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Abstract 

Processors which extract parallelism through speculative execution must be able to identify 

when mis-speculation has occurred. The three places where mis-speculation can occur are 

register accesses, control flow prediction and memory accesses. Controlling register and 

control flow speculation has been well studied, but no scalable techniques for identifying 

memory dependence violations have been identified. Since speculative execution occurs out 

of order this requires tracking the causal order, as well as the addresses of memory accesses. 

This thesis uses simulations to investigate tracking the causal order of memory accesses us­

ing explicit tags known as virtual timestamps, a distributed and scalable method. Realizable 

virtual timestamps are necessarily restricted in length and it is demonstrated that naive allo­

cation schemes seriously constrain execution by inefficiently allocating virtual timestamps. 

Efficiently allocating virtual timestamps requires analysis of the number required by each 

section of code. Basic statically and dynamically evaluated analysis methods are established 

to avoid virtual timestamp allocation becoming a resource b·.)ttleneck. 

The same analysis is also used to efficiently allocate state saving resources in a fixed hard­

ware order. The hardware order provides an alternative way of maintaining the causal order 

using a simple hardware organization. The ability to predict the resources required by re­

gions of code is used as a way of selecting instructions to execute speculatively. This enables 

resources to be allocated efficiently and is shown to allow large amounts of parallelism to 

be extracted. It also promotes the effectiveness of speculative execution by issuing less 

instructions that will ultimately be rolled back. 

Using a hierarchy of hardware ordering modules, themselves ordered by explicit virtual 

timestamps, a scalable ordering system is proposed. This hierarchy forms the basis of a 
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twisted memory system, a multiple version memory system capable of identifying specu­

lative memory dependence violations. The preliminary investigations presented here show 

that twisted memory has the potential to support aggressive speculative parallel execution. 

Particular attention is paid to memory bandwidth requirements. 
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Chapter 1 

Introduction 

In recent years integrated circuit process technology has advanced rapidly, providing com­

puter architects with an enormous number of transistors on each CPU. This trend looks set 

to continue for some time. The computer architect's aim is, as ever, to produce CPUs capa­

ble of faster execution of a wide range of programs. Using those resources effectively in a 

processor provides a substantial architectural challenge. 

There are several approaches to faster computation. Clock frequencies are being aggres­

sively pushed beyond the 1GHz mark, largely governed by the physical process technology, 

although CPU architecture has some influence. Some architects are proposing ever deeper 

pipelines [Intel, 2000] in an effort to allow higher clock frequencies. 

In the past architectures have been designed with the aim of reducing the instruction count 

of programs [Thornton, 1964]. However this has largely been abandoned in favor of RISC 

instruction sets [Patterson, 1985], which contain simpler instructions, allowing higher clock 

frequencies and execution in fewer cycles than a typical CISC instruction. 

Parallel processing has long been used in high performance scientific computing to speed 

up program execution. Since the l 990's many of the same techniques have been adopted 

in general purpose processors. By executing many instructions in parallel the enormous 

resources available on a modem integrated circuit (IC) can be used to speed up computation. 

Early parallel processing relied on programmer intervention to control the parallelism, indi­

cating instructions that could be executed concurrently. This requires skilled programmers 

to extract maximum performance and is only cost effective for performance critical code. 



There is a substantial cost associated with speeding up legacy code by parallelizing it in this 

manner. 

A more practical alternative, particularly for general purpose processing, is to automatically 

parallelize programs through a combination of processor and compiler assistance. Extract­

ing high levels of parallelism relies on identifying and exploiting the available parallelism 

in the program. 

1.1 The Challenge 

Identifying parallelism is a matter of identifying independent instructions-the only instruc­

tions that can be safely executed in parallel. Memory operations can only be established as 

independent by comparing the addresses of the memory accesses, which are frequently cal­

culated at runtime. 

A large proportion of existing programs for general purpose processors are written in pointer 

based languages such as C and Pascal. It is often impossible to determine the address of a 

pointer statically, and even at runtime it may be unknown until just before the instruction ex­

ecutes. Typically most memory accesses will be to different addresses, but this parallelism 

can not be identified until the addresses are known. 

As the differential between processor and memory performance continues to increase, par­

allelizing memory operations is becoming increasingly important as a way to hide memory 

latency. 

Speculative execution, the approach utilized in this thesis, assumes all memory operations 

are independent and relies on rectifying any incorrect parallel execution after the fact. This 

requires that the order of operations be tracked, so that dependency violations can be identi­

fied. Previously proposed methods of tracking dependencies, described in Chapter 2, do not 

scale well and place a fundamental limit on the degree of parallelism that can be extracted 

by speculation. 

Tracking the instruction order can be done using fixed hardware structures or explicit or­

dering tags. Hardware structures have been extensively explored in the literature and are 

reviewed in Chapter 2. This thesis investigates the feasibility of attaching an explicit tag, 
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known as a virtual timestamp (VTS), to each memory operation as a scalable, distributed 

method of tracking causal ordering. 

Realizable VTSs are necessarily a finite, linear resource, since their order is vital. Allocating 

VTSs efficiently at the instruction level requires analysis of the number of instructions in 

each region of code well in advance. This thesis develops a framework for such analysis 

and proposes some basic methods. Allocation of other execution resources can also benefit 

from similar analysis. 

A more efficient use of resources can be achieved by restricting speculation to code for 

which execution resource usage can be determined. More detailed resource use analysis 

also facilitates allocation, enabling a simpler organization of resources. 

Out of this work a hierarchical ordering system is developed using fixed hardware ordering 

and explicit tags at different levels. The hierarchy forms part of a multiple version memory 

system used to recover from mis-speculation once it has been identified. 

All of these ideas are investigated within the framework of simulations of a theoretical 

architecture known as the WarpEngine. The WarpEngine is an aggressively speculative 

architecture capable of exercising the instruction ordering mechanisms and memory system 

to the limits of the parallelism available in the test programs. This makes it a useful test­

bench for exploring structures designed to operate with very high levels of parallelism. 

1.2 Thesis Claims 

The WarpEngine simulator can be used to show the effects on parallelism extracted from 

programs caused by different speculation tracking and selection mechanisms. The restrict­

ing effects of the different mechanisms can be isolated because the WarpEngine fundamen­

tally allows a large amount of the available parallelism in a program to be extracted. In this 

context the simulation results presented in this thesis support the following major claims: 

• Analysis of program resource requirements is necessary to allow aggressive specula­

tion on sequential programs. 

• Speculating preferentially on code which is amenable to analysis simplifies the hard-
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ware, but does not substantially constrain performance. 

• Allocating execution resources hierarchically allows a processor to take advantage of 

easily analyzed code, while limiting the difficulties of opaque code. 

• Splitting programs into analyzable and unanalyzable tasks allows speculation re­

sources to be used more effectively. 

• A hybrid hardware ordered and tagged speculative memory system using a network 

of distributed caches can operate scalably to maintain the causal consistency of spec­

ulative memory accesses without exceeding reasonable bandwidth requirements. 

1.3 Thesis Overview 

Chapter 2 considers some popular instruction level parallelism (!LP) techniques. In all ILP 

mechanisms the dependencies between instructions (real and perceived) limit the amount 

of parallelism which can be extracted. The ways in which these dependencies arise are 

discussed and some methods that have been used to detect them and expose parallelism 

available in programs are outlined. 

Although the WarpEngine draws on several ILP techniques, the primary method is specu­

lative execution. It is important to understand the distinction between the different classes 

of speculation. A number of existing commercial and research architectures use speculative 

execution, albeit on a less aggressive basis than proposed in the WarpEngine. A discussion 

of the main techniques used for cuntrolling speculative execution, particularly recovery after 

a mis-speculation, concludes the chapter. 

Chapter 3 provides a general overview of the WarpEngine architecture, first laid out by 

Littin (2000]. The WarpEngine paradigm is based on the Time Warp algorithm and is 

developed from this background. It is compared and contrasted with other prominent ILP 

paradigms. An implementation of the essential WarpEngine components is described as 

a baseline for performance analysis to which the advanced systems developed later in the 

thesis can be added. 

Chapter 4 describes the simulation methodology used throughout the thesis. The micro­

benchmarks used in simulations are characterized, and the particular issues involved in 

4 



compiling and running them on the WarpEngine simulator are considered. An overview of 

important earlier results obtained from simulations of the WarpEngine is also included. 

The following four chapters propose and investigate several novel mechanisms for tracking 

the causal order of memory operations using several approaches. Chapters 5 and 6 consider 

different schemes using explicit VTSs. Chapter 5 exposes the shortcomings of a naive VTS 

allocation method. Chapter 6 describes allocating VTSs more efficiently by analyzing the 

requirements of each region of the program. Constraints imposed by VTSs are compared to 

the effects of constraining other execution resources. 

Chapter 7 expands VTS requirement analysis to control resource allocation and speculation 

more generally. A new method of selective speculation, based on the ability to determine re­

sources required, is proposed. The fundamental limit this places on parallelism, for the ben­

efit of easier implementation is explored through simulations. Building on these resource 

allocation techniques Chapter 8 proposes a hierarchical speculative memory system which 

uses explicit VTSs and hardware ordering to maintain memory dependencies. Simulation 

results for the WarpEngine using the twisted memory system are presented, with particular 

focus on the memory bandwidth consumed at different levels of the memory system. 

Chapter 9 draws out the key conclusions from the work presented, along with promising 

aspects for further investigation. 
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Chapter 2 

Controlling Instruction Level 

Parallelism 

This chapter examines issues involved in extracting and controlling instruction level paral­

lelism (!LP) in general purpose computation. The particular focus is on techniques appli­

cable to the large volume of existing general purpose code written in imperative languages. 

The cost of rewriting this code in special purpose parallel languages is too great to be feasi­

ble for all but the most performance critical applications. Indeed, it is difficult to persuade 

the majority of programmers to learn a new language for performance reasons alone. For 

these reasons automatically extracting parallelism, using either hardware or compiler meth­

ods, will continue to be important. 

It is the dependencies within a program that place fundamental restrictions on the paral­

lelism that can be extracted. The following sections classify the dependencies that may 

exist and outline some of the ILP studies that have been done. 

The architectural techniques discussed below for exploiting ILP are not necessarily mu­

tually exclusive, nor are there clear boundaries between the categories. Many prominent 

commercial and research architectures use techniques from several classes. For example, 

the EPIC architecture devised by Intel and Hewlett-Packard [Schlansker and Rau, 2000] is 

a very long instruction word (VLIW) architecture, but also includes support for speculation. 

Superscalar architectures, such as the Intel x86, Compaq Alpha and IBM PowerPC, have 

dominated the market in recent years. In the quest for more parallelism and increased per­

formance they have begun to exploit other ILP techniques, and much academic research has 
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focused on this area. 

Although the WarpEngine includes dataflow and superscalar techniques (see Chapter 3), 

it is primarily used to investigate speculative execution techniques. The remainder of this 

chapter contains a taxonomy and description of speculative execution and an overview of the 

major research architectures exploiting this type of parallelism. Of principle interest in the 

context of this thesis is how mis-speculation is identified and recovered from, particularly 

in the memory system. 

2.1 Instruction Dependencies 

The execution time of a program depends on three factors: 

• the number of instructions executed per clock cycle (IPC) 

• the clock period 

• the total number of instructions executed 

The emphasis in this thesis is on improving the first factor, executing more useful instruc­

tions per clock cycle through ILP, without significantly impacting the other two factors. If 

ILP is increased to the detriment of clock frequency or the dynamic instruction count overall 

performance may actually decrease. 

Extracting maximum ILP from a program means executing as many instructions as possible 

in parallel. Even assuming that sufficient computational resources are available there is 

a limit to the parallelism imposed by the structure of the program. During the course of 

executing a program some instructions will require input data to be calculated by another 

part of the program (data dependence). At other times a decision to branch to an optional 

section of code or to continue a loop will need to be made. Typically this depends on data 

calculated previously and is known as control dependence. 
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2.1.1 Data Dependence 

Data dependencies place a fundamental limit on parallel execution, since the value of inter­

mediate results must be computed before they can be used in further computation. These 

dependencies are also known as true data dependencies or read after write hazards. 

Some apparent dependencies result from the way the program has been implemented, rather 

than the underlying data usage, these are false data dependencies. They typically result from 

register or memory location reuse, for example two instructions writing to the same register 

(a write after write hazard or output dependence) must be done in the defined order, but the 

operations do not rely on each other. Similarly, where a write to a register follows a read 

from the same register (a write after read hazard or anti-dependence) they must be done in 

the proper order, although there is no logical dependence in the underlying computation. 

However, it is not always possible to determine in advance whether a data dependence ex­

ists between two instructions [Tjaden and Flynn, 1970]. This is often the case with memory 

operations which calculate the address at runtime. The memory access is potentially depen­

dent on all other memory operations until the address is known. 

2.1.2 Control Dependence 

The results of computation can determine not just the input data for further instructions, but 

also which instructions execute. The outcome of a conditional branch instruction, based on 

some previously calculated value, determines which instruction executes next. A control 

dependence exists between the instruction following the branch and the instruction calcu­

lating the value used in the branch. Control dependencies detennine the dynamic execu­

tion path of the program. This property is necessary in order to implement dynamically 

bounded loops (for example while loops) and conditionally executed statements (for ex­

ample if ... else constructs). 

Certain code structures can cause the possible execution paths of a program to re-converge 

after a branch. In Figure 2.1 either region B or region C executes depending on the outcome 

of A, but region D always executes, regardless of A's result. D is control independent 

[Rotenberg et al., 1999b] of A, and D can be executed in parallel with A (and B or C), as 
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Jong as data dependencies are respected. 

Control independence is useful in determining code that can be executed speculatively be­

cause it is independent of any intervening branch predictions which may be made incor­

rectly. In Section 3.2.2 we discuss a novel way for identifying and exploiting this property. 

if (A) 
B; 

else 
C; 

D· I 

Figure 2.1: Code with control independence 

2.1.3 Limit Studies 

Modern CPU process technology has advanced to the stage where it is a challenge to keep 

all the available resources on a chip busy with computation. Fundamentally this means 

executing more instructions in parallel. However, dependencies place a critical theoretical 

upper bound on how much parallelism can be extracted. A number of studies have been 

done to identify the limits under different conditions. They differ in the mechanisms allowed 

and the assumed accuracy of these mechanisms. 

Early studies of available ILP are quite pessimistic. Jouppi and Wall [1989] and Smith et al. 

[1989] suggest that a maximum of around 2 instructions per cycle (IPC) are available from 

a variety of integer applications (floating point applications tend to have more inherent par­

allelism) for realistic designs. Investigations by Butler et al. [1991] are more encouraging, 

finding that removing constraints not required by the semantics of the program allows up to 

17 IPC. With hardware constraints reasonable for the time this was limited to up to 5.8 IPC. 

A study by Wall [1991] showed that while speedup under the the assumption of perfect 

knowledge could reach around 60 times, with mechanisms which are unrealistically good, 

but not perfect, this is reduced to below 7. 

Lam and Wilson [1992] recorded similarly disappointing figures for machine organizations 

judged realistic at the time. However, the addition of control flow speculation allowed much 
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higher levels of ILP to be extracted. In some cases these approached theoretical levels 

proposed for VLIW architectures [Nicolau and Fisher, 1984], which had been criticized as 

unrealistic for using perfect branch prediction, and using numerical programs which are 

more amenable to extracting parallelism. 

More recent studies [Lipast. and Shen, 1996] suggest that these limits can be exceeded 

through the use of control and data speculation, and value prediction. Postiff et al. [1999] 

eliminated false dependencies and utilized a large split instruction window to show speedup 

of over 30 may be possible for the popular SPEC suite of benchmarks. They found that em­

ploying multiple instruction windows can expose much more parallelism than previously 

observed. Austin and Sohi [1992] analyzed the data dependence profile for an earlier ver­

sion of the SPEC suite and found similar levels of parallelism available, but also found that 

the parallelism is bursty in nature. This suggests that ILP architectures will need to be able 

to support parallel execution at higher levels than the average inherent parallelism to extract 

maximum performance. 

The main point of argument in these limit studies is over which techniques and assumptions 

are realistic. Ongoing research has begun to make initially optimistic assumptions look 

much more reasonable. Branch prediction and out-of-order execution allow parallelism to 

be extracted beyond the basic block, and more recently speculative execution and data pre­

diction, coupled with large instruction windows have further extended the reasonable limits. 

A large gap still exists between the limits imposed by logic and those by implementation, 

providing plenty of scope for improved implementation techniques. 

2.2 Conservative Parallel Execution 

To guarantee correct results from computation a processor must ensure that no dependen­

cies are violated and that dependent instructions are executed in the correct relative order. 

This condition is known as sequential consistency [Lamport, 1979]. The simplest method 

of maintaining sequential consistency in a program is to assume that each instruction is de­

pendent on the previous one. Only once an instruction has completed and its results written 

to storage can the next instruction begin retrieving its input data from storage. Of course 

this severely constrains the program execution speed. Since each instruction must wait for 
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the prior one to complete, the execution time is the cumulative time for all instructions in 

the program to execute. 

Pipelining [Ramamoorthy and Li, 1977] is a commonly used technique to overlap instruc­

tion execution by dividing it into distinct stages. If an instruction waiting to be executed 

· is dependent on an instruction still in the pipeline the instruction cannot be executed safely 

and must be stalled. 

A processor that can execute instructions in parallel must still be sequentially consistent, but 

to extract the maximum amount of ILP it needs to identify as many independent instructions 

as possible. The strategies for doing this can be divided into two broad categories, con­

servative and speculative execution. Conservative execution identifies known independent 

instructions which can be executed in parallel, and assumes all other instructions contain 

dependencies. Speculative execution avoids executing in parallel those instructions known 

to be dependent. Any other instructions may be executed in parallel and if a dependency 

violation is later identified the processor must be able to undo the effects of the depen­

dent instmction. In this section and the next some conservative and speculative execution 

techniques currently in use are discussed. 

2.2.1 Vector 

A limited class of programs, mainly scientific applications, perform the same operation re­

peatedly on a large set of data, such as a matrix. Vector processors take advantage of this 

characteristic by allowing instructions to operate on many values at once. Vector opera­

tions must operate independently on each data value and the programmer must be able to 

determine the independence statically and indicate this in the program. 

Cray supercomputers [Russel, 1978] are successful examples of vector processors. Un­

fortunately most widely used programs do not contain significant amounts of this sort of 

parallelism and even those which do require a large amount of programmer time to rewrite 

them to exploit this parallelism. Vector parallelism is of minimal use in general purpose 

processors, other than some graphics and multimedia instruction set extensions, such as 

Intel's Streaming SIMD Extensions [Intel, 1999]. 
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2.2.2 Dataflow 

Rather than considering computation as a control driven process with operations proceeding 

in a defined order using data computed by earlier operations, it can be considered as a data 

driven process. Dataflow machines process instructions asynchronously as soon as all the 

input data (known as tokens) are available. As such there is generally no shared set of 

registers, or shared memory, tokens are sent directly to instructions and each token is used 

only once. 

A dataflow program is derived from a datafiow graph which shows the transfer of data be­

tween instructions. Synchronization is handled simply in dataflow machines by instructions 

waiting for data from instructions they are dependent on, constraining the order of execu­

tion, but leaving execution of independent operations unconstrained. False dependencies 

are eliminated by using each token only once. 

Conditional branches are implemented using dataflow instructions which send a copy of the 

input token to different instructions based on a control input. In this way a control flow 

dependence has effectively been converted to a dataflow dependence. 

The first dataflow architecture-the Static Dataflow Machine-was developed at MIT [Den­

nis and Misunas, 1975]. Dataflow architectures that have been developed since include: the 

Manchester Prototype Dataflow Computer [Gurd et al., 1985], the Stateless Dataflow Archi­

tecture [Snelling, 1993], the StarT family [Nikhil et al., 1992; Ang et al., 1998] and the MIT 

Monsoon [Papadopoulos and Culler, 1990]. A number of extensive surveys have been pub­

lished comparing these and other dataflow architectures [Veen, 1986; Srini, 1986; Treleaven 

et al., 1982; Snelling and Egan, 1994]. 

While dataflow architectures promised much as clean, scalable ILP architectures, major 

practical weaknesses have been discovered. In progran1s with a high degree of inherent par­

allelism the instructions available for execution can far outstrip available resources, causing 

large scheduling overheads. Furthermore, instructions may have long lifetimes, between the 

first token arriving and the instruction being ready for firing. This leads to a large number of 

instructions active in the system, causing difficulty in matching tokens with the respective 

instruction. The problems in managing massive parallelism are revisited later in this thesis. 

Despite the high degree of parallelism often available, sequential bottlenecks tend to form 
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in the queues and stores used to communicate tokens between instructions, and contribute 

to long latencies. Since data flows from instruction to instruction without being stored in a 

common memory (conceptually at least), data used by more than one node has to be copied. 

This becomes a problem where large data structures are involved, adding more overheads 

[Gaudiot, 1986]. 

The dataflow programming model is quite different from control driven programming [Veen, 

1986] and, combined with the problems mentioned above has, led to a poor acceptance of 

dataflow processors for general purpose computing. However, some of the ideas introduced 

by dataflow computing have had an influence on control driven processor designs, most 

particularly in out-of-order execution. 

2.2.3 Very Long Instruction Word 

The strategy for extracting parallelism employed by VLIW architectures is that the compiler 

fonns fixed length packets of operations which it has determined are independent [Colwell 

et al., 1987; Fisher, 1984]. Operations within a packet are issued in parallel and can be 

executed without concern for synchronization. Typically the type of operation which can 

be placed in each location in the packet is constrained and function units are grouped ap­

propriately to allow concurrent execution of all operations in the packet, while minimizing 

the number of function units. This technique was first seen in the CDC6600 [Thornton, 

1964], which used packages of up to four instructions. Examples of a pure VLIW processor 

include the Trace Machine and the ELI-52 [Fisher, 1983]. 

VLIW puts the burden for identifying parallelism on the compiler, which can do extensive 

analysis and code rearrangement without adding a runtime overhead. Clearly VLIW lim­

its the parallelism which can be extracted to the number of operations in a packet, unless 

superscalar techniques are used to execute more than one packet concurrently. A major ad­

vantage is that the processor can be simplified substantially, although static analysis cannot 

identify as much parallelism as dynamic methods. 

To increase the maximum parallelism that can be extracted the size of an instruction can be 

increased. However, this makes it more difficult for the compiler to fill packets efficiently. 

Longer instructions can increase the overall fetch rate, since the atomic unit is larger, but if 
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packets are not efficiently filled, bandwidth is wasted and code size increases. Additionally, 

if the instruction size, or function unit layout changes between generations of VLIW ma­

chines then, unlike superscalar processors, they will no longer be binary code compatible. 

These drawbacks have prevented pure VLIW processors from taking off. However, like 

dataflow, the ideas have influenced commercial superscalar architectures. 

The explicitly parallel instruction computing (EPIC) architecture [Schlansker and Rau, 

2000] developed by Intel and Hewlett-Packard is a major commercial architecture utilizing 

VLIW techniques. Each bundle of EPIC instructions may contain up to three instructions, 

although bundles may be grouped to execute in parallel. In addition to the central VLIW 

mechanism EPIC incorporates superscalar techniques, such as predication, load speculation 

and a prepare-to-branch instruction to further enhance parallelism. 

2.2.4 Out-of-order Execution 

In the programmer's model of a processor in-order execution is assumed, that is instruc­

tions execute in the order in which they appear in the program. If the processor actually 

executes the instructions in order the burden is placed on the compiler to schedule instruc­

tions efficiently. The limited information available at compile time can cause non-optimal 

scheduling, which may lead to the parallelism that can be extracted being restricted by 

execution stalling while there are other instructions ready to be executed. If independent 

instructions appear later in the program order while a stalled instruction is at the head of 

the issue queue, they all have to be stalled until the dependent instruction can execute. By 

allowing instructions to be executed out-of-order further ILP can be extracted. Typically a 

limited window of instructions is considered for issue at any time. 

Executing out-of-order requires the CPU to perform dependency analysis on instructions 

in the instruction window to identify those that can be safely executed. An instruction can 

only be executed if the processor can determine that it is not dependent on any incomplete 

instructions. Both data and control dependencies must be tracked. 

Scoreboarding [Thornton, 1964] was the first mechanism to track data dependencies by 

maintaining centralized tables showing where data dependencies between incomplete in­

structions and the next instruction to be issued exist. Entries identify registers which will be 
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written to by instructions in progress, requiring instructions that read those registers to wait 

for the new values to become available. Outstanding register reads are also tracked so that 

write-back to a register can be stalled if the previous value is still required by an instruction. 

Scoreboarding was designed to allow a processor to issue one instruction per cycle in-order 

and complete instructions out-of-order where data dependencies allow. 

Tomasulo's algorithm [Tomasulo, 1967] performs a similar function using a distributed 

mechanism which places results in temporary slots known as reservation stations, as well 

as in registers. If an operand is not available for an instruction at issue time a tag identifying 

the reservation station for the value is used instead of the register value. Once the value 

has been calculated and placed in the reservation station the instruction can proceed with 

execution. 

The most commonly used method of removing false data dependencies is register renaming 

[Keller, 1975], which makes use of a large register set. The architectural registers visible 

to the programmer are dynamically assigned to internal physical registers such that each 

register is only written to once within any instruction window. To make this easier the set 

of physical registers is usually much larger than the set of architectural registers. Instruc­

tions reading from the architectural registers are mapped to the correct physical registers, 

removing false data dependencies. 

Register renaming can also be implemented as a modification to Tomasulo's algorithm. 

Each instruction has a reservation station assigned for its result. Any future instruction 

that uses that result as input data either retrieves the value from the reservation station, or 

associates the reservation station tag with its input so it can execute with the value as soon 

as it has been computed. 

No instructions beyond an unexecuted conditional branch can be executed conservatively 

since there is a control dependency on the branch instruction. This restricts parallel execu­

tion to the current basic block. Section 2.3 considers speculative methods commonly used 

in commercial processors to look beyond the basic block. 
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2.3 Speculative Parallel Execution 

In general more parallelism can be extracted from a larger pool of instructions, since there 

will be more independent instructions available. However, it becomes increasingly difficult 

to identify independent instructions in a larger instruction pool, since each instruction must 

be considered against all previous instructions in the pool. At times this information is not 

even available, for example a memory address may have to be calculated. 

Speculative execution assumes instructions are independent, and proceeds with parallel, 

out-of-order execution. If this assumption turns out to be false (a mis-speculation) the ef­

fects of the dependent instruction must be undone. The final effect of the computation must 

be the same as if the program had been executed sequentially. 

Speculative execution implies out-of-order execution and dynamic scheduling, allowing 

possibly useful computation to utilize otherwise idle resources in the hope of gaining speedup. 

Speculative execution allows the ultimate flexibility to schedule instructions in parallel at 

runtime. Statically scheduled methods, such as VLIW rely on the compiler to identify par­

allelism at a time when useful information, such as memory addresses, may not be available. 

Conservative dynamic methods require a guarantee that an instruction is independent of all 

those prior to it. Late calculation of memory addresses may dictate substantial delay before 

this information is available. 

Speculative execution is receiving a lot of research interest and is the primary focus of this 

thesis. Both data and control flow can be speculated on, although they require different 

coordination methods. 

2.3.1 Control Speculation 

In order to issue more than one instruction per cycle a superscalar processor must fetch 

multiple instructions per cycle. When the current instruction is a conditional branch the next 

instruction to be fetched is dependent on the outcome of the branch. In order to maintain 

maximum fetch rate branch prediction can be used to try to determine the next instruction 

[Smith, 1981; McFarling, 1993; Yeh and Patt, 1993]. This is the most common form of 

control speculation, and is found in most modem processors. If the branch is mispredicted 
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the wrong instruction will have been fetched, and perhaps executed. The effects of this must 

be undone and the correct instruction executed. 

A branch instruction occurs, on average, approximately every seven instructions [Hennessy 

and Patterson, 1996]. To maintain a high issue rate, particularly in the presence of dependent 

instructions, it is often necessary to predict several branch outcomes. Although prediction 

accuracy across one branch of greater than ninety percent is possible, since each branch is 

dependent on the previous one in a linear instruction sequence the probability of prediction 

quickly decreases, limiting the effective instruction look-ahead [Yeh et al., 1993]. 

By recognizing control independence (see Section 2.1.2) the problem of decreasing branch 

prediction accuracy can be curtailed. Since the code is guaranteed to reconverge at the 

control independent point the branch prediction accuracy is restored. However, exploiting 

control independence relies on having selective mis-speculation recovery, squashing depen­

dent instructions while preserving independent instructions. 

Most conventional pipelined architectures do not attempt to take advantage of control inde­

pendence. When a branch prediction error occurs they simply squash all execution beyond 

of the prediction error, whether it was control dependent or not. Lam and Wilson [1992), 

and Uht and Sindagi [ 1995] have shown that control independence is necessary to extract 

ILP on the order of 10 to 100. Rotenberg et al. [1999b] provided a more detailed study, 

showing that control independence can moderate the penalty of branch mispredictions us­

ing a single flow of control. Rotenberg and Smith [1999] extended this work to multiple 

flows of control using the trace processor. Other processors which exploit control inde­

pendence by pursuing multiple flows of control include the multiscalar [Sohi et al., 1995], 

dynamic multithreading [Akkary and Driscoll, 1998], the superthreaded architecture [Tsai 

et al., 1999] and the Stampede architecture [Steffan et al., 2000]. 

Predication [Mahlke et al., 1995] is a technique which can be used to expose control in­

dependence in some situations. A predicate is a boolean value attached to an instruction 

which must be true for the instruction to be executed. A conditional branch could be used to 

achieve the same execution path. If two different sections of code are executed depending 

on a condition their predicates have complementary values. Predication essentially converts 

a control dependence to a data dependence, allowing code following a conditional branch 

to be fetched early because it no longer appears control dependent on the branch. 
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Predication can be combined with speculative execution [August et al., 1998] to execute 

conditional code early by executing both branch outcomes. If the predicate is true the 

instructions can be committed, if not they are discarded. The disadvantage is that more 

resources are consumed because both branches are always executed, but only one will ever 

be committed. This style of predication is used in the EPIC architecture. 

Eager execution [Uht et al., 1997] also executes both branches. As with predicated exe­

cution, resources are consumed by both branch outcomes, but eager execution allows both 

paths to be speculatively executed across multiple branches. If the execution path does not 

reconverge the resources consumed by speculative execution soon explode. A modification 

known as Disjoint Eager Execution (DEE) [Uht and Sindagi, 1995] assigns a confidence to 

each speculative branch, which is cumulative across all speculative branches to that point. 

To regulate resource consumption only the most likely execution paths are speculatively 

executed. 

2.3.2 Data Speculation 

When an instruction is executed speculatively there is a chance that it is data dependent on 

an instruction which has not completed, or has been executed speculatively. This means 

that either the input data has not been computed, or may have been computed incorrectly. 

Generally register data dependencies can be dealt with conservatively using register renam­

ing (see Section 2.2.4). However, memory values require a different approach, since there 

are too many addresses to use renaming, although attempts have been made to adapt register 

renaming to memory operations [Tyson and Austin, 1999]. 

Memory addresses are often calculated dynamically, which further complicates dependence 

analysis. Until all earlier memory addresses have been calculated the independence of a 

memory instruction cannot be established, so conservative execution requires it to stall. This 

restriction becomes more severe with a larger instruction window because more instructions 

must be considered for possible dependencies. 

Memory data speculation can be done naively by assuming that all instructions are inde­

pendent. This can lead to a large number of mis-speculations and wasted computation in 

aggressively speculative systems. By predicting which accesses are dependent the instruc-
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tions most likely to be committed can be speculatively executed. Selective speculation can 

be used to mitigate the effects of false memory dependencies at a number of different levels 

of prediction [Calder and Reinman, 2000]. 

Data dependence prediction [Gharachorloo et al., 1991; Moshovos et al., 1997; Chrysos 

and Erner, 1998] predicts the presence of a dependence, allowing operations likely to be 

independent to commence as soon as the address is available. 

Address prediction [Austin and Sohi, 1995; Chen and Baer, 1995; Gonzalez and Gonzalez, 

1997] goes a step further, speculating on the address, which can be used in dependence 

analysis and to initiate the memory operation early. 

Value prediction [Lipasti and Shen, 1996, 1998; Sazeides and Smith, 1997; Gonzalez and 

Gonzalez, 1998; Wang and Franklin, 1997] predicts the value returned by a load, allowing 

instructions dependent on the load to execute early. Value prediction can be used on both 

memory and register values. 

Moshovos and Sohi [2000] performed a study on memory dependence speculation in a 

continuous instruction window processor. They concluded that if addresses are calculated 

as early as possible and used to disambiguate memory addresses most of the speedup can 

be obtained without speculation. However, increasing the size of the instruction window 

leads to increased latency in the address disambiguation unit, which rapidly undermines 

the effectiveness of this technique. It is also inappropriate for split instruction window 

processors, since there may be memory dependencies on instructions that have not yet been 

fetched. 

These prediction methods even have the potential for overcoming true data dependencies, 

allowing speedup beyond the theoretical dataflow limit. Overall performance depends on 

prediction accuracy and on efficiency of recovery from mispredictions. These are areas of 

ongoing research. 

2.3.3 Architectures 

The leading commercial superscalar architectures include many of the techniques described 

above to maintain an instruction issue rate in excess of 1 IPC. Pipelining, register renaming 
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and branch prediction are ubiquitous and out-of-order execution is common. For example, 

the Compaq Alpha 21264 [Compaq, 2000] has a 6 stage pipeline and issues up to 4 instruc­

tions per cycle out of order from an instruction window of 80 instructions, using register 

renaming and branch prediction. The Intel Pentium 4 [Intel, 2000] has a 20 stage pipeline 

and issues up to 6 instructions per cycle out of order from an instruction window of 126 

instructions, using register renaming and branch prediction. 

By way of example, and for comparison with the WarpEngine, as described in Chapter 3, 

this section outlines speculative techniques employed by some of the leading research ar­

chitectures, illustrating the different approaches. 

Multiscalar 

The multiscalar processor [Sohi et al., 1995; Franklin, 1993] divides the control flow graph 

(CFG) into subgraphs known as tasks. Tasks are selected to be control independent as much 

as possible, and are speculatively executed in parallel on a ring of processing elements. 

If a data or control dependence between tasks is violated the speculative task is removed 

(squashed) along with all more speculative tasks. Tasks split the instruction window and 

may be arbitrarily far apart in the dynamic instruction stream. 

The multiscalar processor does not allow for selective re-execution of mis-speculated in­

structions. This can be disastrous to performance if mis-speculations occur frequently since 

independent correct computation will have to be repeated. The multiscalar relies on good 

task and data dependence prediction both by the compiler and dynamically to minimize 

squashes [Vijaykumar and Sohi, 1998]. This prevents the multiscalar from scaling to a 

large number of processing elements. 

Trace processor 

The trace processor [Rotenberg et al., 1997] is similar to the multiscalar in using a circu­

lar queue of processing elements, and a distributed register file and instruction window. 

However, it uses dynamic instruction sequences (traces) instead of tasks. As the program 

executes the dynamic instructions sequences are recorded in a trace cache, terminating 

at control independence points, in the hope that they will be executed again [Rotenberg 
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et al., 1996, 1999a]. In effect traces are variable length, dynamically composed blocks in a 

block structured architecture (see Section 3.2.1). Future re-execution of traces are predicted 

and speculatively executed. Value prediction is performed on values being passed between 

traces and on memory addresses, and memory loads are performed speculatively. Mis­

speculation is expected to occur regularly, so only dependent instructions are re-executed to 

reduce the penalty. 

Dynamic multithreading 

Dynamic multithreading [Akkary and Driscoll, 1998] identifies control independent regions 

at runtime and begins threads of execution at those points. Threads contribute instructions 

to a hierarchy of instruction windows from which instructions can be selected for execu­

tion. All threads except one execute speculatively and use data speculation to avoid stalling 

for inputs. This leads to frequent mis-speculation which is selectively recovered from by 

reissuing affected dependent instructions. 

Any thread, speculative or not, may spawn a new thread. To track the causal order of threads 

a tree is maintained, with new threads added as the right-most child node of the creating 

thread. A right to left preorder traversal provides the thread order. Threads most recent in 

the causal order have preemptive priority for thread contexts, ensuring computation that is 

less speculative is done by preference. 

Speculative instructions and results are stored in a trace buffer attached to each thread con­

text, which operates individually as a dataflow engine. Speculative register values are re­

tired to the architectural state in order. As they are retired the speculative values used for 

the following thread are validated and rolled back if necessary. 

Speculative multithreading 

The speculative multithreaded processor [Marcuello and Gonzlez, 1998] executes multiple 

loop iterations speculatively in parallel. Loops are highly predictable and each thread shares 

the same control flow, so the instructions only need to be fetched once. Data dependence and 

data value speculation are used extensively to avoid inter-thread dependencies. Extensive 

run-time analysis is used to predict register dependencies, and execution is stalled until the 
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data is available. 

This technique is limited because it operates only on loop bodies, so much of the avail­

able parallelism is ignored. However, speculative multithreading is complementary to the 

techniques mentioned above, which generally operate at the higher level of granularity of 

control independent tasks. 

2.4 Recovering from Mis-speculation 

All speculation techniques require a way of recovering from mis-speculation to remove 

incorrect computation from the system. In this section the major recovery methods are 

reviewed. The sophistication of the recovery methods required is influenced by the specu­

lation technique used, and how aggressively it is pursued. 

2.4.1 Pipeline Flushing 

Typically superscalar processors execute conservatively with respect to data dependencies, 

but speculate on control flow by means of branch prediction. Hence, in pipelined processors 

(like most modem processors) the instructions in the pipeline may represent speculative 

state. 

Instructions are fetched and executed based on the predicted branch outcome, and may 

progress as far as the retirement stage of the pipeline. If the branch prediction was correct 

the instructions are allowed to commit their results and retire. If the prediction was incorrect 

the contents of the pipeline up to the mispredicted instruction furthest through execution are 

removed (flushed), along with any results computed by them, and the correct instructions 

are issued. This inevitably creates a pipeline bubble while the pipeline is refilled, and there 

will be some latency associated with flushing the pipeline. 

Branch prediction within a pipeline is a modest form of speculation, so it is easily recovered 

from. The penalties are minimal providing the branch prediction accuracy is high, and the 

pipeline is short. However, not much speculation is exploited with this method. 
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2.4.2 Checkpoint Repair and History Buff er 

A straightforward way of recovering from mis-speculation is to restore the processor to 

a state prior to the incorrect execution and re-execute from that point with the corrected 

data or branch outcome. Checkpoint repair [Hwu and Patt, 1987] periodically saves the 

complete processor state. This may include the results of some speculative or incomplete 

instructions, which are added to the saved state as they become available. 

When a mis-speculation is detected the most recent correct checkpointed state (which may 

be several instructions earlier than the mis-speculation) is reloaded and all later instruc­

tions are re-executed. Checkpointed states are discarded when a later state contains only 

committed values, when all the results of the in-flight instructions have been added. 

The overhead in checkpointing after every instruction and the resources required to store 

the state would be impractical. This leads to the state being restored to an earlier point in 

the program than necessary, and some correct computation being repeated. 

A history buffer [Smith and Pleszkun, 1988] performs the same function, but stores the 

change to the state, rather than a complete copy of the state. This is done by updating the 

register file with speculative values and storing a history of superseded values in a last in, 

first out stack. When a mis-speculation occurs values are popped off the stack and inserted 

in the register file until a safe state is reached. Saving incremental state is much faster and 

more space efficient than checkpointing, but it requires extra register file ports to update 

the history from multiple instructions per cycle, and popping values from the history buffer 

requires several cycles to recover from mis-speculation. 

2.4.3 Reorder Buffer 

Another way to allow a processor to recover from mis-speculation is to keep speculative 

results in temporary storage, and only commit them to the register file when they become 

non-speculative. Instructions are issued in-order to the instruction reorder buffer (ROB) 

[Smith and Pleszkun, 1988], which places them in slots in order. Data can either be placed 

in the ROB slot, or separate reservation stations can be used. When a new instruction is 

placed in the ROB it uses the most recent values from the ROB for its register values, or 
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if none are present in the ROB, from the register file. Instructions are then dispatched to 

functional units on a dataflow basis, as soon as all the operands are available. The instruction 

result is returned to the ROB entry and stored there pending retirement. Register renaming 

ensures that register data dependencies are observed. Typically memory operations have 

their relative execution order constrained to avoid possible memory hazards. 

Instructions are retired from the ROB in order, to preserve sequential consistency. If an 

instruction has completed when it reaches the head of the ROB its result is written to the 

register file and it is removed from the ROB. If it has not completed retirement stalls until it 

completes and the result is returned. Typically several instructions can be retired in a single 

cycle. 

The size of the instruction window is determined by the ROB and branch prediction is used 

to fetch enough instructions to keep it full. If a misprediction occurs the ROB is flushed 

beyond the misprediction and is refilled with instructions from the correct branch outcome. 

This is a low latency mis-speculation recovery. 

Unfortunately, even relatively large instruction windows can become exhausted. If a long 

latency instruction occurs, such as a cache miss, it can be at the head of the ROB and 

incomplete while all the other instructions have completed, leaving none to issue. Increasing 

the size of the ROB is a possible solution, but it leads to other problems. To find the register 

input value for an instruction the ROB must be associatively matched, and worse, the most 

recent value must be identified. This centralized mechanism scales poorly to larger ROB 

sizes. 

Associative matching can be avoided by using a fature file [Smith and Pleszkun, 1988], 

which is a duplicate register file holding the speculative register values (or reservation sta­

tion tags) that apply to the most recent instructions issued from the ROB. Mis-speculation 

recovery becomes slightly more complicated. Instructions up to the mis-speculation point 

must be completed and retired to the register file. Then the future file can be flushed and 

the remaining ROB entries removed. Execution is then restarted by refilling the ROB. This 

slows recovery somewhat and requires an additional register file, with the advantage of 

speeding up instruction issue. 
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2.4.4 Split Instruction Window Squashing 

All the mis-speculation recovery methods discussed to this point have been suitable for 

architectures using a single flow of control, and are commonly applied to superscalar ar­

chitectures. Squashing all speculative instructions over multiple flows of control can have 

much more serious consequences because all but one of the threads will be speculative and 

a lot of correct computation may be rolled back. The advantage is that the squash is very 

simple and can be performed quickly. Much less state saving information is required than 

to selectively undo incorrect instructions. 

In the multiscalar processor, in principle, all tasks beyond the one containing the mis­

speculation are squashed, although the compiler does create tasks to minimize data and 

control speculation errors. Memory accesses to global variables are most likely to contain 

intertask dependencies, and can be explicitly synchronized by compiler intervention [Sohi 

et al., 1995]. If a branch misprediction occurs in a task and the following tasks are control 

independent they are not squashed, giving a limited degree of selective rollback. Any in­

tertask data dependence affected by the branch misprediction causes speculative tasks to be 

squashed. 

Register dependence violations are avoided by using reservation stations to await values in 

a dataflow manner. A number of different ways of synchronizing memory accesses have 

been proposed for multiscalar processors, these are considered in Section 2.4.6, along with 

other speculative memory techniques. 

Other split instruction window architectures, which squash indiscriminately on similar prin­

ciples to the multiscalar, include: the Stanford Hydra [Hammond et al., 1998, 2000] and the 

CMU Stampede [Steffan and Mowry, 1998; Steffan et al., 2000]. 

2.4.5 Selective Undo 

It is vital in architectures where mis-speculations happen frequently to only undo the ef­

fects of the instructions dependent on the mis-speculation. If instructions independent of 

the mis-speculation are squashed they will be re-executed to produce the same result, wast­

ing resources and slowing down computation. Frequent indiscriminate squashing removes 
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the benefit of speculative execution, while still competing for execution resources. The 

tenn squash is reserved for indiscriminate removal of speculative operations beyond a mis­

speculation point, the term rollback is used for selectively undoing operations. 

Where control flow speculation is concerned exploiting control independence can be re­

garded as a way of selectively undoing computation [Chou et al., 1999]. When a branch 

misprediction occurs the control independent instructions aren't rolled back because they 

are guaranteed to execute. However, data dependencies must still be recognized and dealt 

with. A data dependence may be present in only one path from the branch, so a change in 

control flow may result in a consequent change in data flow. 

Selectively reissuing instructions due to data mis-speculation can be achieved using the 

same dataflow method that issued instructions out-of-order in the first place. Reservation 

stations are single assignment registers, placing a new value in the reservation station can 

be used as a cue to re-execute the instruction. 

Sodani and Sohi [ 1997, 1998] propose reusing squashed instructions. This has the inciden­

tal advantage that instructions which execute several times with the same inputs can use the 

same mechanism to retrieve the correct results again without having to recalculate them. 

Over 50% instruction reuse was measured in some cases for a speculative superscalar pro­

cessor. For a split instruction window the increased mis-speculation suggests this figure 

would be even higher. Roth and Sohi [2000] propose register integration as a mechanism 

for implementing squash reuse. 

An alternative approach for minimizing re-execution of correct instructions is to selectively 

rollback the mis-speculated operation and those that depend on it. Rotenberg et al. [ 1999b] 

propose using an ROB implemented as a linked list to allow alternative, possibly larger, in­

struction paths to be inserted into the dynamic instruction stream of a superscalar processor 

to selectively rollback instructions following a branch misprediction. The trace processor 

[Rotenberg et al., 1997; Rotenberg and Smith, 1999] uses the same principle to selectively 

re-execute multiple flows of control. Chains of data dependent instructions reissue as up­

dated values are provided to them in the ROB. 

Trace buffers are also utilized by the dynamic multithreaded (DMT) [Akkary and Driscoll, 

1998] and speculative multithreaded [Marcuello and Gonzlez, 1998] processors. When 
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mis-speculation recovery is required the trace buffer is scanned from the mis-speculation 

point to identify dependent instructions and they are grouped together and dispatched for 

re-execution. 

2.4.6 Memory Consistency 

Speculative memory access is the most difficult class of speculation to control. Memory de­

pendencies are generally difficult to identify when pointer operations are involved because 

memory addresses are often calculated dynamically. This is a particular problem in split in­

struction window processors, since the instruction the memory access is dependent on may 

not even have been fetched yet. 

Speculative memory writes are problematic because they can overwrite the non-speculative 

value which may have loads dependent on it that have not yet executed. However, a spec­

ulative load needs to be able to access the value from the store immediately prior to it in 

the program order. This value may have come from the latest non-speculative write, a spec­

ulatively executed write, or a write which has not yet been executed. If the last case has 

not been ruled out the load must either be conservative and stall until any stores it may 

be dependent on have executed, or execute speculatively and rollback and re-execute if an 

applicable value is written to memory. The conservative solution tends to waste cycles on 

false dependencies, since memory dependencies are hard to analyze. The MIT Raw ma­

chine [Waingold et al., 1997; Barua et al., 1999], a radical parallel architecture, attempts 

to use compiler and dynamic analysis to disambiguate memory accesses, with the option 

of serializing accesses where dependence may exist. The superthreaded architecture [Tsai 

et al., 1999] speculates on control flow, but is conservative on data dependencies. 

A speculative solution requires a structure for buffering speculative memory state that fur­

ther speculative reads can access. The contents of this buffer can either be rolled back if 

mis-speculation is identified or committed to architectural (non-speculative) memory. It is 

crucial that such a mechanism can identify the appropriate stored value for a load from an 

arbitrary point in the program order. Previously proposed approaches to controlling specu­

lative memory accesses are discussed below. 

27 



Address Resolution Buffer 

The first proposed speculative memory system was the address resolution buffer (ARB) 

[Franklin and Sohl, 1996], originally designed for the multiscalar processor. The ARB 

can hold multiple versions of a memory location, valid at different points in the sequential 

execution. Since the speculative tasks are assigned in-order to a ring of execution stages, 

the stage number can be recorded and used to identify the relative ordering of the stores, 

allowing for wrapping around. 

When a speculative load is done the closest earlier store for that address is returned. If none 

exists then architectural memory is consulted. A flag is also set in the ARB to record the 

existence of a speculative load from the address by that stage. A speculative store writes 

the value and stage number to the ARB. If a load has occurred before (in program order) 

any other store a mis-speculation has occurred and tasks from the loading stage onwards are 

squashed and re-executed. 

When a stage becomes non-speculative the values in the ARB with a matching stage number 

are removed and committed to architectural memory. Squashing a stage performs the same 

process, but does not commit the values to memory. Only addresses with currently valid 

speculative entries require entries in the ARB. 

Speculative Versioning Cache 

The major limitation of the ARB is that it is a single central buffer, hence every access incurs 

the latency of the interconnection network, and the ARB must support sufficient bandwidth 

for all the processors. The speculative versioning cache (SVC) [Gopal et al., 1998] addresses 

this limitation by using a private speculative cache for each processor, avoiding bus traffic 

for local accesses. 

Speculative versions of memory accesses are supported by implementing a modified version 

of a snooping cache coherence protocol for symmetric multiprocessors. A load bit for each 

cache line is set if a task loads from a line before storing to it. This indicates a potential 

memory dependence violation if an earlier task stores to that line. 

A linked list, the version order list (VOL), is maintained by a pointer in each line identifying 
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the next cache containing a entry for that line. A load that misses in its private cache can 

be satisfied by searching the VOL in reverse order until a hit is found. The VOL has a 

maximum length of the number of processors, which is generally small, so it will be fast to 

search. If there are no hits in the SVC the value is retrieved from non-speculative memory. 

A store writes the value to the processor's private cache and sends an invalidation response 

to the following tasks until the next store to that line is reached. If a cache receives an 

invalidation response and has the load bit set for that line it squashes the task and all later 

tasks. 

On task commitment all stored values are written to non-speculative memory and all lines 

in the private cache are invalidated. Task squashing invalidates all lines in the cache. 

Gopal et al. [1998] introduce several refinements to the SVC. Lazy commitment allows non­

speculative values to remain in the SVC until they are superseded by a later speculative 

value. This smoothes the otherwise bursty writes to memory when a task commits and 

allows the next task to be allocated without waiting for write commitment to complete. 

Allowing values to persist in the SVC after commitment also allows the SVC to act as 

another layer of caching. 

Although the ARB and the SVC were originally designed with the multiscalar in mind they 

are applicable to any processor with multiple speculative flows of control. They can be 

extended to perform selective rollback by the addition of anti-stores which issue when a 

store has mis-speculated and undo the effects of the store, forcing any dependent loads to 

reissue. The speculative multithreading processor [Marcuello and Gonzlez, 1998], Hydra 

CMP [Hammond et al., 2000, 1998] and CMU Stampede [Steffan et al., 2000; Steffan and 

Mowry, 1998] use speculative memory systems similar in design to the SVC. 

Both the ARB and the SVC rely on allocating a sequence number to each task to order 

memory accesses at a coarse granularity. This is trivial in the multiscalar processor because 

tasks are allocated to processors in a fixed hardware order. A task misprediction results in 

squashing all tasks beyond the misprediction point, so the tasks can be reallocated in order 

to the processor ring. The trace processor uses a mapping table to map physical processor 

numbers to logical (causal order) processor numbers, with pointers to neighboring proces­

sors [Rotenberg and Smith, 1999]. Neither of these methods will scale well. Squashing 
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reduces the value of speculation to execute far-away control independent tasks because they 

will frequently be squashed even when the execution is correct. The mapping table in a trace 

processor is a potential serial bottleneck, and could impose substantial overhead when the 

number of processors is large. Methods for ordering a large number of speculative threads 

which potentially fork will be explored in detail throughout the rest of this thesis. 

Load and store queues 

In the DMT processor [Akkary and Driscoll, 1998; Akkary, 1998] speculative memory ac­

cesses are stored in fully associative load and store queues. Loads check preceding threads 

for any store to the same address, using the value if one exists. Stores search for a match­

ing address in the load queues of later threads until another store to that address is found, 

initiating a recovery action if any matches are found. 

The DMT processor uses a separate thread tree to determine the causal order of threads. 

This represents a substantial bottleneck each time relative thread ordering is determined 

since the tree must be traversed to generate an ordered list. This is feasible for a small 

number of threads, but will not scale well. Scanning through the load and store queues of 

previous or following threads also does not scale well. All of them may have to be searched 

in the case of no matching access from the speculative threads before the non-speculative 

value can be accepted for loads, or memory dependence violations can be ruled out for 

stores. 

Sun's MAJC architecture [Tremblay et al., 2000] uses a similar concept named space-time 

computing which maintains multiple speculative versions of heap memory. Loads are per­

formed conservatively using dynamic memory dependency checking, and speculative stores 

are buffered in separate memory space for each thread until they become non-speculative, 

or are squashed. Again this will not scale well, but it is intended for a commercial chip mul­

tiprocessor (CMP) with only two processors initially. MAJC takes advantage of Java's built 

in memory management features to make the speculative memory system more efficient. 
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2.5 Summary 

The previous research discussed in this section has shown that dependencies can place seri­

ous limits on the ILP that can be extracted from general purpose workloads. Some of these 

dependencies are artifacts of the program implementation and can be removed by compiler 

and architectural techniques. Even some dependencies intrinsic to the program can be by­

passed using speculative execution and prediction. Studies have shown that it is necessary 

to use multiple flows of control to generate an instruction window with enough independent 

instructions to extract large amounts of ILP. 

Considerable amounts of academic and commercial research are being directed at utilizing 

speculation over large instruction windows. A particular problem is honoring memory de­

pendencies, which are often unknown, and difficult to predict prior to execution. This is a 

characteristic which is exacerbated by a split instruction window. Speculation appears to 

be µie most promising technique for dealing with this, since mis-speculations can be rolled 

back, harming performance, but not correctness. By improving the average speculation 

accuracy the performance can then be improved. 

Methods proposed to date for controlling memory speculation are adequate for small num­

bers of speculative threads, or for speculating in limited situations. When the number of 

threads is increased to extract further parallelism the methods used for determining the 

causal ordering of events become impractical. Either centralized structures are used, form­

ing a bottleneck, or a large number of distributed structures must be consulted to determine 

ordering or dependencies. Clearly this is an issue that must be addressed if speculative ar­

chitectures are to approach theoretical limits of performance. This thesis examines several 

proposed methods of maintaining memory dependencies in a speculative processor with 

potentially thousands of threads. 
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Chapter 3 

The WarpEngine 

In order to investigate issues involved with aggressively speculative execution a theoretical 

architecture known as the WarpEngine has been conceived. It is used as a basis for explain­

ing and testing the ideas presented in this thesis. The idea was first described by Cleary et 

al. [1995] and was laid out in detail by Littin [2000]. The WarpEngine uses speculative ex­

ecution in an attempt to extract the maximum amount of parallelism. This chapter gives an 

overview of the architecture with particular reference to the issues surrounding the control 

of speculation and development of a speculative memory system. 

Analysis of potential parallelism between instructions at compile time can be classified into 

one of the following three situations: 

• definite independence 

• definite dependence 

• neither dependence nor independence can be determined statically with certainty. 

The first two cases can be handled by parallelizing compilers. In the case of definite in­

dependence the instructions can be freely executed in parallel. If definite dependence has 

been determined, then the instructions can be prohibited from executing in parallel without 

missing available parallelism. As the state of the art in compilers advances, more of these 

situations can be identified statically. However, there are some potential dependencies that 

are impossible to determine before program execution, such as when a memory address 
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is calculated by the program. Until that calculation is completed the memory reference 

could potentially conflict with any other memory reference, so no later memory access can 

be safely executed. Conditional branches also cause problems in analyzing the dependen­

cies, since the instruction path is unknown beyond the branch, and may include instructions 

which are dependent on the current one. Accurate branch predictions can be made, but still 

have the potential to be incorrect. Conservative execution requires that the later instructions 

be stalled in these cases until the dependency analysis can be performed. 

This indeterminate case is quite common in programming languages, such as C, which make 

use of pointers. In some cases there is a large amount of available parallelism which cannot 

be extracted by conservative methods. The WarpEngine aims to exploit this category of 

parallelism by speculatively assuming that there are no data dependencies, and recovering 

from any mis-speculation that occurs. 

The mechanism used to recover from mis-speculation is based on the Time Warp algo­

rithm [Jefferson, 1985] used in parallel discrete event simulation to maintain causal con­

sistency between simulated events. Time Warp is an implementation of the virtual time 

paradigm which imposes a causal ordering on distributed systems. Events are given a vir­

tual ordering, which represents the order in which they would be processed in a sequential 

system. The parallel processing of events must remain consistent with the virtual order. 

This chapter discusses how the Time Warp algorithm has been adapted for use as the specu­

lation control mechanism in a general purpose CPU. The architectural features of the Warp­

Engine are described and contrasted with those in other contemporary architectures. 

3.1 Time Warp 

The Time Warp algorithm has been shown to extract parallelism from otherwise intractable 

parallel simulations [Fujimoto, 1990b]. In Time Warp, parallel discrete event simulations 

are represented as objects that communicate by passing messages. Each message has an 

associated timestamp corresponding to its simulated time, representing the virtual time. 

When an object receives a message it processes an event at that simulated time. Events 

may produce further messages with later timestamps which are passed to other objects. The 

ordering of forwarded messages, known as the principle of causality [Fujimoto, 1990a], 
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must be maintained to ensure the correct results are obtained. 

Local clocks are maintained for each object in the simulation, allowing events to be exe­

cuted speculatively with regard to other objects. Sometimes this results in a message being 

processed out-of-order (i.e. a causality violation). The object is rolled back to the state be­

fore the incorrect speculation and the out-of-order event is re-executed. Any flow on effects 

from the rolled back messages must also be undone. 

A typical way of restoring the state of an object is to take frequent snapshots of the state 

and save it in a list of states. When a rollback occurs the most recent state before the mis­

speculation is restored to the object. Saving state frequently requires less computation to 

be re-executed, giving better performance, but consumes more resources and increases time 

spent saving state. 

Undoing the effect of rolled back messages is achieved by sending anti-messages. When an 

object receives an anti-message it rolls back, annihilates the anti-message and the matching 

message and may send further anti-messages. Good performance relies on fast processing 

of anti-messages so that the chain of incorrect computation does not proceed far. A number 

of refinements to this general principle have been suggested to improve the efficiency of 

rollbacks [Fujimoto, 1990b; Fujimoto et al., 1992]. 

3.1.1 Global Virtual Time and Fossil Collection 

As the simulation proceeds, the lists of saved state grow in size, consuming valuable re­

sources. Old state copies can be removed (fossil collected) when it is determined that the 

simulation will never be rolled back to that point or earlier. The earliest point that a simu­

lation can roll back to is known as global virtual time (GVT), and can be calculated as the 

minimum virtual time of any active object or message in the system. 

To maintain causality an object is rolled back when a message with an earlier virtual time 

arrives at the object. So the earliest message in the system can never be rolled back, and all 

saved state prior to that virtual time can be discarded. Process termination is also detected 

by GVT and processes can be fossil collected when GVT has progressed past them. 

While local virtual clocks may roll back, GVT is guaranteed to progress forward and ensures 
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that the simulation as a whole will progress. 

Accurate calculation of GVT is the key to keeping the state saving lists small, but this is 

not easy in a distributed system. Much attention has been paid to this problem in the Time 

Warp literature [Bellenot, 1990; Gomes et al., 1992]. 

3.1.2 Cancelback 

Resources for state saving are necessarily finite, and it is possible for speculative events 

to consume all those resources leaving none available for earlier events. This will prevent 

execution of those events, possibly stalling GVT and forward progress of the simulation. To 

guarantee program completion under Time Warp a mechanism is needed to provide some 

resources for those events. 

The cancelback protocol [Jefferson, 1990] extends the Time Warp storage management 

mechanism to allow the most speculative events to be halted and the resources used to be 

recovered for use by earlier events. This means discarding potentially correct computation, 

and is generally used only when resources are exhausted. 

Cancelback has been shown to be sufficient to guarantee that a simulation run using Time 

Warp will be able to complete in no more memory space than is used by a sequential simu­

lation [Jefferson, 1990]. 

3.1.3 Time Warp in Computer Architecture 

In seeking to design an architecture based on Time Warp it is appropriate to identify the 

features of Time Warp that correspond to those of contemporary computer architectures, 

and the additional ones needed to utilize Time Warp. A full description of terminology 

parallels can be found in [Pearson et al., 1997]. 

In Time Warp an object is the fundamental unit that can be rolled back. The corresponding 

unit of rollback in a speculative CPU is the instruction, or instructions grouped into basic 

blocks or tasks. Instruction rollback is commonly performed by the ROB in a CPU. Ob­

jects carry all the state saving information for Time Warp processing. In a microprocessor 

memory locations carry state information in addition to the ROB. Generally memory state 
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is saved using speculative write buffers, which are adequate for small amounts of specu­

lation. Saving speculative memory state is explored throughout this thesis, particularly in 

Chapter 8. 

In Time Warp, messages are used to transfer data between objects, hence they correspond 

to the transfer of data between instructions in a CPU. Branch, call and jump instructions 

communicate control flow information between groups of instructions. Memory write in­

structions are messages from a group of instructions to a memory location. Memory read 

instructions correspond to a pair of messages: a request from the instructions to the memory 

location; and a reply from memory back to the instructions. 

Anti-messages do not typically exist explicitly in CPUs. Rather than identifying the cas­

cade of instructions dependent on the one rolled back they perform a coarse granularity 

instruction buffer flush, sometimes called a squash, rolling back all speculative instructions 

beyond the conflict. 

Fossil collection corresponds to the in order commitment of speculative results. GVT is rep­

resented by the earliest instruction in the sequential program order which hasn't completed 

execution, all instructions prior to that point can be retired. 

A mechanism analogous to cancelback needs to be included in an architecture based on 

Time Warp. Conventional microprocessors with a single linear control mechanism do not 

require such a mechanism, since instructions are issued in order, even if they are executed 

out-of-order. 

A hardware implementation of Time Warp, the Virtual Time Machine [Fujimoto, 1989), has 

been proposed, along with special purpose hardware for rollback [Fujimoto et al., 1992). 

However, it is largely limited to speeding up parallel discrete event simulation, rather than 

general purpose processing. 

3.2 Supporting Speculative Execution 

Time Warp provides the WarpEngine with a distributed means for identifying and recover­

ing from causality violations. To test this mechanism under conditions of aggressive specu­

lation other features are needed to expose a large pool of instructions for parallel execution. 
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Using block structured execution allows the fetch rate to be increased and allows parallelism 

to be extracted at a coarser granularity, reducing some overheads. By executing blocks in a 

tree structure control flow independence can be exploited to further increase the size of the 

instruction pool. 

3.2.1 Block Structured Execution 

The WarpEngine aims to extract parallelism at two different levels of granularity. By divid­

ing the code into blocks, parallelism can be extracted at the instruction level within a block, 

and also between blocks by executing them in parallel. Another way of viewing this is as a 

large, non-contiguous instruction window split into many blocks. 

The Block Structured Architecture (BSA) was originally proposed as a means of increasing 

the instruction fetch rate beyond the size of a basic block [Melvin and Patt, 1995]. Not 

only can a whole basic block be fetched in one atomic operation, but block enlargement 

[Hao et al., 1998] allows the atomic unit of execution (the block) to be made up of multiple 

basic blocks. Familiar mechanisms from superscalar processors, such as multiporting, trace 

caches and pipelining can be used to further boost the fetch rate. 

Data dependence information is contained within the block to remove the need for com­

plex instruction reorder logic, meaning that the order in which the instructions are stored is 

unimportant. In the WarpEngine this is done using a single assignment dataflow register set. 

Single assignment removes the need for register renaming, usually done at run-time, replac­

ing it with compiler determination of destination registers. Each instruction has dedicated 

source registers, and will send its results to the source registers of instructions in the same or 

immediately following blocks. This allows all instructions to be issued in parallel, provided 

source data is available and there are sufficient resources to execute. The tag matching prob­

lems of traditional dataflow architectures are avoided by keeping dataflow communication 

local and restricted to a small number of possible registers with static addresses. Global 

inter-block communication of data in the WarpEngine is performed via the memory system. 

Within a block the WarpEngine uses a limited system of predication to dynamically dis­

able execution of some instructions. This facilitates better packing of blocks by boosting 

some instructions across branches. Full scale block enlargement is not necessary in the 
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WarpEngine since the maximum size of the instruction blocks is limited. 

Toe WarpEngine uses a fixed length BSA [Eeckhout et al., 2000], in which each block 

has a fixed maximum number of instructions. This simplifies fetch and issue logic [Neefs 

and Van Campenhout, 1996]. Where the compiler cannot pack a block with the maximum 

number of instructions it is padded with null operations. Studies [Eeckhout et al., 2001; 

Littin et al., 1998] suggest that block sizes of sixteen instructions are optimal, and this is the 

size used by the WarpEngine. 

3.2.2 Tree Structured Execution 

The aim of the WarpEngine is to investigate issues involved in extracting high levels of par­

allelism through aggressive speculative execution. This requires having many instructions 

in flight and a large instruction window. As shown by the studies described in Section 2.1.3 

this necessitates a split instruction window with the ability to issue many instructions each 

cycle. 

The WarpEngine exploits control independence, identified by the compiler, to achieve a 

large split instruction window. Recall that control independent sections of code are guaran­

teed to execute regardless of branch outcomes in the other sections. This means they can 

be executed in parallel, as long as data dependencies are obeyed. These data dependen­

cies can then be dealt with by the speculation control mechanisms provided by the Time 

Warp algorithm. This results in a dynamic execution flow graph in the form of a tree, so 

we call this tree structured execution. Figure 3.1 shows an example of the execution tree 

formed from some sequential code. The virtual order of frames can be obtained by doing 

a pre-order left to right traversal of the execution tree. Figure 3.2 shows an execution tree 

that can be generated for a loop where each iteration is control independent (for example a 

for loop). The nodes in the control branch running down the right perform checks to see 

whether the iteration should be executed. Littin [2000] provides some optimized execution 

trees to increase the fanout of loop iterations. 

Exploiting control independence reduces the importance of branch prediction. Branch pre­

diction now only affects the local subtree, other branches of the execution tree are still 

guaranteed to execute and continue regardless. 

38 



A; 
if B then C else D 
E; 
F; 

--program order--. 

Figure 3.1: Producing tree structured execution from sequential code 

Figure 3.2: Execution tree for loop iterations 

It is possible to convert some control dependencies into data dependencies and use specu­

lative methods to exploit the parallelism. For example, in while loops it cannot be known 

whether an iteration should execute until the previous iteration has completed, or at least 

calculated the condition value. By making the instruction which initiates the iteration con­

ditionally depend:::nt on the value calculated in the previous iteration the speculative control 

system will allow the iteration to be fired while the condition is still speculative and then 

roll it back if necessary. 

Throughout this thesis conceptual discussions relating to execution trees are illustrated us­

ing binary trees. All trees with a greater fan out can be decomposed to a binary tree by 

adding intermediate levels whose only purpose is to allow more nodes to be created. By 

removing these intermediate levels the principles shown for binary trees can be extended to 

execution trees in general. Figure 3.3 shows the four-way tree from Figure 3.1 converted to 

a binary tree by adding a level of intermediate nodes (unlabeled). 

The CFG for tree structured execution has some important differences from the CFG for 
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-- program order--. 

Figure 3.3: An equivalent binary execution tree 

a single flow of control. A tree structured CFO allows multiple flows of control to be 

followed because paths to control independent nodes may be followed in parallel. Since 

some nodes may be conditionally executed paths to them are represented by a dashed arc, 

while unconditionally executed paths are represented by a solid line. Figure 3.4 shows a 

code excerpt containing a for loop and some inline code, and corresponding CFOs for a 

single flow of control and tree structured execution. 

Clearly there are several possible tree structured CFOs even for a simple piece of code like 

this. For example, instruction A could be executed in parallel with the for loop and in­

structions D and E. The CFO design influences the obtainable parallelism and can be used 

to throttle execution. The most effective CFO depends on factors such as the maximum par­

allel execution fanout that can be sustained by the processor and data dependencies between 

control independent points. 

3.2.3 Virtual Ordering 

Since separate subtrees in the WarpEngine are control independent they are equivalent to 

threads in a multithreaded architecture. However, most speculative multithreaded architec­

tures don't permit an arbitrary number of threads to be created between any two threads. 

Either they are compiler identified and statically assigned, or squash and reissue operations 

map the threads directly onto processing elements, as in the Multiscalar architecture [Sohi 

et al., 1995]. Static assignment of threads is done conservatively, because resources re­

served for threads will be wasted if the number of threads required is overestimated. Con-
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A; 
for(i=O; i<S; i++){ 

B; 

} 

D; 
E; 

C; 

(a) Code extract 

d ev 

(b) CFG for a single flow of control 

(c) CFG for tree structured execution 

Figure 3.4: Equivalent CFGs for single flow of control and tree structured execution 

servative allocation, on the other hand, restricts the amount of speculative parallelism that 

is extracted. Squash and reissue allows a more flexible allocation of threads, which can be 

modified dynamically. Squashing limits the speculation distance that can be achieved. 

The WarpEngine allows out-of-order thread allocation to occur dynamically without need­

ing to squash and reissue. This makes it necessary to track the virtual order independently 

of resource allocation. 

Data speculation in the WarpEngine is provided by allowing memory accesses to occur 

freely out-of-order. This eliminates false data dependencies because accesses are not re­

stricted to occur in the programmed order. 
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Troe data dependencies must be detected and execution corrected where they are violated. 

The WarpEngine does this using a virtually ordered memory system, which is the focus of 

this thesis. Each memory access is assigned a position in the virtual order, corresponding to 

its order in the program when executed sequentially. 

The rest of this thesis investigates ways of maintaining the virtual order. Any violation 

of the virtual order is detected by the memory system and the appropriate instructions are 

rolled back and re-executed. Chapter 8 considers a design for a memory system capable of 

doing this. 

Register data dependencies are removed by the use of single assignment dataflow registers, 

since they are only read by one instruction and only written to by one instruction. If an 

incorrect speculative value (either from a speculative memory access, or a control specula­

tion) was written into a register, when the correct value arrives as an update the instruction 

re-executes and sends updated results to further instructions in turn. 

3.3 Architecture 

The WarpEngine speculative architecture combines control flow speculation and data specu­

lation with the Time Warp synchronization mechanism to form a test bench for investigating 

aggressively speculative, highly parallel processor techniques. 

The WarpEngine architecture investigated in this thesis uses a four-way control tree with 

fixed size instruction blocks. Each instruction block is executed by loading it into a hard­

ware resource known as aframe. Instructions in the same frame are executed in a dataflow 

manner, in parallel on multiple functional units. 

Using a special instruction a frame may pass data to any frame it has initiated, but any 

further inter-frame communication must be done through the memory system. A special 

memory unit called the time-space cache stores multiple versions of speculative memory 

values, and tracks the virtual ordering of memory accesses, reissuing values if sequential 

consistency is violated. The virtual order is represented by the value of a virtual timestamp 

(VTS) assigned to each frame. By comparing the VTSs of two frames their relative posi­

tion in the virtual order can be ascertained. The VTS may not necessarily be an explicit 
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value, it may be encoded in other ways, such as the hardware location. The progress of 

non-speculative execution (GVT) is tracked by a distributed mechanism (fossil collection), 

which commits and reclaims the resources of frames which have completed and are non­

speculative. 

This section describes the components of the WarpEngine important to this thesis as laid out 

in Figure 3.5. The WarpEngine is investigated through the use of the simulator described 

in Chapter 4. Littin [2000] provides a comprehensive description and investigation of the 

basic WarpEngine architecture and simulation methods. 

Frame Controller 

C 
0 ·.o 
"' > ·.o 
u 
"' 

Frames 

Code 
Store 

switch 

forced space reclaim 

Function 
Units 

Paths RAM 
- operand and data 

return address 
timestamp 

Spatial 
Cache 

Figure 3.5: Components of the WarpEngine and their connections 

3.3.1 Instruction Set 

The WarpEngine instruction set is included in Appendix A. Instructions have been grouped 

as control, data movement, logical, floating point and integer arithmetic. The only control 

instruction is the child instruction, which generates a new node in the execution tree by 

loading a block into a frame and assigning it a VTS. It can be conditionally executed based 
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on the outcome of cmp, the arithmetic comparison instruction, in effect providing a con­

ditional branch. Appendix A includes an example of a conditional branch in WarpEngine 

assembly code. 

The mv (move data) instruction moves a data value directly from a register in a frame to a 

register in one of its child frames. To transfer a data value to another frame it is stored to 

memory by the source frame using the st (store) instruction, and then loaded into a register 

in the destination frame using the ma (move from address) instruction. These three data 

access instructions may also be executed conditionally, in concert with child instructions. 

The standard arithmetic and logic instructions are provided, each sending its result to one 

or more destination registers. 

3.3.2 Frames 

Frames in the WarpEngine are analogous to the ROB in contemporary architectures. They 

provide physical storage for registers and instructions, a control mechanism for executing 

instructions, and a means of state saving. Each frame has a VTS associated with it which 

is used for all memory operations performed by that frame. Frames can be processed in 

parallel and are treated as independent speculative instruction streams. The frame controller 

arbitrates resource contention and manages communication between frames, function units 

and the code store. 

Each frame comprises 16 slots, holding one instruction each, as laid out in Figure 3.6. The 

slot is made up of four fields: an op-code; execution status flags; and two operand registers. 

The status flags are used to determine the validity of instruction operands and to maintain 

the execution state of the instruction. 

Calvert [1997] investigated a possible hardware implementation for a WarpEngine frame. 

3.3.3 Code Store 

The code store prepares blocks of instructions for execution, which are then loaded from 

memory into frames. The code store generates and assigns VTSs to blocks as they are 

allocated to frames in accordance with the program control tree. 
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I V 
op-codes flags operand registers 

Figure 3.6: Layout of a frame 

The instruction block is the atomic unit loaded from the code store. By choosing the size of 

an instruction cache line to accommodate a whole instruction block, stress on the instruc­

tion cache can be reduced. Since many blocks will be concurrently speculatively executed 

fetching from the instruction cache is a potential bottleneck. 

The code store also records information about cancelled back frames, so that they can be 

rescheduled and resume executing when resources become available. 

3.3.4 Function Units 

The function units perform the same operations as any contemporary RISC architecture. 

Input operands and the distribution of results are handled by an external device, possibly 

through some form of switch. 

While most operations can be satisfied within the function units, some require actions to be 

performed by other system components. The child instruction queries the frame controller 

for frame resource space and new VTSs, the mv and ma instructions send results to frames 

other than their own, which requires interaction with the frame controller, and the ma and 

st instructions access the memory system. 
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3,3,5 Synchronization Mechanism 

The synchronization mechanism is used to free frame and time-space cache resources that 

are no longer required. This relies extensively on the VTS system to order events. Several 

such systems are investigated throughout this thesis. 

VTS requirements for fossil collection and cancelback are addressed as the VTS schemes 

are proposed, but depend to an extent on the frame implementation used, which is beyond 

the scope of this thesis. 

3.3.6 Instruction Execution 

Each instruction in memory is represented by two words. The instruction word (I-word) 

contains the op-code and result destination information. The constant word (C-word) con­

tains a single literal or constant value that can be used as one of the instruction's operands. 

There are a number of stages in instruction execution, shown in Figure 3.7. 

instruction block 

function 

unit 

Figure 3.7: Instruction flow within a WarpEngine frame. 
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First, the instruction block is fetched and allocated a frame. The op-code and s flag (in­

dicating conditional execution) are loaded directly from the instruction's I-word. Operand 

registers within a slot are either loaded with a constant value from the C-word, or with data 

that results from the execution of another instruction. 

Data flow techniques are employed to execute the instructions within a frame. When the 

data is placed in each of an instruction's operand registers the instruction is transferred to a 

function unit for processing. The function unit performs the computation and returns results 

back to the appropriate registers in the frame. 

Data flow execution of instructions within a block removes the need to issue each instruction 

with a unique VTS for state saving. The hardware required to perform data flow execution 

and the static allocation of registers to instructions provides a mechanism that executes in­

structions only when a change in input occurs. This is particularly useful when re-executing 

instructions after incorrect data value speculation has taken place. 

3.3. 7 Memory System 

Since the WarpEngine is to be capable of storing multiple speculative memory values at 

each address the memory system needs to be able to select the appropriate value to return 

for a load. Additionally, since memory accesses may execute speculatively out-of-order, 

the memory system must be able to identify reads which have been incorrectly satisfied and 

rollback the dependent execution. 

This is done using a virtually ordered memory system, of which the key component is the 

time-space cache. Conceptually, the time-space cache contains triples of the form ( address, 

VTS, value) for writes, and (address, VTS, destination register) for reads. Different specu­

lative versions of memory values are differentiated by their VTS, and incorrect speculative 

read replies can be reissued with the updated value. Only entries with a VTS more recent 

than GVT need to be stored in the time-space cache, since only they are speculative. Earlier 

accesses can be retired, with write values committed to RAM. 

The time-space cache forms the level of the memory hierarchy closest to the frames. Beyond 

that is the usual cache hierarchy, denoted spatial memory because it contains no virtual 

ordering information. Only the most recently committed value is stored for each address 
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in spatial memory. Figure 3.8 shows the relationship between the different levels of the 

hierarchy. 

The time-space cache can be viewed as a simple addition to the standard memory hierarchy. 

The shaded region in Figure 3.8 shows the components in a real ordered memory system. 

The difference is the time-space cache and the way it interacts with spatial memory through 

the memory controller. 

Time Space 
Cache 

GVT 
cancelback 

ter processor 
mmunication 

Figure 3.8: Components of the virtually ordered memory system 

Six possible operations must be supported on the memory subsystem: read; write; anti-read; 

anti-write; fossil collection; and cancelback. 

A read generates an access to the time-space cache and one to the spatial cache in parallel. 

The previously recorded write with the same address and the most recent VTS prior to the 

VTS of the read will be returned. This value will come from the time-space cache if there 

is a write that matches, otherwise the value most recently committed to the spatial memory 

hierarchy is returned. 

Note that it is not essential to have parallel paths to the time-space cache and spatial memory. 

All memory operations could pass through the time-space cache before being transmitted 

to the spatial cache, and only those not satisfied in the time-space cache be passed on. 
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This reduces the bandwidth required to spatial memory, but it increases the latency of time­

space cache misses, a major bottleneck in current architectures and likely to be so in the 

WarpEngine. 

A write is only sent to the time-space cache, where it is recorded. This write will supersede 

the previous write for any read later in the virtual order than the write, but earlier than the 

next recorded write in the virtual order to that address. The time-space cache will re-satisfy 

the read and return the new value, causing dependent instructions to rollback and re-execute. 

In the example shown in Figure 3.9 for a single memory address the read with VTS 20 will 

be resatisfied with the value 5 when operation a) is processed, superseding the value of O 

previously returned. This is the only read affected, since another write has taken place with 

a VTS of 30. 

OP VTS VALUE 

a) WR 15 5 ... WR 10 0 j . RD 20 oo e .s •;j 

WR 30 1 ~] 
g .'5 - ;,. RD 40 

WR 50 0 

OP VTS VALUE 
WR 10 0 
WR 15 5 ju a) 5 .. RD 20 
WR 30 1 g .'5 - ;,. 

RD 40 
WR 50 0 

Figure 3.9: Resatisfying a read due to an out-of-order write. 

Since memory operations are speculative they may need to be rolled back. The anti-read and 

anti-write operations undo the effects of reads and writes respectively. An anti-read removes 

the corresponding entry from the time-space cache. Anti-reads only occur as the result of 

a mis-speculated branch or a change in a computed memory address. The consequences of 

undoing the read are handled by the frame. 

An anti-write removes the corresponding write entry from the time-space cache. It must 

also resatisfy any reads which returned the value from the write that has just been rolled 

back. This means locating all reads to that address with later VTSs up to the next write that 

has been recorded. The previous write value in the virtual order must be returned for each 
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of these, either from the time-space cache, or from spatial memory. The frame logic will 

then cause dependent instructions to be re-executed. 

The fossil collection process commits the read and write entries earlier than GVT to spatial 

memory. Since GVT may progress in large increments not every write operation in the 

time-space cache needs to be written to spatial memory, only the latest in the virtual order 

needs to be recorded for each address. Once the values in spatial memory have been updated 

the time-space cache entries prior to GVT can be deleted. 

Cancelback removes all entries in the time-space cache with a VTS greater than a given 

value without writing them to the spatial cache. This can be used as a method for freeing 

space in the time-space cache when it becomes full, although fossil collection is a preferable 

way of doing this since the cancelled entries will eventually be regenerated when their 

frames are re-executed. 

Issues 

The virtually ordered memory system described in this section is simplified and purely con­

ceptual. The description implies some implementation methods which may not be optimal. 

It is convenient to think of VTSs as a set of explicit, ordered integers, although physical 

ordering in a hardware structure could also be used to determine virtual order. Alternative 

methods for this and other features of the virtually ordered memory system are explored 

throughout the rest of this thesis. 

A number of factors determine the optimal design for the virtually ordered memory system. 

These are explored in varying levels of detail with the simulation techniques described in 

Chapter 4. 

The latency of memory operations is an important factor in the overall performance of the 

WarpEngine. Littin [2000] showed that the proportion of memory instructions on the critical 

execution path is substantially higher than in the total dynamic instruction count, and the 

execution time is very sensitive to increased memory latency. 

The WarpEngine is designed to minimize the effects of high instruction latency by executing 

instructions speculatively. This means there will be an increased number of instructions 

50 



and memory operations in-flight at any time. This means bandwidth considerations will be 

important, and features that reduce the number of operations should be considered carefully. 

The size of the time-space cache is another important consideration. In general a small 

cache will be faster, particularly if associative matching is required. However, if the capacity 

of the time-space cache is exhausted cancelback may be required to reclaim space and allow 

execution to continue. Cancelback limits the amount of effective ILP that can be extracted 

because speculatively executed computation is being discarded. Efficient fossil collection 

will be important in minimizing the required size of the time-space cache. 

A final factor is the complexity of the time-space cache design. A complex design may 

limit the number of time-space cache entries that can be implemented on the chip. This 

is particularly important if a multiprocessor WarpEngine is being implemented on a single 

chip. This question is only be answered in the most general terms in this thesis, pending 

gate-level designs. 

3.4 Related Architectures 

The WarpEngine is most suited to extracting parallelism from programs in which tasks are 

likely to be independent, but in which the dependence, or lack thereof, cannot be easily de­

termined. Architectures which use static scheduling will not be able to extract this potential 

parallelism, but the aggressive speculation of the WarpEngine makes it at least theoretically 

possible. 

The WarpEngine does not rely on the programmer identifying areas of parallelism, instead 

regulating the speculative execution through the multiple version memory system. However, 

the programmer's memory model is still a single linear address space, requiring no explicit 

synchronization. 

The WarpEngine shares many features with the architectures presented in Chapter 2. This 

section examines the important similarities and differences. 
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3.4.1 Superscalar 

superscalar architectures reuse registers and memory locations, since the size of both are 

limited. This creates false dependencies between instructions. Register renaming can ef­

fectively eliminate false register dependencies, provided the physical register set is large 

enough, while some false memory dependencies can be resolved using memory reorder 

buffers. However, neither of these mechanisms scale well to large instruction windows. 

Toe size of the instruction window is also limited by branch prediction errors that inevitably 

occur. 

The WarpEngine avoids false register dependencies using single assignment registers in 

the frames. False memory dependencies are eliminated using unrestricted speculation in 

combination with the virtually ordered memory system. 

Superscalar machines do support out-of-order execution, but only when it can be deter­

mined that the correct data is available. The speculative execution of the WarpEngine can 

potentially extract much more parallelism, but extra overhead is introduced to correct mis­

speculation. 

In contrast to the single flow of control utilized in superscalar architectures, the WarpEngine 

supports multiple independent flows of control scheduled in a tree structure, again allowing 

more parallelism to be extracted. 

3.4.2 Dataflow Processors 

The WarpEngine utilizes dataflow techniques in that each frame acts as a miniature dataflow 

engine. Instructions fire when values have been placed in their source registers, and the re­

sult is sent to one or more source registers of other instructions. However, unlike dataflow 

machines, the number of possible destinations is quite limited because a maximum of six­

teen slots are available in each frame, and a result can only be sent directly to a slot in the 

same frame or a child frame, and can be specified directly. This avoids the need for the 

large token matching stores required in dataflow machines, which tend to be a performance 

bottleneck. Although the time-space cache must match VTSs in a similar way to token 

matching in dataflow machines, it does not require it on every instruction, only on memory 
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accesses. Additionally, since VTSs are assigned at the block level, less are required than in 

dataflow execution, which uses a token for each instruction. A complication present in the 

WarpEngine is that VTSs are not matched exactly, as with tokens, rather they must match 

with the nearest VTSs in the store. 

In traditional dataflow architectures the instructions available for execution are all consid­

ered equal, which can lead to resource contention problems. In the WarpEngine this is 

neatly solved by prioritizing blocks based on their VTS. Instructions earlier in the virtual 

order receive scheduling preference since they are less speculative, and more likely to exe­

cute correctly, or be holding back GVT. 

Specialized dataflow languages must be used to extract good performance from dataflow 

machines, and typically require the programmer to learn a new programming model. By 

contrast the WarpEngine uses standard imperative languages, although custom languages 

and constructs could be developed to further exploit the features of the WarpEngine. 

3.4.3 Multiscalar 

The most closely related of the architectures discussed in Chapter 2 are the multiscalar and 

related architectures, such as the trace processor. 

The multiscalar also takes advantage of speculative execution, although it uses a fixed hard­

ware ring structure to order tasks and memory accesses. Maintaining the order with VTSs 

allows the WarpEngine to use a more flexible and scalable network of processing resources, 

although manipulating VTSs is more complex than hardwiring the order. 

When a mis-speculation occurs the multiscalar squashes all computation beyond the mis­

speculation point, possibly discarding independent computation, which the WarpEngine 

would retain. Other architectures developed from the multiscalar model, such as the trace 

processor and dynamic multithreading, retain independent computation beyond the mis­

speculation point. 

Tree structured execution allows the WarpEngine to generate independent flows of control 

more flexibly than the ring structure of the multiscalar and trace processors, which results 

indicate are only scalable to around eight concurrent tasks [Sohi et al., I 995]. Dynamic 
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rnultithreading implements a similar tree structured hierarchy of threads, although causality 

violations are not detected until results are committed, delaying re-execution, but reducing 

the amount of transient execution from that seen in the WarpEngine[Akkary, 1998). 

3.5 Summary 

This chapter has discussed the conceptual approach of the WarpEngine. It aims to extract 

large amounts of ILP through speculation on the outcome of control decisions and data val­

ues in memory. Using tree structured execution the program is split into control independent 

instruction streams, which can be executed independently providing data dependencies are 

observed. 

The Time Warp algorithm is incorporated into the WarpEngine architecture to synchronize 

the speculative execution. Any violation of causal dependencies is identified and the offend­

ing instructions are rolled back and re-executed to correct the computation. Determining the 

sequential program order, or virtual order, of the instructions is critical to this process. VTS 

methods used for doing this are discussed later in this thesis. 

The WarpEngine architecture uses a block-based instruction set. Instructions are grouped 

into fixed-size blocks, which are scheduled to be processed in parallel. When blocks are 

invoked for execution they are placed on a frame, which controls instruction execution and 

provides state saving space. Instructions are fired in data flow order, extracting the largest 

amount of parallelism possible. 

The main focus of this thesis is the virtually ordered memory system. This is a crucial com­

ponent of the WarpEngine, since the memory system is used extensively to communicate 

values between instruction blocks, and it controls all the data speculation. 

The eventual success of the WarpEngine will depend upon the ability to design key novel 

components of the processor. Functional simulation is used to determine the conceptual 

viability of the architecture, building on previous simulation work [Littin, 2000). However, 

issues concerned with detailed gate level design of components are beyond the scope of this 

thesis. 
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4.1 Virtual Order Simulation 

Chapter 4 

Simulation 

In order to simulate the WarpEngine architecture efficiently a new simulation paradigm, 

known as virtual order simulation has been developed as part of the WarpEngine project. A 

full description of its development can be found in Littin (2000]. 

The approach in virtual order simulation is to simulate events, not in the order they would 

actually happen, as with usual event driven or cycle by cycle simulation, but in the sequential 

program order that implicitly describes the instruction dependencies. Instructions executed 

on an in-order architecture will be simulated in the same order in real order and virtual order 

simulation, since instructions are always executed after those they are ( or may be) dependent 

on. However, for out-of-order execution the real execution order may be different to the 

virtual order. To determine the simulated execution time each event is considered in virtual 

order, and the execution time calculated based on the time of execution of events earlier in 

the virtual order that the current event is dependent on for control, data or resources. 

Virtual order simulation allows dependencies to be tracked easily because the register or 

memory values used in the instruction are the most recently calculated. In the presence 

of speculative execution this means that only the correct execution needs to be considered, 

since the instructions it is dependent on have already been calculated, and the earliest time 

the correct data is available is known. This reduces the complexity of simulation, since 

speculative execution and rollback do not have to be tracked. 
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The real time the instruction completes execution is calculated by taking the maximum of 

the times the input data become available and simply adding the instruction latency. 

4.1.1 Assumptions 

Virtual order simulation allows a speculative architecture with a large instruction window 

to be simulated by a single instruction thread because instructions are considered one at a 

time, and each instruction only has to be considered once. However, the real time at which 

each data value is available must be stored, requiring extra storage space. 

Large amounts of control and data coherence detail have been abstracted away, leading 

to much faster development cycles. However, this simplification means that virtual order 

simulation is only suitable for high level analysis. 

Virtual order simulation assumes oracular know ledge of events is available for scheduling 

resources. Priority is given strictly to events earliest in the virtual order, since events later in 

the virtual order have not been considered at that stage of the simulation, even though they 

may begin earlier in real time. This represents an upper bound on scheduling performance, 

which may not be achievable in a real architecture. 

Since each instruction is processed in program order, virtual order simulation does not track 

the transient state of each instructions inputs which are subsequently rolled back. These 

transient states will often propagate through a sequence of dependent instructions, and can 

result in speculative speedup if the correct result is obtained from speculatively incorrect 

computation. Section 4.1.3 discusses how virtual order simulation can be extended to record 

these changes in state. 

4.1.2 Limiting Resources 

The basic virtual order simulation model assumes there are sufficient resources for unre­

stricted execution of the program. In order to obtain realistic results for a system it is nec­

essary to restrict the resources available. These resources include storage, such as memory 

and state saving space, bandwidth and processing resources, such as functional units. 

To simulate limited resources each resource is allocated to events in virtual order, and a 
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record is kept of when the resource is available. If a resource is unavailable at the desired 

execution time the event is stalled until the resource can be allocated. Some resources must 

be retired in order, such as frames, while others can be retired out-of-order, for example 

processing units. 

This method of resource allocation simulates an architecture with oracular knowledge of 

resource requirements. 

4.1.3 State History 

The basic virtual order simulation model does not capture information about computation 

which executes speculatively, is rolled back and never committed. Although these transient 

states have no effect on the results of the computation, they can affect the execution time. 

Transient computation states still consume resources, which could otherwise be used for 

useful computation. In the basic model it is assumed that the incorrect transient states can 

be identified pre-emptively, and are allocated resources with a lower priority than useful 

computation. This is unlikely to be possible in a real machine, so simulating the resource 

requirements of transient states will provide more accurate simulation. 

Transient states are modelled by replacing state values with state history lists. Rather than a 

single value state which becomes valid after a certain real time, a state history is a succession 

of values which supersede the previous value in the list as real time advances. 

When an instruction is processed the input history lists merge to form an output history 

list. The output history list records all values generated by the instruction operating on all 

valid combinations of input values. This may produce a smaller or larger state history list, 

depending on the combination of states in the input history lists. 

Figure 4.1 shows two examples of history lists being processed by instructions to generate 

an output history list. Figure 4. l(a) shows an addition operation where the final values of 

the two operands are obtained at times 15 and 27 respectively. Both operands have transient 

speculative values prior to that. The first entry in the output list is formed at the time both 

input lists have a valid value, plus the operation latency. In this case the first operand 

receives value O at time 5 and the second operand receives value 100 at time 13. With an 
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operation latency of 1 the first entry has a time of 14 and a value of 100. For each new 

operand value in the input lists a new entry is placed in the output list, until the committed 

value is obtained at time 28. 

In Figure 4.l(b) the less-than comparison evaluates to true at time 14, then again at time 

16 and time 28. Since only a change in the output value will require dependent operations 

to re-execute these nodes are redundant and do not need to be recorded. Note that this 

is an example of speculative speedup beyond the "theoretical" maximum being obtained 

because the correct answer was obtained at time 14, even though the correct inputs were not 

available until time 27. 

(a) (b) 

Figure 4.1: Processing input history lists to form an output history list. 

4.2 Simulation Test Bench 

Littin [2000] provides a detailed description of the development and operation of the Warp­

Engine simulator based on the virtual order simulation paradigm. A brief description is 

provided here, focusing on the aspects pertinent to the work in this thesis. 

The WarpEngine extracts parallelism at two levels: block level and instruction level. Simi­

larly, the virtual order simulation model is applied at the frame level, and at the instruction 
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level. Frames are processed one at a time in their virtual order, as defined by the control tree. 

Instructions within a frame are scheduled in dataflow order, but are processed using virtual 

order techniques. Figure 4.2 shows the interconnection between the major components of 

the WarpEngine simulator. 

-----------
Global Memory 
Clock System -----r----

' ' ' 
' 
' 

r • 1 
' ' ' ' ' ' 

Executing 
Function Frame Frame 

Stack Unit 

I I I I I I I 

' I I I ) 

Figure 4.2: Components of the WarpEngine virtual order simulator 

The frame stack is used in the simulator to enforce the virtual order in processing frames. 

Initially a single starting frame is processed and any child frames it generates are pushed 

onto the frame stack in reverse virtual order. When the frame has been processed the next 

frame is popped off the stack, and processed in the same way, pushing its child frames 

onto the frame stack in reverse virtual order, and the next frame is popped off the stack. In 

this way frames are processed in a left-to-right traversal of the control tree, maintaining the 

virtual order. When the frame stack is empty and the currently executing frame has been 

processed the program has completed. 

At any point in the simulation only one frame is being processed, and it is held in the execut­

ing frame component. The executing frame manages the instruction processing, handling 

interaction between instructions, communicating with the function unit and passing data 

to child frames. To execute the instructions within a frame in dataflow order, each slot is 

checked to see if its input registers contain valid values. If all registers are valid, the instruc­

tion is sent to the function unit for execution. The slot checking process is repeated until all 

instructions in a frame have been executed. 

The function unit processes individual instructions, forwarding the results to registers in the 
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executing frame, to registers in frames on the frame stack, or to locations in the memory 

system. The function unit also calculates the real time the operation completes from the 

known latency of the operation and the real time the operands and resources are available. 

All instructions except memory operations are processed by the function unit. Memory 

operations are forwarded to the memory system. 

The basic memory system component abstracts away the details of the time-space cache. 

All stores are recorded in a list for each memory location, along with the real time they 

occurred, so that a value and a real time ( or a list for the transient state extension) can be 

returned to the executing frame when a load is executed. Loads do not need to be recorded 

because the virtual order simulation ensures that instructions never need to be re-executed. 

Since the virtual order is maintained by the frame stack, explicit VTSs are not required, 

and the mechanism for maintaining the virtual order never constrains execution. However, 

VTS schemes which do constrain execution can be implemented in the memory system 

component and this technique is used later in this thesis to refine the memory system model. 

A global clock is used to record the greatest end time of any frame that has been processed. 

When each frame is retired the global clock is updated to contain the maximum of its current 

value and the frame's end time. Each advance of the global clock indicates a time at which 

frames are retired. When all frames have been processed the value of the clock gives the 

program's execution time. 

4.2.1 Simulation Parameters 

The main performance metric used throughout this thesis is the speedup resulting from ex­

ecuting the test programs on the WarpEngine against the time for a sequential in-order pro­

cessor modelled on the WarpEngine. Speedup is used rather than absolute execution time, 

since a number of assumptions have been made about the processor architecture, beyond 

extracting parallelism. To model execution time accurately would depend on detailed mod­

elling of the components not available in the virtual order simulator. These simplifications 

were validated by Littin [2000]. 

The parallel execution time on the WarpEngine is given by the retirement time of the last 

instruction in the program. Since instructions are retired in order this will be the overall pro-
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gram execution time. The sequential execution time is calculated assuming that instructions 

are executed in their virtual order, with each waiting for the previous instruction to complete 

before beginning. This means that even a sequential machine with simple pipelining would 

have a speedup greater than one. 

While a number of prominent theoretical studies of parallelism [Lam and Wilson, 1992; 

Wall, 1991; Postiff et al., 1999] assume instructions with a single cycle latency, this is not 

representative of modern computer architectures. More typical instruction latencies have 

been chosen for these simulations, as shown in Table 4.1. It has been found that variations 

in the instruction latencies tend not to substantially affect the simulation results [Littin, 

2000], and only relative performance change is studied. 

instruction cycles 
CHILD 15 
ST 2 
MVMA 8 
CMP 2 
ADDSUB 2 
MUL 7 
DIV 13 
SPLIT 2 
AND OR XOR 2 
ADDFSUBF 7 
MULF 7 
DIVFF2I 13 
I2F 7 

Table 4.1: Typical instruction latencies 

Although they are as applicable to the WarpEngine as any other out-of-order architecture, no 

branch or value prediction is used in the simulations in this investigation. Parallel execution 

beyond a conditional branch is only performed where control independence exists, or where 

memory speculation has resulted in a subsequent branch being executed speculatively. The 

only value speculation that takes place is early usage of memory values, and values cal­

culated by dependent operations. Branch and value prediction techniques are orthogonal 

to the speculative mechanisms used in the WarpEngine and can be added independently. 

Including either of these techniques will increase the speculation that can be achieved and 

allow more parallelism to be extracted than is shown here. 
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4.2.2 Virtual Order Simulation Effects on Performance 

While virtual order simulation is a very effective technique for fast simulation of out-of­

order speculative architectures, it does have a number of shortcomings in the features it can 

accurately simulate. These limitations, which are particularly manifest in complex real time 

interactions, and their effects on the performance measurements made here, are summarized 

below. They are discussed in more detail in the relevant sections. 

As mentioned earlier, the virtual order simulator models perfect knowledge of events for 

the purposes of instruction scheduling and resource allocation. This leads to optimistic per­

formance results since this oracular knowledge would not be available to a real processor. 

In the context of the WarpEngine this means that frames and instructions that would oth­

erwise get rolled back are never issued, saving the processor from rolling them back, and 

the consequent performance penalty. It does, however, demonstrate an upper bound on the 

performance of such a processor. The performance of a real processor may approach this 

upper bound with sufficiently sophisticated resource usage estimation techniques. 

Understanding the effects of oracular knowledge is particularly important in understanding 

the results presented for VTS schemes. When allocating VTSs to a frame, the simulations 

presented here assume that the number of VTSs reserved for subtrees earlier in the virtual 

order is known. This provides the lower limit of the VTS range for the current subtree, and 

is always known in virtual order simulation since all frames earlier in the virtual order have 

already been processed. In the real order execution the virtually earlier frames may not have 

had VTSs allocated to them when the virtually later frame is executed. 

The VTS usage estimates are largely static, so the VTS range could be reserved prior to 

execution. However, if a frame is conditionally executed, the VTS range required cannot be 

calculated precisely at compile time. The maximum VTS range that would ever be required 

can be allocated, although this is a less efficient allocation than the one simulated, and will 

decrease performance. If the VTS range is calculated dynamically, for example based on a 

dynamic loop bound, the range required is not easily determined at compile time. In this 

case a speculative estimate could be used, possibly incurring the penalty of VTS allocation 

rollback and reallocation. 

The basic model does not simulate transient states, which leads to underestimation of re-
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source usage requirements and a subsequently inflated performance measurement. Con­

versely, it may give pessimistic performance calculations where there are sufficient re­

sources, since there may be cases of incorrect speculative execution leading to the correct 

answer, which is used for further speculative computation and later validated. Compar­

isons of simulations under different constraints are still valid though, since all are simulated 

without transient states, except the virtual memory system in Chapter 8. 

Adding the transient state extensions negates much of the performance benefit of virtual 

order simulation. This makes it impractical in terms of simulation time and memory re­

quired to use on several programs in the test suite, even though they are small programs. 

For these reasons the transient state extensions are used sparingly, and only on selected test 

programs. Transient states are only vital in measurements of resource consumption and 

rollback statistics. 

Complex real time interactions are particularly prevalent in the memory system. Simulation 

of caching in general is not possible, since virtual order simulation cannot easily track the 

most recently used values at any point in the simulation. Any attempt to extend the paradigm 

to include this will further degrade the performance of the simulator, providing no advantage 

over traditional real order simulation. There are several other memory system features 

particular to the WarpEngine which cannot be simulated using virtual order simulation. 

These are discussed in more detail in Chapter 8 where the virtual order memory system is 

proposed. 

4.3 Test Programs 

A suite of test programs has been developed to benchmark the performance of the Warp­

Engine in different configurations. Littin [2000] provides a detailed analysis of the test 

programs, their control and data structures, and performance characteristics. A summary is 

provided here, the source code can be found in Appendix B. 

The test suite spans the types of operations performed in many programs, including matrix 

and array manipulation, sorting, dynamic structure operations and recursion. Table 4.2 lists 

the abbreviations used for each algorithm within the test suite. These small loop oriented 

programs were chosen because there is no compiler for the WarpEngine instruction set, and 
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all programs were hand coded in WarpEngine assembly. 

"Real world" applications contain more complex data and control interactions than the sim­

ple programs presented here, suggesting that the simulation results are optimistic. How­

ever, the theoretical parallelism available and algorithmic complexity of these simple test 

programs can be determined, providing a baseline to compare the simulated results to. 

Although the programs are small, they contain varying amounts of control and data depen­

dence. Table 4.2 shows the sequential execution time (work) and the speculative parallelism 

available for each algorithm. The parameter N is a measure of the problem size. The work 

and parallelism are given as complexity measures using O notation and only consider the 

complexity of the data dependencies in the program. Loops are assumed to parallelize per­

fectly and operate in O ( 1) time, meaning that their control mechanism has no impact on 

performance. Speedup from data value speculation is not considered in these measures, 

providing the possibility that a real system may exceed these values. See Littin [2000] for 

the derivation of these values. 

I algorithm I abbr. I work I parallelism I 
matrix multiplication mat O(Nj) O(Ni) 

transitive closure trans O(N3 ) O(N2 ) 

Gauss-Jordan elimination gj O(N3 ) 0(1~~) 
quicksort O(NlogN) 

left-to-right search qul 0(1) 
ends-to-middle search qu2 0(1) 

binary tree insertion O(NlogN) 
naive bin O(N) 
AVL avl unknown 

I Fibonacci numbers 

Table 4.2: Complexity of test algorithms 

While the data set chosen does have an impact on the absolute execution time of the sorting 

and tree insertion routines, previous studies [Littin, 2000] showed that the data set does not 

affect the relative performance. For this reason, and in order to include results from long 

running simulations, only results from simulations of a single data set are presented. 
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4.3.1 Matrix Manipulation 

Three matrix manipulation algorithms, matrix multiplication, transitive closure and Gauss­

Jordan elimination have been included in this test suite. Matrices provide well structured 

data and allow operations to be performed on multiple instances of data in an orderly man­

ner. In general this allows parallelism to be easily detected at compile time and many ar­

chitectures, particularly vector machines, do a good job of extracting parallelism from these 

algorithms. These algorithms have been included in the test suite to determine if specula­

tive execution can extract this statically detectable parallelism. The amount of unpredictable 

control flow and the arrangement of sequential and parallel components varies among the 

three algorithms. 

Matrix multiplication 

Matrix multiplication multiplies two N x N matrices of floating point numbers. All control 

and data dependencies can be detected at compile time, allowing parallel scheduling to 

take place. There are three levels of nested loops, each containing N iterations, giving a 

sequential execution time of O ( N 3). 

The innermost loop contains a sequential data dependence chain of length O(N) through 

the addition of values to a temporary accumulator variable. This constrains the parallel 

execution time, giving O(N2) parallelism. 

Littin [2000] investigates several different options for the control structures of the three 

loops. In the experiments described here only the highest fanout tree structure is used. 

Transitive closure 

The transitive closure algorithm [Corman et al., 1990] processes the adjacency matrix for a 

directed graph such that an edge directly from x to y is added if a path from x to y exists. 

The algorithm again contains parallelism that is easy to detect. Like matrix multiplication 

it has three levels of nested loops, and hence a sequential execution time of O(N3 ). This 

time the dependencies are in the outermost loop. Once again the algorithmic parallelism is 

O(N2). 
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Gauss-Jordan elimination 

Gauss-Jordan elimination [Press, 1992] performs matrix inversion of an N x N matrix. 

Unlike matrix multiplication and transitive closure, control decisions are coupled to the 

values of the input data. Once again the sequential execution time is O(N3), but the control 

dependencies mean the available parallelism is only 0( 1~~ ). 

4.3.2 Sorting 

Sorting algorithms are represented in the test suite by two versions of the efficient quicksort 

routine. As with the matrix operations the data is in well structured arrays. However, sorting 

is an intrinsically sequential operation because the data is unpredictable and the program 

control decisions are highly coupled to it. These routines have been included to show that 

speculation can extract parallelism from data controlled execution. 

Quicksort 

Quicksort [Quinn, 1987] has a worst case sequential execution time of O(N2), but the 

expected sequential execution time is O(NlogN). This algorithm lends itself to sequential 

scheduling due to the way it subdivides the data set as sorting proceeds. The algorithm 

selects a pivot element which is used to sort the array into two parts. Next the pivot selection 

and sorting routine is called recursively on the two parts of the array, which can be operated 

on independently. The expected parallelism is O(logN) and the worst case parallelism is 

0(1). 

The two versions of quicksort used here differ in the way they select the pivot. The first 

selects a pivot value and moves from left to right through the array until all elements less 

than the pivot value are to the left of it. The second version selects a pivot value and moves 

in towards the centre, swapping from either end until the pivot is in the correct position. 

These pivot selection mechanisms have no impact on parallelism estimates, but they do 

have a significant impact on performance in a speculative architecture. In a speculative 

architecture the recursive sort calls can be initiated in parallel if the data is correct. With 

the left-to-right pivot search subsequent left recursive calls can begin their search phases 
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without knowing the right hand array limit. The ends-to-middle pivot search must know 

both ends of the sub-arrays before searching can begin. This means mis-speculation is 

more likely in this selection method. 

4.3.3 Dynamic structures 

Two binary tree insertion routines have been included in the test suite. Items are inserted into 

a dynamic ordered tree structure. As with sorting, the data determines the program's control 

flow, although this time the data structure varies in size and shape as new items are inserted. 

In general it is difficult to write parallel versions of these routines because interactions 

between data are unpredictable and control is highly coupled to data. These routines have 

been included to show the ability of a speculative architecture to extract parallelism from 

programs with complex and unpredictable data flow and dynamic data structures. 

Naive binary tree insertion 

Naive binary tree insertion [Lewis and Denenberg, 1991] creates a tree without making any 

attempt to balance it. In the worst case pathological data makes this the equivalent of insert­

ing into the tail of a linked list, with sequential execution time O(N2). However, because 

the values inserted are random the expected sequential execution time is O(NlogN). 

Nodes may be inserted in parallel, provided the earlier node in the virtual order does not 

fall on the path through the tree to the insertion point of the second node. Normally lock­

ing would have to be done on the nodes to ensure that parallel insertions are independent. 

The speculative control in the WarpEngine eliminates the need for locking by speculatively 

inserting nodes in parallel, and detecting any dependencies and re-executing them. This 

eliminates the false dependencies between insertions and gives an expected parallel execu­

tion time of O(logN). In the worst case the insertion pipeline would be N stages giving 

O(N) parallel execution time. Thus, in both worst case and expected case the parallelism 

is O(N). 
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A VL binary tree insertion 

AVL binary tree insertion [Lewis and Denenberg, 1991] maintains a balanced tree. This 

gives amortized insertion time O(logN), and sequential execution time O(NlogN). Toe 

same problems with naive insertions arise when trying to schedule insertions in parallel. 

With AVL the number of possible data dependencies in any search path increases because 

the internal nodes get rotated to maintain a balanced tree. 

Traditionally, when inserting in parallel a lock would have to be placed on the root node to 

allow the rotations that may occur to operate correctly. The lock is freed when the insertion 

is complete and any associated nodes have been processed. This locking of the root node 

would serialize computation removing most of the opportunities for parallelism. 

However, many of the rotations that occur will not affect the nodes near the root, so some 

searches can be performed in parallel without being rolled back. In the WarpEngine paral­

lelism may be obtained through speculative insertions to data independent parts of the tree. 

This parallelism is hard to detect without knowledge of the data inserted making complexity 

analysis difficult. 

4.3.4 Recursion 

The recursive Fibonacci number generation algorithm was originally included to show that 

the WarpEngine can be programmed to perform recursive routines. It is computationally 

inefficient, but does map well to the WarpEngine's tree-structured control mechanism. 

The large amounts of available parallelism are useful in exercising the resource allocation 

and selective speculation techniques developed later in the thesis. 

Recursive Fibonacci number generation 

Recursive Fibonacci number generation calculates the Nth number in the Fibonacci se­

quence using a recursive process. Each call of the fib() routine sums the results of two calls 

to itself with successively smaller parameters, giving a sequential execution time of 0(2N). 

Like quicksort, the problem is divided into smaller independent problems at each recursive 
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call, suggesting that parallel scheduling can be used. The summation of the returned values 

introduces a sequential dependency path of length N. This gives a parallel execution time 

of O(N) and parallelism of 0( 2; ). 

4.4 Compilation 

A compiler has not been developed for the WarpEngine instruction set at this stage, and 

is beyond the scope of this thesis. The block structured architecture and tree structured 

execution mean that substantial work would be required to modify an existing compiler, 

targeted at a contemporary architecture, for the WarpEngine. 

Neefs et al. [ 1997] discuss the difficulties encountered in compiling for block structured 

architectures due to the constraints imposed on instruction placement in blocks. The chief 

difficulties include the fixed maximum size of a block and the restrictions on register usage 

both between blocks and within a block, caused by single assignment. The paper presents 

a plausible approach to compiling for fixed length block structured architectures. Many of 

these issues are similar to those faced in compiling for VLIW architectures [Biglari-Abhari 

et al., 1998]. 

Mapping the program onto the tree structured control mechanism allows scope for opti­

mization, as shown in Section 3.2.2. However, achieving the most efficient tree structure in 

some cases requires deep knowledge of the algorithmic behaviour that would be unrealistic 

for a compiler. The standard loop and branch structures could be generated using standard 

code libraries to map them onto the tree. 

Due to the experimental nature of the WarpEngine instruction set and the size of the task it 

was deemed impractical to build a compiler at this stage of the project. Instead the suite of 

test programs was manually compiled from C code. Care was taken, however, to restrict the 

process to operations which would be feasible for an automated compiler. The C code for 

the test suite can be found in Appendix B, with the corresponding assembly code available 

in [Littin, 1999]. 

Littin [2000] performed some investigation into different control tree structures for loops 

and found that a structure maximizing the fanout of frames generally gave the best perfor-
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mance. This structure has been used in all test programs in this thesis. Like Littin's studies, 

the WarpEngine simulated here generates up to four children from each block. The number 

of instructions in each block is maximized, although no loop unrolling is done. 

Not all algorithms are simulated using the virtual order control mechanisms described in 

subsequent chapters because some of these techniques require compiler support. It is not 

practical to do this manually for the entire test suite, so a subset of the test programs with the 

most relevant features have been selected. This process is described further in the relevant 

sections. 

Compiler techniques for use with architectures like the WarpEngine are an interesting area 

of ongoing research. 

4.5 Summary 

This chapter has outlined the simulation test-bench used throughout this thesis. The virtual 

order simulation paradigm is a novel technique especially suited to high level simulation 

of speculative architectures. Virtual order simulation provides a computationally efficient 

simulation model for speculative execution by considering each instruction only once. Ex­

tensions have been introduced to extract further execution details arising from transient ex­

ecution and limited resources. This simulation method has previously been used in prelim­

inary studies of the WarpEngine architecture core and is extended in the following chapters 

to explore the design decisions in creating a realizable virtually ordered memory system. 

A hand compiled suite of test programs has been devised which represents the different 

classes of computation commonly found in programs. Theoretical complexity measures 

have been presented for these algorithms and are used in later chapters for comparison 

against the simulation results obtained. 

In high level studies of this nature there will inevitably be simplifications and assumptions 

made about some of the architectural features used. Certain common architectural features, 

such as pipelining and branch prediction have been omitted from both the WarpEngine 

simulation model and the reference sequential architecture. Perfect instruction scheduling 

has been assumed in order to provide an upper performance bound. This is the most obvious 
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example of complex real time interactions that are idealized in the virtual order simulation. 

To properly capture these interactions real time simulation is necessary. 

The virtual order simulation model is used throughout the rest of this thesis to extend the 

WarpEngine model to explore different methods of controlling speculation. This culminates 

in the simulation of a virtually ordered memory system. 
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5.1 Concept 

Chapter 5 

Explicit Virtual Timestamps 

There are a number of situations in which the WarpEngine must be able to determine the 

strict virtual order of frames. When a read request is made to memory the value returned 

should be the one most recently written to that address. When a write is made it must cause 

the rollback of any reads later in the virtual order and cause them to be re-executed using 

the newly written value. Any reads with another write between them and the new write in 

the virtual order should not be re-executed. When frame resources are exhausted the latest 

frames in the virtual order are cancelled back to create space for earlier frames. 

One possible way to determine the virtual order of frames would be to order the frames in 

hardware, in much the same way that moder.1 superscalar processors use a reorder buffer 

(see Section 2.4.3). Figure 5.1 shows a hardware ordering of memory operations in a buffer, 

with a read and write being inserted in their places in the virtual order. The read (a) searches 

to the left to find the previous write, with the value 1, which is returned. The write with value 

5 in (b) supersedes the value 0, which was returned by the read in the slot to the right and 

must be re-executed. The write with value I means that no further reads are affected. 

The WarpEngine may require thousands of frames to be ordered, with the capability to insert 

frames in the middle of the sequence, which would stretch the limits of a centralized ROB. 

The memory system would require a similar hardware ordering of the multiple versions 

stored at each address, and this is more problematic. A novel hardware structure for this 

purpose is proposed in Chapter 8. 
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Figure 5.1: Returning the correct value from a read request and rollback due to a write 

A conceptually straightforward way to approach virtual ordering is to tag each frame, and 

its memory operations, with a number representing its position in the virtual order. In 

the Time Warp literature the tag is known as a timestamp since it represents simulated 

time. In the WarpEngine it simply represents the causal ordering of the instruction, so 

it is called a virtual timestamp (VTS) to avoid confusion. The VTSs of two frames can 

be compared without regard for other frames to determine causal ordering. This provides a 

decentralized method of determining ordering between frames and memory operations, with 

the possibility of scaling to large numbers of frames, more akin to a software technique. 

Figure 5.2 shows the same example as Figure 5.1, but storing the memory operations as a 

separate list, using integer VTSs to order the memory accesses, rather than position. Notice 

that hardware slots do not have to be reserved for the memory operations and it is not 

necessary to keep the list in order, although this aids efficient searching. 

In the next two chapters several alternative VTS representations are described and investi­

gated with respect to their feasibility as methods for tracking the virtual order of instructions 

in the WarpEngine. 

Initially a naive approach is taken in order to keep the VTS allocation mechanism as simple 

as possible. The trade off is that a simple allocation mechanism is likely to be faster to 

execute, but result in poorer allocation efficiency. So while individual operations are faster 

overall execution may be slower because the VTS supply is exhausted more quickly and the 

VTSs have to be reallocated to allow execution to continue. 

The length representation is a very simple method of allocating ordered bit strings to frames 

as VTSs. This assumes a balanced execution tree for efficient allocation of VTSs. Typically 
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this is not the case and many available VTSs are not allocated to frames. This requires 

reallocating the VTSs frequently to maintain a supply of available VTSs. 

To improve allocation efficiency the exponential representation tries to more closely match 

the observed execution tree shape by allowing the left side of the VTS tree to be deeper than 

the right. The shape of the VTS tree is still fixed and relies on the execution tree matching 

this closely for good allocation. 

In Chapter 6 more advanced analysis of the execution tree shape is introduced at compile 

time. A variable range of VTSs are allocated to each subtree, according to its estimated 

requirements. Although the exact shape of the execution tree cannot be determined until 

nm time, greatly improved allocation efficiency is achieved by compile time analysis. Since 

this analysis is done at compile time the only runtime overhead introduced is in decoding 

and using the analysis results for VTS allocation. 

Including additional instructions in the program to calculate VTS requirements dynamically 

for structures such as dynamically bounded loops further improves the allocation efficiency 

at the expense of increasing the instruction count of the program. 
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Figure 5.2: Returning the correct value from a read request and rollback due to a write using 
VTSs 
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S.1.1 Requirements 

The purpose of the VTS is to provide a method of determining the program (or virtual) 

order of speculative memory accesses, which may occur in any real order. This is important 

so that the correct value is eventually returned from a read, whether it was available when 

the request was originally satisfied or not. 

The time-space cache contains an entry for every memory access (reads and writes) to­

gether with the VTS of the frame that initiated the access. This requires many VTSs to be 

stored in the time-space cache, so it is important that the number of bits required is kept 

to a minimum. However, the situation is not as bad as it first seems because once frames 

become non-speculative they no longer require a VTS, since all earlier frames have com­

pleted execution. In fact, they are no longer required in the time-space cache, and can be 

committed to main memory. Access to this non-speculative data can be handled using the 

usual techniques if (and only if) no speculative match is found. This substantially reduces 

the required size of the time-space cache. The resources used by the committed frame, 

including its VTS, can be made available for reuse by other frames. 

Timely commitment of frames once they become non-speculative minimizes the number of 

active VTSs in the system at any given time. However, there are certain practical difficul­

ties in committing VTSs efficiently in the decentralized environment of the WarpEngine. A 

frame is only non-specuiative if there are no earlier frames currently executing (although 

there may be earlier uncommitted frames). Determining the latest non-speculative frame 

(GVT) requires knowledge of the state of all frames in the system, either through a cen­

tralized record (which could form a bottleneck), or through a distributed communication 

system. This practicality is not examined for the software based schemes in this chapter 

and the next. However it has been exknsively studied in the Time Warp literature [Bellenot, 

1990; Fujimoto and Hybinette, 1997; Lin and Lazowska, 1990], where it is known as fossil 

collection. Preliminary discussion of commitment can be found in Chapter 8 for the twisted 

memory time-space cache. 

Since each speculative memory access will require comparing several VTSs comparisons 

must be fast, although this is not necessarily crucial because, by definition, speculative 

operations are unlikely to be on the critical path. It is more important that the mechanism 

for comparison is resource efficient. There are likely to be many memory accesses in flight 
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in parallel, so the mechanism will have to be replicated many times. 

A block cannot begin executing until it has been assigned a VTS. For this reason VTS 

generation needs a low latency, or it risks slowing the execution of blocks, limiting the 

number of instructions in flight and ultimately reducing the parallelism extracted. 

An effective scheme must be able to efficiently represent a large number of VTSs. There 

are a potentially unbounded number of frames used in the execution of a program, since 

physical frames may be used many times. Added to this is the need to insert an arbitrary 

number of VTSs between any two adjacent VTSs. This allows dynamically bounded loop 

structures to be executed in parallel with following control independent code. The code in 

Figure 5.3 will generate the execution tree shown in Figure 5.4. The number of iterations of 

the while loop (shown by nodes marked A and B) is unknown at the time node C is created 

in parallel with the first iteration. All iterations of the while loop must have a VTS earlier 

than C. 

while {A) 
B; 

C· 
' 

Figure 5.3: Code for a while loop and later independent code 

- program order---+ 

Figure 5.4: Execution tree for a while loop and later independent code 

Any finite length VTS representation has the potential to be exhausted, if no VTSs are 

available for allocation at the appropriate place in the virtual order. There are two situations 

in which this can occur: at the end of the virtual sequence; and between two VTSs within 

the virtual order. In the former case there are simply not enough VTSs in the representation, 
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allowing for some inefficiency in allocation, to represent all the frames in the program. 

In the latter case insufficient VTS space has been reserved for a subtree when the VTS 

for the start of the next subtree was assigned. All practical representations must have a 

way to recover from the exhaustion so that execution can continue to completion. The 

VTSs assigned to frames that have been fossil collected are available to be reused by other 

frames. However, by definition they are located at the beginning of the virtual order, while 

the frames awaiting VTS allocation are in the middle or at the end of the virtual order. 

The VTSs currently in use must be reallocated to make unused VTSs available at the right 

place in the virtual order for allocation to new frames. The only restriction is that all active 

VTSs (i.e. those which have not been fossil collected) must retain the same relative ordering. 

Conceptually, this means reallocating the early, unused VTSs to the active frames earliest in 

the virtual order, freeing their VTSs for allocation to new frames. We refer to this process as 

rescaling the VTS tree. Several methods for rescaling fixed length VTS trees are examined 

in Section 5.4. The performance of each method is a trade off between the speed of rescaling 

and the efficiency of the allocation in the rescaled tree. A more efficient allocation will 

require rescaling to be done less often. 

Just as cancelback is used in Time Warp to free resources to allow simulation to progress, 

it can be used to free VTSs in the WarpEngine. If rescaling cannot supply VTSs to al­

low execution to progress, cancelback can be used to reclaim VTSs from frames latest in 

the virtual order. These can then be used for earlier frames and the cancelled frames can 

be restarted when there are sufficient VTSs available beyond those needed by the active 

subtree. Cancelback should be used sparingly because it requires discarding substantial 

amounts of potentially correct speculative execution. 

5.2 Symbolic Representation 

The greatest difficulty in generating VTSs for general purpose computation is allocating 

an arbitrary number of VTSs between any pair of existing VTSs. Back and Turner [1995) 

suggest that this can be achieved by representing the VTSs (which they refer to as time­

stamps) as real numbers, since there are infinite real numbers between any arbitrary pair. 

An equivalent way of conceptualizing this is as a string representing the path from the root 
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of the tree to the node. In a binary tree each time a left branch is taken a 'O' is appended to 

the string and a ' l' is appended for a right branch. VTSs vary in length, getting longer the 

deeper in the tree a node is, so a terminator is needed, represented by the symbol .6.. The 

simple lexicographic comparison .6. < 0 < 1 can be used to determine the relative ordering 

of any two VTSs, preserving the pre-order left to right traversal of the tree. A three level 

binary tree is assigned VTSs using this method in Figure 5.5. 

Figure 5.5: Conceptual VTSs for a binary tree 

Variable length VTSs, however, would be troublesome to implement in hardware, fixing the 

length to a constant word size, say 32 or 64 bits, would be much more convenient. Variable 

length VTSs could also grow to become extremely long in the execution of a large program, 

which would consume an impractical amount of bandwidth and memory. 

Fixing the maximum length of the VTSs effectively fixes a maximum depth on the tree. In 

the symbolic representation in Figure 5.5 a 32 symbol VTS would limit the tree to 32 levels 

(the .6. at the root, and one symbol for each successive level). If the actual execution tree is 

deeper than that, some VTSs must be fossil collected and reused by rescaling the VTS tree. 

5.3 Fixed Length VTS Schemes 

Three different VTS methods-length, exponential and ideal VTS representation-are pro­

posed in the remainder of this chapter and evaluated through simulations. Although the 

WarpEngine uses a four-way execution tree, for simplicity the representations are described 

here using a binary execution tree. As shown in Section 3.2.2 a four-way tree can be trivially 

mapped onto a binary tree, using every second level as intermediate splitting nodes. 
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s.3.1 Length Representation 

The main difficulty with the symbolic VTSs described in Section 5.2 is their variable length, 

making them awkward to implement in hardware. By representing them as a uniform length 

string and treating them as integers, rather than bit strings, they can be more easily manip­

ulated for construction, comparison and rescaling. 

The bit string VTS can be converted to a uniform length integer by padding the bit string to I 

bits with zeros and then appending the original length of the string (without the terminating 

D.). The number of bits needed for the length, L, is 1log2 Il. 

Some integers remain unused in this representation (those corresponding to the contradic­

tory long string of bits with a short length count appended). Table 5.1 shows the division 

of different sized length representations and the number of levels of nodes they can repre­

sent. Figure 5.6 shows the tree for a four bit length representation VTSs, with the string 

and length indicator separated by a comma. An unused representation in this example is 

'01,00'. Likewise, 'O 1, 11' is an unused representation in a four bit length repr~sentation 

VTS, since the maximum string length is two symbols and the length indicator '11' repre­

sents a length of three symbols. These unused representations mean that only seven out of 

the fifteen possible four bit integers are used. This inefficiency means that less frames can 

be allocated VTSs, and thus be in flight, concurrently than if the whole integer space was 

used. 

The relative order of two VTSs can be determined by comparing the integers-the lower 

integer is the earlier VTS. Section 5.4 discusses some possible rescaling techniques for use 

with the length representation in detail. 

This naive representation is attractive for its simplicity. Generation and comparison opera­

tions are simple arithmetic operations which can be done quickly and cheaply in hardware. 

However, it assumes the execution tree will be balanced, with frames occupying every pos­

sible position in the tree. If this is not the case the allocation will be wasteful of VTSs. 
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Figure 5.6: VTSs in length representation 

5.3.2 Exponential Representation 

VTSs can be allocated to a program more efficiently if the VTS structure maps well to the 

execution tree shape. This will resu!t in less of the VTS space being wasted on tree locations 

which aren't filled by a frame. One approach is to allocate shorter VTSs to the positions 

in the tree most likely to be filled, and use longer VTSs if necessary for the rarely used 

locations. This allows greater tree depth before exhaustion in the most likely cases. 

Examining the code for the suite of test programs, the majority of frames issued are naturally 

in position zero (the leftmost in the tree of the four possible children of a frame, known as 

child zero), as shown Figure 5.7. This depends to a large degree on the way loops are 

structured (see Chapter 3). To use child zero as much as possible the compiler can attempt 

to assign child zero as a frame which executes unconditionally, or with a high frequency. 

Sometimes this may be impossible due to semantic constraints on the virtual order of the 

program. 
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This suggests that there is potential for VTSs to be optimized to allocate the most frequent 

case, child zero, more efficiently at the expense of efficiency for other child numbers. The 

exponential representation is an attempt to do this using a scheme similar to floating point 

number representations to allow different parts of the tree to grow to different depths. It is 

comprised of two parts: a mantissa and an exponent. The exponent is the number of leading 

zeros in the VTS, while the mantissa is the normalized tail of the VTS. In the example in 

Figure 5.8 the VTS 0010b. becomes 2, lOb., where the number to the left of the comma is 

the exponent and the binary string to the right of the comma is the mantissa. 

0,1.6. 

5 c-----c,, 
O,JOA.··. 

Figure 5.8: VTS in exponent representation 

A complete exponential representation requires the mantissa to be coded using the length 

representation above. Using this representation, the left-most path from the root of the tree 

can grow to (2E + I) levels for a representation that uses an E bit exponent and where I 

is the length part of the mantissa. Moving to the right, the depth of the paths decrease until 

reaching the right-most path where the maximum depth is I+ I levels. The proportions in 

which a VTS is divided into exponent and mantissa are the subject of optimization based 

on workload characteristics. Table 5.1 shows number of levels attainable using the expo­

nential representation, compared with the length representation using an arbitrarily chosen 

exponent size. The VTS sizes span the range used in the simulations in Sections 5.3.4 and 

5.4.3. 

The exponential representation favors less speculative execution , since nodes that are early 

in the virtual sequence, on the left side of the tree, can have longer strings and so will not 

exhaust the maximum depth as often. Thus the number of rescale, and possibly cancelback, 

operations can be reduced. This has two additional advantages, first, by delaying execution 
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Total size (bits) Length representation Exponential representation 
(l,L) Number of levels (E,l,L) Number of levels 

Max Min 
32 (27,5) 28 (16,12,4) 65548 12 
64 (58,6) 59 (32,27,5) (232 + 27) 27 
96 (89,7) 90 (32,58,6) (232 + 58) 58 

Table 5.1: Number of levels which can be represented by different sizes of length and 
exponential representation VTS 

of nodes to the right of the tree, which are more speculative, it helps balance the overall 

execution. Second, a compiler can take advantage of the representation by scheduling more 

computation to the left of the tree. Provided the compiler can schedule the critical parts of 

the execution to the left of the tree, execution can progress for much longer without needing 

to rescale using this representation. If the VTSs are exhausted by more speculative nodes, 

they can be stalled while the less speculative nodes continue executing. Eventually the 

VTSs will have to be rescaled, but the later rescale will free a larger number of VTSs and 

provide a more efficient reallocation because GVT has advanced further. The stalled nodes 

may even be rolled back before the rescale is performed. 

Comparison of two VTSs is more complex for this representation. Generally a VTS with 

a larger exponent is earlier in the virtual sequence, but any VTS with only a zero length 

mantissa will be earlier than a VTS with a longer mantissa. Hardware implementations will 

have a greater ability to optimize this operation, but it will still be complex. 

5.3.3 Ideal Representation 

In order to show the restrictions placed upon execution by the VTS schemes we also simu­

late execution with VTSs of unbounded length, which are never exhausted and never require 

rescaling. Since there are always more VTSs available at any location of the tree the fossil 

collected VTSs never need to be reused. This is equivalent to having complete knowledge 

of the execution tree prior to execution and tagging each event in the virtual sequence with 

an integer corresponding to it's position. If perfect allocation is possible the largest of these 

integers corresponds to the number of VTS necessary to execute the program. The length in 

bits of this integer represents a minimum bound on the size of VTS required to execute the 

program without rescaling and can be calculated by f log2Nl, where N blocks are executed. 
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5.3.4 Minimum Size VTSs 

Simulations were performed to establish the minimum length required to avoid VTS ex­

haustion for each test algorithm. For the exponential representation an arbitrarily fixed 8 bit 

exponent was simulated, while the mantissa was kept to a minimum length. It isn't possible 

to measure the minimum necessary length of both the exponent and the mantissa, since the 

mantissa is used to record leading zeros once the exponent is exhausted. The total VTS 

lengths are compared, since bits could be taken from the exponent to use in the mantissa for 

the same storage and bandwidth requirements. Figures 5.9 to 5.11 and C.1 to C.3 show the 

length of VTS required to execute a variety of test programs without rescaling. 
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Figure 5.9: Minimum VTS length necessary to execute AVL tree insertion without rescaling 

The length representation only approaches the theoretical minimum for very small problem 

sizes. As the problem sizes get larger they quickly diverge. The test programs used here are 

small by comparison with real world programs where the length representation necessary 

to execute without rescaling is likely to be even larger. 

Fibonacci number generation (Figure 5.10) is the only algorithm which requires shorter 

VTSs using the exponential representation than the length representation. Even then it is 

only shorter by one bit in two of the problem sizes (5 and 10) and the same length in 
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Figure 5.10: Minimum VTS length necessary to execute Fibonacci without rescaling 

all others. This results from the very small and simple CFG, with only five nodes, and 

every non-leaf node is guaranteed to have a child in position zero. In all other cases the 

exponential scheme requires a VTS 8 bits longer than the length representation-the length 

of the exponent. The exponent has had no effect on reducing the length of VTS needed. 

Other exponent sizes show similar results. The minimum size exponent VTS is usually the 

minimum size of the length VTS plus the size of the exponent, independent of the exponent 

size. 

The effectiveness of the exponent is reduced as soon as the longest path is not the left-most 

branch of the tree. The earlier it diverges from the left-most branch the less benefit is derived 

from the exponent. If l'1e bits used for the exponent were transferred to the mantissa the 

whole tree would benefit uniformly with extra potential depth, albeit not as much as the left 

branch does with the exponent. However, this doesn't necessarily mean that the exponent 

provides no benefit. In Section 5.4.3 we compare the execution speedup obtained using the 

different representations. 

The difference from the theoretical minimum size represents wasted VTSs. Any node with 

only two out of four children utilized leaves half of that subtree's VTS space permanently 

unused. Dynamic execution tree plots show that the execution trees tend to be sparse, with 
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Figure 5.11: Minimum VTS length necessary to execute quicksort 1 without rescaling 

a small number of long branches. The minimum VTS length required is determined by the 

longest branch. 

5.4 Rescaling VTSs 

In Section 5.1.1 we discussed the need for reusing fossil collected VTSs when the VTS 

space has been exhausted in some part of the tree. This process is known as rescaling the 

VTS tree. Implementing VTS rescaling requires consideration at two levels: global opera­

tions on the tree and local manipulation of individual VTSs. Major concerns for the global 

operation are the extent to which the local manipulation of VTSs can occur in parallel and 

whether computation can continue while rescaling is in progress. It is not only the VTS 

attached to the frame that must be altered in rescaling. Each time-space cache entry has a 

VTS associated with it which must be updated, and any memory accesses in-flight at the 

time of rescaling must still match with the appropriate time-space cache entries after rescal­

ing. The time taken for local manipulation will have a major influence on total rescaling 

time, since it is anticipated there will be a large number of VTSs. 

When the VTS space becomes exhausted the tree can be rescaled immediately, or it can 
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be delayed. While rescaling immediately allows the speculative execution at the exhausted 

point to continue as soon as possible, it may be disadvantageous in some situations. The 

exhaustion may be caused by a transient frame, that is one which is created speculatively, 

but is rolled back and ultimately does not commit. In this case the rescale is wasted and will 

delay other execution paths unnecessarily. In other cases a frame, particularly one which is 

speculatively distant, may eventually commit, but be off the critical execution path when it 

first exhausts the VTS space. This commonly happens with a frame which is speculatively 

executed, and rolled back and re-executed with new data. This frame may not be hindered by 

delaying rescaling since it is restarted anyway, and a more efficient rescale may be possible 

if GVT is allowed to progress further. These two cases suggest it would be useful to have a 

heuristic to delay rescaling when the exhaustion point is speculatively distant, which is also 

more likely to be a transient frame. 

Virtual order simulation can select the optimal time to rescale the tree because it processes 

the frames in virtual order, and does not generate transient frames. Virtual order processing 

identifies exhaustion from frames early in the virtual order first and uses that as the trigger 

for rescaling. Exhaustion points later in virtual time will be delayed and benefit from the 

previous rescale, rescaling again if necessary. This gives optimistic results for rescales 

which will suffer under less efficient methods used in real order processing. 

In this section we present some methods of rescaling the VTSs. Root rescaling is the sim­

plest form of rescaling, performing the same operation on every active VTS, while moving 

head rescaling attempts to speed up rescaling by performing a single global operation to 

rescale all VTSs. 

5.4.1 Root Rescaling 

Root rescaling consists of finding a node whose subtree contains all the speculative and 

currently executing nodes, i.e. all those not fossil collected, making that node the root of the 

VTS tree, and adjusting the VTSs to reflect this. 

Figure 5.12 shows an example of root rescaling using the symbolic VTS representation 

with at most three symbols (including the terminating .6.), when a new node (node 8) is to 

be added to the tree. In this example all nodes shaded with cross hatching have been fossil 
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collected, so their VTSs can be reclaimed for reuse. This can be achieved by backtracking 

up the tree from node 6, which is at GVT, until a node is found which has all currently active 

nodes in its subtree (node 3) and making this the new root of the tree. The VTSs for all the 

nodes remaining in the tree can then be reallocated using the original reallocation method. 

New timestamp 
to be allocateJ 

(a) Execution tree before rescaling (b) Execution tree after rescaling 

Figure 5 .12: Root rescaling of an execution tree 

If the root node is the only node which contains all the active nodes in its subtree the only 

way to release VTSs for reuse is to cancelback the right branch nodes at one or more levels 

and rescale the subtree containing the rest of the active nodes. For example in Figure 5.13 

it is not possible to rescale the tree because the root node has a right child that does not 

contain GVT in its subtree. A solution is to cancel node 3, allowing rescaling to provide 

space to create node 8. For all finite representations investigated, rescaling with cancelback 

is sufficient to permit forward progress. If necessary GVT could be allowed to advance to 

the leaf of the tree while all other nodes are cancelled back. 
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(a) Execution tree requiring cancel operation 
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(b) Tree after cancelback operation and rescaling 

Figure 5.13: Cancelback and root rescaling in an exhausted execution tree 

The most problematic part of the rescale is identifying the rescale node, because the VTSs 

are not stored as a tree, and the frames (and associated VTSs) early in the virtual sequence 
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will already have been fossil collected. The appropriate time to calculate this is as part of 

GVT calculation, which must periodically inspect all the active VTSs in the system. 

Once the rescale node has been identified each VTS in the system must be reallocated 

individually. VTSs may be rescaled in parallel, which will speed the operation, although it 

will still have to propagate throughout the system. 

The local rescaling operation is straightforward for the length representation, with the two 

parts of the integer being operated on separately. The string part is left shifted and the 

length is decremented. Logic to rescale an individual VTS can be attached to each frame, 

and then it is a matter of propagating the number of levels to rescale to all frames. A similar 

operation is performed on every entry in the time-space cache to ensure the VTSs are kept 

synchronized with those in the frames. 

For the exponential representation the global operation is the same, except that VTSs with 

non-zero exponents must first have the levels subtracted from the exponent. Any remaining 

rescaling levels after the exponent reaches zero are then removed from the mantissa in the 

same way as for the length representation. 

Maximum level root rescaling 

Maximum level rescaling reclaims the maximum number of levels possible without delaying 

execution. This means choosing as the rescale node the node which is the most levels down 

the execution tree, while still containing all the active nodes in its subtree. Only fossil 

collected nodes can be removed from the VTS tree during rescaling, so it is often possible to 

rescale further by waiting for GVT to advance. A frame to the right of the branch containing 

the exhausted VTS will prevent the rescaling node being selected any further down the tree 

without using cancelback. If the deepest possible rescale node is the root of the tree, then 

the node at the first level below the root on the path to the exhausted node is chosen as the 

rescale node and its right siblings are cancelled back. The rescale node is made the root of 

the tree and all the VTSs are adjusted accordingly. 
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N level root rescaling 

If GVT progresses slowly maximum level rescaling will entail a large number of small 

distance rescales. This will be inefficient when rescaling costs are taken into account. 

N level rescaling always reclaims a fixed N levels of the VTS tree, even if this involves 

delaying until GVT has advanced sufficiently, leaving levels of fossil collected nodes in the 

tree or canceling back nodes to the right. The hope is that this will allow a more efficient 

rescaling operation by fixing N to a constant, amortizing the cost of the rescale over several 

levels, and that the number of single level rescales can be reduced without unduly affecting 

performance. The optimal rescaling distance must be determined empirically. N level re­

scaling can also be used to force single level rescales, so that the minimum number of levels 

is rescaled that allows all nodes to be assigned VTSs. 

When a rescale is required the simulator simply progresses N levels down the branch to the 

currently executing node and chooses that node as the rescale node, rescaling it to the root. 

This may result in a time penalty while the execution of the node at the exhaustion point is 

stalled until GVT reaches the rescale node. Any nodes to the right of the rescale node are 

cancelled back. 

5.4.2 Moving Head Rescaling 

A major drawback of the root rescaling scheme is that it requires every VTS in the tree to 

be examined and modified-a time consuming process, and liable to require a large amount 

of hardware to do in parallel. This is particularly problematic for VTS s attached to in-flight 

operations, and may require execution to be halted during root rescaling. 

A technique to reduce the cost of rescaling is based on the observation that when root 

rescaling occurs in the length representation, the same bits are removed from the front of 

each VTS being rescaled. To take advantage of this a global index (the head index), which 

defines the start of all VTSs in the system, can be used. Rescaling only requires this single 

global variable to be altered. The bits in the VTS wrap around, so that no precision is lost 

when rescaling, as shown in Figure 5.14. Each VTS has its own tail index to terminate it 

because after the head has been moved no assumptions can be made about the value of the 
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unused bits. The tail index is an alternative way of representing the length indicator, both 

record the number of significant bits in the VTS. 

C ) 

t t 
tail index head index 

Figure 5.14: Moving head VTS representation 

The local rescaling operation described for root rescaling is the same for moving head re­

scaling, except that it is only necessary to alter the single, global head index as shown in the 

example in Figure 5.15. Note that it is not necessary to perform any direct manipulation of 

the VTSs themselves and hence the global time taken to rescale is greatly reduced. 
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(b) Execution tree after rescaling 

Figure 5.15: Rescaling the moving head representation 

The main advantage of this representation is that the cost of rescaling has been significantly 

reduced as only the head index has to be altered. The moving head does require that the 

new value of the head be broadcast to all parts of the system but this can be done as part 

of other activities such as broadcasting values of GVT. Additionally, in-flight VTS s do not 

need to be individually located, since changing the head index will affect all VTS s equally. 
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s.4.3 Speedup 

To compare the length and exponential VTS schemes four different configurations were 

simulated for each of the algorithms available. The configurations consisted of: 

1. The length scheme with a base size of 32 bits. 

2. The exponential scheme using the basic 32 bits for the mantissa and an additional 32 

bits for the exponent. 

3. The length scheme using 64 bits, the same total number as the exponential scheme 

above. 

4. Ideal VTSs. 

The difference between the first two configurations shows the additional parallelism ex­

tracted by adding an exponent to the length representation VTSs. The difference between 

the second and third configurations show the relative advantage of using the extra bits as 

an exponent, or increasing the bits available to the length representation. Ideal VTSs are 

included to show whether the VTS length is constraining the performance of the system. 

Rescaling is assumed to take place instantaneously. This is an optimistic assumption de­

signed to test the upper bound performance of the VTS scheme. The simulations in this 

section use the minimum amount of rescaling necessary for execution to complete with 

the stated VTS size and allow the earliest possible rescheduling of cancelled nodes. This 

corresponds to I-level root rescaling, since rescaling is instantaneous there is no benefit in 

combining the cost of multiple rescales into one operation. Rescaling does delay execution 

when it is necessary to wait for GVT to progress to reclaim more VTSs. 

Figures 5.16 to 5.18 and C.4 to C.6 shows graphs of simulated speedup over a range of 

problem size for each of the test programs using the four VTS configurations. 

The simulator makes a number of optimistic assumptions, including zero latency rescaling, 

and unlimited bandwidth. Still, the speedup quickly diverges from the results for ideal VTSs 

and, in some cases, drops to levels comparable to current production architectures. Good 

speedup is achieved for some of the test programs, such as matrix multiply, Gauss-Jordan 

and Fibonacci, but these test programs are small and easily parallelizable. 
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Figure 5 .16: Comparison of speedup for AVL tree insertion with exponent and length VTSs 
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Figure 5.17: Comparison of speedup for Gauss-Jordan with exponent and length VTSs 
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Figure 5.18: Comparison of speedup for matrix multiply with exponent and length VTSs 

The 32 bit length VTSs show an unacceptable restriction in the speedup gained when com­

pared with the ideal VTSs in all test programs. While the 64 bit length VTSs show signif­

icant improvement over the 32 bit and the exponential VTSs, only AVL and Gauss-Jordan 

remain close to the ideal for larger problem sizes, and even they begin to diverge. These test 

programs are small and it is likely that larger benchmarks would follow the trend shown by 

the larger problem sizes and diverge widely from the ideal. 

Adding a 32 bit exponent to use the exponential scheme provides little gain over the 32 bit 

length representation. Despite the relatively large proportion of children (more than 60% in 

most cases) generated as the left-most child, there are few long chains of children on the left­

most branch. Often the earliest events in the virtual sequence (and hence the furthest left) are 

initialization procedures, which are usually brief. Also, the top level of loop structures tend 

to have a high fan out in an effort to extract large amounts of parallelism. Thus, the exponent 

often cannot be used to replace leading zeros in the VTS, at least until rescaling is done 

to place the nodes on the left-most branch. The exponential representation gives inferior 

performance on all tested workloads compared with the same size length representation. 

Using ideal VTSs the speedup generally increases with increasing problem size, as one 

would expect. With the other schemes, however, the speedup generally decreases as the 
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problem size gets larger. This is caused by increasingly long, thin branches in the execution 

tree of larger problems, which force delays until GVT can progress and allow fossil collec­

tion to release VTSs for rescaling to take place. This also forces more cancelback and the 

attendant delays. 

The long thin sequential paths, which typically make up the execution tree, mean that the 

tree is sparsely populated and generally only a small proportion of the total number ofVTSs 

have been used when the tree is exhausted. For a 32 bit length representation, there exist 

8.95 x 107 unique VTSs without rescaling. A 100 item insertion into an AVL tree uses only 

7380 VTSs, yet rescaling is done 325 times. A 20 x 20 matrix multiply uses 32819 VTSs, 

but requires 255 rescales and using quicksort to sort a 20 element list uses 7513 VTSs and 

303 rescale operations. This gives an indication of how sparsely filled the tree is. When 

the tree layout is examined it can be seen that there are many long, thin sequential paths, 

causing many levels to be used up for a small number of blocks executed. 

Practical rescaling 

The speedup results when assuming ideal rescaling are sufficiently poor to rule out the naive 

length and exponential VTS representations as practical VTS schemes for the WarpEngine. 

For this reason simulations utilizing root and moving head rescaling with realistic laten­

cies are not pursued for these representations. The already poor results would be further 

degraded. 

The descriptions of the rescaling methods remain as examples of ways in which the func­

tionality of rescaling could be implemented. 

5.5 Summary 

l\vo fixed length VTS representation schemes, length and exponent representation, were 

proposed to provide a distributed means of tracking the virtual order of frames. Each scheme 

must be able to rescale the active VTS tree to allow old VTSs no longer in use to be allocated 

to new frames. 

The length representation is a naive scheme which represents the VTSs as integers, subdi-
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viding the VTS space evenly amongst all tree locations, regardless of whether or not frames 

ever fill them. The exponential representation is an attempted optimization based on the ob­

servation that the majority of children appear in the leftmost position. By allowing a deeper 

chain of children in the leftmost path it was hoped that computation would have to halt for 

rescaling less often. 

The minimum length VTS required to execute the test programs without rescaling was mea­

sured, and compared against the theoretical minimum length VTS. In every case, except 

Fibonacci, the exponential representation required a longer VTS than the length represen­

tation due to semantic constraints limiting the number of frames on the extreme left of the 

tree and the sensitivity of the representation to divergence from the desired pattern. The 

length representation required large VTSs, diverging widely from the theoretical minimum 

when the larger data sets for the test programs were used. 

Two different rescaling methods were described: root rescaling and moving head rescaling. 

Root rescaling is a naive technique, simply shifting the redundant most significant bits off 

all the active VTSs. This requires modifying all active VTSs and can easily reach the situ­

ation at which it can reclaim no more VTSs, leading to a potentially expensive cancelback. 

Moving head rescaling centralizes the rescaling operation by using a global index to indi­

cate the start of all VTSs in the system. Rescaling only requires incrementing the global 

head index. 

Simulation results are only presented for root rescaling one level at a time. This represents 

the performance upper bound, since rescaling is assumed to take place instantaneously. 

Adding an exponent to the length representation was shown to provide minimal performance 

increase, and it was always more advantageous to devote the increased VTS length to the 

basic length representation. 

The speedup measured for the length representation VTSs was disappointing when com­

pared to execution unconstrained by VTSs. When VTSs of a practical length are used they 

constrain the parallelism extracted umeasonably, to around the level of current production 

architectures. This is largely a result of the inefficiency of the allocation of VTSs. Many 

possible bit combinations are unused by the length representation. Many others remain un­

used during program execution because the shape of the execution tree does not match the 
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shape of the VTS tree. 

The length representation scheme is inadequate as a means of tracking the virtual order in 

the WarpEngine because it forms a severe performance bottleneck. 
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Chapter 6 

Variable Virtual Timestamp Ranges 

6.1 Concept 

In Chapter 5 it was shown that a large number of rescales are required to execute programs, 

even though the number of blocks in the program is several orders of magnitude less than 

the size of the VTS space. This suggests that there is scope for a dramatic decrease in the 

number of rescales if VTSs can be allocated more efficiently to frames. 

During execution each subtree is allocated a range of VTSs. In the VTS schemes in Chap­

ter 5 the range is fixed and implicit in the VTS. To allocate the VTSs more efficiently they 

can be allocated based on an estimation of the number that will be required by the subtree. 

This requires the ability to allocate a variable range of VTSs to a subtree. 

The lower and upper bounds of the range need to be determined and recorded to allocate a 

variable range of VTSs to a subtree. As in the fixed range VTS schemes, the lower bound is 

also the VTS for the frame in the variable range VTS scheme. The upper bound of a fixed 

range VTS is implicit in the VTS, falling immediately below the next VTS at the same tree 

level. Figure 6.1 shows equivalent VTS trees using the symbolic representation VTSs from 

Section 5.2 and the same tree with the upper bound explicitly stated below the VTS. Any 

subtree which has upper and lower bounds the same cannot allocate any further VTSs to 

child frames. Attempting to do so signals that the VTS tree is exhausted at that point, and 

rescaling is required. 

No length indicator is needed since the variable range VTS is simply a range of integers 
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Figure 6.1: VTS trees with implicit and explicit upper bounds 

represented by explicit bounds. This has the consequential advantage that, unlike length 

representation VTSs, all encodings form meaningful VTS, allowing more VTSs to be allo­

cated using the same number of bits. 

Explicitly stating the upper bound requires twice as much VTS storage space in the frame. 

However, in memory accesses and in the time-space cache only the VTS of the frame itself 

is needed (the lower bound of the subtree's range). Variable range VTSs will not increase 

the bandwidth or time-space cache storage requirements for the same size VTS. However, 

explicitly stating the upper bound of the VTS range to gain a more efficient allocation adds 

to the complexity of VTS construction and rescaling operations, as will be shown later in 

this chapter. 

6.2 Execution Tree Size Calculation 

Generally the size of a dynamic execution subtree cannot be determined statically, or even 

when the subtree is initiated at runtime, if it contains conditionally executed blocks or loops 

with a dynamic number of iterations. The key to allocating a variable range of VTSs ef­

ficiently is determining a tight upper bound on the number of frames, and hence VTSs, 

required in the subtrees. 

If the range allocated proves to be insufficient to provide VTSs for the whole, subtree re­

scaling will have to be done to allocate a larger range (which may include reusing fossil col­

lected VTSs). Since rescaling will impact performance, the WarpEngine allocates enough 

VTSs for the upper bound usage where possible, rather than allocating the number of VTSs 

most likely to be used and risking forcing rescaling. Wasting a small number of VTSs by al­

locating a larger than necessary range may force an early rescale because insufficient VTSs 
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remain for other subtrees. However, allocating too small a range will certainly cause VTS 

exhaustion within the current subtree and require a rescale. The tighter the upper bound can 

be made, the more efficient the allocation will be. 

Cycles in the CFG (formed by loops) may make it impossible to determine the exact number 

of frames to be used. While an estimate of the number of VTSs required can be made, large 

loops may cause the upper bound to be exceeded, or there may not be enough VTSs in 

the representation, in which case the system must be able to reallocate a larger range by 

rescaling. 

It is useful to instruct the processor to reserve a fixed number of VTSs for one subtree, and 

allocate all other available VTSs to another subtree. For example, in a loop such as the one 

shown in Figure 6.2 a subtree (iter) contains an iteration of the loop, while another subtree 

(cond) continues to the following iterations. If the loop is an inner loop the iteration will 

have an acyclic control flow, so the maximum number of frames used can be determined 

statically and used to allocate a fixed VTS range. All remaining VTSs in the range can be 

allocated to the remaining iterations, of which there may be an unknown number. 

B 
B 

Figure 6.2: Execution tree for a dynamically bounded loop 

In some cases compiler analysis of the tree size may suggest only that a very large number 

of frames are needed for a subtree. In this case anything more speculative than the subtree 

will probably be rolled back due to resource restrictions. Throttling speculation beyond this 

point will save the rollback overheads and reduce contention for execution resources. 
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6.2.1 Encoding 

Predictions of subtree size in the WarpEngine can be expressed in two formats, either as 

a number of frames or as a proportion relative to the other subtrees initiated by the same 

frame, as shown in Figure 6.3. The number of VTSs allocated in a proportional split is 

calculated after reserving VTSs for subtrees with a fixed size estimate. 

#bits: 1 31 

I rl Ct 

#bits: 1 3 28 

Ir I Cp Cs 

Figure 6.3: Encoding for subtree size calculations for a fixed number of VTSs (top) and 
proportion of available range (bottom) 

Subtree size estimation is encoded in the child instruction initiating the frame at the root of 

the subtree. Whether the proportional or fixed range format is being used is indicated by 

the proportional flag, P, in the child instruction. The Ct field is the fixed number of VTSs 

to be allocated, while Gp is the proportion of the range to be allocated, and C5 id the fixed 

number of VTSs to be reserved before calculating the size of the proportional range. 

Gp is encoded using 3 bits to allow proportions from 1/8 to 8/8 to be encoded. This allows 

an even split among two or four children, as well as the ability to give one frame a double 

allocation, while maximizing the number of bits available for Cs from the 32 bit total for 

the estimate. 

Allocating zero VTSs should never be required, but can be encoded using Ct. The encoded 

subtree size estimate is passed to a child instruction as the second source register (a2) and 

can either be specified as a literal constant or calculated at run time. 

6.2.2 Static Analysis 

It is desirable for the compiler to perform subtree size analysis, rather than the processor, 

so that it doesn't impact execution time. The most basic static analysis is of linear, acyclic 

regions of the CFG, where blocks are counted to calculate the number of frames required. 

If the control flow terminates at the end of the linear sequence this count is also the number 

100 



of frames required to execute the subtree, otherwise it must be added to the frames required 

for the rest of the subtree. 

It may not be possible to determine the exact number of frames required to execute an 

acyclic region of the CFG if it contains conditionally executed blocks. However, an upper 

bound can be established by totaling the size of all possible blocks executed. When a con­

ditional branch is represented in a tree structured CFG there may be two mutually exclusive 

subtrees representing the alternative branch choices. Only the largest of the mutually exclu­

sive subtrees needs to be added in determining the requirements for the subtree including 

them. 

Figure 6.4 shows a sample acyclic code fragment containing if ... else statements and 

the corresponding tree structured CFG. Each block of code represented by a letter is as­

sumed to require one frame. The blocks are organized such that a left to right preorder 

traversal will generate the virtual order of the blocks and dotted lines represent condition­

ally chosen paths in the tree stmctured CFG. The upper bound on the number of frames 

required is annotated on the arc leading to each subtree. The dynamic execution tree is 

identical to the tree structured CFG in this case because there are no loops. 

A; 
if (B) { 

C;D; 
} 
else{ 

E; F; 

} 

if(G){ 
H; 

} 

I; 

Figure 6.4: Calculating the number of frames required to execute an acyclic code region 

Since C and E are mutually exclusive, the subtree rooted at B only needs one more VTS 

(for the node B) than the largest of the two subtrees. However, both F and G will execute if 

E does, so E requires the sum of F and G plus one for its own VTS. A range of 7 VTSs, or 3 

bits, is sufficient to allocate a VTS to each frame. For comparison, the length representation 

is governed by the deepest potential path, 5 frames to node H, which requires 11 bits to 
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represent in the 4-way trees used in this implementation of the WarpEngine. 

The size of statically bounded loops, such as most for loops, can also be calculated stati­

cally. The details of the calculation are dependent on the tree layout used for the for loop 

(see Littin[2000] for alternatives). 

Figure 6.5 shows the tree structured CFG and the dynamic execution tree for a for loop 

using a simple linear backbone loop structure. The number of frames needed for the loop 

are shown on the entry arcs of each block in the CFG. The frame labeled 'for' initiates the 

for loop. The 'cases' frames form the linear backbone of the execution tree and decide 

whether to execute further instances of the body of the loop, labeled 'body'. Up to three 

'body' nodes may be initiated by each 'cases' node until the desired number of iterations 

have been executed. Extra instances of the body may be speculatively issued, but will be 

rolled back. 

/ 

',bflb > 
,'~ody ., ' 

b-1 

(a) CFG (b) Dynamic execution tree 

Figure 6.5: Calculating the number of frames required to execute a for loop 

The total number of frames needed for the for loop can be calculated using integer opera­

tions by the compiler with the equation: 

i -1 
n = (i * b) + - 3- + 2 

where i is the number of iterations and b is the number of frames used by each instance 

of the body of the loop. The dynamic execution tree is shown for a 5 iteration loop, with 

a single block in the body of the loop, requiring 8 frames to execute the loop. One frame 
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is subtracted off this total for the subtree starting at the first cases frame, then four are 

subtracted for each successive instance of cases (one for the node itself and three times 

the loop body size for the loop iterations). This is shown in the two arc equations for the 

variable c. 

The range can be allocated for each cases node using a proportional allocation of 8/8 (Gp= 

7), only reserving three VTSs (Cs = 3) for loop iterations. Note that the size of the tree 

is statically calculable for an arbitrarily complex loop body, as long as it is composed of 

statically analyzable subtrees. All the variables shown are replaced by constants at compile 

time. If constants are not available for the loop bounds the subtree cannot be analyzed 

statically. 

6.2.3 Dynamic Analysis 

A compiler cannot determine the number of frames required by dynamically bounded loops, 

such as while loops, recursion or for loops with non-constant bounds or data dependent 

increment operations. However, the size of some dynamically bounded loops can be deter­

mined at run time. For example, a for loop bounded by a calculated value can be treated 

in the same way as a statically bounded for loop once the loop bounding condition has 

been calculated. To use this information for VTS allocations the compiler inserts extra in­

structions that dynamically generate the subtree size estimate based on the bounding value 

of the loop. In the example shown in Figure 6.5 the equation on the arc leading into the for 

node would be calculated at runtime. Usually this requires only a small number of simple 

arithmetic operations, but can become complex if nested loops are involved. In such cases 

the extra instructions necessary to calculate the subtree size may cause the maximum block 

size to be exceeded and require a extra frame per iteration, which may have a significant 

impact on resource requirements and performance. 

Unfortunately many while loops are still not amenable to this type of analysis by the 

compiler, requiring knowledge of the algorithm's operation and data to predict the number 

of iterations. For these cases a simple proportional division of the available VTS range 

is used in the simulations in this chapter, splitting the parent's VTS range evenly among 

the unanalyzable subtrees. However, this can result in a very small range of timestamps 

for the subtree nearest GVT, while more speculative subtrees, initiated near the root of the 
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execution tree, consume a large proportion of the range, and are quite likely to be ultimately 

rolled back. 

6.3 Minimum Size VTSs 

As in Chapter 5, for fixed range VTS schemes the minimum size variable range VTS re­

quired to avoid rescaling was determined from simulations. The results are presented in 

Figures 6.6 to 6.9, and C.7 and C.8 with the ideal representation and the length representa­

tion for comparison. 

AVL (Figure 6.6), binary tree (Figure C.7) and Fibonacci (Figure 6.7) preclude easy analysis 

beyond the naive method of counting linear code segments and splitting the VTS range 

proportionally elsewhere because the while loops and recursion are dependent on data. 

Naive proportional division of the VTS range causes the VTS size to be significantly larger 

than the theoretical minimum because the subtrees are of uneven sizes. Fibonacci comes 

closer to the ideal VTS length than the other two algorithms because the two recursive 

subtrees at each level tend to be similar in size, so naive proportional splitting of the VTS 

range is more efficient. 

AVL tree insertion 
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Figure 6.6: Minimum VTS length necessary to execute AVL tree insertion without rescaling 
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Figure 6.7: Minimum VTS length necessary to execute Fibonacci without rescaling 

Gauss-Jordan (Figure 6.8) and matrix multiply (Figure C.8) consist primarily off or loops 

with static bounds, and the graph shows the speedup where iteration count is being used to 

calculate the number of VTSs required by the for loops, as well as the naive method. Naive 

allocation again requires a VTS substantially larger than the theoretical minimum because 

the subtrees are of uneven size. All of the subtrees that receive a proportional allocation 

of VTSs are for loops. Since the for loops are statically bounded, the VTS sizes for 

statically estimating the VTS requirements of the loops matches the theoretical minimum 

after rounding up to an integer number of bits. 

Quicksort (Figure 6.9) also contains a for loop, however the bounds are dynamic, depen­

dent on the way the list of items to be sorted is split. The static for loop estimation method 

assumes that the for loop must iterate over the original number of items, the worst case. 

The dynamic for loop analysis method calculates the maximum size of the for loop based 

on the size of the partitions created. This is a tighter upper bound than can be calculated by 

the compiler. A recursive loop also exists in which quicksort is called for the two partitions 

created from the larger partition. By nature an exact subtree size cannot be calculated for 

this tree split. 

All of the above methods split the VTS range equally among the two procedure calls, but 
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Figure 6.8: Minimum VTS length necessary to execute Gauss-Jordan without rescaling 
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Figure 6.9: Minimum VTS length necessary to execute quicksort without rescaling 

106 



in the proportional split method the range is divided in proportion to the size of the two 

partitions. This is particularly beneficial where an uneven split is produced. It is question­

able whether a compiler would be able to determine the relationship between the size of 

the partition and the VTS range required by the procedure without higher level knowledge 

of the algorithm. Using the proportional split method the theoretical minimum size VTS, 

rounded up to an integer, is sufficient to avoid rescaling. 

In all cases the variable range VTSs are a great improvement on the fixed range VTSs. 

Using sufficiently aggressive analysis schemes all the test programs can be executed without 

rescaling using 40 bit VTSs, while the length representation requires in the region of 100 to 

200 bits. The programs tested can be split into three broad categories: 

1. Those whose tree size can be estimated well throughout the algorithm, such as matrix 

multiply and Gauss-Jordan elimination. VTSs can be allocated very efficiently to 

these algorithms using only static analysis. In the two examples shown VTSs of 

the theoretical minimum size are sufficient to avoid rescaling. This occurs in any 

program where the execution tree size is data independent and, thus, can be calculated 

statically. 

2. Those which have few substantial subtrees whose size can be estimated easily. Exam­

ples of this are binary tree insertion and AVL tree insertion. It is difficult to allocate 

VTSs to these algorithms, even with dynamic analysis. The amount of computation 

is highly data dependent in complex ways, causing the number of bits required to be 

significantly higher than the theoretical minimum. 

3. Those which have some large parts which can be estimated well and others which 

cannot be, or which have a simple relationship to data values, such as quicksort. More 

advanced dynamic analysis methods benefit this class of algorithm. These form an 

intermediate category, benefiting from variable range VTSs, but still diverging quite 

substantially from the theoretical minimum size when only basic analysis is used. 

Real workloads are larger than the programs simulated here, and tend to be quite irregular. 

A typical application will consist of regions in several of the above categories. In regions 

which are difficult to analyze the the VTS size will limit the ILP more. However, since 
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these are regions where the control flow is more dependent on the data the chances of mis­

speculation are higher, so less aggressive speculation is appropriate. 

Dynamic analysis methods require extra instructions to be added to the program to perform 

the calculations, sometimes forcing extra instruction blocks to be used when the frame in­

struction limit is exceeded. Figure 6.10 shows the percentage increase in parallel execution 

cycles for the different dynamic analysis methods over static analysis for quicksort. This 

measurement was taken with VTSs sufficiently long not to constrain execution to show the 

effect on execution of the additional instructions inserted for VTS allocation. 
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Figure 6.10: Percentage overhead of dynamic VTS analysis methods for quicksortl 

The results show that both dynamic for loop and proportional split size calculations add 

a substantial number of additional instructions to the critical execution path. A careful 

evaluation for each program should be made before deciding to utilize dynamic allocation 

techniques. This decision can be made individually for each program at compile time. 

6.4 Rescaling Variable Range VTSs 

As with any VTS representation, the ability to rescale when the VTS tree is exhausted is 

necessary to guarantee completion of a program. In variable range schemes there is an 
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added complication that the explicit upper bound must be calculated, and it cannot overlap 

with any other subtrees ( other than those which are a superset). This means that calculation 

of a VTS depends not only on the parent VTS, but also on the sibling VTSs earlier in 

the virtual order. Unfortunately this will extend the critical path of the global rescaling 

operation substantially. For example, child one must wait for child zero to be allocated 

a VTS range, rather than just their parent, before it can be allocated a VTS range. The 

dependency chain for allocating a VTS range to child three includes allocating a VTS range 

to children zero, one and two in addition to the parent. 

There are two aspects which must be considered when evaluating a rescaling method. Firstly 

there is the computational cost of rescaling. This may include stalling computation while 

rescaling is performed, or stalling parts of the computation while GVT advances to allow 

rescaling, in addition to the actual time taken to rescale the VTSs. Secondly, the efficiency 

of reallocation of VTSs is important because, while a reallocation which wastes VTSs may 

reduce the computational cost, a careful reallocation will allow computation to continue for 

longer. 

Rescaling variable range VTSs also introduces the added complication, and freedom, that 

VTS ranges may be arbitrarily changed. The rescaling methods for length representation 

VTSs are restricted by maintaining the frame relationship within the execution tree, and the 

VTSs that go with it. In this section we investigate two rescaling methods for variable VTS 

ranges. One which preserves the original tree, as for rescaling the length representation, 

and another which changes the shape of the VTS tree independently of the execution tree to 

attempt to achieve a more efficient VTS reallocation. 

Rescaling must ensure that the exhausted subtree receives a larger range than before rescal­

ing, or execution will remain stalled. Any subtree which is allocated a diminished range 

during rescaling risks not being able to allocate VTSs to all the frames that have already 

been started. This will force some frames to cancelback. The rescaling methods proposed 

here operate under the assumption that when a constant number of VTSs are requested for 

a subtree it is an absolute upper bound which will never be exceeded. VTS exhaustion can 

result from either a proportional allocation or when the requested number of VTSs cannot 

be allocated. 
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6.4.1 Preserved Tree Rescaling 

A straightforward and efficient way of reallocating VTSs is to fossil collect nodes earlier 

than GVT and allocate the whole VTS range to the smallest tree containing all the active 

frames. The VTS range is then allocated to the active subtrees by regenerating the VTSs us­

ing the same process as the initial allocation. This has the advantage that the same hardware 

can be used for generating and rescaling VTSs, although some modification may enhance 

performance since rescaling must regenerate the whole tree at once. This rescaling method 

produces the same VTS tree as maximum level rescaling, proposed for the length represen­

tation in Section 5 .4.1. 

Not all the nodes prior to GVT can be removed though. In order to remain compatible with 

the original generation process a single connected tree must be maintained. This requires 

retaining nodes higher up the VTS tree which may otherwise be fossil collected, but connect 

the active subtrees into a single tree. 

Figure 6.11 (a) shows an exhausted tree with fossil collected frames represented by dotted 

outlines, the VTS range appearing under the frame label and the allocation information on 

the arc leading to the node. The connecting nodes C, E and F are retained under preserved 

tree rescaling to give the tree in Figure 6.11 (b ). Since the record of the VTS range and 

the tree shape are stored in the frame, either the frames for the connecting nodes cannot be 

fossil collected, or some other method of recording the tree shape and VTS range is needed. 

Strict adherence to the original generation method will allocate VTSs to fossil collected 

nodes which were originally descendants of nodes in the tree retained after rescaling, such 

as node D in the example, even though they are not required. In the method used here these 

nodes are fossil collected and their VTSs made available for reuse, preserving the minimal 

tree containing all active nodes. 

Another drawback of preserved tree rescaling is that the proportional allocation will assign 

more of the reclaimed nodes to subtrees at the upper levels of the tree. For example, in 

Figure 6.1 l(b) 25 VTSs have been reclaimed, but only 4 extra are assigned to subtree H, 

while subtree M, which is not exhausted, receives an additional 12 VTSs. This will lead 

to delays while GVT advances to free sufficient VTSs for reallocation and may require the 

cancelback of frames. 
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While this method achieves an efficient reallocation of VTSs, the global rescaling operation 

will have a long latency because potentially long tree branches have to be traversed. Calcu­

lating the new range depends both on the range allocated to the parent, since a sub-range is 

allocated, and on the upper bound of the preceding sibling since that determines the lower 

bound. This leads to a chain of dependencies running down each branch of the tree. Differ­

ent subtrees can be rescaled in parallel once the root VTS of the subtree has been allocated. 

Since the alteration of each VTS is not systematic, updating VTSs in the time-space cache 

requires a global search to match each VTS. 

6.4.2 Disconnected Subtree Rescaling 

A minor variation on preserved tree rescaling is to consider each subtree of active nodes 

as a disconnected tree and rescale them separately, rather than preserving the original tree 

shape. This requires maintaining a record of the nodes at the root of each disconnected tree. 

However, no allocation information needs to be retained for the connecting nodes that have 

been fossil collected. It also requires the nodes at the head of each subtree to be allocated a 

VTS range before the rest of the VTSs can be regenerated. 

Each subtree is allocated a region of the overall VTS range in virtual order, based on the 

original allocation request. For a request for a constant VTS range the requested number is 

allocated. Subtrees requesting a proportional range are allocated VTSs from the remaining 

range in the ratio of the proportion requested against the proportion requested by all trees. 

For example, in the tree shown in Figure 6.1 l(c) 14 VTSs are reserved for the subtrees 

beginning at G and I, while the rest of the range is divided between H, L and M, with 

M receiving twice the allocation. Notice that M receives a smaller subrange than in the 

preserved tree rescale (Figure 6.ll(b)), while all the other subtrees receive larger ranges. 

Disconnecting the subtrees provides a more efficient reallocation because VTSs are not 

wasted on the intermediate frames which have already been fossil collected and only the 

more accurate allocation requests further down the tree are used. It also has the effect of 

placing all the subtrees at the same level, allocating a larger proportion to the trees further 

left, which are less speculative and will be deeper in the main tree. This allows more spec­

ulative execution early in the virtual order, at the expensive of throttling the speculation in 

the far speculative future. Since a rescale has been required, VTSs are clearly restricting 
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Figure 6.11: Rescaling a variable range VTS tree 

execution and it is likely that more rescales will be required. Proportionally reducing the 

allocation to more speculative subtrees tends to allow execution to progress further before 

the next rescale. The global rescale operation will also be faster, since removing the inter­

mediate nodes will shorten the longest branches, and hence the critical path for rescaling. 

6.4.3 Moving Head Rescaling 

For a more efficient rescaling method, which doesn't require time consuming scans through 

the entire system, a variant of the moving head rescale from Section 5.4.2 can be used. 

The principle of the moving head rescale is that the most significant bit of a VTS becomes 

redundant when it is the same in all active VTSs in the system. In the variable range VTS 

scheme this means once the lower bound of GVT is past the halfway point in the range the 

most significant bit is redundant. By employing a global head index in the same way as in 

fixed range moving head rescaling, the VTS can start at an arbitrary bit position and wrap 
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around when the end is reached. In order to make the rescaled range as large as possible, a 

tail index (which can be used for both the upper and lower bounds) is kept for each VTS to 

indicate the end of the VTS at creation time. Any bits beyond the tail index up to the full 

length of the VTS are implicitly considered to be equal to zero in the lower bound and one 

in the upper bound. Each moving head rescale doubles the range of each subtree. Note that 

the range of subtrees with a constant size prediction also have their range doubled. These 

VTSs are wasted because a constant prediction is guaranteed to be an upper bound on the 

number of VTSs needed, so they will never be exhausted, providing the requested range 

was allocated. Only proportionally allocated subtrees will become exhausted. 

Unfortunately moving head rescaling as described above will not provide more VTSs to an 

exhausted tree in the lower half of the range. By canceling back the frames with a VTS 

with a leading one, the moving head rescaling method can operate to double the range of 

the exhausted tree. However, since the tree is exhausted it has only one VTS in its range­

its own VTS. Thus, only one VTS will be freed where it is needed, while wider ranges 

are made available to subtrees that don't require them, particularly those with a constant 

range allocation. For this reason it is important that moving head rescaling is done as early 

as possible. Fortunately processing doesn't have to be stalled for a moving head rescale. 

Generating a new VTS can be done with the new or old head index value, but a more 

efficient allocation is achieved if generation is done after rescaling because any constant 

ranges will not be doubled in size. 

Additionally, cancelback discards a large amount of speculative work. Almost all the specu­

lative events will be cancelled back if the exhausted VTS is near, but just below, the halfway 

point. 

There is also the issue of when to restart cancelled frames. Under fixed range VTSs the 

strategy is to reallocate to a cancelled frame a VTS on the right edge of the tree which 

is never used by a frame. With variable range VTSs such a VTS never exists because 

allocation is done more efficiently to avoid these situations. Some heuristic must be used 

to decide when a sufficiently large VTS range has been freed to allow the cancelled frames 

to be allocated new VTSs. VTSs allocated to cancelled frames must be later in the virtual 

order than any currently active frame because frames are cancelled most speculative first, 

and restarted in last in, first out order. This requires the VTSs to be taken from the range 

allocated to the most speculative subtree. A simpler alternative is to wait until there are no 
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active speculative events, i.e. they have all completed or become non-speculative, before 

restarting cancelled frames. At this stage the whole VTS range is available. This effectively 

halts speculation at the cancelled point and forces speculation to begin again from that point. 

Variable range moving head rescaling is not pursued further in this thesis. Like the fixed 

range moving head rescaling method, it relies on being able to complete rescaling more 

quickly than the other methods described. Low level implementation details are required to 

accurately establish this timing information, and is beyond the scope of this thesis. 

6.5 Speedup 

6.5.1 VTS Constrained 

Figures 6.12 to 6.14 and C.9 to C.11 show a comparison of the simulated speedup delivered 

by 12, 16 or 24 bit variable range VTSs using either preserved or disconnected tree rescaling 

methods. VTSs larger than 24 bits are not shown because they are either sufficient to avoid 

rescaling in the test programs, or require very few rescales and do not adequately exercise 

the proposed techniques. For the same reason 12 bit VTSs have been used instead of 24 

bit VTSs for Gauss-Jordan and matrix multiply. Instantaneous rescaling has again been 

assumed for both rescaling methods to provide an upper bound on performance. The only 

delays caused by rescaling come from waiting for GVT to advance sufficiently to perform 

a rescale. 

The simulations show a substantial advantage for disconnected over preserved tree rescal­

ing in all simulations for the same size VTSs, justifying the extra hardware required for 

the scheme. The advantage is particularly clear for AVL tree, (Figure 6.12) binary tree 

(Figure C.9) and quicksort (Figure 6.14). In Fibonacci (Figure 6.13) and matrix multiply 

(Figure C.10) the maximum speedup is achieved for the smaller problem sizes because 

no rescaling is required during execution. Speedup quickly drops away from the ideal once 

rescaling is required because the number of blocks executed grows exponentially with prob­

lem size for these algorithms, quickly requiring a large number of rescales. 

As with frame restricted execution, in some cases the speedup counter-intuitively decreases 

with increasing problem size. This is caused by increased restriction on short range parallel 
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Figure 6.12: Speedup for AVL tree with variable range VTSs with rescaling 
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Figure 6.13: Speedup for Fibonacci with variable range VTSs with rescaling 
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Quicksort 1 
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Figure 6.14: Speedup for quicksortl with variable range VTSs with rescaling 

execution due to a large proportion of the VTSs being reserved for more speculative events. 

This forces rescaling, which may require a delay while GVT advances. This is a greater 

problem for preserved tree rescaling than the disconnected tree method because a larger 

proportion of the VTS space is assigned to the more speculative subtrees. The short range 

speculation is more likely to be on the critical path and less likely to be mis-speculated, and 

is therefore more valuable. While there is benefit in ensuring speculation at a distance can 

continue, there is a cost if sufficient VTS space is not provided for shorter range speculation. 

While this works reasonably well for larger VTSs, when smaller VTSs are used, too much 

of the range is devoted to distant speculation. It is important to match the VTS size to the 

program. 

6.5.2 Frame Limit Sensitivity 

Of course, any implementation of the WarpEngine will not be limited by VTS size alone. 

Another important limit is frame availability, which is closely tied to VTS usage, since a 

VTS is assigned to each instance of frame usage. Frames are used for state saving, and in 

this respect are equivalent to the ROB in a superscalar processor. Chip size will limit the 

number of frames, but the capacity is expected to be much larger than contemporary ROBs 
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in order to support aggressive speculation. Calvert [1997] proposed an implementation for 

a WarpEngine frame, and calculated that sixteen frames could be implemented on a chip 

equivalent to the PowerPC 604, state of the art process technology at the time. Since there 

are up to sixteen instructions in each frame, this corresponds to an ROB of 256 entries, 

well in excess of commercial ROB sizes at the time of writing [Intel, 2000]. Littin [2000] 

performed simulations with constraints on the number of frames and showed that increasing 

the number of frames provides a sub-linear speedup. He estimated that five hundred to a 

thousand frames could reasonably be provided in the near future. 

To examine the effects of limiting both the VTS size and the number of frames, simulations 

were performed using 16 bit variable range VTSs with disconnected tree rescaling and a 

range of frame limits up to 10,000 frames. Disconnected tree rescaling is more effective 

than preserved tree rescaling with no serious disadvantages and 16 bit VTSs were selected 

to impose moderate constraints on speculation. 

Frames speculatively executed and rolled back are not considered in these virtual order 

simulations, only frames which commit are tracked. This means that the frame usage figures 

are optimistic and transient frames will consume frames above the limit imposed. However, 

VTSs are still reserved for transient frames because an upper bound is calculated, which 

reserves enough VTSs for the worst case (maximum) requirement. 

Figures 6.15 to 6.17 and C.12 to C.16 show the speedup obtained from the simulations for 

selected data set sizes for the test suite. Each program was simulated for different frame 

limits with limited and ideal VTSs. Where the curves are coincident the VTSs are not 

constraining execution, it is solely due to the frame limitation. When the curve becomes 

flat and increasing the available frames does not increase the speedup, the frame limitation 

is not constraining execution, and any divergence from unconstrained execution is then due 

to VTSs alone. 

The slowdown due to VTSs and frame limitation are not generally cumulative. The speedup 

is dictated by either the frame or VTS limitation, whichever is lower. Only when both 

speedup limitations are similar do both contribute to restricting parallelism. This suggests 

that both limits cause restriction of parallelism in the same regions of the programs. 

In AVL and binary tree insertion (Figures 6.15, C.12 and C.13) the pairs of curves begin to 
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diverge at around 1000 frames, up to that point frame limits are more restrictive than VTSs. 

The larger problem sizes, as expected, benefit more from generous frame limits, and are 

more restricted by the 16 bit VTSs. Lengthening the VTS pushes the curves closer together. 

The curves for AVL are further apart because AVL VTS usage is more dependent on data. 

The smaller sizes (100 and 200 items) never suffer much slowdown due to the VTSs. 
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Figure 6.15: Speedup for AVL(500) with varying frame limitations and variable range VTSs 

Quicksort, Gauss-Jordan and matrix multiply (Figures 6.16, C.14, C.15 and C.16) are 

largely unaffected by the VTSs. Curves are coincident, or very close to it for all prob­

lem sizes and all frame limitations. These algorithms have tight VTS upper bounds applied 

because the frame usage can be well analyzed, causing frames to be the limiting factor. 16 

bit VTSs provide 65536 unique VTSs, so in cases of efficient allocation the frame limits 

shown here are exhausted first, even allowing for the more flexible reuse policy for frames. 

Fibonacci number generation (Figure 6.17) has vast amounts of parallelism available for the 

larger problem sizes and the curves for 15 and 20 numbers with ideal VTSs do not begin to 

flatten out until large numbers of frames are made available. The 16 bit VTS only becomes 

the limiting factor when more than 4000 frames are provided for a data size of 15 and 2000 

frames for a data size of 20. 

A relatively small 16 bit VTS generally allows as much speculative parallelism to be ex-
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tracted as up to a thousand frames can support, the limit on what will be available in the 

near future. 

6.6 Unresolved Issues 

The investigations of this chapter have focused on fundamental constraints placed on the 

upper bound of performance by variable range VTSs. A number of details remain to be 

resolved, some may improve performance, while others will degrade performance. 

The largest umesolved issue is compiler interaction. Some basic analysis techniques have 

been discussed in this chapter and applied by hand to the assembly language programs 

used with the WarpEngine simulator. Beyond simple for loops and linear sections of code 

the analysis is quite primitive, the VTS range is simply split evenly amongst the possi­

ble subtrees. It is likely that a compiler could improve significantly on these techniques. 

Reorganizing code by moving block boundaries and modifying the loop structures could 

significantly affect the ease of analyzing VTS requirements. 

Introducing a prediction of the most likely size of subtrees, rather than the maximum size, 

would provide scope for much more accurate assignment of VTSs. This would require 

substantial modification to the VTS allocation mechanisms, particularly rescaling methods 

to allow subtrees to exceed the predicted size. Particular subtrees that are often small, but 

are large in rare cases (for example a rarely matched if ... e 1 s e condition) would be 

particularly aided by such an estimation. Traditional branch prediction techniques using 

execution profiling could be adapted to this task. 

The availability of a compiler would also allow larger and more diverse benchmarks to be 

simulated. This is important for testing the scalability of the VTS schemes proposed as the 

different workload characteristics could make a substantial difference to the effectiveness 

of the VTSs. Further issues in the development of a compiler are beyond the scope of this 

thesis. 

The latency of rescaling has not been considered in detail here, but will clearly be important 

in determining the overall execution time. It will form a tradeoff between schemes which re­

quire rescaling to be performed more often at a lower latency and those with longer latency, 
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but which reallocate VTSs more efficiently, and hence less frequently. Rescaling latency 

can only be established with a low level hardware design, which is beyond the scope of this 

thesis. 

6.7 Summary 

Analysis of the code in a tree structured execution model, either statically or dynamically, 

can reveal much about the amount of work and resources required for each control inde­

pendent section of the program. In this chapter the focus has been on allocating VTSs 

efficiently, but the same analysis can be applied to other execution resources. 

After determining the maximum number of blocks in the subtree, a VTS range guaranteed 

to be large enough to order the whole subtree can often be allocated. In cases where such 

analysis is not possible the simulations presented simply divided the available range among 

the subtrees. More detailed analysis schemes could be devised, in particular, using a predic­

tion of the number of VTSs likely to be used (rather than the upper bound). Such schemes 

remain for future development. Even with simple analysis techniques the length of VTS 

required to execute the test programs without rescaling was much less than for fixed range 

VTSs, and in some cases approached the theoretical minimum. 

Two rescaling methods, necessary to guarantee execution can complete, were modelled. 

Results showed that rescaling does not constrain execution unduly, even when short VTSs 

were assumed. Rescaling was modelled as an instantaneous operation to investigate any 

fundamental limits involved. Rescaling latency will be important to overall performance for 

workloads that require frequent rescaling, but can only be established with more detailed 

models of the hardware. 

Simulations also showed that the speedup tends to be limited by either the number of VTSs 

or by the number of frames available, not by both cumulatively. 16 bit VTSs constrain 

execution to a similar degree to 1000 to 2000 frames in most cases, the limit of what could 

be implemented on a single chip in the near future. Any implementation of the WarpEngine 

that could be manufactured today would be limited by the frames available, rather than by 

VTSs. 
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Short VTSs of 16 to 32 bits are all that are necessary to maintain the virtual order of pro­

grams in the WarpEngine using the explicit tags developed in this chapter. These techniques 

are a promising basis for developing a scalable virtually ordered memory system for a spec­

ulative processor. 

Analysis of the execution tree also provides valuable information for use in throttling spec­

ulation. If the resources required by a subtree exceed those available then execution of 

anything more speculative will have to be rolled back. At best it is wasted execution, at 

worst the overheads involved in rollback will restrict parallel execution of nearer blocks and 

lengthen the critical path. 

As shown in Chapter 7, the analysis developed for allocating VTSs is also useful for es­

timating the requirements for other linear resources. This provides a novel method for 

controlling speculation, by throttling speculation beyond branches that are hard to estimate 

resource requirements for, or that require extensive resources. 
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Chapter 7 

Selective Speculation 

In an aggressive speculative processor, such as the WarpEngine, more instructions may be 

available to issue than there are resources available to execute them. When speculative exe­

cution outstrips available resources some selection must be made of which code to execute 

first. Often the selection criteria are side effects of the instruction issue mechanism, rather 

than an explicit design decision. 

If the selection of code to execute speculatively is done poorly it can degrade performance 

substantially. In the WarpEngine, when resources, such as frames or VTSs, are exhausted 

they are released through cancelback. Cancelback guarantees that execution can proceed 

to completion with the same resources as sequential execution, but there is no guarantee 

for performance. It is not a preemptive technique and will incur a penalty, so it would be 

preferable not to execute the code in the first place. 

Accurate selective speculation is particularly important for an architecture like the Warp­

Engine, which speculates aggressively. It has a large instruction window, providing wide 

scope for speculation, and can quickly exhaust available resources. Any instructions that 

are issued speculatively, but not retired represent a wasted opportunity to gain speedup. 

Since the analysis of resource requirements developed in Chapter 6 must be done in order 

to allocate variable range VTSs, it is worthwhile investigating whether this information can 

also be used to ensure as many speculatively issued instructions commit as possible. The 

resources available can be compared to the estimated requirements of the subtree under 

consideration. If there are insufficient resources available nothing later in virtual time than 
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the current subtree should be issued until fossil collection frees some resources. It is likely 

that anything issued will be cancelled back to free resources for earlier instructions. 

By splitting the resources-frames in this case-into units called resource blocks, instruc­

tion issue and resource allocation can be controlled based on resource use analysis. Re­

source blocks are a fundamental building block of the speculative multiple version memory 

system developed in Chapter 8. 

This chapter begins by discussing selective speculation methods used in other architectures 

and some alternatives that could be used in the WarpEngine. Selective speculation methods 

are assessed by measures seen previously, and also by the metric of speculation effective­

ness, the ratio of instructions issued to instructions committed. 

7.1 Related Work 

The amount of speculation used in a CPU is tuned, by design, to the execution resources 

available. By speculating more aggressively the processor uses more execution resources, 

but can achieve more execution speedup. More aggressive speculation can be achieved by 

increasing the speculation distance. For example, a processor using branch prediction can 

increase the number of branches predicted concurrently. Of course, this will increase the 

number of speculatively executed instructions that have to be squashed if the prediction 

accuracy remains the same. The speculation effectiveness has been decreased since the 

total number of instructions committed remains constant, but more instructions have been 

speculatively issued and then squashed. 

A speculation effectiveness plot can be drawn for a speculative execution technique as the 

execution resources used are varied by controlling the aggressiveness of speculation. The 

plot indicates how good a particular technique is at selecting instructions to execute spec­

ulatively. Figure 7. I shows a qualitative plot of speculation effectiveness for a number of 

published speculative execution techniques. The speculation technique resulting in the most 

effective speculation varies depending on the resources available, as process technology im­

proves the most appropriate technique to use will change. The curves shown here have been 

estimated from the descriptions in the relevant literature. 
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Branch Eager execution 
prediction 

Resources used 

Figure 7 .1: Speculation effectiveness for different speculative techniques 

Branch prediction [Smith, 1981] provides effective speculation when small amounts of re­

sources are being used, which is when the number of concurrent branch predictions are 

small. However, as the number of concurrent predictions increases the mis-speculation rate 

rapidly increases. Eager execution [Wang and Uht, 1990] is even worse at selecting instruc­

tions to speculate on than branch prediction, since it chooses to execute both sides of each 

branch decision. This both requires more resources to execute the same number of spec­

ulative branches concurrently and gives a lower speculation effectiveness, but the correct 

branch is guaranteed to be executed. Since control independence is also exploited eager 

execution is more effective than branch prediction for large amounts of resources. 

Branch prediction and eager execution both suffer from the difficulty that they are trying to 

predict the instruction stream in linear order from beginning to end. This restricts the scope 

available for selecting instructions to execute speculatively. Split instruction techniques, 

such as the multiscalar [Sohi et al., 1995], disjoint eager execution (DEE) [Uht and Sindagi, 

1995], the Trace processor [Rotenberg et al., 1997], dynamic multithreading [Akkary and 

Driscoll, 1998] and the WarpEngine, have more ability in this regard since they can choose 

not to execute a block of code speculatively, and instead go beyond it to a control indepen­

dent point as discussed in Section 2.1.2. 

Indeed, the motivation behind DEE was to increase the speculation effectiveness by ex­

ploiting control independence and calculating branch prediction confidence values [Jacob­

sen et al., 1996; Grunwald et al., 1998]. Branch outcomes are assigned a probability by a 
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predictor and as multiple branches are speculated across these probabilities are calculated 

cumulatively. Thus, the probability of a branch being taken reduces with depth. Branches 

are executed speculatively if the probability is above a threshold value. This limits specu­

lation distance and executes the code most likely to be committed. Both branch taken and 

not taken targets can be executed in parallel if the probability is high enough, although one 

is guaranteed to be discarded. DEE can be applied to both single and multiple flows of 

control. 

Threaded multipath execution [Wallace et al., 1998] applies the techniques used in DEE to a 

simultaneous multithreaded architecture. Spare thread contexts are used to pursue alternate 

branches in addition to the predicted one. Branches with lower confidence predictions are 

pursued until all the thread contexts are used. Only branches on the predicted path are 

considered for alternate paths. This selectively speculates on multiple branch outcomes up 

to one level off the predicted path. 

In the multiscalar paradigm the compiler partitions sequential code into tasks [Vijaykumar 

and Sohi, 1998; Jacobsen et al., 1997] for execution as separate threads of control. Within a 

task instructions are executed non-speculatively relative to each other, as they would be on 

a superscalar processor. Tasks are selected such that they are control and data independent 

as much as possible. Selective speculation is implemented by speculatively executing in­

structions in following tasks, but not speculating on instructions in the current task, which 

are more likely to be control or data dependent on incomplete instructions. 

The multiscalar indiscriminately squashes all computation beyond a mis-speculation, which 

makes it particularly important that accurate selective spe~ulation is available, otherwise 

large amounts of accurate speculation will be rolled back by mis-speculation on independent 

code. Indiscriminate squashing also tends to limit the speculation distance because the most 

speculative operations will be squashed by any mis-speculation, and will have to reissue 

from the starting point. However, tasks split the instruction window so speculation at a 

distance can still be performed. 

Split instruction window techniques are the reason resource usage must be used to compare 

speculation effectiveness, rather than speculation distance. They can achieve extremely 

large speculation distances while using low amounts of resources by choosing not to spec­

ulate on a large intervening section of code. 
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Conservative execution appears as a single point on the speculation effectiveness graph 

since it cannot use more resources through speculation because it does no speculation by 

definition. For the same reason the speculation effectiveness of conservative execution is 

always one. 

More effective speculation for the same resource usage does imply lower execution time, 

although a simplification has been made in Figure 7 .1 by representing resource usage by 

a single value. The resource usage will vary dynamically across program execution. This 

profile may differ considerably between the different speculation techniques, making a pre­

cise comparison on speculation effectiveness difficult. This metric also takes no account 

of the varying complexity of the techniques and the execution overheads involved in using 

them. 

It is also worth noting that selective speculation could be used to throttle speculation to 

reduce processor energy consumption [Manne et al., 1998]. 

7 .2 Selective Speculation in the WarpEngine 

The basic WarpEngine simulator allows simulation of speculative execution limited only by 

the critical path of instruction issue. This allows speculation to later be limited in a variety 

of ways independently. 

In previously published results [Littin, 2000] speculation was restricted by limiting the 

available execution n:sources, as measured by the number of frames. In the WarpEngine 

virtual order simulator, frames are allocated strictly in virtual order, which is equivalent to a 

processor using cancelback to free frames for blocks earlier in the virtual order with no time 

penalty. This is a very simple heuristic for selectively speculating, based on the assumption 

that events earlier in the virtual order are more likely to be on the critical path, and less 

likely to be rolled back. 

In Chapters 5 and 6 speculation was restricted by limiting the number of VTSs available. 

Since VTSs are really just another execution resource this is similar to the first selection 

method, although the blocks that get stalled may be a little different. For example, fixed 

range VTSs allow a certain depth of speculative execution along each execution branch, 
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subject to rescaling. Variable range VTSs tend to provide a similar selection to frame limit­

ing, without needing to assume zero latency cancelback to free frames. VTSs also provide 

scope to be much more flexible in the selection criteria applied. Instead of using the upper 

bound of VTSs required as the range size different heuristics could be applied, such as a 

best estimate of VTSs required, modified by a factor for the estimated likelihood of the 

instructions reaching commitment with their current source data. 

The speculation selection method examined in this chapter again uses the VTS estimation 

information obtained in Chapter 6. This time the important factor is whether an upper bound 

can be placed on the number of frames (or VTSs) required by a subtree. If the size of the 

subtree cannot be estimated, it often means the subtree has a complicated control structure 

and will contain many blocks. Frequently it is not worth speculating beyond these subtrees 

because the frames will be cancelled back to provide resources for the inestimable subtree. 

By restricting the number of inestimable subtrees being speculatively executed concurrently 

it may be possible to better select areas for speculation. As a side effect it simplifies the 

hardware implementation, as we shall see. 

7 .3 Resource Allocation 

A means of selective speculation not previously explored is to base it on the ability to 

allocate execution resources. The analysis described in Chapter 6 for allocating variable 

range VTSs predicts the number of frames and VTSs required to execute a subtree. If an 

upper bound can be placed on the size of the subtree then frames and VTSs can be reserved 

for the subtree and efficiently allocated as required. Successive subtrees can continue to be 

allocated in the same fashion following the reserved range. This suggests that rather than 

organizing frames in a structure that allows them to be freely reordered they can be arranged 

in a fixed virtually ordered array. This is a much simpler structure to implement, and should 

allow faster frame allocation. 

However, an upper bound on the number of frames required cannot be determined for all 

subtrees. Recall that for subtrees containing dynamically bounded loops a proportion of the 

remaining range of VTSs is allocated because the analysis methods developed are unable 

to calculate an upper bound on requirements. If this proves to be insufficient rescaling 
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subsequently enlarges the range. A similar approach could be taken for allocating frames 

from the queue. However, if the estimate is insufficient copying the contents of a large 

number of frames would be required, and any in-flight instructions would have to have 

results redirected to the registers in the new frame. This would be a costly operation. The 

frame array could be modified by inserting additional frames at the exhaustion point, but 

this removes the hardware simplicity that is so attractive about the scheme. The approach 

investigated in this chapter is to restrict speculation from proceeding beyond the subtree 

until an upper bound on the frames required can be established. 

The virtually ordered array of frames is termed a resource block. A single resource block 

with a finite number of frames is capable of executing a program containing many unana­

lyzable subtrees, albeit with substantial limiting of speculation. Reference will be made to 

the example tree and corresponding resource block in Figure 7.2 for illustration of frame 

allocation. The resource block is illustrated as an infinite length list of frames for simplicity. 

This can be implemented in a circular buffer by stalling when the frames are exhausted until 

those at the head of the queue have been fossil collected and can be reused at the tail. 

Typically the total size of the execution tree will be unanalyzable, so the whole resource 

block is allocated to the tree (from node A). Subtrees are then allocated frames from within 

this range. One subtree of unbounded size may be allocated frames at each level. Subtrees 

B and C are allocated the requested number of frames from the start of A's range and subtree 

D is allocated the rest of the resource block. Since the upper bound number of frames is 

reserved for subtrees B and C, some reserved frames may go unused. These remain empty 

until those ahead of them are fossil collected and they can be reused in order. 

If a second unbounded size subtree exists at a given level it is not allocated VTSs until a 

bound has been established on the first subtree's frame requirements. So subtree I is not 

allocated frames until subtree H has been allocated, and is the GVT holder. Until GVT has 

passed G it could still be rolled back and re-executed to fire other unbounded size subtrees. 

At this point I can be allocated all the frames remaining in the resource block. If a subtree 

has an established upper bound on its size all the subtrees within it will also be bounded. 

Multiple resource blocks can be used to allow several subtrees of unpredictable size to 

be speculatively executed concurrently. In the example in Figure 7 .2 two resource blocks 

would allow subtree I to be executed using the second resource block without delaying 
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Figure 7 .2: Allocating frames in a resource block 

execution. Resource blocks have a virtual order and form a second layer to the virtual order 

hierarchy above the frame ordering within the resource blocks. Resource blocks can be 

viewed as a variation on the multiscalar processing units, with tasks divided by the end of 

unanalyzable subtrees. 

Two organizations of resource blocks are simulated here. In the first resource blocks are 

arranged in a circular queue. Subtrees are allocated to resource blocks as described above, 

strictly in order. They are fossil collected for reuse in the same order from the tail of the 

queue. The drawback of this arrangement is that if an unanalyzable subtree splits into two 

unanalyzable subtrees and then the left subtree splits into two more unanalyzable subtrees 
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a cancelback will be forced. For example, in Figure 7.3 initially subtree B is allocated 

resource block 0, and subtree C is allocated resource block 1. However, when subtrees D 

and E are initiated subtree D is allocated to block O and subtree E is allocated to block 1 
' 

since it is before subtree C in the virtual order, and subtree C must be cancelled back and 

restarted in resource block 2. 

I n/2 \ n/2 

cf)~ 
0 2 

Figure 7.3: Program forcing cancelback for a circular queue ofresource blocks 

This problem can be avoided by allowing resource blocks to be dynamically reordered, 

so that in the above example resource block 2 can be placed between blocks O and 1 and 

used for subtree E. Subtree C can continue executing in block 1. Resource blocks could be 

reordered using a crossbar switch or an ordering lookup table. Either method is feasible for 

a small number of resource blocks. 

In the simulations in this chapter resource blocks have been modelled with sufficient length 

to avoid blocking due to frames running out within a resource block. 

7.3.1 Assigning Frames to Resource Blocks 

A resource block is equivalent to an ROB using a queue to maintain the order of instructions 

(grouped in frames in the WarpEngine). Assigning a frame a position in a resource block 

is equivalent to assigning an instruction to the ROB. Since instructions in a typical out-of-

131 



order superscalar processor are assigned to the ROB in virtual order, the ROB is easy to 

implement as a linear buffer. However, in the WarpEngine frames are allocated in the order 

the execution tree is generated, providing motivation for multiple resource blocks. 

Real resource blocks will have a finite length, and eventually the end will be reached. A 

strategy must be devised for continuing to execute the tree branch in that resource block. 

This section considers the available options, although all the simulations in this chapter use 

resource blocks big enough that they are never exhausted in the course of executing the test 

suite. 

Circular looping 

One possibility is to stop issuing more frames on that execution branch until frames at the 

start of the resource block have been freed by fossil collection. Then the resource block can 

be used as a circular queue, with the frames at the beginning being reused as the latest in 

the virtual order. 

Unfortunately this will only be of use in the resource block containing the GVT holder. All 

other resource blocks will be blocked until they become the GVT holder. To gain maxi­

mum advantage from speculation it should be possible to allow other execution branches to 

continue either in the same resource block, or in another resource block if one is available. 

Compiler controlled allocation 

Compiler analysis could be used to force the processor to allocate frames to a new resource 

block before the frames in the original resource block are exhausted. This involves altering 

the shape of the execution tree to start a new sub-branch at the point switching to the new 

resource block is desired, and indicating that the subtree size is unanalyzable for its sibling 

earlier in virtual time. It may, in fact, be possible to give a good estimate of size, but this 

would not force the branch onto a new resource block. 

The problem here is that it will be difficult for the compiler to calculate a good point to 

switch to a new resource block. The optimal point is one that guarantees that the end of the 

resource block will never be passed, and also uses the resource block efficiently, allocating 

132 



instructions to as many of the frames in the resource block as possible. Note however, that 

this method does not require any additional ability to reorder resource blocks. 

Processor controlled allocation 

The most effective option is to have the processor dynamically allocate frames in a new re­

source block when the existing one becomes exhausted. This promotes maximum utilization 

of resource blocks since only full resource blocks have their execution branch transferred to 

a new resource block. Poorly utilized resource blocks may still result from a branch over­

flowing to a new resource block and finishing a few frames later, but this is unavoidable. 

This method presupposes the ability to reorder resource blocks dynamically, so that a new 

resource block can be inserted following the exhausted one. Otherwise a cancelback or 

squash of all future speculation is necessary, which is potentially disastrous for perfor­

mance. 

Allocating a new resource block, rather than trying to reuse the existing one through fossil 

collection allows fossil collection to be simplified by restricting it to whole resource blocks 

only. The resource block is simply marked for fossil collection once there are no actively 

executing frames, or active resource blocks earlier in virtual time. While this makes fossil 

collection somewhat bursty it can occur in the background to normal computation. 

As with frame allocation, cancelback of resource blocks may be required to guarantee pro­

gram completion. In the simulation results below virtual order simulation again provides the 

equivalent of cancelback with no execution penalty by allocating resource blocks in priority 

of virtual order. 

7.4 Speedup 

A major design decision in the use of resource blocks is the number to be implemented. In 

this section results from the WarpEngine virtual order simulator are presented showing the 

effect on speedup of the test suite using between one and sixty four resource blocks. 

Since the frame requirement analysis derived in Chapter 6 is required for resource block 
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allocation, the same programs from the test ,suite are simulated: AVL tree insertion; binary 

tree insertion; Fibonacci number generation; and quicksort. Results for Gauss-Jordan elim­

ination and matrix multiply are not shown, since they provide ideal speedup with only one 

resource block because the number of frames used can be determined at compile time. 

Figures 7.4 to 7. 7 show results using resource blocks in a fixed order circular queue, mean­

ing that all future speculative resource blocks must be cancelled back when a new resource 

block is allocated. This restricts speculation in a similar way to the multiscalar, although 

much more care is taken in the multiscalar to create tasks which avoid wasting speculative 

execution in this way. 

The curve for execution with the ideal VTS representation is shown to allow comparison 

against the theoretical speedup limit. 

The speedup of all the test programs is heavily restricted when using only one resource 

block. The two tree insertion programs (Figures 7.4 and 7 .5) show a steady improvement 

as additional resource blocks are supplied. Sixty four resource blocks provide a speedup 

near to the theoretical limit. Each insertion forms a region of execution that is usually 

independent from the insertions around it, allowing each to be allocated to a resource block. 
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Figure 7.4: Speedup for AVL tree using resource blocks in a circular queue 
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Figure 7 .5: Speedup for binary tree using resource blocks in a circular queue 

Fibonacci and quicksort (Figures 7.6 and 7.7), however, do not show much improvement 

as the number of resource blocks is increased. This is largely due to the presence of recur­

sion. Each time another level of recursion is begun all the more speculative events must be 

cancelled back due to the fixed order of the resource blocks. 

Fortunately recursion is relatively uncommon because it will always be difficult to allocate 

linear resources to. These examples and others with similar structures will be helped by 

estimating the number of resource blocks required by a subtree and reserving them in the 

linear sequence. This analysis uses similar information to analysis of VTS requirements for 

a subtree, but is only concerned with the presence of a subtree size bound, not the size of 

the bound itself. 

Figures 7 .8 to 7 .11 show the results of the same simulation, but for resource blocks which 

can be dynamically reordered. This will complicate the hardware design, but should be 

feasible for a small number of resource blocks. 

The tree insertion programs show similar results to the fixed order blocks, due to the usually 

independent operations mentioned above. The performance of Fibonacci and quicksort 

improve to acceptable levels, although still some distance from the ideal. 
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Figure 7 .6: Speedup for Fibonacci using resource blocks in a circular queue 
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Figure 7.7: Speedup for quicksortl using resource blocks in a circular queue 
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Figure 7 .9: Speedup for binary tree using reorderable resource blocks 

137 



30 

25 

Fibonacci 

ideal-+--
64 resource blocks ---><---
32 resource blocks •· ..... · 
16 resource blocks ·---e--
8 resource blocks -·-•·-· 
4 resource blocks -·-E>-·-

' 2 resource blocks •• ·+ ·· 

--~~:;:·Js·cccs-····---··------1f5~~~.:::'.:?":::'.::::: 

20 g. 
i> __ .-------------­

,,,,': al 
l 

C. 
:, 

al 
GI 
C. 
en 

15 

..........
.. _ .. _ .. ___ ,,?/ .!!Iii.._· __ · ·••······ ················· ., •• , ... if····.-· ... ···:.::::·:_::::·.::.-.::~::::::::.:::.:.::.:.::.:.::.:.::.:.::.:::.· 
- . ~ ..................................... ---------···$·----------------·--·-···--·-·-·--· 

10 ............................................................................... .. 
/ 

5 -f ~:i::'.: :·l.• ... •••••-· ••- ........ ...... 1., ........... •• •• •••••• ... 1 C ••- .C C C C -•-• •• 

o~-------'---------''--------..J_ ______ _J 

5 

100 

90 

80 

70 

60 

50 

40 

10 15 

Problem Size 

20 

Figure 7.10: Speedup for Fibonacci using reorderable resource blocks 

Quicksort 

ideal 
64 resource blocks 
32 resource blocks 
16 resource blocks 
8 resource blocks 
4 resource blocks 
2 resource blocks 
1 blocks 

25 

0 L_ _ ____JL_ _ __J __ ___! __ _J_ __ --1. __ ---1.. __ --'----....I...--...L.---l 

1400 1600 1800 2000 0 200 400 600 800 1000 1200 

Problem Size 

Figure 7 .11: Speedup for quicksortl using reorderable resource blocks 

138 



It must be remembered that there will be other constraints on the speedup, such as the 

number of frames, and resource blocks may not be the limiting factor. 

7.5 Resource Blocks and Frame Limiting Compared 

The graphs in Figures 7.12 to 7.15 show the speedup obtained when limiting the number 

of reorderable resource blocks, compared with limiting the number of frames available in a 

WarpEngine which does not use resource blocks. 
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Figure 7 .12: Speedup for AVL tree with frame limited and resource block limited execution 

AVL tree insertion is the least limited of the test programs shown, relative to frame limita­

tions, with sixteen resource blocks allowing greater speedup than a frame limit of a thousand 

frames. The restrictions of resource blocks get steadily worse relative to frame limits for 

quicksort, binary tree insertion and Fibonacci. This is in order of increasing available par­

allelism, suggesting that resource blocks tend to limit the parallelism extracted to similar 

absolute levels across all programs much more than frame limits do. 

However, programs, such as matrix multiply and Gauss-Jordan elimination, whose frame 

usage can be calculated at compile time are not restricted by resource blocks, but can suffer 

substantial restriction by limiting the number of frames, as shown in Section 6.5.2 and in 
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Figure 7.13: Speedup for binary tree with frame limited and resource block limited execu­
tion 
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Figure 7.15: Speedup for quicksortl with frame limited and resource block limited execu­
tion 

more detail by Littin [2000]. 

It is estimated that five hundred to a thousand frames are as many as could reasonably be 

provided in the near future [Calvert, 1997; Littin, 2000]. This limit restricts speculation to 

a similarly to sixteen resource blocks. 

7 .6 Speculation Effectiveness 

Using the WarpEngine virtual order simulator, speculation effectiveness can be calculated 

from the ratio of committed instructions to the total number of issued instructions. Com­

mitted instructions can be obtained from the basic WarpEngine simulator, without transient . 

state information, since only instructions which are ultimately committed are simulated. 

The total instructions issued can be measured using the transient state extensions, since 

rolled back instructions are also tracked in this version of the simulator. Each instruction 

issued, whether it ultimately commits or not, is only counted once in the simulator, even if 

it is rolled back and reissued several times. 

The speculation effectiveness is plotted against the resource limit enforced in Figures 7 .16 
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to 7 .18 and C.17 to C.19 for the suite of test programs. Since the resource limit is measured 

by the number of resource blocks available for resource block limited execution, rather than 

the number of frames used, the two sets of curves are not exactly equivalent. A varying 

number of frames will be used in each resource block. However, the figures in Section 7.5 

can be referred to for the speedup relationship between frame limiting and resource block 

limiting, and the number of resource blocks available is the important resource limit. All 

programs in the test suite have been simulated with a variety of data sizes for both frame 

and resource block limited execution. 

For AVL and binary tree (Figures 7.16 and C.17) insertion resource block limiting shows a 

substantially better speculation effectiveness frame limiting right across the range than. In­

creasing the problem size moderately decreases the speculation effectiveness for both forms 

of limiting, due to the larger split instruction window that is used over a longer execution 

time. The curves for all data sizes are quite closely grouped, however. 
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Figure 7 .16: Speculation effectiveness of resource block and frame limiting for AVL tree 

For quicksort (Figure 7 .17), with small datasets resource block limiting allows more effec­

tive speculation. However, as the size of the data set increases deeper recursion is employed 

which, as previously noted, resource blocks do not cope with well. In instances of deeper 

recursion the effectiveness is similar to frame limiting, which does not vary much with data 
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set size. The situation is the same for Fibonacci, although frame limiting performs better 

than for quicksort. 

"' "' Q) 
C: 
Q) 

. .!: 

&l 
== Q) 

C: 
0 ·-; 
:i 
(J 
Q) 
C. 

en 

Quicksort 

Resource blocks 

0 2 3 4 5 6 7 8 
0.6 ,--.----.---.----,--~---..;...._--.....;..--_:; 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

G 

•·-·-·-·-·-·---· ·.. : 

.......... ...... .......................... >,.,: .. .. ············ .. ,: 
-,-.,······························:$····· 

G----·--$, 

..._ 
·,. 

'· '· '·, 

'· '· '· 

frames 100 items --+­
frames 300 items ---><--­
frames 500 items -··•··· 

res blocks 100 items ----e--­
res blocks 300 items -·-•·-· 
res bl.ocks 500 items -·-&·-

·····!···· 

···········t·-················· 
······---..... 

············ ............ ,., __ , __ :::,... __ 

'· ..... ~-~---·-·-----·-·-·-·-------·-·-· i ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·­

. ------------ ------------- '·-·-·-·- -----·-·-·-·--

500 1000 

Frames 

1500 2000 

Figure 7 .17: Speculation effectiveness of resource block and frame limiting for quicksortl 

The frames used for both Gauss-Jordan elimination and matrix multiply (Figures 7.18 and 

C.19) can be calculated statically for the whole program, hence they can execute uncon­

strained in a single resource block. However, the analysis used in the transient state sim­

ulations has been stated such the whole program is given all the available VTS range, and 

the right-most branch of each subtree is given all the available range remaining after the 

fixed estimate has been provided to all the other branches. When there is an even divi­

sion of the VTS range between two subtrees, which could have been calculated precisely, 

the parent's range is simply divided in half. This estimation performs suboptimally with 

resource blocks, since each time the right-most branch of the tree is divided equally it is 

treated by the simulator as two unknown size subtrees, which are allocated to separate re­

source blocks. However, this is a much more interesting allocation pattern to investigate, 

since performance will vary with the number of resource blocks. The essential pattern is 

a backbone down the right side of the tree with known size subtrees branching to the left, 

mixed in with some unknown size subtrees. 

Even with artificially introduced unanalyzable subtrees the speculation effectiveness for 
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Figure 7 .18: Speculation effectiveness of resource block and frame limiting for Gauss­
Jordan 

Gauss-Jordan elimination still levels off at eight resource blocks, not decreasing much be­

yond four resource blocks. This demonstrates the small number of resource blocks are ac­

tually being used. The relatively low value of the speculation effectiveness is indicative of 

the large speculation distance within each resource block, and consequent mis-speculation 

when combined with the large number of data dependencies. 

Matrix multiply, on the other hand, shows perfect speculation effectiveness for all data sizes 

and all numbers of resource blocks, despite the introduced unanalyzable subtrees. This is 

caused by the completely control independent computation throughout this "embarrassingly 

parallel" program, which will eventually commit all instructions that are issued. They may 

be rolled back and re-executed several times, though, which is only recorded as a single 

instruction issued by the virtual order simulator. The lower speculation effectiveness for 

frame limited execution is caused by cancelback due to insufficient frame resources. 

Interestingly, the speculation effectiveness in all the test programs does not vary much as 

the frame limit is increased, but is always at relatively low levels. This indicates that the 

basic selection heuristic in the WarpEngine, which selects frames early in the virtual order 

for preferential execution, is not a very accurate method, but does scale well for increased 
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resources. The programs for which frame limiting does achieve quite high absolute levels 

of speculation effectiveness, binary tree insertion, matrix multiply and Fibonacci, all have 

large independent code regions. 

7.7 Summary 

Resource blocks are a useful way of selectively speculating for a number of reasons. They 

allow speculation on branches of the execution tree to be selected early by using analysis 

of the size of the subtrees. This means speculative execution is focused where it is most 

useful, as shown by the speculation effectiveness results. Resource blocks use speculative 

execution much more effectively than the frame limits which allow the same execution 

speedup. 

Arranging frames into resource blocks allows them to be allocated in a linear order within 

the resource block. This has the potential to simplify the ordering enormously when com­

pared with the model of a pool of frames to be allocated arbitrarily. Instead of needing to 

assign an explicit VTS to each frame, only resource blocks need VTSs. This both reduces 

the necessary length of VTSs and reduces the overhead of calculating VTSs over the life of 

a program's execution. 

Resource blocks are similar to the processing elements used in the multiscalar. Each pro­

cessing element processes a task, which is a contiguous region of the instruction window. In 

the same way each resource block is a contiguous region of the instruction window formed 

by one execution subtree of unknown size and possibly several subtrees on which an upper 

bound of size can be placed. Resource blocks are more flexible than multiscalar tasks how­

ever, since several known size subtrees can be placed in a resource block with one unknown 

size subtree at runtime, whereas tasks must be determined at compile time. The multiscalar 

also requires that all future tasks be squashed when a task is squashed. The WarpEngine 

allows resource blocks to be selectively rolled back. 

The unified instruction window of a standard out-of-order superscalar processor is analo­

gous to one resource block. The issues involved in resource blocks do not become important 

until a split instruction is being used. 
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The simulation results presented in this chapter show that, even restricting resource alloca­

tion to a small number of resource blocks, on the order of sixteen, reasonable speedup can 

still be achieved. Recursive function calls badly affect the linear resource allocation. This 

is an intrinsic problem with this structure and is uncommon in typical processor loads. 

For programs with loop based parallelism, such as AVL and binary tree insertion, sixteen 

resource blocks allow parallelism to be extracted of the same order as limiting frames to 

five hundred to a thousand. It is likely that this is the number of frames that could be 

implemented on a single chip WarpEngine with current technology. Where the parallelism 

is recursion based, as in Fibonacci, or a combination of the two, as in quicksort, resource 

block limiting is disadvantaged compared with frame limiting alone. 

For the programs in the test suite used here resource blocks provide a better method of 

selecting instructions for speculative execution. A larger proportion of those issued are 

committed, compared with those executed under simple frame limits. This indicates that if 

the resource requirements of a region of code can be determined in advance it is more likely 

to contain independent instructions than those in unanalyzable regions of code. 

Resource blocks f01m one level in a hierarchy of resource allocation which stretches from 

the instruction and frame level through resource blocks to multiple chips. Work can be 

conveniently split across chips using the process to allocate instructions to resource blocks, 

some of which reside on different chips. There are many other issues beyond the scope 

of this thesis involved in multiple chip operation, but resource blocks provide a convenient 

basis for dividing processing into units for migration to multiple chips. 

Chapter 8 follows on from this work to develop a virtual ordered memory system which 

uses resource blocks as the basic level of its hierarchical organization. 
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Chapter 8 

Twisted Memory 

In the preceding chapters tracking the virtual order of memory operations has been ap­

proached through explicit VTS tags. The ultimate intention of these techniques is to design 

speculative memory systems for very large numbers of speculative accesses over a large 

speculation distance. Memory systems proposed elsewhere (discussed in Chapter 2) are 

restricted to a small number of speculative accesses, and typically a small speculation dis­

tance. 

A conceptual view of a virtual ordered memory system was presented in Section 3.3.7. The 

key component in the virtually ordered memory system is the time-space cache, a multiple 

version memory system supporting arbitrary speculative reads and writes. 

The conceptual model is essentially a list of memory accesses to each address stored with an 

indication of their virtual order so that the correct value can be returned for any subsequent 

reads. It is important to record reads as well as writes to detect when a write must cause 

a previously executed speculative read to be resatisfied. Rollback is achieved through anti­

messages which remove the entry from the time-space cache, and which may also cause a 

read to be resatisfied. Cancelback also requires the entries from the cancelled frames to be 

removed from the time-space cache. 

The time-space cache functions as a write-back cache, which reduces memory traffic to 

spatial memory by not writing every value through to memory. When fossil collection evicts 

entries from the time-space cache only the latest collected write to each address needs to be 

written to spatial memory. This caching can be made even more effective by employing lazy 
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fossil collection, which will only evict fossil collected values from the cache when space 

needs to be freed for new speculative entries. This has the advantage of reducing fossil 

collection overhead by fossil collecting less often, as well as allowing a greater caching 

effect. The time-space cache can also be used to cache values read from main memory in 

the same way as a spatial cache. 

The memory model assumed so far has been a unified speculative memory large enough to 

hold all speculative memory references, and accessible in a constant number of cycles. This 

could be implemented by an arbitrarily large time-space cache without any spatial memory, 

simply retaining the fossil collected values in the time-space cache. 

While storing fossil coliected values in the time-space cache is useful when there is unused 

space, it is an inefficient use of memory, since memory locations in the time-space cache 

space record a VTS, which is unused by fossil collected entries. A better use of memory 

would be to have a small, fast time-space cache and the usual hierarchy of spatial memory 

beneath it. 

It is also desirable to have multiple distributed time-space caches to support scalability 

across multiple processors, and also within a processor should the time-space cache prove 

to be a performance bottleneck. 

In this chapter the issues associated with using explicit VTSs, such as those developed in 

Chapters 5 and 6, to implement a virtually ordered memory system are briefly discussed. 

However, assigning a VTS to every block requires long VTSs, even with the more effi­

cient representations. By combining explicit VTSs with fixed hardware ordering a smaller 

number of explicit VTSs are required. 

The main focus of this chapter, is the design and preliminary examination of a time-space 

cache using the resource usage analysis developed in Chapter 7. A hierarchy of speculative 

caches is used to order memory operations using a hybrid hardware ordered and explicit 

VTS mechanism. This memory system is shown to provide a scalable, distributed solution 

to the problem of ordering speculative memory accesses in a large instruction window. 
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8.1 Explicit VTSs 

Several methods of assigning explicit VTSs to frames have been examined in detail in Chap­

ters 5 and 6. Using variable range VTSs it has been shown that a 16 bit VTS is generally 

sufficient to support execution on the WarpEngine with over a thousand frames, using the 

VTS rescaling and allocation methods described in Chapter 6. However, adding 16 bits to 

every memory operation, and then storing it in the time-space cache until it is fossil col­

lected adds substantial overhead. The time-space cache will be significantly bigger than 

spatial memory for the same number of entries in the cache. 

Obtaining the virtual order of events, including memory accesses is a matter of comparing 

the VTSs of the events. While this only requires comparing two integers, a fast operation, 

accessing the time-space cache potentially requires many of these comparisons. 

Satisfying a read correctly requires returning the most recent write to that address which 

is prior to the read in the virtual order. A read requires finding the write to that address 

with the greatest VTS less than that of the read. If the time-space cache is implemented as 

a list of memory accesses the list corresponding to that memory address must be searched 

and a comparison done with each existing entry. Reading could be made more efficient, for 

example by using a hashing algorithm, but this would add to the complexity of inserting an 

entry into the time-space cache, necessary for both reads and writes. 

Writes and anti-writes also involve searching the time-space cache in order to identify reads 

which need resatisfying with the newly written value, or with the value superseding the 

rolled back value. 

The address resolution buffer and speculative versioning cache described in 2.4.6 are re­

stricted implementations of an explicit VTS time-space cache. They use the task sequence 

number in the multiscalar processor to track the virtual order. This is much simpler in the 

multiscalar than in the WarpEngine because tasks are allocated to processing units in a fixed 

hardware order, and the largest published configuration consists of only eight processors, 

making the sequence numbers much shorter than VTSs. This approach to time-space cache 

design is not pursued further here, rather an approach based on resource blocks is developed. 
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8.2 Twisted Memory 

The resource blocks developed in Chapter 7 suggest a natural hierarchy of virtual ordering. 

The frames, and hence the memory accesses, are already organized in virtual order within 

the resource block, so only the order between the resource blocks needs to be explicitly 

maintained when comparing memory accesses for different resource blocks. The memory 

accesses from each resource block fall within a contiguous virtual order range, not overlap­

ping with any other resource block. This means that a read should return the most recent 

write to that address from the same resource block, and will only need to access writes from 

previous resource blocks if there has been no write that is earlier in the virtual order within 

the same resource block. Only the latest write within a resource block for each address is 

ever returned to reads in other resource blocks, although that write may be superseded as 

speculative execution progresses. 

The need to search through resource blocks to find a memory access, first in the current 

resource block, then through progressively earlier resource blocks until an access to that 

address is found, suggests a further hierarchical organization to the time-space cache. The 

memory architecture proposed is shown in Figure 8.1 for four resource blocks. It is known 

as twisted memory because of the way entries twist through the network as they are propa­

gated to the different levels. The interconnections between twisted memory cells forms an 

omega [Lawrie, 1975], or baseline [Wu and Feng, 1980], network topology. 

The resource blocks themselves, each composed of an array of frames, are shown at the top 

of the diagram. Each resource block is connected directly to a time-space cache cell, which 

all memory accesses from that resource block initially go to. Level zero time-space cache 

cells must record the frame number the access originated from, to track the virtual order of 

memory accesses, since intra-resource block ordering is important at this level. However, 

at lower levels only the resource block the access originated from is significant. 

The principle of locality states that most reads will be satisfied by a write from the same 

resource block, or a nearby resource block. This is an advantage for twisted memory be­

cause most loads will be satisfied by traversing a small number of levels of the hierarchy. 

Each level traversed adds to the latency of the operation, so reducing the average depth of 

an access reduces the average latency of memory reads. 
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Figure 8.1: Layout of a twisted memory system with four resource blocks 

At each level of twisted memory the memory accesses are sorted by the least significant bit 

of their addresses and propagated down either the left or right connection to the next level 

on that basis. The least significant bit is then redundant, since its value is implied by the 

location of the twisted memory cell, so it is removed. The access is then sorted again, and 

propagated to the next level based on the next bit of the address. 

When the memory accesses have propagated to the bottom level of twisted memory all 

accesses from the same address have been sorted into the same cell. 

While the inter-resource block virtual ordering of memory accesses at level zero can be 

determined purely from the twisted memory cell the access is in, this is not the case at 

lower levels. To track the inter-block ordering a short explicit VTS is assembled as the 

memory access propagates through twisted memory. One bit is added to the VTS at each 

level based on the connection the access arrived at the next level on. 

Figure 8.2 shows an example of two writes and one read to address 9 (1012) that have 

propagated through the twisted memory, from resource blocks one, two and three. The 

time-space cache entry is represented as VTS : OP(value) : address, where OP is the 

type of access, read (RD) or write (WR). The diagram is a snapshot of the memory state at a 
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Figure 8.2: Propagation of a write through twisted memory 

particular instant in real time. At some later real time an entry for an access may be inserted 

anywhere in the virtual order. The write from resource block 2 with value 7, shown in bold, 

is the latest access in real time order. 

At each level one bit is also removed from the explicit address recorded, becoming implicit 

in the position of the twisted memory cell. An earlier write to address 9 from resource block 

two of the value 2 is not propagated to level one because it has been superseded by the write 

with value 7 later in the virtual order. The read from resource block three returns the value 

7 from the write in resource block two, which it matches with at level one. 

Each cell in the time-space cache is identical, apart from the level zero cells, which addi­

tionally contain the originating frame number. This contributes to a scalable design. The 

number of resource blocks supported can be doubled by adding an extra level of cells to the 

time-space cache. Of course, adding another level will increase the access latency to the 

bottom level of the time-space cache and to spatial memory. This will ultimately limit the 

size of the time-space cache. However, Chapter 7 showed that thirty two resource blocks 

provide reasonable performance compared to frame limited execution. 

The network can be implemented with more than two input and output connections per 

cell. Four connections would effectively remove every second level of cells. Increasing the 
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number of connections between cells reduces the number of levels between the resource 

blocks and spatial memory, reducing the propagation time and total latency of an access to 

main memory. However, this makes the switching logic in each cell more complex. 

As well as being scalable, twisted memory can function as a distributed design, with re­

source blocks being split across multiple chips, and the time-space cache could be used as 

part of a cross chip hierarchy. Multi-processing introduces a host of new issues which are 

beyond the scope of this thesis. 

8.2.1 Write 

When a write operation is executed the value is written to the level zero cell attached to the 

resource block, along with the frame number. Only the latest write in the virtual order to 

that address by the resource block will ever be accessed by other resource blocks, so only it 

must be propagated to lower levels. 

If the resource block contains any reads to that address later than the currently executing 

write, but earlier than any other write, then a read reply must be reissued for them with the 

value of the new write, since they were incorrectly speculatively executed. All other writes 

to that address will be superseded by the propagated write, so they are not propagated and 

are only recorded in the level zero cell. 

When a write is propagated to a lower level it is propagated left or right based on the least 

significant bit of the address, in Figure 8.2 a zero sends the entry left, a one sends it right. 

In the WarpEngine bit two is actually used to achieve a more even distribution, since all 

memory accesses are word aligned. 

If there is already a write in the level one cell with the same VTS as the new write it is 

earlier in the virtual order and should be overwritten. Thus, there are a maximum of two 

writes to each address recorded in the level one cells. 

The pseudocode for executing a write operation in each twisted memory cell is shown in 

Figure 8.3. The procedures within the code are described in Table 8.1. 

At level one a check must again be made for any dependent reads. Reads from the same 

originating block as the write can be ignored, they will have been dealt with at level zero. 
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procedure description 
JnsertlnList(X) Inserts memory access X into the list in virtual order 
Next(X) Returns the memory entry after X in the virtual order 
Previous(X) Returns the memory entry before X in the virtual order 
AccessType(X) Returns memory operation of the entry X, either READ or 

WRITE 
ReturnValue(X, Y) Sends the value of the write X as the result of the read Y 
LatestW rite(X) Returns true if X is the latest write in this memory cell 
LSB(X) Returns the least significant bit of the address of X 
PropagateLe ft ( X) Propagate the memory operation X to the next level of twisted 

memory on the left channel 
PropagateRig ht ( X) Propagate the memory operation X to the next level of twisted 

memory on the right channel 
GetM atch(X) Returns the entry that matches the anti-message X 
Delete(X) Remove message X from the memory cell 
VTS(X) Return the VTS of the entry X 
Commit(X) Write X to spatial memory 

Table 8.1: Procedure descriptions for twisted memory pseudocode 

{ N is the new write } 
{ Level is the level of twisted memory being operated on } 
{ MAXLEVEL is the bottom level of twisted memory } 

InsertlnList(N) 
E +- Next(N) 
while (AccessType(E) =READ) 

ReturnValue(N, E) 
E +- Next(E) 

{ Find matching reads } 

if((Level > 0 OR LatestWrite(N)) AND (Level < MAXLEVEL)) 
if(LSB(N) = O) { Propagate to next level} 

PropagateLeft(N) 
else 

PropagateRi g ht ( N) 

Figure 8.3: Algorithm for a twisted memory write operation 
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Reads from later in the virtual order, as indicated by their VTS must be resatisfied. Any 

which are dependent on a different, later write which has already executed will not have 

propagated to this level of the time-space cache. 

The write is then propagated in the same way to level two. Another bit is removed from the 

address and another bit is prepended to the VTS, chosen as before. 

The propagation process continues until the write reaches the bottom of the time-space 

cache. The bottom level (level two when four resource blocks are used) is connected to the 

usual non-temporal memory system, although writes are not propagated to the rest of the 

memory system at this point because they are still speculative. 

Each bottom level cell of the time-space cache contains the latest write, if any exists, from 

each of the resource blocks for a subset of the memory address space. Each write has a VTS 

indicating the resource block it originated from. 

8.2.2 Read 

A read operation is also issued to the level zero cell attached to its originating resource 

block and recorded there. If a write earlier in the virtual order can be found in the level zero 

cell its value is returned and the operation finishes there. 

If no matching write is found, however, the read is propagated to the next level in the time­

space cache based on its address in the same way as for a write. The read is recorded in 

this cell too, although the frame number is not required. As with a write, one bit of the 

address becomes implicit in the twisted memory cell, and a one bit explicit VTS is attached 

to the access based on the connection it arrived at the cell on. Now the comparison with 

writes is based on the VTS rather than the frame number. Writes with the same VTS as the 

read can be ignored, since they would have matched at level zero if they were earlier. If an 

earlier match still cannot be found the read is propagated to the next level. The most recent 

memory access in Figure 8.4 is a read from resource block three, shown in bold. It matches 

with a write from resource block two at level one and does not propagate any further. 

Pseudocode for the algorithm to execute a read operation in a twisted memory cell is shown 

in Figure 8.5, using the procedures in Table 8.1. 
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Figure 8.4: Propagation of a read through twisted memory 

{ N is the new read } 

InsertlnList(N) 
E +- Previous(N) 
while(E # null AND AccessType(E) #WRITE) 

E +- Previous(E) 

if (E i= null) 
Return Value(E, N) 

else 
if(LSB(N) = 0) 

PropagateLef t(N) 
else 

PropagateRight(N) 

{ Find matching write } 

{ Propagate to next level } 

Figure 8.5: Algorithm for a twisted memory read operation 
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If a matching speculative write is not found when the bottom level has been searched then 

the read is issued to spatial memory in the same way as for non-speculative architectures. 

This means that a committed value is returned. Wherever the value is obtained it is returned 

through the network to the originating resource block by performing the reverse process of 

removing bits from the VTS and adding bits back onto the address. 

8.2.3 Anti-write 

An anti-write is issued when a write instruction or a frame containing a write instruction 

is rolled back. It propagates through the time-space cache in the same way as the original 

write did, but it removes the matching write from each level of the time-space cache. 

The anti-write doesn't need to contain the value of the original write. Only the address and 

frame number is needed at level zero to match it with the appropriate write. Beyond level 

zero only the address and VTS is needed. 

In addition to removing the write which has been rolled back, the previous write to that 

address from the same resource block must be propagated through the twisted memory to 

take its place. If there is no earlier write to that address from the same resource block, or 

the rolled back write has already been superseded, nothing is propagated. 

It must also cause any dependent reads to be resatisfied by an earlier write. If there is an 

earlier write to the same address in the same cell that satisfied the read the first time it simply 

returns a read reply with the new value. 

If the read cannot be satisfied in the same time-space cache cell it must continue to propagate 

through the time-space cache in the same way as a newly issued read, inserting an entry into 

the cells it reaches for the first time. 

The read will never be resatisfied at an earlier level after the anti-write, otherwise the write 

being rolled back would already have been superseded for that read. 

Figure 8.6 shows the algorithm for executing an anti-write operation in a twisted memory 

cell. The procedures used are described in Table 8.1. The example in Figure 8. 7 shows a 

write to address 9 being rolled back in resource block two. The anti-write message (ab­

breviated AW) propagates through the time-space cache and annihilates with the matching 
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{ N is the new anti-write } 
{ Level is the level of twisted memory being operated on } 
{ MAXLEVEL is the bottom level of twisted memory } 

W +- GetM atch(N) { Remove matching write} 
if(W -=f- null) 

Delete(W) 
P +- Previous(W) { Find previous write} 
while(P -=f- null AND AccessType(P) -=f- WRITE) 

P +- Previous(P) 
E +- Next(W) 
while (AccessType(E) =READ) {Resatisfy reads} 

if(P -=f- null) 
ReturnValue(P, E) 

else if(LSB(E) = 0) { Propagate read to next level} 
PropagateLef t(E) 

else 
PropagateRight(E) 

{ Propagate previous write to next level } 
if((Level > 0 OR LatestWrite(W)) AND (Level < MAXLEVEL)) 

if(LSB(W) = 0) 
PropagateLef t(W) 

else 
PropagateRight(W) 

if(LSB(N) = 0) 
PropagateLef t(N) 

else 
PropagateRight(N) 

{ Propagate anti-write to next level } 

Figure 8.6: Algorithm for a twisted memory anti-write operation 
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write. Then the previous write to address 9 is propagated to replace the rolled back write. 

The read from resource block three is resatisfied with the new value of 2. 

8.2.4 Anti-read 

An anti-read is issued when a read instruction is rolled back. It removes the read entry from 

all the time-space cache cells it propagated to. The algorithm for doing this in each cell is 

shown in Figure 8.8. 

Read entries must also be removed from the lower level time-space cache cells when a 

write resatisfies a read at a higher level. In the example in Figure 8.9, following on from 

Figure 8.2, a write in resource block three resatisfies an already speculatively executed read 

from its own resource block, and the read had not previously matched a write until level 

one of the time-space cache. An anti-read must be issued to remove the read entries from 

all levels below level zero. If this is not done it may cause subsequent writes from other 

resource blocks to resatisfy the read incorrectly. 

8.2.5 Fossil Collection 

When a resource block is fossil collected the time-space cache entries generated by that 

resource block can also be fossil collected. This allows the VTS to be reused when the 

resource block is reused. It also frees space in the time-space cache occupied by memory 

operations which are no longer speculative. 

Fossil collecting at the granularity of resource blocks allows the fossil collection message to 

simply propagate through the twisted memory, fossil collecting all messages with a match­

ing VTS. As the fossil collection message propagates through the time-space cache it deletes 

all entries, both reads and writes, with a matching VTS. At the lowest level of the twisted 

memory, connected to spatial memory, writes matching the VTS are committed to spatial 

memory by simply writing them to spatial memory before deleting the copy in the time­

space cache. This process is shown in the pseudocode in Figure 8.10. 

As resource blocks are fossil collected they are available to be reused. This means that 

resource block zero, which started as the earliest resource block in the virtual order, will at 
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Figure 8.7: The effects of an anti-write in twisted memory 
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{ N is the new anti-read } 

R +- GetM atch(N) 
if(R-=/= null) 

Delete(R) 
if(LSB(N) = 0) 

PropagateLe ft ( N) 
else 

PropagateRight(N) 

{ Remove matching read } 

{ Propagate to next level } 

Figure 8.8: Algorithm for a twisted memory anti-read operation 

some point be the latest resource block. To ensure that memory accesses from it are treated 

as such in the time-space cache, an epoch counter is used to indicate whether the ordering 

of resource blocks has wrapped around. Only one bit is needed, which is incremented each 

time fossil collection begins at resource block zero again. If the epoch bits of the two 

resource blocks are different the usual ordering is reversed. The epoch bit is attached to 

VTSs of all time-space cache entries based on the epoch of their originating resource block. 

This is also why the latest write from each resource block must be propagated right to the 

bottom of the time-space cache. If it could be guaranteed that resource blocks are always in 

a fixed relative order, only the latest write in each cell would need to be propagated to the 

next level. 

Figure 8.11 shows an example where resource block zero is the latest in the virtual order. 

The read in bold from resource block zero should return the value 7 from the write in 

resource block three, encountered at level two, not the write in resource block one with the 

value 5, encountered at level one, although it may be returned speculatively and rolled back. 

The epoch of each entry is recorded as / epoch appended to each entry. 

If the epoch bits of two memory accesses are different they should not produce a match 

unless the bottom level of the time-space cache has been reached, since there may be in­

tervening accesses at a higher level. In the bottom level cells the latest accesses from each 

resource block have been sorted by address. All relevant speculative memory accesses to 

an address are recorded in a single cell, so a conclusive comparison may be made. 

The fossil collection process described above commits stores to spatial memory immedi­

ately their resource block is fossil collected. In fact, it is not necessary to commit the writes 
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Figure 8.9: The effects of an anti-read in twisted memory 
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{ N is the fossil collection message } 
{ H is the earliest entry in the cell } 
{ Level is the level of twisted memory being operated on } 
{ MAXLEVEL is the bottom level of twisted memory } 

while(VTS(H) ::; VTS(N)) 
if(Level = MAXLEVEL AND LatestWrite(H)) 

Commit(H) 
Delete(H) 
H +- Next(H) 

if(Level < MAXLEVEL) 
PropagateLeft(N) 
PropagateRight(N) 

{ Commit latest write } 

{ Propagate to next level } 

Figure 8.10: Algorithm for a twisted memory fossil collection 
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Figure 8.11: Ordering time-space cache entries using an epoch counter 
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until the resource block is allocated for reuse, or space needs to be freed in the time-space 

cache for new memory entries. This lazy fossil collection improves the effectiveness of 

the time-space cache, since more reads can be satisfied in the time-space cache rather than 

going to spatial memory. It also lowers the bandwidth to spatial memory consumed. If sev­

eral resource blocks, or at least their memory accesses, are fossil collected at the same time, 

only the latest write in the virtual order to that address needs to be written to spatial ~emory. 

This has the potential to substantially lower the bandwidth required to spatial memory. 

8.3 Evaluation 

The remainder of this chapter presents some preliminary results, aimed at demonstrating 

the feasibility of the twisted memory concept. The main focus here is on the bandwidth 

consumed by speculative memory accesses, both within the time-space cache and from the 

time-space cache to the spatial memory hierarchy. This is a major area of concern for 

aggressively speculative execution, since the bandwidth required will be increased both by 

the high levels of parallelism being extracted and the increased number of accesses due to 

speculation. Bandwidth to spatial memory is the more important of the two, since the time­

space cache is small and likely to be on the same chip as the CPU, while spatial memory 

will generate traffic off.-chip at some level of the hierarchy. 

Twisted memory is simulated using the WarpEngine virtual order simulator with transient 

state tracking. Twisted memory with four resource blocks, as described in Section 8.2, is 

used in all the results described below, both to narrow the design space, and because of 

simulation time limits. The time-space cache is modelled by fixed latency between levels of 

one cycle and an eight cycle latency to spatial memory. One cycle is the minimum possible 

latency between levels, and eight cycles was used for the latency to twisted memory to 

match the standard latency of a load, as given in Table 4.1. An arbitrary number of entries 

may be placed in each cell. 

Lazy fossil collection is used in the simulations, although the virtual ordered simulation 

method requires that time-space cache entries are sometimes fossil collected earlier than 

absolutely necessary. The virtual order simulation paradigm also forces all writes to the 

time-space cache to be propagated all the way to the bottom of the twisted memory. It is not 
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possible to tell in advance whether any writes later in the virtual order (and hence later in 

the simulated order) will be written to the time-space cache at an earlier real time, meaning 

they would not need to be propagated. 

The bandwidth measurements presented are pessimistic because of the limitations of virtual 

order simulation. Although no frame limits are placed on execution, it was shown in Chapter 

7 that four resource blocks limit execution in similar ways to around a thousand frames. The 

write bandwidth to levels other than level zero and spatial memory is pessimistic because 

full write through to all levels of the time-space cache is forced by virtual order simulation. 

The number of writes at these levels will normally be substantially reduced. 

For CC\mparison, bandwidth consumed was also measured using a unified time-space cache, 

as has been used in the earlier parts of this thesis. 

8.4 Memory Bandwidth 

8.4.1 Average Memory Bandwidth 

An important aspect of memory system bandwidth is the average bandwidth required. In 

the absence of a detailed low level model this gives an idea of whether the memory through­

put can be sustained. Although simulations may show that the peak bandwidth required is 

beyond what could reasonably be supplied, if the average is within the capabilities execu­

tion can continue with minimal impact by delaying some accesses until the bandwidth is 

available. 

The bandwidth used can be measured either as the bandwidth from each cell, or the to­

tal bandwidth consumed across the level. Total bandwidth is only meaningful where it is 

feeding into a single component, such as spatial memory, or as an aggregate where the 

bandwidth across each connection is similar. 

The results in Figures 8.12 to 8.17 show the average read and write bandwidth required to 

execute the test suite using a four resource block twisted memory. The bandwidth has been 

aggregated over all the connections on each level for ease of presentation. This bandwidth 

is provided by several connections at each level, four originating from the resource blocks 
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and terminating at spatial memory, and eight connections everywhere else. Many of these 

data paths are entirely independent, sharing neither source nor destination cell. The curves 

on the graphs are labeled with the level the access is being made to. 

For comparison the same measurement for a unified time-space cache using four resource 

blocks has also been shown on the graphs. The discrepancies between accesses to the uni­

fied time-space cache and level zero of the twisted memory time-space cache are due to the 

change in access patterns caused by the different access latencies. The unified time-space 

cache was simulated with a store instruction latency of 2 cycles and a load latency of 8 cy­

cles. An additional latency of 8 cycles was added for reading to or writing from memory to 

represent the long latency usually associated with a large monolithic memory. The twisted 

memory simulations use a cumulative latency of 1 cycle per level of twisted memory and an 

additional 8 cycles to spatial memory for both reads and writing of fossil collected values. 

The same instruction latency of 8 cycles is added for reads, but no additional latency is im­

posed on writes. This gives a maximum read latency of 19 cycles for values retrieved from 

spatial memory via twisted memory. This has little affect on the execution times for all the 

test programs except Gauss-Jordan and quicksort, where the times are lower for the twisted 

memory simulations. The total number of memory accesses for these two programs, and 

AVL tree insertion, are substantially reduced when twisted memory is used, while they are 

similar for the other programs. 

All the graphs show a drop in the bandwidth required between level zero and level one for 

reads, indicating that the level zero cells are performing the caching hoped for. The extent 

of the success of caching at level zero depends on the locality of accesses. In general the 

bandwidth requirements continue to decrease further from the resource blocks. 

The write bandwidth required to spatial memory, caused by committing fossil collected 

values, is much lower than the total number of writes, showing write caching in the twisted 

memory again is effective. This could be improved even further by further attention to 

improving the simulation of lazy fossil collection. 

For AVL, binary tree and Fibonacci the average number of memory accesses is well below 

one access initiated per cycle for both reads and writes, a level that is easily sustainable even 

assuming accesses have a latency of several cycles. For quicksort the averages fall in the 

range of several accesses initiated per cycle, except for values being retired to spatial mem-
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ory which are well below one access initiated per cycle. This level may be more dffficult 

to sustain, although it may be possible with careful memory design. Matrix multiply and 

Gauss-Jordan require very high bandwidth to memory to fully exploit the levels of paral­

lelism achievable with resource blocks. The high memory bandwidth is caused by the large 

number of frames used by these programs in resource blocks because they are statically an­

alyzable. When the frames available are limited the parallelism will be constrained to levels 

far below those simulated here. 

8.4.2 Bandwidth Profile 

Important as the average bandwidth required is, the temporal distribution of accesses is also 

important. In a real system the bandwidth limit will be a maximum number of concurrent 

accesses from each time-space cache cell, so the peak bandwidth requirements become 

important. 

In the simulations in this chapter no bandwidth limit is applied, instead the peak bandwidth 

that can be utilized is measured. If this peak exceeds the bandwidth available, some of the 

accesses will have to be delayed. If the peaks occur sparsely and the average bandwidth re­

quirements of the local region are low the accesses will not have to be delayed for long, and 

performance will not be heavily impacted. If there are sustained regions of high bandwidth 

requirement then memory may become the performance bottleneck. 

Figures D.1 to D.36 show the number of memory reads and writes initiated on each cycle 

as a bar with a width of one cycle. There is a separate graph for each level of the time-space 

cache, with each twisted memory cell at that level (referred to as resblock Oto resblock 3) 

plotted separately. Writes to spatial memory are not shown on a cell by cell basis because the 

bandwidth will probably constrained by spatial memory, where all the bottom level twisted 

memory cells are writing to a single unit. The graph of the aggregated accesses to spatial 

memory is also included, plotted alongside the number of frames actively executing at that 

time, and the graph of the access profile to a unified time-space cache. The bandwidth due 

to fossil collection is recorded on this graph. 

The test programs used are the same ones chosen in Chapter 7, with an arbitrary data set 

size chosen for each available program. 
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Littin [2000] showed that in the count of committed instructions there are more reads than 

writes, usually around double the number. However, this may not necessarily be the case in 

the memory bandwidth profile, due to speculatively executed instructions and the differing 

caching characteristics of twisted memory for reads and writes. 

The important feature of the bandwidth profiles is the general trend of the accesses, the 

peaks and the relative changes between the levels. Although the graphs appear to be densely 

packed with multiple accesses on every cycle this is an artifact of the graphing resolution. 

There are actually many interspersed cycles with no memory accesses, as can be seen from 

the enlarged regions of the level zero graphs in Figures D.37 to D.42. A region of five 

hundred cycles has been selected from each where the number of memory accesses is high­

est. An indication of this spacing can also been seen in the average bandwidths below one 

instruction per cycle for AVL, binary tree and Fibonacci seen in Section 8.4.1. With the ex­

tremely high parallelism of matrix multiply and Gauss-Jordan, a high sustained bandwidth 

is necessary to support the speedup gained in the simulations. 

In line with the average bandwidth results reported above, the peak bandwidth required for 

reads consistently declines at the level zero cells, showing the effectiveness of caching at 

that level. Elsewhere in the twisted memory the accesses are largely being redistributed 

between the different cells, since almost all accesses are propagated from level one to level 

two. In some cases accesses do not propagate all the way to level two because they are 

rolled back before they get there. 

In most cases the accesses are evenly distributed amongst the address sets used at level 

two, but AVL shows a bias towards resource block three due to the data structures used 

for storing the nodes of the tree. The pointers to other nodes of the tree are altered much 

more often than the value itself. Matrix multiply shows an excellent example of memory 

accesses predominantly from a single resource block being redistributed through the twisted 

memory. The memory accesses are mainly from resource block zero early in the program 

and resource block zero towards the end, but throughout the program are evenly distributed 

amongst all the cells at level two. The uneven distribution of memory accesses among 

resource blocks is caused by the large number of frames used in each resource block, and 

only resource block zero is being used early in the program's execution. 

For AVL, binary tree and Fibonacci the bandwidth consumed to spatial memory appears 
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remarkably similar to, although slightly lower than, the bandwidth used by a unified time­

space cache. This is a misleading impression, as shown by the significantly lower averages. 

The relatively high peaks in the spatial memory write bandwidth are caused by a large 

number of frames being fossil collected at once and the writes being committed together, 

with many idle cycles in between. When properly managed commitment of values is not a 

time critical operation, and should be easily spread across the available cycles. 

8.5 Optimizations 

While the descriptions of the memory operations in Section 8.2 will allow the time-space 

cache to function correctly, there are a number of optimizations that can be used to improve 

the efficiency. The evaluation in this chapter does not consider these optimizations, they are 

left for future investigation. 

In the same way that lazy fossil collection takes advantage of unused time-space cache 

storage to improve performance, values can be cached in cells other than those they were 

originally written to. When a read is satisfied in a cell below level zero the read reply is 

transmitted back through cells which do not contain that value. By inserting a write entry 

into these cells the value can be accessed again more quickly, as the principle of locality 

suggests is likely to be required. Care must be taken to ensure that the entry is marked 

appropriately according to its place in the virtual order. 

Similar to lazy fossil collection, lazy re-execution only re-executes instructions when the 

input operands change, rather than every time they are updated. In the context of memory 

accesses this means that a read is only resatisfied when the new write value it is dependent on 

is different to the previous value returned. This can be achieved by storing the value returned 

in each read entry in the time-space cache for comparison before the read is resatisfied. 

Twisted memory, as described above, operates with resource blocks arranged in a fixed 

order circular queue, dictated by the fixed network of time-space cache cells. This imposes 

some restrictions on parallel execution, as was shown in Chapter 7. The resource blocks 

could be reordered, either by changing the physical connections, or by using a lookup table 

to redefine the order, but this detracts from the simplicity of twisted memory that is so 

attractive. 
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A more reasonable alternative is to use static analysis to estimate the number of resource 

blocks a subtree will require, and reserve them before allocating resource blocks to follow­

ing subtrees. This is a higher level analysis of a similar nature to that used to allocate frames 

in resource blocks and could be performed by a compiler. 

The organization within a twisted memory cell assumed so far is that reads and writes are 

stored in a single structure in their virtual order, but this need not be the case. Splitting 

the load and store lists could have performance benefits, since only the stores need to be 

examined to satisfy a read, and only the loads need to be examined to determine rollbacks 

due to a write, as long as the succeeding write is known. 

By placing the time-space cache in the direct path to spatial memory the maximum latency 

of a memory access has been increased by the latency required to propagate through the 

time-space cache. The additional latency will be most noticeable for loads, and it may be 

worthwhile to issue loads to spatial memory in parallel with the request to the time-space 

cache. If the time-space cache provides a result the resource block would then ignore or 

roll back the value provided by spatial memory. The trade off is that additional memory 

accesses to spatial memory will be generated. 

8.6 Summary 

This chapter has proposed a hierarchical speculative memory system, known as a twisted 

memory time-space cache. The hierarchy begins with the previously developed resource 

blocks to partition the program into multiple instruction windows, which may still be split 

windows internally, and whose resource usage may be allocated linearly. 

Dependent accesses in the same resource block are found using the linear frame ordering, 

while those in other resource blocks are found by propagating the accesses through the 

network of twisted memory cells, searching for matches with accesses from resource blocks 

progressively further apart. Only those accesses which may potentially match with accesses 

from other resource blocks need to be propagated through the hierarchy. 

Twisted memory relies on a mixture of explicit VTSs and physical ordering to maintain the 

virtual order of memory accesses. This provides the flexibility and scalability of explicit 
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VTSs, but reduces the number of VTSs required, and provides a fast method of matching 

accesses in the same resource block, which the principle of locality suggests are likely to be 

most frequent. 

The simulation results presented take a preliminary look at the bandwidth requirements 

in the the twisted memory network. The measurements show that the bandwidth required 

reduces substantially in the levels of twisted memory further away from the resource blocks. 

Both reads and writes benefit greatly from caching in the level zero cells and very few of the 

values written to the time-space cache are written out to spatial memory. Although fossil 

collection does tend to cause commitment to occur in bursts this can easily be smoothed by 

implementing lazy commitment appropriately. 

Virtual order simulation forces the results presented here to be pessimistic in regard to the 

bandwidth required between lower levels of the time-space cache. Caching at these levels 

is expected to reduce the already low bandwidth even further, but can not be simulated with 

this methodology. 

In most cases the bandwidth required between each cell is well below one access initi­

ated per cycle and is easily achievable for programs executing under realistic resource con­

straints. In addition to a low average bandwidth, the bandwidth peaks are well spread, so 

smoothing of the access pattern by stalling excess accesses should be possible with minimal 

performance impact. 

Twisted memory has the additional advantage that it can be implemented as a distributed 

memory system, spreading the bandwidth across multiple connections and memory cells. 

Twisted memory could be potentially used in a multiple chip implementation, connected at 

the lower levels of the hierarchy. 

A key advantage of twisted memory is its scalable design. The modular arrangement means 

that extending the design to support more resource blocks is simply a matter of connecting 

more twisted memory cells in the standard omega network topology. The results presented 

here show the accesses are distributed evenly across the network even when the initial access 

pattern is asymmetric at the resource blocks. This also enhances scalability. 

As the number of resource blocks is increased the memory bandwidth required will also 

increase. However, the number of physical channels per level also increases proportionally, 
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so the bandwidth per channel remains approximately constant. Increased bandwidth will be 

required to spatial memory, although this is ameliorated by the demonstrated caching effect 

of twisted memory. 

The main obstacle to increasing the size of twisted memory is that each extra level of cells 

increases the latency to the bottom of the time-space cache and, ultimately to spatial mem­

ory. It is possible, though, to modify the interconnection topology to increase the number 

of connections between cells at each level. This decreases the number of levels required, at 

the expense of more complex routing logic in each cell. 

A number of possible optimizations to twisted memory have also been identified, which 

have the potential to improve performance and reduce the bandwidth required. These will 

be investigated in future research. 

The results obtained indicate that a twisted memory time-space cache can be used as an ef­

fective virtually ordered memory system for use with an aggressively speculative processor. 

The bandwidth requirements are feasible when executing with realistic levels of resources, 

while the parallel execution speedup is substantially improved over currently available sys­

tems. 
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Chapter 9 

Summary and Conclusions 

The aim of this thesis has been to develop a method for maintaining the dependencies be­

tween memory accesses in an aggressively speculative, out-of-order processor. The Warp­

Engine architecture has been used as the basis for this research because it provides a spec­

ulative execution platform with very few basic restrictions on extracting parallelism. 

It is important that any techniques developed are effective for much higher levels of paral­

lelism than those currently extracted by production architectures. Only by doing this will 

they remain relevant as the state of art in CPU core design continues to advance. 

The focus in this thesis has been on methods of tracking the virtual order of a large number 

of instructions executed speculatively and out-of-order. This is important for a speculative 

memory system which is required to store multiple values for each address for different 

periods in the virtual order, and to match each memory access with the store it depends on, 

or the loads that depend upon it. 

9.1 Virtual Timestamps 

Extensive investigation was performed into tagging blocks of instructions with explicit vir­

tual timestamps (VTSs) to indicate their virtual order. By applying explicit tags to events 

any arbitrary pair can be compared in isolation, suggesting that the scheme will scale to 

large numbers of events. 

The central problem is efficiently allocating VTSs, a linear resource, to out-of-order events. 
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The simplest schemes proposed were found to require long strings for VTSs, which place a 

heavy burden on the storage and communication components of the processor. 

More sophisticated schemes were developed employing compiler analysis to determine the 

size of regions of the execution tree. At runtime the processor allocates a range of VTSs 

based on the maximum size of the subtree determined by the compiler. 

Some program structures are more amenable to this analysis than others, however sixteen 

to thirty two bit VTSs were found to allow substantial execution speedup. These vari­

able range VTSs show promise and are deserving of future exploration. The compile-time 

analysis performed here is basic and VTSs would benefit from more sophisticated analysis 

algorithms. 

9.2 Resource Blocks 

The same subtree size estimation used for allocating a variable range of VTSs was also 

used to partition a program into execution tasks. Since the size of the subtree is a measure 

of the resources required to execute that region of the program, this schedules instructions 

for execution based on resource requirements. 

A new task is started whenever the resource requirements of a subtree cannot be determined 

by the compiler. This creates speculative tasks which are separated by regions of code of 

unknown size. Each of these tasks is assigned to a block of execution units known as a 

resource block. 

Since the processor has determined an upper bound on resource requirements for all but the 

most speculative event in a resource block the frames in a resource block can be allocated 

linearly. This allows a fixed order array of frames to be used within a resource block. Thus, 

VTSs are only needed to maintain the ordering between resource blocks, and can be much 

shorter. 

The novel metric of speculation effectiveness, the ratio of committed instructions to issued 

instructions, was introduced to measure the efficiency with which speculative execution 

techniques use execution resources. While resource blocks restrict the speculative paral­

lelism that can be extracted, simulations show that using resource blocks gives a much 
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higher speculation effectiveness than frame limited execution. Speculation effectiveness is 

becoming increasingly important in maximizing performance as architectures make more 

instructions available for speculative execution with limited resources. 

9.3 Virtually Ordered Memory System 

The thesis culminates in a design of a virtually ordered memory system, which allows mul­

tiple values, applying at different virtual times, to be stored for each memory location. The 

proposed memory system, called twisted memory, builds on the hierarchy already estab­

lished with resource blocks. 

Despite the limitations of virtual order simulation, the results presented show that the band­

width required by speculative accesses is greatly reduced beyond the first level of twisted 

memory. Only a small proportion of stores are ever committed to spatial memory. For 

realistic resource constraints the bandwidth required at all points in the memory system is 

within a feasible range. 

These preliminary investigations show that twisted memory has significant advantages over 

a monolithic time-space cache. The mixture of explicit VTSs and physical ordering that 

twisted memory relies on also allows it to be easily scaled by increasing the size of the 

standard network topology used. Twisted memory is a promising approach to a distributed, 

scalable virtually ordered memory system for an aggressively speculative processor. 

9.4 Conclusions 

The results of this thesis show that explicit tags can be used to track the virtual order of 

memory accesses in a distributed, scalable manner. However, naive VTS allocation schemes 

severely constrain the parallelism extracted. Scheduling schemes which perform analysis of 

resource requirements are required in order to maintain a speedup of an order of magnitude 

over sequential execution. It has been shown that this analysis can be done at compile time. 

It has also been shown that the same analysis can be used to prioritize instructions for specu­

lative execution, leading to a more efficient use of speculative execution resources. Having a 
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reliable estimate of resource requirements allows instructions to be allocated linearly within 

the local region, simplifying the hardware without substantially constraining performance. 

By combining the analysis techniques with traditionally hardware ordering techniques a 

distributed scalable virtual order memory system has been demonstrated which does not 

require unreasonable bandwidth to support the speculative execution of the WarpEngine. 

The current trend in processor design is to use larger instruction windows to extract more 

ILP. This is being done primarily through more aggressive speculative execution, particu­

larly exploiting control independence to create split instruction windows. 

Maintaining memory dependencies in a very large instruction window will become a critical 

problem in the next few years, which will require new techniques, such as those presented 

in this thesis, to solve. Split instruction windows add to this problem because speculative 

memory accesses must be tracked over a larger part of the program's lifetime. 

Many processors, particularly those that utilize VLIW techniques, rely heavily on compiler 

analysis to augment the processor's ability to extract parallelism. The instruction scheduling 

techniques used in twisted memory follow this trend and will be able to leverage further 

advances in compiler technology. 

9.5 Future Work 

The results in this thesis were all obtained using a virtual order simulator for the Warp­

Engine. While this simulation method allows fast simulation it has limited ability to model 

transient events, particularly transient memory accesses, which may have complex real time 

interactions. More detailed design and modeling of the components of the WarpEngine must 

be done to validate the assumptions used in the simulations. 

Using a real time simulator to simulate twisted memory will allow the use of the cells as 

caches to be further explored, along with write through and commitment policies. Further, 

little attention has been paid to capacity requirements of twisted memory. 

A number of refinements to twisted memory are identified in Section 8.5. Further investi­

gation of these features has the potential to further improve the performance of the memory 
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system. 

There is also scope for further development of the analysis techniques introduced in this 

thesis. For example, using a best estimate, rather than an upper bound of resource require­

ments is an interesting alternative. The development of a compiler is necessary to refine the 

analysis techniques. This will also allow "real world" problems and standard benchmarks 

to replace the small programs used here. 

Now that the principles of twisted memory have been demonstrated using the WarpEngine 

as platform it can be adapted to other speculative execution architectures. Since most archi­

tectures do not support the same range of speculative execution features as the WarpEngine 

some adaptation will be required. 
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Appendix A 

WarpEngine Instruction Set 

This appendix contains the WarpEngine instruction set. This is version 2 (as of November 

2, 1995 [Cleary, 1995]) and is the instruction set used throughout this thesis. 

The labels in the inputs and outputs columns of the following table have these meanings: 

a 32 bit address 

v 32 bit value (uninterpreted) 

f 32 bit floating point value 

d destination register number 

cop comparison sub-operator: <, ~. >, 2:, =, f= 

sop split operator 

c 2 bit specifier of child number ranging over 0-3 

c r child frame address hardware reference 

The control and data movement instructions are conditionally executed, with the remainder 

unconditionally executed. Conditional execution is achieved by setting/resetting the special 

s register that is associated with each slot in a frame. These 1-bit s registers can be read and 

written as conventional registers. 
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inst. inputs outputs description 

control 

child al a2 C ds Execute child c at address (al). a2 contains the esti-

mated subtree size for variable range VTS allocation. 

The ds field specifies a 16 bit mask, 1 bit for each slot 

in the frame. If a bit is on then a child will set both 

the S-register for that slot and send a CR word to the 

second register. 

data movement 

st vl a2 a Store vl at address (a21-ax4) (just after current time). 

rnv vl d Store value vl into destination register d of child re-

cr2 ferred to by cr2. 

ma al d a Load value at address (al+ax4) at time just before 

cr2 execution of child referred to by cr2 into destination 

d of child referred to by cr2. 

comparison 

crnp vl v2 copl Compare v 1 and v2 using cop. The result of cop 1 is 

dl. .. 2 sent to d 1 and its complement to d2. The result of 

cop2 d3 cop2 is sent to d3. 

logical 

and vl v2 dl. .. 4 Take bitwise AND of vl and v2 and move result. 

or vl v2 dl. .. 4 Take bitwise OR of vl and v2 and move result. 

xor vl v2 dl. .. 4 Take bitwise XOR of vl and v2 and move result. 
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inst. inputs outputs description 

arithmetic 

add vl v2 dl. .. 4 Add vl and v2. Move sum to dl. .. 3 and overflow to 

d4. 

sub vl v2 dl ... 4 Subtract v2 from vl. Move difference to dl. .. 3 and 

overflow to d4. 

rnul vl v2 dl. .. 4 Multiply vl by v2 move the low order 32 bits of the 

result to dl. .. 3 and the high order 32 bits to d4. 

div vl v2 dl ... 4 Divide vl by v2. Move integer part of the result to 

dl. .. 3 and the remainder to d4. 

split vl v2 sopl dl Divide the word vl, about bit b=(v2 mod 32). Each 

sop2 d2 sop contains two bits. The first says whether the left 

sop3 d3 or right part of the word is being referenced, the sec-

ond says whether that part is to be justified left or 

right in the result. 

floating point 

addf fl f2 dl. .. 4 Add fl and f2. Move sum to dl. . .4. 

subf fl f2 dl ... 4 Subtract f2 from fl. Move difference to dl. .. 4. 

mulf fl f2 dl ... 4 Multiply fl by f2 move the move the result to dl ... 4. 

divf fl f2 dl. .. 4 Divide fl by f2. Move the result to dl ... 4. 

f2i fl f2 dl. .. 4 Divide fl by f2. Move the integer part of the result 

to dl. .. 2 (as a 32-bit integer) and the fractional part 

(as a floating point number) to d3 ... 4. 

i2f vl v2 dl ... 4 Multiply the (integers) vl and v2, convert the result 

to a float (avoiding loss of precision as far as possi-

ble) and send the result to d 1 ... 4. 
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Conditional execution 

For an example of conditional execution and the semantics of time using the WarpEngine 

instruction set consider the code in Figure A. I. The corresponding piece of WarpEngine 

assembly code is given in Figure A.2, where @label represents a data location, & label 

defines a block boundary, label : is an instruction label, and ? inst denotes a conditional 

instruction. 

if (x > 100) { 
count++; 

} 
extra= count; 

Figure A. I: Conditional C code. 

&start 
0: child &if 0 0 0 
ma @x 0: X 0 
l:child &next 0 1 0 
ma @count 1: count 0 

&if 
cmp X 100 > 0: 
0: ?child &then 0 0 0 
ma @count 0: count 0 

&then 
add count 1 cpl 
st cpl @count 0 

&next 
st count @extra 0 

Figure A.2: WarpEngine assembly for the C code in Figure A. I. 

In the WarpEngine assembly code the & st a rt block fires 2 children. The first ( & if) 

performs the comparison of x to 100. If this comparison is true the&then child is executed 

performing the conditional increment to count. The second child of &start performs 

the assignment of count to extra. The code blocks &if and &next start executing in 

parallel (if execution resources permit). If the outcome of the conditional test on x is true 

the count variable is re-read and the st in &next is re-executed. 
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AppendixB 

Test Code 

This appendix contains C source code for the test problem algorithms used throughout this 

thesis. The C code and corresponding WarpEngine assembly code can be found at [Littin, 

1999]. 

Matrix multiplication 

float A [NJ [NJ' B [NJ [NJ' C [NJ [NJ; 

void Mult (void) 

int i,j,k; 

float t; 

for (i=O;i<N;i++) 

for (j=O;j<N;j++) 

t = O; 

for (k=O;k<N;k++) 

t += A[i] [k] * B[k] [j]; 

C[i] [j] = t; 
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Gauss-Jordan elimination [Press, 1992] 

void gaussj (float •a, int n) { 

float big, dum, pivinv; 

long int i, icol, irow, j, k, 1, 11; 

long int indxc[N], indxr[N), ipiv[N]; 

for ( j=O; j<n; j++ J 

indxc I j J O; 

indxr[j] ""O; 

ipiv[jJ = O; 

for {i=O; i<n; i++) 

big = 0 .O; 

tor (J•O; J<n; J++) 

if !ipiv I jJ != 11 

for (k=O;k<n;k++) 

if (ipiv[k) == OJ 

if (ABS(a[j•N+k]) >= big) 

big= ABS(a[j•N+k)); 

irow ""' j; 

icol k; 

else if (ipiv[k] > 1) ( 

printf ("pause 1 in GAUSSJ - singular matrix\n•); 

get.c (stdin) ; 

ipiv[icol] = ipiv[icol] + l; 

if (irow != icol) { 

for (1=0; l<n; l t+) 

dum = a[irow*N+l]; 

a [ irow*N+ 1) 

a(icol*N+l) 

a{icol*N+lJ; 

dum; 

indxr[i] 

indxc [i) 

irow; 

icol; 

if (a[icol*N+icol) == 0.0) { 

printf("pause 2 in GAUSSJ - singular matrix\n"); 

getc (stdin); 

pivinv: 1.0 / a[icol*N+icol]; 

a[icol*N+icolJ = 1.0; 

for (l=O;l<n;l++) ( 

a[icol*N+l] : a[icol*N+l] *pivinv; 

for (11=0; ll<n; 11++) 

if Ill != icol) ( 

dum = a[ll*N+icol]; 

a[ll'*N+icol] = 0.0; 

for (l=O;l<n;l++) { 

a{ll*N+l] ~ a[ll*N+l) - a[icol'*N+l) * dum; 

for (l:n-1; 1>=0; 1--) 

if {indxr[l] != indxc[l)) 

for {k=O;k<n;k++l ( 

dum = a[k'*N+indxr[l]]; 

a [k*N+indxr [l)) a[k*N+indxc[l)]; 

a (k*N+indxc [l]] = dum; 
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Naive binary tree insertion 

typedef struct node node; 

struct node { 

int key; 

node *left, *right; 

} ; 

node *New(int key) 

node *new_node = (node *)malloc(sizeof(node)); 

new_node->key = key; 

new_node->left = NULL; 

new_node->right = NULL; 

return new_node; 

void Insert(node **root, int key) { 

if ((*root) == NULL) 

*root= New(key); 

else if (key< (*root)->key) 

Insert(&((*root)->left),key); 

else if (key> (*root)->key) 

Insert(&((*root)->right),key); 
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AVL binary tree insertion[Lewis and Denenberg, 1991] 

struct node ( 

int key; 

int bal; 

node *left, *right; 

); 

node •New(int key) ( 

node *n = {node *)malloc(sizeof(node)); 

n->key = key; 

n->bal = O; 

n->left = NULL; 

n->right = NULL; 

return n; 

void ShiftNode(int *d,node **c,int key,node **p) { 

if (key== (•p)->key) ( 

•d 0: 

else if (key< (*p)->key) ( 

•d -1; 

*c ( *p) ->left; 

else 

*d l; 

*c ( *p) ->right; 

void Rotate(node **p, int d,node **par, int cd,node **root) ( 

node *P = *p; 

if (d == -1) { 

*p = ('*p) ->right; 

P->right = (*p)->left; 

(*p)->left = P; 

else 

•p ( •p) ->left; 

P->left = ( *p) ->right; 

( *p) ->right = P; 

if (cd == -1) 

( *par) ->left = *p; 

else if (cd == l) 

( *par) ->right •p; 

else 

•root *p; 

void AVLinsert(node **root.int key) ( 

int dl, d2, d3, critnodefound = 0, critdir, dir O; 

p n •root; 

while ((n != NULL) ,, (n->key != key)) ( 

if (n->bal ! = 0) 

C = n; 
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cp - p; 

critnodefound a l; 

critdir e dir; 

if (key < n->key) ( 

p -n; 

n -n->left; 

dir --1; 

else 

p . n; 

n - n->right; 

dir - l; 

if (n == NULL) { 

if (p =• NULL) 

*roots New(key); 

else if (dir =• -1) 

p->left • New(key); 

else 

p->right • New (key); 

if ( ! critnodefound) 

r • •root; 

else { 

ShiftNode(&dl,&a,key,&c); 

if (c->bal !• dl) { 

c->bal O; 

r = a; 

else 

ShiftNode(&d2,&b,key,&a); 

if (d2 == dl) 

c->bal ... O; 

r ... b; 

Rotate(&c,-dl,&cp,critdir,root); 

else 

ShiftNode (&d3, &r, key, &b); 

if (d3 == d2) 

c->bal O; 

a->bal c dl; 

else if (d3 =• -d2) 

c->bal = d2; 

else 

c->bal = O; 

Rotate(&a,-d2,&c,dl,root); 

Rotate (&c, -dl, &cp, critdir, root); 

while (r->key ! = key) ( 

ShiftNode(&(r->bal),&r,key,&r}; 
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Quicksort (version l)[Quinn, 1987] 

int v[ARRAY_SIZE]; 

void QSort(int left,int right) { 

int i,piv,temp,cmp; 

if (left>= right) 

return; 

cmp v[left]; 

piv left; 

for (i=left+l;i<=right;i++) 

if (v[i] < cmp) { 

piv++; 

temp= v[piv]; v[piv] v[i]; v[i] temp; 

temp= v[piv]; v[piv] 

QSort(left,piv-1); 

QSort(piv+l,right); 

v[left]; v[left] = temp; 
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Quicksort (version 2)[Quinn, 1987] 

int v[ARRAY_SIZE]; 

void QSort(int left,int right) 

int temp= v[left]; 

inti= left, j = right; 

if (j > i) { 

while (j>i) 

while ( (j >= i) && (temp < v[j])) 

j--; 

if (j<=i) 

v[i] temp; 

else { 

v[i] v[j]; 

i++; 

while ( (i <= j) && (v[i] < temp)) 

i++; 

if (j>i) 

v[j] = v[i]; 

j--; 

if (j<=i) 

v [ j] = temp; 

QSort (left, j-1); 

QSort(j+l,right); 
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Recursive Fibonacci number generation 

int Fib(int n) { 

if (n == 0) 

return O; 

else if (n -- 1) 

return 1; 

else 

return Fib(n-1) + Fib(n-2); 

Transitive closure [Corman et al., 1990] 

int a [N+l] [N] [N]; 

void Trans() { 

int i,j,k; 

for (k=O; k<N; k++) 

for (i=O; i<N; i++) 

for (j=O; j<N; j++) 

a[k+l] [i] [j] = (a[k] [i] [j] 

II (a[k][i][k] && a[k][k][j])); 
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Appendix C 

Additional Graphs 

C.1 Minimum Size Fixed Length VTSs 

The graphs in this section are described in Section 5.3.4. They show the minimum number 

of bits necessary in a length or exponential VTS to execute the test program for a variety of 

sizes. 
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C.2 Speedup for Length and Exponential VTSs 

The graphs in this section are described in Section 5.4.3. They show the speedup over 

sequential execution for length or exponential VTSs executing the test programs. 
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C.3 Minimum Size Variable Range VTSs 

The graphs in this section are described in Section 6.3. They show the minimum number of 

bits necessary in a variable range VTS to execute the test program for a variety of sizes. 
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C.4 Variable Range VTS Speedup 

The graphs in this section are described in Section 6.5.1. They show the speedup over 

sequential execution for variable range VTSs executing the test programs. 
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C.5 Variable Range VTS Frame Limit Sensitivity 

The graphs in this section are described in Section 6.5.2. They show the sensitivity to frame 

limiting of variable range VTSs. The programs are executed with varying frame limits and 

either ideal VTSs or 16 bit variable range VTSs. 
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C.6 Speculation Effectiveness 

The graphs in this section are described in Section 7 .6. They show the speculation effec­

tiveness for frame limited and resource block limited execution for a variety of data set 

sizes. 
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AppendixD 

Twisted Memory Bandwidth Profile 

Graphs 

The graphs in this appendix show the profile of memory accesses to twisted memory from 

a four resource block WarpEngine. For each test program there is a graph covering each 

level of the time-space cache, the combined bandwidth used to spatial memory, and the 

profile for a unified time-space cache for comparison. The profile for each cell is labeled by 

the resource block directly above it. An arbitrary problem size has been selected for each 

program. The graphs are discussed in Section 8.4.2, and are best viewed in colour. 
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D.2 Binary Tree (300) 
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D.3 Fibonacci (15) 
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D.4 Gauss-Jordan (10) 

900 

resblock 3 

0 
900 

., resblock 2 
" gj 
!l 
0 0 .. 
~ 900 
0 
E 

" ::. resblock 1 

0 
900 

resblock O 

0 
0 

gj 10 bandwidth to level O twisted memory 

.J 

.... . ,+4- . J · ''"" 

reads - ­
writes --

500 1000 1500 2000 2500 3000 3500 4000 4500 
Cycles 

Figure D.19: Twisted memory bandwidth profile to level zero for Gauss-Jordan (10) 
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Figure D.20: Twisted memory bandwidth profile to level one for Gauss-Jordan (10) 
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Figure D.21: Twisted memory bandwidth profile to level two for Gauss-Jordan (10) 
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Figure D.22: Twisted memory bandwidth profile to spatial memory for Gauss-Jordan (10) 
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D.5 Matrix Multiply (20) 
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Figure D.25: Twisted memory bandwidth profile to level zero for matrix multiply (20) 
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Figure D.26: Twisted memory bandwidth profile to level one for matrix multiply (20) 
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Figure 0.27: Twisted memory bandwidth profile to level two for matrix multiply (20) 
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Figure D.28: Twisted memory bandwidth profile to spatial memory for matrix multiply (20) 
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Figure D.29: Twisted memory bandwidth profile to level two for matrix multiply (20) 
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D.6 Quicksort 1 (200) 
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Figure D.31: Twisted memory bandwidth profile to level zero for quicksort l (200) 
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Figure D.32: Twisted memory bandwidth profile to level one for quicksort l (200) 
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Figure D.33: Twisted memory bandwidth profile to level two for quicksort 1 (200) 
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D. 7 Enlarged Regions of Level Zero Bandwidth Profile Graphs 

The graphs in this section show enlarged regions of the graphs above. 
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Figure D.37: Enlarged region of level zero bandwidth profile graphs for AVL(200) 
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Figure D.38: Enlarged region of level zero bandwidth profile graphs for binary tree (300) 
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Figure D.40: Enlarged region of level zero bandwidth profile graphs for Gauss-Jordan (10) 
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AppendixE 

Glossary of Terms and Abbreviations 

block structured architecture (BSA) An architecture in which a group, or block, of in­

structions is treated as the basic unit of work. 

cancelback The removal of the most speculative task to free up resources for execution of 

tasks earlier in the virtual order. Originally a Time Warp term. 

causal order Dependent order of instructions. See virtual order. 

control independence The situation in which a region of code will be executed regardless 

of the outcome of a conditional branch. 

control flow graph (CFG) A directed graph consisting of named nodes which represent 

instructions, and arcs which represent control dependencies between instructions. 

data dependence The situation between two sequential instructions in a program when 

the first instruction produces a result that is used as an input operand by the second 

instruction. 

dataflow execution The execution model in which the issuing of instructions is determined 

by the flow of data. Once the input operands are available the instruction may issue. 

fossil collection Retiring tasks when they become non-speculative, writing any stores to 

architectural memory and freeing resources for reuse. Originally a Time Warp term. 

frame A hardware unit in the WarpEngine which holds up to 16 instructions with their 

input registers and output register destinations, and issues them for execution. 
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global virtual time (GVT) The earliest instruction that is actively executing, guaranteed 

to be non-speculative. All instructions earlier in the virtual order may be retired since 

they have completed and will never be rolled back. Originally a Time Warp term. 

instruction block A group of up to 16 instructions, an instance of which is loaded into a 

frame for execution. 

instruction level parallelism (ILP) Executing two or more instructions in parallel, usually 

taken from a sequential instruction stream. 

instructions per cycle (IPC) The number of instructions executed in a clock cycle by a 

processor, usually an average. 

mis-speculation Speculatively executing an instruction either incorrectly, or with incorrect 

data. 

real order The order in which instructions are actually executed. This may be different 

from the virtual order when out-of-order execution is being used. 

reorder buffer (ROB) A set of storage locations holding instructions, and sometimes re­

sult values, in program order. 

rescaling Reallocating the early, unused VTSs to the active frames earliest in the virtual 

order, freeing their VTSs for allocation to new frames. 

resource block A linear array of frames which can be allocated in virtual order. 

rollback Selectively undoing incorrectly speculatively executed instructions. 

selective speculation Selecting a group of instructions to execute speculatively where two 

or more groups are available and only one can currently be executed. 

spatial memory Conventional memory, which holds only the single most recent value writ­

ten to each address. 

squash Undoing the effects of all speculative instructions beyond a mis-speculation point. 

task A group of instructions in a contiguous instruction window executed in parallel with 

other groups of instructions. 

thread A largely independent region of code executed in parallel with other such regions. 
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transient states The results of speculatively executed instructions which are never com­

mitted and will be rolled back. 

tree structured execution The dynamic execution pattern which arises from a CFG where 

more than one flow of control may be followed in parallel from any node. 

time-space cache The part of the virtually ordered memory system which holds multiple 

versions of each memory location, applying at different times in the virtual order. 

Time Warp An parallel discrete event simulation algorithm used to impose a causal order­

ing on distributed systems. 

twisted memory A novel speculative memory cache which uses a hierarchy of memory 

cells and explicit VTSs to maintain the virtual order of memory accesses 

virtual order The sequential program order of instructions, which dictates the dependen­

cies between instructions. 

virtual order simulation Simulating execution of instructions in the virtual order of the 

instructions, rather than the real order. 

virtual timestamp (VTS) An explicit tag used to indicate the position in the virtual order 

of a frame. 

WarpEngine A theoretical computer architecture developed to investigate aggressive spec­

ulative execution and used throughout this thesis. 
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