

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Controlling Speculative Execution

Through a Virtually Ordered

Memory System

A thesis

submitted in partial fulfilment

of the requirements for the degree

of

Doctor of Philosophy

at the

University of Waikato

by

J A David McWha

Department of Computer Science

Te Whare Wananga
a Waikato

Hamilton, New Zealand

January 12, 2003

Abstract

Processors which extract parallelism through speculative execution must be able to identify

when mis-speculation has occurred. The three places where mis-speculation can occur are

register accesses, control flow prediction and memory accesses. Controlling register and

control flow speculation has been well studied, but no scalable techniques for identifying

memory dependence violations have been identified. Since speculative execution occurs out

of order this requires tracking the causal order, as well as the addresses of memory accesses.

This thesis uses simulations to investigate tracking the causal order of memory accesses us

ing explicit tags known as virtual timestamps, a distributed and scalable method. Realizable

virtual timestamps are necessarily restricted in length and it is demonstrated that naive allo

cation schemes seriously constrain execution by inefficiently allocating virtual timestamps.

Efficiently allocating virtual timestamps requires analysis of the number required by each

section of code. Basic statically and dynamically evaluated analysis methods are established

to avoid virtual timestamp allocation becoming a resource b·.)ttleneck.

The same analysis is also used to efficiently allocate state saving resources in a fixed hard

ware order. The hardware order provides an alternative way of maintaining the causal order

using a simple hardware organization. The ability to predict the resources required by re

gions of code is used as a way of selecting instructions to execute speculatively. This enables

resources to be allocated efficiently and is shown to allow large amounts of parallelism to

be extracted. It also promotes the effectiveness of speculative execution by issuing less

instructions that will ultimately be rolled back.

Using a hierarchy of hardware ordering modules, themselves ordered by explicit virtual

timestamps, a scalable ordering system is proposed. This hierarchy forms the basis of a

ii

twisted memory system, a multiple version memory system capable of identifying specu

lative memory dependence violations. The preliminary investigations presented here show

that twisted memory has the potential to support aggressive speculative parallel execution.

Particular attention is paid to memory bandwidth requirements.

iii

Acknowledgments

There are many people without whom preparing this thesis would not have been possible,

or as fruitful and enjoyable as it has been.

I would like to thank my supervisor John Cleary for his support and guidance throughout

the process. A special thanks must go to Richard Littin for his help and forbearance as a col

league, flatmate and friend. I would also like to thank the other members of the Warp Engine

project over the years for contributing to such a great environment.

I also want to acknowledge the support of all the friends I have made during my years at

Waikato, in the tearoom, on the soccer field, on the stage, in the tutors' room. Thanks for

keeping me sane.

Thank you to Chris, Yvonne, Gerard, Eddy, Richard and, of course, John, for providing

proof reading assistance in the final stages under time pressure.

I owe a debt of gratitude to the School of Computing and Mathematical Sciences and the

Department of Computer Science for the vital financial support and resources they have

provided me with.

Finally, and most importantly, thanks to my family for their support. Without the support

and encouragement of my parents throughout my life I would never have contemplated a

PhD.

Thanks guys.

iv

Abstract

Acknowledgments

List of Figures

List of Tables

1 Introduction

1.1 The Challenge .

1.2 Thesis Claims .

1.3 Thesis Overview

2 Controlling Instruction Level Parallelism

2.1 Instruction Dependencies .

2.1.1 Data Dependence .

2.1.2 Control Dependence

2.1.3 Limit Studies

2.2 Conservative Parallel Execution

2.2.1 Vector ..

2.2.2 Dataflow

2.2.3 Very Long Instruction Word

2.2.4 Out-of-order Execution .

2.3 Speculative Parallel Execution

2.3.1 Control Speculation

2.3.2 Data Speculation

2.3.3 Architectures ..

V

Contents

ii

iv

xv

xvi

1

2

3

4

6

7

8

8

9

10

11

12

13

14

16

16

18

19

2.4 Recovering from Mis-speculation

2.4.1 Pipeline Flushing

2.4.2 Checkpoint Repair and History Buffer ..

2.4.3 Reorder Buffer
2.4.4 Split Instruction Window Squashing .

2.4.5 Selective Undo
2.4.6 Memory Consistency .

2.5 Summary

3 The WarpEngine

3.1 Time Warp

3.1.1 Global Virtual Time and Fossil Collection .

3.1.2 Cancelback
3.1.3 Time Warp in Computer Architecture

3.2 Supporting Speculative Execution

3.2.1 Block Structured Execution

3.2.2 Tree Structured Execution

3.2.3 Virtual Ordering

3.3 Architecture

3.3.1 Instruction Set

3.3.2 Frames ..

3.3.3 Code Store

3.3.4 Function Units

3.3.5 Synchronization Mechanism

3.3.6 Instruction Execution .

3.3.7 Memory System

3.4 Related Architectures

3.4.1 Superscalar .

3.4.2 Dataflow Processors

3.4.3 Multiscalar

3.5 Summary

4 Simulation

4.1 Virtual Order Simulation

vi

22

22

23

23

25

25

27

31

32

33

34

35

35

36

37

38

40

42

43

44

44

45

46

46

47

51

52

52

53

54

55

55

4.1.1 Assumptions

4.1.2 Limiting Resources . .

4.1.3 State History

4.2 Simulation Test Bench

4.2.1 Simulation Parameters

4.2.2 Virtual Order Simulation Effects on Performance

4.3 Test Programs

4.3.1 Matrix Manipulation

4.3.2 Sorting

4.3.3 Dynamic structures .

4.3.4 Recursion .

4.4 Compilation .

4.5 Summary . .

5 Explicit Virtual Timestamps

5.1 Concept

5.1.1 Requirements .

5.2 Symbolic Representation

5.3 Fixed Length VTS Schemes

5.3.1 Length Representation

5.3.2 Exponential Representation

5.3.3 Ideal Representation

5.3.4 Minimum Size VTSs .

5.4 Rescaling VTSs

5.4.1 Root Rescaling

5.4.2 Moving Head Rescaling

5.4.3 Speedup .

5.5 Summary

6 Variable Virtual Timestamp Ranges

6.1 Concept

6.2 Execution Tree Size Calculation

6.2.1 Encoding . . .

6.2.2 Static Analysis

vii

56

56

57

58

60

62

63

65

66

67

68

69

70

72

72

75

77

78

79

80

82

83

85

86

89

91

94

97

97

98

100

100

6.2.3 Dynamic Analysis

6.3 Minimum Size VTSs . . .

6.4 Rescaling Variable Range VTSs

6.4.1 Preserved Tree Rescaling .

6.4.2 Disconnected Subtree Rescaling

6.4.3 Moving Head Rescaling

6.5 Speedup

6.5.1 VTS Constrained

6.5.2 Frame Limit Sensitivity

6.6 Unresolved Issues .

6. 7 Summary

7 Selective Speculation

7.1 Related Work ..

7 .2 Selective Speculation in the WarpEngine .

7.3 Resource Allocation

7.3.1 Assigning Frames to Resource Blocks .

7.4 Speedup .

7.5 Resource Blocks and Frame Limiting Compared.

7 .6 Speculation Effectiveness .

7.7 Summary

8 Twisted Memory

8.1 Explicit VTSs

8.2 Twisted Memory

8.2.1 Write

8.2.2 Read

8.2.3 Anti-write .

8.2.4 Anti-read

8.2.5 Fossil Collection

8.3 Evaluation

8.4 Memory Bandwidth .

8.4.1 Average Memory Bandwidth .

8.4.2 Bandwidth Profile

Vlll

103

104

108

110

111

112

114

114

116

120

121

123

124

127

128

131

133

139

141

145

147

149

150

153

155

157

159

159

164

165

165

173

8.5 Optimizations 175

8.6 Summary .. 176

9 Summary and Conclusions 179

9.1 Virtual Timestamps 179

9.2 Resource Blocks 180

9.3 Virtually Ordered Memory System . 181

9.4 Conclusions . 181

9.5 Future Work . 182

Appendices

A WarpEngine Instruction Set 184

B Test Code 188

C Additional Graphs 196

C.1 Minimum Size Fixed Length VTSs . 196

C.2 Speedup fer Length and Exponential VTSs 198

C.3 Minimum Size Variable Range VTSs . 200

C.4 Variable Range VTS Speedup 201

C.5 Variable Range VTS Frame Limit Sensitivity 203

C.6 Speculation Effectiveness 206

D 1\visted Memory Bandwidth Profile Graphs 208

D.l AVL(200) 208

D.2 Binary Tree (300) 212

D.3 Fibonacci (15) .. 215

D.4 Gauss-Jordan (10) . 218

D.5 Matrix Multiply (20) 221

D.6 Quicksort 1 (200) . . 224

D.7 Enlarged Regions of Level Zero Bandwidth Profile Graphs 227

E Glossary of Terms and Abbreviations 230

Bibliography 233

ix

List of Figures

2.1 Code with control independence

3.1 Producing tree structured execution from sequential code

3.2 Execution tree for loop iterations . .

9

39

39

3.3 An equivalent binary execution tree 40

3.4 Equivalent CFGs for single flow of control and tree structured execution 41

3.5 Components of the WarpEngine and their connections . 43

3.6 Layout of a frame 45

3.7 Instruction flow within a WarpEngine frame. . 46

3.8

3.9

4.1

4.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Components of the virtually ordered memory system

Resatisfying a read due to an out-of-order write

Processing input history lists to form an output history list.

Components of the WarpEngine virtual order simulator . .

Returning the correct value from a read request and rollback due to a write .

Returning the correct value from a read request and rollback due to a write

using VTSs

Code for a while loop and later independent code

Execution tree for a while loop and later independent code

Conceptual VTSs for a binary tree

VTSs in length representation

Percentage of children generated with child number zero

VTS in exponent representation

48

49

58

59

73

74

76

76

78

80

80

81

5.9 Minimum VTS length necessary to execute AVL tree insertion without re-

scaling . 83

5.10 Minimum VTS length necessary to execute Fibonacci without rescaling 84

X

5.11 Minimum VTS length necessary to execute quicksort 1 without rescaling 85

5.12 Root rescaling of an execution tree 87

5.13 Cancelback and root rescaling in an exhausted execution tree 87

5.14 Moving head VTS representation 90

5.15 Rescaling the moving head representation 90

5.16 Comparison of speedup for AVL tree insertion with exponent and length VTSs 92

5.17 Comparison of speedup for Gauss-Jordan with exponent and length VTSs . 92

5.18 Comparison of speedup for matrix multiply with exponent and length VTSs 93

6.1 VTS trees with implicit and explicit upper bounds .

6.2 Execution tree for a dynamically bounded loop . .

6.3 Encoding for subtree size calculations for a fixed number ofVTSs (top) and

98

99

proportion of available range (bottom) . 100

6.4 Calculating the number of frames required to execute an acyclic code region 101

6.5 Calculating the number of frames required to execute a for loop 102

6.6 Minimum VTS length necessary to execute AVL tree insertion without re-

scaling . 104

6.7 Minimum VTS length necessary to execute Fibonacci without rescaling 105

6.8 Minimum VTS length necessary to execute Gauss-Jordan without rescaling 106

6.9 Minimum VTS length necessary to execute quicksort without rescaling 106

6.10 Percentage overhead of dynamic VTS analysis methods for quicksortl 108

6.11 Rescaling a variable range VTS tree 112

6.12 Speedup for AVL tree with variable range VTSs with rescaling 115

6.13 Speedup for Fibonacci with variable range VTSs with rescaling . 115

6.14 Speedup for quicksortl with variable range VTSs with rescaling 116

6.15 Speedup for AVL(500) with varying frame limitations and variable range

VTSs 118

6.16 Speedup for quicksortl (500) with varying frame limitations and variable

range VTSs . 119

6.17 Speedup for Fibonacci (15) with varying frame limitations and variable

range VTSs . 119

7 .1 Speculation effectiveness for different speculative techniques

7 .2 Allocating frames in a resource block

xi

125

130

7.3 Program forcing cancelback for a circular queue of resource blocks . 131

7.4 Speedup for AVL tree using resource blocks in a circular queue . . 134

7 .5 Speedup for binary tree using resource blocks in a circular queue 135

7 .6 Speedup for Fibonacci using resource blocks in a circular queue 136

7.7 Speedup for quicksortl using resource blocks in a circular queue 136

7.8 Speedup for AVL tree using reorderable resource blocks . 137

7.9 Speedup for binary tree using reorderable resource blocks . 137

7 .10 Speedup for Fibonacci using reorderable resource blocks .

7 .11 Speedup for quicksortl using reorderable resource blocks .

138

138

7 .12 Speedup for A VL tree with frame limited and resource block limited execution 139

7.13 Speedup for binary tree with frame limited and resource block limited exe-

cution 140

7.14 Speedup for Fibonacci with frame limited and resource block limited exe-

cution 140

7.15 Speedup for quicksortl with frame limited and resource block limited exe-

cution 141

7.16 Speculation effectiveness of resource block and frame limiting for AVL tree 142

7 .17 Speculation effectiveness of resource block and frame limiting for quicksortl 143

7 .18 Speculation effectiveness of resource block and frame limiting for Gauss-

Jordan 144

8.1 Layout of a twisted memory system with four resource blocks 151

8.2 Propagation of a write through twisted memory 152

8.3 Algorithm for a twisted memory write operation . 15,i

8.4 Propagation of a read through twisted memory . 156

8.5 Algorithm for a twisted memory read operation 156

8.6 Algorithm for a twisted memory anti-write operation 158

8.7 The effects of an anti-write in twisted memory 160

8.8 Algorithm for a twisted memory anti-read operation . 161

8.9 The effects of an anti-read in twisted memory .. 162

8.10 Algorithm for a twisted memory fossil collection 163

8.11 Ordering time-space cache entries using an epoch counter . 163

8.12 AVL average memory bandwidth per cycle for twisted memory . 167

8.13 Binary tree average memory bandwidth per cycle for twisted memory 168

Xll

8.14 Fibonacci average memory bandwidth per cycle for twisted memory . . 169

8.15 Gauss-Jordan average memory bandwidth per cycle for twisted memory 170

8.16 Matrix multiply average memory bandwidth per cycle for twisted memory . 171

8.17 Quicksort average memory bandwidth per cycle for twisted memory 172

A.1 Conditional C code. 187

A.2 WarpEngine assembly for the C code in Figure A.1. 187

C.1 Minimum VTS length necessary to execute binary tree insertion without

rescaling . 196

C.2 Minimum VTS length necessary to execute Gauss-Jordan without rescaling 197

C.3 Minimum VTS length necessary to execute matrix multiply without rescaling197

C.4 Comparison of speedup for binary tree insertion with exponent and length

VTSs . 198

C.5 Comparison of speedup for Fibonacci with exponent and length VTSs 199

C.6 Comparison of speedup for quicksort 1 with exponent and length VTSs 199

C. 7 Minimum VTS length necessary to execute binary tree insertion without

rescaling . 200

C.8 Minimum VTS length necessary to execute matrix multiply without rescaling200

C.9 Speedup for binary tree with variable range VTSs with rescaling . . . 201

C.10 Speedup for matrix multiply with variable range VTSs with rescaling 202

C.11 Speedup for Gauss-Jordan with variable range VTSs with rescaling . . 202

C.12 Speedup for AVL(lOOO) with varying frame limitations and variable range

VTSs 203

C.13 Speedup for binary tree (1000) with varying frame limitations and variable

range VTSs . 204

C.14 Speedup for quicksort 1 (200) with varying frame limitations and variable

range VTSs . 204

C.15 Speedup for Gauss-Jordan (20) with varying frame limitations and variable

range VTSs . 205

C.16 Speedup for matrix multiply (30) with varying frame limitations and vari-

able range VTSs . 205

C.17 Speculation effectiveness of resource block and frame limiting for binary tree206

C.18 Speculation effectiveness of resource block and frame limiting for Fibonacci 207

xiii

C.19 Speculation effectiveness of resource block and frame limiting for matrix

multiply . 207

D.l Twisted memory bandwidth profile to level zero for AVL(200) 209

D.2 Twisted memory bandwidth profile to level one for AVL(200). 209

D.3 Twisted memory bandwidth profile to level two for AVL(200) 210

D.4 Twisted memory bandwidth profile to spatial memory for AVL(200) 210

D.5 Twisted memory bandwidth profile to level two for AVL(200) . . . 211

D.6 Twisted memory aggregate bandwidth profile to spatial memory for AVL(200)211

D.7 Twisted memory bandwidth profile to level zero for binary tree (300) . 212

D.8 Twisted memory bandwidth profile to level one for binary tree (300) 212

D.9 Twisted memory bandwidth profile to level two for binary tree (300) 213

D.10 Twisted memory bandwidth profile to spatial memory for binary tree (300) . 213

D .11 Twisted memory bandwidth profile to level two for binary tree (300) 214

D.12 Twisted memory aggregate bandwidth profile to spatial memory for binary

tree (300) . 214

D.13 Twisted memory bandwidth profile to level zero for Fibonacci (15) 215

D .14 Twisted memory bandwidth profile to level one for Fibonacci (15) 215

D .15 Twisted memory bandwidth profile to level two for Fibonacci (15) 216

D.16 Twisted memory bandwidth profile to spatial memory for Fibonacci (15) . 216

D.17 Twisted memory bandwidth profile to level two for Fibonacci (15) 217

D.18 Twisted memory aggregate bandwidth profile to spatial memory for Fi-

bonacci (15) . 217

D.19 Twisted memory bandwidth profile to level zero for Gauss-Jordan (10) . 218

D.20 Twisted memory bandwidth profile to level one for Gauss-Jordan (10) 218

D.21 Twisted memory bandwidth profile to level two for Gauss-Jordan (10) 219

D.22 Twisted memory bandwidth profile to spatial memory for Gauss-Jordan (10) 219

D.23 Twisted memory bandwidth profile to level two for Gauss-Jordan (10) ... 220

D.24 Twisted memory aggregate bandwidth profile to spatial memory for Gauss-

Jordan (10) . 220

D.25 Twisted memory bandwidth profile to level zero for matrix multiply (20) . 221

D.26 Twisted memory bandwidth profile to level one for matrix multiply (20) 221

D.27 Twisted memory bandwidth profile to level two for matrix multiply (20) 222

xiv

D.28 Twisted memory bandwidth profile to spatial memory for matrix multiply

(20) · · · · · · · · · · · · · · · · · · · 222

D.29 Twisted memory bandwidth profile to level two for matrix multiply (20) 223

D.30 Twisted memory aggregate bandwidth profile to spatial memory for matrix

multiply (20) . 223

D.31 Twisted memory bandwidth profile to level zero for quicksort 1 (200) . 224

D.32 Twisted memory bandwidth profile to level one for quicksort 1 (200) . . 224

D.33 Twisted memory bandwidth profile to level two for quicksort 1 (200) . . 225

D.34 Twisted memory bandwidth profiie to spatial memory for quicksort 1 (200) 225

D.35 Twisted memory bandwidth profile to level two for quicksort 1 (200) 226

D.36 Twisted memory aggregate bandwidth profile to spatial memory for quick-

sort 1 (200) . 226

D.37 Enlarged region of level zero bandwidth profile graphs for AVL(200) . . 227

D.38 Enlarged region of level zero bandwidth profile graphs for binary tree (300) 227

D.39 Enlarged region of level zero bandwidth profile graphs for Fibonacci (15) . 228

D.40 Enlarged region of level zero bandwidth profile graphs for Gauss-Jordan (10) 228

D.41 Enlarged region of level zero bandwidth profile graphs for matrix multiply

(20) 229

D.42 Enlarged region of level zero bandwidth profile graphs for quicksort 1 (200) 229

xv

List of Tables

4.1 Typical instruction latencies .

4.2 Complexity of test algorithms

5.1 Number of levels which can be represented by different sizes of length and

exponential representation VTS

8.1 Procedure descriptions for twisted memory pseudocode .

XVI

61

64

82

154

Chapter 1

Introduction

In recent years integrated circuit process technology has advanced rapidly, providing com

puter architects with an enormous number of transistors on each CPU. This trend looks set

to continue for some time. The computer architect's aim is, as ever, to produce CPUs capa

ble of faster execution of a wide range of programs. Using those resources effectively in a

processor provides a substantial architectural challenge.

There are several approaches to faster computation. Clock frequencies are being aggres

sively pushed beyond the 1GHz mark, largely governed by the physical process technology,

although CPU architecture has some influence. Some architects are proposing ever deeper

pipelines [Intel, 2000] in an effort to allow higher clock frequencies.

In the past architectures have been designed with the aim of reducing the instruction count

of programs [Thornton, 1964]. However this has largely been abandoned in favor of RISC

instruction sets [Patterson, 1985], which contain simpler instructions, allowing higher clock

frequencies and execution in fewer cycles than a typical CISC instruction.

Parallel processing has long been used in high performance scientific computing to speed

up program execution. Since the l 990's many of the same techniques have been adopted

in general purpose processors. By executing many instructions in parallel the enormous

resources available on a modem integrated circuit (IC) can be used to speed up computation.

Early parallel processing relied on programmer intervention to control the parallelism, indi

cating instructions that could be executed concurrently. This requires skilled programmers

to extract maximum performance and is only cost effective for performance critical code.

There is a substantial cost associated with speeding up legacy code by parallelizing it in this

manner.

A more practical alternative, particularly for general purpose processing, is to automatically

parallelize programs through a combination of processor and compiler assistance. Extract

ing high levels of parallelism relies on identifying and exploiting the available parallelism

in the program.

1.1 The Challenge

Identifying parallelism is a matter of identifying independent instructions-the only instruc

tions that can be safely executed in parallel. Memory operations can only be established as

independent by comparing the addresses of the memory accesses, which are frequently cal

culated at runtime.

A large proportion of existing programs for general purpose processors are written in pointer

based languages such as C and Pascal. It is often impossible to determine the address of a

pointer statically, and even at runtime it may be unknown until just before the instruction ex

ecutes. Typically most memory accesses will be to different addresses, but this parallelism

can not be identified until the addresses are known.

As the differential between processor and memory performance continues to increase, par

allelizing memory operations is becoming increasingly important as a way to hide memory

latency.

Speculative execution, the approach utilized in this thesis, assumes all memory operations

are independent and relies on rectifying any incorrect parallel execution after the fact. This

requires that the order of operations be tracked, so that dependency violations can be identi

fied. Previously proposed methods of tracking dependencies, described in Chapter 2, do not

scale well and place a fundamental limit on the degree of parallelism that can be extracted

by speculation.

Tracking the instruction order can be done using fixed hardware structures or explicit or

dering tags. Hardware structures have been extensively explored in the literature and are

reviewed in Chapter 2. This thesis investigates the feasibility of attaching an explicit tag,

2

known as a virtual timestamp (VTS), to each memory operation as a scalable, distributed

method of tracking causal ordering.

Realizable VTSs are necessarily a finite, linear resource, since their order is vital. Allocating

VTSs efficiently at the instruction level requires analysis of the number of instructions in

each region of code well in advance. This thesis develops a framework for such analysis

and proposes some basic methods. Allocation of other execution resources can also benefit

from similar analysis.

A more efficient use of resources can be achieved by restricting speculation to code for

which execution resource usage can be determined. More detailed resource use analysis

also facilitates allocation, enabling a simpler organization of resources.

Out of this work a hierarchical ordering system is developed using fixed hardware ordering

and explicit tags at different levels. The hierarchy forms part of a multiple version memory

system used to recover from mis-speculation once it has been identified.

All of these ideas are investigated within the framework of simulations of a theoretical

architecture known as the WarpEngine. The WarpEngine is an aggressively speculative

architecture capable of exercising the instruction ordering mechanisms and memory system

to the limits of the parallelism available in the test programs. This makes it a useful test

bench for exploring structures designed to operate with very high levels of parallelism.

1.2 Thesis Claims

The WarpEngine simulator can be used to show the effects on parallelism extracted from

programs caused by different speculation tracking and selection mechanisms. The restrict

ing effects of the different mechanisms can be isolated because the WarpEngine fundamen

tally allows a large amount of the available parallelism in a program to be extracted. In this

context the simulation results presented in this thesis support the following major claims:

• Analysis of program resource requirements is necessary to allow aggressive specula

tion on sequential programs.

• Speculating preferentially on code which is amenable to analysis simplifies the hard-

3

ware, but does not substantially constrain performance.

• Allocating execution resources hierarchically allows a processor to take advantage of

easily analyzed code, while limiting the difficulties of opaque code.

• Splitting programs into analyzable and unanalyzable tasks allows speculation re

sources to be used more effectively.

• A hybrid hardware ordered and tagged speculative memory system using a network

of distributed caches can operate scalably to maintain the causal consistency of spec

ulative memory accesses without exceeding reasonable bandwidth requirements.

1.3 Thesis Overview

Chapter 2 considers some popular instruction level parallelism (!LP) techniques. In all ILP

mechanisms the dependencies between instructions (real and perceived) limit the amount

of parallelism which can be extracted. The ways in which these dependencies arise are

discussed and some methods that have been used to detect them and expose parallelism

available in programs are outlined.

Although the WarpEngine draws on several ILP techniques, the primary method is specu

lative execution. It is important to understand the distinction between the different classes

of speculation. A number of existing commercial and research architectures use speculative

execution, albeit on a less aggressive basis than proposed in the WarpEngine. A discussion

of the main techniques used for cuntrolling speculative execution, particularly recovery after

a mis-speculation, concludes the chapter.

Chapter 3 provides a general overview of the WarpEngine architecture, first laid out by

Littin (2000]. The WarpEngine paradigm is based on the Time Warp algorithm and is

developed from this background. It is compared and contrasted with other prominent ILP

paradigms. An implementation of the essential WarpEngine components is described as

a baseline for performance analysis to which the advanced systems developed later in the

thesis can be added.

Chapter 4 describes the simulation methodology used throughout the thesis. The micro

benchmarks used in simulations are characterized, and the particular issues involved in

4

compiling and running them on the WarpEngine simulator are considered. An overview of

important earlier results obtained from simulations of the WarpEngine is also included.

The following four chapters propose and investigate several novel mechanisms for tracking

the causal order of memory operations using several approaches. Chapters 5 and 6 consider

different schemes using explicit VTSs. Chapter 5 exposes the shortcomings of a naive VTS

allocation method. Chapter 6 describes allocating VTSs more efficiently by analyzing the

requirements of each region of the program. Constraints imposed by VTSs are compared to

the effects of constraining other execution resources.

Chapter 7 expands VTS requirement analysis to control resource allocation and speculation

more generally. A new method of selective speculation, based on the ability to determine re

sources required, is proposed. The fundamental limit this places on parallelism, for the ben

efit of easier implementation is explored through simulations. Building on these resource

allocation techniques Chapter 8 proposes a hierarchical speculative memory system which

uses explicit VTSs and hardware ordering to maintain memory dependencies. Simulation

results for the WarpEngine using the twisted memory system are presented, with particular

focus on the memory bandwidth consumed at different levels of the memory system.

Chapter 9 draws out the key conclusions from the work presented, along with promising

aspects for further investigation.

5

Chapter 2

Controlling Instruction Level

Parallelism

This chapter examines issues involved in extracting and controlling instruction level paral

lelism (!LP) in general purpose computation. The particular focus is on techniques appli

cable to the large volume of existing general purpose code written in imperative languages.

The cost of rewriting this code in special purpose parallel languages is too great to be feasi

ble for all but the most performance critical applications. Indeed, it is difficult to persuade

the majority of programmers to learn a new language for performance reasons alone. For

these reasons automatically extracting parallelism, using either hardware or compiler meth

ods, will continue to be important.

It is the dependencies within a program that place fundamental restrictions on the paral

lelism that can be extracted. The following sections classify the dependencies that may

exist and outline some of the ILP studies that have been done.

The architectural techniques discussed below for exploiting ILP are not necessarily mu

tually exclusive, nor are there clear boundaries between the categories. Many prominent

commercial and research architectures use techniques from several classes. For example,

the EPIC architecture devised by Intel and Hewlett-Packard [Schlansker and Rau, 2000] is

a very long instruction word (VLIW) architecture, but also includes support for speculation.

Superscalar architectures, such as the Intel x86, Compaq Alpha and IBM PowerPC, have

dominated the market in recent years. In the quest for more parallelism and increased per

formance they have begun to exploit other ILP techniques, and much academic research has

6

focused on this area.

Although the WarpEngine includes dataflow and superscalar techniques (see Chapter 3),

it is primarily used to investigate speculative execution techniques. The remainder of this

chapter contains a taxonomy and description of speculative execution and an overview of the

major research architectures exploiting this type of parallelism. Of principle interest in the

context of this thesis is how mis-speculation is identified and recovered from, particularly

in the memory system.

2.1 Instruction Dependencies

The execution time of a program depends on three factors:

• the number of instructions executed per clock cycle (IPC)

• the clock period

• the total number of instructions executed

The emphasis in this thesis is on improving the first factor, executing more useful instruc

tions per clock cycle through ILP, without significantly impacting the other two factors. If

ILP is increased to the detriment of clock frequency or the dynamic instruction count overall

performance may actually decrease.

Extracting maximum ILP from a program means executing as many instructions as possible

in parallel. Even assuming that sufficient computational resources are available there is

a limit to the parallelism imposed by the structure of the program. During the course of

executing a program some instructions will require input data to be calculated by another

part of the program (data dependence). At other times a decision to branch to an optional

section of code or to continue a loop will need to be made. Typically this depends on data

calculated previously and is known as control dependence.

7

2.1.1 Data Dependence

Data dependencies place a fundamental limit on parallel execution, since the value of inter

mediate results must be computed before they can be used in further computation. These

dependencies are also known as true data dependencies or read after write hazards.

Some apparent dependencies result from the way the program has been implemented, rather

than the underlying data usage, these are false data dependencies. They typically result from

register or memory location reuse, for example two instructions writing to the same register

(a write after write hazard or output dependence) must be done in the defined order, but the

operations do not rely on each other. Similarly, where a write to a register follows a read

from the same register (a write after read hazard or anti-dependence) they must be done in

the proper order, although there is no logical dependence in the underlying computation.

However, it is not always possible to determine in advance whether a data dependence ex

ists between two instructions [Tjaden and Flynn, 1970]. This is often the case with memory

operations which calculate the address at runtime. The memory access is potentially depen

dent on all other memory operations until the address is known.

2.1.2 Control Dependence

The results of computation can determine not just the input data for further instructions, but

also which instructions execute. The outcome of a conditional branch instruction, based on

some previously calculated value, determines which instruction executes next. A control

dependence exists between the instruction following the branch and the instruction calcu

lating the value used in the branch. Control dependencies detennine the dynamic execu

tion path of the program. This property is necessary in order to implement dynamically

bounded loops (for example while loops) and conditionally executed statements (for ex

ample if ... else constructs).

Certain code structures can cause the possible execution paths of a program to re-converge

after a branch. In Figure 2.1 either region B or region C executes depending on the outcome

of A, but region D always executes, regardless of A's result. D is control independent

[Rotenberg et al., 1999b] of A, and D can be executed in parallel with A (and B or C), as

8

Jong as data dependencies are respected.

Control independence is useful in determining code that can be executed speculatively be

cause it is independent of any intervening branch predictions which may be made incor

rectly. In Section 3.2.2 we discuss a novel way for identifying and exploiting this property.

if (A)
B;

else
C;

D· I

Figure 2.1: Code with control independence

2.1.3 Limit Studies

Modern CPU process technology has advanced to the stage where it is a challenge to keep

all the available resources on a chip busy with computation. Fundamentally this means

executing more instructions in parallel. However, dependencies place a critical theoretical

upper bound on how much parallelism can be extracted. A number of studies have been

done to identify the limits under different conditions. They differ in the mechanisms allowed

and the assumed accuracy of these mechanisms.

Early studies of available ILP are quite pessimistic. Jouppi and Wall [1989] and Smith et al.

[1989] suggest that a maximum of around 2 instructions per cycle (IPC) are available from

a variety of integer applications (floating point applications tend to have more inherent par

allelism) for realistic designs. Investigations by Butler et al. [1991] are more encouraging,

finding that removing constraints not required by the semantics of the program allows up to

17 IPC. With hardware constraints reasonable for the time this was limited to up to 5.8 IPC.

A study by Wall [1991] showed that while speedup under the the assumption of perfect

knowledge could reach around 60 times, with mechanisms which are unrealistically good,

but not perfect, this is reduced to below 7.

Lam and Wilson [1992] recorded similarly disappointing figures for machine organizations

judged realistic at the time. However, the addition of control flow speculation allowed much

9

higher levels of ILP to be extracted. In some cases these approached theoretical levels

proposed for VLIW architectures [Nicolau and Fisher, 1984], which had been criticized as

unrealistic for using perfect branch prediction, and using numerical programs which are

more amenable to extracting parallelism.

More recent studies [Lipast. and Shen, 1996] suggest that these limits can be exceeded

through the use of control and data speculation, and value prediction. Postiff et al. [1999]

eliminated false dependencies and utilized a large split instruction window to show speedup

of over 30 may be possible for the popular SPEC suite of benchmarks. They found that em

ploying multiple instruction windows can expose much more parallelism than previously

observed. Austin and Sohi [1992] analyzed the data dependence profile for an earlier ver

sion of the SPEC suite and found similar levels of parallelism available, but also found that

the parallelism is bursty in nature. This suggests that ILP architectures will need to be able

to support parallel execution at higher levels than the average inherent parallelism to extract

maximum performance.

The main point of argument in these limit studies is over which techniques and assumptions

are realistic. Ongoing research has begun to make initially optimistic assumptions look

much more reasonable. Branch prediction and out-of-order execution allow parallelism to

be extracted beyond the basic block, and more recently speculative execution and data pre

diction, coupled with large instruction windows have further extended the reasonable limits.

A large gap still exists between the limits imposed by logic and those by implementation,

providing plenty of scope for improved implementation techniques.

2.2 Conservative Parallel Execution

To guarantee correct results from computation a processor must ensure that no dependen

cies are violated and that dependent instructions are executed in the correct relative order.

This condition is known as sequential consistency [Lamport, 1979]. The simplest method

of maintaining sequential consistency in a program is to assume that each instruction is de

pendent on the previous one. Only once an instruction has completed and its results written

to storage can the next instruction begin retrieving its input data from storage. Of course

this severely constrains the program execution speed. Since each instruction must wait for

IO

the prior one to complete, the execution time is the cumulative time for all instructions in

the program to execute.

Pipelining [Ramamoorthy and Li, 1977] is a commonly used technique to overlap instruc

tion execution by dividing it into distinct stages. If an instruction waiting to be executed

· is dependent on an instruction still in the pipeline the instruction cannot be executed safely

and must be stalled.

A processor that can execute instructions in parallel must still be sequentially consistent, but

to extract the maximum amount of ILP it needs to identify as many independent instructions

as possible. The strategies for doing this can be divided into two broad categories, con

servative and speculative execution. Conservative execution identifies known independent

instructions which can be executed in parallel, and assumes all other instructions contain

dependencies. Speculative execution avoids executing in parallel those instructions known

to be dependent. Any other instructions may be executed in parallel and if a dependency

violation is later identified the processor must be able to undo the effects of the depen

dent instmction. In this section and the next some conservative and speculative execution

techniques currently in use are discussed.

2.2.1 Vector

A limited class of programs, mainly scientific applications, perform the same operation re

peatedly on a large set of data, such as a matrix. Vector processors take advantage of this

characteristic by allowing instructions to operate on many values at once. Vector opera

tions must operate independently on each data value and the programmer must be able to

determine the independence statically and indicate this in the program.

Cray supercomputers [Russel, 1978] are successful examples of vector processors. Un

fortunately most widely used programs do not contain significant amounts of this sort of

parallelism and even those which do require a large amount of programmer time to rewrite

them to exploit this parallelism. Vector parallelism is of minimal use in general purpose

processors, other than some graphics and multimedia instruction set extensions, such as

Intel's Streaming SIMD Extensions [Intel, 1999].

11

2.2.2 Dataflow

Rather than considering computation as a control driven process with operations proceeding

in a defined order using data computed by earlier operations, it can be considered as a data

driven process. Dataflow machines process instructions asynchronously as soon as all the

input data (known as tokens) are available. As such there is generally no shared set of

registers, or shared memory, tokens are sent directly to instructions and each token is used

only once.

A dataflow program is derived from a datafiow graph which shows the transfer of data be

tween instructions. Synchronization is handled simply in dataflow machines by instructions

waiting for data from instructions they are dependent on, constraining the order of execu

tion, but leaving execution of independent operations unconstrained. False dependencies

are eliminated by using each token only once.

Conditional branches are implemented using dataflow instructions which send a copy of the

input token to different instructions based on a control input. In this way a control flow

dependence has effectively been converted to a dataflow dependence.

The first dataflow architecture-the Static Dataflow Machine-was developed at MIT [Den

nis and Misunas, 1975]. Dataflow architectures that have been developed since include: the

Manchester Prototype Dataflow Computer [Gurd et al., 1985], the Stateless Dataflow Archi

tecture [Snelling, 1993], the StarT family [Nikhil et al., 1992; Ang et al., 1998] and the MIT

Monsoon [Papadopoulos and Culler, 1990]. A number of extensive surveys have been pub

lished comparing these and other dataflow architectures [Veen, 1986; Srini, 1986; Treleaven

et al., 1982; Snelling and Egan, 1994].

While dataflow architectures promised much as clean, scalable ILP architectures, major

practical weaknesses have been discovered. In progran1s with a high degree of inherent par

allelism the instructions available for execution can far outstrip available resources, causing

large scheduling overheads. Furthermore, instructions may have long lifetimes, between the

first token arriving and the instruction being ready for firing. This leads to a large number of

instructions active in the system, causing difficulty in matching tokens with the respective

instruction. The problems in managing massive parallelism are revisited later in this thesis.

Despite the high degree of parallelism often available, sequential bottlenecks tend to form

12

in the queues and stores used to communicate tokens between instructions, and contribute

to long latencies. Since data flows from instruction to instruction without being stored in a

common memory (conceptually at least), data used by more than one node has to be copied.

This becomes a problem where large data structures are involved, adding more overheads

[Gaudiot, 1986].

The dataflow programming model is quite different from control driven programming [Veen,

1986] and, combined with the problems mentioned above has, led to a poor acceptance of

dataflow processors for general purpose computing. However, some of the ideas introduced

by dataflow computing have had an influence on control driven processor designs, most

particularly in out-of-order execution.

2.2.3 Very Long Instruction Word

The strategy for extracting parallelism employed by VLIW architectures is that the compiler

fonns fixed length packets of operations which it has determined are independent [Colwell

et al., 1987; Fisher, 1984]. Operations within a packet are issued in parallel and can be

executed without concern for synchronization. Typically the type of operation which can

be placed in each location in the packet is constrained and function units are grouped ap

propriately to allow concurrent execution of all operations in the packet, while minimizing

the number of function units. This technique was first seen in the CDC6600 [Thornton,

1964], which used packages of up to four instructions. Examples of a pure VLIW processor

include the Trace Machine and the ELI-52 [Fisher, 1983].

VLIW puts the burden for identifying parallelism on the compiler, which can do extensive

analysis and code rearrangement without adding a runtime overhead. Clearly VLIW lim

its the parallelism which can be extracted to the number of operations in a packet, unless

superscalar techniques are used to execute more than one packet concurrently. A major ad

vantage is that the processor can be simplified substantially, although static analysis cannot

identify as much parallelism as dynamic methods.

To increase the maximum parallelism that can be extracted the size of an instruction can be

increased. However, this makes it more difficult for the compiler to fill packets efficiently.

Longer instructions can increase the overall fetch rate, since the atomic unit is larger, but if

13

packets are not efficiently filled, bandwidth is wasted and code size increases. Additionally,

if the instruction size, or function unit layout changes between generations of VLIW ma

chines then, unlike superscalar processors, they will no longer be binary code compatible.

These drawbacks have prevented pure VLIW processors from taking off. However, like

dataflow, the ideas have influenced commercial superscalar architectures.

The explicitly parallel instruction computing (EPIC) architecture [Schlansker and Rau,

2000] developed by Intel and Hewlett-Packard is a major commercial architecture utilizing

VLIW techniques. Each bundle of EPIC instructions may contain up to three instructions,

although bundles may be grouped to execute in parallel. In addition to the central VLIW

mechanism EPIC incorporates superscalar techniques, such as predication, load speculation

and a prepare-to-branch instruction to further enhance parallelism.

2.2.4 Out-of-order Execution

In the programmer's model of a processor in-order execution is assumed, that is instruc

tions execute in the order in which they appear in the program. If the processor actually

executes the instructions in order the burden is placed on the compiler to schedule instruc

tions efficiently. The limited information available at compile time can cause non-optimal

scheduling, which may lead to the parallelism that can be extracted being restricted by

execution stalling while there are other instructions ready to be executed. If independent

instructions appear later in the program order while a stalled instruction is at the head of

the issue queue, they all have to be stalled until the dependent instruction can execute. By

allowing instructions to be executed out-of-order further ILP can be extracted. Typically a

limited window of instructions is considered for issue at any time.

Executing out-of-order requires the CPU to perform dependency analysis on instructions

in the instruction window to identify those that can be safely executed. An instruction can

only be executed if the processor can determine that it is not dependent on any incomplete

instructions. Both data and control dependencies must be tracked.

Scoreboarding [Thornton, 1964] was the first mechanism to track data dependencies by

maintaining centralized tables showing where data dependencies between incomplete in

structions and the next instruction to be issued exist. Entries identify registers which will be

14

written to by instructions in progress, requiring instructions that read those registers to wait

for the new values to become available. Outstanding register reads are also tracked so that

write-back to a register can be stalled if the previous value is still required by an instruction.

Scoreboarding was designed to allow a processor to issue one instruction per cycle in-order

and complete instructions out-of-order where data dependencies allow.

Tomasulo's algorithm [Tomasulo, 1967] performs a similar function using a distributed

mechanism which places results in temporary slots known as reservation stations, as well

as in registers. If an operand is not available for an instruction at issue time a tag identifying

the reservation station for the value is used instead of the register value. Once the value

has been calculated and placed in the reservation station the instruction can proceed with

execution.

The most commonly used method of removing false data dependencies is register renaming

[Keller, 1975], which makes use of a large register set. The architectural registers visible

to the programmer are dynamically assigned to internal physical registers such that each

register is only written to once within any instruction window. To make this easier the set

of physical registers is usually much larger than the set of architectural registers. Instruc

tions reading from the architectural registers are mapped to the correct physical registers,

removing false data dependencies.

Register renaming can also be implemented as a modification to Tomasulo's algorithm.

Each instruction has a reservation station assigned for its result. Any future instruction

that uses that result as input data either retrieves the value from the reservation station, or

associates the reservation station tag with its input so it can execute with the value as soon

as it has been computed.

No instructions beyond an unexecuted conditional branch can be executed conservatively

since there is a control dependency on the branch instruction. This restricts parallel execu

tion to the current basic block. Section 2.3 considers speculative methods commonly used

in commercial processors to look beyond the basic block.

15

2.3 Speculative Parallel Execution

In general more parallelism can be extracted from a larger pool of instructions, since there

will be more independent instructions available. However, it becomes increasingly difficult

to identify independent instructions in a larger instruction pool, since each instruction must

be considered against all previous instructions in the pool. At times this information is not

even available, for example a memory address may have to be calculated.

Speculative execution assumes instructions are independent, and proceeds with parallel,

out-of-order execution. If this assumption turns out to be false (a mis-speculation) the ef

fects of the dependent instruction must be undone. The final effect of the computation must

be the same as if the program had been executed sequentially.

Speculative execution implies out-of-order execution and dynamic scheduling, allowing

possibly useful computation to utilize otherwise idle resources in the hope of gaining speedup.

Speculative execution allows the ultimate flexibility to schedule instructions in parallel at

runtime. Statically scheduled methods, such as VLIW rely on the compiler to identify par

allelism at a time when useful information, such as memory addresses, may not be available.

Conservative dynamic methods require a guarantee that an instruction is independent of all

those prior to it. Late calculation of memory addresses may dictate substantial delay before

this information is available.

Speculative execution is receiving a lot of research interest and is the primary focus of this

thesis. Both data and control flow can be speculated on, although they require different

coordination methods.

2.3.1 Control Speculation

In order to issue more than one instruction per cycle a superscalar processor must fetch

multiple instructions per cycle. When the current instruction is a conditional branch the next

instruction to be fetched is dependent on the outcome of the branch. In order to maintain

maximum fetch rate branch prediction can be used to try to determine the next instruction

[Smith, 1981; McFarling, 1993; Yeh and Patt, 1993]. This is the most common form of

control speculation, and is found in most modem processors. If the branch is mispredicted

16

the wrong instruction will have been fetched, and perhaps executed. The effects of this must

be undone and the correct instruction executed.

A branch instruction occurs, on average, approximately every seven instructions [Hennessy

and Patterson, 1996]. To maintain a high issue rate, particularly in the presence of dependent

instructions, it is often necessary to predict several branch outcomes. Although prediction

accuracy across one branch of greater than ninety percent is possible, since each branch is

dependent on the previous one in a linear instruction sequence the probability of prediction

quickly decreases, limiting the effective instruction look-ahead [Yeh et al., 1993].

By recognizing control independence (see Section 2.1.2) the problem of decreasing branch

prediction accuracy can be curtailed. Since the code is guaranteed to reconverge at the

control independent point the branch prediction accuracy is restored. However, exploiting

control independence relies on having selective mis-speculation recovery, squashing depen

dent instructions while preserving independent instructions.

Most conventional pipelined architectures do not attempt to take advantage of control inde

pendence. When a branch prediction error occurs they simply squash all execution beyond

of the prediction error, whether it was control dependent or not. Lam and Wilson [1992),

and Uht and Sindagi [1995] have shown that control independence is necessary to extract

ILP on the order of 10 to 100. Rotenberg et al. [1999b] provided a more detailed study,

showing that control independence can moderate the penalty of branch mispredictions us

ing a single flow of control. Rotenberg and Smith [1999] extended this work to multiple

flows of control using the trace processor. Other processors which exploit control inde

pendence by pursuing multiple flows of control include the multiscalar [Sohi et al., 1995],

dynamic multithreading [Akkary and Driscoll, 1998], the superthreaded architecture [Tsai

et al., 1999] and the Stampede architecture [Steffan et al., 2000].

Predication [Mahlke et al., 1995] is a technique which can be used to expose control in

dependence in some situations. A predicate is a boolean value attached to an instruction

which must be true for the instruction to be executed. A conditional branch could be used to

achieve the same execution path. If two different sections of code are executed depending

on a condition their predicates have complementary values. Predication essentially converts

a control dependence to a data dependence, allowing code following a conditional branch

to be fetched early because it no longer appears control dependent on the branch.

17

Predication can be combined with speculative execution [August et al., 1998] to execute

conditional code early by executing both branch outcomes. If the predicate is true the

instructions can be committed, if not they are discarded. The disadvantage is that more

resources are consumed because both branches are always executed, but only one will ever

be committed. This style of predication is used in the EPIC architecture.

Eager execution [Uht et al., 1997] also executes both branches. As with predicated exe

cution, resources are consumed by both branch outcomes, but eager execution allows both

paths to be speculatively executed across multiple branches. If the execution path does not

reconverge the resources consumed by speculative execution soon explode. A modification

known as Disjoint Eager Execution (DEE) [Uht and Sindagi, 1995] assigns a confidence to

each speculative branch, which is cumulative across all speculative branches to that point.

To regulate resource consumption only the most likely execution paths are speculatively

executed.

2.3.2 Data Speculation

When an instruction is executed speculatively there is a chance that it is data dependent on

an instruction which has not completed, or has been executed speculatively. This means

that either the input data has not been computed, or may have been computed incorrectly.

Generally register data dependencies can be dealt with conservatively using register renam

ing (see Section 2.2.4). However, memory values require a different approach, since there

are too many addresses to use renaming, although attempts have been made to adapt register

renaming to memory operations [Tyson and Austin, 1999].

Memory addresses are often calculated dynamically, which further complicates dependence

analysis. Until all earlier memory addresses have been calculated the independence of a

memory instruction cannot be established, so conservative execution requires it to stall. This

restriction becomes more severe with a larger instruction window because more instructions

must be considered for possible dependencies.

Memory data speculation can be done naively by assuming that all instructions are inde

pendent. This can lead to a large number of mis-speculations and wasted computation in

aggressively speculative systems. By predicting which accesses are dependent the instruc-

18

tions most likely to be committed can be speculatively executed. Selective speculation can

be used to mitigate the effects of false memory dependencies at a number of different levels

of prediction [Calder and Reinman, 2000].

Data dependence prediction [Gharachorloo et al., 1991; Moshovos et al., 1997; Chrysos

and Erner, 1998] predicts the presence of a dependence, allowing operations likely to be

independent to commence as soon as the address is available.

Address prediction [Austin and Sohi, 1995; Chen and Baer, 1995; Gonzalez and Gonzalez,

1997] goes a step further, speculating on the address, which can be used in dependence

analysis and to initiate the memory operation early.

Value prediction [Lipasti and Shen, 1996, 1998; Sazeides and Smith, 1997; Gonzalez and

Gonzalez, 1998; Wang and Franklin, 1997] predicts the value returned by a load, allowing

instructions dependent on the load to execute early. Value prediction can be used on both

memory and register values.

Moshovos and Sohi [2000] performed a study on memory dependence speculation in a

continuous instruction window processor. They concluded that if addresses are calculated

as early as possible and used to disambiguate memory addresses most of the speedup can

be obtained without speculation. However, increasing the size of the instruction window

leads to increased latency in the address disambiguation unit, which rapidly undermines

the effectiveness of this technique. It is also inappropriate for split instruction window

processors, since there may be memory dependencies on instructions that have not yet been

fetched.

These prediction methods even have the potential for overcoming true data dependencies,

allowing speedup beyond the theoretical dataflow limit. Overall performance depends on

prediction accuracy and on efficiency of recovery from mispredictions. These are areas of

ongoing research.

2.3.3 Architectures

The leading commercial superscalar architectures include many of the techniques described

above to maintain an instruction issue rate in excess of 1 IPC. Pipelining, register renaming

19

and branch prediction are ubiquitous and out-of-order execution is common. For example,

the Compaq Alpha 21264 [Compaq, 2000] has a 6 stage pipeline and issues up to 4 instruc

tions per cycle out of order from an instruction window of 80 instructions, using register

renaming and branch prediction. The Intel Pentium 4 [Intel, 2000] has a 20 stage pipeline

and issues up to 6 instructions per cycle out of order from an instruction window of 126

instructions, using register renaming and branch prediction.

By way of example, and for comparison with the WarpEngine, as described in Chapter 3,

this section outlines speculative techniques employed by some of the leading research ar

chitectures, illustrating the different approaches.

Multiscalar

The multiscalar processor [Sohi et al., 1995; Franklin, 1993] divides the control flow graph

(CFG) into subgraphs known as tasks. Tasks are selected to be control independent as much

as possible, and are speculatively executed in parallel on a ring of processing elements.

If a data or control dependence between tasks is violated the speculative task is removed

(squashed) along with all more speculative tasks. Tasks split the instruction window and

may be arbitrarily far apart in the dynamic instruction stream.

The multiscalar processor does not allow for selective re-execution of mis-speculated in

structions. This can be disastrous to performance if mis-speculations occur frequently since

independent correct computation will have to be repeated. The multiscalar relies on good

task and data dependence prediction both by the compiler and dynamically to minimize

squashes [Vijaykumar and Sohi, 1998]. This prevents the multiscalar from scaling to a

large number of processing elements.

Trace processor

The trace processor [Rotenberg et al., 1997] is similar to the multiscalar in using a circu

lar queue of processing elements, and a distributed register file and instruction window.

However, it uses dynamic instruction sequences (traces) instead of tasks. As the program

executes the dynamic instructions sequences are recorded in a trace cache, terminating

at control independence points, in the hope that they will be executed again [Rotenberg

20

et al., 1996, 1999a]. In effect traces are variable length, dynamically composed blocks in a

block structured architecture (see Section 3.2.1). Future re-execution of traces are predicted

and speculatively executed. Value prediction is performed on values being passed between

traces and on memory addresses, and memory loads are performed speculatively. Mis

speculation is expected to occur regularly, so only dependent instructions are re-executed to

reduce the penalty.

Dynamic multithreading

Dynamic multithreading [Akkary and Driscoll, 1998] identifies control independent regions

at runtime and begins threads of execution at those points. Threads contribute instructions

to a hierarchy of instruction windows from which instructions can be selected for execu

tion. All threads except one execute speculatively and use data speculation to avoid stalling

for inputs. This leads to frequent mis-speculation which is selectively recovered from by

reissuing affected dependent instructions.

Any thread, speculative or not, may spawn a new thread. To track the causal order of threads

a tree is maintained, with new threads added as the right-most child node of the creating

thread. A right to left preorder traversal provides the thread order. Threads most recent in

the causal order have preemptive priority for thread contexts, ensuring computation that is

less speculative is done by preference.

Speculative instructions and results are stored in a trace buffer attached to each thread con

text, which operates individually as a dataflow engine. Speculative register values are re

tired to the architectural state in order. As they are retired the speculative values used for

the following thread are validated and rolled back if necessary.

Speculative multithreading

The speculative multithreaded processor [Marcuello and Gonzlez, 1998] executes multiple

loop iterations speculatively in parallel. Loops are highly predictable and each thread shares

the same control flow, so the instructions only need to be fetched once. Data dependence and

data value speculation are used extensively to avoid inter-thread dependencies. Extensive

run-time analysis is used to predict register dependencies, and execution is stalled until the

21

data is available.

This technique is limited because it operates only on loop bodies, so much of the avail

able parallelism is ignored. However, speculative multithreading is complementary to the

techniques mentioned above, which generally operate at the higher level of granularity of

control independent tasks.

2.4 Recovering from Mis-speculation

All speculation techniques require a way of recovering from mis-speculation to remove

incorrect computation from the system. In this section the major recovery methods are

reviewed. The sophistication of the recovery methods required is influenced by the specu

lation technique used, and how aggressively it is pursued.

2.4.1 Pipeline Flushing

Typically superscalar processors execute conservatively with respect to data dependencies,

but speculate on control flow by means of branch prediction. Hence, in pipelined processors

(like most modem processors) the instructions in the pipeline may represent speculative

state.

Instructions are fetched and executed based on the predicted branch outcome, and may

progress as far as the retirement stage of the pipeline. If the branch prediction was correct

the instructions are allowed to commit their results and retire. If the prediction was incorrect

the contents of the pipeline up to the mispredicted instruction furthest through execution are

removed (flushed), along with any results computed by them, and the correct instructions

are issued. This inevitably creates a pipeline bubble while the pipeline is refilled, and there

will be some latency associated with flushing the pipeline.

Branch prediction within a pipeline is a modest form of speculation, so it is easily recovered

from. The penalties are minimal providing the branch prediction accuracy is high, and the

pipeline is short. However, not much speculation is exploited with this method.

22

2.4.2 Checkpoint Repair and History Buff er

A straightforward way of recovering from mis-speculation is to restore the processor to

a state prior to the incorrect execution and re-execute from that point with the corrected

data or branch outcome. Checkpoint repair [Hwu and Patt, 1987] periodically saves the

complete processor state. This may include the results of some speculative or incomplete

instructions, which are added to the saved state as they become available.

When a mis-speculation is detected the most recent correct checkpointed state (which may

be several instructions earlier than the mis-speculation) is reloaded and all later instruc

tions are re-executed. Checkpointed states are discarded when a later state contains only

committed values, when all the results of the in-flight instructions have been added.

The overhead in checkpointing after every instruction and the resources required to store

the state would be impractical. This leads to the state being restored to an earlier point in

the program than necessary, and some correct computation being repeated.

A history buffer [Smith and Pleszkun, 1988] performs the same function, but stores the

change to the state, rather than a complete copy of the state. This is done by updating the

register file with speculative values and storing a history of superseded values in a last in,

first out stack. When a mis-speculation occurs values are popped off the stack and inserted

in the register file until a safe state is reached. Saving incremental state is much faster and

more space efficient than checkpointing, but it requires extra register file ports to update

the history from multiple instructions per cycle, and popping values from the history buffer

requires several cycles to recover from mis-speculation.

2.4.3 Reorder Buffer

Another way to allow a processor to recover from mis-speculation is to keep speculative

results in temporary storage, and only commit them to the register file when they become

non-speculative. Instructions are issued in-order to the instruction reorder buffer (ROB)

[Smith and Pleszkun, 1988], which places them in slots in order. Data can either be placed

in the ROB slot, or separate reservation stations can be used. When a new instruction is

placed in the ROB it uses the most recent values from the ROB for its register values, or

23

if none are present in the ROB, from the register file. Instructions are then dispatched to

functional units on a dataflow basis, as soon as all the operands are available. The instruction

result is returned to the ROB entry and stored there pending retirement. Register renaming

ensures that register data dependencies are observed. Typically memory operations have

their relative execution order constrained to avoid possible memory hazards.

Instructions are retired from the ROB in order, to preserve sequential consistency. If an

instruction has completed when it reaches the head of the ROB its result is written to the

register file and it is removed from the ROB. If it has not completed retirement stalls until it

completes and the result is returned. Typically several instructions can be retired in a single

cycle.

The size of the instruction window is determined by the ROB and branch prediction is used

to fetch enough instructions to keep it full. If a misprediction occurs the ROB is flushed

beyond the misprediction and is refilled with instructions from the correct branch outcome.

This is a low latency mis-speculation recovery.

Unfortunately, even relatively large instruction windows can become exhausted. If a long

latency instruction occurs, such as a cache miss, it can be at the head of the ROB and

incomplete while all the other instructions have completed, leaving none to issue. Increasing

the size of the ROB is a possible solution, but it leads to other problems. To find the register

input value for an instruction the ROB must be associatively matched, and worse, the most

recent value must be identified. This centralized mechanism scales poorly to larger ROB

sizes.

Associative matching can be avoided by using a fature file [Smith and Pleszkun, 1988],

which is a duplicate register file holding the speculative register values (or reservation sta

tion tags) that apply to the most recent instructions issued from the ROB. Mis-speculation

recovery becomes slightly more complicated. Instructions up to the mis-speculation point

must be completed and retired to the register file. Then the future file can be flushed and

the remaining ROB entries removed. Execution is then restarted by refilling the ROB. This

slows recovery somewhat and requires an additional register file, with the advantage of

speeding up instruction issue.

24

2.4.4 Split Instruction Window Squashing

All the mis-speculation recovery methods discussed to this point have been suitable for

architectures using a single flow of control, and are commonly applied to superscalar ar

chitectures. Squashing all speculative instructions over multiple flows of control can have

much more serious consequences because all but one of the threads will be speculative and

a lot of correct computation may be rolled back. The advantage is that the squash is very

simple and can be performed quickly. Much less state saving information is required than

to selectively undo incorrect instructions.

In the multiscalar processor, in principle, all tasks beyond the one containing the mis

speculation are squashed, although the compiler does create tasks to minimize data and

control speculation errors. Memory accesses to global variables are most likely to contain

intertask dependencies, and can be explicitly synchronized by compiler intervention [Sohi

et al., 1995]. If a branch misprediction occurs in a task and the following tasks are control

independent they are not squashed, giving a limited degree of selective rollback. Any in

tertask data dependence affected by the branch misprediction causes speculative tasks to be

squashed.

Register dependence violations are avoided by using reservation stations to await values in

a dataflow manner. A number of different ways of synchronizing memory accesses have

been proposed for multiscalar processors, these are considered in Section 2.4.6, along with

other speculative memory techniques.

Other split instruction window architectures, which squash indiscriminately on similar prin

ciples to the multiscalar, include: the Stanford Hydra [Hammond et al., 1998, 2000] and the

CMU Stampede [Steffan and Mowry, 1998; Steffan et al., 2000].

2.4.5 Selective Undo

It is vital in architectures where mis-speculations happen frequently to only undo the ef

fects of the instructions dependent on the mis-speculation. If instructions independent of

the mis-speculation are squashed they will be re-executed to produce the same result, wast

ing resources and slowing down computation. Frequent indiscriminate squashing removes

25

the benefit of speculative execution, while still competing for execution resources. The

tenn squash is reserved for indiscriminate removal of speculative operations beyond a mis

speculation point, the term rollback is used for selectively undoing operations.

Where control flow speculation is concerned exploiting control independence can be re

garded as a way of selectively undoing computation [Chou et al., 1999]. When a branch

misprediction occurs the control independent instructions aren't rolled back because they

are guaranteed to execute. However, data dependencies must still be recognized and dealt

with. A data dependence may be present in only one path from the branch, so a change in

control flow may result in a consequent change in data flow.

Selectively reissuing instructions due to data mis-speculation can be achieved using the

same dataflow method that issued instructions out-of-order in the first place. Reservation

stations are single assignment registers, placing a new value in the reservation station can

be used as a cue to re-execute the instruction.

Sodani and Sohi [1997, 1998] propose reusing squashed instructions. This has the inciden

tal advantage that instructions which execute several times with the same inputs can use the

same mechanism to retrieve the correct results again without having to recalculate them.

Over 50% instruction reuse was measured in some cases for a speculative superscalar pro

cessor. For a split instruction window the increased mis-speculation suggests this figure

would be even higher. Roth and Sohi [2000] propose register integration as a mechanism

for implementing squash reuse.

An alternative approach for minimizing re-execution of correct instructions is to selectively

rollback the mis-speculated operation and those that depend on it. Rotenberg et al. [1999b]

propose using an ROB implemented as a linked list to allow alternative, possibly larger, in

struction paths to be inserted into the dynamic instruction stream of a superscalar processor

to selectively rollback instructions following a branch misprediction. The trace processor

[Rotenberg et al., 1997; Rotenberg and Smith, 1999] uses the same principle to selectively

re-execute multiple flows of control. Chains of data dependent instructions reissue as up

dated values are provided to them in the ROB.

Trace buffers are also utilized by the dynamic multithreaded (DMT) [Akkary and Driscoll,

1998] and speculative multithreaded [Marcuello and Gonzlez, 1998] processors. When

26

mis-speculation recovery is required the trace buffer is scanned from the mis-speculation

point to identify dependent instructions and they are grouped together and dispatched for

re-execution.

2.4.6 Memory Consistency

Speculative memory access is the most difficult class of speculation to control. Memory de

pendencies are generally difficult to identify when pointer operations are involved because

memory addresses are often calculated dynamically. This is a particular problem in split in

struction window processors, since the instruction the memory access is dependent on may

not even have been fetched yet.

Speculative memory writes are problematic because they can overwrite the non-speculative

value which may have loads dependent on it that have not yet executed. However, a spec

ulative load needs to be able to access the value from the store immediately prior to it in

the program order. This value may have come from the latest non-speculative write, a spec

ulatively executed write, or a write which has not yet been executed. If the last case has

not been ruled out the load must either be conservative and stall until any stores it may

be dependent on have executed, or execute speculatively and rollback and re-execute if an

applicable value is written to memory. The conservative solution tends to waste cycles on

false dependencies, since memory dependencies are hard to analyze. The MIT Raw ma

chine [Waingold et al., 1997; Barua et al., 1999], a radical parallel architecture, attempts

to use compiler and dynamic analysis to disambiguate memory accesses, with the option

of serializing accesses where dependence may exist. The superthreaded architecture [Tsai

et al., 1999] speculates on control flow, but is conservative on data dependencies.

A speculative solution requires a structure for buffering speculative memory state that fur

ther speculative reads can access. The contents of this buffer can either be rolled back if

mis-speculation is identified or committed to architectural (non-speculative) memory. It is

crucial that such a mechanism can identify the appropriate stored value for a load from an

arbitrary point in the program order. Previously proposed approaches to controlling specu

lative memory accesses are discussed below.

27

Address Resolution Buffer

The first proposed speculative memory system was the address resolution buffer (ARB)

[Franklin and Sohl, 1996], originally designed for the multiscalar processor. The ARB

can hold multiple versions of a memory location, valid at different points in the sequential

execution. Since the speculative tasks are assigned in-order to a ring of execution stages,

the stage number can be recorded and used to identify the relative ordering of the stores,

allowing for wrapping around.

When a speculative load is done the closest earlier store for that address is returned. If none

exists then architectural memory is consulted. A flag is also set in the ARB to record the

existence of a speculative load from the address by that stage. A speculative store writes

the value and stage number to the ARB. If a load has occurred before (in program order)

any other store a mis-speculation has occurred and tasks from the loading stage onwards are

squashed and re-executed.

When a stage becomes non-speculative the values in the ARB with a matching stage number

are removed and committed to architectural memory. Squashing a stage performs the same

process, but does not commit the values to memory. Only addresses with currently valid

speculative entries require entries in the ARB.

Speculative Versioning Cache

The major limitation of the ARB is that it is a single central buffer, hence every access incurs

the latency of the interconnection network, and the ARB must support sufficient bandwidth

for all the processors. The speculative versioning cache (SVC) [Gopal et al., 1998] addresses

this limitation by using a private speculative cache for each processor, avoiding bus traffic

for local accesses.

Speculative versions of memory accesses are supported by implementing a modified version

of a snooping cache coherence protocol for symmetric multiprocessors. A load bit for each

cache line is set if a task loads from a line before storing to it. This indicates a potential

memory dependence violation if an earlier task stores to that line.

A linked list, the version order list (VOL), is maintained by a pointer in each line identifying

28

the next cache containing a entry for that line. A load that misses in its private cache can

be satisfied by searching the VOL in reverse order until a hit is found. The VOL has a

maximum length of the number of processors, which is generally small, so it will be fast to

search. If there are no hits in the SVC the value is retrieved from non-speculative memory.

A store writes the value to the processor's private cache and sends an invalidation response

to the following tasks until the next store to that line is reached. If a cache receives an

invalidation response and has the load bit set for that line it squashes the task and all later

tasks.

On task commitment all stored values are written to non-speculative memory and all lines

in the private cache are invalidated. Task squashing invalidates all lines in the cache.

Gopal et al. [1998] introduce several refinements to the SVC. Lazy commitment allows non

speculative values to remain in the SVC until they are superseded by a later speculative

value. This smoothes the otherwise bursty writes to memory when a task commits and

allows the next task to be allocated without waiting for write commitment to complete.

Allowing values to persist in the SVC after commitment also allows the SVC to act as

another layer of caching.

Although the ARB and the SVC were originally designed with the multiscalar in mind they

are applicable to any processor with multiple speculative flows of control. They can be

extended to perform selective rollback by the addition of anti-stores which issue when a

store has mis-speculated and undo the effects of the store, forcing any dependent loads to

reissue. The speculative multithreading processor [Marcuello and Gonzlez, 1998], Hydra

CMP [Hammond et al., 2000, 1998] and CMU Stampede [Steffan et al., 2000; Steffan and

Mowry, 1998] use speculative memory systems similar in design to the SVC.

Both the ARB and the SVC rely on allocating a sequence number to each task to order

memory accesses at a coarse granularity. This is trivial in the multiscalar processor because

tasks are allocated to processors in a fixed hardware order. A task misprediction results in

squashing all tasks beyond the misprediction point, so the tasks can be reallocated in order

to the processor ring. The trace processor uses a mapping table to map physical processor

numbers to logical (causal order) processor numbers, with pointers to neighboring proces

sors [Rotenberg and Smith, 1999]. Neither of these methods will scale well. Squashing

29

reduces the value of speculation to execute far-away control independent tasks because they

will frequently be squashed even when the execution is correct. The mapping table in a trace

processor is a potential serial bottleneck, and could impose substantial overhead when the

number of processors is large. Methods for ordering a large number of speculative threads

which potentially fork will be explored in detail throughout the rest of this thesis.

Load and store queues

In the DMT processor [Akkary and Driscoll, 1998; Akkary, 1998] speculative memory ac

cesses are stored in fully associative load and store queues. Loads check preceding threads

for any store to the same address, using the value if one exists. Stores search for a match

ing address in the load queues of later threads until another store to that address is found,

initiating a recovery action if any matches are found.

The DMT processor uses a separate thread tree to determine the causal order of threads.

This represents a substantial bottleneck each time relative thread ordering is determined

since the tree must be traversed to generate an ordered list. This is feasible for a small

number of threads, but will not scale well. Scanning through the load and store queues of

previous or following threads also does not scale well. All of them may have to be searched

in the case of no matching access from the speculative threads before the non-speculative

value can be accepted for loads, or memory dependence violations can be ruled out for

stores.

Sun's MAJC architecture [Tremblay et al., 2000] uses a similar concept named space-time

computing which maintains multiple speculative versions of heap memory. Loads are per

formed conservatively using dynamic memory dependency checking, and speculative stores

are buffered in separate memory space for each thread until they become non-speculative,

or are squashed. Again this will not scale well, but it is intended for a commercial chip mul

tiprocessor (CMP) with only two processors initially. MAJC takes advantage of Java's built

in memory management features to make the speculative memory system more efficient.

30

2.5 Summary

The previous research discussed in this section has shown that dependencies can place seri

ous limits on the ILP that can be extracted from general purpose workloads. Some of these

dependencies are artifacts of the program implementation and can be removed by compiler

and architectural techniques. Even some dependencies intrinsic to the program can be by

passed using speculative execution and prediction. Studies have shown that it is necessary

to use multiple flows of control to generate an instruction window with enough independent

instructions to extract large amounts of ILP.

Considerable amounts of academic and commercial research are being directed at utilizing

speculation over large instruction windows. A particular problem is honoring memory de

pendencies, which are often unknown, and difficult to predict prior to execution. This is a

characteristic which is exacerbated by a split instruction window. Speculation appears to

be µie most promising technique for dealing with this, since mis-speculations can be rolled

back, harming performance, but not correctness. By improving the average speculation

accuracy the performance can then be improved.

Methods proposed to date for controlling memory speculation are adequate for small num

bers of speculative threads, or for speculating in limited situations. When the number of

threads is increased to extract further parallelism the methods used for determining the

causal ordering of events become impractical. Either centralized structures are used, form

ing a bottleneck, or a large number of distributed structures must be consulted to determine

ordering or dependencies. Clearly this is an issue that must be addressed if speculative ar

chitectures are to approach theoretical limits of performance. This thesis examines several

proposed methods of maintaining memory dependencies in a speculative processor with

potentially thousands of threads.

31

Chapter 3

The WarpEngine

In order to investigate issues involved with aggressively speculative execution a theoretical

architecture known as the WarpEngine has been conceived. It is used as a basis for explain

ing and testing the ideas presented in this thesis. The idea was first described by Cleary et

al. [1995] and was laid out in detail by Littin [2000]. The WarpEngine uses speculative ex

ecution in an attempt to extract the maximum amount of parallelism. This chapter gives an

overview of the architecture with particular reference to the issues surrounding the control

of speculation and development of a speculative memory system.

Analysis of potential parallelism between instructions at compile time can be classified into

one of the following three situations:

• definite independence

• definite dependence

• neither dependence nor independence can be determined statically with certainty.

The first two cases can be handled by parallelizing compilers. In the case of definite in

dependence the instructions can be freely executed in parallel. If definite dependence has

been determined, then the instructions can be prohibited from executing in parallel without

missing available parallelism. As the state of the art in compilers advances, more of these

situations can be identified statically. However, there are some potential dependencies that

are impossible to determine before program execution, such as when a memory address

32

is calculated by the program. Until that calculation is completed the memory reference

could potentially conflict with any other memory reference, so no later memory access can

be safely executed. Conditional branches also cause problems in analyzing the dependen

cies, since the instruction path is unknown beyond the branch, and may include instructions

which are dependent on the current one. Accurate branch predictions can be made, but still

have the potential to be incorrect. Conservative execution requires that the later instructions

be stalled in these cases until the dependency analysis can be performed.

This indeterminate case is quite common in programming languages, such as C, which make

use of pointers. In some cases there is a large amount of available parallelism which cannot

be extracted by conservative methods. The WarpEngine aims to exploit this category of

parallelism by speculatively assuming that there are no data dependencies, and recovering

from any mis-speculation that occurs.

The mechanism used to recover from mis-speculation is based on the Time Warp algo

rithm [Jefferson, 1985] used in parallel discrete event simulation to maintain causal con

sistency between simulated events. Time Warp is an implementation of the virtual time

paradigm which imposes a causal ordering on distributed systems. Events are given a vir

tual ordering, which represents the order in which they would be processed in a sequential

system. The parallel processing of events must remain consistent with the virtual order.

This chapter discusses how the Time Warp algorithm has been adapted for use as the specu

lation control mechanism in a general purpose CPU. The architectural features of the Warp

Engine are described and contrasted with those in other contemporary architectures.

3.1 Time Warp

The Time Warp algorithm has been shown to extract parallelism from otherwise intractable

parallel simulations [Fujimoto, 1990b]. In Time Warp, parallel discrete event simulations

are represented as objects that communicate by passing messages. Each message has an

associated timestamp corresponding to its simulated time, representing the virtual time.

When an object receives a message it processes an event at that simulated time. Events

may produce further messages with later timestamps which are passed to other objects. The

ordering of forwarded messages, known as the principle of causality [Fujimoto, 1990a],

33

must be maintained to ensure the correct results are obtained.

Local clocks are maintained for each object in the simulation, allowing events to be exe

cuted speculatively with regard to other objects. Sometimes this results in a message being

processed out-of-order (i.e. a causality violation). The object is rolled back to the state be

fore the incorrect speculation and the out-of-order event is re-executed. Any flow on effects

from the rolled back messages must also be undone.

A typical way of restoring the state of an object is to take frequent snapshots of the state

and save it in a list of states. When a rollback occurs the most recent state before the mis

speculation is restored to the object. Saving state frequently requires less computation to

be re-executed, giving better performance, but consumes more resources and increases time

spent saving state.

Undoing the effect of rolled back messages is achieved by sending anti-messages. When an

object receives an anti-message it rolls back, annihilates the anti-message and the matching

message and may send further anti-messages. Good performance relies on fast processing

of anti-messages so that the chain of incorrect computation does not proceed far. A number

of refinements to this general principle have been suggested to improve the efficiency of

rollbacks [Fujimoto, 1990b; Fujimoto et al., 1992].

3.1.1 Global Virtual Time and Fossil Collection

As the simulation proceeds, the lists of saved state grow in size, consuming valuable re

sources. Old state copies can be removed (fossil collected) when it is determined that the

simulation will never be rolled back to that point or earlier. The earliest point that a simu

lation can roll back to is known as global virtual time (GVT), and can be calculated as the

minimum virtual time of any active object or message in the system.

To maintain causality an object is rolled back when a message with an earlier virtual time

arrives at the object. So the earliest message in the system can never be rolled back, and all

saved state prior to that virtual time can be discarded. Process termination is also detected

by GVT and processes can be fossil collected when GVT has progressed past them.

While local virtual clocks may roll back, GVT is guaranteed to progress forward and ensures

34

that the simulation as a whole will progress.

Accurate calculation of GVT is the key to keeping the state saving lists small, but this is

not easy in a distributed system. Much attention has been paid to this problem in the Time

Warp literature [Bellenot, 1990; Gomes et al., 1992].

3.1.2 Cancelback

Resources for state saving are necessarily finite, and it is possible for speculative events

to consume all those resources leaving none available for earlier events. This will prevent

execution of those events, possibly stalling GVT and forward progress of the simulation. To

guarantee program completion under Time Warp a mechanism is needed to provide some

resources for those events.

The cancelback protocol [Jefferson, 1990] extends the Time Warp storage management

mechanism to allow the most speculative events to be halted and the resources used to be

recovered for use by earlier events. This means discarding potentially correct computation,

and is generally used only when resources are exhausted.

Cancelback has been shown to be sufficient to guarantee that a simulation run using Time

Warp will be able to complete in no more memory space than is used by a sequential simu

lation [Jefferson, 1990].

3.1.3 Time Warp in Computer Architecture

In seeking to design an architecture based on Time Warp it is appropriate to identify the

features of Time Warp that correspond to those of contemporary computer architectures,

and the additional ones needed to utilize Time Warp. A full description of terminology

parallels can be found in [Pearson et al., 1997].

In Time Warp an object is the fundamental unit that can be rolled back. The corresponding

unit of rollback in a speculative CPU is the instruction, or instructions grouped into basic

blocks or tasks. Instruction rollback is commonly performed by the ROB in a CPU. Ob

jects carry all the state saving information for Time Warp processing. In a microprocessor

memory locations carry state information in addition to the ROB. Generally memory state

35

is saved using speculative write buffers, which are adequate for small amounts of specu

lation. Saving speculative memory state is explored throughout this thesis, particularly in

Chapter 8.

In Time Warp, messages are used to transfer data between objects, hence they correspond

to the transfer of data between instructions in a CPU. Branch, call and jump instructions

communicate control flow information between groups of instructions. Memory write in

structions are messages from a group of instructions to a memory location. Memory read

instructions correspond to a pair of messages: a request from the instructions to the memory

location; and a reply from memory back to the instructions.

Anti-messages do not typically exist explicitly in CPUs. Rather than identifying the cas

cade of instructions dependent on the one rolled back they perform a coarse granularity

instruction buffer flush, sometimes called a squash, rolling back all speculative instructions

beyond the conflict.

Fossil collection corresponds to the in order commitment of speculative results. GVT is rep

resented by the earliest instruction in the sequential program order which hasn't completed

execution, all instructions prior to that point can be retired.

A mechanism analogous to cancelback needs to be included in an architecture based on

Time Warp. Conventional microprocessors with a single linear control mechanism do not

require such a mechanism, since instructions are issued in order, even if they are executed

out-of-order.

A hardware implementation of Time Warp, the Virtual Time Machine [Fujimoto, 1989), has

been proposed, along with special purpose hardware for rollback [Fujimoto et al., 1992).

However, it is largely limited to speeding up parallel discrete event simulation, rather than

general purpose processing.

3.2 Supporting Speculative Execution

Time Warp provides the WarpEngine with a distributed means for identifying and recover

ing from causality violations. To test this mechanism under conditions of aggressive specu

lation other features are needed to expose a large pool of instructions for parallel execution.

36

Using block structured execution allows the fetch rate to be increased and allows parallelism

to be extracted at a coarser granularity, reducing some overheads. By executing blocks in a

tree structure control flow independence can be exploited to further increase the size of the

instruction pool.

3.2.1 Block Structured Execution

The WarpEngine aims to extract parallelism at two different levels of granularity. By divid

ing the code into blocks, parallelism can be extracted at the instruction level within a block,

and also between blocks by executing them in parallel. Another way of viewing this is as a

large, non-contiguous instruction window split into many blocks.

The Block Structured Architecture (BSA) was originally proposed as a means of increasing

the instruction fetch rate beyond the size of a basic block [Melvin and Patt, 1995]. Not

only can a whole basic block be fetched in one atomic operation, but block enlargement

[Hao et al., 1998] allows the atomic unit of execution (the block) to be made up of multiple

basic blocks. Familiar mechanisms from superscalar processors, such as multiporting, trace

caches and pipelining can be used to further boost the fetch rate.

Data dependence information is contained within the block to remove the need for com

plex instruction reorder logic, meaning that the order in which the instructions are stored is

unimportant. In the WarpEngine this is done using a single assignment dataflow register set.

Single assignment removes the need for register renaming, usually done at run-time, replac

ing it with compiler determination of destination registers. Each instruction has dedicated

source registers, and will send its results to the source registers of instructions in the same or

immediately following blocks. This allows all instructions to be issued in parallel, provided

source data is available and there are sufficient resources to execute. The tag matching prob

lems of traditional dataflow architectures are avoided by keeping dataflow communication

local and restricted to a small number of possible registers with static addresses. Global

inter-block communication of data in the WarpEngine is performed via the memory system.

Within a block the WarpEngine uses a limited system of predication to dynamically dis

able execution of some instructions. This facilitates better packing of blocks by boosting

some instructions across branches. Full scale block enlargement is not necessary in the

37

WarpEngine since the maximum size of the instruction blocks is limited.

Toe WarpEngine uses a fixed length BSA [Eeckhout et al., 2000], in which each block

has a fixed maximum number of instructions. This simplifies fetch and issue logic [Neefs

and Van Campenhout, 1996]. Where the compiler cannot pack a block with the maximum

number of instructions it is padded with null operations. Studies [Eeckhout et al., 2001;

Littin et al., 1998] suggest that block sizes of sixteen instructions are optimal, and this is the

size used by the WarpEngine.

3.2.2 Tree Structured Execution

The aim of the WarpEngine is to investigate issues involved in extracting high levels of par

allelism through aggressive speculative execution. This requires having many instructions

in flight and a large instruction window. As shown by the studies described in Section 2.1.3

this necessitates a split instruction window with the ability to issue many instructions each

cycle.

The WarpEngine exploits control independence, identified by the compiler, to achieve a

large split instruction window. Recall that control independent sections of code are guaran

teed to execute regardless of branch outcomes in the other sections. This means they can

be executed in parallel, as long as data dependencies are obeyed. These data dependen

cies can then be dealt with by the speculation control mechanisms provided by the Time

Warp algorithm. This results in a dynamic execution flow graph in the form of a tree, so

we call this tree structured execution. Figure 3.1 shows an example of the execution tree

formed from some sequential code. The virtual order of frames can be obtained by doing

a pre-order left to right traversal of the execution tree. Figure 3.2 shows an execution tree

that can be generated for a loop where each iteration is control independent (for example a

for loop). The nodes in the control branch running down the right perform checks to see

whether the iteration should be executed. Littin [2000] provides some optimized execution

trees to increase the fanout of loop iterations.

Exploiting control independence reduces the importance of branch prediction. Branch pre

diction now only affects the local subtree, other branches of the execution tree are still

guaranteed to execute and continue regardless.

38

A;
if B then C else D
E;
F;

--program order--.

Figure 3.1: Producing tree structured execution from sequential code

Figure 3.2: Execution tree for loop iterations

It is possible to convert some control dependencies into data dependencies and use specu

lative methods to exploit the parallelism. For example, in while loops it cannot be known

whether an iteration should execute until the previous iteration has completed, or at least

calculated the condition value. By making the instruction which initiates the iteration con

ditionally depend:::nt on the value calculated in the previous iteration the speculative control

system will allow the iteration to be fired while the condition is still speculative and then

roll it back if necessary.

Throughout this thesis conceptual discussions relating to execution trees are illustrated us

ing binary trees. All trees with a greater fan out can be decomposed to a binary tree by

adding intermediate levels whose only purpose is to allow more nodes to be created. By

removing these intermediate levels the principles shown for binary trees can be extended to

execution trees in general. Figure 3.3 shows the four-way tree from Figure 3.1 converted to

a binary tree by adding a level of intermediate nodes (unlabeled).

The CFG for tree structured execution has some important differences from the CFG for

39

-- program order--.

Figure 3.3: An equivalent binary execution tree

a single flow of control. A tree structured CFO allows multiple flows of control to be

followed because paths to control independent nodes may be followed in parallel. Since

some nodes may be conditionally executed paths to them are represented by a dashed arc,

while unconditionally executed paths are represented by a solid line. Figure 3.4 shows a

code excerpt containing a for loop and some inline code, and corresponding CFOs for a

single flow of control and tree structured execution.

Clearly there are several possible tree structured CFOs even for a simple piece of code like

this. For example, instruction A could be executed in parallel with the for loop and in

structions D and E. The CFO design influences the obtainable parallelism and can be used

to throttle execution. The most effective CFO depends on factors such as the maximum par

allel execution fanout that can be sustained by the processor and data dependencies between

control independent points.

3.2.3 Virtual Ordering

Since separate subtrees in the WarpEngine are control independent they are equivalent to

threads in a multithreaded architecture. However, most speculative multithreaded architec

tures don't permit an arbitrary number of threads to be created between any two threads.

Either they are compiler identified and statically assigned, or squash and reissue operations

map the threads directly onto processing elements, as in the Multiscalar architecture [Sohi

et al., 1995]. Static assignment of threads is done conservatively, because resources re

served for threads will be wasted if the number of threads required is overestimated. Con-

40

A;
for(i=O; i<S; i++){

B;

}

D;
E;

C;

(a) Code extract

d ev

(b) CFG for a single flow of control

(c) CFG for tree structured execution

Figure 3.4: Equivalent CFGs for single flow of control and tree structured execution

servative allocation, on the other hand, restricts the amount of speculative parallelism that

is extracted. Squash and reissue allows a more flexible allocation of threads, which can be

modified dynamically. Squashing limits the speculation distance that can be achieved.

The WarpEngine allows out-of-order thread allocation to occur dynamically without need

ing to squash and reissue. This makes it necessary to track the virtual order independently

of resource allocation.

Data speculation in the WarpEngine is provided by allowing memory accesses to occur

freely out-of-order. This eliminates false data dependencies because accesses are not re

stricted to occur in the programmed order.

41

Troe data dependencies must be detected and execution corrected where they are violated.

The WarpEngine does this using a virtually ordered memory system, which is the focus of

this thesis. Each memory access is assigned a position in the virtual order, corresponding to

its order in the program when executed sequentially.

The rest of this thesis investigates ways of maintaining the virtual order. Any violation

of the virtual order is detected by the memory system and the appropriate instructions are

rolled back and re-executed. Chapter 8 considers a design for a memory system capable of

doing this.

Register data dependencies are removed by the use of single assignment dataflow registers,

since they are only read by one instruction and only written to by one instruction. If an

incorrect speculative value (either from a speculative memory access, or a control specula

tion) was written into a register, when the correct value arrives as an update the instruction

re-executes and sends updated results to further instructions in turn.

3.3 Architecture

The WarpEngine speculative architecture combines control flow speculation and data specu

lation with the Time Warp synchronization mechanism to form a test bench for investigating

aggressively speculative, highly parallel processor techniques.

The WarpEngine architecture investigated in this thesis uses a four-way control tree with

fixed size instruction blocks. Each instruction block is executed by loading it into a hard

ware resource known as aframe. Instructions in the same frame are executed in a dataflow

manner, in parallel on multiple functional units.

Using a special instruction a frame may pass data to any frame it has initiated, but any

further inter-frame communication must be done through the memory system. A special

memory unit called the time-space cache stores multiple versions of speculative memory

values, and tracks the virtual ordering of memory accesses, reissuing values if sequential

consistency is violated. The virtual order is represented by the value of a virtual timestamp

(VTS) assigned to each frame. By comparing the VTSs of two frames their relative posi

tion in the virtual order can be ascertained. The VTS may not necessarily be an explicit

42

value, it may be encoded in other ways, such as the hardware location. The progress of

non-speculative execution (GVT) is tracked by a distributed mechanism (fossil collection),

which commits and reclaims the resources of frames which have completed and are non

speculative.

This section describes the components of the WarpEngine important to this thesis as laid out

in Figure 3.5. The WarpEngine is investigated through the use of the simulator described

in Chapter 4. Littin [2000] provides a comprehensive description and investigation of the

basic WarpEngine architecture and simulation methods.

Frame Controller

C
0 ·.o
"' > ·.o
u
"'

Frames

Code
Store

switch

forced space reclaim

Function
Units

Paths RAM
- operand and data

return address
timestamp

Spatial
Cache

Figure 3.5: Components of the WarpEngine and their connections

3.3.1 Instruction Set

The WarpEngine instruction set is included in Appendix A. Instructions have been grouped

as control, data movement, logical, floating point and integer arithmetic. The only control

instruction is the child instruction, which generates a new node in the execution tree by

loading a block into a frame and assigning it a VTS. It can be conditionally executed based

43

on the outcome of cmp, the arithmetic comparison instruction, in effect providing a con

ditional branch. Appendix A includes an example of a conditional branch in WarpEngine

assembly code.

The mv (move data) instruction moves a data value directly from a register in a frame to a

register in one of its child frames. To transfer a data value to another frame it is stored to

memory by the source frame using the st (store) instruction, and then loaded into a register

in the destination frame using the ma (move from address) instruction. These three data

access instructions may also be executed conditionally, in concert with child instructions.

The standard arithmetic and logic instructions are provided, each sending its result to one

or more destination registers.

3.3.2 Frames

Frames in the WarpEngine are analogous to the ROB in contemporary architectures. They

provide physical storage for registers and instructions, a control mechanism for executing

instructions, and a means of state saving. Each frame has a VTS associated with it which

is used for all memory operations performed by that frame. Frames can be processed in

parallel and are treated as independent speculative instruction streams. The frame controller

arbitrates resource contention and manages communication between frames, function units

and the code store.

Each frame comprises 16 slots, holding one instruction each, as laid out in Figure 3.6. The

slot is made up of four fields: an op-code; execution status flags; and two operand registers.

The status flags are used to determine the validity of instruction operands and to maintain

the execution state of the instruction.

Calvert [1997] investigated a possible hardware implementation for a WarpEngine frame.

3.3.3 Code Store

The code store prepares blocks of instructions for execution, which are then loaded from

memory into frames. The code store generates and assigns VTSs to blocks as they are

allocated to frames in accordance with the program control tree.

44

.,

I V
op-codes flags operand registers

Figure 3.6: Layout of a frame

The instruction block is the atomic unit loaded from the code store. By choosing the size of

an instruction cache line to accommodate a whole instruction block, stress on the instruc

tion cache can be reduced. Since many blocks will be concurrently speculatively executed

fetching from the instruction cache is a potential bottleneck.

The code store also records information about cancelled back frames, so that they can be

rescheduled and resume executing when resources become available.

3.3.4 Function Units

The function units perform the same operations as any contemporary RISC architecture.

Input operands and the distribution of results are handled by an external device, possibly

through some form of switch.

While most operations can be satisfied within the function units, some require actions to be

performed by other system components. The child instruction queries the frame controller

for frame resource space and new VTSs, the mv and ma instructions send results to frames

other than their own, which requires interaction with the frame controller, and the ma and

st instructions access the memory system.

45

3,3,5 Synchronization Mechanism

The synchronization mechanism is used to free frame and time-space cache resources that

are no longer required. This relies extensively on the VTS system to order events. Several

such systems are investigated throughout this thesis.

VTS requirements for fossil collection and cancelback are addressed as the VTS schemes

are proposed, but depend to an extent on the frame implementation used, which is beyond

the scope of this thesis.

3.3.6 Instruction Execution

Each instruction in memory is represented by two words. The instruction word (I-word)

contains the op-code and result destination information. The constant word (C-word) con

tains a single literal or constant value that can be used as one of the instruction's operands.

There are a number of stages in instruction execution, shown in Figure 3.7.

instruction block

function

unit

Figure 3.7: Instruction flow within a WarpEngine frame.

46

First, the instruction block is fetched and allocated a frame. The op-code and s flag (in

dicating conditional execution) are loaded directly from the instruction's I-word. Operand

registers within a slot are either loaded with a constant value from the C-word, or with data

that results from the execution of another instruction.

Data flow techniques are employed to execute the instructions within a frame. When the

data is placed in each of an instruction's operand registers the instruction is transferred to a

function unit for processing. The function unit performs the computation and returns results

back to the appropriate registers in the frame.

Data flow execution of instructions within a block removes the need to issue each instruction

with a unique VTS for state saving. The hardware required to perform data flow execution

and the static allocation of registers to instructions provides a mechanism that executes in

structions only when a change in input occurs. This is particularly useful when re-executing

instructions after incorrect data value speculation has taken place.

3.3. 7 Memory System

Since the WarpEngine is to be capable of storing multiple speculative memory values at

each address the memory system needs to be able to select the appropriate value to return

for a load. Additionally, since memory accesses may execute speculatively out-of-order,

the memory system must be able to identify reads which have been incorrectly satisfied and

rollback the dependent execution.

This is done using a virtually ordered memory system, of which the key component is the

time-space cache. Conceptually, the time-space cache contains triples of the form (address,

VTS, value) for writes, and (address, VTS, destination register) for reads. Different specu

lative versions of memory values are differentiated by their VTS, and incorrect speculative

read replies can be reissued with the updated value. Only entries with a VTS more recent

than GVT need to be stored in the time-space cache, since only they are speculative. Earlier

accesses can be retired, with write values committed to RAM.

The time-space cache forms the level of the memory hierarchy closest to the frames. Beyond

that is the usual cache hierarchy, denoted spatial memory because it contains no virtual

ordering information. Only the most recently committed value is stored for each address

47

in spatial memory. Figure 3.8 shows the relationship between the different levels of the

hierarchy.

The time-space cache can be viewed as a simple addition to the standard memory hierarchy.

The shaded region in Figure 3.8 shows the components in a real ordered memory system.

The difference is the time-space cache and the way it interacts with spatial memory through

the memory controller.

Time Space
Cache

GVT
cancelback

ter processor
mmunication

Figure 3.8: Components of the virtually ordered memory system

Six possible operations must be supported on the memory subsystem: read; write; anti-read;

anti-write; fossil collection; and cancelback.

A read generates an access to the time-space cache and one to the spatial cache in parallel.

The previously recorded write with the same address and the most recent VTS prior to the

VTS of the read will be returned. This value will come from the time-space cache if there

is a write that matches, otherwise the value most recently committed to the spatial memory

hierarchy is returned.

Note that it is not essential to have parallel paths to the time-space cache and spatial memory.

All memory operations could pass through the time-space cache before being transmitted

to the spatial cache, and only those not satisfied in the time-space cache be passed on.

48

This reduces the bandwidth required to spatial memory, but it increases the latency of time

space cache misses, a major bottleneck in current architectures and likely to be so in the

WarpEngine.

A write is only sent to the time-space cache, where it is recorded. This write will supersede

the previous write for any read later in the virtual order than the write, but earlier than the

next recorded write in the virtual order to that address. The time-space cache will re-satisfy

the read and return the new value, causing dependent instructions to rollback and re-execute.

In the example shown in Figure 3.9 for a single memory address the read with VTS 20 will

be resatisfied with the value 5 when operation a) is processed, superseding the value of O

previously returned. This is the only read affected, since another write has taken place with

a VTS of 30.

OP VTS VALUE

a) WR 15 5 ... WR 10 0 j . RD 20 oo e .s •;j

WR 30 1 ~]
g .'5 - ;,. RD 40

WR 50 0

OP VTS VALUE
WR 10 0
WR 15 5 ju a) 5 .. RD 20
WR 30 1 g .'5 - ;,.

RD 40
WR 50 0

Figure 3.9: Resatisfying a read due to an out-of-order write.

Since memory operations are speculative they may need to be rolled back. The anti-read and

anti-write operations undo the effects of reads and writes respectively. An anti-read removes

the corresponding entry from the time-space cache. Anti-reads only occur as the result of

a mis-speculated branch or a change in a computed memory address. The consequences of

undoing the read are handled by the frame.

An anti-write removes the corresponding write entry from the time-space cache. It must

also resatisfy any reads which returned the value from the write that has just been rolled

back. This means locating all reads to that address with later VTSs up to the next write that

has been recorded. The previous write value in the virtual order must be returned for each

49

of these, either from the time-space cache, or from spatial memory. The frame logic will

then cause dependent instructions to be re-executed.

The fossil collection process commits the read and write entries earlier than GVT to spatial

memory. Since GVT may progress in large increments not every write operation in the

time-space cache needs to be written to spatial memory, only the latest in the virtual order

needs to be recorded for each address. Once the values in spatial memory have been updated

the time-space cache entries prior to GVT can be deleted.

Cancelback removes all entries in the time-space cache with a VTS greater than a given

value without writing them to the spatial cache. This can be used as a method for freeing

space in the time-space cache when it becomes full, although fossil collection is a preferable

way of doing this since the cancelled entries will eventually be regenerated when their

frames are re-executed.

Issues

The virtually ordered memory system described in this section is simplified and purely con

ceptual. The description implies some implementation methods which may not be optimal.

It is convenient to think of VTSs as a set of explicit, ordered integers, although physical

ordering in a hardware structure could also be used to determine virtual order. Alternative

methods for this and other features of the virtually ordered memory system are explored

throughout the rest of this thesis.

A number of factors determine the optimal design for the virtually ordered memory system.

These are explored in varying levels of detail with the simulation techniques described in

Chapter 4.

The latency of memory operations is an important factor in the overall performance of the

WarpEngine. Littin [2000] showed that the proportion of memory instructions on the critical

execution path is substantially higher than in the total dynamic instruction count, and the

execution time is very sensitive to increased memory latency.

The WarpEngine is designed to minimize the effects of high instruction latency by executing

instructions speculatively. This means there will be an increased number of instructions

50

and memory operations in-flight at any time. This means bandwidth considerations will be

important, and features that reduce the number of operations should be considered carefully.

The size of the time-space cache is another important consideration. In general a small

cache will be faster, particularly if associative matching is required. However, if the capacity

of the time-space cache is exhausted cancelback may be required to reclaim space and allow

execution to continue. Cancelback limits the amount of effective ILP that can be extracted

because speculatively executed computation is being discarded. Efficient fossil collection

will be important in minimizing the required size of the time-space cache.

A final factor is the complexity of the time-space cache design. A complex design may

limit the number of time-space cache entries that can be implemented on the chip. This

is particularly important if a multiprocessor WarpEngine is being implemented on a single

chip. This question is only be answered in the most general terms in this thesis, pending

gate-level designs.

3.4 Related Architectures

The WarpEngine is most suited to extracting parallelism from programs in which tasks are

likely to be independent, but in which the dependence, or lack thereof, cannot be easily de

termined. Architectures which use static scheduling will not be able to extract this potential

parallelism, but the aggressive speculation of the WarpEngine makes it at least theoretically

possible.

The WarpEngine does not rely on the programmer identifying areas of parallelism, instead

regulating the speculative execution through the multiple version memory system. However,

the programmer's memory model is still a single linear address space, requiring no explicit

synchronization.

The WarpEngine shares many features with the architectures presented in Chapter 2. This

section examines the important similarities and differences.

51

3.4.1 Superscalar

superscalar architectures reuse registers and memory locations, since the size of both are

limited. This creates false dependencies between instructions. Register renaming can ef

fectively eliminate false register dependencies, provided the physical register set is large

enough, while some false memory dependencies can be resolved using memory reorder

buffers. However, neither of these mechanisms scale well to large instruction windows.

Toe size of the instruction window is also limited by branch prediction errors that inevitably

occur.

The WarpEngine avoids false register dependencies using single assignment registers in

the frames. False memory dependencies are eliminated using unrestricted speculation in

combination with the virtually ordered memory system.

Superscalar machines do support out-of-order execution, but only when it can be deter

mined that the correct data is available. The speculative execution of the WarpEngine can

potentially extract much more parallelism, but extra overhead is introduced to correct mis

speculation.

In contrast to the single flow of control utilized in superscalar architectures, the WarpEngine

supports multiple independent flows of control scheduled in a tree structure, again allowing

more parallelism to be extracted.

3.4.2 Dataflow Processors

The WarpEngine utilizes dataflow techniques in that each frame acts as a miniature dataflow

engine. Instructions fire when values have been placed in their source registers, and the re

sult is sent to one or more source registers of other instructions. However, unlike dataflow

machines, the number of possible destinations is quite limited because a maximum of six

teen slots are available in each frame, and a result can only be sent directly to a slot in the

same frame or a child frame, and can be specified directly. This avoids the need for the

large token matching stores required in dataflow machines, which tend to be a performance

bottleneck. Although the time-space cache must match VTSs in a similar way to token

matching in dataflow machines, it does not require it on every instruction, only on memory

52

accesses. Additionally, since VTSs are assigned at the block level, less are required than in

dataflow execution, which uses a token for each instruction. A complication present in the

WarpEngine is that VTSs are not matched exactly, as with tokens, rather they must match

with the nearest VTSs in the store.

In traditional dataflow architectures the instructions available for execution are all consid

ered equal, which can lead to resource contention problems. In the WarpEngine this is

neatly solved by prioritizing blocks based on their VTS. Instructions earlier in the virtual

order receive scheduling preference since they are less speculative, and more likely to exe

cute correctly, or be holding back GVT.

Specialized dataflow languages must be used to extract good performance from dataflow

machines, and typically require the programmer to learn a new programming model. By

contrast the WarpEngine uses standard imperative languages, although custom languages

and constructs could be developed to further exploit the features of the WarpEngine.

3.4.3 Multiscalar

The most closely related of the architectures discussed in Chapter 2 are the multiscalar and

related architectures, such as the trace processor.

The multiscalar also takes advantage of speculative execution, although it uses a fixed hard

ware ring structure to order tasks and memory accesses. Maintaining the order with VTSs

allows the WarpEngine to use a more flexible and scalable network of processing resources,

although manipulating VTSs is more complex than hardwiring the order.

When a mis-speculation occurs the multiscalar squashes all computation beyond the mis

speculation point, possibly discarding independent computation, which the WarpEngine

would retain. Other architectures developed from the multiscalar model, such as the trace

processor and dynamic multithreading, retain independent computation beyond the mis

speculation point.

Tree structured execution allows the WarpEngine to generate independent flows of control

more flexibly than the ring structure of the multiscalar and trace processors, which results

indicate are only scalable to around eight concurrent tasks [Sohi et al., I 995]. Dynamic

53

rnultithreading implements a similar tree structured hierarchy of threads, although causality

violations are not detected until results are committed, delaying re-execution, but reducing

the amount of transient execution from that seen in the WarpEngine[Akkary, 1998).

3.5 Summary

This chapter has discussed the conceptual approach of the WarpEngine. It aims to extract

large amounts of ILP through speculation on the outcome of control decisions and data val

ues in memory. Using tree structured execution the program is split into control independent

instruction streams, which can be executed independently providing data dependencies are

observed.

The Time Warp algorithm is incorporated into the WarpEngine architecture to synchronize

the speculative execution. Any violation of causal dependencies is identified and the offend

ing instructions are rolled back and re-executed to correct the computation. Determining the

sequential program order, or virtual order, of the instructions is critical to this process. VTS

methods used for doing this are discussed later in this thesis.

The WarpEngine architecture uses a block-based instruction set. Instructions are grouped

into fixed-size blocks, which are scheduled to be processed in parallel. When blocks are

invoked for execution they are placed on a frame, which controls instruction execution and

provides state saving space. Instructions are fired in data flow order, extracting the largest

amount of parallelism possible.

The main focus of this thesis is the virtually ordered memory system. This is a crucial com

ponent of the WarpEngine, since the memory system is used extensively to communicate

values between instruction blocks, and it controls all the data speculation.

The eventual success of the WarpEngine will depend upon the ability to design key novel

components of the processor. Functional simulation is used to determine the conceptual

viability of the architecture, building on previous simulation work [Littin, 2000). However,

issues concerned with detailed gate level design of components are beyond the scope of this

thesis.

54

4.1 Virtual Order Simulation

Chapter 4

Simulation

In order to simulate the WarpEngine architecture efficiently a new simulation paradigm,

known as virtual order simulation has been developed as part of the WarpEngine project. A

full description of its development can be found in Littin (2000].

The approach in virtual order simulation is to simulate events, not in the order they would

actually happen, as with usual event driven or cycle by cycle simulation, but in the sequential

program order that implicitly describes the instruction dependencies. Instructions executed

on an in-order architecture will be simulated in the same order in real order and virtual order

simulation, since instructions are always executed after those they are (or may be) dependent

on. However, for out-of-order execution the real execution order may be different to the

virtual order. To determine the simulated execution time each event is considered in virtual

order, and the execution time calculated based on the time of execution of events earlier in

the virtual order that the current event is dependent on for control, data or resources.

Virtual order simulation allows dependencies to be tracked easily because the register or

memory values used in the instruction are the most recently calculated. In the presence

of speculative execution this means that only the correct execution needs to be considered,

since the instructions it is dependent on have already been calculated, and the earliest time

the correct data is available is known. This reduces the complexity of simulation, since

speculative execution and rollback do not have to be tracked.

55

The real time the instruction completes execution is calculated by taking the maximum of

the times the input data become available and simply adding the instruction latency.

4.1.1 Assumptions

Virtual order simulation allows a speculative architecture with a large instruction window

to be simulated by a single instruction thread because instructions are considered one at a

time, and each instruction only has to be considered once. However, the real time at which

each data value is available must be stored, requiring extra storage space.

Large amounts of control and data coherence detail have been abstracted away, leading

to much faster development cycles. However, this simplification means that virtual order

simulation is only suitable for high level analysis.

Virtual order simulation assumes oracular know ledge of events is available for scheduling

resources. Priority is given strictly to events earliest in the virtual order, since events later in

the virtual order have not been considered at that stage of the simulation, even though they

may begin earlier in real time. This represents an upper bound on scheduling performance,

which may not be achievable in a real architecture.

Since each instruction is processed in program order, virtual order simulation does not track

the transient state of each instructions inputs which are subsequently rolled back. These

transient states will often propagate through a sequence of dependent instructions, and can

result in speculative speedup if the correct result is obtained from speculatively incorrect

computation. Section 4.1.3 discusses how virtual order simulation can be extended to record

these changes in state.

4.1.2 Limiting Resources

The basic virtual order simulation model assumes there are sufficient resources for unre

stricted execution of the program. In order to obtain realistic results for a system it is nec

essary to restrict the resources available. These resources include storage, such as memory

and state saving space, bandwidth and processing resources, such as functional units.

To simulate limited resources each resource is allocated to events in virtual order, and a

56

record is kept of when the resource is available. If a resource is unavailable at the desired

execution time the event is stalled until the resource can be allocated. Some resources must

be retired in order, such as frames, while others can be retired out-of-order, for example

processing units.

This method of resource allocation simulates an architecture with oracular knowledge of

resource requirements.

4.1.3 State History

The basic virtual order simulation model does not capture information about computation

which executes speculatively, is rolled back and never committed. Although these transient

states have no effect on the results of the computation, they can affect the execution time.

Transient computation states still consume resources, which could otherwise be used for

useful computation. In the basic model it is assumed that the incorrect transient states can

be identified pre-emptively, and are allocated resources with a lower priority than useful

computation. This is unlikely to be possible in a real machine, so simulating the resource

requirements of transient states will provide more accurate simulation.

Transient states are modelled by replacing state values with state history lists. Rather than a

single value state which becomes valid after a certain real time, a state history is a succession

of values which supersede the previous value in the list as real time advances.

When an instruction is processed the input history lists merge to form an output history

list. The output history list records all values generated by the instruction operating on all

valid combinations of input values. This may produce a smaller or larger state history list,

depending on the combination of states in the input history lists.

Figure 4.1 shows two examples of history lists being processed by instructions to generate

an output history list. Figure 4. l(a) shows an addition operation where the final values of

the two operands are obtained at times 15 and 27 respectively. Both operands have transient

speculative values prior to that. The first entry in the output list is formed at the time both

input lists have a valid value, plus the operation latency. In this case the first operand

receives value O at time 5 and the second operand receives value 100 at time 13. With an

57

operation latency of 1 the first entry has a time of 14 and a value of 100. For each new

operand value in the input lists a new entry is placed in the output list, until the committed

value is obtained at time 28.

In Figure 4.l(b) the less-than comparison evaluates to true at time 14, then again at time

16 and time 28. Since only a change in the output value will require dependent operations

to re-execute these nodes are redundant and do not need to be recorded. Note that this

is an example of speculative speedup beyond the "theoretical" maximum being obtained

because the correct answer was obtained at time 14, even though the correct inputs were not

available until time 27.

(a) (b)

Figure 4.1: Processing input history lists to form an output history list.

4.2 Simulation Test Bench

Littin [2000] provides a detailed description of the development and operation of the Warp

Engine simulator based on the virtual order simulation paradigm. A brief description is

provided here, focusing on the aspects pertinent to the work in this thesis.

The WarpEngine extracts parallelism at two levels: block level and instruction level. Simi

larly, the virtual order simulation model is applied at the frame level, and at the instruction

58

level. Frames are processed one at a time in their virtual order, as defined by the control tree.

Instructions within a frame are scheduled in dataflow order, but are processed using virtual

order techniques. Figure 4.2 shows the interconnection between the major components of

the WarpEngine simulator.

Global Memory
Clock System -----r----

' ' '
'
'

r • 1
' ' ' ' ' '

Executing
Function Frame Frame

Stack Unit

I I I I I I I

' I I I)

Figure 4.2: Components of the WarpEngine virtual order simulator

The frame stack is used in the simulator to enforce the virtual order in processing frames.

Initially a single starting frame is processed and any child frames it generates are pushed

onto the frame stack in reverse virtual order. When the frame has been processed the next

frame is popped off the stack, and processed in the same way, pushing its child frames

onto the frame stack in reverse virtual order, and the next frame is popped off the stack. In

this way frames are processed in a left-to-right traversal of the control tree, maintaining the

virtual order. When the frame stack is empty and the currently executing frame has been

processed the program has completed.

At any point in the simulation only one frame is being processed, and it is held in the execut

ing frame component. The executing frame manages the instruction processing, handling

interaction between instructions, communicating with the function unit and passing data

to child frames. To execute the instructions within a frame in dataflow order, each slot is

checked to see if its input registers contain valid values. If all registers are valid, the instruc

tion is sent to the function unit for execution. The slot checking process is repeated until all

instructions in a frame have been executed.

The function unit processes individual instructions, forwarding the results to registers in the

59

executing frame, to registers in frames on the frame stack, or to locations in the memory

system. The function unit also calculates the real time the operation completes from the

known latency of the operation and the real time the operands and resources are available.

All instructions except memory operations are processed by the function unit. Memory

operations are forwarded to the memory system.

The basic memory system component abstracts away the details of the time-space cache.

All stores are recorded in a list for each memory location, along with the real time they

occurred, so that a value and a real time (or a list for the transient state extension) can be

returned to the executing frame when a load is executed. Loads do not need to be recorded

because the virtual order simulation ensures that instructions never need to be re-executed.

Since the virtual order is maintained by the frame stack, explicit VTSs are not required,

and the mechanism for maintaining the virtual order never constrains execution. However,

VTS schemes which do constrain execution can be implemented in the memory system

component and this technique is used later in this thesis to refine the memory system model.

A global clock is used to record the greatest end time of any frame that has been processed.

When each frame is retired the global clock is updated to contain the maximum of its current

value and the frame's end time. Each advance of the global clock indicates a time at which

frames are retired. When all frames have been processed the value of the clock gives the

program's execution time.

4.2.1 Simulation Parameters

The main performance metric used throughout this thesis is the speedup resulting from ex

ecuting the test programs on the WarpEngine against the time for a sequential in-order pro

cessor modelled on the WarpEngine. Speedup is used rather than absolute execution time,

since a number of assumptions have been made about the processor architecture, beyond

extracting parallelism. To model execution time accurately would depend on detailed mod

elling of the components not available in the virtual order simulator. These simplifications

were validated by Littin [2000].

The parallel execution time on the WarpEngine is given by the retirement time of the last

instruction in the program. Since instructions are retired in order this will be the overall pro-

60

gram execution time. The sequential execution time is calculated assuming that instructions

are executed in their virtual order, with each waiting for the previous instruction to complete

before beginning. This means that even a sequential machine with simple pipelining would

have a speedup greater than one.

While a number of prominent theoretical studies of parallelism [Lam and Wilson, 1992;

Wall, 1991; Postiff et al., 1999] assume instructions with a single cycle latency, this is not

representative of modern computer architectures. More typical instruction latencies have

been chosen for these simulations, as shown in Table 4.1. It has been found that variations

in the instruction latencies tend not to substantially affect the simulation results [Littin,

2000], and only relative performance change is studied.

instruction cycles
CHILD 15
ST 2
MVMA 8
CMP 2
ADDSUB 2
MUL 7
DIV 13
SPLIT 2
AND OR XOR 2
ADDFSUBF 7
MULF 7
DIVFF2I 13
I2F 7

Table 4.1: Typical instruction latencies

Although they are as applicable to the WarpEngine as any other out-of-order architecture, no

branch or value prediction is used in the simulations in this investigation. Parallel execution

beyond a conditional branch is only performed where control independence exists, or where

memory speculation has resulted in a subsequent branch being executed speculatively. The

only value speculation that takes place is early usage of memory values, and values cal

culated by dependent operations. Branch and value prediction techniques are orthogonal

to the speculative mechanisms used in the WarpEngine and can be added independently.

Including either of these techniques will increase the speculation that can be achieved and

allow more parallelism to be extracted than is shown here.

61

4.2.2 Virtual Order Simulation Effects on Performance

While virtual order simulation is a very effective technique for fast simulation of out-of

order speculative architectures, it does have a number of shortcomings in the features it can

accurately simulate. These limitations, which are particularly manifest in complex real time

interactions, and their effects on the performance measurements made here, are summarized

below. They are discussed in more detail in the relevant sections.

As mentioned earlier, the virtual order simulator models perfect knowledge of events for

the purposes of instruction scheduling and resource allocation. This leads to optimistic per

formance results since this oracular knowledge would not be available to a real processor.

In the context of the WarpEngine this means that frames and instructions that would oth

erwise get rolled back are never issued, saving the processor from rolling them back, and

the consequent performance penalty. It does, however, demonstrate an upper bound on the

performance of such a processor. The performance of a real processor may approach this

upper bound with sufficiently sophisticated resource usage estimation techniques.

Understanding the effects of oracular knowledge is particularly important in understanding

the results presented for VTS schemes. When allocating VTSs to a frame, the simulations

presented here assume that the number of VTSs reserved for subtrees earlier in the virtual

order is known. This provides the lower limit of the VTS range for the current subtree, and

is always known in virtual order simulation since all frames earlier in the virtual order have

already been processed. In the real order execution the virtually earlier frames may not have

had VTSs allocated to them when the virtually later frame is executed.

The VTS usage estimates are largely static, so the VTS range could be reserved prior to

execution. However, if a frame is conditionally executed, the VTS range required cannot be

calculated precisely at compile time. The maximum VTS range that would ever be required

can be allocated, although this is a less efficient allocation than the one simulated, and will

decrease performance. If the VTS range is calculated dynamically, for example based on a

dynamic loop bound, the range required is not easily determined at compile time. In this

case a speculative estimate could be used, possibly incurring the penalty of VTS allocation

rollback and reallocation.

The basic model does not simulate transient states, which leads to underestimation of re-

62

source usage requirements and a subsequently inflated performance measurement. Con

versely, it may give pessimistic performance calculations where there are sufficient re

sources, since there may be cases of incorrect speculative execution leading to the correct

answer, which is used for further speculative computation and later validated. Compar

isons of simulations under different constraints are still valid though, since all are simulated

without transient states, except the virtual memory system in Chapter 8.

Adding the transient state extensions negates much of the performance benefit of virtual

order simulation. This makes it impractical in terms of simulation time and memory re

quired to use on several programs in the test suite, even though they are small programs.

For these reasons the transient state extensions are used sparingly, and only on selected test

programs. Transient states are only vital in measurements of resource consumption and

rollback statistics.

Complex real time interactions are particularly prevalent in the memory system. Simulation

of caching in general is not possible, since virtual order simulation cannot easily track the

most recently used values at any point in the simulation. Any attempt to extend the paradigm

to include this will further degrade the performance of the simulator, providing no advantage

over traditional real order simulation. There are several other memory system features

particular to the WarpEngine which cannot be simulated using virtual order simulation.

These are discussed in more detail in Chapter 8 where the virtual order memory system is

proposed.

4.3 Test Programs

A suite of test programs has been developed to benchmark the performance of the Warp

Engine in different configurations. Littin [2000] provides a detailed analysis of the test

programs, their control and data structures, and performance characteristics. A summary is

provided here, the source code can be found in Appendix B.

The test suite spans the types of operations performed in many programs, including matrix

and array manipulation, sorting, dynamic structure operations and recursion. Table 4.2 lists

the abbreviations used for each algorithm within the test suite. These small loop oriented

programs were chosen because there is no compiler for the WarpEngine instruction set, and

63

all programs were hand coded in WarpEngine assembly.

"Real world" applications contain more complex data and control interactions than the sim

ple programs presented here, suggesting that the simulation results are optimistic. How

ever, the theoretical parallelism available and algorithmic complexity of these simple test

programs can be determined, providing a baseline to compare the simulated results to.

Although the programs are small, they contain varying amounts of control and data depen

dence. Table 4.2 shows the sequential execution time (work) and the speculative parallelism

available for each algorithm. The parameter N is a measure of the problem size. The work

and parallelism are given as complexity measures using O notation and only consider the

complexity of the data dependencies in the program. Loops are assumed to parallelize per

fectly and operate in O (1) time, meaning that their control mechanism has no impact on

performance. Speedup from data value speculation is not considered in these measures,

providing the possibility that a real system may exceed these values. See Littin [2000] for

the derivation of these values.

I algorithm I abbr. I work I parallelism I
matrix multiplication mat O(Nj) O(Ni)

transitive closure trans O(N3) O(N2)

Gauss-Jordan elimination gj O(N3) 0(1~~)
quicksort O(NlogN)

left-to-right search qul 0(1)
ends-to-middle search qu2 0(1)

binary tree insertion O(NlogN)
naive bin O(N)
AVL avl unknown

I Fibonacci numbers

Table 4.2: Complexity of test algorithms

While the data set chosen does have an impact on the absolute execution time of the sorting

and tree insertion routines, previous studies [Littin, 2000] showed that the data set does not

affect the relative performance. For this reason, and in order to include results from long

running simulations, only results from simulations of a single data set are presented.

64

4.3.1 Matrix Manipulation

Three matrix manipulation algorithms, matrix multiplication, transitive closure and Gauss

Jordan elimination have been included in this test suite. Matrices provide well structured

data and allow operations to be performed on multiple instances of data in an orderly man

ner. In general this allows parallelism to be easily detected at compile time and many ar

chitectures, particularly vector machines, do a good job of extracting parallelism from these

algorithms. These algorithms have been included in the test suite to determine if specula

tive execution can extract this statically detectable parallelism. The amount of unpredictable

control flow and the arrangement of sequential and parallel components varies among the

three algorithms.

Matrix multiplication

Matrix multiplication multiplies two N x N matrices of floating point numbers. All control

and data dependencies can be detected at compile time, allowing parallel scheduling to

take place. There are three levels of nested loops, each containing N iterations, giving a

sequential execution time of O (N 3).

The innermost loop contains a sequential data dependence chain of length O(N) through

the addition of values to a temporary accumulator variable. This constrains the parallel

execution time, giving O(N2) parallelism.

Littin [2000] investigates several different options for the control structures of the three

loops. In the experiments described here only the highest fanout tree structure is used.

Transitive closure

The transitive closure algorithm [Corman et al., 1990] processes the adjacency matrix for a

directed graph such that an edge directly from x to y is added if a path from x to y exists.

The algorithm again contains parallelism that is easy to detect. Like matrix multiplication

it has three levels of nested loops, and hence a sequential execution time of O(N3). This

time the dependencies are in the outermost loop. Once again the algorithmic parallelism is

O(N2).

65

Gauss-Jordan elimination

Gauss-Jordan elimination [Press, 1992] performs matrix inversion of an N x N matrix.

Unlike matrix multiplication and transitive closure, control decisions are coupled to the

values of the input data. Once again the sequential execution time is O(N3), but the control

dependencies mean the available parallelism is only 0(1~~).

4.3.2 Sorting

Sorting algorithms are represented in the test suite by two versions of the efficient quicksort

routine. As with the matrix operations the data is in well structured arrays. However, sorting

is an intrinsically sequential operation because the data is unpredictable and the program

control decisions are highly coupled to it. These routines have been included to show that

speculation can extract parallelism from data controlled execution.

Quicksort

Quicksort [Quinn, 1987] has a worst case sequential execution time of O(N2), but the

expected sequential execution time is O(NlogN). This algorithm lends itself to sequential

scheduling due to the way it subdivides the data set as sorting proceeds. The algorithm

selects a pivot element which is used to sort the array into two parts. Next the pivot selection

and sorting routine is called recursively on the two parts of the array, which can be operated

on independently. The expected parallelism is O(logN) and the worst case parallelism is

0(1).

The two versions of quicksort used here differ in the way they select the pivot. The first

selects a pivot value and moves from left to right through the array until all elements less

than the pivot value are to the left of it. The second version selects a pivot value and moves

in towards the centre, swapping from either end until the pivot is in the correct position.

These pivot selection mechanisms have no impact on parallelism estimates, but they do

have a significant impact on performance in a speculative architecture. In a speculative

architecture the recursive sort calls can be initiated in parallel if the data is correct. With

the left-to-right pivot search subsequent left recursive calls can begin their search phases

66

without knowing the right hand array limit. The ends-to-middle pivot search must know

both ends of the sub-arrays before searching can begin. This means mis-speculation is

more likely in this selection method.

4.3.3 Dynamic structures

Two binary tree insertion routines have been included in the test suite. Items are inserted into

a dynamic ordered tree structure. As with sorting, the data determines the program's control

flow, although this time the data structure varies in size and shape as new items are inserted.

In general it is difficult to write parallel versions of these routines because interactions

between data are unpredictable and control is highly coupled to data. These routines have

been included to show the ability of a speculative architecture to extract parallelism from

programs with complex and unpredictable data flow and dynamic data structures.

Naive binary tree insertion

Naive binary tree insertion [Lewis and Denenberg, 1991] creates a tree without making any

attempt to balance it. In the worst case pathological data makes this the equivalent of insert

ing into the tail of a linked list, with sequential execution time O(N2). However, because

the values inserted are random the expected sequential execution time is O(NlogN).

Nodes may be inserted in parallel, provided the earlier node in the virtual order does not

fall on the path through the tree to the insertion point of the second node. Normally lock

ing would have to be done on the nodes to ensure that parallel insertions are independent.

The speculative control in the WarpEngine eliminates the need for locking by speculatively

inserting nodes in parallel, and detecting any dependencies and re-executing them. This

eliminates the false dependencies between insertions and gives an expected parallel execu

tion time of O(logN). In the worst case the insertion pipeline would be N stages giving

O(N) parallel execution time. Thus, in both worst case and expected case the parallelism

is O(N).

67

A VL binary tree insertion

AVL binary tree insertion [Lewis and Denenberg, 1991] maintains a balanced tree. This

gives amortized insertion time O(logN), and sequential execution time O(NlogN). Toe

same problems with naive insertions arise when trying to schedule insertions in parallel.

With AVL the number of possible data dependencies in any search path increases because

the internal nodes get rotated to maintain a balanced tree.

Traditionally, when inserting in parallel a lock would have to be placed on the root node to

allow the rotations that may occur to operate correctly. The lock is freed when the insertion

is complete and any associated nodes have been processed. This locking of the root node

would serialize computation removing most of the opportunities for parallelism.

However, many of the rotations that occur will not affect the nodes near the root, so some

searches can be performed in parallel without being rolled back. In the WarpEngine paral

lelism may be obtained through speculative insertions to data independent parts of the tree.

This parallelism is hard to detect without knowledge of the data inserted making complexity

analysis difficult.

4.3.4 Recursion

The recursive Fibonacci number generation algorithm was originally included to show that

the WarpEngine can be programmed to perform recursive routines. It is computationally

inefficient, but does map well to the WarpEngine's tree-structured control mechanism.

The large amounts of available parallelism are useful in exercising the resource allocation

and selective speculation techniques developed later in the thesis.

Recursive Fibonacci number generation

Recursive Fibonacci number generation calculates the Nth number in the Fibonacci se

quence using a recursive process. Each call of the fib() routine sums the results of two calls

to itself with successively smaller parameters, giving a sequential execution time of 0(2N).

Like quicksort, the problem is divided into smaller independent problems at each recursive

68

call, suggesting that parallel scheduling can be used. The summation of the returned values

introduces a sequential dependency path of length N. This gives a parallel execution time

of O(N) and parallelism of 0(2;).

4.4 Compilation

A compiler has not been developed for the WarpEngine instruction set at this stage, and

is beyond the scope of this thesis. The block structured architecture and tree structured

execution mean that substantial work would be required to modify an existing compiler,

targeted at a contemporary architecture, for the WarpEngine.

Neefs et al. [1997] discuss the difficulties encountered in compiling for block structured

architectures due to the constraints imposed on instruction placement in blocks. The chief

difficulties include the fixed maximum size of a block and the restrictions on register usage

both between blocks and within a block, caused by single assignment. The paper presents

a plausible approach to compiling for fixed length block structured architectures. Many of

these issues are similar to those faced in compiling for VLIW architectures [Biglari-Abhari

et al., 1998].

Mapping the program onto the tree structured control mechanism allows scope for opti

mization, as shown in Section 3.2.2. However, achieving the most efficient tree structure in

some cases requires deep knowledge of the algorithmic behaviour that would be unrealistic

for a compiler. The standard loop and branch structures could be generated using standard

code libraries to map them onto the tree.

Due to the experimental nature of the WarpEngine instruction set and the size of the task it

was deemed impractical to build a compiler at this stage of the project. Instead the suite of

test programs was manually compiled from C code. Care was taken, however, to restrict the

process to operations which would be feasible for an automated compiler. The C code for

the test suite can be found in Appendix B, with the corresponding assembly code available

in [Littin, 1999].

Littin [2000] performed some investigation into different control tree structures for loops

and found that a structure maximizing the fanout of frames generally gave the best perfor-

69

mance. This structure has been used in all test programs in this thesis. Like Littin's studies,

the WarpEngine simulated here generates up to four children from each block. The number

of instructions in each block is maximized, although no loop unrolling is done.

Not all algorithms are simulated using the virtual order control mechanisms described in

subsequent chapters because some of these techniques require compiler support. It is not

practical to do this manually for the entire test suite, so a subset of the test programs with the

most relevant features have been selected. This process is described further in the relevant

sections.

Compiler techniques for use with architectures like the WarpEngine are an interesting area

of ongoing research.

4.5 Summary

This chapter has outlined the simulation test-bench used throughout this thesis. The virtual

order simulation paradigm is a novel technique especially suited to high level simulation

of speculative architectures. Virtual order simulation provides a computationally efficient

simulation model for speculative execution by considering each instruction only once. Ex

tensions have been introduced to extract further execution details arising from transient ex

ecution and limited resources. This simulation method has previously been used in prelim

inary studies of the WarpEngine architecture core and is extended in the following chapters

to explore the design decisions in creating a realizable virtually ordered memory system.

A hand compiled suite of test programs has been devised which represents the different

classes of computation commonly found in programs. Theoretical complexity measures

have been presented for these algorithms and are used in later chapters for comparison

against the simulation results obtained.

In high level studies of this nature there will inevitably be simplifications and assumptions

made about some of the architectural features used. Certain common architectural features,

such as pipelining and branch prediction have been omitted from both the WarpEngine

simulation model and the reference sequential architecture. Perfect instruction scheduling

has been assumed in order to provide an upper performance bound. This is the most obvious

70

example of complex real time interactions that are idealized in the virtual order simulation.

To properly capture these interactions real time simulation is necessary.

The virtual order simulation model is used throughout the rest of this thesis to extend the

WarpEngine model to explore different methods of controlling speculation. This culminates

in the simulation of a virtually ordered memory system.

71

5.1 Concept

Chapter 5

Explicit Virtual Timestamps

There are a number of situations in which the WarpEngine must be able to determine the

strict virtual order of frames. When a read request is made to memory the value returned

should be the one most recently written to that address. When a write is made it must cause

the rollback of any reads later in the virtual order and cause them to be re-executed using

the newly written value. Any reads with another write between them and the new write in

the virtual order should not be re-executed. When frame resources are exhausted the latest

frames in the virtual order are cancelled back to create space for earlier frames.

One possible way to determine the virtual order of frames would be to order the frames in

hardware, in much the same way that moder.1 superscalar processors use a reorder buffer

(see Section 2.4.3). Figure 5.1 shows a hardware ordering of memory operations in a buffer,

with a read and write being inserted in their places in the virtual order. The read (a) searches

to the left to find the previous write, with the value 1, which is returned. The write with value

5 in (b) supersedes the value 0, which was returned by the read in the slot to the right and

must be re-executed. The write with value I means that no further reads are affected.

The WarpEngine may require thousands of frames to be ordered, with the capability to insert

frames in the middle of the sequence, which would stretch the limits of a centralized ROB.

The memory system would require a similar hardware ordering of the multiple versions

stored at each address, and this is more problematic. A novel hardware structure for this

purpose is proposed in Chapter 8.

72

Increasing vinua1 1ime

lwRol
r I RD lwR1\ RD

r
\wRoi ...

b)WRS a)RD

Increasing vinual lime

I WRO lwRs I RD \wR1i RD RD \wRoi ...

i i
b) 5 a) 1

Figure 5.1: Returning the correct value from a read request and rollback due to a write

A conceptually straightforward way to approach virtual ordering is to tag each frame, and

its memory operations, with a number representing its position in the virtual order. In

the Time Warp literature the tag is known as a timestamp since it represents simulated

time. In the WarpEngine it simply represents the causal ordering of the instruction, so

it is called a virtual timestamp (VTS) to avoid confusion. The VTSs of two frames can

be compared without regard for other frames to determine causal ordering. This provides a

decentralized method of determining ordering between frames and memory operations, with

the possibility of scaling to large numbers of frames, more akin to a software technique.

Figure 5.2 shows the same example as Figure 5.1, but storing the memory operations as a

separate list, using integer VTSs to order the memory accesses, rather than position. Notice

that hardware slots do not have to be reserved for the memory operations and it is not

necessary to keep the list in order, although this aids efficient searching.

In the next two chapters several alternative VTS representations are described and investi

gated with respect to their feasibility as methods for tracking the virtual order of instructions

in the WarpEngine.

Initially a naive approach is taken in order to keep the VTS allocation mechanism as simple

as possible. The trade off is that a simple allocation mechanism is likely to be faster to

execute, but result in poorer allocation efficiency. So while individual operations are faster

overall execution may be slower because the VTS supply is exhausted more quickly and the

VTSs have to be reallocated to allow execution to continue.

The length representation is a very simple method of allocating ordered bit strings to frames

as VTSs. This assumes a balanced execution tree for efficient allocation of VTSs. Typically

73

this is not the case and many available VTSs are not allocated to frames. This requires

reallocating the VTSs frequently to maintain a supply of available VTSs.

To improve allocation efficiency the exponential representation tries to more closely match

the observed execution tree shape by allowing the left side of the VTS tree to be deeper than

the right. The shape of the VTS tree is still fixed and relies on the execution tree matching

this closely for good allocation.

In Chapter 6 more advanced analysis of the execution tree shape is introduced at compile

time. A variable range of VTSs are allocated to each subtree, according to its estimated

requirements. Although the exact shape of the execution tree cannot be determined until

nm time, greatly improved allocation efficiency is achieved by compile time analysis. Since

this analysis is done at compile time the only runtime overhead introduced is in decoding

and using the analysis results for VTS allocation.

Including additional instructions in the program to calculate VTS requirements dynamically

for structures such as dynamically bounded loops further improves the allocation efficiency

at the expense of increasing the instruction count of the program.

OP VTS VALUE

b)WR 15 5 WR 10 0,
RD 20 oo e

.5 ·~
gj -;

WR 30 1 !:! ::, .s ·'= ..
a)RD 45 .. RD 40

WR 50 0

OP VTS VALUE

WR 10 0
WR 15 5

b)5 • RD 20
..,

oo e
.5 ·::a

WR 30 1 ~]
"t:: RD 40 ..s ·;:

a) 1 .. RD 45
WR 50 0

Figure 5.2: Returning the correct value from a read request and rollback due to a write using
VTSs

74

S.1.1 Requirements

The purpose of the VTS is to provide a method of determining the program (or virtual)

order of speculative memory accesses, which may occur in any real order. This is important

so that the correct value is eventually returned from a read, whether it was available when

the request was originally satisfied or not.

The time-space cache contains an entry for every memory access (reads and writes) to

gether with the VTS of the frame that initiated the access. This requires many VTSs to be

stored in the time-space cache, so it is important that the number of bits required is kept

to a minimum. However, the situation is not as bad as it first seems because once frames

become non-speculative they no longer require a VTS, since all earlier frames have com

pleted execution. In fact, they are no longer required in the time-space cache, and can be

committed to main memory. Access to this non-speculative data can be handled using the

usual techniques if (and only if) no speculative match is found. This substantially reduces

the required size of the time-space cache. The resources used by the committed frame,

including its VTS, can be made available for reuse by other frames.

Timely commitment of frames once they become non-speculative minimizes the number of

active VTSs in the system at any given time. However, there are certain practical difficul

ties in committing VTSs efficiently in the decentralized environment of the WarpEngine. A

frame is only non-specuiative if there are no earlier frames currently executing (although

there may be earlier uncommitted frames). Determining the latest non-speculative frame

(GVT) requires knowledge of the state of all frames in the system, either through a cen

tralized record (which could form a bottleneck), or through a distributed communication

system. This practicality is not examined for the software based schemes in this chapter

and the next. However it has been exknsively studied in the Time Warp literature [Bellenot,

1990; Fujimoto and Hybinette, 1997; Lin and Lazowska, 1990], where it is known as fossil

collection. Preliminary discussion of commitment can be found in Chapter 8 for the twisted

memory time-space cache.

Since each speculative memory access will require comparing several VTSs comparisons

must be fast, although this is not necessarily crucial because, by definition, speculative

operations are unlikely to be on the critical path. It is more important that the mechanism

for comparison is resource efficient. There are likely to be many memory accesses in flight

75

in parallel, so the mechanism will have to be replicated many times.

A block cannot begin executing until it has been assigned a VTS. For this reason VTS

generation needs a low latency, or it risks slowing the execution of blocks, limiting the

number of instructions in flight and ultimately reducing the parallelism extracted.

An effective scheme must be able to efficiently represent a large number of VTSs. There

are a potentially unbounded number of frames used in the execution of a program, since

physical frames may be used many times. Added to this is the need to insert an arbitrary

number of VTSs between any two adjacent VTSs. This allows dynamically bounded loop

structures to be executed in parallel with following control independent code. The code in

Figure 5.3 will generate the execution tree shown in Figure 5.4. The number of iterations of

the while loop (shown by nodes marked A and B) is unknown at the time node C is created

in parallel with the first iteration. All iterations of the while loop must have a VTS earlier

than C.

while {A)
B;

C·
'

Figure 5.3: Code for a while loop and later independent code

- program order---+

Figure 5.4: Execution tree for a while loop and later independent code

Any finite length VTS representation has the potential to be exhausted, if no VTSs are

available for allocation at the appropriate place in the virtual order. There are two situations

in which this can occur: at the end of the virtual sequence; and between two VTSs within

the virtual order. In the former case there are simply not enough VTSs in the representation,

76

allowing for some inefficiency in allocation, to represent all the frames in the program.

In the latter case insufficient VTS space has been reserved for a subtree when the VTS

for the start of the next subtree was assigned. All practical representations must have a

way to recover from the exhaustion so that execution can continue to completion. The

VTSs assigned to frames that have been fossil collected are available to be reused by other

frames. However, by definition they are located at the beginning of the virtual order, while

the frames awaiting VTS allocation are in the middle or at the end of the virtual order.

The VTSs currently in use must be reallocated to make unused VTSs available at the right

place in the virtual order for allocation to new frames. The only restriction is that all active

VTSs (i.e. those which have not been fossil collected) must retain the same relative ordering.

Conceptually, this means reallocating the early, unused VTSs to the active frames earliest in

the virtual order, freeing their VTSs for allocation to new frames. We refer to this process as

rescaling the VTS tree. Several methods for rescaling fixed length VTS trees are examined

in Section 5.4. The performance of each method is a trade off between the speed of rescaling

and the efficiency of the allocation in the rescaled tree. A more efficient allocation will

require rescaling to be done less often.

Just as cancelback is used in Time Warp to free resources to allow simulation to progress,

it can be used to free VTSs in the WarpEngine. If rescaling cannot supply VTSs to al

low execution to progress, cancelback can be used to reclaim VTSs from frames latest in

the virtual order. These can then be used for earlier frames and the cancelled frames can

be restarted when there are sufficient VTSs available beyond those needed by the active

subtree. Cancelback should be used sparingly because it requires discarding substantial

amounts of potentially correct speculative execution.

5.2 Symbolic Representation

The greatest difficulty in generating VTSs for general purpose computation is allocating

an arbitrary number of VTSs between any pair of existing VTSs. Back and Turner [1995)

suggest that this can be achieved by representing the VTSs (which they refer to as time

stamps) as real numbers, since there are infinite real numbers between any arbitrary pair.

An equivalent way of conceptualizing this is as a string representing the path from the root

77

of the tree to the node. In a binary tree each time a left branch is taken a 'O' is appended to

the string and a ' l' is appended for a right branch. VTSs vary in length, getting longer the

deeper in the tree a node is, so a terminator is needed, represented by the symbol .6.. The

simple lexicographic comparison .6. < 0 < 1 can be used to determine the relative ordering

of any two VTSs, preserving the pre-order left to right traversal of the tree. A three level

binary tree is assigned VTSs using this method in Figure 5.5.

Figure 5.5: Conceptual VTSs for a binary tree

Variable length VTSs, however, would be troublesome to implement in hardware, fixing the

length to a constant word size, say 32 or 64 bits, would be much more convenient. Variable

length VTSs could also grow to become extremely long in the execution of a large program,

which would consume an impractical amount of bandwidth and memory.

Fixing the maximum length of the VTSs effectively fixes a maximum depth on the tree. In

the symbolic representation in Figure 5.5 a 32 symbol VTS would limit the tree to 32 levels

(the .6. at the root, and one symbol for each successive level). If the actual execution tree is

deeper than that, some VTSs must be fossil collected and reused by rescaling the VTS tree.

5.3 Fixed Length VTS Schemes

Three different VTS methods-length, exponential and ideal VTS representation-are pro

posed in the remainder of this chapter and evaluated through simulations. Although the

WarpEngine uses a four-way execution tree, for simplicity the representations are described

here using a binary execution tree. As shown in Section 3.2.2 a four-way tree can be trivially

mapped onto a binary tree, using every second level as intermediate splitting nodes.

78

s.3.1 Length Representation

The main difficulty with the symbolic VTSs described in Section 5.2 is their variable length,

making them awkward to implement in hardware. By representing them as a uniform length

string and treating them as integers, rather than bit strings, they can be more easily manip

ulated for construction, comparison and rescaling.

The bit string VTS can be converted to a uniform length integer by padding the bit string to I

bits with zeros and then appending the original length of the string (without the terminating

D.). The number of bits needed for the length, L, is 1log2 Il.

Some integers remain unused in this representation (those corresponding to the contradic

tory long string of bits with a short length count appended). Table 5.1 shows the division

of different sized length representations and the number of levels of nodes they can repre

sent. Figure 5.6 shows the tree for a four bit length representation VTSs, with the string

and length indicator separated by a comma. An unused representation in this example is

'01,00'. Likewise, 'O 1, 11' is an unused representation in a four bit length repr~sentation

VTS, since the maximum string length is two symbols and the length indicator '11' repre

sents a length of three symbols. These unused representations mean that only seven out of

the fifteen possible four bit integers are used. This inefficiency means that less frames can

be allocated VTSs, and thus be in flight, concurrently than if the whole integer space was

used.

The relative order of two VTSs can be determined by comparing the integers-the lower

integer is the earlier VTS. Section 5.4 discusses some possible rescaling techniques for use

with the length representation in detail.

This naive representation is attractive for its simplicity. Generation and comparison opera

tions are simple arithmetic operations which can be done quickly and cheaply in hardware.

However, it assumes the execution tree will be balanced, with frames occupying every pos

sible position in the tree. If this is not the case the allocation will be wasteful of VTSs.

79

Figure 5.6: VTSs in length representation

5.3.2 Exponential Representation

VTSs can be allocated to a program more efficiently if the VTS structure maps well to the

execution tree shape. This will resu!t in less of the VTS space being wasted on tree locations

which aren't filled by a frame. One approach is to allocate shorter VTSs to the positions

in the tree most likely to be filled, and use longer VTSs if necessary for the rarely used

locations. This allows greater tree depth before exhaustion in the most likely cases.

Examining the code for the suite of test programs, the majority of frames issued are naturally

in position zero (the leftmost in the tree of the four possible children of a frame, known as

child zero), as shown Figure 5.7. This depends to a large degree on the way loops are

structured (see Chapter 3). To use child zero as much as possible the compiler can attempt

to assign child zero as a frame which executes unconditionally, or with a high frequency.

Sometimes this may be impossible due to semantic constraints on the virtual order of the

program.

100% ~----------------------------,

90% -l---------- ------------- -------i

BOo/o -l----------- ------------------------1
70% +--------------~~-----------------.

r::
60% +r1, im-,-....,._ ___ -------l

50% 1-- 1- t - _ 1;
f--

H

40% ' ,- ,-

ii<
30%

20%

10%

1-- j'), I--

~ ~~gg ggggg
.- c,uoo o

- "' - "'
avl bin

~ 1,
-

_ 1,
f-- ' f--

f--

00000 ggggg 11)01.00lO
0 0 000 .-..- NN
..- NU'lOO .,... Nl.000

- N - "'
qu1 qu2 fib

t
1$' -1,

_ 1, '
(__
,,,,
i

,, ,-

1.0 0 1.001.0
.-..- NN

gj mat trans

Figure 5.7: Percentage of children generated with child number zero

80

it

:
,;;

This suggests that there is potential for VTSs to be optimized to allocate the most frequent

case, child zero, more efficiently at the expense of efficiency for other child numbers. The

exponential representation is an attempt to do this using a scheme similar to floating point

number representations to allow different parts of the tree to grow to different depths. It is

comprised of two parts: a mantissa and an exponent. The exponent is the number of leading

zeros in the VTS, while the mantissa is the normalized tail of the VTS. In the example in

Figure 5.8 the VTS 0010b. becomes 2, lOb., where the number to the left of the comma is

the exponent and the binary string to the right of the comma is the mantissa.

0,1.6.

5 c-----c,,
O,JOA.··.

Figure 5.8: VTS in exponent representation

A complete exponential representation requires the mantissa to be coded using the length

representation above. Using this representation, the left-most path from the root of the tree

can grow to (2E + I) levels for a representation that uses an E bit exponent and where I

is the length part of the mantissa. Moving to the right, the depth of the paths decrease until

reaching the right-most path where the maximum depth is I+ I levels. The proportions in

which a VTS is divided into exponent and mantissa are the subject of optimization based

on workload characteristics. Table 5.1 shows number of levels attainable using the expo

nential representation, compared with the length representation using an arbitrarily chosen

exponent size. The VTS sizes span the range used in the simulations in Sections 5.3.4 and

5.4.3.

The exponential representation favors less speculative execution , since nodes that are early

in the virtual sequence, on the left side of the tree, can have longer strings and so will not

exhaust the maximum depth as often. Thus the number of rescale, and possibly cancelback,

operations can be reduced. This has two additional advantages, first, by delaying execution

81

Total size (bits) Length representation Exponential representation
(l,L) Number of levels (E,l,L) Number of levels

Max Min
32 (27,5) 28 (16,12,4) 65548 12
64 (58,6) 59 (32,27,5) (232 + 27) 27
96 (89,7) 90 (32,58,6) (232 + 58) 58

Table 5.1: Number of levels which can be represented by different sizes of length and
exponential representation VTS

of nodes to the right of the tree, which are more speculative, it helps balance the overall

execution. Second, a compiler can take advantage of the representation by scheduling more

computation to the left of the tree. Provided the compiler can schedule the critical parts of

the execution to the left of the tree, execution can progress for much longer without needing

to rescale using this representation. If the VTSs are exhausted by more speculative nodes,

they can be stalled while the less speculative nodes continue executing. Eventually the

VTSs will have to be rescaled, but the later rescale will free a larger number of VTSs and

provide a more efficient reallocation because GVT has advanced further. The stalled nodes

may even be rolled back before the rescale is performed.

Comparison of two VTSs is more complex for this representation. Generally a VTS with

a larger exponent is earlier in the virtual sequence, but any VTS with only a zero length

mantissa will be earlier than a VTS with a longer mantissa. Hardware implementations will

have a greater ability to optimize this operation, but it will still be complex.

5.3.3 Ideal Representation

In order to show the restrictions placed upon execution by the VTS schemes we also simu

late execution with VTSs of unbounded length, which are never exhausted and never require

rescaling. Since there are always more VTSs available at any location of the tree the fossil

collected VTSs never need to be reused. This is equivalent to having complete knowledge

of the execution tree prior to execution and tagging each event in the virtual sequence with

an integer corresponding to it's position. If perfect allocation is possible the largest of these

integers corresponds to the number of VTS necessary to execute the program. The length in

bits of this integer represents a minimum bound on the size of VTS required to execute the

program without rescaling and can be calculated by f log2Nl, where N blocks are executed.

82

5.3.4 Minimum Size VTSs

Simulations were performed to establish the minimum length required to avoid VTS ex

haustion for each test algorithm. For the exponential representation an arbitrarily fixed 8 bit

exponent was simulated, while the mantissa was kept to a minimum length. It isn't possible

to measure the minimum necessary length of both the exponent and the mantissa, since the

mantissa is used to record leading zeros once the exponent is exhausted. The total VTS

lengths are compared, since bits could be taken from the exponent to use in the mantissa for

the same storage and bandwidth requirements. Figures 5.9 to 5.11 and C.1 to C.3 show the

length of VTS required to execute a variety of test programs without rescaling.

AVL tree insertion
120

exponent
length

---+-

ideal

100

80
"O
!!!
·3
C"
!!!

60
~
en s:

40

20

0
0 200 400 600 (00 1000 1200 1400 1600 1800 2000

Problem Size

Figure 5.9: Minimum VTS length necessary to execute AVL tree insertion without rescaling

The length representation only approaches the theoretical minimum for very small problem

sizes. As the problem sizes get larger they quickly diverge. The test programs used here are

small by comparison with real world programs where the length representation necessary

to execute without rescaling is likely to be even larger.

Fibonacci number generation (Figure 5.10) is the only algorithm which requires shorter

VTSs using the exponential representation than the length representation. Even then it is

only shorter by one bit in two of the problem sizes (5 and 10) and the same length in

83

Fibbonacci number generation

120
exponent -+--
length ---><---
ideal

100

80

~ ·s
CT
!!! 60
-~
D
en
!:;

40

20

0
5 10 15 20 25

Problem Size

Figure 5.10: Minimum VTS length necessary to execute Fibonacci without rescaling

all others. This results from the very small and simple CFG, with only five nodes, and

every non-leaf node is guaranteed to have a child in position zero. In all other cases the

exponential scheme requires a VTS 8 bits longer than the length representation-the length

of the exponent. The exponent has had no effect on reducing the length of VTS needed.

Other exponent sizes show similar results. The minimum size exponent VTS is usually the

minimum size of the length VTS plus the size of the exponent, independent of the exponent

size.

The effectiveness of the exponent is reduced as soon as the longest path is not the left-most

branch of the tree. The earlier it diverges from the left-most branch the less benefit is derived

from the exponent. If l'1e bits used for the exponent were transferred to the mantissa the

whole tree would benefit uniformly with extra potential depth, albeit not as much as the left

branch does with the exponent. However, this doesn't necessarily mean that the exponent

provides no benefit. In Section 5.4.3 we compare the execution speedup obtained using the

different representations.

The difference from the theoretical minimum size represents wasted VTSs. Any node with

only two out of four children utilized leaves half of that subtree's VTS space permanently

unused. Dynamic execution tree plots show that the execution trees tend to be sparse, with

84

Quicksort 1
200

exponent

180
length
ideal ···-ill:···

160

140

'O 120 I!!
·3
er
I!! 100
i
en
\;: 80

60

40

20

0
100 200 300 400 500 600 700 800 900 1000

Problem Size

Figure 5.11: Minimum VTS length necessary to execute quicksort 1 without rescaling

a small number of long branches. The minimum VTS length required is determined by the

longest branch.

5.4 Rescaling VTSs

In Section 5.1.1 we discussed the need for reusing fossil collected VTSs when the VTS

space has been exhausted in some part of the tree. This process is known as rescaling the

VTS tree. Implementing VTS rescaling requires consideration at two levels: global opera

tions on the tree and local manipulation of individual VTSs. Major concerns for the global

operation are the extent to which the local manipulation of VTSs can occur in parallel and

whether computation can continue while rescaling is in progress. It is not only the VTS

attached to the frame that must be altered in rescaling. Each time-space cache entry has a

VTS associated with it which must be updated, and any memory accesses in-flight at the

time of rescaling must still match with the appropriate time-space cache entries after rescal

ing. The time taken for local manipulation will have a major influence on total rescaling

time, since it is anticipated there will be a large number of VTSs.

When the VTS space becomes exhausted the tree can be rescaled immediately, or it can

85

be delayed. While rescaling immediately allows the speculative execution at the exhausted

point to continue as soon as possible, it may be disadvantageous in some situations. The

exhaustion may be caused by a transient frame, that is one which is created speculatively,

but is rolled back and ultimately does not commit. In this case the rescale is wasted and will

delay other execution paths unnecessarily. In other cases a frame, particularly one which is

speculatively distant, may eventually commit, but be off the critical execution path when it

first exhausts the VTS space. This commonly happens with a frame which is speculatively

executed, and rolled back and re-executed with new data. This frame may not be hindered by

delaying rescaling since it is restarted anyway, and a more efficient rescale may be possible

if GVT is allowed to progress further. These two cases suggest it would be useful to have a

heuristic to delay rescaling when the exhaustion point is speculatively distant, which is also

more likely to be a transient frame.

Virtual order simulation can select the optimal time to rescale the tree because it processes

the frames in virtual order, and does not generate transient frames. Virtual order processing

identifies exhaustion from frames early in the virtual order first and uses that as the trigger

for rescaling. Exhaustion points later in virtual time will be delayed and benefit from the

previous rescale, rescaling again if necessary. This gives optimistic results for rescales

which will suffer under less efficient methods used in real order processing.

In this section we present some methods of rescaling the VTSs. Root rescaling is the sim

plest form of rescaling, performing the same operation on every active VTS, while moving

head rescaling attempts to speed up rescaling by performing a single global operation to

rescale all VTSs.

5.4.1 Root Rescaling

Root rescaling consists of finding a node whose subtree contains all the speculative and

currently executing nodes, i.e. all those not fossil collected, making that node the root of the

VTS tree, and adjusting the VTSs to reflect this.

Figure 5.12 shows an example of root rescaling using the symbolic VTS representation

with at most three symbols (including the terminating .6.), when a new node (node 8) is to

be added to the tree. In this example all nodes shaded with cross hatching have been fossil

86

collected, so their VTSs can be reclaimed for reuse. This can be achieved by backtracking

up the tree from node 6, which is at GVT, until a node is found which has all currently active

nodes in its subtree (node 3) and making this the new root of the tree. The VTSs for all the

nodes remaining in the tree can then be reallocated using the original reallocation method.

New timestamp
to be allocateJ

(a) Execution tree before rescaling (b) Execution tree after rescaling

Figure 5 .12: Root rescaling of an execution tree

If the root node is the only node which contains all the active nodes in its subtree the only

way to release VTSs for reuse is to cancelback the right branch nodes at one or more levels

and rescale the subtree containing the rest of the active nodes. For example in Figure 5.13

it is not possible to rescale the tree because the root node has a right child that does not

contain GVT in its subtree. A solution is to cancel node 3, allowing rescaling to provide

space to create node 8. For all finite representations investigated, rescaling with cancelback

is sufficient to permit forward progress. If necessary GVT could be allowed to advance to

the leaf of the tree while all other nodes are cancelled back.

GVf
I

I

I

I

(a) Execution tree requiring cancel operation

2
GVf

queued for
re-execution

3CI:)

(b) Tree after cancelback operation and rescaling

Figure 5.13: Cancelback and root rescaling in an exhausted execution tree

The most problematic part of the rescale is identifying the rescale node, because the VTSs

are not stored as a tree, and the frames (and associated VTSs) early in the virtual sequence

87

will already have been fossil collected. The appropriate time to calculate this is as part of

GVT calculation, which must periodically inspect all the active VTSs in the system.

Once the rescale node has been identified each VTS in the system must be reallocated

individually. VTSs may be rescaled in parallel, which will speed the operation, although it

will still have to propagate throughout the system.

The local rescaling operation is straightforward for the length representation, with the two

parts of the integer being operated on separately. The string part is left shifted and the

length is decremented. Logic to rescale an individual VTS can be attached to each frame,

and then it is a matter of propagating the number of levels to rescale to all frames. A similar

operation is performed on every entry in the time-space cache to ensure the VTSs are kept

synchronized with those in the frames.

For the exponential representation the global operation is the same, except that VTSs with

non-zero exponents must first have the levels subtracted from the exponent. Any remaining

rescaling levels after the exponent reaches zero are then removed from the mantissa in the

same way as for the length representation.

Maximum level root rescaling

Maximum level rescaling reclaims the maximum number of levels possible without delaying

execution. This means choosing as the rescale node the node which is the most levels down

the execution tree, while still containing all the active nodes in its subtree. Only fossil

collected nodes can be removed from the VTS tree during rescaling, so it is often possible to

rescale further by waiting for GVT to advance. A frame to the right of the branch containing

the exhausted VTS will prevent the rescaling node being selected any further down the tree

without using cancelback. If the deepest possible rescale node is the root of the tree, then

the node at the first level below the root on the path to the exhausted node is chosen as the

rescale node and its right siblings are cancelled back. The rescale node is made the root of

the tree and all the VTSs are adjusted accordingly.

88

N level root rescaling

If GVT progresses slowly maximum level rescaling will entail a large number of small

distance rescales. This will be inefficient when rescaling costs are taken into account.

N level rescaling always reclaims a fixed N levels of the VTS tree, even if this involves

delaying until GVT has advanced sufficiently, leaving levels of fossil collected nodes in the

tree or canceling back nodes to the right. The hope is that this will allow a more efficient

rescaling operation by fixing N to a constant, amortizing the cost of the rescale over several

levels, and that the number of single level rescales can be reduced without unduly affecting

performance. The optimal rescaling distance must be determined empirically. N level re

scaling can also be used to force single level rescales, so that the minimum number of levels

is rescaled that allows all nodes to be assigned VTSs.

When a rescale is required the simulator simply progresses N levels down the branch to the

currently executing node and chooses that node as the rescale node, rescaling it to the root.

This may result in a time penalty while the execution of the node at the exhaustion point is

stalled until GVT reaches the rescale node. Any nodes to the right of the rescale node are

cancelled back.

5.4.2 Moving Head Rescaling

A major drawback of the root rescaling scheme is that it requires every VTS in the tree to

be examined and modified-a time consuming process, and liable to require a large amount

of hardware to do in parallel. This is particularly problematic for VTS s attached to in-flight

operations, and may require execution to be halted during root rescaling.

A technique to reduce the cost of rescaling is based on the observation that when root

rescaling occurs in the length representation, the same bits are removed from the front of

each VTS being rescaled. To take advantage of this a global index (the head index), which

defines the start of all VTSs in the system, can be used. Rescaling only requires this single

global variable to be altered. The bits in the VTS wrap around, so that no precision is lost

when rescaling, as shown in Figure 5.14. Each VTS has its own tail index to terminate it

because after the head has been moved no assumptions can be made about the value of the

89

unused bits. The tail index is an alternative way of representing the length indicator, both

record the number of significant bits in the VTS.

C)

t t
tail index head index

Figure 5.14: Moving head VTS representation

The local rescaling operation described for root rescaling is the same for moving head re

scaling, except that it is only necessary to alter the single, global head index as shown in the

example in Figure 5.15. Note that it is not necessary to perform any direct manipulation of

the VTSs themselves and hence the global time taken to rescale is greatly reduced.

hudindn.

localWJindcl.

(a) Execution tree before rescaling
head index. Gvr

GVTholdcr

(b) Execution tree after rescaling

Figure 5.15: Rescaling the moving head representation

The main advantage of this representation is that the cost of rescaling has been significantly

reduced as only the head index has to be altered. The moving head does require that the

new value of the head be broadcast to all parts of the system but this can be done as part

of other activities such as broadcasting values of GVT. Additionally, in-flight VTS s do not

need to be individually located, since changing the head index will affect all VTS s equally.

90

s.4.3 Speedup

To compare the length and exponential VTS schemes four different configurations were

simulated for each of the algorithms available. The configurations consisted of:

1. The length scheme with a base size of 32 bits.

2. The exponential scheme using the basic 32 bits for the mantissa and an additional 32

bits for the exponent.

3. The length scheme using 64 bits, the same total number as the exponential scheme

above.

4. Ideal VTSs.

The difference between the first two configurations shows the additional parallelism ex

tracted by adding an exponent to the length representation VTSs. The difference between

the second and third configurations show the relative advantage of using the extra bits as

an exponent, or increasing the bits available to the length representation. Ideal VTSs are

included to show whether the VTS length is constraining the performance of the system.

Rescaling is assumed to take place instantaneously. This is an optimistic assumption de

signed to test the upper bound performance of the VTS scheme. The simulations in this

section use the minimum amount of rescaling necessary for execution to complete with

the stated VTS size and allow the earliest possible rescheduling of cancelled nodes. This

corresponds to I-level root rescaling, since rescaling is instantaneous there is no benefit in

combining the cost of multiple rescales into one operation. Rescaling does delay execution

when it is necessary to wait for GVT to progress to reclaim more VTSs.

Figures 5.16 to 5.18 and C.4 to C.6 shows graphs of simulated speedup over a range of

problem size for each of the test programs using the four VTS configurations.

The simulator makes a number of optimistic assumptions, including zero latency rescaling,

and unlimited bandwidth. Still, the speedup quickly diverges from the results for ideal VTSs

and, in some cases, drops to levels comparable to current production architectures. Good

speedup is achieved for some of the test programs, such as matrix multiply, Gauss-Jordan

and Fibonacci, but these test programs are small and easily parallelizable.

91

a.
::i
'C
Q)

~
en

A VL tree insertion
120 ,-.---:--:---:r-~---,r--.--,---.----,.--,.---,

-+- ideal

100

~ 64 bit length
,. 64 bit exponential(32,32)
~ 32 bit length. .

80 ···········-·1-----··········1···············;·······--·-----:-

60

. . , : , 1· 1 I I
------:··--·----·-----:---------····-·1···············'·· ---·······--:·-···--·-----·- r··--------·---,---------·--·· 1 --------------,-·-------·---

40

20

0 '-----'---~---'---L----'-----'---'-----'---'--......J

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Problem Size

Figure 5 .16: Comparison of speedup for AVL tree insertion with exponent and length VTSs

a.
::i

"2

600

500

400

! 300

200

100

Gauss-Jordan elimination

-+- ideal
~ 64 bit length
,. 64 bit exponential(32,32)
-a- 32 bit length

. -~ : -... .

----·-···------------··---·-----·-- ---------------------------- ----------------------------1-----------------------------··r··· ------------------------

····························:·······························S··················:··::::::::·'·:: l,,':·,,.;:: .. ::::::::::::::::::::::::::
··························--·i··----·---··············

.... ·········· -·:··· --·-·· (............................. --~---·················

, L !
0 "[__ ___ --1.. ____ ..,L_ ___ __._ ____ _._ ___ __,

5 10 15 20 25 30
Problem Size

Figure 5.17: Comparison of speedup for Gauss-Jordan with exponent and length VTSs

92

4000

3500

3000

2500
a.
:,
"C 2000 Q)
Q)
a.

(i)

1500

1000

500

0
5 10 15 20

Matrix multiply

ideal--+-
64 bit length ---

64 bit exponential(32,32) ----.- ·
_32 bit length -a-. . I

. -- .. ~- :-

.:)

············-i- j •.

25 30 35 40 45 50
Problem Size

55

Figure 5.18: Comparison of speedup for matrix multiply with exponent and length VTSs

The 32 bit length VTSs show an unacceptable restriction in the speedup gained when com

pared with the ideal VTSs in all test programs. While the 64 bit length VTSs show signif

icant improvement over the 32 bit and the exponential VTSs, only AVL and Gauss-Jordan

remain close to the ideal for larger problem sizes, and even they begin to diverge. These test

programs are small and it is likely that larger benchmarks would follow the trend shown by

the larger problem sizes and diverge widely from the ideal.

Adding a 32 bit exponent to use the exponential scheme provides little gain over the 32 bit

length representation. Despite the relatively large proportion of children (more than 60% in

most cases) generated as the left-most child, there are few long chains of children on the left

most branch. Often the earliest events in the virtual sequence (and hence the furthest left) are

initialization procedures, which are usually brief. Also, the top level of loop structures tend

to have a high fan out in an effort to extract large amounts of parallelism. Thus, the exponent

often cannot be used to replace leading zeros in the VTS, at least until rescaling is done

to place the nodes on the left-most branch. The exponential representation gives inferior

performance on all tested workloads compared with the same size length representation.

Using ideal VTSs the speedup generally increases with increasing problem size, as one

would expect. With the other schemes, however, the speedup generally decreases as the

93

problem size gets larger. This is caused by increasingly long, thin branches in the execution

tree of larger problems, which force delays until GVT can progress and allow fossil collec

tion to release VTSs for rescaling to take place. This also forces more cancelback and the

attendant delays.

The long thin sequential paths, which typically make up the execution tree, mean that the

tree is sparsely populated and generally only a small proportion of the total number ofVTSs

have been used when the tree is exhausted. For a 32 bit length representation, there exist

8.95 x 107 unique VTSs without rescaling. A 100 item insertion into an AVL tree uses only

7380 VTSs, yet rescaling is done 325 times. A 20 x 20 matrix multiply uses 32819 VTSs,

but requires 255 rescales and using quicksort to sort a 20 element list uses 7513 VTSs and

303 rescale operations. This gives an indication of how sparsely filled the tree is. When

the tree layout is examined it can be seen that there are many long, thin sequential paths,

causing many levels to be used up for a small number of blocks executed.

Practical rescaling

The speedup results when assuming ideal rescaling are sufficiently poor to rule out the naive

length and exponential VTS representations as practical VTS schemes for the WarpEngine.

For this reason simulations utilizing root and moving head rescaling with realistic laten

cies are not pursued for these representations. The already poor results would be further

degraded.

The descriptions of the rescaling methods remain as examples of ways in which the func

tionality of rescaling could be implemented.

5.5 Summary

l\vo fixed length VTS representation schemes, length and exponent representation, were

proposed to provide a distributed means of tracking the virtual order of frames. Each scheme

must be able to rescale the active VTS tree to allow old VTSs no longer in use to be allocated

to new frames.

The length representation is a naive scheme which represents the VTSs as integers, subdi-

94

viding the VTS space evenly amongst all tree locations, regardless of whether or not frames

ever fill them. The exponential representation is an attempted optimization based on the ob

servation that the majority of children appear in the leftmost position. By allowing a deeper

chain of children in the leftmost path it was hoped that computation would have to halt for

rescaling less often.

The minimum length VTS required to execute the test programs without rescaling was mea

sured, and compared against the theoretical minimum length VTS. In every case, except

Fibonacci, the exponential representation required a longer VTS than the length represen

tation due to semantic constraints limiting the number of frames on the extreme left of the

tree and the sensitivity of the representation to divergence from the desired pattern. The

length representation required large VTSs, diverging widely from the theoretical minimum

when the larger data sets for the test programs were used.

Two different rescaling methods were described: root rescaling and moving head rescaling.

Root rescaling is a naive technique, simply shifting the redundant most significant bits off

all the active VTSs. This requires modifying all active VTSs and can easily reach the situ

ation at which it can reclaim no more VTSs, leading to a potentially expensive cancelback.

Moving head rescaling centralizes the rescaling operation by using a global index to indi

cate the start of all VTSs in the system. Rescaling only requires incrementing the global

head index.

Simulation results are only presented for root rescaling one level at a time. This represents

the performance upper bound, since rescaling is assumed to take place instantaneously.

Adding an exponent to the length representation was shown to provide minimal performance

increase, and it was always more advantageous to devote the increased VTS length to the

basic length representation.

The speedup measured for the length representation VTSs was disappointing when com

pared to execution unconstrained by VTSs. When VTSs of a practical length are used they

constrain the parallelism extracted umeasonably, to around the level of current production

architectures. This is largely a result of the inefficiency of the allocation of VTSs. Many

possible bit combinations are unused by the length representation. Many others remain un

used during program execution because the shape of the execution tree does not match the

95

shape of the VTS tree.

The length representation scheme is inadequate as a means of tracking the virtual order in

the WarpEngine because it forms a severe performance bottleneck.

96

Chapter 6

Variable Virtual Timestamp Ranges

6.1 Concept

In Chapter 5 it was shown that a large number of rescales are required to execute programs,

even though the number of blocks in the program is several orders of magnitude less than

the size of the VTS space. This suggests that there is scope for a dramatic decrease in the

number of rescales if VTSs can be allocated more efficiently to frames.

During execution each subtree is allocated a range of VTSs. In the VTS schemes in Chap

ter 5 the range is fixed and implicit in the VTS. To allocate the VTSs more efficiently they

can be allocated based on an estimation of the number that will be required by the subtree.

This requires the ability to allocate a variable range of VTSs to a subtree.

The lower and upper bounds of the range need to be determined and recorded to allocate a

variable range of VTSs to a subtree. As in the fixed range VTS schemes, the lower bound is

also the VTS for the frame in the variable range VTS scheme. The upper bound of a fixed

range VTS is implicit in the VTS, falling immediately below the next VTS at the same tree

level. Figure 6.1 shows equivalent VTS trees using the symbolic representation VTSs from

Section 5.2 and the same tree with the upper bound explicitly stated below the VTS. Any

subtree which has upper and lower bounds the same cannot allocate any further VTSs to

child frames. Attempting to do so signals that the VTS tree is exhausted at that point, and

rescaling is required.

No length indicator is needed since the variable range VTS is simply a range of integers

97

Figure 6.1: VTS trees with implicit and explicit upper bounds

represented by explicit bounds. This has the consequential advantage that, unlike length

representation VTSs, all encodings form meaningful VTS, allowing more VTSs to be allo

cated using the same number of bits.

Explicitly stating the upper bound requires twice as much VTS storage space in the frame.

However, in memory accesses and in the time-space cache only the VTS of the frame itself

is needed (the lower bound of the subtree's range). Variable range VTSs will not increase

the bandwidth or time-space cache storage requirements for the same size VTS. However,

explicitly stating the upper bound of the VTS range to gain a more efficient allocation adds

to the complexity of VTS construction and rescaling operations, as will be shown later in

this chapter.

6.2 Execution Tree Size Calculation

Generally the size of a dynamic execution subtree cannot be determined statically, or even

when the subtree is initiated at runtime, if it contains conditionally executed blocks or loops

with a dynamic number of iterations. The key to allocating a variable range of VTSs ef

ficiently is determining a tight upper bound on the number of frames, and hence VTSs,

required in the subtrees.

If the range allocated proves to be insufficient to provide VTSs for the whole, subtree re

scaling will have to be done to allocate a larger range (which may include reusing fossil col

lected VTSs). Since rescaling will impact performance, the WarpEngine allocates enough

VTSs for the upper bound usage where possible, rather than allocating the number of VTSs

most likely to be used and risking forcing rescaling. Wasting a small number of VTSs by al

locating a larger than necessary range may force an early rescale because insufficient VTSs

98

remain for other subtrees. However, allocating too small a range will certainly cause VTS

exhaustion within the current subtree and require a rescale. The tighter the upper bound can

be made, the more efficient the allocation will be.

Cycles in the CFG (formed by loops) may make it impossible to determine the exact number

of frames to be used. While an estimate of the number of VTSs required can be made, large

loops may cause the upper bound to be exceeded, or there may not be enough VTSs in

the representation, in which case the system must be able to reallocate a larger range by

rescaling.

It is useful to instruct the processor to reserve a fixed number of VTSs for one subtree, and

allocate all other available VTSs to another subtree. For example, in a loop such as the one

shown in Figure 6.2 a subtree (iter) contains an iteration of the loop, while another subtree

(cond) continues to the following iterations. If the loop is an inner loop the iteration will

have an acyclic control flow, so the maximum number of frames used can be determined

statically and used to allocate a fixed VTS range. All remaining VTSs in the range can be

allocated to the remaining iterations, of which there may be an unknown number.

B
B

Figure 6.2: Execution tree for a dynamically bounded loop

In some cases compiler analysis of the tree size may suggest only that a very large number

of frames are needed for a subtree. In this case anything more speculative than the subtree

will probably be rolled back due to resource restrictions. Throttling speculation beyond this

point will save the rollback overheads and reduce contention for execution resources.

99

6.2.1 Encoding

Predictions of subtree size in the WarpEngine can be expressed in two formats, either as

a number of frames or as a proportion relative to the other subtrees initiated by the same

frame, as shown in Figure 6.3. The number of VTSs allocated in a proportional split is

calculated after reserving VTSs for subtrees with a fixed size estimate.

#bits: 1 31

I rl Ct

#bits: 1 3 28

Ir I Cp Cs

Figure 6.3: Encoding for subtree size calculations for a fixed number of VTSs (top) and
proportion of available range (bottom)

Subtree size estimation is encoded in the child instruction initiating the frame at the root of

the subtree. Whether the proportional or fixed range format is being used is indicated by

the proportional flag, P, in the child instruction. The Ct field is the fixed number of VTSs

to be allocated, while Gp is the proportion of the range to be allocated, and C5 id the fixed

number of VTSs to be reserved before calculating the size of the proportional range.

Gp is encoded using 3 bits to allow proportions from 1/8 to 8/8 to be encoded. This allows

an even split among two or four children, as well as the ability to give one frame a double

allocation, while maximizing the number of bits available for Cs from the 32 bit total for

the estimate.

Allocating zero VTSs should never be required, but can be encoded using Ct. The encoded

subtree size estimate is passed to a child instruction as the second source register (a2) and

can either be specified as a literal constant or calculated at run time.

6.2.2 Static Analysis

It is desirable for the compiler to perform subtree size analysis, rather than the processor,

so that it doesn't impact execution time. The most basic static analysis is of linear, acyclic

regions of the CFG, where blocks are counted to calculate the number of frames required.

If the control flow terminates at the end of the linear sequence this count is also the number

100

of frames required to execute the subtree, otherwise it must be added to the frames required

for the rest of the subtree.

It may not be possible to determine the exact number of frames required to execute an

acyclic region of the CFG if it contains conditionally executed blocks. However, an upper

bound can be established by totaling the size of all possible blocks executed. When a con

ditional branch is represented in a tree structured CFG there may be two mutually exclusive

subtrees representing the alternative branch choices. Only the largest of the mutually exclu

sive subtrees needs to be added in determining the requirements for the subtree including

them.

Figure 6.4 shows a sample acyclic code fragment containing if ... else statements and

the corresponding tree structured CFG. Each block of code represented by a letter is as

sumed to require one frame. The blocks are organized such that a left to right preorder

traversal will generate the virtual order of the blocks and dotted lines represent condition

ally chosen paths in the tree stmctured CFG. The upper bound on the number of frames

required is annotated on the arc leading to each subtree. The dynamic execution tree is

identical to the tree structured CFG in this case because there are no loops.

A;
if (B) {

C;D;
}
else{

E; F;

}

if(G){
H;

}

I;

Figure 6.4: Calculating the number of frames required to execute an acyclic code region

Since C and E are mutually exclusive, the subtree rooted at B only needs one more VTS

(for the node B) than the largest of the two subtrees. However, both F and G will execute if

E does, so E requires the sum of F and G plus one for its own VTS. A range of 7 VTSs, or 3

bits, is sufficient to allocate a VTS to each frame. For comparison, the length representation

is governed by the deepest potential path, 5 frames to node H, which requires 11 bits to

101

represent in the 4-way trees used in this implementation of the WarpEngine.

The size of statically bounded loops, such as most for loops, can also be calculated stati

cally. The details of the calculation are dependent on the tree layout used for the for loop

(see Littin[2000] for alternatives).

Figure 6.5 shows the tree structured CFG and the dynamic execution tree for a for loop

using a simple linear backbone loop structure. The number of frames needed for the loop

are shown on the entry arcs of each block in the CFG. The frame labeled 'for' initiates the

for loop. The 'cases' frames form the linear backbone of the execution tree and decide

whether to execute further instances of the body of the loop, labeled 'body'. Up to three

'body' nodes may be initiated by each 'cases' node until the desired number of iterations

have been executed. Extra instances of the body may be speculatively issued, but will be

rolled back.

/

',bflb >
,'~ody ., '

b-1

(a) CFG (b) Dynamic execution tree

Figure 6.5: Calculating the number of frames required to execute a for loop

The total number of frames needed for the for loop can be calculated using integer opera

tions by the compiler with the equation:

i -1
n = (i * b) + - 3- + 2

where i is the number of iterations and b is the number of frames used by each instance

of the body of the loop. The dynamic execution tree is shown for a 5 iteration loop, with

a single block in the body of the loop, requiring 8 frames to execute the loop. One frame

102

is subtracted off this total for the subtree starting at the first cases frame, then four are

subtracted for each successive instance of cases (one for the node itself and three times

the loop body size for the loop iterations). This is shown in the two arc equations for the

variable c.

The range can be allocated for each cases node using a proportional allocation of 8/8 (Gp=

7), only reserving three VTSs (Cs = 3) for loop iterations. Note that the size of the tree

is statically calculable for an arbitrarily complex loop body, as long as it is composed of

statically analyzable subtrees. All the variables shown are replaced by constants at compile

time. If constants are not available for the loop bounds the subtree cannot be analyzed

statically.

6.2.3 Dynamic Analysis

A compiler cannot determine the number of frames required by dynamically bounded loops,

such as while loops, recursion or for loops with non-constant bounds or data dependent

increment operations. However, the size of some dynamically bounded loops can be deter

mined at run time. For example, a for loop bounded by a calculated value can be treated

in the same way as a statically bounded for loop once the loop bounding condition has

been calculated. To use this information for VTS allocations the compiler inserts extra in

structions that dynamically generate the subtree size estimate based on the bounding value

of the loop. In the example shown in Figure 6.5 the equation on the arc leading into the for

node would be calculated at runtime. Usually this requires only a small number of simple

arithmetic operations, but can become complex if nested loops are involved. In such cases

the extra instructions necessary to calculate the subtree size may cause the maximum block

size to be exceeded and require a extra frame per iteration, which may have a significant

impact on resource requirements and performance.

Unfortunately many while loops are still not amenable to this type of analysis by the

compiler, requiring knowledge of the algorithm's operation and data to predict the number

of iterations. For these cases a simple proportional division of the available VTS range

is used in the simulations in this chapter, splitting the parent's VTS range evenly among

the unanalyzable subtrees. However, this can result in a very small range of timestamps

for the subtree nearest GVT, while more speculative subtrees, initiated near the root of the

103

execution tree, consume a large proportion of the range, and are quite likely to be ultimately

rolled back.

6.3 Minimum Size VTSs

As in Chapter 5, for fixed range VTS schemes the minimum size variable range VTS re

quired to avoid rescaling was determined from simulations. The results are presented in

Figures 6.6 to 6.9, and C.7 and C.8 with the ideal representation and the length representa

tion for comparison.

AVL (Figure 6.6), binary tree (Figure C.7) and Fibonacci (Figure 6.7) preclude easy analysis

beyond the naive method of counting linear code segments and splitting the VTS range

proportionally elsewhere because the while loops and recursion are dependent on data.

Naive proportional division of the VTS range causes the VTS size to be significantly larger

than the theoretical minimum because the subtrees are of uneven sizes. Fibonacci comes

closer to the ideal VTS length than the other two algorithms because the two recursive

subtrees at each level tend to be similar in size, so naive proportional splitting of the VTS

range is more efficient.

AVL tree insertion

110

100

90

80

"'O 70
!!!
·3
CT 60
!!!
Ill

is 50

~
40

30

20

10

200 400 600 800 1000 1200 1400 1600 1800 2000

Problem Size

Figure 6.6: Minimum VTS length necessary to execute AVL tree insertion without rescaling

104

-0
!!!
·5

w
~
en
\;

Fibbonacci number generation
120

--+- length
---><--- range
... .,. ... ideal

100

80

60

40

20

o~------..___ ______ ..___ ______ ..,__ _____ ____J

5 10 15
Problem Size

20 25

Figure 6.7: Minimum VTS length necessary to execute Fibonacci without rescaling

Gauss-Jordan (Figure 6.8) and matrix multiply (Figure C.8) consist primarily off or loops

with static bounds, and the graph shows the speedup where iteration count is being used to

calculate the number of VTSs required by the for loops, as well as the naive method. Naive

allocation again requires a VTS substantially larger than the theoretical minimum because

the subtrees are of uneven size. All of the subtrees that receive a proportional allocation

of VTSs are for loops. Since the for loops are statically bounded, the VTS sizes for

statically estimating the VTS requirements of the loops matches the theoretical minimum

after rounding up to an integer number of bits.

Quicksort (Figure 6.9) also contains a for loop, however the bounds are dynamic, depen

dent on the way the list of items to be sorted is split. The static for loop estimation method

assumes that the for loop must iterate over the original number of items, the worst case.

The dynamic for loop analysis method calculates the maximum size of the for loop based

on the size of the partitions created. This is a tighter upper bound than can be calculated by

the compiler. A recursive loop also exists in which quicksort is called for the two partitions

created from the larger partition. By nature an exact subtree size cannot be calculated for

this tree split.

All of the above methods split the VTS range equally among the two procedure calls, but

105

Gauss-Jordan

90r-:---:-:::::--..---------.------,--------, -+-- length

80

70

---><--- range (naive)
•• · -llE· • • range (for)
······€1···- ideal

································1···

........... ·····-···· ····························-~·-·······•...........

.. ······1················ ························· ···,···

.. ·.................... . i
I I

: _;;:=~::;~::::::=: :!::==-:-:---- - : ~------- ------------r_ - -----------

10
5

·•·•···· .•..• :.:.:.:.:.:.:.:.:.:. ·. ·;.:.:.:.:.: :.:.:.:ffi:.:.:.:.:.:.:.: :.:.:.:.:.:.:.:.:.:.:.:.:.:.:. ·.: :.:.:.:.: :~ :.:.:.:.:.:.: :.:.:.:.:.:.:.:.:.:.:.:.:.::.:-···-·-····•····---····--·-··--=-:::.:.:.:::.::.:::.:.:

10 15

Problem Size

20 25

Figure 6.8: Minimum VTS length necessary to execute Gauss-Jordan without rescaling

~
·5
[
J!l
:a

~

200

180

160

140

120

100

80

Quicksort 1

-+-- length
---><--- range (naive)
···-llE··· range (static for)
·-···€1···-· range (dynamic for)

::~~~~p,pffl) __: '. __ j_ _) ____ _

l ! ! ················.···
60

40

20 ~i~~i;~k~;;;J~i~i~ti:;;;;t;;;;j~i t~;r;i~J
0
100 200 300 400 500 600

Problem Size

700 800 900 1000

Figure 6.9: Minimum VTS length necessary to execute quicksort without rescaling

106

in the proportional split method the range is divided in proportion to the size of the two

partitions. This is particularly beneficial where an uneven split is produced. It is question

able whether a compiler would be able to determine the relationship between the size of

the partition and the VTS range required by the procedure without higher level knowledge

of the algorithm. Using the proportional split method the theoretical minimum size VTS,

rounded up to an integer, is sufficient to avoid rescaling.

In all cases the variable range VTSs are a great improvement on the fixed range VTSs.

Using sufficiently aggressive analysis schemes all the test programs can be executed without

rescaling using 40 bit VTSs, while the length representation requires in the region of 100 to

200 bits. The programs tested can be split into three broad categories:

1. Those whose tree size can be estimated well throughout the algorithm, such as matrix

multiply and Gauss-Jordan elimination. VTSs can be allocated very efficiently to

these algorithms using only static analysis. In the two examples shown VTSs of

the theoretical minimum size are sufficient to avoid rescaling. This occurs in any

program where the execution tree size is data independent and, thus, can be calculated

statically.

2. Those which have few substantial subtrees whose size can be estimated easily. Exam

ples of this are binary tree insertion and AVL tree insertion. It is difficult to allocate

VTSs to these algorithms, even with dynamic analysis. The amount of computation

is highly data dependent in complex ways, causing the number of bits required to be

significantly higher than the theoretical minimum.

3. Those which have some large parts which can be estimated well and others which

cannot be, or which have a simple relationship to data values, such as quicksort. More

advanced dynamic analysis methods benefit this class of algorithm. These form an

intermediate category, benefiting from variable range VTSs, but still diverging quite

substantially from the theoretical minimum size when only basic analysis is used.

Real workloads are larger than the programs simulated here, and tend to be quite irregular.

A typical application will consist of regions in several of the above categories. In regions

which are difficult to analyze the the VTS size will limit the ILP more. However, since

107

these are regions where the control flow is more dependent on the data the chances of mis

speculation are higher, so less aggressive speculation is appropriate.

Dynamic analysis methods require extra instructions to be added to the program to perform

the calculations, sometimes forcing extra instruction blocks to be used when the frame in

struction limit is exceeded. Figure 6.10 shows the percentage increase in parallel execution

cycles for the different dynamic analysis methods over static analysis for quicksort. This

measurement was taken with VTSs sufficiently long not to constrain execution to show the

effect on execution of the additional instructions inserted for VTS allocation.

30 ~---r----r---,----r----,----r-·---.---.......... ---.

.......... {

proportional split -+
dynamic 'T ---x---

·············· ; ,..........1-- r--

··················'·····················>··················(···············

I :: ,~:-: ~:~::--,--~----------j-------ck--------:-----~-'-·-----: _______ ~_ ----------
.5
a,

I
8 5

if
........ _ : :

0'------'-----'-----'-----'----......_--~--~--~--~
100 200 300 400 500 600 700 800 900 1000

Problem Size

Figure 6.10: Percentage overhead of dynamic VTS analysis methods for quicksortl

The results show that both dynamic for loop and proportional split size calculations add

a substantial number of additional instructions to the critical execution path. A careful

evaluation for each program should be made before deciding to utilize dynamic allocation

techniques. This decision can be made individually for each program at compile time.

6.4 Rescaling Variable Range VTSs

As with any VTS representation, the ability to rescale when the VTS tree is exhausted is

necessary to guarantee completion of a program. In variable range schemes there is an

108

added complication that the explicit upper bound must be calculated, and it cannot overlap

with any other subtrees (other than those which are a superset). This means that calculation

of a VTS depends not only on the parent VTS, but also on the sibling VTSs earlier in

the virtual order. Unfortunately this will extend the critical path of the global rescaling

operation substantially. For example, child one must wait for child zero to be allocated

a VTS range, rather than just their parent, before it can be allocated a VTS range. The

dependency chain for allocating a VTS range to child three includes allocating a VTS range

to children zero, one and two in addition to the parent.

There are two aspects which must be considered when evaluating a rescaling method. Firstly

there is the computational cost of rescaling. This may include stalling computation while

rescaling is performed, or stalling parts of the computation while GVT advances to allow

rescaling, in addition to the actual time taken to rescale the VTSs. Secondly, the efficiency

of reallocation of VTSs is important because, while a reallocation which wastes VTSs may

reduce the computational cost, a careful reallocation will allow computation to continue for

longer.

Rescaling variable range VTSs also introduces the added complication, and freedom, that

VTS ranges may be arbitrarily changed. The rescaling methods for length representation

VTSs are restricted by maintaining the frame relationship within the execution tree, and the

VTSs that go with it. In this section we investigate two rescaling methods for variable VTS

ranges. One which preserves the original tree, as for rescaling the length representation,

and another which changes the shape of the VTS tree independently of the execution tree to

attempt to achieve a more efficient VTS reallocation.

Rescaling must ensure that the exhausted subtree receives a larger range than before rescal

ing, or execution will remain stalled. Any subtree which is allocated a diminished range

during rescaling risks not being able to allocate VTSs to all the frames that have already

been started. This will force some frames to cancelback. The rescaling methods proposed

here operate under the assumption that when a constant number of VTSs are requested for

a subtree it is an absolute upper bound which will never be exceeded. VTS exhaustion can

result from either a proportional allocation or when the requested number of VTSs cannot

be allocated.

109

6.4.1 Preserved Tree Rescaling

A straightforward and efficient way of reallocating VTSs is to fossil collect nodes earlier

than GVT and allocate the whole VTS range to the smallest tree containing all the active

frames. The VTS range is then allocated to the active subtrees by regenerating the VTSs us

ing the same process as the initial allocation. This has the advantage that the same hardware

can be used for generating and rescaling VTSs, although some modification may enhance

performance since rescaling must regenerate the whole tree at once. This rescaling method

produces the same VTS tree as maximum level rescaling, proposed for the length represen

tation in Section 5 .4.1.

Not all the nodes prior to GVT can be removed though. In order to remain compatible with

the original generation process a single connected tree must be maintained. This requires

retaining nodes higher up the VTS tree which may otherwise be fossil collected, but connect

the active subtrees into a single tree.

Figure 6.11 (a) shows an exhausted tree with fossil collected frames represented by dotted

outlines, the VTS range appearing under the frame label and the allocation information on

the arc leading to the node. The connecting nodes C, E and F are retained under preserved

tree rescaling to give the tree in Figure 6.11 (b). Since the record of the VTS range and

the tree shape are stored in the frame, either the frames for the connecting nodes cannot be

fossil collected, or some other method of recording the tree shape and VTS range is needed.

Strict adherence to the original generation method will allocate VTSs to fossil collected

nodes which were originally descendants of nodes in the tree retained after rescaling, such

as node D in the example, even though they are not required. In the method used here these

nodes are fossil collected and their VTSs made available for reuse, preserving the minimal

tree containing all active nodes.

Another drawback of preserved tree rescaling is that the proportional allocation will assign

more of the reclaimed nodes to subtrees at the upper levels of the tree. For example, in

Figure 6.1 l(b) 25 VTSs have been reclaimed, but only 4 extra are assigned to subtree H,

while subtree M, which is not exhausted, receives an additional 12 VTSs. This will lead

to delays while GVT advances to free sufficient VTSs for reallocation and may require the

cancelback of frames.

110

While this method achieves an efficient reallocation of VTSs, the global rescaling operation

will have a long latency because potentially long tree branches have to be traversed. Calcu

lating the new range depends both on the range allocated to the parent, since a sub-range is

allocated, and on the upper bound of the preceding sibling since that determines the lower

bound. This leads to a chain of dependencies running down each branch of the tree. Differ

ent subtrees can be rescaled in parallel once the root VTS of the subtree has been allocated.

Since the alteration of each VTS is not systematic, updating VTSs in the time-space cache

requires a global search to match each VTS.

6.4.2 Disconnected Subtree Rescaling

A minor variation on preserved tree rescaling is to consider each subtree of active nodes

as a disconnected tree and rescale them separately, rather than preserving the original tree

shape. This requires maintaining a record of the nodes at the root of each disconnected tree.

However, no allocation information needs to be retained for the connecting nodes that have

been fossil collected. It also requires the nodes at the head of each subtree to be allocated a

VTS range before the rest of the VTSs can be regenerated.

Each subtree is allocated a region of the overall VTS range in virtual order, based on the

original allocation request. For a request for a constant VTS range the requested number is

allocated. Subtrees requesting a proportional range are allocated VTSs from the remaining

range in the ratio of the proportion requested against the proportion requested by all trees.

For example, in the tree shown in Figure 6.1 l(c) 14 VTSs are reserved for the subtrees

beginning at G and I, while the rest of the range is divided between H, L and M, with

M receiving twice the allocation. Notice that M receives a smaller subrange than in the

preserved tree rescale (Figure 6.ll(b)), while all the other subtrees receive larger ranges.

Disconnecting the subtrees provides a more efficient reallocation because VTSs are not

wasted on the intermediate frames which have already been fossil collected and only the

more accurate allocation requests further down the tree are used. It also has the effect of

placing all the subtrees at the same level, allocating a larger proportion to the trees further

left, which are less speculative and will be deeper in the main tree. This allows more spec

ulative execution early in the virtual order, at the expensive of throttling the speculation in

the far speculative future. Since a rescale has been required, VTSs are clearly restricting

111

(n-2)/2

(a) Execution tree before rescaling

,c,
I 0-63)

-~2~
,. E

I 3-32)

-~'12

,. F'
I 4-11) a;' :2

ll
7-11 <

'

(b) Rescaled preserving the tree

(c) Rescaled using disconnected subtrees

Figure 6.11: Rescaling a variable range VTS tree

execution and it is likely that more rescales will be required. Proportionally reducing the

allocation to more speculative subtrees tends to allow execution to progress further before

the next rescale. The global rescale operation will also be faster, since removing the inter

mediate nodes will shorten the longest branches, and hence the critical path for rescaling.

6.4.3 Moving Head Rescaling

For a more efficient rescaling method, which doesn't require time consuming scans through

the entire system, a variant of the moving head rescale from Section 5.4.2 can be used.

The principle of the moving head rescale is that the most significant bit of a VTS becomes

redundant when it is the same in all active VTSs in the system. In the variable range VTS

scheme this means once the lower bound of GVT is past the halfway point in the range the

most significant bit is redundant. By employing a global head index in the same way as in

fixed range moving head rescaling, the VTS can start at an arbitrary bit position and wrap

112

around when the end is reached. In order to make the rescaled range as large as possible, a

tail index (which can be used for both the upper and lower bounds) is kept for each VTS to

indicate the end of the VTS at creation time. Any bits beyond the tail index up to the full

length of the VTS are implicitly considered to be equal to zero in the lower bound and one

in the upper bound. Each moving head rescale doubles the range of each subtree. Note that

the range of subtrees with a constant size prediction also have their range doubled. These

VTSs are wasted because a constant prediction is guaranteed to be an upper bound on the

number of VTSs needed, so they will never be exhausted, providing the requested range

was allocated. Only proportionally allocated subtrees will become exhausted.

Unfortunately moving head rescaling as described above will not provide more VTSs to an

exhausted tree in the lower half of the range. By canceling back the frames with a VTS

with a leading one, the moving head rescaling method can operate to double the range of

the exhausted tree. However, since the tree is exhausted it has only one VTS in its range

its own VTS. Thus, only one VTS will be freed where it is needed, while wider ranges

are made available to subtrees that don't require them, particularly those with a constant

range allocation. For this reason it is important that moving head rescaling is done as early

as possible. Fortunately processing doesn't have to be stalled for a moving head rescale.

Generating a new VTS can be done with the new or old head index value, but a more

efficient allocation is achieved if generation is done after rescaling because any constant

ranges will not be doubled in size.

Additionally, cancelback discards a large amount of speculative work. Almost all the specu

lative events will be cancelled back if the exhausted VTS is near, but just below, the halfway

point.

There is also the issue of when to restart cancelled frames. Under fixed range VTSs the

strategy is to reallocate to a cancelled frame a VTS on the right edge of the tree which

is never used by a frame. With variable range VTSs such a VTS never exists because

allocation is done more efficiently to avoid these situations. Some heuristic must be used

to decide when a sufficiently large VTS range has been freed to allow the cancelled frames

to be allocated new VTSs. VTSs allocated to cancelled frames must be later in the virtual

order than any currently active frame because frames are cancelled most speculative first,

and restarted in last in, first out order. This requires the VTSs to be taken from the range

allocated to the most speculative subtree. A simpler alternative is to wait until there are no

113

active speculative events, i.e. they have all completed or become non-speculative, before

restarting cancelled frames. At this stage the whole VTS range is available. This effectively

halts speculation at the cancelled point and forces speculation to begin again from that point.

Variable range moving head rescaling is not pursued further in this thesis. Like the fixed

range moving head rescaling method, it relies on being able to complete rescaling more

quickly than the other methods described. Low level implementation details are required to

accurately establish this timing information, and is beyond the scope of this thesis.

6.5 Speedup

6.5.1 VTS Constrained

Figures 6.12 to 6.14 and C.9 to C.11 show a comparison of the simulated speedup delivered

by 12, 16 or 24 bit variable range VTSs using either preserved or disconnected tree rescaling

methods. VTSs larger than 24 bits are not shown because they are either sufficient to avoid

rescaling in the test programs, or require very few rescales and do not adequately exercise

the proposed techniques. For the same reason 12 bit VTSs have been used instead of 24

bit VTSs for Gauss-Jordan and matrix multiply. Instantaneous rescaling has again been

assumed for both rescaling methods to provide an upper bound on performance. The only

delays caused by rescaling come from waiting for GVT to advance sufficiently to perform

a rescale.

The simulations show a substantial advantage for disconnected over preserved tree rescal

ing in all simulations for the same size VTSs, justifying the extra hardware required for

the scheme. The advantage is particularly clear for AVL tree, (Figure 6.12) binary tree

(Figure C.9) and quicksort (Figure 6.14). In Fibonacci (Figure 6.13) and matrix multiply

(Figure C.10) the maximum speedup is achieved for the smaller problem sizes because

no rescaling is required during execution. Speedup quickly drops away from the ideal once

rescaling is required because the number of blocks executed grows exponentially with prob

lem size for these algorithms, quickly requiring a large number of rescales.

As with frame restricted execution, in some cases the speedup counter-intuitively decreases

with increasing problem size. This is caused by increased restriction on short range parallel

114

AVL tree insertion

120 r:~-,-----.--.----.---.--,----,r-----.---r--~
ideal ---+--
24 bit disconnected ---><---
24 bit preserved · · · -llE· - -

16 bit disconnected ······O······
100 16 bit preserved -·-•·-·

80

40 -·~·-····· ... ·······t·

20 · , .. ill·- ····~~:·:·:-:·:::-::-c-,~--·'""·::.;:.:.::.;,~:.:.:.:.;,;,;_:.; .. :,;.:,:,:l,: .. ,,'L:c.,.,:e.;·.,4:c~:,:;:;:,:::::::+::·.:::·:.:~:~::;)~;::.:~:.::~::.:~.
·· ... I .

·- ·)It···· ····-i-·····-----
... ·----- - - - - - -• - - +-·- - - - - - - - - - ----- - - - - - I- - - - - - --- - --- -·-·------- - ---------·- --

0 '----'-----''------'----l.----1.----L----L---'---....L.--...J

0 200 400 600 BOO 1000 1200 1400 1600 1800 2000
Problem Size

Figure 6.12: Speedup for AVL tree with variable range VTSs with rescaling

Fibonacci

8000
ideal ---+--
24 bit disconnected ---><---
24 bit preserved ···-llE···

7000 16 bit disconnected ······O····- .
1 6 bit preserved -·-•·-·

6000

5000

a.
:::,

al 4000 Cl)
a.

(/)

,,,,'
··················>'·········

,,,,,' ,,
3000 .. /.< ..

,,,,,,'

2000
,,,'

1000

0
5 10 15 20 25

Problem Size

Figure 6.13: Speedup for Fibonacci with variable range VTSs with rescaling

115

Quicksort 1

100 r.----:---,---,------.---.---.------,r-----r--~-----
ideal --+--
24 bit disconnected ---><---

90 24 bit preserved --- ,.. --

80

70

60
C.

~ 50

l
40

30

20

10

16 bit disconnected ······O······
16 bit

0 '------'-----'---_._ __ _._ __ .,__ _ __, __ ___i_ __ ...J.._ __ ...J._ _ ____J

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Problem Size

Figure 6.14: Speedup for quicksortl with variable range VTSs with rescaling

execution due to a large proportion of the VTSs being reserved for more speculative events.

This forces rescaling, which may require a delay while GVT advances. This is a greater

problem for preserved tree rescaling than the disconnected tree method because a larger

proportion of the VTS space is assigned to the more speculative subtrees. The short range

speculation is more likely to be on the critical path and less likely to be mis-speculated, and

is therefore more valuable. While there is benefit in ensuring speculation at a distance can

continue, there is a cost if sufficient VTS space is not provided for shorter range speculation.

While this works reasonably well for larger VTSs, when smaller VTSs are used, too much

of the range is devoted to distant speculation. It is important to match the VTS size to the

program.

6.5.2 Frame Limit Sensitivity

Of course, any implementation of the WarpEngine will not be limited by VTS size alone.

Another important limit is frame availability, which is closely tied to VTS usage, since a

VTS is assigned to each instance of frame usage. Frames are used for state saving, and in

this respect are equivalent to the ROB in a superscalar processor. Chip size will limit the

number of frames, but the capacity is expected to be much larger than contemporary ROBs

116

in order to support aggressive speculation. Calvert [1997] proposed an implementation for

a WarpEngine frame, and calculated that sixteen frames could be implemented on a chip

equivalent to the PowerPC 604, state of the art process technology at the time. Since there

are up to sixteen instructions in each frame, this corresponds to an ROB of 256 entries,

well in excess of commercial ROB sizes at the time of writing [Intel, 2000]. Littin [2000]

performed simulations with constraints on the number of frames and showed that increasing

the number of frames provides a sub-linear speedup. He estimated that five hundred to a

thousand frames could reasonably be provided in the near future.

To examine the effects of limiting both the VTS size and the number of frames, simulations

were performed using 16 bit variable range VTSs with disconnected tree rescaling and a

range of frame limits up to 10,000 frames. Disconnected tree rescaling is more effective

than preserved tree rescaling with no serious disadvantages and 16 bit VTSs were selected

to impose moderate constraints on speculation.

Frames speculatively executed and rolled back are not considered in these virtual order

simulations, only frames which commit are tracked. This means that the frame usage figures

are optimistic and transient frames will consume frames above the limit imposed. However,

VTSs are still reserved for transient frames because an upper bound is calculated, which

reserves enough VTSs for the worst case (maximum) requirement.

Figures 6.15 to 6.17 and C.12 to C.16 show the speedup obtained from the simulations for

selected data set sizes for the test suite. Each program was simulated for different frame

limits with limited and ideal VTSs. Where the curves are coincident the VTSs are not

constraining execution, it is solely due to the frame limitation. When the curve becomes

flat and increasing the available frames does not increase the speedup, the frame limitation

is not constraining execution, and any divergence from unconstrained execution is then due

to VTSs alone.

The slowdown due to VTSs and frame limitation are not generally cumulative. The speedup

is dictated by either the frame or VTS limitation, whichever is lower. Only when both

speedup limitations are similar do both contribute to restricting parallelism. This suggests

that both limits cause restriction of parallelism in the same regions of the programs.

In AVL and binary tree insertion (Figures 6.15, C.12 and C.13) the pairs of curves begin to

117

diverge at around 1000 frames, up to that point frame limits are more restrictive than VTSs.

The larger problem sizes, as expected, benefit more from generous frame limits, and are

more restricted by the 16 bit VTSs. Lengthening the VTS pushes the curves closer together.

The curves for AVL are further apart because AVL VTS usage is more dependent on data.

The smaller sizes (100 and 200 items) never suffer much slowdown due to the VTSs.

AVL tree insertion, 500 items

50~~~::--r--===+=====p===, ideal --+-
16 bit

, i · --- -r-- --i --
35 ---------------·--------- :)•.......)

30

g.
al 25 ,,.,,.

!
························-· ······························-:····························1····························

\ : I
20 /~-------- [[. ;x ·················-r··· . ··············i--*····

15 ,/ 1... ···························:······················:·····························;····························

10

······················--······ i : -··························.·······················"···
0 ,...._ __ __. ___ ~-----'-----'-----'----_._ ___,

0 1000 2000 3000 4000 5000 6000 7000
Frame Limit

Figure 6.15: Speedup for AVL(500) with varying frame limitations and variable range VTSs

Quicksort, Gauss-Jordan and matrix multiply (Figures 6.16, C.14, C.15 and C.16) are

largely unaffected by the VTSs. Curves are coincident, or very close to it for all prob

lem sizes and all frame limitations. These algorithms have tight VTS upper bounds applied

because the frame usage can be well analyzed, causing frames to be the limiting factor. 16

bit VTSs provide 65536 unique VTSs, so in cases of efficient allocation the frame limits

shown here are exhausted first, even allowing for the more flexible reuse policy for frames.

Fibonacci number generation (Figure 6.17) has vast amounts of parallelism available for the

larger problem sizes and the curves for 15 and 20 numbers with ideal VTSs do not begin to

flatten out until large numbers of frames are made available. The 16 bit VTS only becomes

the limiting factor when more than 4000 frames are provided for a data size of 15 and 2000

frames for a data size of 20.

A relatively small 16 bit VTS generally allows as much speculative parallelism to be ex-

118

g-

45

40

35

30

al 25
8.
en

20

15

10

5

Ouicksort, 500 items

2000 4000 6000 8000 10000
Frame Limit

Figure 6.16: Speedup for quicksortl (500) with varying frame limitations and variable range
VTSs

150

100

1000 2000

Fibonacci, 15 numbers

3000 4000
Frame Limit

5000 6000 7000 8000

Figure 6.17: Speedup for Fibonacci (15) with varying frame limitations and variable range

VTSs

119

tracted as up to a thousand frames can support, the limit on what will be available in the

near future.

6.6 Unresolved Issues

The investigations of this chapter have focused on fundamental constraints placed on the

upper bound of performance by variable range VTSs. A number of details remain to be

resolved, some may improve performance, while others will degrade performance.

The largest umesolved issue is compiler interaction. Some basic analysis techniques have

been discussed in this chapter and applied by hand to the assembly language programs

used with the WarpEngine simulator. Beyond simple for loops and linear sections of code

the analysis is quite primitive, the VTS range is simply split evenly amongst the possi

ble subtrees. It is likely that a compiler could improve significantly on these techniques.

Reorganizing code by moving block boundaries and modifying the loop structures could

significantly affect the ease of analyzing VTS requirements.

Introducing a prediction of the most likely size of subtrees, rather than the maximum size,

would provide scope for much more accurate assignment of VTSs. This would require

substantial modification to the VTS allocation mechanisms, particularly rescaling methods

to allow subtrees to exceed the predicted size. Particular subtrees that are often small, but

are large in rare cases (for example a rarely matched if ... e 1 s e condition) would be

particularly aided by such an estimation. Traditional branch prediction techniques using

execution profiling could be adapted to this task.

The availability of a compiler would also allow larger and more diverse benchmarks to be

simulated. This is important for testing the scalability of the VTS schemes proposed as the

different workload characteristics could make a substantial difference to the effectiveness

of the VTSs. Further issues in the development of a compiler are beyond the scope of this

thesis.

The latency of rescaling has not been considered in detail here, but will clearly be important

in determining the overall execution time. It will form a tradeoff between schemes which re

quire rescaling to be performed more often at a lower latency and those with longer latency,

120

but which reallocate VTSs more efficiently, and hence less frequently. Rescaling latency

can only be established with a low level hardware design, which is beyond the scope of this

thesis.

6.7 Summary

Analysis of the code in a tree structured execution model, either statically or dynamically,

can reveal much about the amount of work and resources required for each control inde

pendent section of the program. In this chapter the focus has been on allocating VTSs

efficiently, but the same analysis can be applied to other execution resources.

After determining the maximum number of blocks in the subtree, a VTS range guaranteed

to be large enough to order the whole subtree can often be allocated. In cases where such

analysis is not possible the simulations presented simply divided the available range among

the subtrees. More detailed analysis schemes could be devised, in particular, using a predic

tion of the number of VTSs likely to be used (rather than the upper bound). Such schemes

remain for future development. Even with simple analysis techniques the length of VTS

required to execute the test programs without rescaling was much less than for fixed range

VTSs, and in some cases approached the theoretical minimum.

Two rescaling methods, necessary to guarantee execution can complete, were modelled.

Results showed that rescaling does not constrain execution unduly, even when short VTSs

were assumed. Rescaling was modelled as an instantaneous operation to investigate any

fundamental limits involved. Rescaling latency will be important to overall performance for

workloads that require frequent rescaling, but can only be established with more detailed

models of the hardware.

Simulations also showed that the speedup tends to be limited by either the number of VTSs

or by the number of frames available, not by both cumulatively. 16 bit VTSs constrain

execution to a similar degree to 1000 to 2000 frames in most cases, the limit of what could

be implemented on a single chip in the near future. Any implementation of the WarpEngine

that could be manufactured today would be limited by the frames available, rather than by

VTSs.

121

Short VTSs of 16 to 32 bits are all that are necessary to maintain the virtual order of pro

grams in the WarpEngine using the explicit tags developed in this chapter. These techniques

are a promising basis for developing a scalable virtually ordered memory system for a spec

ulative processor.

Analysis of the execution tree also provides valuable information for use in throttling spec

ulation. If the resources required by a subtree exceed those available then execution of

anything more speculative will have to be rolled back. At best it is wasted execution, at

worst the overheads involved in rollback will restrict parallel execution of nearer blocks and

lengthen the critical path.

As shown in Chapter 7, the analysis developed for allocating VTSs is also useful for es

timating the requirements for other linear resources. This provides a novel method for

controlling speculation, by throttling speculation beyond branches that are hard to estimate

resource requirements for, or that require extensive resources.

122

Chapter 7

Selective Speculation

In an aggressive speculative processor, such as the WarpEngine, more instructions may be

available to issue than there are resources available to execute them. When speculative exe

cution outstrips available resources some selection must be made of which code to execute

first. Often the selection criteria are side effects of the instruction issue mechanism, rather

than an explicit design decision.

If the selection of code to execute speculatively is done poorly it can degrade performance

substantially. In the WarpEngine, when resources, such as frames or VTSs, are exhausted

they are released through cancelback. Cancelback guarantees that execution can proceed

to completion with the same resources as sequential execution, but there is no guarantee

for performance. It is not a preemptive technique and will incur a penalty, so it would be

preferable not to execute the code in the first place.

Accurate selective speculation is particularly important for an architecture like the Warp

Engine, which speculates aggressively. It has a large instruction window, providing wide

scope for speculation, and can quickly exhaust available resources. Any instructions that

are issued speculatively, but not retired represent a wasted opportunity to gain speedup.

Since the analysis of resource requirements developed in Chapter 6 must be done in order

to allocate variable range VTSs, it is worthwhile investigating whether this information can

also be used to ensure as many speculatively issued instructions commit as possible. The

resources available can be compared to the estimated requirements of the subtree under

consideration. If there are insufficient resources available nothing later in virtual time than

123

the current subtree should be issued until fossil collection frees some resources. It is likely

that anything issued will be cancelled back to free resources for earlier instructions.

By splitting the resources-frames in this case-into units called resource blocks, instruc

tion issue and resource allocation can be controlled based on resource use analysis. Re

source blocks are a fundamental building block of the speculative multiple version memory

system developed in Chapter 8.

This chapter begins by discussing selective speculation methods used in other architectures

and some alternatives that could be used in the WarpEngine. Selective speculation methods

are assessed by measures seen previously, and also by the metric of speculation effective

ness, the ratio of instructions issued to instructions committed.

7.1 Related Work

The amount of speculation used in a CPU is tuned, by design, to the execution resources

available. By speculating more aggressively the processor uses more execution resources,

but can achieve more execution speedup. More aggressive speculation can be achieved by

increasing the speculation distance. For example, a processor using branch prediction can

increase the number of branches predicted concurrently. Of course, this will increase the

number of speculatively executed instructions that have to be squashed if the prediction

accuracy remains the same. The speculation effectiveness has been decreased since the

total number of instructions committed remains constant, but more instructions have been

speculatively issued and then squashed.

A speculation effectiveness plot can be drawn for a speculative execution technique as the

execution resources used are varied by controlling the aggressiveness of speculation. The

plot indicates how good a particular technique is at selecting instructions to execute spec

ulatively. Figure 7. I shows a qualitative plot of speculation effectiveness for a number of

published speculative execution techniques. The speculation technique resulting in the most

effective speculation varies depending on the resources available, as process technology im

proves the most appropriate technique to use will change. The curves shown here have been

estimated from the descriptions in the relevant literature.

124

Branch Eager execution
prediction

Resources used

Figure 7 .1: Speculation effectiveness for different speculative techniques

Branch prediction [Smith, 1981] provides effective speculation when small amounts of re

sources are being used, which is when the number of concurrent branch predictions are

small. However, as the number of concurrent predictions increases the mis-speculation rate

rapidly increases. Eager execution [Wang and Uht, 1990] is even worse at selecting instruc

tions to speculate on than branch prediction, since it chooses to execute both sides of each

branch decision. This both requires more resources to execute the same number of spec

ulative branches concurrently and gives a lower speculation effectiveness, but the correct

branch is guaranteed to be executed. Since control independence is also exploited eager

execution is more effective than branch prediction for large amounts of resources.

Branch prediction and eager execution both suffer from the difficulty that they are trying to

predict the instruction stream in linear order from beginning to end. This restricts the scope

available for selecting instructions to execute speculatively. Split instruction techniques,

such as the multiscalar [Sohi et al., 1995], disjoint eager execution (DEE) [Uht and Sindagi,

1995], the Trace processor [Rotenberg et al., 1997], dynamic multithreading [Akkary and

Driscoll, 1998] and the WarpEngine, have more ability in this regard since they can choose

not to execute a block of code speculatively, and instead go beyond it to a control indepen

dent point as discussed in Section 2.1.2.

Indeed, the motivation behind DEE was to increase the speculation effectiveness by ex

ploiting control independence and calculating branch prediction confidence values [Jacob

sen et al., 1996; Grunwald et al., 1998]. Branch outcomes are assigned a probability by a

125

predictor and as multiple branches are speculated across these probabilities are calculated

cumulatively. Thus, the probability of a branch being taken reduces with depth. Branches

are executed speculatively if the probability is above a threshold value. This limits specu

lation distance and executes the code most likely to be committed. Both branch taken and

not taken targets can be executed in parallel if the probability is high enough, although one

is guaranteed to be discarded. DEE can be applied to both single and multiple flows of

control.

Threaded multipath execution [Wallace et al., 1998] applies the techniques used in DEE to a

simultaneous multithreaded architecture. Spare thread contexts are used to pursue alternate

branches in addition to the predicted one. Branches with lower confidence predictions are

pursued until all the thread contexts are used. Only branches on the predicted path are

considered for alternate paths. This selectively speculates on multiple branch outcomes up

to one level off the predicted path.

In the multiscalar paradigm the compiler partitions sequential code into tasks [Vijaykumar

and Sohi, 1998; Jacobsen et al., 1997] for execution as separate threads of control. Within a

task instructions are executed non-speculatively relative to each other, as they would be on

a superscalar processor. Tasks are selected such that they are control and data independent

as much as possible. Selective speculation is implemented by speculatively executing in

structions in following tasks, but not speculating on instructions in the current task, which

are more likely to be control or data dependent on incomplete instructions.

The multiscalar indiscriminately squashes all computation beyond a mis-speculation, which

makes it particularly important that accurate selective spe~ulation is available, otherwise

large amounts of accurate speculation will be rolled back by mis-speculation on independent

code. Indiscriminate squashing also tends to limit the speculation distance because the most

speculative operations will be squashed by any mis-speculation, and will have to reissue

from the starting point. However, tasks split the instruction window so speculation at a

distance can still be performed.

Split instruction window techniques are the reason resource usage must be used to compare

speculation effectiveness, rather than speculation distance. They can achieve extremely

large speculation distances while using low amounts of resources by choosing not to spec

ulate on a large intervening section of code.

126

Conservative execution appears as a single point on the speculation effectiveness graph

since it cannot use more resources through speculation because it does no speculation by

definition. For the same reason the speculation effectiveness of conservative execution is

always one.

More effective speculation for the same resource usage does imply lower execution time,

although a simplification has been made in Figure 7 .1 by representing resource usage by

a single value. The resource usage will vary dynamically across program execution. This

profile may differ considerably between the different speculation techniques, making a pre

cise comparison on speculation effectiveness difficult. This metric also takes no account

of the varying complexity of the techniques and the execution overheads involved in using

them.

It is also worth noting that selective speculation could be used to throttle speculation to

reduce processor energy consumption [Manne et al., 1998].

7 .2 Selective Speculation in the WarpEngine

The basic WarpEngine simulator allows simulation of speculative execution limited only by

the critical path of instruction issue. This allows speculation to later be limited in a variety

of ways independently.

In previously published results [Littin, 2000] speculation was restricted by limiting the

available execution n:sources, as measured by the number of frames. In the WarpEngine

virtual order simulator, frames are allocated strictly in virtual order, which is equivalent to a

processor using cancelback to free frames for blocks earlier in the virtual order with no time

penalty. This is a very simple heuristic for selectively speculating, based on the assumption

that events earlier in the virtual order are more likely to be on the critical path, and less

likely to be rolled back.

In Chapters 5 and 6 speculation was restricted by limiting the number of VTSs available.

Since VTSs are really just another execution resource this is similar to the first selection

method, although the blocks that get stalled may be a little different. For example, fixed

range VTSs allow a certain depth of speculative execution along each execution branch,

127

subject to rescaling. Variable range VTSs tend to provide a similar selection to frame limit

ing, without needing to assume zero latency cancelback to free frames. VTSs also provide

scope to be much more flexible in the selection criteria applied. Instead of using the upper

bound of VTSs required as the range size different heuristics could be applied, such as a

best estimate of VTSs required, modified by a factor for the estimated likelihood of the

instructions reaching commitment with their current source data.

The speculation selection method examined in this chapter again uses the VTS estimation

information obtained in Chapter 6. This time the important factor is whether an upper bound

can be placed on the number of frames (or VTSs) required by a subtree. If the size of the

subtree cannot be estimated, it often means the subtree has a complicated control structure

and will contain many blocks. Frequently it is not worth speculating beyond these subtrees

because the frames will be cancelled back to provide resources for the inestimable subtree.

By restricting the number of inestimable subtrees being speculatively executed concurrently

it may be possible to better select areas for speculation. As a side effect it simplifies the

hardware implementation, as we shall see.

7 .3 Resource Allocation

A means of selective speculation not previously explored is to base it on the ability to

allocate execution resources. The analysis described in Chapter 6 for allocating variable

range VTSs predicts the number of frames and VTSs required to execute a subtree. If an

upper bound can be placed on the size of the subtree then frames and VTSs can be reserved

for the subtree and efficiently allocated as required. Successive subtrees can continue to be

allocated in the same fashion following the reserved range. This suggests that rather than

organizing frames in a structure that allows them to be freely reordered they can be arranged

in a fixed virtually ordered array. This is a much simpler structure to implement, and should

allow faster frame allocation.

However, an upper bound on the number of frames required cannot be determined for all

subtrees. Recall that for subtrees containing dynamically bounded loops a proportion of the

remaining range of VTSs is allocated because the analysis methods developed are unable

to calculate an upper bound on requirements. If this proves to be insufficient rescaling

128

subsequently enlarges the range. A similar approach could be taken for allocating frames

from the queue. However, if the estimate is insufficient copying the contents of a large

number of frames would be required, and any in-flight instructions would have to have

results redirected to the registers in the new frame. This would be a costly operation. The

frame array could be modified by inserting additional frames at the exhaustion point, but

this removes the hardware simplicity that is so attractive about the scheme. The approach

investigated in this chapter is to restrict speculation from proceeding beyond the subtree

until an upper bound on the frames required can be established.

The virtually ordered array of frames is termed a resource block. A single resource block

with a finite number of frames is capable of executing a program containing many unana

lyzable subtrees, albeit with substantial limiting of speculation. Reference will be made to

the example tree and corresponding resource block in Figure 7.2 for illustration of frame

allocation. The resource block is illustrated as an infinite length list of frames for simplicity.

This can be implemented in a circular buffer by stalling when the frames are exhausted until

those at the head of the queue have been fossil collected and can be reused at the tail.

Typically the total size of the execution tree will be unanalyzable, so the whole resource

block is allocated to the tree (from node A). Subtrees are then allocated frames from within

this range. One subtree of unbounded size may be allocated frames at each level. Subtrees

B and C are allocated the requested number of frames from the start of A's range and subtree

D is allocated the rest of the resource block. Since the upper bound number of frames is

reserved for subtrees B and C, some reserved frames may go unused. These remain empty

until those ahead of them are fossil collected and they can be reused in order.

If a second unbounded size subtree exists at a given level it is not allocated VTSs until a

bound has been established on the first subtree's frame requirements. So subtree I is not

allocated frames until subtree H has been allocated, and is the GVT holder. Until GVT has

passed G it could still be rolled back and re-executed to fire other unbounded size subtrees.

At this point I can be allocated all the frames remaining in the resource block. If a subtree

has an established upper bound on its size all the subtrees within it will also be bounded.

Multiple resource blocks can be used to allow several subtrees of unpredictable size to

be speculatively executed concurrently. In the example in Figure 7 .2 two resource blocks

would allow subtree I to be executed using the second resource block without delaying

129

A

A B Bl B2

B ,
unused

fossil collected

H I

~
~I

G

Figure 7 .2: Allocating frames in a resource block

execution. Resource blocks have a virtual order and form a second layer to the virtual order

hierarchy above the frame ordering within the resource blocks. Resource blocks can be

viewed as a variation on the multiscalar processing units, with tasks divided by the end of

unanalyzable subtrees.

Two organizations of resource blocks are simulated here. In the first resource blocks are

arranged in a circular queue. Subtrees are allocated to resource blocks as described above,

strictly in order. They are fossil collected for reuse in the same order from the tail of the

queue. The drawback of this arrangement is that if an unanalyzable subtree splits into two

unanalyzable subtrees and then the left subtree splits into two more unanalyzable subtrees

130

a cancelback will be forced. For example, in Figure 7.3 initially subtree B is allocated

resource block 0, and subtree C is allocated resource block 1. However, when subtrees D

and E are initiated subtree D is allocated to block O and subtree E is allocated to block 1
'

since it is before subtree C in the virtual order, and subtree C must be cancelled back and

restarted in resource block 2.

I n/2 \ n/2

cf)~
0 2

Figure 7.3: Program forcing cancelback for a circular queue ofresource blocks

This problem can be avoided by allowing resource blocks to be dynamically reordered,

so that in the above example resource block 2 can be placed between blocks O and 1 and

used for subtree E. Subtree C can continue executing in block 1. Resource blocks could be

reordered using a crossbar switch or an ordering lookup table. Either method is feasible for

a small number of resource blocks.

In the simulations in this chapter resource blocks have been modelled with sufficient length

to avoid blocking due to frames running out within a resource block.

7.3.1 Assigning Frames to Resource Blocks

A resource block is equivalent to an ROB using a queue to maintain the order of instructions

(grouped in frames in the WarpEngine). Assigning a frame a position in a resource block

is equivalent to assigning an instruction to the ROB. Since instructions in a typical out-of-

131

order superscalar processor are assigned to the ROB in virtual order, the ROB is easy to

implement as a linear buffer. However, in the WarpEngine frames are allocated in the order

the execution tree is generated, providing motivation for multiple resource blocks.

Real resource blocks will have a finite length, and eventually the end will be reached. A

strategy must be devised for continuing to execute the tree branch in that resource block.

This section considers the available options, although all the simulations in this chapter use

resource blocks big enough that they are never exhausted in the course of executing the test

suite.

Circular looping

One possibility is to stop issuing more frames on that execution branch until frames at the

start of the resource block have been freed by fossil collection. Then the resource block can

be used as a circular queue, with the frames at the beginning being reused as the latest in

the virtual order.

Unfortunately this will only be of use in the resource block containing the GVT holder. All

other resource blocks will be blocked until they become the GVT holder. To gain maxi

mum advantage from speculation it should be possible to allow other execution branches to

continue either in the same resource block, or in another resource block if one is available.

Compiler controlled allocation

Compiler analysis could be used to force the processor to allocate frames to a new resource

block before the frames in the original resource block are exhausted. This involves altering

the shape of the execution tree to start a new sub-branch at the point switching to the new

resource block is desired, and indicating that the subtree size is unanalyzable for its sibling

earlier in virtual time. It may, in fact, be possible to give a good estimate of size, but this

would not force the branch onto a new resource block.

The problem here is that it will be difficult for the compiler to calculate a good point to

switch to a new resource block. The optimal point is one that guarantees that the end of the

resource block will never be passed, and also uses the resource block efficiently, allocating

132

instructions to as many of the frames in the resource block as possible. Note however, that

this method does not require any additional ability to reorder resource blocks.

Processor controlled allocation

The most effective option is to have the processor dynamically allocate frames in a new re

source block when the existing one becomes exhausted. This promotes maximum utilization

of resource blocks since only full resource blocks have their execution branch transferred to

a new resource block. Poorly utilized resource blocks may still result from a branch over

flowing to a new resource block and finishing a few frames later, but this is unavoidable.

This method presupposes the ability to reorder resource blocks dynamically, so that a new

resource block can be inserted following the exhausted one. Otherwise a cancelback or

squash of all future speculation is necessary, which is potentially disastrous for perfor

mance.

Allocating a new resource block, rather than trying to reuse the existing one through fossil

collection allows fossil collection to be simplified by restricting it to whole resource blocks

only. The resource block is simply marked for fossil collection once there are no actively

executing frames, or active resource blocks earlier in virtual time. While this makes fossil

collection somewhat bursty it can occur in the background to normal computation.

As with frame allocation, cancelback of resource blocks may be required to guarantee pro

gram completion. In the simulation results below virtual order simulation again provides the

equivalent of cancelback with no execution penalty by allocating resource blocks in priority

of virtual order.

7.4 Speedup

A major design decision in the use of resource blocks is the number to be implemented. In

this section results from the WarpEngine virtual order simulator are presented showing the

effect on speedup of the test suite using between one and sixty four resource blocks.

Since the frame requirement analysis derived in Chapter 6 is required for resource block

133

allocation, the same programs from the test ,suite are simulated: AVL tree insertion; binary

tree insertion; Fibonacci number generation; and quicksort. Results for Gauss-Jordan elim

ination and matrix multiply are not shown, since they provide ideal speedup with only one

resource block because the number of frames used can be determined at compile time.

Figures 7.4 to 7. 7 show results using resource blocks in a fixed order circular queue, mean

ing that all future speculative resource blocks must be cancelled back when a new resource

block is allocated. This restricts speculation in a similar way to the multiscalar, although

much more care is taken in the multiscalar to create tasks which avoid wasting speculative

execution in this way.

The curve for execution with the ideal VTS representation is shown to allow comparison

against the theoretical speedup limit.

The speedup of all the test programs is heavily restricted when using only one resource

block. The two tree insertion programs (Figures 7.4 and 7 .5) show a steady improvement

as additional resource blocks are supplied. Sixty four resource blocks provide a speedup

near to the theoretical limit. Each insertion forms a region of execution that is usually

independent from the insertions around it, allowing each to be allocated to a resource block.

a.
:::,

ideal -----+-
64 resource blocks ---><---
32 resource blocks
16 resource blocks ------u-----

100 8 resource blocks
4 resource blocks
2 resource blocks ·· ··
1 blocks

80

AVL tree insertion

---· -----:

al 60 a,
a.

Cl) . -- ... -.......•... -.

········*·······

40 ------
: :

_L------O------
________ :.:;i--

20 ::= ~r-~~-~~--t:~ :: __ I~_~_-:~:~t-~----_-_r_-:_~ : T~_-_-_-_J:-~ ~:~ ~r-~-~-_--:r:::~--~~~~
::::.·!. ·:.:·.:: ::_·::i::. -.-.::: ::::t·: ::. ·:.:·.:: ::.L·: _·_-_ ·:.:·_:: •·::: ::. ·:.:·.::i::_·::.-::. -_-_:·.i: :::::: ::. -.-.:t:: :::::: ::. ·.-J:·.:: ::::.·: _-_.

--------··--· ------~-------------·-·--------

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Problem Size

Figure 7.4: Speedup for AVL tree using resource blocks in a circular queue

134

100

90

80

70

60
a.

~ 50
8.

en
40

30

ideal
64 resource blocks
32 resource blocks
16 resource blocks
8 resource blocks
4 resource blocks
2 resource blocks
1 blocks

.•.. -·
····'"··:·····

Binary tree insertion

---+--
---)(---
........
······€!······
-·-•·-·
-·-0-·-

. -----_________ .., ____ _

• • -1(• •· •· ~-- •• ••••••• • ••••••. • ••. j • • •• • .. :;-... •• ·••• • .. - •• ••••••• ·. •••. • · .. ··~ • ·-·•~~•v••v••Y•·•

...... O • : •.................. 9 ~ L l :
10 '"::~:.:.i!l::::.:.::.::::.::.+:::.:::11:::.::.::!::::::.::·.:::-·::+·-·-·-·-·~.::'l-·-·-·-·-::::~-·-·-·-·-:::+·-·-·-·-·-·J·-·-·-·-::::::.i:::::::::.:::::::-

t·.~::-~~-:_~:~;=-=;~-J~ .. : :.:;~ =::t:.-.. -.: :: :: r..-.. : ·_: :::~~-- __ ·_.:.. _::::::.-_-t:: :::_·_: _:-t:::::.-.-.~:::t::.-~·.:·_::_
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Problem Size

Figure 7 .5: Speedup for binary tree using resource blocks in a circular queue

Fibonacci and quicksort (Figures 7.6 and 7.7), however, do not show much improvement

as the number of resource blocks is increased. This is largely due to the presence of recur

sion. Each time another level of recursion is begun all the more speculative events must be

cancelled back due to the fixed order of the resource blocks.

Fortunately recursion is relatively uncommon because it will always be difficult to allocate

linear resources to. These examples and others with similar structures will be helped by

estimating the number of resource blocks required by a subtree and reserving them in the

linear sequence. This analysis uses similar information to analysis of VTS requirements for

a subtree, but is only concerned with the presence of a subtree size bound, not the size of

the bound itself.

Figures 7 .8 to 7 .11 show the results of the same simulation, but for resource blocks which

can be dynamically reordered. This will complicate the hardware design, but should be

feasible for a small number of resource blocks.

The tree insertion programs show similar results to the fixed order blocks, due to the usually

independent operations mentioned above. The performance of Fibonacci and quicksort

improve to acceptable levels, although still some distance from the ideal.

135

Fibonacci

30

25

ideal ---+-
64 resource blocks ---x---
32 resource blocks •· -... ··
16 resource blocks ----e---
8 resource blocks -·-•·-·
4 resource blocks - · -e- · -
2 resource blocks ·· ·• --

···· __ 1 __ resource_ blocks _ _. .. _.··· ...

a. 20
::>
al
c%

a.
::>
"C
Q)
Q)
a.

(J)

15

10

0 '-----------'-________ ..__ _______,_ _______ __,

5 10 15

Problem Size

20 25

Figure 7 .6: Speedup for Fibonacci using resource blocks in a circular queue

Quicksort

100
ideal ---+-
64 resource blocks ---)(---

90 32 resource blocks
16 resource blocks ······£!-·····
8 resource blocks -·-•·-·

80 4 resource blocks ---E>-·-

2 resource blocks
1 blocks

70

60

50

40

30

20

0 t__ _ __JL._ _ __J __ __1 __ __!. __1... __ __,_ __ __._ __ __._ __ _._ _ ____,

O 200 400 600 800 1000 1200 1400 1600 1800 2000

Problem Size

Figure 7.7: Speedup for quicksortl using resource blocks in a circular queue

136

C.
:::,
-c a,
a,
C.
en

C.
:::,
-c
a,
a,
C.

en

120

100

BO

60

40

20

0
0

100

90

BO

70

60

50

40

30

ideal --+--
64 resource blocks ---><---
32 resource blocks ···ale···
16 resource blocks ······El······
B resource blocks -·-•·-·
4 resource blocks -·-E>-·-

2 resource blocks
1 resource blocks

··················j·······

AVL tree insertion

--------- _____ _[_ _______ •• J •••••• -·-·t·-·· ~·

f !
-• --· -- j_ .•. --- -.• -• ~ -- -• -.. --••

--------··"·
... ---------······*··············

1 1
····i····················t·· ··/·····

UJ····················-'·············-······-L---·········-1···--········--· 1-----·-----··
.. ···- ·····•················ •. ----~-----------~------------; ·-·--------r----·-·----,---------·-t·-·-·---- : ·-·-·-·-·-· ;------------; ----------

ii.~::-~:_:_~;~;:-i:J~-:~-:;~ :~.1~:--~.:-~:-~;Ji_;:.~---~-;~;~:.-:~.:~_:_~~~-:I:-~_:_~_:_.~~-);~;~;-~--;~-~-1~;~::~:-~--:_~_r~=-;:.~~~-:_.
200 400 600 BOO 1000

Problem Size

1200 1400 1600 1800 2000

Figure 7.8: Speedup for AVL tree using reorderable resource blocks

ideal
64 resource blocks
32 resource blocks
16 resource blocks
B resource blocks
4 resource blocks
2 resource blocks
1 blocks

_ •... --
-~ ... ··r

--+--

........
······El······
-·-•·-·
-·-E>-·-

·· ·•-·

Binary tree insertion

----r·········-- -- ·= :,._ __ _

1 j -- .. : .. --...... -. : ... -- . -- . -. •- .. -.. -.. --:· --. -. -. --- .-:.·. --... -. -·· ·~ ~ ... ---------

20 a·----e .. - , El : ·.············.····· ljl t ··············---··········· ·: ···-···-···
10 · .•·-··•-----· :-----·--:--------;-------~--·-·-- .~ ... · i....... :..... - .: ·········

t::-~~- :_~;~;:·==~;~_! ~~ ~-:;~ =~-:r:_.~-:-~=:-~= J:.~ :-~-·-~-;~;~ ~-=~-: ~_:_~-:~-:T:-~_:_~_: .. ~ ~-~J= ~;~;-~---~:-~.:t;~ ;:~::~-:-~-_:_~_t=-;:-~~~-: .. 0 '----.....l...----'----.l.....---L-----'---...,__ __ _._ ___ .__ __ ~ __ ___,

0 200 400 600 BOO 1000 1200 1400 1600 1800 2000

Problem Size

Figure 7 .9: Speedup for binary tree using reorderable resource blocks

137

30

25

Fibonacci

ideal-+--
64 resource blocks ---><---
32 resource blocks •· ·
16 resource blocks ·---e--
8 resource blocks -·-•·-·
4 resource blocks -·-E>-·-

' 2 resource blocks •• ·+ ··

--~~:;:·Js·cccs-····---··------1f5~~~.:::'.:?":::'.:::::

20 g.
i> __ .-------------

,,,,': al
l

C.
:,

al
GI
C.
en

15

..........
.. _ .. _ .. ___ ,,?/ .!!Iii.._· __ · ·••······ ················· ., •• , ... if····.-· ... ···:.::::·:_::::·.::.-.::~::::::::.:::.:.::.:.::.:.::.:.::.:.::.:::.·
- . ~ ---------···$·----------------·--·-···--·-·-·--·

10
/

5 -f ~:i::'.: :·l.• ... •••••-· ••- 1., •• •• •••••• ... 1 C ••- .C C C C -•-• ••

o~-------'---------''--------..J_ ______ _J

5

100

90

80

70

60

50

40

10 15

Problem Size

20

Figure 7.10: Speedup for Fibonacci using reorderable resource blocks

Quicksort

ideal
64 resource blocks
32 resource blocks
16 resource blocks
8 resource blocks
4 resource blocks
2 resource blocks
1 blocks

25

0 L_ _ ____JL_ _ __J __ ___! __ _J_ __ --1. __ ---1.. __ --'----....I...--...L.---l

1400 1600 1800 2000 0 200 400 600 800 1000 1200

Problem Size

Figure 7 .11: Speedup for quicksortl using reorderable resource blocks

138

It must be remembered that there will be other constraints on the speedup, such as the

number of frames, and resource blocks may not be the limiting factor.

7.5 Resource Blocks and Frame Limiting Compared

The graphs in Figures 7.12 to 7.15 show the speedup obtained when limiting the number

of reorderable resource blocks, compared with limiting the number of frames available in a

WarpEngine which does not use resource blocks.

AVL tree insertion
120

ideal --+--
16 res blocks ---)(---

8 res blocks ···-llE···

4 res blocks ······El·····
100 1000 frames -·-•·-·

500 frames -·-0-·-

100 frames ···•-·

80

C.
:::,
1J

60 a,
a,
C.

Cl)

40 ..

20--r,, : ,t-::: t ;· :·t ::::·r::·---r ::·-r::-~:l::,~~;t:;:~::~
c:l-···---·~---- ; 9 I I -.... {!) /) -···-··-········)------···-··-------·~---····-····-··-···
• -- .. ,. -- ·f .. -- ·•· -- --:-- -- -- -· .. ·· f· -- -· -- ~-- .. -- -- .. --)-- -- .. -- ~- -- -- -- -- -- ·! -- ··\·· -- .. -- -- --

0 '-----'-----'---......_ ____ __ ,__ _ __. __ -J... __ _._ ___ _ ___,

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Problem Size

Figure 7 .12: Speedup for AVL tree with frame limited and resource block limited execution

AVL tree insertion is the least limited of the test programs shown, relative to frame limita

tions, with sixteen resource blocks allowing greater speedup than a frame limit of a thousand

frames. The restrictions of resource blocks get steadily worse relative to frame limits for

quicksort, binary tree insertion and Fibonacci. This is in order of increasing available par

allelism, suggesting that resource blocks tend to limit the parallelism extracted to similar

absolute levels across all programs much more than frame limits do.

However, programs, such as matrix multiply and Gauss-Jordan elimination, whose frame

usage can be calculated at compile time are not restricted by resource blocks, but can suffer

substantial restriction by limiting the number of frames, as shown in Section 6.5.2 and in

139

C.
::,

al
G>
C. en

Binary tree insertion

100 r.---:---.-----.---,---r----.----.--"""T"----.---~-~
ideal
16 res blocks

90 8 res blocks
4 res blocks
1000frames

80 500 frames
100

70

60

50

40

---+--
---><---
........
······O······

··················•···········

] ... -• ---)--- --·-+- -·- --!·- - _____ J__ ___ -·-·-1.-·-·-·-·-·--~-----------~------·-·-·
..... : ;

30

20
~:_::.~r:- -1- - --1- ---~- ---i-:- --f :_::1: ::::;:::::

10

0
0

······!;:.:1~,::,:::0:::r-:::::i0:::I:::::::::::;::::::~::::~:::::::::::r::::::-::::-r::::-::·::::-j·::::::·::·:::T::~::·:·:::~:.

200 400 600 800 1000

Problem Size

1200 1400 1600 1800 2000

Figure 7.13: Speedup for binary tree with frame limited and resource block limited execu
tion

140

120

100

C.
::, 80 "Cl
G>
G>
C. en

60

40

20

0
5 10

Fibonacci

,· .,
---,• -·-

ideal ---+--
16 res blocks ---><---

8 res blocks · · · •· · ·
4 res blocks ······E-··-
1000 frames -·-•·-·

500 frames -·-E>-·-
100 frames ···•··

---~::::::.:-.~:~-----··

. .
-. .e-. -. -. -. -. -. -. -. -. -·-. -. -. -1. -. -. -. -. -. -. -. -. -. -. -. -. -.

15

Problem Size

20 25

Figure 7 .14: Speedup for Fibonacci with frame limited and resource block limited execution

140

a.
::,
-0
G)
a,
a.
rn

Ouicksort

100 r:;:::::;----r---,---:--.----,---,---,-----,----r---,-------, ideal -+-
16 res blocks ---><---

90 8 res blocks · --i!E· - -

4 res blocks -····O······
1000 frames

80 500 frames
100 fram_es

70

60

50

40

30

.. : :

··········-······'.···················-:---················-:·-················
.it-·----------~----•· -. -- ; . -·-·-·-· ---: ---·-· -·---.- ·-· -· -----. -+·--- ·-·-· ---:-----------· '. . -·-----·-·-+·-----·-·-.

20

10

0
0

f t;;r.;;;1;::,-:J'.''~'-'J:'';:~i;~;;J;;,;i1:~'-:;;;t;;;~
200 400 600 800 1000

Problem Size

1200 1400 1600 1800 2000

Figure 7.15: Speedup for quicksortl with frame limited and resource block limited execu
tion

more detail by Littin [2000].

It is estimated that five hundred to a thousand frames are as many as could reasonably be

provided in the near future [Calvert, 1997; Littin, 2000]. This limit restricts speculation to

a similarly to sixteen resource blocks.

7 .6 Speculation Effectiveness

Using the WarpEngine virtual order simulator, speculation effectiveness can be calculated

from the ratio of committed instructions to the total number of issued instructions. Com

mitted instructions can be obtained from the basic WarpEngine simulator, without transient .

state information, since only instructions which are ultimately committed are simulated.

The total instructions issued can be measured using the transient state extensions, since

rolled back instructions are also tracked in this version of the simulator. Each instruction

issued, whether it ultimately commits or not, is only counted once in the simulator, even if

it is rolled back and reissued several times.

The speculation effectiveness is plotted against the resource limit enforced in Figures 7 .16

141

to 7 .18 and C.17 to C.19 for the suite of test programs. Since the resource limit is measured

by the number of resource blocks available for resource block limited execution, rather than

the number of frames used, the two sets of curves are not exactly equivalent. A varying

number of frames will be used in each resource block. However, the figures in Section 7.5

can be referred to for the speedup relationship between frame limiting and resource block

limiting, and the number of resource blocks available is the important resource limit. All

programs in the test suite have been simulated with a variety of data sizes for both frame

and resource block limited execution.

For AVL and binary tree (Figures 7.16 and C.17) insertion resource block limiting shows a

substantially better speculation effectiveness frame limiting right across the range than. In

creasing the problem size moderately decreases the speculation effectiveness for both forms

of limiting, due to the larger split instruction window that is used over a longer execution

time. The curves for all data sizes are quite closely grouped, however.

0 2
0.9

0.8

0.7

II)
II) 0.6 Q)
C:
Q)

-~
1l 0.5
= Q)

C:
0 0.4 'i
"3
<.)
Q)

0.3 a.
(/)

0.2

0.1

0
0

4 6

500

AVL tree insertion

Resource blocks

8

1000

Frames

10 12 14

frames 100 items -+-
frames 300 items ---><--
frames 500 items · .. •·· •

res blocks 100 items ······B--···
res blocks 300 items -·-•·-·
res blocks 500 items ---o---

1500

16

2000

Figure 7 .16: Speculation effectiveness of resource block and frame limiting for AVL tree

For quicksort (Figure 7 .17), with small datasets resource block limiting allows more effec

tive speculation. However, as the size of the data set increases deeper recursion is employed

which, as previously noted, resource blocks do not cope with well. In instances of deeper

recursion the effectiveness is similar to frame limiting, which does not vary much with data

142

set size. The situation is the same for Fibonacci, although frame limiting performs better

than for quicksort.

"' "' Q)
C:
Q)

. .!:

&l
== Q)

C:
0 ·-;
:i
(J
Q)
C.

en

Quicksort

Resource blocks

0 2 3 4 5 6 7 8
0.6 ,--.----.---.----,--~---..;...._--.....;..--_:;

0.5

0.4

0.3

0.2

0.1

0
0

G

•·-·-·-·-·-·---· ·.. :

.......... >,.,: ············ .. ,:
-,-.,······························:$·····

G----·--$,

..._
·,.

'· '· '·,

'· '· '·

frames 100 items --+
frames 300 items ---><--
frames 500 items -··•···

res blocks 100 items ----e--
res blocks 300 items -·-•·-·
res bl.ocks 500 items -·-&·-

·····!····

···········t·-·················
······---.....

············ ,., __ , __ :::,... __

'· ~-~---·-·-----·-·-·-·-------·-·-· i ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·

. ------------ ------------- '·-·-·-·- -----·-·-·-·--

500 1000

Frames

1500 2000

Figure 7 .17: Speculation effectiveness of resource block and frame limiting for quicksortl

The frames used for both Gauss-Jordan elimination and matrix multiply (Figures 7.18 and

C.19) can be calculated statically for the whole program, hence they can execute uncon

strained in a single resource block. However, the analysis used in the transient state sim

ulations has been stated such the whole program is given all the available VTS range, and

the right-most branch of each subtree is given all the available range remaining after the

fixed estimate has been provided to all the other branches. When there is an even divi

sion of the VTS range between two subtrees, which could have been calculated precisely,

the parent's range is simply divided in half. This estimation performs suboptimally with

resource blocks, since each time the right-most branch of the tree is divided equally it is

treated by the simulator as two unknown size subtrees, which are allocated to separate re

source blocks. However, this is a much more interesting allocation pattern to investigate,

since performance will vary with the number of resource blocks. The essential pattern is

a backbone down the right side of the tree with known size subtrees branching to the left,

mixed in with some unknown size subtrees.

Even with artificially introduced unanalyzable subtrees the speculation effectiveness for

143

0 2 4
0.45

0.4

0.35

en
en 0.3 Q)
C
Q)

-~
0.25 Q)

= Q)

C
0 0.2 "" .!!!
:,
u
Q)

0.15 C.
en

0.1

0.05

0
0 500

Gauss-Jordan

Resource blocks

6 8 10

.... i

.......

12 14

frames 5 items --+-
frames 1 O items ---><---
frames 20 items

res blocks 5 items ······€!···-·
res blocks 10 items -·-•·-·
res blocks 20 items - · -e- · -

·············!···

··-·-:..
··•··

••••••••••.••.•••••••••••••.•••••••••••••• j

1000

Frames

1500

16

2000

Figure 7 .18: Speculation effectiveness of resource block and frame limiting for Gauss
Jordan

Gauss-Jordan elimination still levels off at eight resource blocks, not decreasing much be

yond four resource blocks. This demonstrates the small number of resource blocks are ac

tually being used. The relatively low value of the speculation effectiveness is indicative of

the large speculation distance within each resource block, and consequent mis-speculation

when combined with the large number of data dependencies.

Matrix multiply, on the other hand, shows perfect speculation effectiveness for all data sizes

and all numbers of resource blocks, despite the introduced unanalyzable subtrees. This is

caused by the completely control independent computation throughout this "embarrassingly

parallel" program, which will eventually commit all instructions that are issued. They may

be rolled back and re-executed several times, though, which is only recorded as a single

instruction issued by the virtual order simulator. The lower speculation effectiveness for

frame limited execution is caused by cancelback due to insufficient frame resources.

Interestingly, the speculation effectiveness in all the test programs does not vary much as

the frame limit is increased, but is always at relatively low levels. This indicates that the

basic selection heuristic in the WarpEngine, which selects frames early in the virtual order

for preferential execution, is not a very accurate method, but does scale well for increased

144

resources. The programs for which frame limiting does achieve quite high absolute levels

of speculation effectiveness, binary tree insertion, matrix multiply and Fibonacci, all have

large independent code regions.

7.7 Summary

Resource blocks are a useful way of selectively speculating for a number of reasons. They

allow speculation on branches of the execution tree to be selected early by using analysis

of the size of the subtrees. This means speculative execution is focused where it is most

useful, as shown by the speculation effectiveness results. Resource blocks use speculative

execution much more effectively than the frame limits which allow the same execution

speedup.

Arranging frames into resource blocks allows them to be allocated in a linear order within

the resource block. This has the potential to simplify the ordering enormously when com

pared with the model of a pool of frames to be allocated arbitrarily. Instead of needing to

assign an explicit VTS to each frame, only resource blocks need VTSs. This both reduces

the necessary length of VTSs and reduces the overhead of calculating VTSs over the life of

a program's execution.

Resource blocks are similar to the processing elements used in the multiscalar. Each pro

cessing element processes a task, which is a contiguous region of the instruction window. In

the same way each resource block is a contiguous region of the instruction window formed

by one execution subtree of unknown size and possibly several subtrees on which an upper

bound of size can be placed. Resource blocks are more flexible than multiscalar tasks how

ever, since several known size subtrees can be placed in a resource block with one unknown

size subtree at runtime, whereas tasks must be determined at compile time. The multiscalar

also requires that all future tasks be squashed when a task is squashed. The WarpEngine

allows resource blocks to be selectively rolled back.

The unified instruction window of a standard out-of-order superscalar processor is analo

gous to one resource block. The issues involved in resource blocks do not become important

until a split instruction is being used.

145

The simulation results presented in this chapter show that, even restricting resource alloca

tion to a small number of resource blocks, on the order of sixteen, reasonable speedup can

still be achieved. Recursive function calls badly affect the linear resource allocation. This

is an intrinsic problem with this structure and is uncommon in typical processor loads.

For programs with loop based parallelism, such as AVL and binary tree insertion, sixteen

resource blocks allow parallelism to be extracted of the same order as limiting frames to

five hundred to a thousand. It is likely that this is the number of frames that could be

implemented on a single chip WarpEngine with current technology. Where the parallelism

is recursion based, as in Fibonacci, or a combination of the two, as in quicksort, resource

block limiting is disadvantaged compared with frame limiting alone.

For the programs in the test suite used here resource blocks provide a better method of

selecting instructions for speculative execution. A larger proportion of those issued are

committed, compared with those executed under simple frame limits. This indicates that if

the resource requirements of a region of code can be determined in advance it is more likely

to contain independent instructions than those in unanalyzable regions of code.

Resource blocks f01m one level in a hierarchy of resource allocation which stretches from

the instruction and frame level through resource blocks to multiple chips. Work can be

conveniently split across chips using the process to allocate instructions to resource blocks,

some of which reside on different chips. There are many other issues beyond the scope

of this thesis involved in multiple chip operation, but resource blocks provide a convenient

basis for dividing processing into units for migration to multiple chips.

Chapter 8 follows on from this work to develop a virtual ordered memory system which

uses resource blocks as the basic level of its hierarchical organization.

146

Chapter 8

Twisted Memory

In the preceding chapters tracking the virtual order of memory operations has been ap

proached through explicit VTS tags. The ultimate intention of these techniques is to design

speculative memory systems for very large numbers of speculative accesses over a large

speculation distance. Memory systems proposed elsewhere (discussed in Chapter 2) are

restricted to a small number of speculative accesses, and typically a small speculation dis

tance.

A conceptual view of a virtual ordered memory system was presented in Section 3.3.7. The

key component in the virtually ordered memory system is the time-space cache, a multiple

version memory system supporting arbitrary speculative reads and writes.

The conceptual model is essentially a list of memory accesses to each address stored with an

indication of their virtual order so that the correct value can be returned for any subsequent

reads. It is important to record reads as well as writes to detect when a write must cause

a previously executed speculative read to be resatisfied. Rollback is achieved through anti

messages which remove the entry from the time-space cache, and which may also cause a

read to be resatisfied. Cancelback also requires the entries from the cancelled frames to be

removed from the time-space cache.

The time-space cache functions as a write-back cache, which reduces memory traffic to

spatial memory by not writing every value through to memory. When fossil collection evicts

entries from the time-space cache only the latest collected write to each address needs to be

written to spatial memory. This caching can be made even more effective by employing lazy

147

fossil collection, which will only evict fossil collected values from the cache when space

needs to be freed for new speculative entries. This has the advantage of reducing fossil

collection overhead by fossil collecting less often, as well as allowing a greater caching

effect. The time-space cache can also be used to cache values read from main memory in

the same way as a spatial cache.

The memory model assumed so far has been a unified speculative memory large enough to

hold all speculative memory references, and accessible in a constant number of cycles. This

could be implemented by an arbitrarily large time-space cache without any spatial memory,

simply retaining the fossil collected values in the time-space cache.

While storing fossil coliected values in the time-space cache is useful when there is unused

space, it is an inefficient use of memory, since memory locations in the time-space cache

space record a VTS, which is unused by fossil collected entries. A better use of memory

would be to have a small, fast time-space cache and the usual hierarchy of spatial memory

beneath it.

It is also desirable to have multiple distributed time-space caches to support scalability

across multiple processors, and also within a processor should the time-space cache prove

to be a performance bottleneck.

In this chapter the issues associated with using explicit VTSs, such as those developed in

Chapters 5 and 6, to implement a virtually ordered memory system are briefly discussed.

However, assigning a VTS to every block requires long VTSs, even with the more effi

cient representations. By combining explicit VTSs with fixed hardware ordering a smaller

number of explicit VTSs are required.

The main focus of this chapter, is the design and preliminary examination of a time-space

cache using the resource usage analysis developed in Chapter 7. A hierarchy of speculative

caches is used to order memory operations using a hybrid hardware ordered and explicit

VTS mechanism. This memory system is shown to provide a scalable, distributed solution

to the problem of ordering speculative memory accesses in a large instruction window.

148

8.1 Explicit VTSs

Several methods of assigning explicit VTSs to frames have been examined in detail in Chap

ters 5 and 6. Using variable range VTSs it has been shown that a 16 bit VTS is generally

sufficient to support execution on the WarpEngine with over a thousand frames, using the

VTS rescaling and allocation methods described in Chapter 6. However, adding 16 bits to

every memory operation, and then storing it in the time-space cache until it is fossil col

lected adds substantial overhead. The time-space cache will be significantly bigger than

spatial memory for the same number of entries in the cache.

Obtaining the virtual order of events, including memory accesses is a matter of comparing

the VTSs of the events. While this only requires comparing two integers, a fast operation,

accessing the time-space cache potentially requires many of these comparisons.

Satisfying a read correctly requires returning the most recent write to that address which

is prior to the read in the virtual order. A read requires finding the write to that address

with the greatest VTS less than that of the read. If the time-space cache is implemented as

a list of memory accesses the list corresponding to that memory address must be searched

and a comparison done with each existing entry. Reading could be made more efficient, for

example by using a hashing algorithm, but this would add to the complexity of inserting an

entry into the time-space cache, necessary for both reads and writes.

Writes and anti-writes also involve searching the time-space cache in order to identify reads

which need resatisfying with the newly written value, or with the value superseding the

rolled back value.

The address resolution buffer and speculative versioning cache described in 2.4.6 are re

stricted implementations of an explicit VTS time-space cache. They use the task sequence

number in the multiscalar processor to track the virtual order. This is much simpler in the

multiscalar than in the WarpEngine because tasks are allocated to processing units in a fixed

hardware order, and the largest published configuration consists of only eight processors,

making the sequence numbers much shorter than VTSs. This approach to time-space cache

design is not pursued further here, rather an approach based on resource blocks is developed.

149

8.2 Twisted Memory

The resource blocks developed in Chapter 7 suggest a natural hierarchy of virtual ordering.

The frames, and hence the memory accesses, are already organized in virtual order within

the resource block, so only the order between the resource blocks needs to be explicitly

maintained when comparing memory accesses for different resource blocks. The memory

accesses from each resource block fall within a contiguous virtual order range, not overlap

ping with any other resource block. This means that a read should return the most recent

write to that address from the same resource block, and will only need to access writes from

previous resource blocks if there has been no write that is earlier in the virtual order within

the same resource block. Only the latest write within a resource block for each address is

ever returned to reads in other resource blocks, although that write may be superseded as

speculative execution progresses.

The need to search through resource blocks to find a memory access, first in the current

resource block, then through progressively earlier resource blocks until an access to that

address is found, suggests a further hierarchical organization to the time-space cache. The

memory architecture proposed is shown in Figure 8.1 for four resource blocks. It is known

as twisted memory because of the way entries twist through the network as they are propa

gated to the different levels. The interconnections between twisted memory cells forms an

omega [Lawrie, 1975], or baseline [Wu and Feng, 1980], network topology.

The resource blocks themselves, each composed of an array of frames, are shown at the top

of the diagram. Each resource block is connected directly to a time-space cache cell, which

all memory accesses from that resource block initially go to. Level zero time-space cache

cells must record the frame number the access originated from, to track the virtual order of

memory accesses, since intra-resource block ordering is important at this level. However,

at lower levels only the resource block the access originated from is significant.

The principle of locality states that most reads will be satisfied by a write from the same

resource block, or a nearby resource block. This is an advantage for twisted memory be

cause most loads will be satisfied by traversing a small number of levels of the hierarchy.

Each level traversed adds to the latency of the operation, so reducing the average depth of

an access reduces the average latency of memory reads.

150

Level 0

Level I

Level 2

Implicit virtual ordering
Fully explicit addresses

2bit VTSs

11 Addresses with implicit 2 bit suffix

Figure 8.1: Layout of a twisted memory system with four resource blocks

At each level of twisted memory the memory accesses are sorted by the least significant bit

of their addresses and propagated down either the left or right connection to the next level

on that basis. The least significant bit is then redundant, since its value is implied by the

location of the twisted memory cell, so it is removed. The access is then sorted again, and

propagated to the next level based on the next bit of the address.

When the memory accesses have propagated to the bottom level of twisted memory all

accesses from the same address have been sorted into the same cell.

While the inter-resource block virtual ordering of memory accesses at level zero can be

determined purely from the twisted memory cell the access is in, this is not the case at

lower levels. To track the inter-block ordering a short explicit VTS is assembled as the

memory access propagates through twisted memory. One bit is added to the VTS at each

level based on the connection the access arrived at the next level on.

Figure 8.2 shows an example of two writes and one read to address 9 (1012) that have

propagated through the twisted memory, from resource blocks one, two and three. The

time-space cache entry is represented as VTS : OP(value) : address, where OP is the

type of access, read (RD) or write (WR). The diagram is a snapshot of the memory state at a

151

Level 0

Level I

Level 2

Implicit virtual ordering
Fully explicit addresses

2 bit VTSs

'-----~----' '-----~--' ,__ ___ __, ,__~__,11 Addresses with implicit 2 bit suffix

Figure 8.2: Propagation of a write through twisted memory

particular instant in real time. At some later real time an entry for an access may be inserted

anywhere in the virtual order. The write from resource block 2 with value 7, shown in bold,

is the latest access in real time order.

At each level one bit is also removed from the explicit address recorded, becoming implicit

in the position of the twisted memory cell. An earlier write to address 9 from resource block

two of the value 2 is not propagated to level one because it has been superseded by the write

with value 7 later in the virtual order. The read from resource block three returns the value

7 from the write in resource block two, which it matches with at level one.

Each cell in the time-space cache is identical, apart from the level zero cells, which addi

tionally contain the originating frame number. This contributes to a scalable design. The

number of resource blocks supported can be doubled by adding an extra level of cells to the

time-space cache. Of course, adding another level will increase the access latency to the

bottom level of the time-space cache and to spatial memory. This will ultimately limit the

size of the time-space cache. However, Chapter 7 showed that thirty two resource blocks

provide reasonable performance compared to frame limited execution.

The network can be implemented with more than two input and output connections per

cell. Four connections would effectively remove every second level of cells. Increasing the

152

number of connections between cells reduces the number of levels between the resource

blocks and spatial memory, reducing the propagation time and total latency of an access to

main memory. However, this makes the switching logic in each cell more complex.

As well as being scalable, twisted memory can function as a distributed design, with re

source blocks being split across multiple chips, and the time-space cache could be used as

part of a cross chip hierarchy. Multi-processing introduces a host of new issues which are

beyond the scope of this thesis.

8.2.1 Write

When a write operation is executed the value is written to the level zero cell attached to the

resource block, along with the frame number. Only the latest write in the virtual order to

that address by the resource block will ever be accessed by other resource blocks, so only it

must be propagated to lower levels.

If the resource block contains any reads to that address later than the currently executing

write, but earlier than any other write, then a read reply must be reissued for them with the

value of the new write, since they were incorrectly speculatively executed. All other writes

to that address will be superseded by the propagated write, so they are not propagated and

are only recorded in the level zero cell.

When a write is propagated to a lower level it is propagated left or right based on the least

significant bit of the address, in Figure 8.2 a zero sends the entry left, a one sends it right.

In the WarpEngine bit two is actually used to achieve a more even distribution, since all

memory accesses are word aligned.

If there is already a write in the level one cell with the same VTS as the new write it is

earlier in the virtual order and should be overwritten. Thus, there are a maximum of two

writes to each address recorded in the level one cells.

The pseudocode for executing a write operation in each twisted memory cell is shown in

Figure 8.3. The procedures within the code are described in Table 8.1.

At level one a check must again be made for any dependent reads. Reads from the same

originating block as the write can be ignored, they will have been dealt with at level zero.

153

procedure description
JnsertlnList(X) Inserts memory access X into the list in virtual order
Next(X) Returns the memory entry after X in the virtual order
Previous(X) Returns the memory entry before X in the virtual order
AccessType(X) Returns memory operation of the entry X, either READ or

WRITE
ReturnValue(X, Y) Sends the value of the write X as the result of the read Y
LatestW rite(X) Returns true if X is the latest write in this memory cell
LSB(X) Returns the least significant bit of the address of X
PropagateLe ft (X) Propagate the memory operation X to the next level of twisted

memory on the left channel
PropagateRig ht (X) Propagate the memory operation X to the next level of twisted

memory on the right channel
GetM atch(X) Returns the entry that matches the anti-message X
Delete(X) Remove message X from the memory cell
VTS(X) Return the VTS of the entry X
Commit(X) Write X to spatial memory

Table 8.1: Procedure descriptions for twisted memory pseudocode

{ N is the new write }
{ Level is the level of twisted memory being operated on }
{ MAXLEVEL is the bottom level of twisted memory }

InsertlnList(N)
E +- Next(N)
while (AccessType(E) =READ)

ReturnValue(N, E)
E +- Next(E)

{ Find matching reads }

if((Level > 0 OR LatestWrite(N)) AND (Level < MAXLEVEL))
if(LSB(N) = O) { Propagate to next level}

PropagateLeft(N)
else

PropagateRi g ht (N)

Figure 8.3: Algorithm for a twisted memory write operation

154

Reads from later in the virtual order, as indicated by their VTS must be resatisfied. Any

which are dependent on a different, later write which has already executed will not have

propagated to this level of the time-space cache.

The write is then propagated in the same way to level two. Another bit is removed from the

address and another bit is prepended to the VTS, chosen as before.

The propagation process continues until the write reaches the bottom of the time-space

cache. The bottom level (level two when four resource blocks are used) is connected to the

usual non-temporal memory system, although writes are not propagated to the rest of the

memory system at this point because they are still speculative.

Each bottom level cell of the time-space cache contains the latest write, if any exists, from

each of the resource blocks for a subset of the memory address space. Each write has a VTS

indicating the resource block it originated from.

8.2.2 Read

A read operation is also issued to the level zero cell attached to its originating resource

block and recorded there. If a write earlier in the virtual order can be found in the level zero

cell its value is returned and the operation finishes there.

If no matching write is found, however, the read is propagated to the next level in the time

space cache based on its address in the same way as for a write. The read is recorded in

this cell too, although the frame number is not required. As with a write, one bit of the

address becomes implicit in the twisted memory cell, and a one bit explicit VTS is attached

to the access based on the connection it arrived at the cell on. Now the comparison with

writes is based on the VTS rather than the frame number. Writes with the same VTS as the

read can be ignored, since they would have matched at level zero if they were earlier. If an

earlier match still cannot be found the read is propagated to the next level. The most recent

memory access in Figure 8.4 is a read from resource block three, shown in bold. It matches

with a write from resource block two at level one and does not propagate any further.

Pseudocode for the algorithm to execute a read operation in a twisted memory cell is shown

in Figure 8.5, using the procedures in Table 8.1.

155

Level 0

Implicit virtual ordering
Fully explicit addresses

Level 1

2 bitVTSs
Level 2

'--~----' '--~----' '--~---'-" '--~--'I Addresses with implicit 2 bit suffix

Figure 8.4: Propagation of a read through twisted memory

{ N is the new read }

InsertlnList(N)
E +- Previous(N)
while(E # null AND AccessType(E) #WRITE)

E +- Previous(E)

if (E i= null)
Return Value(E, N)

else
if(LSB(N) = 0)

PropagateLef t(N)
else

PropagateRight(N)

{ Find matching write }

{ Propagate to next level }

Figure 8.5: Algorithm for a twisted memory read operation

156

If a matching speculative write is not found when the bottom level has been searched then

the read is issued to spatial memory in the same way as for non-speculative architectures.

This means that a committed value is returned. Wherever the value is obtained it is returned

through the network to the originating resource block by performing the reverse process of

removing bits from the VTS and adding bits back onto the address.

8.2.3 Anti-write

An anti-write is issued when a write instruction or a frame containing a write instruction

is rolled back. It propagates through the time-space cache in the same way as the original

write did, but it removes the matching write from each level of the time-space cache.

The anti-write doesn't need to contain the value of the original write. Only the address and

frame number is needed at level zero to match it with the appropriate write. Beyond level

zero only the address and VTS is needed.

In addition to removing the write which has been rolled back, the previous write to that

address from the same resource block must be propagated through the twisted memory to

take its place. If there is no earlier write to that address from the same resource block, or

the rolled back write has already been superseded, nothing is propagated.

It must also cause any dependent reads to be resatisfied by an earlier write. If there is an

earlier write to the same address in the same cell that satisfied the read the first time it simply

returns a read reply with the new value.

If the read cannot be satisfied in the same time-space cache cell it must continue to propagate

through the time-space cache in the same way as a newly issued read, inserting an entry into

the cells it reaches for the first time.

The read will never be resatisfied at an earlier level after the anti-write, otherwise the write

being rolled back would already have been superseded for that read.

Figure 8.6 shows the algorithm for executing an anti-write operation in a twisted memory

cell. The procedures used are described in Table 8.1. The example in Figure 8. 7 shows a

write to address 9 being rolled back in resource block two. The anti-write message (ab

breviated AW) propagates through the time-space cache and annihilates with the matching

157

{ N is the new anti-write }
{ Level is the level of twisted memory being operated on }
{ MAXLEVEL is the bottom level of twisted memory }

W +- GetM atch(N) { Remove matching write}
if(W -=f- null)

Delete(W)
P +- Previous(W) { Find previous write}
while(P -=f- null AND AccessType(P) -=f- WRITE)

P +- Previous(P)
E +- Next(W)
while (AccessType(E) =READ) {Resatisfy reads}

if(P -=f- null)
ReturnValue(P, E)

else if(LSB(E) = 0) { Propagate read to next level}
PropagateLef t(E)

else
PropagateRight(E)

{ Propagate previous write to next level }
if((Level > 0 OR LatestWrite(W)) AND (Level < MAXLEVEL))

if(LSB(W) = 0)
PropagateLef t(W)

else
PropagateRight(W)

if(LSB(N) = 0)
PropagateLef t(N)

else
PropagateRight(N)

{ Propagate anti-write to next level }

Figure 8.6: Algorithm for a twisted memory anti-write operation

158

write. Then the previous write to address 9 is propagated to replace the rolled back write.

The read from resource block three is resatisfied with the new value of 2.

8.2.4 Anti-read

An anti-read is issued when a read instruction is rolled back. It removes the read entry from

all the time-space cache cells it propagated to. The algorithm for doing this in each cell is

shown in Figure 8.8.

Read entries must also be removed from the lower level time-space cache cells when a

write resatisfies a read at a higher level. In the example in Figure 8.9, following on from

Figure 8.2, a write in resource block three resatisfies an already speculatively executed read

from its own resource block, and the read had not previously matched a write until level

one of the time-space cache. An anti-read must be issued to remove the read entries from

all levels below level zero. If this is not done it may cause subsequent writes from other

resource blocks to resatisfy the read incorrectly.

8.2.5 Fossil Collection

When a resource block is fossil collected the time-space cache entries generated by that

resource block can also be fossil collected. This allows the VTS to be reused when the

resource block is reused. It also frees space in the time-space cache occupied by memory

operations which are no longer speculative.

Fossil collecting at the granularity of resource blocks allows the fossil collection message to

simply propagate through the twisted memory, fossil collecting all messages with a match

ing VTS. As the fossil collection message propagates through the time-space cache it deletes

all entries, both reads and writes, with a matching VTS. At the lowest level of the twisted

memory, connected to spatial memory, writes matching the VTS are committed to spatial

memory by simply writing them to spatial memory before deleting the copy in the time

space cache. This process is shown in the pseudocode in Figure 8.10.

As resource blocks are fossil collected they are available to be reused. This means that

resource block zero, which started as the earliest resource block in the virtual order, will at

159

Level 0

Level I

Level 2

Level 0

Level I

Level 2

Implicit virtual ordering
Fully explicit ad<hesscs

2 bit VTSs

Addresses with implicit 2 bit suffix

(a) Propagation and annihilation of an anti-write message

Ii
oi:,a:i:
,,,,,·;;,

Implicit virtual ordering
Fully explicit addresses

2 bit VTSs

Addresses with implicit 2 bit suffix

(b) Propagation of a replacement write

Figure 8.7: The effects of an anti-write in twisted memory

160

{ N is the new anti-read }

R +- GetM atch(N)
if(R-=/= null)

Delete(R)
if(LSB(N) = 0)

PropagateLe ft (N)
else

PropagateRight(N)

{ Remove matching read }

{ Propagate to next level }

Figure 8.8: Algorithm for a twisted memory anti-read operation

some point be the latest resource block. To ensure that memory accesses from it are treated

as such in the time-space cache, an epoch counter is used to indicate whether the ordering

of resource blocks has wrapped around. Only one bit is needed, which is incremented each

time fossil collection begins at resource block zero again. If the epoch bits of the two

resource blocks are different the usual ordering is reversed. The epoch bit is attached to

VTSs of all time-space cache entries based on the epoch of their originating resource block.

This is also why the latest write from each resource block must be propagated right to the

bottom of the time-space cache. If it could be guaranteed that resource blocks are always in

a fixed relative order, only the latest write in each cell would need to be propagated to the

next level.

Figure 8.11 shows an example where resource block zero is the latest in the virtual order.

The read in bold from resource block zero should return the value 7 from the write in

resource block three, encountered at level two, not the write in resource block one with the

value 5, encountered at level one, although it may be returned speculatively and rolled back.

The epoch of each entry is recorded as / epoch appended to each entry.

If the epoch bits of two memory accesses are different they should not produce a match

unless the bottom level of the time-space cache has been reached, since there may be in

tervening accesses at a higher level. In the bottom level cells the latest accesses from each

resource block have been sorted by address. All relevant speculative memory accesses to

an address are recorded in a single cell, so a conclusive comparison may be made.

The fossil collection process described above commits stores to spatial memory immedi

ately their resource block is fossil collected. In fact, it is not necessary to commit the writes

161

Level 0

Level 1

Level 2

LevelO

Level I

Level 2

Implicit vinual ordering
Fully explicit addresses

2 bit VTSs

Addresses with implicit 2 bit suffix

(a) Propagation of a new write

Implicit vinual ordering
Fully explicit addresses

2 bit VTSs

Addresses with implicit 2 bit suffix

(b) Annihilation of falsely propagated read

Figure 8.9: The effects of an anti-read in twisted memory

162

{ N is the fossil collection message }
{ H is the earliest entry in the cell }
{ Level is the level of twisted memory being operated on }
{ MAXLEVEL is the bottom level of twisted memory }

while(VTS(H) ::; VTS(N))
if(Level = MAXLEVEL AND LatestWrite(H))

Commit(H)
Delete(H)
H +- Next(H)

if(Level < MAXLEVEL)
PropagateLeft(N)
PropagateRight(N)

{ Commit latest write }

{ Propagate to next level }

Figure 8.10: Algorithm for a twisted memory fossil collection

Level 0

Level I

Level 2

Implicit virtual ordering
Fully explicit addresses

2 bit VTSs

Addresses with implicit 2 bit suffix

Figure 8.11: Ordering time-space cache entries using an epoch counter

163

until the resource block is allocated for reuse, or space needs to be freed in the time-space

cache for new memory entries. This lazy fossil collection improves the effectiveness of

the time-space cache, since more reads can be satisfied in the time-space cache rather than

going to spatial memory. It also lowers the bandwidth to spatial memory consumed. If sev

eral resource blocks, or at least their memory accesses, are fossil collected at the same time,

only the latest write in the virtual order to that address needs to be written to spatial ~emory.

This has the potential to substantially lower the bandwidth required to spatial memory.

8.3 Evaluation

The remainder of this chapter presents some preliminary results, aimed at demonstrating

the feasibility of the twisted memory concept. The main focus here is on the bandwidth

consumed by speculative memory accesses, both within the time-space cache and from the

time-space cache to the spatial memory hierarchy. This is a major area of concern for

aggressively speculative execution, since the bandwidth required will be increased both by

the high levels of parallelism being extracted and the increased number of accesses due to

speculation. Bandwidth to spatial memory is the more important of the two, since the time

space cache is small and likely to be on the same chip as the CPU, while spatial memory

will generate traffic off.-chip at some level of the hierarchy.

Twisted memory is simulated using the WarpEngine virtual order simulator with transient

state tracking. Twisted memory with four resource blocks, as described in Section 8.2, is

used in all the results described below, both to narrow the design space, and because of

simulation time limits. The time-space cache is modelled by fixed latency between levels of

one cycle and an eight cycle latency to spatial memory. One cycle is the minimum possible

latency between levels, and eight cycles was used for the latency to twisted memory to

match the standard latency of a load, as given in Table 4.1. An arbitrary number of entries

may be placed in each cell.

Lazy fossil collection is used in the simulations, although the virtual ordered simulation

method requires that time-space cache entries are sometimes fossil collected earlier than

absolutely necessary. The virtual order simulation paradigm also forces all writes to the

time-space cache to be propagated all the way to the bottom of the twisted memory. It is not

164

possible to tell in advance whether any writes later in the virtual order (and hence later in

the simulated order) will be written to the time-space cache at an earlier real time, meaning

they would not need to be propagated.

The bandwidth measurements presented are pessimistic because of the limitations of virtual

order simulation. Although no frame limits are placed on execution, it was shown in Chapter

7 that four resource blocks limit execution in similar ways to around a thousand frames. The

write bandwidth to levels other than level zero and spatial memory is pessimistic because

full write through to all levels of the time-space cache is forced by virtual order simulation.

The number of writes at these levels will normally be substantially reduced.

For CC\mparison, bandwidth consumed was also measured using a unified time-space cache,

as has been used in the earlier parts of this thesis.

8.4 Memory Bandwidth

8.4.1 Average Memory Bandwidth

An important aspect of memory system bandwidth is the average bandwidth required. In

the absence of a detailed low level model this gives an idea of whether the memory through

put can be sustained. Although simulations may show that the peak bandwidth required is

beyond what could reasonably be supplied, if the average is within the capabilities execu

tion can continue with minimal impact by delaying some accesses until the bandwidth is

available.

The bandwidth used can be measured either as the bandwidth from each cell, or the to

tal bandwidth consumed across the level. Total bandwidth is only meaningful where it is

feeding into a single component, such as spatial memory, or as an aggregate where the

bandwidth across each connection is similar.

The results in Figures 8.12 to 8.17 show the average read and write bandwidth required to

execute the test suite using a four resource block twisted memory. The bandwidth has been

aggregated over all the connections on each level for ease of presentation. This bandwidth

is provided by several connections at each level, four originating from the resource blocks

165

and terminating at spatial memory, and eight connections everywhere else. Many of these

data paths are entirely independent, sharing neither source nor destination cell. The curves

on the graphs are labeled with the level the access is being made to.

For comparison the same measurement for a unified time-space cache using four resource

blocks has also been shown on the graphs. The discrepancies between accesses to the uni

fied time-space cache and level zero of the twisted memory time-space cache are due to the

change in access patterns caused by the different access latencies. The unified time-space

cache was simulated with a store instruction latency of 2 cycles and a load latency of 8 cy

cles. An additional latency of 8 cycles was added for reading to or writing from memory to

represent the long latency usually associated with a large monolithic memory. The twisted

memory simulations use a cumulative latency of 1 cycle per level of twisted memory and an

additional 8 cycles to spatial memory for both reads and writing of fossil collected values.

The same instruction latency of 8 cycles is added for reads, but no additional latency is im

posed on writes. This gives a maximum read latency of 19 cycles for values retrieved from

spatial memory via twisted memory. This has little affect on the execution times for all the

test programs except Gauss-Jordan and quicksort, where the times are lower for the twisted

memory simulations. The total number of memory accesses for these two programs, and

AVL tree insertion, are substantially reduced when twisted memory is used, while they are

similar for the other programs.

All the graphs show a drop in the bandwidth required between level zero and level one for

reads, indicating that the level zero cells are performing the caching hoped for. The extent

of the success of caching at level zero depends on the locality of accesses. In general the

bandwidth requirements continue to decrease further from the resource blocks.

The write bandwidth required to spatial memory, caused by committing fossil collected

values, is much lower than the total number of writes, showing write caching in the twisted

memory again is effective. This could be improved even further by further attention to

improving the simulation of lazy fossil collection.

For AVL, binary tree and Fibonacci the average number of memory accesses is well below

one access initiated per cycle for both reads and writes, a level that is easily sustainable even

assuming accesses have a latency of several cycles. For quicksort the averages fall in the

range of several accesses initiated per cycle, except for values being retired to spatial mem-

166

Cl>
0

cilCl>i;'

II)

"'
~

AVL tree insertion reads

0.7 ,---------,-------.--------------

0.6

0.4

unified-+
level O ---><--
level 1 --- -
level 2 ·--a-
spatial ---•---

i':' 0.3
0

-~~=-:==.=.:~~:-:=_:_:::~~::-~~:~:~;~;:~:~.;:;;E_:.~: __ ~ :.:.::.-~:::.:::::::::.~..::~:;:.:.::!~~ :, __ --- ------------- ---------------- --- -- ____ : ___ ----- ------ ----- ----- ---------- ---- ----- --- ----
-- --·-----· -·---- ---·-·- -- ---- I---· -·---·-·---------·---·---·~----·-·-·-·-·-·-·-·-·-·------~----·-·-------·-·-·---·-·-·---· E.

Cl>
::l!:

Cl>

0.2

0.1

o~-------,.___ _______ ,.___ _______ J__ ______ ___J

100 150 200

Problem Size

(a) Reads

AVL tree insertion writes

250 300

0.4 ,----------,----------,------------------

0.35

0.3 ----

unified -+
level O ---><--
level 1
level 2 -----a---
spatial ---•--·

l 0.25 --------- ···!···-·······································-····

11)

~

~
<!:'
0
E
Cl>

::l!:

0.2 _________ j_ _______________________ , ________ _

0.15 ···)··

OL--------'-----------'----------'-------_J
100 150 200

Problem Size

(b) Writes

250 300

Figure 8.12: AVL average memory bandwidth per cycle for twisted memory

167

a,
u
t a, ., .,
a,
u
u
res
~
0
E a,
~

a,
u
~ .,
a, ., .,
a,
u
u
res
~
0
E a,
~

Binary tree insertion reads

0.1

0.08

0.06

0.04 ···············+······················(···· ···\

0.02

0 ~--~ ___ ..__ __ __._ ___ _._ __ -l.. ___ ..,_ __ --l. ___ ..J..... __J

100 200 300 400

0.05

0.045

0.04

500 600 700
Problem Size

(a) Reads

Binary tree insertion writes

800 900

unified -+-
level O ---><--
level 1 --·•·-
level 2 ··--El-·
spatial -·-•·-·

······.···················

1000

0.035 ~-~~~~~-, ' ----

0.03

0.025

0.02

O.Q15

0.01

0.005

............. : ~~~~.=t-=~c_-J_ __ _L_···_

: : -. - - -·- - -~·-·- - -. _ _:_
.................... ,. .. ~::::,-, __ ~ - - -- -

--- -- : :

-~---·-•·-·- ~-- -·- - -----+ - -·-·-·-·-
·- .. ···········-···

····················•·•

0 '------'----L-----'----'-----'-----'----'-----'----'

100 200 300 400 500 600 700 800 900 1000

Problem Size

(b) Writes

Figure 8.13: Binary tree average memory bandwidth per cycle for twisted memory

168

a,
0

0.25

0.2

f 0.15
U)
U)

~
c::-
~ 0.1
a,
~

0.05

Fibonacci reads

----~:~~.-----=------ ~ -------------·; ----------·-··
---~-~-~---········t···········-.a----·+-----------+·-·--·-----

__ . .:.. ... -• ... ···: · .. -·.· .. - .. ; ·

•

o~---~---~---'-------''------'------1------1---_J

0.16

0.14

a, 0.12

1
a,
U)
U)
a,

~
c::-
0
E
a,
~

0.1

0.08

0.06

0.04

0.02

4 6 8 10

......... 111--------+------

12

Problem Size

(a) Reads

Fibonacci writes

14 16 18

: : ;
~·--................ ~-=·=··=· -~--

............•• j... . .. ·!··

;-·- - --- _ . .._._ -·-·- --· :·-·-·-·- --·-· :---·-•·- - -·: - -·- - -·- -: ·-·- -·-·-·-·

···········!········· ······!···· .. ····

20

0 .__ __ __,.__ __ __,.__ __ __,'------'-----'------'------'-----J

4 6 8 10 12

Problem Size

(b) Writes

14 16 18 20

Figure 8.14: Fibonacci average memory bandwidth per cycle for twisted memory

169

200

Cl)

} 150
Cl) .,
~
:;!
~
~ 100 , 0 ..•.••.

Cl)

::!E

Cl)

u
>,

~ .,
Cl) ., .,
Cl)
u
u
t'IS

~
0
E
Cl)

::!E

50

6 8

1000

900

800

700

600

500

400

300

200

100

0
4 6 8

10

10

Gauss-Jordan reads

12
Problem Size

(a) Reads

Gauss-Jordan writes

12
Problem Size

(b) Writes

14 16 18 20

14 16 18 20

Figure 8.15: Gauss-Jordan average memory bandwidth per cycle for twisted memory

170

200

C1)

} 150
C1)

~
~
~
0
E
C1)

::iE

100

45

40

35

15

10

5

15 20

15 20

25

Matrix multiply reads

30
Problem Size

(a) Reads

35

Matrix multiply writes

25 30
Problem Size

(b) Writes

35

40 45 50

40 45 50

Figure 8.16: Matrix multiply average memory bandwidth per cycle for twisted memory

171

G)

u
Q'
UI
G)
UI
UI
G)
u
u
Ill

~
0
E
G)

:E

Ouicksort reads
14 r---:-:::;;;;::--r--:~~-,-~~---,~~~~~~-.-~~--.-~~~.--~-----,

unified-+-

12

10

8

6

4

2

level O ---><--
level 1 ···ii···
level 2 .. ·-·El··-· 1 • 1 . - ;-- ·······--··········.···.:· --l ~:1------,-

···· .· --.~.·· .··· .. ···· --.r····· -:·· :

.. 7 : \ :

.------- . l ;

.-------

0 ~---~---..__ ___ _._ ___,__ ___,__ ___1.... ___1.. ___J

I
UI
G)
UI
UI
G)
u
l;l
~
0
E
G)

::ii:

100

20

18

16

14

12

10

8

150

unified-+
level O ---><---

200 250 300
Problem Size

(a) Reads

Quicksort writes

350 400 450 500

level 1 ···ii : :....... . . · ·
level 2 -·-·El····.. · · i i

spatial··:,.·-•·-: • :.................. i ·
; 1 !

......................•......................... 1 1

. .

6

4

2 ~~~1-1--1---'--~
i l \ i 1 o ____ ..._ ___ ...,_ ___ _._ ____ ___ _._ ___ __._ ___ __,_ ___ _.

100 150 200 250 300
Problem Size

(b) Writes

350 400 450 500

Figure 8.17: Quicksort average memory bandwidth per cycle for twisted memory

172

ory which are well below one access initiated per cycle. This level may be more dffficult

to sustain, although it may be possible with careful memory design. Matrix multiply and

Gauss-Jordan require very high bandwidth to memory to fully exploit the levels of paral

lelism achievable with resource blocks. The high memory bandwidth is caused by the large

number of frames used by these programs in resource blocks because they are statically an

alyzable. When the frames available are limited the parallelism will be constrained to levels

far below those simulated here.

8.4.2 Bandwidth Profile

Important as the average bandwidth required is, the temporal distribution of accesses is also

important. In a real system the bandwidth limit will be a maximum number of concurrent

accesses from each time-space cache cell, so the peak bandwidth requirements become

important.

In the simulations in this chapter no bandwidth limit is applied, instead the peak bandwidth

that can be utilized is measured. If this peak exceeds the bandwidth available, some of the

accesses will have to be delayed. If the peaks occur sparsely and the average bandwidth re

quirements of the local region are low the accesses will not have to be delayed for long, and

performance will not be heavily impacted. If there are sustained regions of high bandwidth

requirement then memory may become the performance bottleneck.

Figures D.1 to D.36 show the number of memory reads and writes initiated on each cycle

as a bar with a width of one cycle. There is a separate graph for each level of the time-space

cache, with each twisted memory cell at that level (referred to as resblock Oto resblock 3)

plotted separately. Writes to spatial memory are not shown on a cell by cell basis because the

bandwidth will probably constrained by spatial memory, where all the bottom level twisted

memory cells are writing to a single unit. The graph of the aggregated accesses to spatial

memory is also included, plotted alongside the number of frames actively executing at that

time, and the graph of the access profile to a unified time-space cache. The bandwidth due

to fossil collection is recorded on this graph.

The test programs used are the same ones chosen in Chapter 7, with an arbitrary data set

size chosen for each available program.

173

Littin [2000] showed that in the count of committed instructions there are more reads than

writes, usually around double the number. However, this may not necessarily be the case in

the memory bandwidth profile, due to speculatively executed instructions and the differing

caching characteristics of twisted memory for reads and writes.

The important feature of the bandwidth profiles is the general trend of the accesses, the

peaks and the relative changes between the levels. Although the graphs appear to be densely

packed with multiple accesses on every cycle this is an artifact of the graphing resolution.

There are actually many interspersed cycles with no memory accesses, as can be seen from

the enlarged regions of the level zero graphs in Figures D.37 to D.42. A region of five

hundred cycles has been selected from each where the number of memory accesses is high

est. An indication of this spacing can also been seen in the average bandwidths below one

instruction per cycle for AVL, binary tree and Fibonacci seen in Section 8.4.1. With the ex

tremely high parallelism of matrix multiply and Gauss-Jordan, a high sustained bandwidth

is necessary to support the speedup gained in the simulations.

In line with the average bandwidth results reported above, the peak bandwidth required for

reads consistently declines at the level zero cells, showing the effectiveness of caching at

that level. Elsewhere in the twisted memory the accesses are largely being redistributed

between the different cells, since almost all accesses are propagated from level one to level

two. In some cases accesses do not propagate all the way to level two because they are

rolled back before they get there.

In most cases the accesses are evenly distributed amongst the address sets used at level

two, but AVL shows a bias towards resource block three due to the data structures used

for storing the nodes of the tree. The pointers to other nodes of the tree are altered much

more often than the value itself. Matrix multiply shows an excellent example of memory

accesses predominantly from a single resource block being redistributed through the twisted

memory. The memory accesses are mainly from resource block zero early in the program

and resource block zero towards the end, but throughout the program are evenly distributed

amongst all the cells at level two. The uneven distribution of memory accesses among

resource blocks is caused by the large number of frames used in each resource block, and

only resource block zero is being used early in the program's execution.

For AVL, binary tree and Fibonacci the bandwidth consumed to spatial memory appears

174

remarkably similar to, although slightly lower than, the bandwidth used by a unified time

space cache. This is a misleading impression, as shown by the significantly lower averages.

The relatively high peaks in the spatial memory write bandwidth are caused by a large

number of frames being fossil collected at once and the writes being committed together,

with many idle cycles in between. When properly managed commitment of values is not a

time critical operation, and should be easily spread across the available cycles.

8.5 Optimizations

While the descriptions of the memory operations in Section 8.2 will allow the time-space

cache to function correctly, there are a number of optimizations that can be used to improve

the efficiency. The evaluation in this chapter does not consider these optimizations, they are

left for future investigation.

In the same way that lazy fossil collection takes advantage of unused time-space cache

storage to improve performance, values can be cached in cells other than those they were

originally written to. When a read is satisfied in a cell below level zero the read reply is

transmitted back through cells which do not contain that value. By inserting a write entry

into these cells the value can be accessed again more quickly, as the principle of locality

suggests is likely to be required. Care must be taken to ensure that the entry is marked

appropriately according to its place in the virtual order.

Similar to lazy fossil collection, lazy re-execution only re-executes instructions when the

input operands change, rather than every time they are updated. In the context of memory

accesses this means that a read is only resatisfied when the new write value it is dependent on

is different to the previous value returned. This can be achieved by storing the value returned

in each read entry in the time-space cache for comparison before the read is resatisfied.

Twisted memory, as described above, operates with resource blocks arranged in a fixed

order circular queue, dictated by the fixed network of time-space cache cells. This imposes

some restrictions on parallel execution, as was shown in Chapter 7. The resource blocks

could be reordered, either by changing the physical connections, or by using a lookup table

to redefine the order, but this detracts from the simplicity of twisted memory that is so

attractive.

175

A more reasonable alternative is to use static analysis to estimate the number of resource

blocks a subtree will require, and reserve them before allocating resource blocks to follow

ing subtrees. This is a higher level analysis of a similar nature to that used to allocate frames

in resource blocks and could be performed by a compiler.

The organization within a twisted memory cell assumed so far is that reads and writes are

stored in a single structure in their virtual order, but this need not be the case. Splitting

the load and store lists could have performance benefits, since only the stores need to be

examined to satisfy a read, and only the loads need to be examined to determine rollbacks

due to a write, as long as the succeeding write is known.

By placing the time-space cache in the direct path to spatial memory the maximum latency

of a memory access has been increased by the latency required to propagate through the

time-space cache. The additional latency will be most noticeable for loads, and it may be

worthwhile to issue loads to spatial memory in parallel with the request to the time-space

cache. If the time-space cache provides a result the resource block would then ignore or

roll back the value provided by spatial memory. The trade off is that additional memory

accesses to spatial memory will be generated.

8.6 Summary

This chapter has proposed a hierarchical speculative memory system, known as a twisted

memory time-space cache. The hierarchy begins with the previously developed resource

blocks to partition the program into multiple instruction windows, which may still be split

windows internally, and whose resource usage may be allocated linearly.

Dependent accesses in the same resource block are found using the linear frame ordering,

while those in other resource blocks are found by propagating the accesses through the

network of twisted memory cells, searching for matches with accesses from resource blocks

progressively further apart. Only those accesses which may potentially match with accesses

from other resource blocks need to be propagated through the hierarchy.

Twisted memory relies on a mixture of explicit VTSs and physical ordering to maintain the

virtual order of memory accesses. This provides the flexibility and scalability of explicit

176

VTSs, but reduces the number of VTSs required, and provides a fast method of matching

accesses in the same resource block, which the principle of locality suggests are likely to be

most frequent.

The simulation results presented take a preliminary look at the bandwidth requirements

in the the twisted memory network. The measurements show that the bandwidth required

reduces substantially in the levels of twisted memory further away from the resource blocks.

Both reads and writes benefit greatly from caching in the level zero cells and very few of the

values written to the time-space cache are written out to spatial memory. Although fossil

collection does tend to cause commitment to occur in bursts this can easily be smoothed by

implementing lazy commitment appropriately.

Virtual order simulation forces the results presented here to be pessimistic in regard to the

bandwidth required between lower levels of the time-space cache. Caching at these levels

is expected to reduce the already low bandwidth even further, but can not be simulated with

this methodology.

In most cases the bandwidth required between each cell is well below one access initi

ated per cycle and is easily achievable for programs executing under realistic resource con

straints. In addition to a low average bandwidth, the bandwidth peaks are well spread, so

smoothing of the access pattern by stalling excess accesses should be possible with minimal

performance impact.

Twisted memory has the additional advantage that it can be implemented as a distributed

memory system, spreading the bandwidth across multiple connections and memory cells.

Twisted memory could be potentially used in a multiple chip implementation, connected at

the lower levels of the hierarchy.

A key advantage of twisted memory is its scalable design. The modular arrangement means

that extending the design to support more resource blocks is simply a matter of connecting

more twisted memory cells in the standard omega network topology. The results presented

here show the accesses are distributed evenly across the network even when the initial access

pattern is asymmetric at the resource blocks. This also enhances scalability.

As the number of resource blocks is increased the memory bandwidth required will also

increase. However, the number of physical channels per level also increases proportionally,

177

so the bandwidth per channel remains approximately constant. Increased bandwidth will be

required to spatial memory, although this is ameliorated by the demonstrated caching effect

of twisted memory.

The main obstacle to increasing the size of twisted memory is that each extra level of cells

increases the latency to the bottom of the time-space cache and, ultimately to spatial mem

ory. It is possible, though, to modify the interconnection topology to increase the number

of connections between cells at each level. This decreases the number of levels required, at

the expense of more complex routing logic in each cell.

A number of possible optimizations to twisted memory have also been identified, which

have the potential to improve performance and reduce the bandwidth required. These will

be investigated in future research.

The results obtained indicate that a twisted memory time-space cache can be used as an ef

fective virtually ordered memory system for use with an aggressively speculative processor.

The bandwidth requirements are feasible when executing with realistic levels of resources,

while the parallel execution speedup is substantially improved over currently available sys

tems.

178

Chapter 9

Summary and Conclusions

The aim of this thesis has been to develop a method for maintaining the dependencies be

tween memory accesses in an aggressively speculative, out-of-order processor. The Warp

Engine architecture has been used as the basis for this research because it provides a spec

ulative execution platform with very few basic restrictions on extracting parallelism.

It is important that any techniques developed are effective for much higher levels of paral

lelism than those currently extracted by production architectures. Only by doing this will

they remain relevant as the state of art in CPU core design continues to advance.

The focus in this thesis has been on methods of tracking the virtual order of a large number

of instructions executed speculatively and out-of-order. This is important for a speculative

memory system which is required to store multiple values for each address for different

periods in the virtual order, and to match each memory access with the store it depends on,

or the loads that depend upon it.

9.1 Virtual Timestamps

Extensive investigation was performed into tagging blocks of instructions with explicit vir

tual timestamps (VTSs) to indicate their virtual order. By applying explicit tags to events

any arbitrary pair can be compared in isolation, suggesting that the scheme will scale to

large numbers of events.

The central problem is efficiently allocating VTSs, a linear resource, to out-of-order events.

179

The simplest schemes proposed were found to require long strings for VTSs, which place a

heavy burden on the storage and communication components of the processor.

More sophisticated schemes were developed employing compiler analysis to determine the

size of regions of the execution tree. At runtime the processor allocates a range of VTSs

based on the maximum size of the subtree determined by the compiler.

Some program structures are more amenable to this analysis than others, however sixteen

to thirty two bit VTSs were found to allow substantial execution speedup. These vari

able range VTSs show promise and are deserving of future exploration. The compile-time

analysis performed here is basic and VTSs would benefit from more sophisticated analysis

algorithms.

9.2 Resource Blocks

The same subtree size estimation used for allocating a variable range of VTSs was also

used to partition a program into execution tasks. Since the size of the subtree is a measure

of the resources required to execute that region of the program, this schedules instructions

for execution based on resource requirements.

A new task is started whenever the resource requirements of a subtree cannot be determined

by the compiler. This creates speculative tasks which are separated by regions of code of

unknown size. Each of these tasks is assigned to a block of execution units known as a

resource block.

Since the processor has determined an upper bound on resource requirements for all but the

most speculative event in a resource block the frames in a resource block can be allocated

linearly. This allows a fixed order array of frames to be used within a resource block. Thus,

VTSs are only needed to maintain the ordering between resource blocks, and can be much

shorter.

The novel metric of speculation effectiveness, the ratio of committed instructions to issued

instructions, was introduced to measure the efficiency with which speculative execution

techniques use execution resources. While resource blocks restrict the speculative paral

lelism that can be extracted, simulations show that using resource blocks gives a much

180

higher speculation effectiveness than frame limited execution. Speculation effectiveness is

becoming increasingly important in maximizing performance as architectures make more

instructions available for speculative execution with limited resources.

9.3 Virtually Ordered Memory System

The thesis culminates in a design of a virtually ordered memory system, which allows mul

tiple values, applying at different virtual times, to be stored for each memory location. The

proposed memory system, called twisted memory, builds on the hierarchy already estab

lished with resource blocks.

Despite the limitations of virtual order simulation, the results presented show that the band

width required by speculative accesses is greatly reduced beyond the first level of twisted

memory. Only a small proportion of stores are ever committed to spatial memory. For

realistic resource constraints the bandwidth required at all points in the memory system is

within a feasible range.

These preliminary investigations show that twisted memory has significant advantages over

a monolithic time-space cache. The mixture of explicit VTSs and physical ordering that

twisted memory relies on also allows it to be easily scaled by increasing the size of the

standard network topology used. Twisted memory is a promising approach to a distributed,

scalable virtually ordered memory system for an aggressively speculative processor.

9.4 Conclusions

The results of this thesis show that explicit tags can be used to track the virtual order of

memory accesses in a distributed, scalable manner. However, naive VTS allocation schemes

severely constrain the parallelism extracted. Scheduling schemes which perform analysis of

resource requirements are required in order to maintain a speedup of an order of magnitude

over sequential execution. It has been shown that this analysis can be done at compile time.

It has also been shown that the same analysis can be used to prioritize instructions for specu

lative execution, leading to a more efficient use of speculative execution resources. Having a

181

reliable estimate of resource requirements allows instructions to be allocated linearly within

the local region, simplifying the hardware without substantially constraining performance.

By combining the analysis techniques with traditionally hardware ordering techniques a

distributed scalable virtual order memory system has been demonstrated which does not

require unreasonable bandwidth to support the speculative execution of the WarpEngine.

The current trend in processor design is to use larger instruction windows to extract more

ILP. This is being done primarily through more aggressive speculative execution, particu

larly exploiting control independence to create split instruction windows.

Maintaining memory dependencies in a very large instruction window will become a critical

problem in the next few years, which will require new techniques, such as those presented

in this thesis, to solve. Split instruction windows add to this problem because speculative

memory accesses must be tracked over a larger part of the program's lifetime.

Many processors, particularly those that utilize VLIW techniques, rely heavily on compiler

analysis to augment the processor's ability to extract parallelism. The instruction scheduling

techniques used in twisted memory follow this trend and will be able to leverage further

advances in compiler technology.

9.5 Future Work

The results in this thesis were all obtained using a virtual order simulator for the Warp

Engine. While this simulation method allows fast simulation it has limited ability to model

transient events, particularly transient memory accesses, which may have complex real time

interactions. More detailed design and modeling of the components of the WarpEngine must

be done to validate the assumptions used in the simulations.

Using a real time simulator to simulate twisted memory will allow the use of the cells as

caches to be further explored, along with write through and commitment policies. Further,

little attention has been paid to capacity requirements of twisted memory.

A number of refinements to twisted memory are identified in Section 8.5. Further investi

gation of these features has the potential to further improve the performance of the memory

182

system.

There is also scope for further development of the analysis techniques introduced in this

thesis. For example, using a best estimate, rather than an upper bound of resource require

ments is an interesting alternative. The development of a compiler is necessary to refine the

analysis techniques. This will also allow "real world" problems and standard benchmarks

to replace the small programs used here.

Now that the principles of twisted memory have been demonstrated using the WarpEngine

as platform it can be adapted to other speculative execution architectures. Since most archi

tectures do not support the same range of speculative execution features as the WarpEngine

some adaptation will be required.

183

Appendix A

WarpEngine Instruction Set

This appendix contains the WarpEngine instruction set. This is version 2 (as of November

2, 1995 [Cleary, 1995]) and is the instruction set used throughout this thesis.

The labels in the inputs and outputs columns of the following table have these meanings:

a 32 bit address

v 32 bit value (uninterpreted)

f 32 bit floating point value

d destination register number

cop comparison sub-operator: <, ~. >, 2:, =, f=

sop split operator

c 2 bit specifier of child number ranging over 0-3

c r child frame address hardware reference

The control and data movement instructions are conditionally executed, with the remainder

unconditionally executed. Conditional execution is achieved by setting/resetting the special

s register that is associated with each slot in a frame. These 1-bit s registers can be read and

written as conventional registers.

184

inst. inputs outputs description

control

child al a2 C ds Execute child c at address (al). a2 contains the esti-

mated subtree size for variable range VTS allocation.

The ds field specifies a 16 bit mask, 1 bit for each slot

in the frame. If a bit is on then a child will set both

the S-register for that slot and send a CR word to the

second register.

data movement

st vl a2 a Store vl at address (a21-ax4) (just after current time).

rnv vl d Store value vl into destination register d of child re-

cr2 ferred to by cr2.

ma al d a Load value at address (al+ax4) at time just before

cr2 execution of child referred to by cr2 into destination

d of child referred to by cr2.

comparison

crnp vl v2 copl Compare v 1 and v2 using cop. The result of cop 1 is

dl. .. 2 sent to d 1 and its complement to d2. The result of

cop2 d3 cop2 is sent to d3.

logical

and vl v2 dl. .. 4 Take bitwise AND of vl and v2 and move result.

or vl v2 dl. .. 4 Take bitwise OR of vl and v2 and move result.

xor vl v2 dl. .. 4 Take bitwise XOR of vl and v2 and move result.

185

inst. inputs outputs description

arithmetic

add vl v2 dl. .. 4 Add vl and v2. Move sum to dl. .. 3 and overflow to

d4.

sub vl v2 dl ... 4 Subtract v2 from vl. Move difference to dl. .. 3 and

overflow to d4.

rnul vl v2 dl. .. 4 Multiply vl by v2 move the low order 32 bits of the

result to dl. .. 3 and the high order 32 bits to d4.

div vl v2 dl ... 4 Divide vl by v2. Move integer part of the result to

dl. .. 3 and the remainder to d4.

split vl v2 sopl dl Divide the word vl, about bit b=(v2 mod 32). Each

sop2 d2 sop contains two bits. The first says whether the left

sop3 d3 or right part of the word is being referenced, the sec-

ond says whether that part is to be justified left or

right in the result.

floating point

addf fl f2 dl. .. 4 Add fl and f2. Move sum to dl. . .4.

subf fl f2 dl ... 4 Subtract f2 from fl. Move difference to dl. .. 4.

mulf fl f2 dl ... 4 Multiply fl by f2 move the move the result to dl ... 4.

divf fl f2 dl. .. 4 Divide fl by f2. Move the result to dl ... 4.

f2i fl f2 dl. .. 4 Divide fl by f2. Move the integer part of the result

to dl. .. 2 (as a 32-bit integer) and the fractional part

(as a floating point number) to d3 ... 4.

i2f vl v2 dl ... 4 Multiply the (integers) vl and v2, convert the result

to a float (avoiding loss of precision as far as possi-

ble) and send the result to d 1 ... 4.

186

Conditional execution

For an example of conditional execution and the semantics of time using the WarpEngine

instruction set consider the code in Figure A. I. The corresponding piece of WarpEngine

assembly code is given in Figure A.2, where @label represents a data location, & label

defines a block boundary, label : is an instruction label, and ? inst denotes a conditional

instruction.

if (x > 100) {
count++;

}
extra= count;

Figure A. I: Conditional C code.

&start
0: child &if 0 0 0
ma @x 0: X 0
l:child &next 0 1 0
ma @count 1: count 0

&if
cmp X 100 > 0:
0: ?child &then 0 0 0
ma @count 0: count 0

&then
add count 1 cpl
st cpl @count 0

&next
st count @extra 0

Figure A.2: WarpEngine assembly for the C code in Figure A. I.

In the WarpEngine assembly code the & st a rt block fires 2 children. The first (& if)

performs the comparison of x to 100. If this comparison is true the&then child is executed

performing the conditional increment to count. The second child of &start performs

the assignment of count to extra. The code blocks &if and &next start executing in

parallel (if execution resources permit). If the outcome of the conditional test on x is true

the count variable is re-read and the st in &next is re-executed.

187

AppendixB

Test Code

This appendix contains C source code for the test problem algorithms used throughout this

thesis. The C code and corresponding WarpEngine assembly code can be found at [Littin,

1999].

Matrix multiplication

float A [NJ [NJ' B [NJ [NJ' C [NJ [NJ;

void Mult (void)

int i,j,k;

float t;

for (i=O;i<N;i++)

for (j=O;j<N;j++)

t = O;

for (k=O;k<N;k++)

t += A[i] [k] * B[k] [j];

C[i] [j] = t;

188

Gauss-Jordan elimination [Press, 1992]

void gaussj (float •a, int n) {

float big, dum, pivinv;

long int i, icol, irow, j, k, 1, 11;

long int indxc[N], indxr[N), ipiv[N];

for (j=O; j<n; j++ J

indxc I j J O;

indxr[j] ""O;

ipiv[jJ = O;

for {i=O; i<n; i++)

big = 0 .O;

tor (J•O; J<n; J++)

if !ipiv I jJ != 11

for (k=O;k<n;k++)

if (ipiv[k) == OJ

if (ABS(a[j•N+k]) >= big)

big= ABS(a[j•N+k));

irow ""' j;

icol k;

else if (ipiv[k] > 1) (

printf ("pause 1 in GAUSSJ - singular matrix\n•);

get.c (stdin) ;

ipiv[icol] = ipiv[icol] + l;

if (irow != icol) {

for (1=0; l<n; l t+)

dum = a[irow*N+l];

a [irow*N+ 1)

a(icol*N+l)

a{icol*N+lJ;

dum;

indxr[i]

indxc [i)

irow;

icol;

if (a[icol*N+icol) == 0.0) {

printf("pause 2 in GAUSSJ - singular matrix\n");

getc (stdin);

pivinv: 1.0 / a[icol*N+icol];

a[icol*N+icolJ = 1.0;

for (l=O;l<n;l++) (

a[icol*N+l] : a[icol*N+l] *pivinv;

for (11=0; ll<n; 11++)

if Ill != icol) (

dum = a[ll*N+icol];

a[ll'*N+icol] = 0.0;

for (l=O;l<n;l++) {

a{ll*N+l] ~ a[ll*N+l) - a[icol'*N+l) * dum;

for (l:n-1; 1>=0; 1--)

if {indxr[l] != indxc[l))

for {k=O;k<n;k++l (

dum = a[k'*N+indxr[l]];

a [k*N+indxr [l)) a[k*N+indxc[l)];

a (k*N+indxc [l]] = dum;

189

Naive binary tree insertion

typedef struct node node;

struct node {

int key;

node *left, *right;

} ;

node *New(int key)

node *new_node = (node *)malloc(sizeof(node));

new_node->key = key;

new_node->left = NULL;

new_node->right = NULL;

return new_node;

void Insert(node **root, int key) {

if ((*root) == NULL)

*root= New(key);

else if (key< (*root)->key)

Insert(&((*root)->left),key);

else if (key> (*root)->key)

Insert(&((*root)->right),key);

190

AVL binary tree insertion[Lewis and Denenberg, 1991]

struct node (

int key;

int bal;

node *left, *right;

);

node •New(int key) (

node *n = {node *)malloc(sizeof(node));

n->key = key;

n->bal = O;

n->left = NULL;

n->right = NULL;

return n;

void ShiftNode(int *d,node **c,int key,node **p) {

if (key== (•p)->key) (

•d 0:

else if (key< (*p)->key) (

•d -1;

*c (*p) ->left;

else

*d l;

*c (*p) ->right;

void Rotate(node **p, int d,node **par, int cd,node **root) (

node *P = *p;

if (d == -1) {

*p = ('*p) ->right;

P->right = (*p)->left;

(*p)->left = P;

else

•p (•p) ->left;

P->left = (*p) ->right;

(*p) ->right = P;

if (cd == -1)

(*par) ->left = *p;

else if (cd == l)

(*par) ->right •p;

else

•root *p;

void AVLinsert(node **root.int key) (

int dl, d2, d3, critnodefound = 0, critdir, dir O;

p n •root;

while ((n != NULL) ,, (n->key != key)) (

if (n->bal ! = 0)

C = n;

191

cp - p;

critnodefound a l;

critdir e dir;

if (key < n->key) (

p -n;

n -n->left;

dir --1;

else

p . n;

n - n->right;

dir - l;

if (n == NULL) {

if (p =• NULL)

*roots New(key);

else if (dir =• -1)

p->left • New(key);

else

p->right • New (key);

if (! critnodefound)

r • •root;

else {

ShiftNode(&dl,&a,key,&c);

if (c->bal !• dl) {

c->bal O;

r = a;

else

ShiftNode(&d2,&b,key,&a);

if (d2 == dl)

c->bal ... O;

r ... b;

Rotate(&c,-dl,&cp,critdir,root);

else

ShiftNode (&d3, &r, key, &b);

if (d3 == d2)

c->bal O;

a->bal c dl;

else if (d3 =• -d2)

c->bal = d2;

else

c->bal = O;

Rotate(&a,-d2,&c,dl,root);

Rotate (&c, -dl, &cp, critdir, root);

while (r->key ! = key) (

ShiftNode(&(r->bal),&r,key,&r};

192

Quicksort (version l)[Quinn, 1987]

int v[ARRAY_SIZE];

void QSort(int left,int right) {

int i,piv,temp,cmp;

if (left>= right)

return;

cmp v[left];

piv left;

for (i=left+l;i<=right;i++)

if (v[i] < cmp) {

piv++;

temp= v[piv]; v[piv] v[i]; v[i] temp;

temp= v[piv]; v[piv]

QSort(left,piv-1);

QSort(piv+l,right);

v[left]; v[left] = temp;

193

Quicksort (version 2)[Quinn, 1987]

int v[ARRAY_SIZE];

void QSort(int left,int right)

int temp= v[left];

inti= left, j = right;

if (j > i) {

while (j>i)

while ((j >= i) && (temp < v[j]))

j--;

if (j<=i)

v[i] temp;

else {

v[i] v[j];

i++;

while ((i <= j) && (v[i] < temp))

i++;

if (j>i)

v[j] = v[i];

j--;

if (j<=i)

v [j] = temp;

QSort (left, j-1);

QSort(j+l,right);

194

Recursive Fibonacci number generation

int Fib(int n) {

if (n == 0)

return O;

else if (n -- 1)

return 1;

else

return Fib(n-1) + Fib(n-2);

Transitive closure [Corman et al., 1990]

int a [N+l] [N] [N];

void Trans() {

int i,j,k;

for (k=O; k<N; k++)

for (i=O; i<N; i++)

for (j=O; j<N; j++)

a[k+l] [i] [j] = (a[k] [i] [j]

II (a[k][i][k] && a[k][k][j]));

195

Appendix C

Additional Graphs

C.1 Minimum Size Fixed Length VTSs

The graphs in this section are described in Section 5.3.4. They show the minimum number

of bits necessary in a length or exponential VTS to execute the test program for a variety of

sizes.

180

160

140

120

~ .8- 100
ti!
.!!l
15 80
C/J

>
60

40

20

0
0

exponent
length
ideal

-+--

Binary tree insertion

I i
: .L +' ; i i i i

! ... !, \,,,,,.····· : ! 11
1 I ; I

··t"············· ... (.. ~ -:- ; . >

- J : : 1-;
I I : ;

......... 1-··········· ·····!····

.... ··- •. ••• . •.•••.•. •...•••• : ••.•••..•••••.••.••• : ••.•••••••••••••••••. : •••••••••••••••••.• -~--- .••••.••..••••.•• j •.••••••••.•••••••

--~-----~----·--·--1--·--·-----r··----····r-······--·T"··-----·-·-r········-··1------------r-··········-r···········

200 400 600 800 1000 1200

Problem Size

1400 1600 1800 2000

Figure C. I: Minimum VTS length necessary to execute binary tree insertion without rescal
ing

196

100

90

80

70
-0
~
·3 60 CT
~
.El
:0 50
Cl)

!;:
40

30

20

10
5

Gauss-Jordan elimination

exponent --+--
length ---><---
ideal ···-llE··· --------;---'--·--------------·--

----------*"------ ---------

------,r------'----- ------~------------------

-------... -,..--::-::~. ······· ·· ••••• : •.....•••••.••••••••••.••.•••••.•••••••••••••••• j ...••••••••• ---·································

....................................... ~--·· ·j·· ···········

.. ·······]············

······•······························•·····························*·····························

10 15
Problem Size

20 25

Figure C.2: Minimum VTS length necessary to execute Gauss-Jordan without rescaling

Matrix multiply

140

120

100

' ______ J----------I----------;.---_______ ,_ -----
.. -~

-0
~

80 ·3
CT
~
.El
:0
Cl) 60
!;:

40

20

0
5 10 15 20 25 30 35 40 45 50

Problem Size

Figure C.3: Minimum VTS length necessary to execute matrix multiply without rescaling

197

C.2 Speedup for Length and Exponential VTSs

The graphs in this section are described in Section 5.4.3. They show the speedup over

sequential execution for length or exponential VTSs executing the test programs.

a.
::,
-0
Q)
Q)
a.

Cl)

50

40

20

10

Binary tree insertion

ideal~
64 bit length -*--

64 bit exponential(32,32) ~
. . 32 bit length ~ ·

. .
: : -...... -- -- .. -~ -.. : .

.; ; - .. -.....

·'············:··········· ·i··· (....... .

. .
; ~- -~-

0 L--....L--..J..._-----'-----'---..__-............ _-....._ _ __. __ ~_-

0 200 400 600 800 1 000 1200 1400 1600 1800 2000
Problem Size

Figure C.4: Comparison of speedup for binary tree insertion with exponent and length VTSs

198

0.
::i

"O
Q)
Q)
0.

Cl)

0.
::i

"O
Q)
Q)
0.

Cl)

Fibonacci number generation
1000 r-~~~--.~~~~~~~--.~--.-~~~~~~~~~

--1- ideal

800

~ 64 bit length
-,IE-- 64 bit exponential(32,32)

-a-- :3_~ -~\t _l~~~-t~ -- . -. -. -. ·r -. ----.. -.. -.......... ~- --............... -- .. .

600 ··········-···········-:·-·········- --:- .. ---......................... ~- -............. .

1 1 . - ... --~ ,. -·. ···- --·-. . 400 ·

200 ··················-r··············-·-···-··-······1 -·-························
. .

o b==ll!l::=::::==::::ffi::~~~~~E±~~~~~-_J
5 10 15 20 25 30

Problem Size

Figure C.5: Comparison of speedup for Fibonacci with exponent and length VTSs

90

80

70

60

50

40

30

20

Quicksort 1

-+- ideal
-*- 64 bit length
-,IE-- 64 bit exponential(32,32)
-e---- 32 bit length

10 L-.=----l...~~.1..-~---'-~~-L-~---'-~~~~---'~~ ~~..__~__.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Problem Size

Figure C.6: Comparison of speedup for quicksort 1 with exponent and length VTSs

199

C.3 Minimum Size Variable Range VTSs

The graphs in this section are described in Section 6.3. They show the minimum number of

bits necessary in a variable range VTS to execute the test program for a variety of sizes.

Binary tree Insertion
180 ,----,------,--,---r----,,---....-----.---.----.-----,

--+- length
---x--- range

160 Ideal

140

120

i
1100

"' :5 80

~
60

: . . : : ;

20 .><····":··""·::·7····"·---~-·-·:·*·;··-------'I< . .. • + ·•······ •

..................... :. ~---·····•-"······--···t·········-···-·········-~- -······---:----······-:

0 ..._ _ _.__ _ ___,_ __ _.__ _ _._ _ __. __ _.__ _ _._ __ .__ _ _.__

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Problem Size

Figure C.7: Minimum VTS length necessary to execute binary tree insertion without rescal
ing

i
3
[

i
Cl)

\;

--+- length
---•--- range (naive)
· · · ... · · range (for)

120 ---o--· ideal

100

80

60

40

Matrix muHiply

. . :

20 ~.:.:~:~:.::;;::::::.:::;::::~:::.I.~~:::,~:~:;:::=:::_~-~:~~::~,-:.:::~:=.-.~:~;~·=:·--
O 5'----1.1..0 __ ..1.15 __ _,20---2'-5--3~0--~35--~40---4-5-~50

Problem Size

Figure C.8: Minimum VTS length necessary to execute matrix multiply without rescaling

200

C.4 Variable Range VTS Speedup

The graphs in this section are described in Section 6.5.1. They show the speedup over

sequential execution for variable range VTSs executing the test programs.

C.
::::,

"O
Q)
Q)
C.

en

ideal
24 bit disconnected

90 24 bit preserved

80

70

60

16 bit disconnected
16 bit ore1;erv13d

-+--
---><---
···-llE···

··-··-El······

Binary tree insertion

----------r--------1. ::--::---

··;······· ' . i ! .l
50 r ~--) ·- :L, ;;:;;,,r ,,c,s,,r " ,:c.(:: ;~:;;~ -- --1--- ---
40

30

20

10

0
0 200 400 600

----- --·---·----·-- (.................... \-·················

......... J\
: :

- ~--~ c;·· ········;-_ - - -· l... ········ -·-·: __ _-·········::·~:::::::·~·-:::::·::-!:.:················

............................•.........

800 1000
Problem Size

1200 1400 1600 1800 2000

Figure C.9: Speedup for binary tree with variable range VTSs with rescaling

201

a.
:,

Matrix multiply

6000 r:-:---:--.-----r---r---.-----r-----,,----,--,----"""'T"----,
ideal
16 bit disconnected
16 bit preserved
12 bit disconnected

5000 12 bit nrP<:PrVPr1

4000

--+--
---)(---
----ll---

·-····iJ-·--·

·-·················:······················i···················-

al 3000
Ql a. en

; --,.______ i

a.
:,

---~----- '
2000 ... : -·-··················-~---·····'', \ ······!····

-------l!E-------- . ---- i ;
·--:.. ,;i.----------~----

--"'!E-------------·-----
1000

. .

··-·-·-·-·---~----·-·-·-···El· . .:::·.::::::::::::::::::t.:::·.::··············.:::·· i ·:··········-··--:-.:::).:::·.:::·.:::·.:::::::·.:::· : ··~.:::::::·.:::-.:::::::--+::::·.:::·.:::::::·.:::·.:::-0 .._ __ --L. ___ _.__ __;i:. __ __.:;===-=-=-===L---....I....--___JL----..:r
5 10 15 20 25 30 35 40 45

Problem Size

Figure C.10: Speedup for matrix multiply with variable range VTSs with rescaling

350

300

250

ideal
16 bit disconnected
16 bit preserved
12 bit disconnected
12 bit preserved

--+--
---)(---
----ll(---
·--···G-····· ..

-·-•·-·

Gauss-Jordan

·"'"

//>/··

50

al 200
Ql
a. en

150

···············_·_·.· .. ·.· ----~----~---~~~·:;::;:.:,t·.-,:::~.;&o .. _,,,u :&.· ••

- - - - ~-._..,-::········--.:.::·

..... J.._ -·················· ,·'

I.I _.,. •• , •

- ----·'
OL---------''---------'--------~--------'

5 10 15

Problem Size

20

Figure C.11: Speedup for Gauss-Jordan with variable range VTSs with rescaling

202

25

C.5 Variable Range VTS Frame Limit Sensitivity

The graphs in this section are described in Section 6.5.2. They show the sensitivity to frame

limiting of variable range VTSs. The programs are executed with varying frame limits and

either ideal VTSs or 16 bit variable range VTSs.

ideal
16 bit
~

---><---

AVL tree insertion, 1000 items

60 ~---------------------·------0------------------------

I I
50 ~-----------------·---·----·a··-

___ ,_ !- -1-1---a. 40
:,

i a.
rn 30

20

················'-········ - - -'······· - ____ I _ -············t······-- . -- ----

,.J------------}---------t-------------l*----------1- i * . --

------------------------ -------------------- --r----------------------)---------------------------+--------------------------

1000 2000 3000 4000 5000 6000 7000

Frame Limit

Figure C.12: Speedup for AVL(lOOO) with varying frame limitations and variable range
VTSs

203

Binary tree insertion, 1000 items
BO

--+-

70

60

50

a.
:::,

"O t 40
a.

Cl)

30

20

10

1000 2000 3000 4000 5000 6000 7000

Frame Limit

Figure C.13: Speedup for binary tree (1000) with varying frame limitations and variable
range VTSs

30

25

a. 20
:::,

"O
Q)

8..
Cl) 15

10

5

Quicksort, 200 items

2000 4000 6000 8000 10000

Frame Limit

Figure C.14: Speedup for quicksort 1 (200) with varying frame limitations and variable
range VTSs

204

300

250

c. 200
::,

al
[
(/) 150

100

50

2000

Gauss-Jordan, 20 x 20

4000 6000 8000 10000

Frame Limit

Figure C.15: Speedup for Gauss-Jordan (20) with varying frame limitations and variable
range VTSs

C.
::,

350

300

250

al 200 a,
C.

(/)

150

100

50

Matrix multiply, 30 x 30

2000 4000 6000 8000 10000

Frame Limit

Figure C.16: Speedup for matrix multiply (30) with varying frame limitations and variable
range VTSs

205

C.6 Speculation Effectiveness

The graphs in this section are described in Section 7 .6. They show the speculation effec

tiveness for frame limited and resource block limited execution for a variety of data set

sizes.

0
1

0.9

0.8

rn 0.7
rn
(I)
C:
(I)

0.6 > u
(I)

:a::
(I) 0.5
C:
0

~ 0.4 :i
0
(I)
C.

en 0.3

0.2

0.1

0
0

2 4

Binary tree insertion

Resource blocks
6 8 10 12 14 16

...... t~:~ ~·~::~;;~~~~~~~t.··-... . "'"'"----- i.. i
' l ·-.... j ·-· ···························-············ .. ·-······················· ''<~:-~_::c ______ ~::~: ___ ~::_1·--·--.. : __ ::-·-

······························· -··

500 1000

Frames
1500 2000

Figure C.17: Speculation effectiveness of resource block and frame limiting for binary tree

206

"' "' Q)
C

0
1

0.8

~ 0.6
·13

~
C
0

~
=i 0.4
(.)

~ en

0.2

\
\
\

.... \
\

2 4

Fibonacci

Resource blocks

6 B 10 12 14

frames 10 items --+
frames 15 items ---><---
frames 20 items

res blocks 10 items ······-EJ····
res blocks 15 items -·-•·-·
res blocks 20 items -·-O-·-

16

o~-------~--------....._ ________ .__ _______ _.
0 500 1000

Frames

1500 2000

Figure C.18: Speculation effectiveness of resource block and frame limiting for Fibonacci

"' lll
C

0
1

0.8

~ 0.6 u
Q)

t
C
0

~
3 0.4
(.)
Q)
C. en

0.2

2

frames 1 O items
frames 30 items
frames 50 items
res blocks 1 O items
res blocks 30 items
res blocks 50 items

4

--+-
---><---
···-ll···

······-El-·····
-·-•·-·
-·-0-·-

------------:«----
)t----

JI!·--··--·-·········· ···--lit·

6

Matrix multiply

Resource blocks

B 10 12 14 16

-------------*-------------------------)(------------------------

••.••. .. -lK· · · · ·· • · •·•·· · · · · · · · · · ·· · ·--- -~- -- • • ·· •· ·· · •···· ·•·

o.__ ________ _______ _._ _______ __. _______ __.
0 500 1000

Frames

1500 2000

Figure C.19: Speculation effectiveness of resource block and frame limiting for matrix
multiply

207

AppendixD

Twisted Memory Bandwidth Profile

Graphs

The graphs in this appendix show the profile of memory accesses to twisted memory from

a four resource block WarpEngine. For each test program there is a graph covering each

level of the time-space cache, the combined bandwidth used to spatial memory, and the

profile for a unified time-space cache for comparison. The profile for each cell is labeled by

the resource block directly above it. An arbitrary problem size has been selected for each

program. The graphs are discussed in Section 8.4.2, and are best viewed in colour.

D.1 AVL(200)

208

IJ)
(I)

~
8
<.> ns
2:-
0
E
(I)

~

IJ)
(I)
IJ)
IJ)
(I)
<.>
<.>
ns
2:-
0
E
(I)

~

avl200 bandwidth to level O twisted memory
20

resblock 3

0
20

resblock 2

0
20

resblock 1

0
20

resblock 0

Cycles

Figure D. l: Twisted memory bandwidth profile to level zero for AVL(200)

20

resblock 3

0
20

resblock 2

0
20

resblock 1

0
20

resblock O

0
0 50000

avl200 bandwidth to level 1 twisted memory

100000 150000

Cycles

reads -
writes --

200000 250000

Figure D.2: Twisted memory bandwidth profile to level one for AVL(200)

209

VJ
Q)
VJ
VJ

~
(J
cu
~
0
E
Q)

~

VJ
Q)
VJ
VJ
Q)
(J
(J
cu
~
0
E
Q)

~

20

resblock 3

0
20

resblock 2

0
20

resblock 1

0
20

resblock O

0
0

avl200 bandwidth to level 2 twisted memory

50000 100000 150000

Cycles

reads -
writes --

200000 250000

Figure D.3: Twisted memory bandwidth profile to level two for AVL(200)

avl200 bandwidth spatial memory

20

resblock 3

0
20

resblock 2

0
20

resblock 1

0
20

resblock 0

Cycles

Figure D.4: Twisted memory bandwidth profile to spatial memory for AVL(200)

210

60

50

<I)
Q)
<I)

40 <I)

8
(.)
ns
~
0

30 E
Q)

::E

20

10

0

70

60

gJ 50
gi

8
ns 40
~
0
E
Q)

::E 30

20

10

0

avl200 aggregate bandwidth to spatial memory

20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Cycles

Figure D.5: Twisted memory bandwidth profile to level two for AVL(200)

avl200 bandwidth to unified time-space cache

20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Cycles

Figure D.6: Twisted memory aggregate bandwidth profile to spatial memory for AVL(200)

211

D.2 Binary Tree (300)

12

resblock 3

0
12

"' resblock 2 a,

"' "' 8
0 0 ..
t!' 12
0
E
a,

::i; resblock 1

0
12

resblockO

0
0

bin300 bandwidth to level O twisted memory

reads -
writes --

10000 20000 30000 40000 50000 60000 70000 80000

Cycles

Figure D.7: Twisted memory bandwidth profile to level zero for binary tree (300)

12

resblock3

0
12

"' resblock 2 a,

:ll
8
0 0 ..
t!' 12
0
E
a,

::i; resblock 1

0
12

resblockO

0
0

bin300 bandwidth to level 1 twisted memory

uo o Id "u I 1111 Ill VJ I lnl j ii, I+ II, LI , " u 11 111 1

reads -
writes --

10000 20000 30000 40000 50000 60000 70000 80000

Cycles

Figure D.8: Twisted memory bandwidth profile to level one for binary tree (300)

212

"' Q)

"' "' Q)
u
u

"' <!"
0
E
Q)
:;

"' Q)

"' "' §
"' <!"
0
E
Q)
:;

12

resblock 3

0
12

resblock 2

0
12

resblock 1

0
12

resblock 0

0
0

bin300 bandwidth to level 2 twisted memory

111 , , 111! , I rn , I, "" i 11, n • 1/1 i rn ii i ,

reads -
writes

10000 20000 30000 40000 50000 60000 70000 80000
Cycles

Figure D.9: Twisted memory bandwidth profile to level two for binary tree (300)

bin300 bandwidth to spatial memory

12
reads --

resblock 3

0
12

resblock 2

0
12

resblock 1

0
12

resblock O

10000 20000 30000 40000 50000 60000 70000 80000

Cycles

Figure D. l 0: Twisted memory bandwidth profile to spatial memory for binary tree (300)

213

35

30

~ 25
~

8
"' 20
~
0
E
(I)

::? 15

10

5

0
0 10000

bin300 aggregate bandwidth to spatial memory

20000 30000 40000 50000

Cycles

active frames -
reads -
writes --

60000 70000

Figure D.11: Twisted memory bandwidth profile to level two for binary tree (300)

35

30

25

.,
(I)

~ 20
8
0

"' ~
0

15 E
(I)

::?

10

5

10000

bin300 bandwidth to unified time-space cache

20000 30000 40000 50000

Cycles

reads -
writes -

active frames --

60000 70000

Figure D.12: Twisted memory aggregate bandwidth profile to spatial memory for binary

tree (300)

214

D.3 Fibonacci (15)

fib 1 5 bandwidth to level O twisted memory
12

reads -
writes --

resblock 3

0
12

U) resblock 2
" U)
U)

1l
u 0 ..
~ 12
0
E

" ::. resblock 1

0
12

resblock 0

60000 70000

Cycles

Figure D.13: Twisted memory bandwidth profile to level zero for Fibonacci (15)

12

resblock 3

0
12

U) resblock 2
" U)
U)

1l
u 0 ..
~ 12
0
E
a,
::. resblock 1

0
12

resblock O

fib15 bandwidth to level 1 twisted memory

Cycles

reads -
writes - -

60000 70000

Figure D.14: Twisted memory bandwidth profile to level one for Fibonacci (15)

215

(/J
11)
(/J
(/J

8
<J
<U

2:-
0
E
11)

::!;

(/J
11)
(/J
(/J

8
<J
<U

2:-
0
E
11)

::!;

12

resblock 3

0
12

resblock 2

0
12

resblock 1

0
12

resblock 0

0
0 10000

fib15 bandwidth to level 2 twisted memory

reads -
writes --

.........•..•.•.•.•. . •• . j .

20000 30000 40000 50000 60000 70000

Cycles

Figure D.15: Twisted memory bandwidth profile to level two for Fibonacci (15)

fib1 5 bandwidth to spatial memory

12
reads --

resblock 3

0
12

resblock 2

0
12

resblock 1

0
12

resblock 0

Cycles

Figure D .16: Twisted memory bandwidth profile to spatial memory for Fibonacci (15)

216

U)
Q)
U)
U)

8
"' ~
0
E
Q)

::E

BO

70

60

30

20

10

fib1 5 aggregate bandwidth to spatial memory

active frames -
reads -
writes --

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Cycles

Figure D.17: Twisted memory bandwidth profile to level two for Fibonacci (15)

90

BO

70

60

50

40

30

20

10

fib 15 bandwidth to unified time-space cache

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Cycles

Figure D.18: Twisted memory aggregate bandwidth profile to spatial memory for Fibonacci
(15)

217

D.4 Gauss-Jordan (10)

900

resblock 3

0
900

., resblock 2
" gj
!l
0 0 ..
~ 900
0
E

" ::. resblock 1

0
900

resblock O

0
0

gj 10 bandwidth to level O twisted memory

.J

.... . ,+4- . J · ''""

reads -
writes --

500 1000 1500 2000 2500 3000 3500 4000 4500
Cycles

Figure D.19: Twisted memory bandwidth profile to level zero for Gauss-Jordan (10)

900

resblock3

0
900

., resblock 2
" gj
!l
0 0 ..
~ 900
0
E .,
::. resblock 1

0
900

resblockO

0
0

gj1 O bandwidth to level 1 twisted memory

·-·" J ...

... J 1 • WaMze

reads -
writes --

500 1000 1500 2000 2500 3000 3500 4000 4500

Cycles

Figure D.20: Twisted memory bandwidth profile to level one for Gauss-Jordan (10)

218

900

resblock 3

0
900

Cl) resblock 2 a,

ll!
8 0 "' c!' 900
0
E
a,
::i; resblock 1

0
900

resblock O

0
0 500 1000

gj10 bandwidth to level 2 twisted memory

reads -
writes --

= !

·········+ j •••.•

1500 2000 2500

Cycles

3000

·················!· ··

3500 4000 4500

Figure D.21: Twisted memory bandwidth profile to level two for Gauss-Jordan (10)

900

resblock 3

0
900

... ,,.

Cl) resblock 2 a,

ll!
8 0 "' c!' 900

... !"

0
E
a,
::i; resblock 1

0 Pl ••

900

resblock O

0
0 500 1000

• J

.J

.J

gj10 bandwidth spatial memory

f .,

1500 2000

• +t .1 .

Il.

2500

Cycles

. 11,1.

3000

reads --

3500 4000 4500

Figure D.22: Twisted memory bandwidth profile to spatial memory for Gauss-Jordan (10)

219

3500

3000

2500

Cl)
Q)
Cl)

2000 Cl)
Q)
u
u

"' ~
0

1500 E
Q)

~

1000

500

0
0 500 1000

gj10 aggregate bandwidth to spatial memory

1500 2000

Cycles

2500

active frames -
reads -
writes --

3000 3500 4000

Figure D.23: Twisted memory bandwidth profile to level two for Gauss-Jordan (10)

gj10 bandwidth to unified time-space cache

4500

4000

3500

3000
Cl)
Q)

::!
2500 2l u

"' ~
0 2000
E
Q)

~

1500

1000

500

1000 2000 3000 4000 5000 6000

Cycles

Figure D.24: Twisted memory aggregate bandwidth profile to spatial memory for Gauss

Jordan (10)

220

D.5 Matrix Multiply (20)

mat20 bandwidth to level O twisted memory
350

resblock 3

0
350

, ., e, 4e-4-1 ,I..J., ., ia.L

"' resblock 2 .,
:a
~
0 0 ..
~ 350

• ' . .W..j • • w.. . la. .
0
E .,
::. resblock 1

0 I I1 • • J...J... .. ia.L
350

resblock 0

0
0 500 1000 1500

Cycles

reads -
writes --

2000 2500

Figure D.25: Twisted memory bandwidth profile to level zero for matrix multiply (20)

350

resblock 3

0
350

"' resblock 2 .,
:a
~ 0 ..
~ 350
0
E .,
::. resblock 1

0
350

resblock 0

0
0 500

mat20 bandwidth to level 1 twisted memory

1000 1500

Cycles

reads -
writes --

2000 2500

Figure D.26: Twisted memory bandwidth profile to level one for matrix multiply (20)

221

350

resblock 3

0
350

<I) resblock 2 Q)
<I)
<I)

8
(.J 0 I'll

~ 350
0
E
Q)
:; resblock 1

0
350

resblock 0

0
0 500

mat20 bandwidth to level 2 twisted memory

1000 1500

Cycles

·" ... I. .. ; ..

reads -
writes --

2000 2500

Figure 0.27: Twisted memory bandwidth profile to level two for matrix multiply (20)

mat20 bandwidth to spatial memory

350
reads --

resblock 3

0
350

t hhr, i II *:Mz •"' ,L I&

<I) resblock 2
Q)

l8
8 0 I'll

~ 350
........ ., ,M,,M ... 4 .l M l , h , -a;,.. ... J I.• l ... i

0
E
Q)
:; resblock 1

0 M ef.tk, , 411 b I •• '" I&.
350

resblock O

0
0 500 1000 1500 2000 2500

Cycles

Figure D.28: Twisted memory bandwidth profile to spatial memory for matrix multiply (20)

222

1600

1400

1200

Cl) 1000
Cl)
Cl)
Cl)

:ii
(J
l'CI 800
~
0
E
Cl)

~ 600

400

200

0
0 200 400

mat20 aggregate bandwidth to spatial memory

600 800 1000

Cycles

1200 1400

active frames -
reads -
writes --

1600 1800 2000

Figure D.29: Twisted memory bandwidth profile to level two for matrix multiply (20)

1600

1400

1200

Cl) 1000
Cl)

::i
§
l'CI 800
~
0
E
Cl)

~ 600

400

200

200 400

mat20 bandwidth to unified time-space cache

600 800 1000

Cycles

1200 1400 1600 1800 2000

Figure D.30: Twisted memory aggregate bandwidth profile to spatial memory for matrix

multiply (20)

223

D.6 Quicksort 1 (200)

300

resblock 3

0
300

., resblock 2 Q)

:a
2l
0 0 "' ~ 300
0
E
Q)
::; resblock 1

0
300

resblock O

0
0

qu1_200 bandwidth to level O twisted memory

reads -
writes --

5000 10000 15000 20000 25000 30000 35000 40000
Cycles

Figure D.31: Twisted memory bandwidth profile to level zero for quicksort l (200)

300

resblock 3

0
300

"' resblock 2
Q)

:a
2l
:;l 0
~ 300
0
E
Q)
::; resblock 1

0
300

resblock O

0
0

qu1_200 bandwidth to level 1 twisted memory

reads -
writes --

5000 1 0000 15000 20000 25000 30000 35000 40000
Cycles

Figure D.32: Twisted memory bandwidth profile to level one for quicksort l (200)

224

qu1_200 bandwidth to level 2 twisted memory
300

resblock 3

0
300

., resblock 2 Q)

::I
~
<.) 0 "' (!' 300
0
E
Q)

::i: resblock 1

0
300

resblock O

5000 10000 15000 20000 25000 30000 35000 40000

Cycles

Figure D.33: Twisted memory bandwidth profile to level two for quicksort 1 (200)

qu 1 _200 bandwidth to spatial memory

300

resblock 3

0
300

., resblock 2
Q) ., .,
@

0 "' (!' 300
0
E
Q)

::i: resblock 1

0
300

resblock O

5000 10000 15000 20000 25000 30000 35000 40000

Cycles

Figure D.34: Twisted memory bandwidth profile to spatial memory for quicksort l (200)

225

400

350

300

(I) 250 a,
(I) .,
fl
<.J

"' 200
~
0
E
a,
~ 150

100

50

0
0 5000

qu1_200 aggregate bandwidth to spatial memory

10000 15000 20000 25000

Cycles

active frames -
reads -
writes --

30000 35000

Figure D.35: Twisted memory bandwidth profile to level two for quicksort I (200)

500

450

400

350

II)
a, .,
II)

300

§
"' 250
~
0
E
a, 200
~

150

100

50

5000

qu1_200 bandwidth to unified time-space cache

10000 15000 20000
Cycles

25000 30000 35000 40000

Figure D.36: Twisted memory aggregate bandwidth profile to spatial memory for quicksort

I (200)

226

D. 7 Enlarged Regions of Level Zero Bandwidth Profile Graphs

The graphs in this section show enlarged regions of the graphs above.

10

resblock 3

0
10

"' resblock2
" ::!
8 u 0 ..
~ 10
0
E

" ::;; resblock 1

0
10

resblock 0

avl200 bandwidth to level O twisted memory

reads -
writes --

1 0050 10100 10150 10200 10250 10300 1 0350 10400 10450 10500

Cycles

Figure D.37: Enlarged region of level zero bandwidth profile graphs for AVL(200)

"' .,
"' "' 8 u
"' ~
0
E

" ::;;

bin300 bandwidth to level O twisted memory
10 ~-~--.---~-~--.---~-"""T"---,,----,---,

resblock 3

0
10

resblock 2

0
10

resblock 1

0
10

resblock O

reads -
wrttes --

0 u..__ JJ____...l_J_-'-- il-- .LL.--l.--1.-L..- ..__ .L...L..----1.--1-L..- _.__

10000 10050 10100 10150 10200 10250 10300 10350 10400 10450 10500
Cycles

Figure D.38: Enlarged region of level zero bandwidth profile graphs for binary tree (300)

227

"' Q)

"' "' 8 cu
~
0
E
Q)
::;

10

resblock 3

0
10

resblock 2

0
10

resblock 1

0
10

resblock 0

fibl 5 bandwidth to level O twisted memory

reads -
writes --

o~~~~----~--~-~~~~-----~ -.....____.
10000 10050 10100 10150 10200 10250 10300 10350 10400 10450 10500

Cycles

Figure D.39: Enlarged region of level zero bandwidth profile graphs for Fibonacci (15)

"' Q)

::I
8
<.J cu
~
0
E
Q)
::;

gj10 bandwidth to level O twisted memory

400

resblock 3

0
400

resblock 2

0
400

resblock 1

0
400

resblock 0

0 l.L.LJLi...~__.iL-.._......i.........L.LAlll.ol,LoLllllll.llll..w.&.11

reads -
writes --

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

Cycles

Figure D.40: Enlarged region of level zero bandwidth profile graphs for Gauss-Jordan (10)

228

mat20 bandwidth to level O twisted memory
200

resblock 3

0
200

"' resblock 2 Q)

ill
Q)
0
0 0 "' ~ 200
0
E
Q)

::E resblock 1

0
200

resblock 0

1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Cycles

Figure D.41: Enlarged region of level zero bandwidth profile graphs for matrix multiply
(20)

qu1_200 bandwidth to level O twisted memory

resblock 3

0
100

"' resblock 2
Q)

ill
~
0 0 "' ~ 100
0
E
Q)

::E resblock 1

0
100

resblock 0

0
4000 4050 41 00 4150 4200 4250 4300 4350 4400 4450 4500

Cycles

Figure D.42: Enlarged region of level zero bandwidth profile graphs for quicksort I (200)

229

AppendixE

Glossary of Terms and Abbreviations

block structured architecture (BSA) An architecture in which a group, or block, of in

structions is treated as the basic unit of work.

cancelback The removal of the most speculative task to free up resources for execution of

tasks earlier in the virtual order. Originally a Time Warp term.

causal order Dependent order of instructions. See virtual order.

control independence The situation in which a region of code will be executed regardless

of the outcome of a conditional branch.

control flow graph (CFG) A directed graph consisting of named nodes which represent

instructions, and arcs which represent control dependencies between instructions.

data dependence The situation between two sequential instructions in a program when

the first instruction produces a result that is used as an input operand by the second

instruction.

dataflow execution The execution model in which the issuing of instructions is determined

by the flow of data. Once the input operands are available the instruction may issue.

fossil collection Retiring tasks when they become non-speculative, writing any stores to

architectural memory and freeing resources for reuse. Originally a Time Warp term.

frame A hardware unit in the WarpEngine which holds up to 16 instructions with their

input registers and output register destinations, and issues them for execution.

230

global virtual time (GVT) The earliest instruction that is actively executing, guaranteed

to be non-speculative. All instructions earlier in the virtual order may be retired since

they have completed and will never be rolled back. Originally a Time Warp term.

instruction block A group of up to 16 instructions, an instance of which is loaded into a

frame for execution.

instruction level parallelism (ILP) Executing two or more instructions in parallel, usually

taken from a sequential instruction stream.

instructions per cycle (IPC) The number of instructions executed in a clock cycle by a

processor, usually an average.

mis-speculation Speculatively executing an instruction either incorrectly, or with incorrect

data.

real order The order in which instructions are actually executed. This may be different

from the virtual order when out-of-order execution is being used.

reorder buffer (ROB) A set of storage locations holding instructions, and sometimes re

sult values, in program order.

rescaling Reallocating the early, unused VTSs to the active frames earliest in the virtual

order, freeing their VTSs for allocation to new frames.

resource block A linear array of frames which can be allocated in virtual order.

rollback Selectively undoing incorrectly speculatively executed instructions.

selective speculation Selecting a group of instructions to execute speculatively where two

or more groups are available and only one can currently be executed.

spatial memory Conventional memory, which holds only the single most recent value writ

ten to each address.

squash Undoing the effects of all speculative instructions beyond a mis-speculation point.

task A group of instructions in a contiguous instruction window executed in parallel with

other groups of instructions.

thread A largely independent region of code executed in parallel with other such regions.

231

transient states The results of speculatively executed instructions which are never com

mitted and will be rolled back.

tree structured execution The dynamic execution pattern which arises from a CFG where

more than one flow of control may be followed in parallel from any node.

time-space cache The part of the virtually ordered memory system which holds multiple

versions of each memory location, applying at different times in the virtual order.

Time Warp An parallel discrete event simulation algorithm used to impose a causal order

ing on distributed systems.

twisted memory A novel speculative memory cache which uses a hierarchy of memory

cells and explicit VTSs to maintain the virtual order of memory accesses

virtual order The sequential program order of instructions, which dictates the dependen

cies between instructions.

virtual order simulation Simulating execution of instructions in the virtual order of the

instructions, rather than the real order.

virtual timestamp (VTS) An explicit tag used to indicate the position in the virtual order

of a frame.

WarpEngine A theoretical computer architecture developed to investigate aggressive spec

ulative execution and used throughout this thesis.

232

Bibliography

Akkary, H. [1998]. A Dynamic Multithreading Processor. PhD thesis, Portland State Uni

versity.

Akkary, H. and Driscoll, M. [1998]. A dynamic multithreading processor. In Proceedings

of the 31st Annual International Symposium on Microarchitecture (pp. 226-236).

Ang, B. S., Chiou, D., Rudolph, L. and Arvind [1998]. The StarT-Voyager parallel sys

tem. In Proceedings of the International Conference on Parallel Architectures and

Compilation. Paris, France.

August, D. I., Connors, D. A., Mahlke, S. A., Sias, J. W., Crozier, K. M., Cheng, B.

C., Eaton, P.R., Olaniran, Q. B. and Hwu, W.W. [1998]. Integrated predicated and

speculative execution in the IMPACT EPIC architecture. In Proceedings 25th of the

International Symposium Computer Architecture (pp. 227-237).

Austin, T. and Sohi, G. [1995]. Zero-cycle loads: Microarchitectural support for reducing

load latency. In Proceedings of the 28th Annual International Symposium on Microar

chitecure (pp. 82-92).

Austin, T. M. and Sohi, G. [1992]. Dynamic dependency analysis of ordinary programs. In

Proceedings of the 19th Annual International Symposium on on Computer Architec

ture.

Back, A. and Turner, S. [1995]. Time-stamp generation for optimistic parallel computing.

In Proceedings of the 28th Annual Simulation Symposium (pp. 144-153). Phoenix,

Arizona.

233

Barua, R., Lee, W., Amarasinghe, S. and Agarwal, A. [1999]. Maps: A compiler-managed

memory system for Raw machines. In Proceedings of the 26th International Sympo

sium on Computer Architecture. Atlanta, GA.

Bellenot, S. [1990]. Global virtual time algorithms. In Proceedings of the SCS Multicon

ference on Distributed Simulation, Volume 2 (pp. 122-127).

Biglari-Abhari, M., Liebelt, M. J. and Eshraghian, K. [1998]. Implementing a VLIW com

piler: Motivation and trade-offs. In Morris, J. (Ed.), 3rd Australasian Computer Archi

tecture Conference, Volume 20 (pp. 37-46). Perth, Australia, Springer-Verlag.

Butler, M., Yeh, T.-Y., Patt, Y., Alsup, M., Scales, H. and Shebanow, M. [1991]. Single

instruction stream parallelism is greater than two. In 18th Annual International Sym

posium on Computer Architecture (pp. 276-286). New York, N.Y.

Calder, B. and Reinman, G. [2000]. A comparative survey of load speculation architectures.

Journal of Instruction Level Parallelism, 1, 1-39.

Calvert, J. [1997]. Design of the execution control structure for the WarpEngine optimistic

CPU. Master's thesis, University of Waikato.

Chen, T.-F. and Baer, J.-L. [1995]. Effective hardware-based data prefetching for high

performance processors. IEEE Transactions on Computers, 5, 609-623.

Chou, Y., Fung, J. and Shen, J.P. [1999]. Reducing branch misprediction penalties via dy

namic control independence detection. In Proceedings of the International Conference

on Supercomputing. Rhodes.

Chrysos, G. Z. and Erner, J. S. [1998]. Memory dependence prediction using store sets.

In Proceedings of the 25th International Symposium on Computer Architecture (pp.

142-153).

Cleary, J. G. [1995]. WarpEngine instruction set. Internet Web Page.

URL http://www.cs.waikato.ac.nzltimewarp/wengine/instset/we_inst.nov21995 .html,

visited November 2001.

Cleary, J. G., Pearson, M. W. and Kinawi, H. [1995]. The architecture of an optimistic CPU:

The WarpEngine. In Proceedings of HICSS, Volume 1 (pp. 163-172). Hawaii.

234

Colwell, R., Nix, R., O'Donnell, J., Papworth, D. and Rodman, P. [1987]. A VLIW ar

chitecture for a trace scheduling compiler. In Proceedings of the 2nd International

Conference on Architectural Support for Programming Languages and Operating Sys

tems (pp. 180-192). Palo Alto, California.

Compaq [2000]. Alpha 21264/EV6 Microprocessor Hardware Reference Manual. Compaq

Computer Corporation.

Corman, T. H., Leiserson, C. E. and Rivest, R. L. [1990]. Introduction to Algorithms. New

York: McGraw-Hill Book Company.

Dennis, J. and Misunas, D. [1975]. A preliminary architecture for a basic dataflow pro

cessor. In Proceedings of the 2nd Annual Symposium on Computer Architecture (pp.

126-132). Houston, Texas.

Eeckhout, L., Aa, T. V., Goeman, B., Vandierendonck, H., Lauwereins, R. and Bosschere,

K. D. [2001]. Application domains for fixed-length block structured architectures. In

Proceedings of Australasian Computer Systems Architecture Conference. Gold Coast,

Australia.

Eeckhout, L., Bosschere, K. D. and Neefs, H. [2000]. On the feasibility of fixed-length

block structured architectures. In Heiser, G. (Ed.), Proceedings of the 5th Australasian

Computer Architecture Conference (pp. 17-25).

Fisher, J. [1983]. Very long instruction word architectures and the ELI-52. In Proceedings

of the 10th Annual Symposium on Computer Architecture (pp. 140-150). Stockholm.

Fisher, J. A. [1984]. The VLIW machine: A multiprocessor for compiling scientific code.

IEEE Computer, I 7(7).

Franklin, M. [1993]. The Multiscalar Architecture. PhD thesis, University of Wisconsin

Madison.

Franklin, M. and Sohi, G. S. [1996]. ARB: A hardware mechanism for dynamic reordering

of memory references. IEEE Transactions on Computers, 45(5).

Fujimoto, R. [1990a]. Parallel discrete event simulation. Communications of the ACM,

33(10), 30-53.

235

Fujimoto, R. [1990b]. Time Warp on a shared memory multiprocessor. Transactions of the

Society for Computer Simulation, 6(3), 211-239.

Fujimoto, R. M. [1989]. The virtual time machine. In Proceedings of the International

Symposium on Parallel Algorithms and Architectures (pp. 199-208).

Fujimoto, R. M. and Hybinette, M. [1997]. Computing global virtual time in shared

memory multiprocessors. ACM Transactions on Modeling and Computer Simulation,

7(4), 425-446.

Fujimoto, R. M., Tsai, J.-J. and Gopalakrishnan, G. C. [1992]. Design and evaluation of

the rollback chip: Special purpose hardware for Time Warp. IEEE Transactions on

Computers, 41(1), 68-82.

Gaudiot, J. [1986]. Structure handling in dataflow systems. IEEE Transactions on Comput

ers, C-35(6), 489-502.

Gharachorloo, K., Gupta, A. and Hennessey, J. [1991]. Two techniques to enhance the

performance of memory consistency models. In Proceedings of the International Con

ference on Parallel Processing (pp. 245-257).

Gomes, F., Cleary, J. and Unger, B. [1992]. GVT approximation in optimistic parallel

discrete event simulation: a survey. Technical report, Computer Science, University of

Calgary, Calgary, Canada.

Gonzalez, J. and Gonzalez, A. [1997]. Speculative execution via address prediction and data

pref etching. In Proceedings of the llth International Conference on Supercomputing

(pp. 547-564).

Gonzalez, J. and Gonzalez, A. [1998]. The potential of data value speculation to boost ILP.

In Proceedings of the 12th International Conference on Supercomputing.

Gopal, S., Vijaykumar, T. N., Smith, J.E. and Sohi, G. S. [1998]. Speculative versioning

cache. In The 4th International Symposium on High Perfonnance Computer Architec

ture. Las Vegas, Nevada.

Grunwald, D., Klauser, A., Manne, S. and Pleszkun, A. [1998]. Confidence estimation for

speculation control. In Proceedings of the 25th International Symposium on Computer

Architecture (pp. 122-131).

236

Gurd, J. R., Kirkham, C. C. and Watson, I. [1985). The Manchester prototype dataflow

computer. In Communications of the ACM, Volume 28 (pp. 24-52).

Hammond, L., Hubbert, B. A., Siu, M., Prabhu, M. K., Chen, M. and Olukotun, K. [2000).

The Stanford Hydra CMP. IEEE Micro, 20(2), 71-84.

Hammond, L., Willey, M. and Olukotun, K. [1998). Data speculation support for a chip

multiprocessor. In Proceedings of the 8th International Conference on Architecture

Support for Programming La.nguages and Operating Systems.

Hao, E., Chang, P.-Y., Evers, M. and Patt, Y. N. [1998). Increasing the instruction fetch rate

via block-structured instruction set architectures. International Journal of Parallel

Programming, 26(4), 449-458.

Hennessy, J. L. and Patterson, D. A. [1996). Computer Architecture: A Quantitative Ap

proach (second Ed.). San Francisco: Morgan Kaufmann Publishers, Inc.

Hwu, W.-M. and Patt, Y. [1987]. Checkpoint repair for out-of-order execution machines.

In Proceedings of the 14th International Symposium on Computer Architecture (pp.

297-307).

Intel [1999). Intel Architecture Optimisation Reference Manual. Intel Corporation.

Intel [2000]. A Detailed Look Inside the Intel Pentium 4 Processor. Intel Corporation.

Jacobsen, E., Rotenberg, E. and Smith, J.E. [1996). Assigning confidence to conditional

branch predictions. In Proceedings of the 29th International Symposium on Microar

chitecture.

Jacobsen, Q., Bennett, S., Sharma, N. and Smith, J.E. [1997). Control flow speculation in

multiscalar processors. In Proceedings of the 3rd International Symposium on High

Pe,formance Computer Architecture.

Jefferson, D. [1985]. Virtual time. Transactions on Programming La.nguages and Systems,

7(3), 404-425.

Jefferson, D. [1990). Virtual time II: Storage management in distributed simulation. In Pro

ceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing

(pp. 75-89).

237

Jouppi, N. P. and Wall, D. W. [1989]. Available instruction-level parallelism for superscalar

and superpipelined machines. In Proceedings of the 3rd International Conference on

Architecture Support for Programming Languages and Operating Systems (pp. 272-

282). New York, N.Y.

Keller, R. [1975]. Look-ahead processors. ACM Computing Surveys, 7, 66-72.

Lam, M. S. and Wilson, R. P. [1992]. Limits of control flow on parallelism. In Proceedings

of the 19th Annual International Symposium on on Computer Architecture (pp. 46-57).

Lamport, L. [1979]. How to make a multiprocessor computer that correctly executes multi

process programs. IEEE Transactions on Computers, C-28(9), 690-691.

Lawrie, D. [1975]. Access and alignment of data in an array processor. IEEE Transactions

on Computers, C-24(12), 1145-1155.

Lewis, H. R. and Denenberg, L. [1991]. Data Structures and Their Algorithms. Harper

Collins.

Lin, Y.-B. and Lazowska, E. [1990]. Determining the global virtual time in a distributed

simulation. In Proceedings of the 1990 International Conference on Parallel Process

ing, Volume 3 (pp. 201-209).

Lipasti, M. H. and Shen, J. P. [1996]. Exceeding the dataftow limit via value prediction.

In Proceedings of the 29th Annual ACM/IEEE Symposium on Microarchitecture (pp.

226-232).

Lipasti, M. H. and Shen, J.P. [1998]. Exploiting value locality to exceed the dataftow limit.

In International Journal of Parallel Processing, Volume 26 (pp. 505-538).

Littin, R. H. [1999]. WarpEngine test programs. Internet Web Page. URL

http://www.cs.waikato.ac.nz/timewarp/wengine/testcode/, visited November 2001.

Littin, R. H. [2000]. Design and Evaluation of an Optimistic CPU: The WarpEngine. PhD

thesis, University of Waikato, Hamilton, New Zealand.

Littin, R. H., McWha, J. A. D., Pearson, M. W. and Cleary, J. G. [1998]. Block based

execution and task level parallelism. In Proceedings of the 3rd Australasian Computer

Architecture Conference. Perth, Australia.

238

Mahlke, S., Hank, R., McCormick, J., August, D. and Hwu, W.-M. [1995]. A comparison

of full and partial predicated support for ILP processors. In Proceedings of the 22nd

International Symposium on Computer Architecture (pp. 138-149). Santa Margherita

Ligure.

Manne, S., Klauser, A. and Grunwald, D. [1998]. Pipeline gating: Speculation control for

energy reduction. In Proceedings of the 25th International Symposium on Computer

Architecture (pp. 132-141).

Marcuello, P. and Gonzlez, A. [1998]. Speculative multithreaded processors. In Proceed

ings of the ACM International Conference on Supercomputing. Melbourne, Australia.

Mcfarling, S. [1993]. Combining branch predictors. Technical Report WRL Technical

Notes TN-36, Digital Western Research Laboratory.

Melvin, S. and Patt, Y. [1995]. Enhancing instruction scheduling with a block-structured

ISA. International Journal of Parallel Programming, 23(3), 221-243.

Moshovos, A., Breach, S., Vijaykumar, T. and Sohi, G. [1997]. Dynamic speculation and

synchronization of data dependences. In 24th International Symposium on Computer

Architecture.

Moshovos, A. and Sohi, G. S. [2000]. Memory dependence speculation tradeoffs in cen

tralized, continuous-window superscalar processors. In Proceedings of the 6th In

ternational Symposium on High Performance Computer Architecture (pp. 301-312).

Toulouse, France.

Neefs, H., De Bosschere, K. and Van Campenhout, J. [1997]. Issues in compilation for

fixed-length block structured instruction set architectures. In Workshop on Interaction

between Compilers and Computer Architectures.

Neefs, H. and Van Campenhout, J. [1996]. A microarchitecture for a fixed length block

structured instruction set architecture. In Eighth IASTED International Conference on

Parallel and Distributed Computing and Systems. Chicago.

Nicolau, A. and Fisher, J. [1984]. Measuring the parallelism available for very long instruc

tion word architectures. IEEE Transactions on Computers, C-33(I I), 968-976.

239

Nikhil, R., Papadopoulos, G. and Arvind [1992]. *T: A multithreaded massively parallel

architecture. In Proceedings of the 19th International Symposium on Computer AR

chitecure (pp. 156--167). Gold Coast.

Papadopoulos, G. and Culler, D. E. [1990]. Monsoon: An explicit token store architec

ture. In Proceedings of the 17th International Symposium on Computer Architecture.

Seattle, Washington.

Patterson, D. A. [1985]. Reduced instruction set computers. Communications of the ACM,

28(1), 8-21.

Pearson, M. W., Littin, R.H., McWha, J. A. D. and Cleary, J. G. [1997]. Applying Time

Warp to CPU design. In High Pe,formance Computing Conference 1997. Bangalore,

India.

Postiff, M. A., Greene, D. A. and Mudge, T. N. [1999]. The limits of instruction level

parallelism in SPEC95 applications. Computer Architecture News, 27(1), 31-34.

Press, W. H. [1992]. Numerical Recipes in C. Cambridge University Press.

Quinn, M. J. [1987]. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill.

Ramamoorthy, C. and Li, H. [1977]. Pipeline architecture. ACM Computing Surveys, 9(1),

61-102.

Rotenberg, E., Bennett, S. and Smith, J.E. [1996]. Trace cache: A low latency approach to

high bandwidth instruction fetching. In Proceedings of the 29th International Sympo

sium on Microarchitecture. Paris, France.

Rotenberg, E., Bennett, S. and Smith, J. E. [1999a]. A trace cache microarchitecture and

evaluation. IEEE Transactions on Computers, 48(2), 111-120.

Rotenberg, E., Jacobsen, Q., Sazeides, Y. and Smith, J. [1997]. Trace processors. In Pro

ceedings of the 30th International Symposium on Microarchitecture.

Rotenberg, E., Jacobsen, Q. and Smith, J. [1999b]. A study of control independence in

superscalar processors. In The 5th International Symposium on High Pe,formance

Computer Architecture. Orlando, Florida.

Rotenberg, E. and Smith, J. [1999]. Control independence in trace processors. In Proceed

ings of the 32nd International Symposium on Microarchitecture.

240

Roth, A. and Sohi, G. S. [2000]. Register integration: A simple and efficient implementation

of squash reuse. In Proceedings of the 33rd International Symposium on Microarchi

tecture.

Russel, R. [1978]. The CRAY- I computer system. Communications of the ACM, 21, 63-72.

Sazeides, Y. and Smith, J. [1997]. The predictability of data values. In Proceedings of the

30th International Symposium on Microarchitecture.

Schlansker, M. and Rau, B. [2000]. EPIC: Explicitly parallel instruction computing. IEEE

Computer, 33(2), 37-45.

Smith, J. E. [1981]. A study of branch prediction strategies. In Proceedings of the 8th

Annual International Symposium on Computer Architecture (pp. 135-148).

Smith, J.E. and Pleszkun, A. R. [1988]. Implementing precise interrupts in pipelined pro

cessors. IEEE Transactions on Computers, 37(5), 562-573.

Smith, M. D., Johnson, M. and Horowitz, M.A. [1989]. Limits on multiple instruction issue.

In 3rd International Conference on Architecture Support for Programming Languages

and Operating Systems (pp. 290-302). New York, N.Y.

Snelling, D. F. [1993]. The Design and Analysis of a Stateless Data-Flow Architecture. PhD

thesis, University of Manchester.

Snelling, D. F. and Egan, G. K. [1994]. A comparative study of data-flow architectures.

Technical Report UMCS-94-4-3, University of Manchester.

Sodani, A. and Sohi, G. S. [1997]. Dynamic instruction reuse. In Proceedings of the 24th

International Symposium on Computer Architecture.

Sodani, A. and Sohi, G. S. [1998]. Understanding the differences between value predic

tion and instruction reuse. In Proceedings of the 31st International Symposium on

M icroarchitecture.

Sohi, G. S., Breach, S. and Vijaykumar, T. N. [1995]. Multiscalar processors. In 22nd

International Symposium on Computer Architecture (pp. 414-425).

Srini, V. P. [1986]. An architectural comparison of dataflow systems. IEEE Computer,

19(3), 68-87.

241

Steffan, J. G., Colohan, C., Zhai, A. and Mowry, T. [2000]. A scalable approach to thread

level speculation. In Proceedings of the 27th Annual International Symposium on

Computer Architecture.

Steffan, J. G. and Mowry, T. [1998]. The potential for using thread-level data speculation to

facilitate automatic parallelisation. In Proceedings of the 4th International Symposium

on High-Performance Computer Architecture.

Thornton, J.E. [1964]. Parallel operation in the Control Data 6600. In Proceedings AF/PS

Fall Joint Computer Conference, Volume 26 (pp. 33-40).

Tjaden, G. and Flynn, M. [1970]. Detection and parallel execution of parallel instructions.

IEEE Transactions on Computers, C-19(10), 889-895.

Tomasulo, R. M. [1967]. An efficient algorithm for exploiting multiple arithmetic units.

IBM Journal, 11, 25-33.

Treleaven, P., Brownbridge, D. and Hopkins, R. [1982]. Data-driven and demand-driven

computer architectures. ACM Computing Surveys, 14, 93-143.

Tremblay, M., Chan, J., Chudhry, S., Conigliaro, A. and Tse, S. S. [2000]. The MAJC

architecture: a synthesis of parallelism and scalability. IEEE Micro, 20(6), 12-25.

Tsai, J.-Y., Huang, J., Arnio, C., Lilja, D. and Yew, P.-C. [1999]. The superthreaded proces

sor architecture. IEEE Transactions on Computers, 48(9).

Tyson, G. and Austin, T. [1999]. Memory renaming: Fast, early and accurate processing of

memory communication. International Journal of Parallel Programming, 27(5).

Uht, A. K. and Sindagi, V. [1995]. Disjoint eager execution: An optimal form of speculative

execution. In Proceedings of the 28th International Symposium on Microarchitecture.

Uht, A. K., Sindagi, V. and Somanathan, S. [1997]. Branch effect reduction techniques.

IEEE Computer, 30(5), 71-81.

Veen, A. H. [1986]. Dataflow machine architecture. ACM Computing Surveys, 18(4), 365-

396.

Vijaykumar, T. and Sohi, G. S. [1998]. Task selection for a multiscalar processor. In

Proceedings of the 31st International Symposium on Microarchitecture.

242

Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J., Frank, M.,

Finch, P., Barna, R., Babb, J., Amarasinghe, S. and Agarwal, A. [1997]. Baring it all

to the software: Raw machines. IEEE Computer, 30(9), 86-93.

Wall, D. W. [1991]. Limits of instruction-level parallelism. In 4th International Confer

ence on Architecture Support for Programming lAnguages and Operating Systems (pp.

176-188). New York, N.Y.

Wallace, S., Calder, B. and Tullsen, D. M. [1998]. Threaded multiple path execution. In

Proceedings of the 25th Annual International Symposium on Computer Architecture.

Wang, K. and Franklin, M. [1997]. Highly accurate data value prediction using hybrid

predictors. In Proceedings of the 30th Annual Symposium on Microarchitecture.

Wang, S. and Uht, A. [1990]. Ideograph/ideogram: Framework/architecture for eager eval

uation. In Proceedings of the 23rd Annual Symposium on Microprogramming and

Microarchitecture (pp. 125-134).

Wu, C. and Feng, T. [1980]. On a class of multistage interconnection networks. IEEE

Transactions on Computers, C-29(8), 694--702.

Yeh, T.-Y., Marr, D. and Patt, Y. [1993]. Increasing the instruction fetch rate via multiple

branch prediction and a branch address cache. In Proceedings of the 7th International

Conference on Supercomputing (pp. 67-76).

Yeh, T.-Y. and Patt, Y. N. [1993]. A comparison of dynamic branch predictors that use two

levels of branch history. In Proceedings of the 20th Annual International Symposium

on Computer Architecture (pp. 257-266).

243

	11529
	11530
	11531
	11532
	11533
	11534
	11535
	11536
	11537
	11538
	11539
	11540
	11541
	11542
	11543
	11544
	11545
	11546
	11547
	11548
	11549
	11550
	11551
	11552
	11553
	11554
	11555
	11556
	11557
	11558
	11559
	11560
	11561
	11562
	11563
	11564
	11565
	11566
	11567
	11568
	11569
	11570
	11571
	11572
	11573
	11574
	11575
	11576
	11577
	11578
	11579
	11580
	11581
	11582
	11583
	11584
	11585
	11586
	11587
	11588
	11589
	11590
	11591
	11592
	11593
	11594
	11595
	11596
	11597
	11598
	11599
	11600
	11601
	11602
	11603
	11604
	11605
	11606
	11607
	11608
	11609
	11610
	11611
	11612
	11613
	11614
	11615
	11616
	11617
	11618
	11619
	11620
	11621
	11622
	11623
	11624
	11625
	11626
	11627
	11628
	11629
	11630
	11631
	11632
	11633
	11634
	11635
	11636
	11637
	11638
	11639
	11640
	11641
	11642
	11643
	11644
	11645
	11646
	11647
	11648
	11649
	11650
	11651
	11652
	11653
	11654
	11655
	11656
	11657
	11658
	11659
	11660
	11661
	11662
	11663
	11664
	11665
	11666
	11667
	11668
	11669
	11670
	11671
	11672
	11673
	11674
	11675
	11676
	11677
	11678
	11679
	11680
	11681
	11682
	11683
	11684
	11685
	11686
	11687
	11688
	11689
	11690
	11691
	11692
	11693
	11694
	11695
	11696
	11697
	11698
	11699
	11700
	11701
	11702
	11703
	11704
	11705
	11706
	11707
	11708
	11709
	11710
	11711
	11712
	11713
	11714
	11715
	11716
	11717
	11718
	11719
	11720
	11721
	11722
	11723
	11724
	11725
	11726
	11727
	11728
	11729
	11730
	11731
	11732
	11733
	11734
	11735
	11736
	11737
	11738
	11739
	11740
	11741
	11742
	11743
	11744
	11745
	11746
	11747
	11748
	11749
	11750
	11751
	11752
	11753
	11754
	11755
	11756
	11757
	11758
	11759
	11760
	11761
	11762
	11763
	11764
	11765
	11766
	11767
	11768
	11769
	11770
	11771
	11772
	11773
	11774
	11775
	11776
	11777
	11778
	11779
	11780
	11781
	11782
	11783
	11784
	11785
	11786
	11787

