allowing multiple input events arriving at the same time to be handled (Miller et al. 

2006). Concerning the modelling coverage, the approach covers only the functional core 

of the avionics interactive systems that were analysed (Combéfis 2013; Miller 2009; 

Miller et al. 2010), but not the user interfaces nor the user behaviour. 

Tools were also developed to translate the counter examples produced by the model 

checkers back to Simulink and Stateflow models (Cofer 2012), since for large systems 

it can be difficult to determine the cause of the violation of the property only by 

examining counter examples (Whalen et al. 2008). 

Verification 

The technique is applied to several case studies in the avionics (Cofer 2012; Combéfis 

2013; Miller 2009; Miller et al. 2010; Whalen et al. 2008). The first application of the 

NuSMV model checker to an actual product at Rockwell Collins is the mode logic of 

the FCS 5000 Flight Control System (Miller 2009): 26 errors are found in the mode 

logic. 

The largest and most successful application is the Rockwell Collins ADGS-2100 

(Adaptive Display and Guidance System Window Manager), a cockpit system that 

provides displays and display management software for commercial aircraft (Miller et 

al. 2010). The Window Manager (WM) ensures that data from different applications are 

displayed correctly on the display panel. A set of properties that formally expresses the 

WM requirements (i.e., functional properties) is developed in the CTL and LTL 

temporal logic: 563 properties are developed and verified, and 98 design errors are 

found and corrected. 

The approach is also applied to an adaptive flight control system prototype for 

unmanned aircraft modelled in Simulink (Cofer 2012; Whalen et al. 2008). During the 

analysis, over 60 functional properties are verified, and 10 model errors and 2 

requirement errors are found in relatively mature models. 

These applications to the avionics domain demonstrates that the approach scales well. 

Even if the approach does not take user interfaces into account, it is a good example of 

formal methods applied to safety-critical systems. In addition, further investigations of 

the usage of compositional verification are conducted (Cofer et al. 2008; Murugesan et 

al. 2013), to enhance the proposed techniques. 
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Loer and Harrison et al. (Germany, 2000–2006) 

Modelling 

Another approach to verifying interactive systems is proposed in (Loer and Harrison 

2002; Loer and Harrison 2006), also with the goal of making model checking more 

accessible to software engineers. The authors claim that in the avionics and automotive 

domains requirements are often expressed as Statechart models (Loer and Harrison 

2002). With statecharts, a complex system can be specified as a number of potentially 

hierarchical state machines that describe functional or physical subsystems and run in 

parallel (Loer and Harrison 2000). Such parallelism could represent concurrent 

behaviour. The ordering of events which change the machine from one state to another 

can be used to represent qualitative time. Furthermore, in the Statechart semantics, time 

is represented by a number of execution steps, allowing to express the formulation 

“within n steps from the current state...” (Loer and Harrison 2000). 

To introduce formal verification in the process, they propose an automatic translation 

from Statechart models (created with the Statemate toolkit) to the input language of the 

SMV model checker, which is relatively robust and well supported (Loer and Harrison 

2006). Such translation is part of the IFADIS toolbox, which also provides guided 

process of property specifications and a trace visualization to facilitate the result 

analysis of the model checker.  

Concerning the modelling coverage of the approach, the authors describe five pre-

defined elements in which the formal model is structured (Loer and Harrison 2000): 

 Control elements: description of the widgets of the UIs; 

 Control mechanism: description of the system functionality; 

 Displays: description of the output elements; 

 Environment: description of relevant environmental properties; 

 User tasks: sequence of user actions that are required to accomplish a certain task. 

Therefore, their model covers the three aspects we are analysing: the user, UIs, and 

the functional core. However, aspects such as multimodality and multi-touch 

interactions are not covered. 

Verification 

The properties can be verified using Cadence SMV or NuSMV model-checking tools. 

Depending on the type of property, the model checker can output traces that demonstrate 

why a property holds or not (Loer and Harrison 2006). 
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The property editor helps designers to construct temporal-logic properties by making 

patterns available and helping the process of instantiation (Loer and Harrison 2006). 

Temporal-logic properties can be specified either in LTL (Linear Temporal Logic) or 

CTL (Computational Tree Logic). The following usability properties can be verified: 

 Reachability (Loer and Harrison 2000): are all the states reachable or not? 

 Robustness (Loer and Harrison 2000): does the system provide fallback 

alternatives in the case of a failure? or, alternatively, are the guards for unsafe states 

foolproof? 

 Recoverability (Loer and Harrison 2000): does the system support undo and redo? 

 Visibility of system status (Loer and Harrison 2000): does the system always keep 

the users informed about what is going on, through appropriate feedback within 

reasonable time? 

 Recognition rather than recall (Loer and Harrison 2000): is the user forced to 

remember information from one part of the dialog to another? 

 Behavioural consistency (Loer and Harrison 2006): does the same input always 

yield the same effect? 

In particular, the reachability property here is classified as a usability property 

because it is defined as generic property, which can be applied to any interactive system 

(i.e., “are all the states reachable or not?”). This is in contrast to the classification of the 

reachability property, for instance, where it is classified as a functional property because 

it expresses what can be done at the UI, and how can it be done, which is something that 

is usually defined in the system requirements.  

Although the approach is not applied to many case studies (i.e., only to the avionics 

domain (Loer and Harrison 2006)), several reasons indicate that the approach scales 

well to real-life applications. The approach is supported by a tool that provides a 

translation from engineering models (Statecharts) to formal models (SMV 

specifications), a set of property patterns to facilitate the specification of properties, and 

a trace visualizer to interpret the counter examples generated by the model checker. It 

is used in the case study described in (Loer and Harrison 2006) and an evaluation shows 

that the tool improves the usability of model checking for non-experts (Loer and 

Harrison 2006).  

Thimbleby et al. (United Kingdom, 1987–2015) 

Modelling 
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In the healthcare domain, several investigations of medical device user interfaces have 

been conducted at Swansea University and Queen Mary University of London. 

Specifically, investigations are conducted on interactive hospital beds (Acharya et al. 

2010), for user interfaces of drug infusion pumps (Cauchi et al. 2012a; Masci et al. 2015; 

Masci et al. 2014a; Thimbleby and Gow 2008), and interaction issues that can lead to 

serious clinical consequences. 

Infusion pumps are medical devices used to deliver drugs to patients. Deep 

investigation has been done of the data entry systems of such devices (Cauchi et al. 

2012b; Cauchi et al. 2014; Gimblett and Thimbleby 2013; Li et al. 2015; Masci et al. 

2011; Oladimeji et al. 2011; Oladimeji et al. 2013; Thimbleby 2010; Thimbleby and 

Gimblett 2011; Tu et al. 2014). If a nurse makes an error in setting up an infusion (for 

instance, a number ten times larger than the necessary for the patient’s therapy), the 

patient may die. Under-dosing is also a problem: if a patient receives too little of a drug, 

recovery may be delayed or the patient may suffer unnecessary pain (Masci et al. 2011). 

The authors report several issues with the data entry system of such pumps (Masci et 

al. 2014a). Several issues are detected (Masci et al. 2014a) using the approach depicted 

in Figure 7. In this approach, the C++ source code of the infusion pump is manually 

translated into a specification in the PVS formal language ([a] in Figure 7).  

Concerning the modelling coverage, the approach deals with the display and 

functionality of the devices, but does not cover the modelling of the users interacting 

with such devices. In addition, no references were found describing the modelling of 

concurrent behaviour, multimodality, nor multi-touch interactions. 

Verification 

Usability properties such as consistency of actions and feedback are formalized ([b] in 

Figure 7) as invariants to be established using theorem proving: 

 Consistency of actions: the same user actions should produce the same results in 

logically equivalent situations; 

 Feedback: it ensures that the user is provided with sufficient information on what 

actions have been done and what result has been achieved. 

A behavioural model is then extracted ([c] in Figure 7), in a mechanized manner, 

from the PVS formal specification. This model captures the control structure and 

behaviour of the software related to handling user interactions. Theorem proving is used 

to verify that the behavioural model satisfies the usability properties. Lastly, the 

behavioural model is exhaustively explored to generate a suite of test sequences ([d] in 

Figure 7) (Masci et al. 2014a). 
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Figure 7. Verification approach using PVS, adapted from (Masci et al. 2014a) 

A similar approach is described in (Masci et al. 2013), in which the PVS specification 

is automatically discovered (Gimblett and Thimbleby 2010; Thimbleby 2007a) from 

reversely engineering the infusion pump software. Besides, functional properties are 

extracted from the safety requirements provided by the US medical device regulator 

FDA (Food and Drug Administration), to make sure that the medical device is 

reasonably safe before entering the market (Masci et al. 2013). This approach allows 

quantitative time to be modelled, and property such as “The pump shall issue an alert if 

paused for more than t minutes” to be verified (Masci et al. 2013). 

The same FDA safety requirements are used to verify a PVS formal model of another 

device, the Generic Patient Controlled Analgesia (GPCA) infusion pump (Masci et al. 

2013). In this work, the authors propose the usage of formal methods for rapid 

prototyping of user interfaces. Once verified, the formal model of the infusion pump is 

automatically translated into executable code through the PVS code generator, 

providing a prototype of the GPCA user interface from a verified model of the infusion 

pump. 

An approach to integrating PVS executable specifications and Stateflow models is 

proposed in (Masci et al. 2014b), aiming at reducing the barriers that prevent non-

experts from using formal methods. It permits Stateflow models to be verified, avoiding 

the hazards of translating design models created in different tools. 

All the work mentioned in this subsection is based on the PVS theorem prover. 

Nevertheless, model checking can also be used in order to formally verify medical 

devices (Masci et al. 2011; Masci et al. 2015; Thimbleby 2007b). For example, the 

authors model the Alaris GP in (Masci et al. 2015), and the B-Braun Infusomat Space 

infusion pumps in the higher-order logic specification language SAL (Symbolic 

Analysis Laboratory) (De Moura et al. 2004). Afterward, model checking is applied to 

verify the predictability of user interfaces, a usability property expressed in the LTL 

temporal logic. Predictability is defined in (Masci et al. 2011) as “if users look at the 

device and see that it is in a particular display state, then they can predict the next display 

state of the device after a user interaction”. 

The maturity of the approach described here, and its applications to numerous case 

studies are evidences that the approach scales well to real-life applications.  
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Palanque et al. (France, 1990–2015) 

Modelling 

In (Palanque and Bastide 1995), another approach is proposed to modelling and 

verifying interactive systems with a different formalism: Petri nets (Petri 1962). Being 

a graphical model, Petri nets might be easier to understand than textual descriptions. 

Originally, the work was targeting at modelling, implementation and simulation of 

the dialog part of event-driven interfaces (Bastide and Palanque 1990) it nowadays 

covers the modelling of the entire interactive system. Early notation was called Petri 

nets with Objects (Bastide and Palanque 1990) (which belongs to the high-level Petri 

nets class) and was an extension of Petri nets in order to manipulate tokens which were 

references to objects (in the meaning the object oriented paradigm). This has been 

further extended over the years to the ICO formalism (Navarre et al. 2009) (Interactive 

Cooperative Objects) which permits applications to be prototyped and tested but also 

can be fully implemented by integrating Java code in the models. 

A system described using ICOs is modelled as a set of objects that cooperate to 

perform the system tasks. ICO uses concepts borrowed from the object-oriented 

formalism (such as inheritance, polymorphism, encapsulation, and dynamic 

instantiation) to describe the structural or static aspects of systems, such as its attributes 

and the operations it provides to its environment. 

Through the Petri net formalism and objects, data, state and events can be modelled, 

as well as concurrent behaviour. Dynamic reconfiguration of user interfaces are 

proposed in (Navarre et al. 2008), allowing operators to continue interacting with the 

interactive system even though part of the hardware side of the user interface is failing. 

Besides, the formalism also allows the modelling of low level behaviour of interaction 

techniques including multi-touch interactions (Hamon et al. 2013). In the multi-touch 

context, new fingers are detected at execution time. Thus, the description language must 

be able to receive dynamically created objects. In Petri nets, this can be represented by 

the creation/destruction of tokens associated to the objects (Hamon et al. 2013). The 

notation has been used to model WIMP interfaces (Bastide and Palanque 1990) and 

post-WIMP ones including multimodal interaction with speech (Bastide et al. 2004), 

virtual reality (Navarre et al. 2005) or bimanual interactions (Navarre et al. 2009).  

Once the system is modelled using the ICO formalism, it is possible to apply model 

checking to verify usability and functional properties. How modelling, verification and 

execution is performed using Petshop (for Petri net Workshop) (Bastide et al. 2002; 

Bastide et al. 2004) (the CASE tool supporting the ICO formal description technique) 

is illustrated in chapter 20 of this book.  
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This work allows the integration of two different representations: tasks models and 

interactive systems models as described in (Palanque et al. 1996). Than work has been 

extended to describe constructs in task models as Petri nets structures. This was first 

done using UAN notation (Hix and Hartson 1993) as demonstrated in (Palanque et al. 

1996), allowing for the verification of compatibility between the two representations 

using Petri nets based bi-simulation (Bourguet-Rouger 1988). Then connection with 

CTT notation (Paternó et al. 1997) was made using scenarios as a connection artefact 

(Navarre et al. 2001). Such work has been extended by developing integration of models 

at the syntactic level allowing for co-simulation of models (Barboni et al. 2010) and 

more recently using the HAMSTERS notation that allows structuring of models 

(Martinie et al. 2011a) and enables explicit representation of data, errors, and knowledge 

in task models (Fahssi et al. 2015). This work focusses on the use of multiple models 

jointly as presented in (Martinie et al. 2014).  

Verification 

For instance, the following usability properties can be verified (Palanque and Bastide 

1995): 

 Predictability: the user is able to foresee the effects of a command; 

 Deadlock freedom: the impossibility for a user to get into a state where no actions 

can be taken; 

 Reinitiability: the ability for the user to reach the initial state of the system. 

 Exclusion of commands: commands which must never be offered at the same time 

(or, on the contrary, must always be offered simultaneously); 

 Succession of commands: the proper order in which commands may be issued; for 

instance, a given command must or must not be followed by another one, 

immediately after or with some other commands in between; 

 Availability: a command is offered all the time, regardless of the state of the system 

(e.g., a help command). 

The specification is verified using Petri net property analysis tools (Palanque et al. 

1996). In order to automate the process of property verification, the ACTL temporal 

logic can be used to express the properties, which are then proved by model checking 

the Petri net marking graph (Palanque et al. 1999). 

The ICO approach also permits user’s cognitive behaviour to be modelled by a 

common Petri net for system, device and user (Moher et al. 1996). As previously 

mentioned, Petshop supports the design of interactive systems according to the ICO 

methodology. Alternatively, the Java PathFinder model checker is used to verify a set 
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of properties on a safety-critical application in the interactive cockpit systems modelled 

with ICO (Boyer and Moore 1983). 

The approach has been applied to case studies and real applications in safety-critical 

systems in the space domain (for instance: (Bastide et al. 2003; Bastide et al. 2004; 

Boyer and Moore 1983; Palanque et al. 1997)) but also Air Traffic Management and 

more recently aircraft cockpits. These case studies and the maturity of the tools show 

that the approach scales well to real-life applications.  

However, the verification based on Petri net properties has limitations exposed in 

(Navarre et al. 2009). The analysis is usually performed on the underlying Petri net (a 

simplified version of the original Petri net). A drawback is that properties verified on 

the underlying Petri net are not necessarily true on the original Petri net. Thus, the results 

of the analysis are essentially indicators of potential problems in the original Petri net. 

This is due to the fact that the team involved is the ICO notation has not extended work 

for properties verifications in Petri nets to encompass extensions (e.g. the use of 

preconditions).  

Aït-Ameur et al. (France, 1998–2014) 

Modelling 

An alternative approach is proposed in (Aït-Ameur et al. 1998b; Aït-Ameur et al. 1999; 

Aït-Ameur et al. 2003a), this time relying on theorem proving using the B method 

(Abrial 1996) to specify the interactive system. The approach permits task models to be 

validated. Task models can be used to describe a system in terms of tasks, sub-tasks, 

and their temporal relationships. A task has an initial state and a final state, and is 

decomposed in a sequence of several sub-tasks. 

The approach uses the B method for representing, verifying and refining 

specifications. The authors use the set of events to define a transition system that permits 

the dialog controller of the interactive system to be represented. The CTT (Concur Task 

Trees) notation (Paternó et al. 1997) is used to represent task models. In (Aït-Ameur et 

al. 2003a), only the CTT operator called “sequence” between tasks is covered. In further 

work (Aït-Ameur et al. 2005a; Aït-Ameur et al. 2005b; Aït-Ameur et al. 2009), the 

authors describe how every CTT construction can be formally described in Event B 

(including the concurrency operator) allowing to translate, with generic translation 

rules, every CTT construction in Event B, which is the event-based definition of B 

method. 

The case study described in (Aït-Ameur et al. 1998a) shows that the approach 

covers the modelling of users, UIs and the functional core. In this approach, 



State of the Art of Formal Methods in the area of Interactive Systems 35 

 

qualitative time can be modelled using the PRE THEN substitution, which allows one 

to order operations (Aït-Ameur et al. 1998b). Multi-touch interactions are also covered 

by modelling each finger as a machine, and by integrating these machines (using the 

EXTENDS clause) in another machine that would represent the whole hand used for 

interaction (Aït-Ameur et al. 1998b). However, there is no possibility to account for 

quantitative time which is needed for the description of fine grain interaction in 

multimodal interactions.  

Verification 

This usage of Event B to encode CTT task models is described in several case studies 

(Aït-Ameur et al. 2006; Aït-Ameur and Baron 2004; Aït-Ameur and Baron 2006; 

Cortier et al. 2007). In particular, the approach is used to verify Java/Swing user 

interfaces (Cortier et al. 2007), from which Event B models are obtained. Such Event B 

models encapsulate the UI behaviour of the application. Validation is achieved with 

respect to a task model that can be viewed as a specification. The task model is encoded 

in Event B, and assertions ensure that suitable interaction scenario are accepted by the 

CTT task model. Demonstrating that the Event B formal model behaves as intended 

comes to demonstrate that it is a correct refinement of the CTT task model. 

Moreover, the following usability properties can be verified: 

 Robustness (Aït-Ameur et al. 2003b): these properties are related to system 

dependability; 

 Visibility (Aït-Ameur et al. 1999): relates to feedback and information delivered to 

the user; 

 Reachability (Aït-Ameur et al. 1999): these properties express what can be done at 

the user interface and how can it be done; 

 Reliability (Aït-Ameur et al. 1999): concerns the way the interface works with the 

underlying system; 

 Behavioural properties (Aït-Ameur and Baron 2006): characterize the behaviour 

of the UI suited by the user. 

The proof of these properties is done using the invariants and assertions clauses of 

the B method, together with the validation of specific aspects of the task model (i.e., 

functional properties), thus, permitting a full system task model to be validated. The 

Atelier B tool is used for an automatic proof obligation generation and proof obligation 

checking (Aït-Ameur 2000). 

In order to compare this theorem proving-based approach to model checking-based 

approaches, the authors show how the same case study is tackled using both theorem 

proving (with Event B) and model checking (with Promela/SPIN) (Aït-Ameur et al. 
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2003b). The authors conclude that both techniques permit the case study to be fully 

described, and that both permit robustness and reachability properties to be verified. The 

proof process of the Event B-based approach is not fully automatic, but it does not suffer 

from the state-space explosion of model-checking techniques. The Promela-SPIN-based 

technique is fully automatic, but limited to finite-state systems on which exhaustive 

exploration can be performed. The authors conclude that a combined usage of both 

techniques would strengthen the verification of interactive systems. 

An integration of the approach with testing is also presented in (Aït-Ameur et al. 

2004). Here, the informal requirements are expressed using the semi-formal notation 

UAN (Hix and Hartson 1993) (instead of CTT), and the B specifications are manually 

derived from this notation. To validate the formal specification, the authors use a data-

oriented modelling language, named EXPRESS, to represent validation scenarios. The 

B specifications are translated into EXPRESS code (the B2EXPRESS tool (Aït-Sadoune 

and Aït-Ameur 2008)). This translation gives data models that represent specification 

tests and permits Event B models to be animated. 

The approach is applied to several case studies in the avionics domain (Aït-Ameur et 

al. 2014; Jambon et al. 2001). Specifically, the authors illustrate how to explicitly 

introduce the context of the systems in the formal modelling (Aït-Ameur et al. 2014). 

The approach is also applied to the design and validation of multi-modal interactive 

systems (Aït-Ameur et al. 2006; Aït-Ameur et al. 2010; Aït-Ameur and Kamel 2004). 

The numerous case studies and the maturity of the approach suggests that it might scale 

to real-life applications even though no evidence was given in the papers.  

Bowen and Reeves (New Zealand, 2005–2015) 

Modelling 

The main focus of the approach proposed by Bowen and Reeves is the use of lightweight 

models of interfaces and interactions in conjunction with formal models of systems in 

order to bridge the gap between the typical informal UI design process and formal 

methods (Bowen and Reeves 2007a). UIs are formally described using a presentation 

model (PM) and a presentation and interaction model (PIM) while the underlying 

system behaviour is specified using the Z language (ISO 2002). The lightweight models 

allow UI and interaction designers to work with their typical artefacts (prototypes, 

storyboards etc.) and a relation (PMR) is created between the behaviours described in 

the UI models and the formal specification in Z which gives a formal meaning (and 

therefore the semantics of) the presentation models. The formal semantics also then 

enables a description of refinement to be given which can guide the transformation from 
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model to implementation. Again this is given at both a formal and informal level so can 

be used within both the design and formal processes (Bowen and Reeves 2006). 

While the primary use of the models is during the design process (assuming a 

specification-first approach) it is also possible to reverse-engineer existing systems into 

the set of models. Most examples given of this rely on a manual approach, which can 

be error-prone or lead to incomplete models. Some work has been done on supporting 

an automated approach. Using a combination of dynamic and static analysis of code and 

Java implementations has been investigated and this allows UI widgets and some 

behaviours to be identified which can be used to partially construct models and support 

their completion (Bowen 2015). 

The presentation model uses a simple syntax of tuples of labels and the semantics of 

the model are based on set theory. It is used to formally capture the meaning of an 

informal design artefact such as a scenario, a storyboard, or a UI prototype by describing 

all possible behaviours of the windows, dialogues or modes of the interactive system 

(Bowen and Reeves 2007a). In order to extend this to represent dynamic UI behaviour 

a PIM (presentation interaction model) is used. This is essentially a finite-state machine 

where each state represents one window, dialogue or mode (i.e. individual presentation 

model) of the system with the transitions representing navigational behaviours. The PIM 

can be visualised using the μCharts language (Reeve and Reeves 2000) which has its 

own Z semantics (and which is based on Statecharts) and which therefore enables a 

complete model of all parts of the system to be created and ultimately translated into Z. 

Although the approach mainly focuses on modelling the user interfaces, the 

presentation model can also be used to model the user operations. The main goal is to 

ensure that all user operations described in the formal specification have been described 

in the UI design, again the PMR is used to support this. The models can also be used 

post-implementation to support testing. A set of abstract tests can be generated from the 

presentation models which describe the requirements of the UI widgets and behaviours 

and these can then be concretised into testing frameworks such as JUnit and UISpec4J 

(Bowen and Reeves 2013b). 

Verification 

The approach has been applied to several case studies. In (Bowen and Reeves 2007b), 

the authors use the models in the design process of UIs for the PIMed tool, a software 

editor for presentation models and PIMs. However, in this work, no automated 

verification of the presentation model and the PIMs of the editor is proposed. The formal 

models are manually inspected. For example, in order to verify the deadlock freedom 

property, the authors use a manual walk-through procedure in the PIMs. In later work 

(e.g. (Bowen and Reeves 2012)), the verification is automated by the ProZ tool, allowing 
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both usability properties and functional properties to be verified using model checking. 

The kinds of usability properties that can be verified are: 

 Total reachability: one can get to any state from any other state; 

 Deadlock freedom: a user cannot get into a state where no action can be taken; 

 Behavioural consistency: controls with the same behaviour have the same name; 

 Minimum memory load on user: do not have to remember long sequences of 

actions to navigate through the UI. 

Another case study to which these formal models have been applied relates to a 

safety-critical system in the healthcare domain (Bowen and Reeves 2012) . Again the 

verification is supported using ProZ. The authors model a syringe pump, a device 

commonly used to deliver pain-relief medication in hospitals and respite care homes. 

The device has ten widgets, which include the display screen, eight soft keys and an 

audible alarm (multimodality). Temporal safety properties and invariants (to check 

boundary values) are verified against the formal models using ProZ and LTL.   

Typically, the PIMs that are generated are relatively small. This is because the 

number of states and transitions are bounded by the number of 

windows/dialogues/modes of the system rather than individual behaviours as seen in 

other uses of finite-state machines. This abstraction of presentation models into states 

of PIMs prevents state explosion and enables a combination of both manual and 

automatic verification (as appropriate) with reasonably low overhead. The presentation 

models and system specification are created manually as part of the development and 

specification process. Whilst the creation of models of systems can be seen as an 

additional overhead to a development process, the benefits provided both by the creation 

and use of the models more than compensates for this later in the process. Once the 

presentation models and PMR have been created, the PIM can be automatically 

generated and translation between the models, μCharts and Z is automated using several 

tools. The individual models can be used independently, or in combination to verify 

different aspects of the system under consideration. Most recently this work has 

focussed on safety-critical systems, and an example of this is given in chapter 7. 

Weyers et al. (Germany, 2009–2015) 

Modelling 

In (Weyers 2012; Weyers et al. 2012), a formal modelling approach has been proposed, 

which is based on a combination of the use of a domain specific and visual modelling 

language called FILL with an accompanied transformation algorithm mapping FILL 
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models onto a well-established formal description concept: Petri nets. In contrast to the 

works by Bastide and Palanque (1990) who extended basic coloured Petri nets to the 

ICO formalism, the modelling is done in a domain specific description, which is not 

used directly for execution or verification. Instead, it is transformed into an existing 

formalism called reference net (Kummer 2002) (a special type of Petri net) providing a 

formal semantic definition for FILL, making FILL models executable using existing 

simulators (e.g., Renew (Kummer et al. 2000)) and offering the possibility for the 

application of verification and validation techniques for Petri net-based formalisms. As 

a modelling approach, FILL has been used in research on collaborative learning systems 

in which students created an interface for simulating a cryptographic algorithm (Weyers 

et al. 2009; Weyers et al. 2010).  

As the work focuses on the model-based creation of interactive systems and less on 

the creation of formal models used for their verification as done in various related works, 

Weyers (Weyers 2015) extended the basic approach with concepts from software 

development. The main extension, which is described in chapter 5 of this book, 

addresses a component-based modelling as it offers reusability of certain components 

and capabilities to structure the overall model by means of functional and conceptual 

entities. The latter enables the modeller to create more complex (scalable) models and 

to be able to split the model into semantically meaningful parts. It further offers the 

description of complex user interfaces, which are not restricted to basic graphical user 

interfaces but include multi-user user interfaces as well as mobile and other interaction 

devices. This is covered by a software infrastructure that offers capabilities to run 

mobile devices with models generated using FILL and its associated transferred 

reference nets. All is embedded into a coherent software tool called UIEditor (Weyers 

2012). 

An application context in which the component-based model description plays a 

central role is that of gaze guiding as a job aid for the control of technical processes 

(Kluge et al. 2014; Weyers et al. 2015). Gaze guiding as a method refers to a technique 

for visualizing context-dependent visual aids in the form of gaze guiding tools into 

graphical user interfaces that guide the user’s attention and support her or him during 

execution of a control task. Gaze guiding tools are visual artefacts that are added to a 

graphical user interface in the case the user is expected to apply a certain operation 

(according to a previously defined standard operating procedure) but the system does 

not recognize this awaited input. This work facilitates the component-based description 

as the model describing the behaviour of the gaze guiding is embedded as a component 

into the user interface description. The model specifies in which cases or context gaze 

guiding tools are faded into the user interface.  

Model Reconfiguration and Formal Rewriting 
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As the work by Weyers et al. does not focus on the verification of interactive systems 

but on the modelling and creation of flexible and executable model-based descriptions 

of such systems, a formal approach for the reconfiguration and rewriting of these models 

has been developed. This enables the specification of formal adaptation of the models 

according to user input or algorithmic specifications and makes the models flexible. In 

this regard, the main goal is to maintain the formal integrity of a model during an 

adaptation. Formal integrity refers to the requirement that an adaptation approach needs 

to be formally well defined as well and keeps the degree of formality on the same level 

with that of the model description. This should prevent any gaps in the formalization 

during adaptation of a model and thus prevent the compromise of any following 

verification, testing, or debugging of the rewritten model. Therefore, Weyers et al. 

(Weyers et al. 2010; Weyers et al. 2014) developed a reconfiguration concept based on 

pushouts, a concept known from category theory for the rewriting of reference nets. 

Together with Stückrath, Weyers extended a basic approach for the rewriting of Petri 

nets based on the so called double pushout approach to a method for coloured Petri nets 

equipped with a rewriting of XML-based specification of inscriptions (Stückrath and 

Weyers 2014). 

The application of formal rewriting that is driven by the user has been investigated 

in the context of the monitoring and control of complex technical and safety critical 

systems (Burkolter et al. 2014; Weyers et al. 2012). In these works, the reconfiguration 

of a given user interface for controlling a simplified nuclear power plant was 

reconfigured by the user according to his or her own needs as well as to the standard 

operating procedures which were presented. These adaptations of the user interface not 

only include a change in the visual layout of widgets but also in the functional behaviour 

of the interface using the rewriting of the underlying reference net model. Operations 

were offered to the user, e.g. to generate a new widget which triggers a combination of 

two existing operations. For example, it was possible to combine the opening and 

closing of different valves into one new operation, which was accessible through a new 

single widget, e.g. a button. By pressing this button, the user was able to simultaneously 

open and close the dedicated valves with one click instead of two. Weyers at al. were 

able to show that this individualization of a user interface reduces errors in the 

accompanied control task. A detailed introduction into the rewriting concept is 

presented in Chapter 10 of this book. 

Combéfis et al. (Belgium, 2009–2013) 

Modelling 
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In (Combéfis 2013) a formal framework for reasoning over system and user models is 

proposed, and the user models can be also extracted from user manuals. Furthermore, 

this work also proposes the automatic generation of user models. Using his technique, 

“adequate” user models can be generated from a given initial user model. Adequate user 

models capture the knowledge that the user must have about the system, i.e., the 

knowledge needed to control the system, using all its functionality and avoiding 

surprises. This generated user model can be used, for instance, to improve training 

manuals and courses (Combefis and Pecheur 2009). 

In order to compare the system and the user model, and to verify whether the user 

model is adequate to the system model, both models should be provided. With this goal, 

in this approach system and user are modelled with enriched labelled transition systems 

called HMI LTS (Combéfis et al. 2011a). In HMI LTS, three kinds of actions are defined 

(Combéfis et al. 2011a): 

 Commands: actions triggered by the user on the system; 

 Observations: actions triggered by the system, but that the user can observe; 

 Internal actions: actions that are neither controlled nor observed by the user. 

To be considered “adequate”, user models are expected to follow two specific 

properties: full-control and mode-preserving. Intuitively, a user model allows full 

control of a system if at any time, when using the system according to the user model 

(Combefis and Pecheur 2009): the commands that the user model allows are exactly 

those available on the system; and the user model allows at least all the observations 

that can be produced by the system (Combefis and Pecheur 2009). A user model is said 

to be mode-preserving according to a system, if and only if, for all possible executions 

of the system the users can perform with their user model, given the observation they 

make, the mode predicted by the user model is the same as the mode of the system 

(Combefis and Pecheur 2009). Model-checking is used to verify both properties over 

the user model. 

Concerning the approach’s coverage regarding modelling, the users, the user 

interfaces and the functional core are modelled and compared to each other, the user 

model being extracted from the user manual describing the system. However, there is 

no indication that the approach supports concurrent behaviour, multimodality or multi-

touch interactions. 

Verification 

The verification goal of this approach is to verify whether the user model is adequate to 

the system model, rather than to verify properties over the system model. In order to 

automatically generate adequate user models, the authors propose a technique based on 
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a derivative of weak bi-simulation, in which equivalence checking is used (Milner 

1980). This is called “minimization of a model modulo an equivalence relation”. 

Intuitively, using equivalence checking, they generate a user model U2 from the initial 

user model U1, i.e., U2 is equivalent to U1 with respect to specific equivalence relations 

introduced by the authors. 

Two equivalence relations are proposed: full-control equivalence and mode-

preserving equivalence. Full-control equivalence distinguishes commands and 

observations: two equivalent states must allow the same set of commands, but may 

permit different sets of observations. Minimization modulo this equivalence produces a 

minimal user model that permits full-control of the system. A mode-preserving 

equivalence is then derived from the full-control equivalence, by adding an additional 

constraint that the modes of two equivalent states must be the same (Combefis and 

Pecheur 2009). Using these equivalence relations, the authors can generate mode-

preserving-fully-controlled user models, which can then be used to design user 

interfaces and/or training manuals. Both properties (i.e., mode-preserving and full-

control) and their combination are interesting because they propose that different levels 

of equivalence can be shown between system models. 

A tool named jpf-hmi has been implemented in Java and uses the JavaPathfinder 

model checker (Combéfis et al. 2011a), to analyse and generate user models. The tool 

produces an LTS corresponding to one minimal fully-controlled mental model, or it 

reports that no such model exists by providing a problematic sequence from the system 

(Combéfis et al. 2011a). 

The approach is applied to several examples that are relatively large (Combéfis et al. 

2011b). In the healthcare domain, a machine that treats patients by administering X-ray 

or electron beams is analysed with the approach, which detects several issues in the 

system. In the avionics domain, the approach is applied to an autopilot system of a 

Boeing airplane (Combéfis 2013), and a potential mode confusion is identified. These 

are evidences that the approach scales well to real-life applications. 

Synthesis 

This section presents a representative list of approaches to verifying interactive systems 

with respect to the specifications, i.e., general statements about the behaviour of the 

system, which are represented here as desired properties, and analysed afterward using 

formal methods. The approaches diverge on the formalisms they use for the description 

of interactive systems and for the specification of properties. 

Some authors use theorem proving to perform verification, which is a technique that 

can handle infinite-state systems. Even though a proof done by a theorem prover is 
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ensured to be correct, it can quickly become a hard process (Bumbulis et al. 1995b): the 

process is not fully automated, user guidance is needed regarding the proof strategy to 

follow. Simulation can also be used to assess the quality of interactive systems. 

Simulation provides an environment for training the staff before starting their daily 

activities (Martinie et al. 2011b). However, simulated environments are limited in terms 

of training, since it is impossible to drive operators into severe and stressful conditions 

even using a full-scale simulator (Niwa et al. 2001). Simulation explores a part of the 

system state space and can be used for disproving certain properties by showing 

examples of incorrect behaviours. To the contrary, formal techniques such as model 

checking, equivalence checking, etc., consider the entire state space and can thus prove 

or disprove properties for all possible behaviours (Garavel and Graf 2013). 

The presented approaches allow either usability or functional properties to be verified 

over the system models. We believe that in case of safety-critical systems, the 

verification approach should cover both such properties, due to the ergonomic aspects 

covered by the former and the safety aspects covered by the latter. Some approaches 

cover the modelling of the users, the user interfaces, and the functional core.  

Summary 

A representative list of approaches for assessing the quality of interactive systems is 

presented in this chapter, divided in two main classes: property verification approaches, 

in which a set of properties are verified over the system model, and approaches to 

assessing consistency, which compare either different versions of the system of the 

system with its user manual. 

Different formalisms are used in the system modelling (and property modelling, 

when applied). Numerous case studies have shown that each formalism has its strengths. 

The criteria to choose one over another would be more related with the knowledge and 

experience of the designers in the formalisms. Different formal techniques are 

employed, such as model checking, equivalence checking and theorem proving. Most 

of the works presented here are tool supported, even though some authors still use 

manual inspection of the models to perform verification. 

Table 1and Table 2 bellow summarize these approaches: the former gives an overview 

of the modelling coverage of the approaches, and the latter an overview of their 

verification capabilities. 
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Table 1: Modelling coverage of the approaches 

Agent language 
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Table 2: Verification capabilities of the approaches 

Agent language 
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