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Abstract 

This thesis examines a stochastic model for the electrical behaviour of the cerebral cortex under 

the influence of a general anaesthetic agent. The modelling element is the macrocolumn, an 

organized assembly of -105 cooperating neurons (85% excitatory, 15% inhibitory) within a small 

cylindrical volume (-1 mm3) of the cortex. The state variables are he and hi, the mean-field 

average soma voltages for the populations of excitatory ( e) and inhibitory ( i) neurons comprising 

the macrocolumn. The random fluctuations of he about its steady-state value are taken as the 

source of the scalp-measured EEG signal. The randomness enters by way of four independent 

white-noise inputs representing fluctuations in the four types (e-e, i-e, e-i, i-i) of subcortical 

activity. 

Our model is a spatial and temporal simplification of the original set of eight coupled partial 

differential equations (PDEs) due to Liley et al. [Neurocomputing 26-27, 795 (1999)] describing 

the electrical rhythms of the cortex. We assume (i) spatial homogeneity (i.e., the entire cortex 

can be represented by a single macrocolumn), and (ii) a separation of temporal scales in which 

all inputs to the soma "capacitor" are treated as fast variables that settle to steady state very 

much more rapidly than do the soma voltages themselves: this is the "adiabatic approximation." 

These simplifications permit the eight-equation Liley set to be collapsed to a single pair of first­

order PD Es in he and hi. We incorporate the effect of general anaesthetic as a lengthening of the 

duration of the inhibitory post-synaptic potential (PSP) (i.e., we are modelling the GABAergic 

class of anaesthetics), thus the effectiveness of the inhibitory firings increases monotonically with 

anaesthetic concentration. 

These simplified equations of motion for he,i are transformed into Langevin (stochastic) 

equations by adding small white-noise fluctuations to each of the four subcortical spike-rate 

averages. In order to anchor the analysis, I first identify the t ---+ oo steady-state values for 

the soma voltages. This is done by turning off all noise sources and setting the dhe/ dt and 

dhi/ dt time derivatives to zero, then numerically locating the steady-state coordinates as a 

function of anaesthetic effect >., the scale-factor for the lengthening of the inhibitory PSP. We 

find that, when plotted as a function of >., the steady-state soma voltages map out a reverse-S 

trajectory consisting of a pair of stable branches-the upper (active, high-firing) branch, and 

the lower ( quiescent, low-firing) branch-joined by an unstable mid-branch. Because the two 

stable phases are not contiguous, the model predicts that a transit from one phase to the other 

must be first-order discontinuous in soma voltage, and that the downward (induction) jump 

from active-awareness to unconscious-quiescence will be hysteretically separated from (i.e., will 

occur at a larger concentration of anaesthetic than) the upward (emergence) jump for the return 

of consciousness. 
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By reenabling the noise terms, then linearizing the Langevin equations about one of the sta­

ble steady states, we obtain a two-dimensional Ornstein-Uhlenbeck (Brownian motion) system 

which can be analyzed using standard results from stochastic calculus. Accordingly, we calcu­

late the covariance, time-correlation, and spectral matrices, and find the interesting predictions 

of vastly increased EEG fluctuation power, attended by simultaneous redistribution of spectral 

energy towards low frequencies with divergent increases in fluctuation correlation times (i.e., 

critical slowing down), as the macrocolumn transition points are approached. These predictions 

are qualitatively confirmed by clinical measurements reported by Kuizenga et al. [British Jour­

nal of Anaesthesia 80, 725 (1998)] of the so-called EEG biphasic effect. He used a slew-rate 

technique known as aperiodic analysis, and I demonstrate that this is approximately equivalent 

to a frequency-scaling of the power spectral density. 

Changes in the frequency distribution of spectral energy can be quantified using the notion 

of spectral entropy, a modern measure of spectral "whiteness." We compare the spectral entropy 

predicted by the model against the clinical values reported recently by Viertio-Oja et al. [Journal 

of Clinical Monitoring 16, 60 (2000)], and find excellent qualitative agreement for the induction 

of anaesthesia. 

To the best of my knowledge, the link between spectral entropy and correlation time has 

not previously been reported. For the special case of Lorentzian spectrum (arising from a 1-

D OU process), I prove that spectral entropy is proportional to the negative logarithm of the 

correlation time, and uncover the formula which relates the discrete Hi Shannon information to 

the continuous H2 "histogram entropy," giving an unbiased estimate of the underlying continuous 

spectral entropy Hw. The inverse entropy-correlation relationship suggests that, to the extent 

that anaesthetic induction can be modelled as a 1-D OU process, cortical state can be assessed 

either in the time domain via correlation time or, equivalently, in the frequency domain via 

spectral entropy. 

In order to investigate a thermodynamic analogy for the anaesthetic-driven ( "anaestheto­

dynamic") phase transition of the cortex, we use the steady-state trajectories as an effective 

equation of state to uncouple the macrocolumn into a pair of (apparently) independent "pseu­

docolumns." The stable steady states may now be pictured as local minima in a landscape of 

potential hills and valleys. After identifying a plausible temperature analogy, we compute the 

analogous entropy and predict discontinous entropy change--with attendant "heat capacity" 

anomalies-at transition. The Stullken dog experiments [Stullken et al., Anesthesiology 46, 28 

(1977)], measuring cerebral metabolic rate changes, seem to confirm these model predictions. 

The penultimate chapter examines the impact of incorporating NMDA, an important ex­

citatory neurotransmitter, in the adiabatic model. This work predicts the existence of a new 

stable state for the cortex, midway between normal activity and quiescence. An induction at­

tempt using a pure anti-NMDA anaesthetic agent (e.g., xenon or nitrous oxide) will take the 

patient to this mid-state, but no further. I find that for an NMDA-enabled macrocolumn, a 

GABA induction can produce a second biphasic power event, depending on the brain state at 

commencement. The latest clinical report from Kuizenga et al. [British Journal of Anaesthesia 

86, 354 (2001)] provides apparent confirmation. 
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A Brief History 

In December 1997, Dr Jamie Sleigh, a senior anaesthetist at Waikato Hospital (who had been 

putting people to sleep for years), presented Waikato University theoretical physicist Dr Moira 

Steyn-Ross with an interesting challenge. It had become increasingly apparent to Dr Sleigh 

that conscious-awareness and anaesthetic-induced unconsciousness are completely disjoint men­

tal states which do not grade smoothly from one to the other as anaesthetic concentration is 

increased. Rather, it is as if, at a critical level of anaesthetic concentration, a switch is flipped 

and the patient's brain makes a sudden, dramatic ( and fortunately reversible!) change of phase 

to its unaware state. Hence Dr Sleigh's formidable challenge: Could Dr M. Steyn-Ross please 

craft a set of equations which would model the patient response to anaesthetic as if it were a 

thermodynamic phase change? 

Serendipitously, Dr Steyn-Ross and I learned that Dr David Liley, a biophysicist from Swin­

burne University of Technology, Melbourne, Australia, would be visiting his parents in Hamilton 

the following month. So I arranged that the four of us (J. Sleigh, M. Steyn-Ross, D. Liley, 

A. Steyn-Ross) should meet, and that January gathering marked the start of a vigorous and 

productive collaboration. We soon learned that Dr Liley had strong views about which cortical 

model should be used-namely: his one! Having promptly settled that matter, discussion then 

turned to how the Liley model could be modified to incorporate the effect of a GABAergic in­

duction agent such as the anaesthetic propofol which was known to lengthen the opening times 

of the chloride ion channel controlled by the GABAA receptor. It was decided that we could 

model this drug-induced change as a lengthening of the inhibitory neuron's postsynaptic impulse 

response, with the degree of prolongation to be proportional to drug concentration. 

While the Liley cortical mean-field equations for the average neuron voltage have been care­

fully constructed to be neurophysiologically plausible, they are mathematically daunting: eight 

first- and second-order, nonlinear partial differential equations. Moira realized that the Liley 

equations could be "solved" if one were to make two bold and drastic simplifying assumptions. 

First, the averaged soma voltages are to evolve on time scales much slower than those of the 

invading inhibitory and excitatory impulses. Second: the cortex might be imagined as being 

spatially homogeneous. Then the eight equations become two-a pair of first-order ordinary 

differential equations in he and hi, the population-average excitatory and inhibitory neuron 

voltages. These simplified cortical equations define what we call the "adiabatic model." 
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Moira's plan of attack was to determine the awake and anaesthetized steady states for the 

homogeneous "adiabatic" brain, and then, by incorporating subcortical white-noise perturba­

tions to generate a pseudo EEG signal, calculate the theoretical spectrum for small fluctuations 

about those steady states using the tools of stochastic calculus. Her preliminary calculations had 

shown that there could be three stationary points for a given value of anaesthetic concentration, 

so, on the basis of her earlier work on optical bistability, she predicted that a detailed map of 

the cortical steady states would reveal the "cubic" S-bend signature of a classic first-order phase 

transition. 

My contributions to the research began at this point. My first task was to locate numerically 

the accurate locus of steady states as a function of anaesthetic concentration, and to establish 

their stability with respect to small disturbances. The anticipated S-bend with unstable mid­

branch emerged, and now the cortex could reside either on the top ("conscious") branch or the 

bottom ("unconscious") branch, and, at critical values of anaesthetic, would be forced to switch 

states. So far so good. 

The next step was to calculate the pseudo-EEG fluctuation spectrum for the white-noise­

forced adiabatic equations. Using the stochastic analysis techniques detailed in C. W. Gardiner's 

Handbook of Stochastic Methods, Moira derived equations for the EEG spectral variation with 

anaesthetic. I coded these, and plotted the predicted variation in fluctuation power. But we 

were both rather dismayed by my initial results-the model seemed to be telling us that the total 

fluctuation power increases as the point of induction is approached, completely contradicting our 

naive expectation that fluctuations would diminish as the inhibitory effects of anaesthetic started 

to "bite." However, when Jamie saw the results, he was delighted! He told us that it is well­

known within the community of anaesthesiologists that EEG power shows a "biphasic" response 

to anaesthetic: low doses of general anaesthetic tend to produce an excited brain response; 

larger doses produce the expected suppressed response. The biphasic effect had been nicely 

demonstrated in a 1998 paper by Karel Kuizenga, an anaesthestist working in The Netherlands, 

so we contacted him, requesting access to some of his published results. 

Our biphasic "discovery" was in October 1998. By December of the following year we had 

published our findings in Physical Review E in what we now refer to as "Paper O" (Steyn-Ross 

et al., 1999). 1 This was accompanied by an APS-sponsored Focus article "Freezing into Un­

consciousness" published at the America! Physical Society web site. 2 Shortly afterwards, we 

were contacted by Dr Hanna Viertio-Oja from the Finland medical instrumentation company, 

Datex-Ohmeda. Hanna is part of a design team for a novel depth-of-anaesthesia monitor that 

utilizes EEG spectral entropy as an index for patient awareness. She felt that a phase-transition 

model might provide the essential theoretical foundation for the Datex-Ohmeda instrument. An 

invitation followed from Datex-Ohmeda for Moira to speak at the World Congress of Anaesthe­

siologists in Montreal, Canada in June 2000. 

Moira wanted to develop a statistical mechanics formalism that would permit extraction 

of a cortical entropy and a cortical "heat capacity" from the model, but first we needed a 

1 "Theoretical EEG stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic­
induced phase transition," M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, D. T. J. Liley, Phys. Rev. E, 60, 
7299-7311, 1999. 

2The America! Physical Society Focus story can be viewed at http:/ /focus. aps. org/v4/ st30. html 
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(non-thermal!) cortical "temperature." I investigated a range of inverse mappings between 

anaesthetic concentration and an analogous temperature that I called cortical excitability, e. 
Moira suggested using the locus of steady states as an effective equation of state, thereby de­

coupling the excitatory and inhibitory neural populations within the macrocolumn into a pair 

of "independent" pseudocolumns. That decoupling was crucial. It permitted the construction of 

free-energy hills and valleys (potential functions), thence the calculation of entropy and "heat" 

capacity changes with anaesthetic, and the prediction of a "heat" capacity anomaly (release of 

latent "heat") at the point of phase change. Jamie uncovered a significant paper published in 

1977 by Stullken and colleagues that seems to confirm the notion that as the brain is "cooled" 

with anaesthetic, there exists a region intermediate between consciousness and unconsciousness 

in which cortical metabolic requirements decline precipitously. We can interpret this anomalous 

non-consumption of energy as signalling the release of latent energy as the brain transits from its 

disordered conscious state to its well-ordered unconscious state. Our thermodynamics analogy 

was written up in Paper 1 (Steyn-Ross et al., 2001a)3 which appeared in July 2001. 

Meanwhile, our research group had been enlivened by the arrival of MSc student Ms Lara 

Wilcocks. Her research task was to run stochastic simulations of both the full Liley equations 

and the adiabatically simplified set. Her simulations confirmed the number and nature of the 

steady states I had calculated numerically from the adiabatic theory, and her simulation spectra 

were able to be brought into exact agreement with theory once I'd established the precise scale 

factors that need to be applied to the discrete Fourier tranform process. (It seems that these 

scale factors are normally ignored, since I found no mention of them in the standard signal 

processing texts.) For me, the most satisfying aspect of Lara's simulations was the confirmation 

of a pronounced growth of fluctuation power as the point of induction is approached-this is 

the "cornucopia" graph of Fig. 7.8 on p. 141. We investigated the theoretical and simulation be­

haviour of spectral entropy, and found excellent qualitative agreement with Hanna Viertio-Oja's 

clinical measurements of spectral entropy of patient EEG records. Intrigued by the apparent 

inverse relationship between the correlation time T of the cortical fluctuations and their spec­

tral entropy Hw, I discovered that for a particular spectral distribution (Lorentzian or Cauchy), 

there exists a simple closed relationship: Hw = - loge T. This simulation and spectral entropy 

work was written up as Paper 2 (Steyn-Ross et al., 2001b),4 and published simultaneously with 

Paper 1. 

Contents Overview 

This thesis is a comprehensive report of the work I have done helping to develop and test a 

physics-based theory of anaesthesia. I have included here all the work I did for Papers 0, 1, 

and 2. Also reported is some recently completed research, outlined below but not yet published: 

entropy estimation for continuous frequency spectra, and the modelling of anaesthetic effects for 

an NMDA-enabled macrocolumn. 

3 "Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: I. A thermody­
namics analogy," M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, L. C. Wilcocks, 64, 011917, (2001). 

4 "Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: II. Numeri­
cal simulations, spectral entropy, and correlation times," D. A. Steyn-Ross, M. L. Steyn-Ross, L. C. Wilcocks, 
J. W. Sleigh, 64, 011918, (2001). 
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The reader will find that I have attempted throughout to give full acknowledgement of 

the contributions by the various members of the cortical research team. In general terms, 

Moira provided the theoretical backbone for the stochastic and thermodynamic approach, David 

was ever the staunch advocate for and defender of the Liley neuron, Jamie ensured that the 

physics and mathematics stayed true to the biology, and Lara stress-tested my assumptions and 

calculations with her careful simulations and independent insights. 

The thesis proceeds as follows. 

Chapter 1 lays the foundations for an electrical model of anaesthesia. I outline the three 

modern theories of anaesthetic action, and explain how our electrical model, based on the Liley 

equations, aims to incorporate the main ideas from the prevailing ion-channel theory. I give a 

rapid tutorial of some essential concepts of neurophysiology ( e.g., resting, reversal, and action 

potentials of a nerve cell), then explain how these ideas were built into the Hodgkin-Huxley 

electrical model of the nerve cell. This classic model is held in high regard because it success­

fully predicts the formation and propagation of nerve action potentials. I discuss the Tuckwell 

subthreshold (non-firing) model neuron, then demonstrate that the Liley model for a macrocol­

umn (an assembly of cooperating neurons) can be regarded as a mean-field generalization of the 

Tuckwell neuron. 

In Chapter 2 I present a brief survey of continuous and discrete Fourier transform theory 

germane to the analysis of EEG and other random time-series. 

The main business of the thesis gets under way in Chapter 3 where I locate the macrocolumn 

steady states for both the standard Liley equations and for a restricted case which ignores cell 

reversal potentials. In Chapter 4 I examine the stability of these steady states. 

Chapter 5 introduces white-noise driving terms into the macrocolumn equations, thereby 

transforming them into stochastic differential (Langevin) equations. Linearizing these about 

steady state gives a two-dimensional Ornstein-Uhlenbeck (Brownian motion) system that can 

be analyzed using well-established methods from stochastic calculus. Of paramount interest to 

EEG studies are the small voltage fluctuations about macrocolumn steady state and in particular, 

the statistics of these fluctuations: the variance, spectral distribution, and correlation time. 

For the first time, one can now make predictions about how the statistical character of the 

EEG fluctuations is expected to change with anaesthetic. The model makes three significant 

predictions: 

• there will be a surge in fluctuation power at the point of anaesthetic induction, and again 

at the point of emergence into wakefulness; 

• there will be a pronounced redistribution of spectral power towards low frequencies as the 

point of induction is approached; 

• a return journey into anaesthetic-unconsciousness and back will exhibit hysteresis be­

haviour (i.e., the emergence point will occur at a weaker level of anaesthetic than that 

required at induction). 

The aperiodic EEG analysis by Kuizenga of patients undergoing propofol induction seems to 

confirm the first and third of these predictions. 

Chapter 6 describes a thermodynamics analogy for the conscious-to-unconscious phase 

transition. By utilizing the trajectory of steady states as an "equation of state," the excitatory 
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and inhibitory neural populations become effectively uncoupled, allowing the computation of 

hills-and-valleys potential functions for the cortical free energy. I test several arbitrary but 

plausible inverse mappings between anaesthetic concentration and cortical "temperature," and 

from a subset of these compute the analogous thermodynamic entropy and heat capacity. A 

discontinuity in heat capacity is predicted-a "latent heat" effect-arising, presumably, from 

changes in macrocolumn "bonding." I give an interpretation of a 1977 experiment by Stullken 

that supports the notion of a biological "heat capacity" for the cerebral cortex. 

As a prelude to the stochastic macrocolumn simulations described in Chapter 7, I run 

a simple one-dimensional Ornstein-Uhlenbeck simulation as a validation test case to provide 

guidance on the choice of quadrature time-step, Fourier transform scale factors and window 

functions. I report L. Wilcock's simulation results for the full and adiabatic macrocolumn equa­

tions, and demonstrate good agreement between simulation and theory for changes in spectral 

distribution and power level as a function of anaesthetic effect. 

In Chapter 8 I discuss the several different kinds of entropy that might be used to quantify 

the state of order in the cortex. I show that the form of spectral entropy used in the EEG liter­

ature is fundamentally flawed-it assumes (falsely) that one can use the (discrete) information 

entropy H1 to estimate the spectral entropy Hw of the underlying (continuous) spectrum. This 

flaw becomes obvious in the limit !:iw --t 0: H1 fails to converge; in fact, it grows without limit. I 

show that the correct estimator is obtained by applying a "histogrammed" entropy measure H2. 
I compute the theoretical spectral entropy for an ideal Lorentzian spectrum, and show that there 

is a direct logarithmic proportionality with correlation time. For the adiabatic macrocolumn 

spectrum, I calculate the predicted changes in spectral entropy, and find excellent qualitative 

agreement when compared with patient EEG records furnished by H. Viertio-Oja. 

Chapter 9 is an attempt to generalize the adiabatic model for the case of dissociative (anti­

NMDA) anaesthetics. The published Liley model is designed for synaptic receptors which have 

"fast" kinetics (i.e., they decay on a timescale of a few milliseconds). This is a good fit for 

the (excitatory) AMPA and kainate receptors, and also for the (inhibitory) GABA receptors. 

Our adiabatic simplification then assumes that these synaptic timescales are very much shorter 

than the membrane timeconstant of the macrocolumn, and, by a moderate lengthening of the 

IPSP, we achieve a plausible model for the GABAergic class of anaesthetics. However, the 

dissociative class of general anaesthetics (e.g., nitrous oxide and xenon) work by shutting down 

or antagonizing the excitatory NMDA receptor, and this receptor has "slow" kinetics: its EPSP 

that can extend out to -100 ms or longer. In this chapter I investigate the implications of 

enabling slow NMDA receptor action, then antagonizing this action with progressive increases 

in dissociative anaesthetic concentration. The model predicts the existence of a new state of 

unconsciousness hovering between normal conscious-awareness and fully-induced anaesthetic 

unresponsiveness. 

Chapter 10 is a brief summary of work accomplished and an outline of future research 

directions. There are two appendices. The first provides details for simulating the non-adiabatic, 

spatially-homogeneous Liley equations (the so-called "full" equations); the second is a MATLAB 

algorithm I developed for numerically integrating the thermodynamic potential functions of 

Chapter 6. 
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Original Contributions 

I consider myself lucky to have been part of a such refulgent research team! But, because this 

document is a thesis, I need to state which components of the research originated with me. In 

general, unless otherwise stated, all numerical calculations and all graphic presentations are my 

own work. Here is a list of my main contributions: 

• treatment of the Liley neuron as a generalization of the Tuckwell neuron; design of equiv­

alent circuits for Liley neuron and macrocolumn (Chap. 1); 

• derivation of b..t/N forms for discrete Fourier transform normalizations (Chap. 2); 

• development of algorithms to locate steady states of the GABAergic (Chap. 3) and NMDA­

enabled (Chap. 9) macrocolumns, and to establish their stability with respect to small 

perturbations (Chaps 4 & 9); 

• coding of equations derived by M. Steyn-Ross for the fluctuation spectrum of the adiabatic 

macrocolumn (Chap. 5); 

• justification of equilibrium treatment for non-equilibrium steady states; investigation of 

inverse mappings between anaesthetic concentration and cortical "temperature" for ther­

modynamic analogy; interpretation of the Stullken dog results (Chap. 6); 

• comparison of L. Wilcocks' numerical simulation results against adiabatic-theory predic­

tions for fluctuation intensity, spectral distribution and spectral entropy change with anaes­

thetic (Chap. 7); 

• discovery of direct logarithmic relationship between spectral entropy and correlation time 

for a Lorentzian spectrum; establishing the histogram "correction" to enable unbiased esti­

mation of the entropy of a continuous spectrum from a discrete spectral sample (Chap. 8); 

• modifications to Liley equations to permit modelling of NMDA-antagonist anaesthetic 

agents; discovery of a "dissociated" state lying between normal consciousness and anaes­

thetic unconsciousness; prediction of "peak-splitting" during normal GABAergic induction 

(Chap. 9). 
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Chapter 1 

Foundations for an Electrical Model of 

Anaesthesia 

1.1 The Anaesthesia State 

The ability to safely and reversibly render a patient unconscious is an essential element of modern 

surgical medicine. Most surgical procedures would be completely impossible were it not for a 

series of discoveries, dating from the 1840s, that certain gaseous and volatile agents can induce 

a state of general anaesthesia, defined as follows-

-a state of controlled and reversible unconsciousness characterized by lack of 

pain sensation (analgesia), lack of memory (amnesia), muscle relaxation, and rela­

tively depressed reflex responses. 1 

It is the task of the clinical anaesthetist to administer anaesthetic drugs in doses that will not 

only guarantee adequate anaesthesia with minimal side-effects for the duration of the surgical 

intervention, but also enable fast emergence from anaesthesia at the end of the intervention. 

1.1.1 Stages of Anaesthesia 

Guedel (1937) identified four distinct stages in the induction of general anaesthesia: 

1. Analgesia and Amnesia: Patient experiences pain relief and dreamy disorientation, but 

remains conscious. 

2. Delirium: Patient has lost consciousness, blood pressure rises, breathing can become irreg­

ular, pupils dilate. Sometimes there is breath-holding, swallowing, uncontrolled violent 

movement, vomiting, and uninhibited response to stimuli. 

3. Surgical anaesthesia: Return of regular breathing, relaxation of skeletal muscles, eye move­

ments slow, then stop. This is the level at which surgery is safe. 

4. Respiratory paralysis: Anaesthetic crisis-respiratory and other vital control centres cease 

to function, death from circulatory collapse will follow without assisted ventilation and cir­

culatory support. 

Some of the patient responses during stage-2 can be medically worrisome. Because of 

this, most anaesthetic protocols seek to minimise stage-2 duration, or, with appropriate pre­

medication, to bypass this stage altogether. The "ideal" anaesthetic protocol yields a quick and 

smooth induction to stage-3, and allows a rapid recovery. 

1Source: www.cvm.msu.edu/courses/VM303 (course notes for Veterinary Technology students) 
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1.1.2 Motivation for EEG Monitoring 

As a matter of standard practice, an anaesthetist will "titrate to effect," i.e., will adjust the drug 

administration amount and rate according to the clinical response of the patient. For example, 

if the patient moves or vocalizes in response to surgical incision, opens her eyes, or suddenly 

changes her pattern of breathing, then the level of anaesthesia is inadequate and the drug level 

must be increased. However, these important clinical indicators of inadequate anaesthesia will 

be unavailable if muscle-relaxant drugs have been applied, in which case the anaesthetist has to 

rely on autonomic responses such as increases in heart rate and blood pressure, transpiration 

(sweating) and lacrimation (tear formation). But these indirect measures of anaesthetic depth 

can themselves be diminished by disease and by some co-medications, thus increasing the risk 

of either under- or overdosing the anaesthetic drug (Kuizenga, 2001). 

It is prudent to reduce this risk by using an alternative measure of the patient's level of 

anaesthesia: the electrical activity of the brain itself. Scalp-mounted electrodes monitoring the 

activity of the cerebral cortex give voltage-vs-time traces referred to as the EEG ( electroen­

cephalogram). Alterations in anaesthetic-blood concentrations produce significant changes in 

the spectral character (amplitude and frequency distribution) of the EEG fluctuations. The 

relationship between anaesthetic concentration and its effect on the EEG will be investigated in 

detail later in this thesis. 

Although it is of primary concern to the anaesthetist to ensure the patient is safely and 

comfortably transported from an initial state of conscious awareness to a sufficiently deep plane 

within stage-3 anaesthesia, the safety and comfort aspects of the transition are not the focus 

of this thesis. Instead, we will be examining the changes in the state of consciousness from 

a physics perspective, attempting to identify transition behaviours that are shared with other 

changes of state that occur in the physical world. 

1.1.3 The Anaestheto-Dynamic Phase Transition 

As naive (i.e., non-medically trained) observers seeking simple explanations for anaesthetic­

induced loss of consciousness, it seems not unreasonable for us to assume that there exists a 

roughly linear rule-of-thumb for the dose-response relationship, such as: "increases in drug con­

centration leads to proportionate reductions in brain response." Unfortunately this intuition is 

immediately contradicted by the anomalous patient responses exhibited at the stage-2 ( delirium) 

depth of anaesthesia. A general anaesthetic is administered with the aim of quieting or inhibiting 

brain response to noxious stimuli, and yet, on route to the stage-3 fully-inhibited state, the pa­

tient transits through a "wild" uncontrolled state of delirium and uninhibited response to stimuli. 

This is a most interesting paradox: the end-state of inhibition is preceded by an intermediate 

stage of excitation. As we shall see later, this observation supports the idea that the conscious 

-t unconscious transition is analogous to a classical first-order thermodynamic phase transition 

in physics. For this reason, I have coined the phrase "anaestheto-dynamic phase transition" to 

describe the abrupt change in the state of consciousness induced by a general anaesthetic agent. 
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1.2 Effect of Anaesthetics on Bioluminescence 

Researchers have reported that the volatile anaesthetics ether (CH3,CH2,0,CH2· CH3), halothane 

(CF3·CHC1Br), chloroform (CHCl3), and cyclopropane (C3H6) reversibly reduce the intensity of 

light emissions from luminescent bacteria (White and Dundas, 1970; Halsey and Smith, 1970). 

This followed earlier work by Ueda (1965) showing that the light emission from the firefly lantern 

extract luciferase was reversibly suppressed by both ether and halothane. (In all cases the wave­

length of the emitted light was unaffected.) 

The anaesthetic concentration required to depress bioluminescent intensity by 50% was found 

to be very simililar to the concentrations required for clinical induction in humans. Because of 

this remarkable scale invariance (i.e., the light-emitting complex in photo-bacteria and fireflies, 

and the central nervous system in humans, all seem to respond in similar ways to similar con­

centrations of a given anaesthetic), and because light intensity can be be easily and accurately 

measured, bioluminescence provided a very useful means for quantifying and comparing anaes­

thetic potency. 

Figure 1.1 shows the bioluminescence dose-response curve for ether reported by Halsey and 

Smith (1970). At an ether partial pressure of 0.026 atm, the luminous intensity has reduced to 

to 50% of its original (zero ether) value. This partial pressure is similar to the 0.032 atm value 

they quote for the abolition of the righting instinct in 50% of mice exposed to ether (prior to 

the bioluminescence work, small mammals had been used to calibrate anaesthetic potency). 

Of particular interest to us is the observation that luminescence is stimulated by low doses of 

ether (P,..., 0.009 atm). Halsey and Smith reported that stimulation also occurred at low levels 
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Figure 1.1: Dose-response curve showing the effect of the volatile anaesthetic ether on the luminous 
intensity of the bacteria Photobacterium phosphoreum. [Source: Halsey and Smith (1970)] 
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of chloroform, halothane, and nitrous oxide (though for the latter two agents they described the 

increase as "not statistically significant," presumably because the error bars became very large 

during this transition phase). Apart from noting the low-dose stimulation effect, neither Halsey 

and Smith nor White and Dundas proffered any explanation of this paradoxical excitation by an 

inhibitory agent. The anomalous boost in light output seems to have been viewed as a curiosity 

rather than an indicator of a deeper phenomenon. 

Thus it is apparent that two quite dissimilar organisms exhibit similar but paradoxical, 

dis-inhibitory responses to low-concentration anaesthetic: the human patient enters a delirium 

phase of unsteady, feverish activity (stage-2 of general anaesthesia), and the photobacterium 

enters an overactive phase of strongly fluctuating light intensity. In both cases, at higher con­

centrations the anomalous excitation dies away, and the organism response becomes quieter in 

a monotonically dose-dependent manner. 

If we picture deep-anaesthesia and conscious-awareness as being two opposite states that 

bracket stage-2 delirium, then the dramatic fluctuations of stage-2 indicate that a change of 

phase is imminent. It will become evident as this thesis proceeds that this picture is consistent 

with clinical recordings of brain activity during induction of general anaesthesia, and is also 

consistent with model predictions for changes in EEG activity during induction of an inhibited, 

low-firing cortical state. 

1.3 Theories of Anaesthetic Action 

1.3.1 Ion-Channel Theory 

Although general anaesthetics have been in use for over 150 years, the way in which they work 

has remained a puzzle and a source of some controversy. The prevailing view is as summed up 

in the title of a recent paper by Franks and Lieb (1997): "Anaesthetics set their sites on ion 

channels." These authors argue that inhibition occurs when the anaesthetic molecule binds to a 

specific site on the GABAA (,-aminobutyric acid) receptor of the postsynaptic neuron, causing 

its chloride-ion channels to remain open longer, so more c1- ions enter the postsynaptic neuron, 

and it becomes hyperpolarized (i.e., more negative), and therefore less likely to fire. 

Figure 1.2( a) shows the arrival of an action potential at the terminal of the presynaptic 

neuron and the subsequent release of messenger chemicals (neurotransmitters) which diffuse 

across the gap (synapse) separating the pre- and postsynaptic neurons. The incoming GABA 

neurotransmitter momentarily opens the c1- channels, allowing a brief inward flux of c1- ions 

and consequent negative-going "impulse response" in the postsynaptic neuron (Fig. l.2(b)). The 

duration of the inhibitory impulse response is increased in the presence of anaesthetic. In our 

modelling work, we will assume that the characteristic decay time of this inhibitory postsynaptic 

potential (IPSP) scales proportionately with anaesthetic concentration. 

Figure 1.3 presents a simple block-diagram representation of the GABAA receptor. The 

GABA molecule provides the "key" which unlocks the c1- channel via an unspecified catalytic 

reaction represented by the triangle. 

This enhancement of inhibitory effect is thought to be the basis of the so-called GABAergic 

anaesthetics, such as the intravenous agent propofol (2:6 di-isopropylphenol), which are capable 



1.3 Theories of Anaesthetic Action 

(a) 

Action potential 

i 

(c) 

Channel Putative 
pore anaesthetic site 

Postsynaptic 
membrane 

(b) 

ii 
Inhibitory postsynaptic 

potential 

Time 

5 

Figure 1.2: GABAergic model for anaesthetic action. (a) An action potential arriving at the terminal of 
an inhibitory neuron results in the release of GABA neurotransmitter which diffuses across the synaptic 
junction to the membrane of the postsynaptic neuron, opening chloride-permeable GABAA receptor 
channels, causing the postsynaptic neuron to become hyperpolarized as c1- ions enter. (b) The main 
effect of GABAergic anaesthetics (such as propofol) is to prolong channel opening, and hence to increase 
postsynaptic inhibition. (c) Each channel consists of five protein subunits; the structure of a single 
subunit is shown in (d). [Source: Fig. 1 of Franks and Lieb (1997)] 
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Figure 1.3: Simplified view of the GABA-controlled chloride channel illustrated in Fig. l.2(c). Acti­
vation occurs when the GABA neurotransmitter binds to the GABAA receptor molecule. The chloride 
channel opens, and c1- ions diffuse down the concentration gradient into the postsynaptic neuron, causing 
it to become hyperpolarized (more negative) and less likely to fire. 
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of inducing a fully-unconscious state. The bulk of this thesis (Chapters 3-8) will be concerned 

with modelling GABAergic action. 

There is a second class of agents referred to as dissociative anaesthetics, such as nitrous oxide 

(N20) and xenon (Xe), which do not ordinarily induce full anaesthesia. The dissociatives are 

thought to act by suppressing the excitatory effectiveness of the NMDA (N-methyl-D-aspartate) 

receptor complex on the postsynaptic neuron (Franks et al., 1998; Jevtovic-Todorovic et al., 

1998), so are referred to NMDA-antagonists. Figure 1.4 shows a simplified block-diagram of 

the NMDA receptor. Modelling the action of this receptor is complicated by the fact that the 

duration of the excitatory postsynaptic response to a presynaptic action potential depends not 

only on anaesthetic concentration (greater concentrations lead to EPSPs of shorter duration), 

but also on the voltage state of the receiving neuron (the Mg2+ block in the ion channel is only 

removed when the neuron is depolarized). Chapter 9 develops a model for NMDA-antagonist 

effect based on laboratory measurements reported by Hestrin et al. (1990). 
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Figure 1.4: The NMDA receptor complex. Activation (i.e., excitation) occurs when glycine (Gly) and 
one of either of glutamate (Glu) or NMDA bind to the receptor molecule. In its unactivated configuration, 
a magnesium ion blocks the channel within the receptor. On activation, the Mg2+ ion is removed, and 
other ions are then free to diffuse down their concentration gradients: Na+ and Ca2+ ions enter the cell, 
causing the cell to become depolarized (less negative). Dissociative anaesthetics such as nitrous oxide 
and xenon are NMDA-antagonists (i.e., they reduce activation of the NMDA receptor). [Based on Fig. 1 
of Thomas and Riley (1998)] 

1.3.2 Volume-Change Theory and Pressure Reversal 

The ion-channels theory of Franks and Lieb ( described above) asserts that anaesthetics act on 

specific sites on receptor proteins to alter the ionic conductance through membrane pores. 

Ueda (2001) maintains a vigorous counterview-he argues that the action of anaesthetics is 

both nonspecific and physical. A bewildering array of chemical agents can induce anaesthesia;2 

such chemical diversity militates against the idea of a common, specific receptor. For Ueda, the 

key observation that anaesthetic action is physical is the fact that anaesthesia can be reversed 

by application of pressure. Johnson and Flagler (1951) reported that the spontaneous swimming 

motion of tadpoles disappeared when they were anaesthetized with various liquid anaesthetics, 

2e.g., alcohols, alkanes, ketones, ethers, barbiturates, isoflurane, nitrogen (at ~ 150 atm pressure), xenon, ... 
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or when unanaesthetized tadpoles were exposed to hydrostatic pressures of 200-350 atmospheres. 

However, when anaesthetized tadpoles were exposed to hydrostatic pressures of 150-350 atm, 

spontaneous swimming motions reappeared! Johnson and Miller {1970) studied the ability of a 

newt to right itself under the influence of anaesthetics and pressure. Butanol, ether, or nitrogen 

anaesthetic was administered in sufficient dose to abolish the righting reflex. Application of 

pressure, either hydrostatically or with the non-anaesthetic helium, restored the righting reflex 

at about 150 atm. Application of pressure alone led to progressive loss of righting reflex above 
150 atm. 

From the observation that pressure reverses anaesthesia, Ueda concludes that "the volume 

of the anaesthetized state is larger than the awake state [ ... ]; an increase in the partial molar 

volume of the system is the crucial condition for anaesthesia" [my italics] but unfortunately he 

never defines what he means by "system." Also not addressed is the idea that since application 

of pressure alone can induce an anaesthetic state, then apparently the anaesthetized state can 

be either larger or smaller than the awake state, depending on whether the state was induced 

by chemical agent (anaesthetic) or by physical agent (pressure). 

It seems plausible that pressurizing an organism will cause non-specific bulk changes in 

its neural membrane conformation which could disrupt ionic conduction, thereby altering the 

electrical state of the neural network and leading to loss of consciousness. But it seems much less 

plausible that bulk pressurization should be able to reverse an anaesthesia induced by a chemical 

agent acting at specific site. Therefore pressure reversal seems inexplicable in the Franks and 

Lieb ion-channel theory. 

The Ueda volume-change theory says that all anaesthetics act nonspecifically at the bilipid 

membrane, yet this claim is contradicted by the growing body of experimental evidence demon­

strating site specificity for anaesthetic agents. 

At this stage of knowledge, neither theory is complete. Worse, the theories seem to be 

mutually exclusive and irreconcilable. Nevertheless, because in our modelling work we want to 

assume a direct relationship between the electrical state of the cerebral cortex and the state 

of patient awareness, we will take the ion-channel theory as our starting point and reluctantly 

leave the pressure-reversal paradox as an unresolved puzzle. 

1.3.3 NMDA-Disruption Hypothesis 

Recently Flohr, Glade, and Motzko {2000) have put up a theory of general anaesthesia which 

asserts that anaesthetic loss of consciousness always involves disruption of one or more NMDA­

dependent processes. Flohr states that all agents that directly inactivate the NMDA synapse or 

its subsequent plastic processes (some of which are shown in Flohr's NMDA diagram reproduced 

below as Fig. 1.5) possess dissociative anaesthetic properties. He argues that the anaesthetic 

action of agents that primarily act upon other targets, such as the GABAergic anaesthetics, can 

be explained as an indirect effect on the NMDA receptor. 

Referring to Fig. 1.5, it is plausible that the working conditions of the NMDA receptor could 

be modified by inhibitory (GABAA) and excitatory {AMPA) synapses located in the vicinity of 

the receptor. Flohr presents experimental evidence which demonstrates that propofol, generally 

classified as a GABAergic agent, partially blocks the uptake of radio-labelled MK-801, an NMDA 
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Figure 1.5: The Flohr model of the NMDA synapse as a target of anaesthetics. Schematic representation 
of the NMDA receptor channel complex with its regulatory sites and its neighbouring GABAA and AMPA 
receptors which can influence the working conditions of the NMDA receptor. All listed agents have 
anaesthetic properties; arrows indicate possible interaction sites. [Source: Fig. 2 of Flohr et al. (2000)] 

antagonist that binds to the PCP site within the NMDA channel. Thus propofol is found to be 

both GABAergic and (weakly) NMDA-antagonistic. 

It will become apparent in Chap. 9 that our ion-channel model for the NMDA-enabled macro­

column (local assembly of cooperating neurons) makes predictions that are nicely consistent with 

the Flohr hypothesis. For induction via a GABAergic agent, our theory predicts two cortical 

activity peaks: the first of these peaks marks the transition to what I call the "dissociated" 

state, and the second peak is the transition to the deeper state of unresponsiveness required 

for surgery. Our "dissociated state" is an intermediate region of equilibrium states which only 

comes into existence when slow NMDA-mediated currents are incorporated into the model. 

There is fresh clinical support also: Part of Chap. 9 is an analysis of clinical data (kindly fur­

nished by our colleague K. Kuizenga), measuring changes in EEG activity during slow (20-min) 

propofol infusions, and this also shows two surges in cerebral cortex activity (Fig. 9.16). Loss of 

responsiveness to verbal command generally occurs prior to the first peak, and, according to the 

model, the first peak is an NMDA feature. Thus, just as the Flohr hypothesis would predict,3 

the GABAergic anaesthetic propofol appears to display an NMDA-antagonisic behaviour during 

the preliminary phase of the induction. 

3Though it is worth pointing out that I only became aware of the Flohr NMDA-disruption hypthesis several 
months after the NMDA-modelling work of Chap. 9 had been completed. 
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1.4 Elements of Neurophysiology 

Before we examine the Liley "average neuron" which forms the basis of our anaesthetic model 
' we need to introduce some basic concepts of nerve cell biology, and also make more concrete 

some of the neurophysiological terms we have already used in the foregoing discussion. 
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Figure 1.6: Schematic view of a prototypical neuron. Neurotransmitters released at the axon terminal 
(4) (at top of figure) of a presynaptic neuron (not shown) induce small excitatory (1) or inhibitory (2) 
voltage pulses in the dendritic branches of the receiving neuron. These incoming voltage events propagate 
to the soma where they are summed. If a threshold voltage is exceeded, a large voltage spike ( action 
potential) is generated (3a) and propagated down the axon (3b, 3c) towards the terminal arborization 
(telodendria), where neurotransmitters are released to stimulate the next neuron. (The diagram repre­
sents a "white-matter" neuron, since its axon is sheathed with myelin, a white fatty insulator, whose 
effect is to increase transmission velocity. For "grey-matter" neurons such as the those of the cerebral 
cortex, the myelin coating is absent.) [From Hammond (2001, Fig. 1.5)] 
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1.4.1 The Cortical Nerve Cell 

Our brains and spinal cords contain specialized cells called nerve cells or neurons4 which collec­

tively form the central nervous system. The stereotypical neuron (see Fig. 1.6) consists of a cell 

body or soma, dendrites, axon, and telodendria. The dendrites form a dense root-like structure 

which converge at the soma. The dendrites sample electrical stimulus currents from the local 

neural environment, and feed these currents forward to the soma where they are integrated to 

produce a change in the internal voltage of the cell. 

If the voltage change is small (i.e., subthreshold), then the voltage change propagates slowly 

and passively only a short distance along the axon, decaying exponentially as it travels. This 

decaying voltage transient is referred to as a local potential. 

If the voltage change is sufficient to raise the soma voltage Vm above a threshold level (i.e., 

Vm 2:, -60 mV), then an action potential is triggered and actively propagated along the axon, 

away from the cell body towards the telodendria or terminal branches of the neuron. The arrival 

of an action potential at a terminal branch causes neurotransmitters (messenger chemicals) to 

be released from the terminal, and these convey a chemical impulse to the next neuron by 

diffusing across the extracellular junction or synapse that separates the sending (presynaptic) 

and receiving (postsynaptic) neurons. The impinging neurotransmitters generate currents in 

the postsynaptic cell by altering the ion permeability of the postsynaptic membrane, thereby 

allowing ions to diffuse across it. 

1.4.2 The Resting Neuron 

In any measurement of the cellular transmembrane potential difference, it is standard practice 

to take the extracellular ionic "sea" in which the neuron is bathed as defining the zero potential 

level. Relative to this external reference, the potential of the ionic fluid inside most nerve cells 

is found to be approximately - 70 m V when the cell is "at rest," i.e., when the cell is not 

receiving stimuli from its dendritic tree. This steady transmembrane electrical tension provides 

the source of potential energy required for the propagation of electrical action signals. The cell 

resting voltage (usually referred to as the resting membrane potential) arises from an imbalance 

in ion concentrations either side of the membrane. The ionic imbalance is actively maintained 

by a metabolic process called the sodium-potassium pump that moves three Na+ ions out of the 

cell for every two K+ ions that enter. 

1.4.3 Nernst Potential 

Table 1.1 shows the intracellular and extracellular concentrations of the four most important 

ionic species which can cross the nerve membrane through ion-specific pores or channels. The 

Nernst potential listed in the final column is an ideal equilibrium voltage calculated from classical 

membrane theory (see, for example, Sect. 2.6 of Tuckwell (1988a)) for the diffusion of a single 

ion across a membrane permeable only to that ion. The Nernst potential Vx for a single ionic 

species X, whose respective concentrations outside and inside the cell are [X] 0 and [X]i, is given 

by: 

4 Some authors spell neuron as neurone. 
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Table 1.1: Typical ion concentrations (in mmol/1) and Nernst potentials (mV) for a resting neuron. 
The Nernst potentials were calculated using Eq. (1.1) for a neuron at body temperature (37°C) giving 
RT/F = 26.7 mV. [From Silbernagl and Despopoulos (1996)] 

Concentration 

Ion Inside Outside Nernst Potential 

Na+ 10 140 +70 
K+ 140 4 -95 
c1- 4 103 -87 
Ca2+ <105 5 >350 

(Nernst potential) (1.1) 

or sometimes stated as a Boltzmann factor for the concentration ratio, 

t~?: = exp [-zFVx/ RT] = exp [-ze(\1i - V0 )/kT] (1.2) 

where T is the absolute temperature, R = 8.314 J K- 1 mol- 1 is the ideal gas constant, z is the 

signed valence of the ion (e.g., z = -1 for c1-), F = 9.648 x 104 C mo1-1 is the Faraday constant, 

k = 1.381 x 10-23 J K- 1 is the Boltzmann constant, e = 1.602 x 10-19 C is the elementary charge, 

and R/ F = k/e. 

1.4.4 Reversal Potential 

Suppose the transmembrane voltage is initially zero, while the concentration of, say, potassium 

(K+) is initially higher inside than outside. Potassium will tend to diffuse down its concentration 

gradient to the outside, but every K+ ion that leaves will add to a growing charge imbalance 

across the membrane, with the inside becoming progressively more negative. Eventually the 

inwards electric force on the K+ ions will exactly balance the outwards diffusive force, and 

the transmembrane K+ ion flux stops. For typical nerve cells, the Nernst potential for K+ is 

approximately -90 mV (cf Table 1.1), i.e., when the inside of the cell membrane is 90 mV 

negative with respect to the outside of the cell membrane, the K+ ion flux is zero. 

If the membrane voltage is made more negative, then K+ ions will be dragged back into the 

cell against the concentration gradient, and the direction of the ion flux will be reversed. For 

this reason, the Nernst potential for a given ion is also referred to as the reversal potential since 

it is the point of equilibrium about which the ion current changes sign. 

1.4.5 Resting Membrane Potential 

When the only permeant ions are potassium, sodium, and chloride, the membrane potential can 

be predicted using the Goldman-Hodgkin-Katz (GHK) formula, 

V = RT log [Pi<[K]o + f1Na[Na] 0 + Pci[Cl]i] 
F e Pi<[K]i + flNa[Na]i + Pci[Cl]o 

(1.3) 
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or 

(1.4) 

In the limiting case where the permeability of a single ion domininates, the GHK equation 

reduces the Nernst equation (1.1) for that ion. Here, Px is the permeability for ion X (with 

units the same as speed), and Px is the (dimensionless) relative permeability of X with respect 

to potassium, 

PNa = ~a/Pi< 
Pb, Pei/ Pi< . 

(1.5a) 

(1.5b) 

In the resting state the ratios for the values PK : PNa: Pei are approximately 1 : 0.05: 0.25 (i.e., 

the resting cell is 20 times more permeable to potassium than to sodium). Substituting these 

relative permeabilities, together with the ionic concentrations from Table 1.1, into Eq. (1.4) 

gives a resting membrane voltage of 

v;.est = - 70.2 m V, 

about 20 m V higher than the reversal potentials for potassium or chloride ions. In contrast, at 

the peak of the action potential, the potassium permeability is not substantially changed, but the 

sodium permeability increases by a factor of about 500 because of the opening of voltage-gated 

sodium channels. Equation (1.4) predicts that the membrane voltage will reach a maximum 

value of 

Vpeak = +56.9 m V, 

about 13 m V below the reversal potential for sodium. 

1.5 Hodgkin-Huxley Model Neuron 

1.5.1 Neuron Equivalent Circuit 

Table 1.1 shows that potassium is in excess inside the nerve cell, while sodium and chloride 

are in deficit. The tendency of each ion to diffuse down its concentration gradient can be 

represented as an electric battery whose voltage, calculated from the Nernst formula of Eq. (1.1), 

conveys the magnitude and direction of the concentration gradient. (For chloride, a negative 

ion, conventional current will be an apparent diffusion against the concentration gradient, so 

the battery direction is reversed.) The fact that the sodium and potassium batteries point in 

opposite directions turns out to be critical for electrical signalling. 

The pioneering work by Hodgkin and Huxley (1952) modelled the membrane of the squid 

giant axon as a capacitor in parallel with distinct conduction paths for each of the major ionic 

species (Na+, K+, Cl-); see Fig. 1.7. They posited that the driving force for a given ion is 

proportional to the difference between the membrane potential V and the Nernst potential for 

that ion. Defining the outwards current direction as positive, then the Na+ current in Fig. 1.7 

can be written: 
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Outside (0 mV) 

C 

Inside: potental V 

Figure 1. 7: Electrical circuit used by Hodgkin and Huxley to represent a patch of nerve membrane 
at rest. Each ion channel is modelled as a conductance (inverse resistance) driven by battery whose 
magnitude and direction is given by the Nernst potential of the ion. 

(1.6a) 

where the coefficient 9Na is the sodium conductance [units: n-1J. We can write parallel expres­

sions for the potassium and chloride currents 

Ic1 (V - Vc1) 9CI . 

(1.6b) 

(1.6c) 

Thus for the resting nerve cell, the conventional current for Na+ ions will be in the negative 

direction (i.e., directed inwards), while for K+ and c1- ions the conventional current will be 

positive (outwards). 

In general, the conductance is not constant: it depends on both the membrane voltage V 

and its history. However, defining conductance in this way (with the V - Vx term factored out; 

Xis one of Na+, K+, or c1-) simplifies the functional form of gx since it does not have to change 

sign as V crosses the Nernst potential Vx and the current reverses direction. 

For their Fig. 1.7 circuit, Hodgkin and Huxley wrote the total membrane current as the sum 

of capacitive and ionic currents, 

dV 
I= Cdt + lion (1.7) 

where the ionic current is the sum of the individual channel contributions 

(1.8) 

giving the total current as 

(1.9) 

At rest, I = 0 and C dV /dt = 0, and Eq. (1.9) predicts a resting voltage that is the weighted 

sum of Nernst potentials, 
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V. _ 9Na VNa + 9K VK + 9CI Vc1 
rest -

9Na + 9K + 9CI 
(1.10) 

Tuckwell (1988b, pp. 5-6) points out that Eq. (1.10) is linear in the Nernst potentials for 

the various ions, while the GHK prediction of Eq. (1.3) is not linear in the individual Nernst 

potentials, except when only one kind of ion is involved. This inconsistency arises from the 

fact that conductance and permeability are not interchangeable concepts (Koester, 1991, p.90). 

Permeability depends on the state of the membrane, while conductance also depends on the 

concentration of surrounding ions.5 

For the present work we will assume a nominal resting voltage of - 70 m V, as calculated 

using the GHK formula on p. 12. 

1.5.2 Modelling the Action Potential 

When a synaptic or other injected current drives the membrane voltage from its - 70-m V resting 

level to a threshold of approximately -60 m V, a population of voltage-dependent Na+ channels, 

normally closed at rest, opens abruptly, thereby increasing the sodium conductance 9Na and 

leading to a rapid influx of Na+ ions, driving the membrane voltage towards the sodium reversal 

potential VNa· Within a fraction of a millisecond, the Na+ channels begin to close or "inactivate." 

At the same time, voltage-dependent K+ channels sense the voltage upswing on the leading edge 

of the action potential, and open to produce a large outward current. The combined effect of 

Na+ channel inactivation and K+ channel activation result in an abrupt downswing to terminate 

the action potential. 

Outside (0 mV) 

C 

Inside: potental V 

Figure 1.8: Hodgkin and Huxley equivalent circuit used to model the formation of an action potential. 
The 9Na and 9K rest conductances of Fig. 1.7 are replaced by voltage- and time-dependent functions. 
Once the membrane voltage crosses a trigger threshold (about 10 mV above "Vi-est), voltage-gated sodium 
channels turn on, increasing sodium conductance and inward sodium current, further depolarizing the 
membrane, leading to regenerative increases in sodium conductance and membrane voltage. After a delay, 
the voltage-gated potassium channels turn on, eventually restoring the membrane to its resting voltage. 
See Fig. 1.9. 

Tuckwell (1988b, pp. 44-57) gives a good account of the classic Hodgkin-Huxley model for 

the formation of the action potential in a nerve membrane. What follows is a brief summary. 

5 For example, the membrane could be highly permeable to K+, but if the surrounding K+ concentrations are 
low, the conductance (ionic current per unit voltage difference) will be low. 
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In order to describe their experimental measurements of the action potential in the squid 

giant axon, Hodgkin and Huxley found it necessary to replace the constant Na+ and K+ con­

ductances of Fig. 1. 7 with variable conductances as indicated in Fig. 1.8. These variable conduc­

tances were expressed in terms of a sodium activation variable m, a sodium inactivation variable 

h, and a potassium activation variable n: 

9Na = 9Nam3h 

9K = 9Kn4 

(1.lla) 

{l.llb) 

where 9Na and 9K are the measured maximum conductance values for Na+ and K+ ions. Each 

of the m, h, and n activation or inactivation variables is dimensionless, takes values in the range 

[0,1], and obeys an ordinary differential equation of the form 

dm 
= O'.m(l - m) - /3mm - (1.12a) 

dt 

dh 
ah(l - h) - f3hh (1.12b) = 

dt 

dn 
= an(l - n) - /3nn (1.12c) 

dt 

The three O'.j and /3j (j E { m, h, n}) are voltage-dependent coefficients whose voltage dependence 

was established by curve fitting to conductance data obtained in a detailed series of voltage­

clamp experiments. Setting total current I in Eq. (1.9) to zero, we can write the Hodgkin-Huxley 

equation for the action potential as, 

dV 3 4 
C dt = (VNa - V) 9Na m h + (VK - V) 9K n + (Vc1 - V) 9CI . (1.13) 

Figure 1.9 shows the numerically evaluated solution of Eqs(l.12-1.13) . We observe that the 

dynamic range of the action potential (upper graph of Fig. 1.9) is constrained to lie entirely 

within the bounds defined by the reversal potentials for Na+ (upper bound) and K+ (lower 

bound). Although the Liley model neuron makes no attempt to follow the dynamics of the 

action potential (its focus instead is on the accurate following of synaptic inputs rather than 

the axon action "output"), the notion that a pair of reversal potentials place upper and lower 

bounds on membrane voltage excursions will be preserved. 

1.6 The Tuckwell Neuron 

The Hodgkin- Huxley neuron provides a faithful mathematical model of the action potential. 

However, action potentials are never seen in scalp EEG records. This is because action potentials 

have very fast rise and fall times which are strongly low-pass filtered by the cerebrospinal fluid , 

skull, and scalp tissue that intervene between the brain surface and scalp electrode. In fact, 

what is seen at the scalp are the much more slowly varying fluctuations in the spatially- and 

temporally-averaged local potentials of the excitatory neurons. 

In order to model the EEG signal, we need to be able to calculate the soma voltage which 

results from a membrane integration of all the incoming presynaptic activity: the inflowing 
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Figure 1.9: Predictions from the Hodgkin-Huxley model for the formation of an action potential (top 
figure) via differentially-timed changes in sodium and potassium conductances (bottom figure). Here, Vm 
is the membrane voltage, Efire is the firing threshold, ENa and EK are the sodium and potassium Nernst 
potentials. Also plotted in the lower figure is the sodium inactivation parameter h. [From Halsey and 
Smith (1970), after Hodgkin and Huxley (1952)] 

EPSCs (excitatory postsynaptic currents) minus the outflowing IPSCs (inhibitory postsynaptic 

currents). But no matter how high the integrated soma voltage gets, the neuron is not permitted 

to fire off action potentials!-otherwise the soma voltage time-series will contain spikes. Instead, 

the averaged effect of a train of action potentials on the neural population can be preserved via 

a sigmoid (i.e., S-shaped; see Fig. 3.2 on p. 42) mapping from average soma voltage to average 

spike-rate, and it is this output spike-rate (not the spikes themselves) which will determine the 

presynaptic activity and hence the average postsynaptic voltage. 

The Liley neuron (to be described shortly) models the formation of (spike-free) EEG by 

interacting excitatory and inhibitory populations of neurons. Because the Liley neuron never 

"fires," it is intuitively helpful to approach it as a generalization of the Tuckwell subthreshold 

neuron described in Tuckwell (1988b, p. 9). 

The first step is to replace the Fig. 1. 7 sodium, chloride, and potassium batteries, and their 

associated conductances, with a single battery v;.est in series with resting conductance 9rest· The 

resulting circuit is shown in Fig. 1.10. The neuron is maintained in this - 70 m V resting state 
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by various ion pumps working in the background to keep the ion concentration gradients, and 

therefore the ion batteries, fully "charged." 

Outside (0 mV) 

C 

IVrestl 

Inside (at V) 

Figure 1.10: Equivalent circuit of the resting neuron. The combined effects of the Na+, c1-, and K+ 
non-gated ion channels of Fig. 1. 7 are represented here by a single channel of constant conductance 9rest 

driven by an eternal battery of voltage v;.est = - 70 m V. 

Next, we couple in the synaptic inputs. For simplicity, we will follow Tuckwell in assuming 

that there is only one ion species involved in excitation and only one involved in inhibition. 

Then their Nernst potentials will be the synaptic reversal potentials, denoted VE and Vi. The 

circuit for the Tuckwell neuron appears in Fig. 1.11. 

Outside (0 mV) 

C 

EPSC IPSC Inside (at II) .., ... .., ... 
Synaptic Inputs Passive Neuron 

Figure 1.11: The Tuckwell subthreshold neuron. The membrane capacitor integrates synaptic input 
currents to give a graded local potential V; the population-average local potential is assumed to be 
proportional to scalp-measured EEG. This neuron never fires off an action potential. 

Total currents sum to zero, giving 

dV 
C - = (v;.est - V) 9rest + (VE - V) 9E + (V1 - V) 9I . 

dt 
(1.14) 

Looking ahead a little (see Table 3.16 on p. 40), Liley chooses reversal potentials which 

roughly correspond to those of sodium for an excitatory neurotransmitter release, and to potas­

sium for an inhibitory neurotransmitter release: 

VE +45 mV ~ VNa, 

V1 -90 m V ~ VK . 

6 But note the change in nomenclature: VE --+ h~cv; Vi --+ h~cv 
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However, as already pointed out in Sect. 1.3.1, it is the increase in chloride permeability which 

is the source of GABAergic anaesthetic action, suggesting that the appropriate IPSP reversal 

potential would be Vc1 rather than VK. Examining the reversal potentials listed in Table 1.1 

(p. 11) we see that Vc1 :::= -90 mV, so it seems reasonable to assume that for the purposes of 

modelling anaesthetic action, an ingress of c1- is equivalent to an egress of K+ ~either of these 

ion fluxes will tend to hyperpolarize the nerve cell. 

1. 7 The Liley Neuron 

Although there are some common elements between the Liley neuron and the Tuckwell sub­

threshold neuron, the Liley model (Liley, 1997; Liley et al., 1999, 2002) is much more ambitious. 

The Liley model is an attempt to reproduce the scalp-measured EEG signal generated by a 

cortical macrocolumn: an organized assembly of excitatory and inhibitory neurons acting coop­

eratively within a small volume of the cerebral cortex. Figure 1.12 is a schematic representation 
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Figure 1.12: Schematic representation of the connective topology within a cortical macrocolumn. Only 
four of the '"'"'100,000 neurons are shown. Triangles are excitatory (pyramidal) cells which receive excita­
tory input via apical dendrites (e.g., connection type 5) and basal dendrites (1, 7); and inhibitory input 
directly at the cell body (3). Circles are inhibitory (stellate or basket) cells receiving input from dendritic 
connections (2, 4, 6) and at the cell body (8). Excitatory output from the macrocolumn is via trunk­
lines (axons) shown bold. The symbol <Pe,i represents long-range input to the f.Xcitatory and inhibitory 
populations from distant macrocolumns, and PJk represents input from the subcortex (e.g., thalamus and 
brainstem). (For clarity, I have omitted Pie and p;; exogenous inputs corresponding to connection types 9 
and 10 respectively.) [Drawn from sketches supplied by J. Sleigh and D. Liley (personal communication)] 
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Figure 1.13: Photomicrograph of Golgi-stained pyramidal cells in a neural preparation. The Golgi 
method, based on silver reagents used in photography, randomly stains about 1-2% of exposed nerve 
cells. The long parallel traces are the dendritic spines which descend to apex of the pyramidal-shaped cell 
body. The axon exits from the base of the cell. These are excitatory nerve cells; the parallel alignment 
of their dendritic trees provides an efficient dipole radiation pattern when the cells act cooperatively. 
[Source of graphic: M. Nelson lecture notes at http : //soma.npa. uiuc . edu/courses/bio303] 

Figure 1.14: Higher magnification view of pyramidal nerve cells and their parallel dendritic structure. 
[Source of graphic: C. L. Williams lecture notes at http: //ww. duke. edu/web/psy91/williams] 
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of such an assembly which can be thought of as occupying a cylindrical volume of diameter 

"'0.3-1 mm, and containing 40 000-100 000 neurons. The excitatory (pyramidal) cells make up 

"'85% of the total number of neurons, and the inhibitory (stellate and basket) cells comprise 

the balancing 15% (Braitenberg and Schilz, 1991). 

There are actually two Liley "neurons" per macrocolumn. The first "neuron" is a spatial 

average representing the population of excitatory neurons, and the second represents the pop­

ulation of inhibitory neurons within the macrocolumn. The average membrane voltage of the 

excitatory population is given the symbol he, and is assumed to be proportional to the scalp 

EEG, while the average voltage of the inhibitory population is written hi, and is assumed to 

have negligible direct effect on the EEG. Nevertheless, the inhibitory population plays a crucial 

moderating role on the behaviour of the excitatory population, so exerts a powerful indirect 

effect on the EEG. 

There are two reasons why (direct) hi contributions to EEG are thought to be negligible. 

First, excitatory neurons outnumber inhibitory neurons by about 6:1. Second, microscopic ex­

aminations of stained cortical preparations reveal that the dendrites and axons of the excitatory 

neurons tend to line up perpendicular to the cortical surface and parallel to each other (see 

Figures 1.13 and 1.14), thus their dendritic currents act as a palisade of small, aligned current 

dipoles 7 whose electric fields sum with increasing area. In contrast, the inhibitory neurons are 

smaller and have their dendrites oriented at random with nearly spherical symmetry, so their 

electric field is mainly limited to the region of dendritic arborization with negligible influence at 

the scalp. 

1.7.1 Mapping from Tuckwell --+- Liley 

In Fig. 1.15 I have drawn up two Tuckwell-like subthreshold "average neurons." One "neuron" 

represents the population of excitatory neurons in the macrocolumn, and the other represents 

the population of inhibitory neurons. The following list gives the symbol remappings I have 

7 A current dipole is an abstraction that has the dimensions of current times length; the length is usually taken 
as infinitesimal. [Source: Wellcome Trust Laboratory for MEG Studies, www. as ton. ac. ult/psychology /meg] 

(a) Average Excitatory Neuron 

EPSC IPSC ., ... 
Synaptic Inputs 

to 
Excitatory Population 

(b) Average Inhibitory Neuron 

EPSC IPSC 

Synaptic Inputs 
to 

Inhibitory Population 

Figure 1.15: Equivalent circuit for the (a) excitatory and (b) inhibitory neural populations comprising 
the macrocolumn of Fig. 1.12. This is the Liley generalization of the 'Tuckwell subthreshold neuron of 
Fig. 1.11. 
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used to transform from the single Tuckwell neuron of Fig. 1.11 to the Liley population neurons 
of Fig. 1.15: 

Tuckwell neuron - Liley "neurons" 

V - he,hi membrane voltage 

VE - hrev 
e excitatory reversal potential = +45 mV 

Vi - Mev 
i inhibitory reversal potential = -90mV 

'Vrest - h rest h ~e.st 
e , i resting potential = - 70 m V 

C - Ce,Ci membrane capacitance 

9E - 9ee, 9ie conductance for excitatory-reversal battery 

91 - 9ei, 9ii conductance for inhibitory-reversal battery 

9rest - 9 rest lest 
e , i conductance for resting-potential battery 

The he,i equations of motion for the Fig. 1.15 circuit are, 

C dhe 
e dt 

In the absence of synaptic inputs, we can define a pair of membrane time-constants, 

T: i 

{1.15a) 

{1.15b) 

{1.16a) 

{1.16b) 

where Re, Ri are the excitatory and inhibitory membrane resistances. Provided the time­

averaged synaptic conductances are small (i.e., the synaptic PSPs are brief and infrequent), 

then the Te,i time- "constants" give us the decay time for the cell to relax back to its resting 

voltage. If synaptic activity is high, the time-averaged synaptic conductances 9jk will be no 

longer negligible, so the total membrane resistance will be lowered, and the response times will 

be faster than the nominal relaxation times defined in Eq. {1.16) (Tuckwell, 1988b, p. 7). In 

other words, the effective membrane time-"constant" is actually membrane-voltage dependent. 

For the present modelling work, we will follow Liley in taking the membrane time-constant as a 

fixed number. 

Dividing Eq. {1.15) by g!est, gfe.st and rearranging gives, 

(hre.st _ h ) + (hrev _ h ) 9ee + (h~ev _ h ) 9ie 
e e e e rest i e rest 

9e 9e 
{1.17a) 

{1.17b) 

These equations of motion are directly comparable with the standard Liley formulation given 

below as Eq. {1.20). We see that the conductance ratios of Eq. {1.17) become voltage ratios in 

Eq. {1.20): 
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where j,k E {e,i}. (1.18) 

The denominators of both sides are constants, so there is a direct proportionality between 

synaptic conductance gjk and voltage increment \0k at the Ck capacitor, 

\0k ex: gjk · (1.19) 

Note that \0k is not the voltage across the gjk conductance; \0k is the incremental change in 

the hk soma voltage resulting from an incremental change in the gjk input conductance. 

1. 7 .2 Local Feedback within the Macrocolumn 

Not immediately apparent from Fig. 1.15 is the fact that the two circuits are very strongly 

coupled; this fact is hinted at by the double-subscripting on the four synaptic conductances 

in Fig. 1.15. For example, gei implies an e -+ i effect, and is read, "the average conductance 

determined at the inhibitory neuron because of synaptic spike-rate input from an fXcitatory 

source." This excitatory source could be spike-output from the local macrocolumn, or from a 

distant macrocolumn somewhere else in the cortex via cortico-cortical connection, or exogenous 

input coming up from the subcortex (e.g., thalamus or brainstem). These various connection 

types appear in the macrocolumn schematic of Fig. 1.12 (p. 18). 

By definition, a subthreshold neuron never fires off an action potential. To avoid having to 

incorporate the detailed and complicated Hodgkin-Huxley action-potential dynamics, yet still 

Figure 1.16: Equivalent circuit for the Liley macrocolumn with local feedbacks explicitly shown. The 
excitatory and inhibitory output voltages he,i are coupled back to the four 9jk synaptic input conductances 
via a pair of nonlinear (sigmoidal) voltage-to-spike-rate converters represented by the Se (he) (lower) and 
S;(h;) (upper) triangles. The four Nfk boxes are constant multiplicative scale-factors that represent 
the degree of local inter-connectedness between the excitatory and inhibitory populations within the 
macrocolumn. All possible local feedbacks are allowed: e ----> e, e ----> i, i ----> e, i ----> i. 
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retain the spatially-averaged effect of neural activity arriving at the synaptic input receptors, the 

Liley model adopts an early idea from Wilson and Cowan (1972): that there exists a nonlinear 

sigmoidal mapping from soma voltage (input) to average firing rate (output). This spike-rate 

output then feeds back to the synaptic inputs to alter the population average soma voltage. 

The Se(he) and Si(hi) sigmoids used here (listed in Eq. (3.6) and plotted in Fig. 3.2) are 

S-shaped functions defined in terms of a preset maximum firing rate (Sm~ = 1000 s-1) a e,i , 

threshold voltage (Be,i = -60 mV), and a threshold "gain" 8 (ge, 9i = 0.28, 0.14 (mV)-1). 

Figure 1.16 shows how the excitatory and inhibitory soma voltages are coupled back into the 

four 9jk conductances via the pair of voltage-to-pulse-rate sigmoid functions; all possible local 

feedback types ( e --t e, e --t i, i --t e, i --t i) are explicitly included. Equations (1.22, 1.23) below 

show how the sigmoid functions enter the Liley model. 

1. 7 .3 The Liley Equations 

I will now present the Liley macrocolumn equations, and then address the simplifications we 

will be applying in order to "solve" the Liley equations in the present context of modelling 

anaesthesia. 

In their 1999 Neurocomputing paper, Liley, Cadusch, and Wright listed eight PDEs as defin­

ing their one-dimensional mean-field equations for population-average soma voltages. The first 

equation pair gives the equation of motion for the excitatory soma voltage he and the inhibitory 

soma voltage hi: 

(1.20a) 

dhi 
T:-

i dt (1.20b) 

The Te, Ti are the excitatory and inhibitory RC (resistance-capacitance) membrane time­

constants. The four Vjk appearing on the right are the postsynaptic potential (PSP) changes 

in soma voltage arising from presynaptic inputs. For example, ~e is inhibitory presynaptic 

input invading the gxcitatory membrane, and Vei is gxcitatory presynaptic input invading the 

inhibitory membrane. The correspondence between Eq. (1.20) and the previously discussed 

conductance form of Eq. (1.17) has already been noted. 

Tuckwell (1988a, p. 93) observes that experimental measurements of the PSPs shows a rapid­

rise, slow-decay curve which is well approximated by the so-called alpha-function: 

Vpsp = 1 t exp(l - 1 t) (1.21) 

where the time-to-peak is given by t = 1/,. The peak height is unity, and the total area 

under the curve is 1/,. Sample alpha-function plots are shown in Fig. 1.17. Because the alpha­

function is a good representation of the PSP, Liley selects a particular form of second-order 

differential equation for the Vjk such that the alpha-function serves as the Green's function 

(impulse response) for the DE. 

8The two sigmoid gain constants g., g; are not to be confused with the four gik conductances; despite unfor­
tunately similar nomenclature, the concepts are distinct. 
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Figure 1.17: Impulse response for excitatory (light curve), inhibitory (bold), and anesthetic-modified 
inhibitory (bold-dashed) postsynaptic membranes. These curves are plots of the alpha function Vpsp = 
1texp(l - 1t) of Eq. (1.21). For application to the Liley model, the heights are scaled by the respective 
EPSP and IPSP amplitudes, Ge,i = 0.18, 0.37 mV. The rate constants, in (ms)- 1, for the three curves 
are 'Ye = 0.30, 'Yi = 0.065, 'Yi = 0.043. The symbol A is our dimensionless anaesthetic-effect scale factor 
giving the lengthening of the IPSP duration: ('Yi)- 1 = Ah;. 

The equations for the four ~k PSPs are: 

( :t +re) 
2 

Vee(he) (1.22a) 

( :t +re) 
2 

Vei(he) = [N! Se(he) + <Pi(he) + Pei] Ge,ee (1.22b) 

( :t + ri) 
2 

~e (hi) (1.23a) 

(:t + ri) 
2 

~i(hi) = [Nfl Si(hi) + Pii] Gnie (1.23b) 

The first pair of equations give the time-evolution of an EPSP: the voltage response to an 

excitatory neurotransmitter impulse9 arriving at the synapse of an excitatory (Eq. (l.22a)) or 

inhibitory (Eq. (l.22b)) nerve cell. The time-course of the response is set by the excitatory rate­

constant re (see Table 3.1 on p. 40 for values), and the amplitude by Ge, the EPSP peak. The 

second equation pair describes the time-course of IPSP: the voltage response to an inhibitory 

impulse10 arriving at the synapse of an excitatory (Eq. (1.23a)) or inhibitory (Eq. (1.23b)) 

nerve cell. The IPSP amplitude Gi and duration ri-l are respectively larger and longer than 

the corresponding EPSP values-see Fig. 1.17 and Table3. l. 

Note that the general characterizations-

9 A 8-function-shaped flux of excitatory chemical flooding the AMPA or kainate receptor causing momentary 
ingress of Na+ ions and consequent depolarizing (positive-going) voltage increment. 

10 A 8-function-shaped flux of inhibitory chemical flooding the GABAA receptor causing momentary egress of 
K+ or ingress of c1- ions and consequent hyperpolarizing (negative-going) voltage increment; the presence of 
GABAergic anaesthetic prolongs the duration of the IPSP. 
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EPSP = "excitatory event" 

IPSP = "inhibitory event" 

are not always true. For example, if the soma voltage is more positive than the reversal potential 

for Na+ ions, then the arrival at the synapse of an "excitatory" chemical flux that opens the 

sodium channels will allow an effiux of Na+ ions as the electric field forces sodium ions outwards, 

against their concentration gradient. Thus for this "over-voltage" case, the effect of the EPSP 

is to lower the soma voltage, and the EPSP has become an inhibitory event. This sign reversal 

of EPSP effect is automatically included in Eq. (1.20) by way of the (h~ev - hk) coefficient 

that scales the Vek (k = e, i) PSP term. Similarly, if the soma voltage is more negative than 

the reversal potential for K+ (or c1-) ions (the "under-voltage" case), then the effect of an 

IPSP becomes excitatory. This sign reversal of EPSP and IPSP events provides a significant 

physiological constraint on soma voltages, yet apart from the Liley model, seems to have been 

ignored in all other mean-field models for the cortex. 

Three terms contribute on the right of Eq. (1.22): local excitatory feedback from within 

the macrocolumn, distant excitatory input from other macrocolumns, and exogenous input 

entering the cortex from the brainstem. Considering the Vei PSP of Eq. (1.22b) for example, 

the local feedback term is N! Se(he) where N! is the estimated average number of e -+ i 

connections synapsing on an inhibitory cell, and Se(he) is the nonlinear sigmoidal function of 

Eq. (3.6) which maps local soma voltage to locally-generated spike rate. Activity generated by 

distant macrocolumns should be represented by <Pee(he) and <Pei(he), but this nomenclature is 

abbreviated to <Pe(he) in Eq. (1.22a) and to <Pi(he) in Eq. (1.22b) because long-range couplings 

from distant inhibitory cortical sources are unlikely (so the forms <Pie and <Pii never occur in the 

equations). The <Pe (he) and <Pi (he) cortico-cortical terms are governed by their own second-order 

differential equation (1.25) listed below. The Pjk exogenous terms retain a double-subscripting 

because the Liley model assumes that the input coming up from the brainstem can be of all four 

types. Typically the four exogenous terms will be set equal to a constant value (see Table 3.1), 

or will have a small amount of white noise superimposed to provide a weak stochastic driving 

force. 

The time-course for the IPSP at the excitatory and inhibitory populations is given by 

Eq. (1.23). The form of these equations is identical to that for the EPSP pair, apart from 

the anticipated absence of cortico-cortical inhibitory-source ¢-terms. 

The IPSP rate-constant is Ti· In order to model the effect of a GABAergic anaesthetic such 

as propofol, we will be assuming that the IPSP rate- "constant" (i.e., inverse time-constant) 

scales inversely with anaesthetic effect, and so replace Ti in Eq. (1.23) by Ti defined as, 

_ Ti 
Ti ----t Ti = -

.X 
(1.24) 

where.Xis a dimensionless scale-factor assumed to be proportional to anaesthetic concentration. 

Thus an increase in .X reduces the IPSP rate-constant and increases the IPSP duration. 

The final pair of equations in the eight-equation Liley set are a form of lD wave equations for 

the long-distance macrocolumn contributions to the population EPSP and IPSP events. These 

equations read: 



26 Foundations for a Model of Anaesthesia 

Subcortical Inputs 

Figure 1.18: Lumped equivalent circuit for the full Liley equations. The cerebral cortex is pictured 
as a ID chain of discrete macrocolumns interconnected via their excitatory sigmoid outputs. The Liley 
model is the continuum limit of this picture, forming a ID line (or 2D sheet) of macrocolumn "mass." 
The inter-macrocolumn communication is governed by ID ( or 2D) wave equations to include propagation 
delay effects. In addition, the entire macrocolumn mass is buffeted by PJk exogenous inputs coming up 
from excitatory and inhibitory sources in the subcortex. All inputs-local, distant, and external-are 
combined at the EB summing points to determine the g1k synaptic conductances. The resulting synaptic 
currents are integrated at the soma capacitor to give a soma voltage hk (k = e, i). To aid clarity, the 
"batteries" (reversal and resting) have been omitted. The complete schematic would show independent 
PJk subcortical inputs entering every macrocolumn (not just the middle macrocolumn as shown here). 
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[ (! + VAee)' V2 ::, ] 1>,(h,) = VAeeN::, (! +;;A.,,) S,(h,) (1.25a) 

[ (!+;;A,,)' v2 ::+;(h,) = VA,, N;'; (! +v A.,,) S,(h,,) (1.25b) 

Here ii is the mean conduction speed along cortico-cortical fibres; Aee and Aei are the character­

istic inverse-length scales fore - e and e - i connections (connectivity is assumed to drop off 

exponentially with distance); N~ and N6 are the estimated total number of e - e and e --ti 

connections reaching an excitatory or inhibitory cell via cortico-cortical fibres. 

Figure 1.18 completes the circuit diagram of Fig. 1.16 by showing the three classes of input 

to the macrocolumn conductances-local, long-distance cortical, and subcortical. The macro­

columns are linked to form a continuous lD line of neural mass; in principle this could be 

generalized to a 2D mesh to better represent cortical topology. 

This thesis will assume that the cortex is spatially uniform, therefore the lD Laplacian 

appearing in Eq. (1.25) immediately will be set to zero. I will refer to the resulting spatially­

homogeneous set of eight ODEs as the "full Liley equations" since no assumptions have yet been 

made about separation of PSP and membrane time-scales. A dramatic simplification is achieved 

if we assume that, compared with the membrane time-constant, the processes associated with 

the PSP kinetics are very fast, so the PSP inputs to the membrane capacitor can be set equal 

to their steady-state values. This is done by setting to zero all of the time-derivatives appearing 

in Eqs (1.22, 1.23, 1.25)-but not Eq. (1.20). The full Liley equations are thereby collapsed to 

a pair of first-order nonlinear ODEs. These define the "adiabatic equations" that will be the 

primary focus for the anaesthetics modelling reported here. 

1.7.4 A Note on Nomenclature for the PSPs 

The four Vjk (j, k E { e, i}) PSP input terms have the dimensions of voltage. Despite this, in 

Liley et al. (1999) and Liley et al. (2002) the authors write the PSP inputs with symbol Ijk, 

giving the unfortunate impression that these are input currents. To remain consistent with these 

source papers ( and to avoid possible confusion for the reader attempting to compare the present 

work with the Liley references) I have (reluctantly) adopted the Liley Ijk PSP convention for 

the remainder of this thesis. 11 

Another point of nomenclature must be flagged. As part of the development to show how 

the Liley treatment of reversal potentials for the macrocolumn can be viewed as a generalization 

of the Tuckwell formulation for the subthreshold neuron, I demonstrated that the conductance 

ratios of Eq. (1.17) become voltage ratios in Eq. (1.20). Thus, for example, 

( hrev _ h·) 9ei ---+ (hrev _ h·) Vei(he) 
e i gfest e 2 I h~ev _ hiest I (1.26) 

for the e - i synaptic input term. In the standard Liley nomenclature, the parts on the right 

involving the reversal potential are combined to define a dimensionless synaptic weighting factor 

7Pei (hi), 
11 And may even have referred to these terms as "currents" from time to time--may the author be forgiven! 
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h~ev - hi 
I h~ev _ hiest I (1.27) 

that multiplies the synaptic input voltage. The right-hand side of Eq. (1.26) then becomes, 

(1.28) 

where I have applied the Yjk ---, I1k change of symbols. 

For convenient reference, here are the eight spatially-homogeneous Liley equations written 

in "standard" form: 

(1.29a) 

(1.29b) 

(1.30a) 

( ! +'Ye) 
2 

fei(he) = [N~ Se(he) + <Pi(he) + Pei] Ge'Yee (1.30b) 

(:t + 'Yi) 
2 

Iie(hi) (1.31a) 

(:t + 'Yi) 
2 

Iii(hi) = [Nfl Si(hi) + Pii] Gnie (1.31b) 

( :t + V Aee) 
2 

<Pe(he) (1.32a) 

(1.32b) 

1.8 Alternative Mean-Field Models for Neural Action 

I conclude this chapter with a brief survey of other mean-field or "mass action" models for 

cortical activity. 

The first mean-field approach was presented by Beurle (1956). He modelled an exclusively 

excitatory population of neurons (i.e., no inhibitory neurons included) joined by fibres whose 

connection densities drop off exponentially with neuron separation. He assumed that a neu­

ron becomes active and fires only when its membrane voltage exceeds a threshold value, and 

that subsequent to firing, a neuron has a refractory period during which it cannot fire again 

(its threshold potential is dependent on its history: after firing, the threshold is initially very 

high before decaying to its resting value). Because during the refractory period the neuron 

is insensitive to further stimulation, the refractory state provides a crude form of control that 

prevents runaway global firing, but this seems insufficient to provide the level of stability that 
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a real cortex possesses. Griffith (1963) resolved the stability paradox by introducing inhibitory 

synapses that reduce activity by hyperpolarizing the postsynaptic neuron. 

The Wilson and Cowan (1972, 1973) model assumed that synaptic events were much slower 

than the membrane time-constant (i.e., they took the opposite extreme to the "slow-membrane" 

case we consider here), and their PSPs were effectively rectangular functions differing only in 

sign for EPSP and IPSP events. Two innovations that have been maintained in later mean-field 

models include the use of a nonlinear sigmoid function to map from membrane voltage to firing 

rate, and the notion that inhibition acts purely locally. 

Freeman (1975) formalized the concept of cortical "mass action" in terms of an interacting 

hierarchy of neural sets or aggregates, each set having different interconnection properties. His 

modelling work included synaptic and dendritic delays, and he noted that the inclusion of delays 

in feedback loops could lead to oscillatory behaviour in populations of excitatory and inhibitory 

neurons. 

Nunez (1974, 1981) developed an integral wave equation to describe the spatial and temporal 

variation of cortical voltage generated by neural masses. His model predicted oscillations whose 

character depended on the relative numbers of excitatory and inhibitory connections between 

neural aggregates and on the velocity distribution functions for action potential· propagation. 

For certain choices of boundary conditions, standing waves were predicted, and Nunez suggested 

that these could be the source of cortical rhythms such as alpha (8-14 Hz) seen in the EEG. 

Jirsa and Haken (1996, 1997) generalized the work of Wilson and Cowan and of Nunez to 

derive mean-field equations for the dendritic currents. As with Wilson and Cowan, the Jirsa 

and Haken EPSC and IPSC functions only differed in sign ( and not amplitude or time-course). 

The activity of the inhibitory population was assumed to be a function of the activity of the 

excitatory population, rather than being determined by the membrane potential of the inhibitory 

population itself. 

Wright and Liley (1996) used anatomical data to derive expressions for the number of 

synapses between neurons as a function of neuron type and separation. In their mean-field 

modelling they used a sigmoid form for the mapping between membrane voltage and spike rate, 

and approximated the PSPs as triangular functions. 

Robinson, Rennie, and Wright (1997) improved on the Wright and Liley model by replacing 

the triangular PSP with a more physiologically realistic function. They investigated steady­

state behaviour, and found that there could be either one or three steady states, and that in 

the latter case, the middle state was unstable. In their subsequent paper (Robinson, Rennie, 

Wright, and Bourke, 1998), they classified their steady-state solutions in terms of a ratio fi/fe 

where ei ( fe) is the nett postsynaptic response per unit synaptic concentration of inhibitory 

(excitatory) neurotransmitter. They found that the three-state case occurred when fi/fe ~ 1, 

i.e., when the inhibitory and excitatory responses were of similar magnitude. However, if the 

inhibitory response was strongly dominant over excitatory (or vice versa), the system collapsed 

to a single steady state. The Robinson ei "inhibitory response" concept relates directly to the 

product (IPSP peak) x (IPSP duration) of the present Liley model: 

(1.33) 
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where, in our case, Ci (IPSP amplitude) and 'Yi (IPSP rate-constant) are fixed, but >. varies 

with anaesthetic concentration. Thus our >. is proportional to the Robinson £d le ratio: >. » 1 

corresponds to extreme inhibition leading to "coma," while at the opposite extreme, >. « 1 

corresponds to excessive excitation leading to "seizure." 

The work of Liley, Cadusch, and Wright (1999) and of Liley, Cadusch, and Dafilis (2002) 

extended these earlier theories by improving the treatment of excitatory and inhibitory neuro­

transmitter kinetics, and by incorporating, apparently for the first time in a mean-field model, 

the constraints on depolarization and hyperpolarization voltage extremes enforced by cell re­

versal potentials. It will become apparent later in this thesis that for the purposes of adiabatic 

(i.e., "slow membrane") modelling of anaesthesia, the inclusion of excitatory and inhibitory 

ion-reversal potentials is essential. 



Chapter 2 

Elements of Fourier Transform Theory 

In this chapter I present selected elements of Fourier transform theory which are pertinent to 

the analysis and stochastic simulation of EEG time-series. 

2.1 Continuous-Time Representation 

EEG signals are not, in principle, time-limited. Like the eternal sinewave, they do not have 

finite energy. This means that we cannot use the "standard" form for the Fourier transform 

X(f) of a time signal x(t) 

X(f) = 1: x(t)e-i21rftdt. (2.1) 

More formally, the Fourier transform of an eternal signal does not exist because such a signal 

violates the Dirichlet condition, namely, that the signal be absolutely integrable: 

1: Jx(t)l < oo (2.2) 

i.e., the total area under the "rectified" version of x(t) must be finite. Although the total energy 

is infinite, the power ( energy per unit time) is finite, so we can resolve the non-existence of the 

Fourier transform by taking a time-limited transform over the time-interval O < t < T. The 

mod-square of the result, divided by the interval width T, is the power density (power per unit 

spectral width) for the sample. 

Following Gardiner (1985), we define the time-limited transform of x(t) as 

X(f) = 1T x(t) e-i21rft dt (2.3) 

then compute the power spectral density via the limiting process1 

S(f) = lim Tl JX(f)J 2 
T-+oo 

(2.4) 

where -oo < f < oo, and the spectrum is double-sided. If x(t) is measured in volts, then S(f) 

carries units of volts2 ·sec or volts2 /Hz. (We imagine the voltage to have been developed across 

a 1-D resistance, allowing volts2 to serve as a unit for power.) 

1 Not apparent from Eq. (2.4) is the fact that, for a stochastic process, the definition of the power spectral 
density usually involves an explicit ensemble average. Neglect of some form of averaging leads to spectral estimates 
that are highly variable, since the distribution of un-averaged normalized spectral estimates for a Gaussian process 
is chi-squared with two degrees of freedom and hence of equal mean and standard deviation (Kay and Marple, 
1981; Newland, 1993). I thank Dr Peter Cadusch, one of the external examiners for this thesis, for bringing this 
important idea to my attention. The necessity for ensemble averaging is illustrated later in this thesis in Chapter 7 
(e.g., see Figs 7.3 and 7.5). 



32 Elements of Fourier Transform Theory 

The Wiener-Khinchin theorem provides an alternative means for computing the power den­

sity spectrum by way of the Fourier transform of the autocorrelation function G(T) 

(2.5) 

where autocorrelation function G(T) is given by 

11T G(T) = lim T x(t + T) x(t) dt. 
T-+oo o 

(2.6) 

G(T) is defined for all lags -oo < T < oo, and, like the power spectrum, is double-sided and 

symmetric about the y-axis. 

Alternatively, if the spectrum S(f) is known, then its autocorrelation function can be com­

puted from the (inverse) Fourier transform of the spectrum: 

G(T) = 1: S(f) e+i21rfT df. (2.7) 

2.1.1 Parseval's Theorem 

Parseval's theorem is a statement of energy conservation: The total energy computed in the 

time domain must be identical to the total energy computed in the frequency domain. In order 

to apply this theorem to infinite-energy signals such as the EEG, we change the requirement to 

one of power conservation, i.e., that the rate of energy delivery be the same in either domain: 

11T loo lim T lx(t)l 2 dt = S(f) df. 
T-+oo O -oo 

(2.8) 

For x(t) in volts, both sides carry units of volt2 (i.e., power per unit resistance). 

2.2 Mapping to Discrete Time 

In order to compute the autocorrelation function and spectrum for the EEG signal using a com­

puter, the continuous voltage waveform x(t) detected by scalp electrodes must be converted to a 

discrete-time representation by sampling x(t) at regular time increments jl:lt. The result is a se­

quence of voltage samples { Xj} which give a discrete approximation to the continuous waveform. 

A similar discretization of continuous variables must be performed when we wish to numerically 

simulate the differential equations for the time evolution of the cortical macrocolumn. 

2.2.1 Nyquist's Theorem 

Although the fidelity of the sample improves as the sampling rate !s = 1/ f::lt is increased, 

Nyquist's theorem tells us that provided the original waveform contains frequency components 

no higher than half the sampling rate (i.e., f max ~ fs/2), then the original waveform can 

be reconstituted without error from the sample. If the Nyquist criterion is violated (i.e., the 

sampling rate is too low) then the energy present in high-frequency components will "fold" or 

reflect about the Nyquist point /Ny = fs/2, producing a spurious boost in the lower-frequency 

part of the spectrum. These undersampled high-frequency components masquerade as lower­

frequency components. Such spectral-aliasing errors are undesirable. To avoid aliasing, it is 
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standard engineering practice to low-pass filter the continuous waveform prior to sampling. For 

example, the Aspect-1000 EEG monitor,2 which samples the electrode voltage at ls = 256 

samples/s, prefilters the waveforms with a low-pass filter set to 70 Hz, ensuring a good safety 

margin between the filtered f max and the Nyquist upper limit of JNy = 128 Hz. 

2.2.2 Discrete Fourier Transform 

In order to map the continuous-time results of the previous section to the discrete-time domain, 

we make the following identifications: 

x(t) ---+ x(jb.t) = Xj 

X(f) ---+ X(kb.f) = Xk 

T 

b.f 

Nb.t 

1 1 
T Nb.t. 

(j is the time index) 

(k is the frequency index) 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

Here, T is the length of the data record which consists of N samples taken at regular time 

intervals b.t = 1/ ls· Applying these mappings to the time-limited continuous Fourier transform 

of Eq. (2.3) leads naturally to a definition for the DFT or discrete Fourier transform operator: 

i.e., 

N-1 

X(kb.f) = L Xj exp [-i 21r(kb.f)(jb.t)] b.t 
j=O 

N-1 
D.t ~ X. e-i21rjk/N 

L....t J ' 
k = 0, 1, ... , N-1 

j=O 

Xk = b.t · DFT{x}k, k = 0, 1, ... , N-1 (2.10) 

where x = [x0 , x1, ... , XN-i] is the vector of N time samples Xj whose discrete Fourier transform 

is defined by 

N-1 

DFT{x}k = L Xj e-i21rjk/N. (2.11) 
j=O 

This is a vector of N discrete-frequency elements that, when scaled by the time-step b.t, give 

the complex spectral amplitudes Xk. The continuous power spectral density can be estimated 

from these discrete spectral samples by discretizing Eq. (2.4), giving 

S(kb.f) = N~t 1xk12 

- 1- lb.t · DFT{x}kl 2 
Nb.t 

b.t I 12 N DFT{x}k , k = 0, 1, ... , N-1. (2.12) 

Sometimes it is more convenient to work with rms spectral amplitude xrms rather than 

spectral power, and for this purpose we replace Eq. (2.12) by its square root, 

2 Aspect Medical Systems, Inc., Natick, MA, USA 
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(2.13) 

As for the continuous case (Eq. 2.4), the units for the discrete spectrum of an EEG signal 

measured in volts will be V2 /Hz for the power spectral density ( and V / v'Hz and for the rms 

amplitude spectral density). The presence of the b..t multiplier in Eq. (2.12) ensures that the 

estimate of the energy delivered per second is independent of the rate at which the signal is 

sampled. For example, if we reduce the sampling interval b..t while keeping the number of 

samples N fixed (i.e., we sample more finely for a smaller length of time, implying a broader, 

coarser spectrum), then the spectral strengths will be scaled down proportionately in order that 

the area of the spectral density histogram is conserved. 

Window Conditioning 

Comparing the continuous Fourier transform of Eq. (2.4) with its N-point Eq. (2.12) discrete 

approximation, it becomes apparent that the discrete spectrum can only provide an accurate 

sampling of the continuous spectrum if the time-varying function x(t) is periodic on a time 

interval T equal to N b..t, the duration of the recording. In other words, the discrete Fourier 

transform assumes that the original waveform can be recreated by plotting the N time-samples 

on a rotating cylinder whose circumference is T seconds. 

For most recordings of real world signals, this perfect periodicity ideal is unrealizable. In­

stead, one would ensure that the total recording time was long enough to provide an adequate 

frequency resolution b..f = 1/N b..t in the discrete spectrum. In addition, it important that the 

end of the record can be "joined" smoothly to the beginning of the record: any step or slope dis­

continuity at the join will result in high-frequency artifacts in the transform. To minimize such 

artifacts, it is considered good spectral practice to pre-condition the time-series with a shaping 

function known as a window. A common choice for preconditioning is the Hanning cosine-bell, 

an N-element vector W defined by 

W· = ! [1 - cos ( 21r(j + l) )] 
1 2 N+l ' 

j = 0, 1, ... , N -1 (2.14) 

and illustrated in Fig. 2.1. 

If the time-series has been conditioned with a Hanning or other windowing function, then 

one should adjust the resulting spectrum to compensate for windowing losses (Krauss et al., 

1994). Equations (2.12) and (2.13) for spectral power and amplitude are replaced by their 

window-compensated counterparts: 

b..t I 12 
S(kb..J) = IIWll2 DFT{xW}k ' k = 0, 1, ... , N -1 

and 

xkrms /""Ki IDFT{ W} I = IIWII X k' 
k=O,l, ... ,N-1 

where xW represents the element-by-element product3 of time-series x with window W, 

3 In MATLAB parlance, 

xW = x .• W; 

(2.15) 

(2.16) 
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Figure 2.1: The Eq. (2.14) Hanning window function for an N = 20-point sample. 

and IIWII is the norm or "rms height" of the W window, 

~ 11w11 :: ~ ~ Hj • 

35 

(2.17) 

(2.18) 

If the Hanning window is replaced by the identity or "boxcar" window (i.e., a vector of 

N ones: W = [1, 1, ... , 1]), then IIWll2 = N, and equations (2.12, 2.13) are recovered from 

equations (2.15, 2.16). 

2.2.3 Parseval's Theorem for Discrete Time 

Applying Parseval's power-conservation theorem to discrete time, the integrals over time and 

frequency become summations over the discrete time samples ti = jt:1t and frequency harmonics 

fk = kt:::.f. Thus the continuous Eq. (2.8), 

becomes 

giving 

}~m
00 
~ foT lx(t)l2 dt = 1_: S(f) df 

N-1 
1 ~ 2 

N t:::.t ~ lxi I t:::.t 
j=O 

f:1t N-l 2 1 
N L IDFT{xhl Nt:::.t 

k=O 

L lxil2 = ~ L 1DFT{xhl2
• 

j k 

(2.19) 

Therefore, like its continuous counterpart, the discrete Fourier transformation is energy 

preserving. 
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2.3 Discrete Approximation for White Noise 

In the transformation of a continuous-time stochastic differential equation to a discrete-time 

numerical simulation, a fundamental question is: What is the correct mapping for the random 

noise component? The following treatment is an adaptation of the ideas presented by Murthy 

(1983). 

Let e(t) be a rapidly fluctuating random function of time, modelled as white noise which has 

zero mean and is delta-correlated: 

(e(t)) = o, (e(t) e(t')) = cS(t - t'). (2.20) 

This second result implies that white noise has the rather pathological feature of infinite vari­

ance, so cannot be realized exactly by any real signal. Nevertheless, we wish to simulate the 

continuous-time e(t) with a discrete random sequence {77n} of mean zero and variance 0"2 : 

(77n) = 0, (2.21) 

where 8n,m is the unit impulse response. For a time-step /::!i,.t sufficiently small, 

where T = N!:!i,.t (2.22) 

with both sides going to zero as T --t oo since both e ( t) and { 17n} have zero mean. 

For the product e(t)e(t'), the expected value of the integral over all time is 

(2.23) 

which must match the corresponding expectation value for the summation of the discrete prod­

ucts {77n77m}, 
N 

( lim L 17n 17m 1::!i,.t) 
N-+oo 

n=l 

N 

lim "°'(77n77m)!:!i,.t = 0"2 1::!i,.t. 
N-+oo~ 

n=l 

(2.24) 

Equating Eqs (2.23) and (2.24), we see that the standard deviation for the discrete sequence 

must be 

O' = 
1 

..Ji5:i . (2.25) 

For the stochastic simulations presented later in this thesis, we will use MATLAB's randn function 

to generate Gaussian-distributed random numbers {'.Rn} of zero mean, unit variance: 

(2.26) 

so the randn-generated numbers must be multiplied by 1/..Jl;:t to obtain the correctly scaled 

{ 17n} stochastic sequence required for numerical simulation: 
'.Rn 

17n = ..Ji5:i · (2.27) 

This result allows us to specify a mapping from continuous-time white noise e(t) to its discrete­

time approximation 17n, 

t n/::!i,.t. (2.28) 
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We see that in the limit flt - 0, the variance of the {11n} tends to infinity, and the discrete 

sequence better approximates white noise. Thus in any numerical simulation of a white-noise­

driven process, use of the Eq. (2.28) mapping should ensure that the stochastic simulation 

becomes more accurate as the time-step is made smaller. 

2.4 Lorentzian Spectrum and Correlation Function 

The previous section introduced the notion of white noise as a form of extreme fluctuation which 

is perfectly uncorrelated from one instant to the next. The spectrum for white noise is perfectly 

flat, 

S(f) = const. 

i.e., the spectrum is a constant function of frequency f. It is named in analogy to white 

light which has all colours present in equal proportion ( at least over the visible portion of the 

spectrum). 

With its properties of infinite variance, infinite power, and infinite bandwidth, white noise 

cannot exist. Nevertheless, although physically unrealizable, white noise is a useful mathematical 

idealization for many processes which do occur in nature. A typical model of a spectrum which 

is nearly flat, and which will turn out to be rather significant for the stochastic modelling of the 

cortex discussed later in this thesis, is the Lorentzian spectrum 

D 
S(w) = k2 2 +w 

(2.29) 

where w = 21r f is the angular frequency, D is a diffusion coefficient, and k is a damping constant 

or decay rate. Example Lorentzian spectra are plotted in Fig. 2.2. 

The Lorentzian spectrum is characteristic of diffusion processes such as the irregular fluctuat­

ing movements of a pollen grain suspended in water which were first observed by Robert Brown 

in 1827. The fluctuations arise because the pollen grain is in a state of constant bombardment 
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Figure 2.2: Double-sided Lorentzian spectrum S(w) and its autocorrelation function G(r). (a) A broad 
spectrum has a narrow correlation function (short correlation time); (b,c) a rapidly decreasing spectrum 
has an extended correlation time. [Modified from Gardiner (1985, Fig. 1.5)] 
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from the surrounding water molecules. The motion of the water molecules is so complicated that 

a deterministic treatment of their effect on the pollen grain is out of the question. Instead, a 

probabilistic treatment of the exceedingly frequent statistically independent impacts is required 

(Gardiner, 1985). The term Brownian motion is now taken to mean the random motion of any 

particle in a fluctuating environment. 

We can calculate the autocorrelation function for the Brownian-motion spectrum by rewriting 

the Fourier-transform relation of Eq. (2.7), 

(2.30) 

as an integration over angular frequency via the change of variable w = 21r f, dw = 21r df, giving, 

G(T) = - S(w) eiwr dw. 1 1= 
27f -CX) 

(2.31) 

Applying this definition to the Eq. (2.29) Lorentzian spectrum, 

G( ) 1 1= D iwr dw 
T = 21r -= k2 + w2 e 

1 1= D -2 k 2 2 cos(wT) dw 
7f -CX) + w 

+ i 1= D ---,,--"""7" sin(wT) dw 
21r -= k2 + w2 

1100 D - k 2 2 cos(wT) dw 
7f O + w 

+ 0 

(2.32) 

where (2.33) 

On line 2 we have expanded the complex exponential via the Euler identity exp(iB) = cos e + 
i sine. The first integral on line 2 is an even function of w, so J~= - 2 ft, and the second 

integral is an odd function of w, so evaluates to zero. The surviving integral on line 3 is a 

standard form (Spiegel, 1968, p.96: Eq. 15.40), provided that both k and T are positive. We 

take the decay-rate k to be a positive constant, but the lag T can on take any real value, hence the 

need for the 11 operator in the exponent of line 4; this also guarantees that the autocorrelation 

function will be an even function of T. 

When T = T = 1/k, the autocorrelation function has decayed to 1/e of its zero-lag value. 

This decay-time is referred to as the correlation time T of the fluctuations. 

Figure 2.2 illustrates the inverse relationship between spectral width and correlation time. 

A rapidly-decaying spectrum has a long correlation time (Fig. 2.2c) because most of the spectral 

energy is concentrated at low frequencies. As the spectrum becomes flatter, the autocorrelation 

graph decays more rapidly (Fig. 2.2b,a). In the ideal white-noise limit of a perfectly flat spec­

trum, the autocorrelation function is a delta function at the origin-this is what is meant by 

the phrase "white noise is delta-correlated." 



Chapter 3 

Locating the Steady States of the 

Macrocolumn 

3.1 Cortical Equations of Motion 

3.1.1 The Liley Equations 

Our starting point is Liley's set of eight coupled PDEs (Liley et al., 1999) in which we have 

assumed complete spatial homogeneity over the region sampled by the EEG electrode. This is 

a reasonable approximation, given that a scalp electrode has a contact area of approximately 

2 cm2 , detecting electrical activity averaged across the underlying 5-10 cm2 of cerebral cortex. 

Thus the one-dimensional laplacian l,z (which would have appeared on the LHS of the equation 

for the long-range potential </J(x, t), Eq. (3.4) below) is eliminated, and all partial derivatives 

with time become total derivatives with time. This gives the following set of eight coupled 

ordinary DEs (the symbols are defined in Table 3.1): 

(3.1) 

( _!}__ + )2 [Iee(he)] = { [Nfel S (h) + [<Pe(he)] +[Pee]} G e 
dt 'Ye J ·(h ) N{3 e e "'·(h ) . e/e , ei e ei 'l'i e Pei 

(3.2) 

(3.3) 

(3.4) 

Equation (3.1) gives the time evolution of he and hi, the excitatory and inhibitory soma 

voltages ( also referred to as membrane potentials) averaged over the assembly of cooperating 

neurons. The neural assembly is assumed to be a single resistance-capacitance (RC) compart­

ment or summing point; in effect, we are defining an average neuron for the mass of 105 neurons 

in the macrocolumn. 

The first two terms on the right of Eq. (3.1) correspond to an exponential return to a resting 

voltage h~'t = - 70 m V. The second pair of terms describe perturbations to the membrane 

voltage due to synaptic inputs Ijk (where j, k E { e, i}) to the neural mass. Each of these Ijk 
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Table 3.1: Symbol definitions and model constants for the Liley equations 

Symbol Description Value Unit 

e, i (as subscript) excitatory, inhibitory cell populations 
he,i population mean soma voltage mV 
'Te,i membrane time constant 0.040, 0.040 s 
hrest e,, cell resting potential -70, -70 mV 
hrev e,, cell reversal potential (Nernst potential) 45, -90 mV 
fee,ie total e --+ e, i --+ e "current" input to excitatory synapses mV 
Iei,ii total e --+ i, i --+ i "current" input to inhibitory synapses mV 

'lpjk (j,kE{e,i}) weighting factors for the 11k inputs 

Pee,ie exogenous (subcortical) spike input to e population 1100, 1600 s-1 

Pei,ii exogenous (subcortical) spike input to i population 1600, 1100 s-1 

<Pe,i long-range ( cortico-cortical) spike input to e, i populations s-1 

Aee,ei characteristic cortico-cortical inverse-length scale 0.40, 0.65 (cm)- 1 

EPSP, IPSP excitatory, inhibitory post-synaptic potential mV 
'Ye,i neurotransmitter rate constant for EPSP, IPSP 300, 65 s-1 

Ge,i peak amplitude of EPSP, IPSP 0.18, 0.37 mV 
e (e.g., Eqs (3.2, 3.3)) base of natural logarithms 2.71828 ... 

N!,ei total number of local e --+ e, e--+ i synaptic connections 3034, 3034 

Nfe,ii total number of local i --+ e, i --+ i synaptic connections 536,536 

N:,ei total number of synaptic connections from distant 
e-populations 4000, 2000 

v mean axonal conduction speed 700 cms- 1 

Se(he), S;(h;) sigmoid function mapping soma voltage to firing rate s-1 
s:,nax' srax maximum value for sigmoid function 1000, 1000 s-1 

Be,i inflexion-point voltage for sigmoid function -60, -60 mV 
9e,i sigmoid slope at inflexion point 0.28, 0.14 (mv)- 1 

inputs is weighted by a dimensionless scale-factor 'I/Jjk whose origin and significance is discussed 

below. 

These equations use a double-indexing scheme to indicate the direction of "flow" or influence. 

For example, the lie appearing on the right of Eq. (3.1) is to be read as h---+e and can be pictured 

as the "current" (actually a voltage) which flows from the (mass-average) inhibitory neuron to 

the (mass-average) excitatory neuron. And, 'I/Jie is the weight factor which modulates this i-----. e 

flow. 

Examining the equation of motion for he (first equation of the (3.1) pair), the resting voltage 

h~est is the asymptote to which he will decay in the absence of any inputs. If any perturbing 

inputs are present (the usual case), then the asymptotic voltage target will be displaced in the 

positive direction (tending to increase excitability) in the presence of lee excitatory "self" input, 

but displaced in the negative direction (tending to decrease excitability) by the lie input from 

the inhibitory population. Similarly, in the hi equation of motion, excitatory input lei will tend 

to excite the inhibitory population, and Iii inhibitory self-input will inhibit it. 

One of the significant and perhaps surprising features of the model which will become ap­

parent later in this chapter is that although h~'t is the steady-state resting voltage for the 

undisturbed neuron, the presence of excitatory and inhibitory inputs will drive the neuron into 

one of two distinct states: either a high-firing depolarized state which is more positive than h~~r' 
or a low-firing hyperpolarized state which is more negative that h~~r. In short, as soon as the 
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Figure 3.1: Soma-voltage weighting functions. For the normal range of soma voltages hrv < he,i < 
h~ev, the excitatory weighting functions 'l/Jee(he), 'l/Je;(h;) (upper line) are positive, and the inhibitory 
weighting functions 'l/J;e(he),'l/J;;(h;) (lower line) are negative. If he,i > h~ev, the upper line goes negative, 
and all four weights have an inhibitory, hyperpolarizing effect. At the other extreme, for he,i < hiev, the 
lower line goes positive, and all four weights have an excitatory, depolarizing effect. 

feedback terms in the model are enabled, the model neuron can no longer come to rest at its 

h~e;i = - 70 m V "resting" voltage. 

3.1.2 1Pik Input Weighting Functions 

The four Ijk "currents" are always positive. Their excitatory or inhibitory effect is determined 

by the sign and magnitude of the four 1Pjk weighting functions which are defined below and 

plotted in Fig. 3.1. 

1Pee ( he) 
h~ev - he 

(3.5a) = I h~ev - h~est I ' 

1Pei(hi) 
h~ev - hi 

(3.5b) I h~ev - hiest I ' 

1Pie(he) 
hiev - he 

(3.5c) I hiev - h~est I ' 

1Pii(hi) = 
hrv - hi 

(3.5d) I hrev - hiest I . 

These 1Pjk coefficients are the model's representation of two facts: first, that excitation 

and inhibition are mediated by different ionic species ( h~ev = +45 m V ~ VNa, the sodium 

reversal potential; hiev = -90 mV ~ VK, the potassium reversal potential); and second, that 

the magnitude of the postsynaptic currents depends on the active state of the neuron (Tuckwell, 

1988b). 
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Figure 3.2: Sigmoidal functions relating firing rate to average soma potential. (a) Sigmoid curves: 
excitatory sigmoid Se (light curve); inhibitory sigmoid S; (bold). Both curves have been plotted with a 
maximum height of unity; in application, the vertical axis will be scaled by s~ax' srax repectively. (b) 
First derivative of sigmoid functions: dSe/dhe (light curve); dS;jdh; (bold). The points of inflection are 
set at Oe,i = -60 mV; the mid-point "gains" are ge,i = 0.28,0.14 (mV)- 1 (see Eq. (3.6)). 

3.1.3 Sigmoid Transfer Functions 

The time evolution of the input terms lee, lei, lie, h is governed by Eqs (3.2) and (3.3) which 

model the variable coupling strength between cells in terms of sigmoid functions Se(he), Si(hi), 

(3.6a) 

srax 
Si(hi) = 1 + exp [-gi(hi - Oi)] · (3.6b) 

These are nonlinear S-shaped transfer functions representing the output pulse rate (in pulses 

per second) of a homogeneous neural mass in response to a mean field of he, hi. Oe,i and 9e,i 

are constants: Oe,i is the soma potential at which the function has both maximum gradient and 

maximum sensitivity to small changes in soma potential; 9e,i determines the "gain" at this point 

of inflexion. See Fig. 3.2 and refer to Table 3.1 for values of the contants. For small values of 

soma potential, the average firing rate is low; as soma potential increases (becomes less negative), 

firing rate increases rapidly, eventually levelling off at a maximum value set by the firing rate 

multiplier Se,i;max, which in this model is 1000 s-1. At the point of inflexion, the firing rate is 

half this maximum value. A high firing rate corresponds to a strong interconnectivity between 

neurons; conversely, a low firing rate corresponds to a weak connectivity. Thus the strength of 

the interconnection between neurons is determined by the instantaneous value of the mean soma 

potential. 

3.2 Significance of the Steady States 

By setting to zero all time derivatives in Eqs (3.1- 3.4), we are able to compute the steady-state 

values of the soma potentials h~ and h? as a function of anaesthetic "amount," .-\. Contrary to 

an initial conjecture by an interested party that this zeroing of time-variations would produce 
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a "dead brain," this procedure actually gives us the long-time-limit, equilibrium values for the 

excitatory and inhibitory soma voltages. In this chapter we will show that for an intermedi­

ate range of A (looking ahead a little, this is region II of Fig. 3.4b), the soma voltages can 

take on three distinct values, corresponding to three quite different cortical states (two stable, 

one unstable) which the macrocolumn can switch between. Outside this intermediate range, 

the soma voltages become single-valued and the range of possible cortical behaviours collapses 

correspondingly as the brain becomes, in a quantifiable sense, "simpler." 

Once these A-dependent steady states have been located, and their stability status estab­

lished, we can introduce small-amplitude white-noise perturbations to the sub-cortical inputs 

in order to generate a fluctuation power spectrum. Of primary interest is how this fluctuation 

power varies as anaesthetic concentration is increased, and this will be investigated in Chapter 5. 

The purpose of the remainder of the present chapter is to describe how the steady states are 

located, then to ponder their physical significance with respect to the state of consciousness of 

the cortex. 

3.3 Stationary Solutions 

The soma stationary solutions will be those (he, hi) values which satisfy the eight coupled dif­

ferential equations (3.1- 3.4) in the long-time limit in which all time variations have vanished. 

Setting all d/ dt terms to zero, we obtain the following set of simplified equations: 

0 h~est - he + "Pee(he) lee(he) + "Pie(he) lie(hi), (3.7a) 

0 hiest - hi+ "Pei(hi) lei(he) + "Pii(hi) lii(hi), (3.7b) 

lee(he) [N! Se(he) + <Pe(he) +Pee] Geehe, (3.8a) 

lei(he) [N! Se(he) + <Pi(he) + Pei] Gee/'Ye, (3.8b) 

lie ( hi) [NfeSi(hi) +Pie] Giehi, (3.9a) 

h(hi) [Nfl Si(hi) + Pii] Giel,i, (3.9b) 

<Pe ( he) N: Se(he), (3.10a) 

<Pi ( he) Nj Se(he). (3.10b) 

Note that the anaesthetic modulation of the inhibitory neurotransmitter rate constant has now 

been incorporated in Eqs (3.9a, 3.9b) by replacing 'Yi with 'Yi = , / A. Thus as anaesthetic effect 

increases, the lie(hi) and h(hi) "currents" generated by the inhibitory neurons will increase 

linearly with A. 

Observe how in Eq. (3.7a) for he, the inhibitory voltage hi occurs only in the lie(hi) current, 

indirectly as an Si(hi) sigmoid term. So we can obtain an equation giving hi as a function of he 

in two steps. First, use Eq. (3.9a) to eliminate lie from Eq. (3.7a), rearranging to make Si(hi) 

the subject. Effectively this gives an expression for the inhibitory spike rate Si as a function 

of the excitatory soma voltage, denoted Si(he). Second, use Eq. (3.6) to invert the inhibitory 

sigmoid function, thereby extracting the hi which belongs with the given he. 
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Similarly, eliminating lei from Eq. (3.7b) and solving for Se(he) will render a parallel equation 

allowing he to be retrieved for given hi. These manipulations result in a pair of coupled nonlinear 

equations for the equilibrium spike-rates, 

- [ Gie ! (he) [h~est - he + 'lpee(he) Iee(he)] +Pie] / Nfe, (3. lla) 

- [ Gee;:i(hi) [hiest - hi+ 'lj;ii(hi) Iii(hi)] +Pei]/ (N~ + N~). (3.llb) 

Computing the sigmoid-inverses of these spike-rates gives the corresponding membrane voltages, 

3.3.1 Root Searching 

()i - ;i ln (srax;si(he)-1), 

oe - :e ln ( s~ax /Se(hi) - 1) . 

(3.12a) 

(3.12b) 

These equations suggest the following iterative numerical scheme for solving for the (h~, h?) 

equilibrium soma voltages. Select a first-guess value for a presumed equilibrium value for he; 

call this hei. Substitute he1 into the RHS of Eq. (3.lla) to give a spike rate Sip and, via 

Eq. (3.12a), the first-guess equilibrium value hi1 for the inhibitory population. Now plug hi1 

into the RHS of Eq.(3.11 b) and take its sigmoid-inverse via Eq. (3.12b ); call the result he2 • If he2 

matches the first-guess hei, then the coordinate (he 1 , hi1 ) is a soma-voltage equilibrium point 

on a graph of he vs hi. In the more usual case, he1 and he2 will be unequal, but their difference 

will give an indication of the error in the initial guess. 

By keeping track of the sign of the ( he1 - he2 ) differences for a range of finely-stepped 

he 1 initial guesses, we can detect when the h~ root has been bracketted, and then apply a 

bisection technique, such as MATLAB's fzero function, to zero-in on the root to within a specified 

tolerance. This final stage is referred to as root "polishing." 

To illustrate, suppose that he achieves equilibrium at 

h~ = -71.2377 m V (this is the middle root of Fig. 3.3a). 

We can detect the presence of this root by taking a coarse 

sweep of he values from - 75.0 to -68.0 m V, in steps of 

1.0 m V (more typically, I would use steps 1000 times finer 

than this to ensure no roots were missed). In the table 

alongside, the first column is the array of guesses, the sec­

ond column is the sigmoid-inverse of each guess obtained 

after traversing the equation sequence (3.lla --t 3.12a --t 

he1 

-75.0 
-74.0 
-73.0 
-72.0 
-71.0 
-70.0 
-69.0 
-68.0 

he2 (he 1 - heJ 

-76.5810 +1.5810 
-75.0226 +1.0226 
-73.5885 +0.5885 
-72.2340 +0.2340 
-70.9318 -0.0682 
-69.6635 -0.3365 
-68.4148 -0.5852 
-67.1732 -0.8268 

3.llb --t 3.12b), and the third column lists the mismatch error between the guess and its sigmoid­

inverse. The sign-change in the error indicates that the root must lie somewhere in the interval 

-72.0 < h~ < -71.0 mV: the root has now been bracketted and its precise value will emerge 

after sufficient polishing. 
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3.3.2 Roots as Isocline Intersections 

Suppose that we use Eq. (3.lla) in isolation to compute a set of hi values which correspond to 

a given set of (presumed stationary) he values, then plot a graph of he vs hi. Following Wilson 

and Cowan (1972), we refer to the resulting curve as the dhe/dt = 0 isocline. Now perform 

the corresponding procedure for a set of stationary hi values applied to Eq. (3.llb) to give a 

suite of matching he values, then superimpose this he vs hi graph (which defines the dhi/dt = 0 

isocline) on the first graph. The intersections of the two isoclines locate those points for which 

dhe/dt = dhif dt = 0, i.e., those points at which he and hi are simultaneously stationary. Thus 

the isocline intersections define the ( h~, h?) equilibrium coordinates. This graphical approach 

provides a visual confirmation that the iterative scheme described in the previous section has 

correctly located the stationary points. 

Figure 3.3 shows a representative sequence of four isocline graphs illustrating the discovery 

of multiple roots ( first three plots) and a single root (last plot) for anaesthetic effect A set at 
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Figure 3.3: Isocline plots for dhe/dt = 0 and dh;jdt = 0. Intersection points locate the equilibrium 
soma potentials. Multiple intersections (a-c) indicate multiple steady states for a given value of anaes­
thetic effect. For >, = 1.8, only one stationary point exists, and this is on the hyperpolarized (low-firing) 
branch corresponding to comatose-unconsciousness. 
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0.6, 1.0, 1.4 and 1.8 respectively. 

In order to produce a detailed picture showing how the distribution and number of soma­

voltage steady states varies with anaesthetic effect, I applied the numerical root-finding pro­

cedure of Section 3.3.1 for A-values ranging from O to 1.80 in steps of 0.05, then verified the 

number and location of the roots on isocline-intersection graphs. This approach worked well for 

the mid-range 0.30 < A < 1.50 region where three roots were found, but tended to be rather 

less successful in the single-root regimes A ~ 0.3 and A 2: 1.5. I will defer until Section 3.3.5 the 

technical discussion of the strategies I adopted for hunting down these "difficult" roots. 

We now examine how the locations and number of the roots change with anaesthetic amount. 

3.3.3 Distribution of Roots as a Function of Anaesthetic Effect 

Figure 3.4a shows the locus of steady-state excitatory h~ and inhibitory h? soma voltages as a 

(multivalued) function of anaesthetic effect A. The discovered points are marked with circles 

( o = h~) and crosses ( x = h?), and are joined with a pair of cubic spline curves to aid the 

eye. A vertical traverse through the locus shows that for the mid-range A-values, there are three 

distinct ( h~, h?) steady-state pairs. I will show in Section 4 that the steady-state values along the 

upper and lower branches are stable equilibrium points (i.e., can be pictured as a pair of valleys 

on a potential-hill diagram), while the values along the mid-branch are all unstable equilibrium 

points (they define the crest of the potential hill which separates the two valleys). 

For A 2: 1.53, corresponding to strong anaesthetic effect, there is only a single state available, 

and this is on the bottom branch with the inhibitory and excitatory soma voltages both close to 

-90 m V: both populations are in their low-firing, hyperpolarized state. For A ~ 0.28, correspond­

ing to strong anti-anaesthetic (i.e., analeptic) effect, again only a single state is available, but 

this state is on the top branch where, because the soma voltages exceed the sigmoidal inflexion­

point voltage Be,i = -60 m V (see Fig. 3.2), both neuronal populations are firing strongly: this 

is the depolarized state. For A ---t O (i.e., tending to the limit of zero inhibitory effect), both 

curves converge at the top-left corner to values close to +45 m V. At this extremum, both neural 

populations are firing at their absolute maximum rates. 

In Fig. 3.4b, I have traced out the trajectory of steady-state he values, and have labelled the 

three distinct regimes-

Region I ("coma") only the low-firing quiescent state is available to the macrocolumn when A 

is large; this is the anaesthetized state 

Region II the macrocolumn may be in either of two states: "active" (upper branch) or "qui­

escent" (lower branch); the macrocolumn may not rest anywhere on the mid-branch since 

this state is unstable with respect to small perturbations 

Region III ("seizure") only the high-firing "active" state is available; for A - 0, firing rate is 

maximized. 

The fact that the locus of steady states is a multiple-valued function of anaesthetic amount is 

of profound significance. It means that the transition into ( and emergence from) unconsciousness 

cannot proceed continuously-there must be a sudden and discontinuous switching of states at 

a certain critical concentration of anaesthetic. I will discuss these ideas in greater depth in the 

concluding section of this chapter. 
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Figure 3.4: (a) Model predictions for the stationary states for he (circles) and hi (crosses) as a function 
of anaesthetic effect >.. (b) In region II bounded by A1A3Q3Q1, for a given value of>. there are three 
possible values for he, but only two of these are stable: points lying on the upper ("active": A1A3 ) branch, 
and points on the lower ("quiescent": Q1Q3) branch. For>.~ 1.53 (region I}, he becomes single-valued 
and neural firing is strongly suppressed ("coma"); for >. ;S 0.3 (region III}, he is again single-valued but 
now neural firing is maximized ("seizure"). 

3.3.4 Number of Roots 

In the foundation paper of Wilson and Cowan (1972) which describes an abstract model of 

populations of inhibitory and excitatory neurons containing sigmoid nonlinearities, the authors 

demonstrated that for sigmoid functions with n inflexion points, there could be up to 2n + 3 

stationary states. The Liley model used in the present work is based on sigmoid functions with 

a single point of inflexion (see Fig. 3.2a). Applying the Wilson and Cowan result to the Liley 

model suggests we might expect to find up to five stationary states. However, for any given 

value of A, I could locate either a single root, or a triple of roots, but never more than three 

roots. 

I attempted a (non-exhaustive) search for the "missing" roots by investigating the effect of 

systematically altering the values of the model constants listed in Table 3.1, but without success. 

This finding of (no more than) three roots has been confirmed by other workers: Robinson et al. 

(1998) investigated the nature of the steady-state solutions for a similar sigmoid-coupled model 

of the cerebral cortex, but, after an extensive parameter-space search, found a maximum of 

either three steady states or a single steady state. Recent work by Liley et al. (2002), working 

with a model identical to the one used here (lacking only the inclusion of anaesthetic effect), 

also reported a maximum of three-roots. 
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3.3.5 The "Pathological" Roots 

In Section 3.3.2, I alluded to the fact that for some settings of the A anaesthetic effect, the 

(h~, h?) steady states were hard to find. I describe these roots as "pathological"-not because 

they are ill-behaved, but because they require extra care and numerical effort to locate. 

Specifically, for the extreme and diametrically-opposed cases of very large A ( deep coma: 

macrocolumn is strongly hyperpolarized with very low firing rates) and very small A (seizure: 

macrocolumn is strongly depolarized; firing rates are close to maximum), I found that the 

standard root-search procedures would fail unless the grid spacing of the he guesses was made 

orders of magnitude smaller than a "reasonable" default value of 0.001 m V. The computer 

resources (memory and machine time) required to locate these extreme roots became a limiting 

factor, since resource requirements scale directly with the number of points used for the search 

grid. 

Examination of the sigmoid-defining Eqs (3.6) and plots (Fig. 3.2a) provides the first clue as 

to the source of the problem. The sigmoid graph is approximately linear over its mid-range, but, 

by design, has a "saturating" characteristic at either end: it tends to zero as he,i -t -oo, and 

tends to Smax as he,i -t +oo. An essential stage of the root search involves inverting the sigmoid 

via Eqs (3.12) to find a pair of soma-voltage estimates which bracket the root. If the root is 

located in one of the saturation zones, the maximum allowable size of the bracketting interval 

becomes asymmetrically squeezed since there is less and less error "head-room" available: if one 

of the argument guesses is less than zero (or greater than Smax), its sigmoid-inverse will involve 

taking the logarithm of a negative number, returning a complex (unphysical) soma-voltage. 

Inverse-Sigmoid: Trapping out-of-bound argument 

Rather than allowing MATLAB to generate and propagate complex numbers, I detected and 

marked these unphysical inverse-sigmoid returns as NaN (not-a-number), then crafted a cus­

tomized bisection routine which would iterate Eqs (3.11-3.12) long and hard against the one­

sided NaN case, endeavouring to convert a trial bracket [x1, x2] which returned [J(x1), NaN] into 

a real bracket [x1, x3] which returned [J(x1), f(x3)] such that f(x1) · J(x3) < 0. This "proper" 

bracket could then be passed on to MATLAB's fzero routine to render a well-polished root. 

Asymptotic Limits for h~,i 

Even with these enhancements to locate the roots hiding within the sigmoid saturation zones, 

it would be reassuring to be able to place upper and lower bounds on the soma-voltage search 

space. These bounds can be calculated by letting A take on its two extreme values: 

1. For ,\ -t oo the IPSP becomes infinitely prolonged, and both the inhibitory and excitatory 

sigmoids are at their zero-firing asymptotic limit at which all neural firing has ceased; this 

is deep coma; 

2. For ,\ -t 0, the IPSP becomes compressed into a response function of zero width, so there 

is no inhibitory restraint on the macrocolumn; both inhibitory and excitatory sigmoids 

are at their Smax asymptotic limit at which all neurons are firing maximally; this limit 

corresponds to epileptic seizure. 
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1. Infinite Inhibition: Coma. To obtain the deep-coma limit, set Se(he) = Si(hi) = 0, and 

allow A --too in Eqs (3.9a,3.9b). This gives 

lie(hi) = A Pie Ci e/,i 

lii(hi) APii Ci e/,i 

(3.13a) 

(3.13b) 

so the "currents" from the (subcortical) inhibitory sources will tend to infinity with A. Mean­

while, zeroing the sigmoids in Eqs (3.8a,3.8b) gives 

lee(he) = Pee Ge e/,e 

lei(he) = Pei Ge e/,e 

(3.14a) 

(3.14b) 

showing that the currents from excitatory sources will remain finite. Dividing Eq. (3.7a) by lie, 

and Eq. (3.7b) by h, then allowing A --too, collapses these equations to 

0 

0 

'I/Jie(he) = (hrev - he) I lhrev - h~est1 

'I/Jii(hi) = (hrev - hi)/ 1hiev - hrest1 

(3.15a) 

(3.15b) 

from which we conclude that the asymptotic soma voltages for deep-coma must equal the hfev 

reversal potential, 

(3.16) 

2. Zero Inhibition: Seizure. Solving for the zero-inhibition voltages is a little more work. 

Setting A --t O causes the inhibitory inputs lie and Iii to go to zero. In contrast, the excita­

tory inputs lee and lei are maximized because the excitatory sigmoid will be at its saturation 

maximum s~ax, thus Eqs (3.8a,3.8b) become 

11,474 mV (3.17a) 

(3.17b) 

Although cortical s~ax and subcortical Pee (Pei) spike inputs are of similar magnitude, the multi­

plication of s~ax by the large number of synaptic connections (see Table 3.1) makes the Pee and 

Pei subcortical spike inputs completely negligible in this high-firing limit in which the intracor­

tical excitatory inputs dominate. As calculated here, the resulting amplitude of the excitatory 

seizure amplitudes for lee and lei are enormous, generating battery-like voltages(!) which are 

almost certainly physiologically implausible. Fortunately, the presence of the 'I/Jjk weighting func­

tions in the model provide a voltage-clamp action, ensuring that the actual soma voltages do 

not "explode" with overexcitation. Substituting these saturation-maxima into Eqs (3.7a,3.7b) 

then solving for he and hi in turn gives the steady-state soma voltages at the seizure extremum 

as 

hseiz 
e 

I h rev _ h rest I h rest + h rev 1seiz e e e e ee 
lhrev _ hrest I + 1seiz e e ee 

I hrev _ h~est I hrest + hrev 1seiz 
e i i e ei 

lhrev _ hrest I + 1seiz 
e i ei 

+43.9 mV (3.18a) 

+43.4 mV. (3.18b) 
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In both cases, the seizure voltages are close to, but a little less than, the h~ev = +45 m V 

reversal potential. This state of extreme depolarization appears at the top-left corner of the 

Fig. 3.4a graph of macrocolumn steady-states. 

3.4 Stationary Solutions for the "Pik = 1 System 

Although it is standard practice when modelling single neurons to include ionic reversal poten­

tials (e.g., the Hodgkin-Huxley and Tuckwell neurons discussed in Chap. 1), this description 

of cell behaviour seems to be omitted in the mean-field or neural aggregate theories. Certainly 

none of the mean-field models surveyed in Sect. 1.8---other than the more recent Liley work 

(Liley et al., 1999, 2002)-incorporates ion-reversal potentials. This raises the obvious question: 

If reversal potentials are important for modelling single neurons, why do they become unimpor­

tant when modelling populations of neurons? And: Is any "damage" done to model integrity 

by ignoring reversal potentials? 

The Liley model we are using in this thesis explicitly includes reversal potentials-these are 

the 'I/; weighting functions that scale the synaptic inputs. In order to synthesize a model that 

ignores reversal potentials, we set these weighting functions to plus and minus unity: 

(3.19) 

Thus the four weighting functions are to become constants, independent of soma voltage. In the 

work that follows, I investigate the implications of setting the 'I/; functions to unity. 

3.4.1 Pathological Roots Revisited 

I now apply the steady-state analysis presented in Section 3.3.5 to the special-case 'I/; = ±1 

macrocolumn. First, I examine the two extremum cases .X - oo (coma) and .X --t O (seizure), 

then I investigate how the distribution of steady states varies with anaesthetic effect. 

1. Infinite Inhibition: Coma 

Setting '1/;ee(he) = 'lpei(hi) = 1, and 'lpie(he) = 'lpii(hi) = -1 in Eqs (3.7a, 3.7b), then solving 

for he and hi in the infinite-inhibition, zero-firing limit Se(he) --t O and Si(hi) --t O gives the 

following steady-state soma voltages: 

and 

h~est + lee - fie 

= h~est + Pee Ge e/,e - A Pie Ci e/,i 

--t -oo as .X--t oo 

hiest + lei - Iii 

hiest + Pei Ge e/,e - APii Ci e/,i 

--t -oo as .x- oo 

(3.20a) 

(3.20b) 
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showing that, unlike the standard macrocolumn which enforces an asymptotic lower bound of 

-90 m V ( the hi reversal potential, hiev), the unity-'1/J model has steady-state coma voltages which 

are completely unconstrained, going to minus-infinity with the lie and Iii inhibitory inputs. 

2. Zero Inhibition: Seizure 

To obtain the seizure limit, we set ). = 0, so the inhibitory inputs lie and Iii must also be zero; 

and we set the sigmoids at their maximum firing rates, Se (he) --+ s~ax and Si ( hi) --+ Sfax. Then 

solving Eqs (3.7a, 3.7b) for the soma voltages gives the following seizure extremum values: 

and 

h!eiz h~est + lee - lie 

h~est + [ (N! + N!) S:;1ax +Pee] Gee/,e - 0 

+11,404 mV 

h!eiz hiest + lei - Iii 

hiest + [ (Nj + N!) S:;1ax + Pei] Gee/re - 0 

+8, 143 mV. 

(3.21a) 

(3.21b) 

Again, in contrast to the standard macrocolumn model which places an upper limit close to 

+45 m V (the he reversal potential, h~ev), the non-inclusion of the '1/J weighting functions has 

cancelled an important moderating influence on the excitatory inputs, resulting in predicted 

seizure voltages which are completely implausible. 

3. Distribution of Steady States 

For the unity-'1/J macrocolumn, how do the number and location of soma steady-state voltages 

vary with anaesthetic effect? To answer this question, I applied the same root-searching algo­

rithms described in Sections 3.3.1 and 3.3.5, but found that I needed to vastly extend the >. 
search domain in order to capture the complete distribution. 

The search results are shown in Fig. 3.5, and should be compared with the distribution of 

steady states for the standard macrocolumn (see Fig. 3.4). The bottom branch no longer tends 

towards an asymptotic value of hiev = -90 m V as ). increases; instead, the bottom branch values 

decline steeply as ). increases, becoming increasingly more hyperpolarized to a limiting value 

of about -190 m V. This is a numerical limit arising from the finite precision of the MATLAB 

calculations (at these very negative soma voltages, the sigmoid function returns an output which 

is within machine epsilon of zero) .1 

The extended middle branch has positive slope, implying that the macrocolumn becomes 

more depolarized (more excited) as anaesthetic concentration increases. This is a completely 

unphysical result, so we can expect that, as for the standard macrocolumn, the middle branch 

will be a locus of unstable equilibrium points. A linear stability analysis will confirm this 

prediction-see Chapter 4.4. 

The upper branch is quite truncated, and is only detected for very extreme values of anaes­

thetic effect. The normal range for anaesthetic-induced increase in the duration of the inhibitory 

1 In MATLAB, eps = 2. 22x 10- 16 is the distance between 1.0 and the next largest floating point number. 
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Figure 3.5: Steady-state soma voltages for the unity-ip macrocolumn. (a) For the range O < >. < 5, 
only two roots for each of he and h; could be found. In principle, the bottom branch is expected to 
diverge to infinity with >.. (b) To view the complete distribution of roots, the range for anaesthetic effect 
has to be extended to O < >. < 420. Note the eventual appearance of a right-hand knee and top branch 
for these extreme values of anaesthetic effect. (c) As for (b), but only the h; roots shown for clarity. The 
"hook" at the right extreme of h; matches the knee and upper branch of he shown in (b). 

post-synaptic potential is of the order of 1.5 to 4 (Gage and Robertson, 1985; Franks and Lieb, 

1994; Jones and Harrison, 1993; Antkowiak and Hentschke, 1997). For the standard macrocol­

umn, the right-hand knee (point A3 on Fig.3.4) occurs at >. ;=:::;j 1.53; in contrast, for the unity-'!µ 

macrocolumn, it occurs at>. ;=:::;j 411. In principle, when a high-firing, upper-branch (=conscious) 

macrocolumn is pushed beyond this knee, it must collapse to the low-firing(= unconscious) lower 

branch, yet, numerically at least, the bottom branch does not exist here! 

On the basis of these results, I conclude that, for the purposes of anaesthetic modelling, the 

unity-'!µ macrocolumn is without merit: the algebraic simplifications which result from setting 

the neurokinetics weighting factors to ± 1 come at the cost of a significant loss of physiological 

fidelity. 
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3.5 Significance of the Steady States-Revisited 

By re-examining the >.-dependent locus of steady-state 

soma voltages (shown again in Fig. 3.6), we can develop 

insights into how the cerebral cortex is rendered uncon­

scious with anaesthetic. The significant observations are 

that the locus of steady states is a multiple-valued func­

tion of anaesthetic amount, and that the mid-branch loci 

are unstable (the stability analysis will be presented in 

Chapter 4). This means that it is impossible for the 

macrocolumn to traverse from the upper branch to the 

lower branch (or the reverse) in a continuous path: there 

must be discontinuous jump transition between states. 

Suppose the neural assembly is initially at location 
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A2. As anaesthetic effect >. increases, h~ will slide to the 

Figure 3.6: Stationary states trajec­
right down the upper branch to A3, whereupon a sudden tory for he 

jump to Q3 on the lower branch must occur, since the middle branch is unstable and therefore 

disallowed. Further increases in>. will then cause h~ to advance along the bottom branch towards 

the "coma" limit. If instead, the assembly was initially at Q2 on the lower branch, then increases 

in >. would lead to a smooth, monotonic decrease in soma voltage towards "coma," with no jump 

discontinuity. 

If the cortex is pictured as a superposition of macrocolumns, some active and some quies­

cent, then the model predicts that those macrocolumns which are active will undergo a rapid 

and dramatic active---tquiescent change of "phase" at a critical anaesthetic concentration. The 

signature of this phase change will be a sudden decrease in the soma-average DC voltage as the 

active neurons become hyperpolarized. 

Is this prediction amenable to experimental verification using electrodes affixed to the scalp? 

Attempting to detect changes in the average DC levels of the cortex via scalp electrodes would 

seem to be an almost impossibly challenging task. How is one to distinguish the "signal," i.e., 

the change in cortical polarization, from the "noise" -DC changes arising from gradual changes 

in the electrode-to-skin impedence, or generated by slow variations in nearby muscle-generated 

voltages, or generated by slow-wave AC from the cortex itself? Prospecting for the change in 

the internal DC state via external skin electrodes would seem to be a hopeless proposition. 

But, what if the change in the DC polarization state forces a change in the AC characteristics 

of the scalp-measured EEG signal? It does not seem implausible that the spectral shape (i.e., 

the distribution of spectral energy) of the EEG generated by high-firing active neurons should 

be distinct from that generated by the much lower-firing quiescent neurons. Even if only a small 

proportion of macrocolumns are in the activated state, we might expect an anaesthetic-driven 

downwards transition across the A3Q3 gap to produce a measurable change in the EEG signal 

provided the active macrocolmns are acting synchronously. 

In Chapter 5 we drive the model macrocolumn with white noise, and investigate how the 

resulting fluctuation spectrum varies with anaesthetic effect. We will find that at transition, 

the theory predicts a dramatic rise in total fluctuation power which is contemporaneous with 
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a pronounced shift-towards lower frequencies-in its spectral distribution. These results are 

consistent with the fluctuation behaviours observed in the first-order phase transitions of classical 

thermodynamics. It is very encouraging to be able to report that these qualitative predictions are 

precisely what is observed in clinical measurements of the EEG patterns for patients undergoing 

general anaesthesia. 

But before examining fluctuation spectra, we need to establish the stability properties of the 

macrocolumn steady states. This is the business of Chapter 4. 



Stability of the Macrocolumn 

Stationary States 

Chapter 4 

We wish to establish which of the soma-voltage equilibrium points plotted on Fig. 3.4a are stable 

with respect to small perturbations, and which points are unstable. If the macrocolumn has 

settled into a stable configuration, it can be pictured as nestled at the bottom of a potential 

well where comfortably it can remain in a state of minimum energy. Conversely, an unstable 

configuration would have the macrocolumn sitting at the crest of a potential hill from which, 

given the slightest disturbance, it will slide away into a nearby potential valley. Thus the locus of 

unstable equilibria demarcate the energy barrier which separates the stable equilibrium valleys 

lying on either side. 

Reichl (1980, pp. 683-687) describes a standard technique for determining the stability of a 

set of coupled first-order ordinary differential equations: one makes a small-perturbation Taylor 

expansion about the steady state, keeping only the linear terms, then examines the behaviour 

of the eigenvalues for the linearized system. 

In order to apply the Reichl technique to the cortical macrocolumn, we must first rewrite 

the eight coupled first- and second-order differential equations (DEs) of Eqs (3.1-3.4) as a set 

of coupled first-order DEs: the four second-order DEs for local "currents" Ijk become eight 

first-order DEs, and the two second-order DEs for long-range spike input <Pe,i from distant 

excitatory sources are replaced by four first-order DEs. This gives 12 first-order equations for 

the macrocolumn inputs, plus the two equations for the evolution of the soma voltages, giving a 

total count of 14 first-order equations. The linear stability analysis would therefore require the 

calculation of the eigenvalues of a 14 x 14 system matrix. 

However, our primary interest lies with a much simpler version of the Liley equations-the 

"adiabatic" equations ( described below) which recognize that, compared with the he and hi soma 

voltages, the synaptic inputs evolve on much faster time scales, and can be treated as if they 

have already achieved steady state. This simplifying assumption collapses the dimensionality 

of the macrocolumn system from eight independent variables to two, he and hi, and the set of 

14 first-order DEs required for the full system is replaced a single pair of DEs giving the time 

evolution of he and h;. The stability analysis now only requires finding the eigenvalues of a 2 x 2 

system matrix. 
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4.1 Adiabatic Model of the Macrocolumn 

The "adiabatic" approximation 1 is a simplification which arises from a recognition that the 

input terms (ljk, <Pe,i) vary on time scales that are quite distinct from the time scale of the 

soma voltages he and hi. This becomes apparent when we compare the various relaxation times 

computed from the numerical values listed in Table 3.1: 

relaxation time for lee, lei be)-l ~ 3.3 ms 

relaxation time for lie, h (1'i)-l ~ 15.4 ms 

relaxation time for <Pe (vAee)- 1 ~ 3.6 ms 

relaxation time for <Pi (vAei)- 1 ~ 2.2 ms 

whereas the Te,i time-scales for the he,i soma potentials can be as large as 100 ms (Koch et al., 

1996). For our present modelling work we set Te = Ti = 40 ms, allowing us to make the working 

assumption that the six neuronal inputs [lee, lie, lei, Iii, <Pe, <Pi] equilibrate very much faster than 

the soma potentials he,i themselves, so that on he,i equilibration time-scales, all time-derivatives 

appearing in the input equations (3.2-3.4) can be set to zero, allowing us to write adiabatically 

simplified expressions for the six neuronal inputs as functions of he and hi only. This gives the 

following equations of motion for the adiabatic macrocolumn: 

fee(he) [ (N~ + N!) Se(he) +Pee] Gee/'Ye, 

fei(he) [(N~ + N!) Se(he) + Pei] Gee/'Ye, 

Iie(hi) >, [Nfe Si(hi) +Pie] Giehi, 

h(hi) >, [Nfl Si(hi) + Pii] Giehi· 

(4.la) 

(4.lb) 

(4.2a) 

( 4.2b) 

(4.3a) 

(4.3b) 

Note that the <Pe,i long-range spike inputs have been folded into the lee and lei equations, and 

that anaesthetic effect ,\ is shown explicitly in the lie and Iii equations. The 'I/Jjk weighting 

functions are repeated here for ease of reference: 

h~ev - he 

lh~ev _ h~estl' 

h~ev - hi 
lh~ev - hiestl, 

(4.4) 

This adiabatic approximation has reduced the dimensionality of the macrocolumn model 

from the equivalent of 14 first-order differential equations to a single pair of coupled ODEs. 

I now present a summary of Reichl's description of linearized stability analysis, paraphrased 

for application to the two-variable adiabatic macrocolumn equations. 

1The notion of macrocolumn simplification via the adiabatic approach described here was first suggested and 
developed by M. Steyn-Ross; this philosophy allowed the calculation of the fluctuation spectrum described in our 
paper Steyn-Ross, Steyn-Ross, Sleigh, and Liley (1999). 
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4.2 Linear Stability Theory 

To establish the stability of the adiabatic model, we assume the macrocolumn has achieved 

steady state, then allow small perturbations (ohe, ohi) in the excitatory and inhibitory voltages 

away from their steady-state values (h~, h?): 

ohe(t) = he(t) - h~ 

ohi(t) = hi(t) - h?. 

(4.5a) 

(4.5b) 

If these perturbations tend to decay to zero in time, then the equilibrium is stable with respect 

to small disturbances; if the perturbations grow, then the equilibrium is unstable. Taking d/dt 
of Eq. 4.5 gives the time-rate change of the perturbations: 

d dhe 
dt (ohe) = dt - 0 = F1(he, hi) (4.6a) 

d dhi 
(4.6b) -(oh·) = dt - 0 = F2(he, hi) dt i 

in which the F1 and F2 rate functions can be expanded as a two-variable Taylor series about 

steady state 

(4.7a) 

(4.7b) 

The zero subscripts indicate that the partial derivatives are to be evaluated at the equilibrium 

point. For very small values of ohe, ohi, (i.e., for solutions very close to equilibrium) we can 

drop the O(oh;,i) quadratic correction terms to give the linearized approximation 

(4.8a) 

8F2 I 8F2 I F2(he, hi) = ohe Bhe O + ohi Bhi O • (4.8b) 

The F1(h~,h?) and F2(h~,h?) terms have disappeared since they are identically zero at steady 

state. Expressing the linear expansion in matrix form ( and dropping the lo "at equilibrium" 

notation), I: (Oh,)] [8F1 !~:] 1·~1 8he 
= 

8F2 8F2 oh· -(oh·) dt i 8he 8hi 2 

(4.9) 

or, 

!£ h 
dt 

Jh (4.10) 

where h = [ohe ohijT is the perturbations column vector, and J is the 2 x 2 Jacobian matrix 

of partial derivatives evaluated at equilibrium. Provided J is non-singular (i.e., det J =f, 0), then 



58 Stability of the Macrocolumn Stationary States 

it can be diagonalized (Wiberg, 1971, p.70) by applying a similarity transformation x- 1JX 

where Xis the matrix of the eigenvectors [x1, x2] of J corresponding to eigenvalues >11, .-\2. The 

eigenvectors are defined, 

so that 

JX 

where 

A 

is the diagonal matrix of eigenvalues, and 

XA 

(4.lla) 

(4.llb) 

(4.12) 

(4.13) 

(4.14) 

is the partitioned matrix whose columns are the eigenvectors of J. The similarity transformation 

is equivalent to applying a change of variable 

h = Xg, or g x- 1 h 
' 

(4.15) 

so Eq. (4.10) becomes 

d 
dt (X g) = J X g = X Ag (4.16) 

where we have made use of the eigenvalue equation (4.12). Left-multiplying both sides by x- 1 

gives, 

x-1 XAg Ag ( 4.17) 

or, 

[~91] = [.-\1 0] [91] · 
di,92 0 .-\2 92 

(4.18) 

This diagonal system represents a pair of uncoupled differential equations which can be inte­

grated immediately to give the solutions 

(4.19) 

Writing g(t) = x- 1h(t) and g(O) = x- 1h(O), gives 

(4.20) 
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which, after a left-multiplication by X, completes the transformation back to h for the time­

course of the soma fluctuations, 

Expanding the right-hand side we find 

8he(t) = ci e.>.it + c2 e>.2 t 

8hi(t) d1 e>.it + d2 e>.2 t 

(4.21) 

(4.22a) 

(4.22b) 

where the coefficients c1, c2, d1, d2 are constants which depend only on the initial perturbations 

8he (0), 8hi (0) scaled by the Xjk elements of the X eigenvector matrix. Thus the growth behaviour 

of the perturbations depends entirely on the sign of the real parts of the eigenvalues >.1, >.2 of 

the J Jacobian matrix (Reichl, 1980): 

• If both eigenvalues are real and negative, then the perturbations will decay exponentially 

to zero, and the stationary point is stable; 

• If either eigenvalue is real and positive, then the perturbations will grow exponentially, 

and the stationary point is unstable; 

• If the eigenvalues are complex, i.e., >.1 = a+ i/3 and >.2 = a - i/3, then the perturbations 

will exhibit an oscillatory behaviour whose angular frequency is w = {3; these oscillations 

will decay with time exponentially if a < 0 (i.e., stationary state is a stable focus), but 

will grow without limit if a > 0 ( unstable focus). 

4.3 Stability Analysis for the Adiabatic Macrocolumn 

4.3.1 Adiabatic Equations 

In order to establish the stability characteristics along the Fig. 3.4 S-bend of adiabatic steady 

states, we need to compute the eigenvalues of the Jacobian matrix defined in Eq. (4.9), 

8Fil 8hi 

8F2 
8hi 

From Eqs (4.1-4.3) we compute the matrix elements as: 

111 
8F1 1 [ 87/Jee 8lee 87/Jie J ] 
8he Te - l + 8he lee + 7Pee 8he + 8he ie 

112 
8F1 ~ [ 7Pie 8lie] 
8hi Te 8hi 

121 
8F2 _!_ [ 7Pei 8lei] 
8he Ti 8hi 

122 
8F2 1 [ 87/Jei 87/Jii 8lii] 
8hi Ti -l + 8hi lei+ 8hi h + 7Pii 8hi 

( 4.23) 

(4.24a) 

(4.24b) 

(4.24c) 

(4.24d) 
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with the four 'I/Jjk weighting-function derivatives given by constants, 

8'1/Jee -1 8'1/Jei -1 

8he I h~ev - h~est I ' 8hi lh~ev _ hiestl' 

8'1/Jie -1 8'1/Jii -1 
--
8he I hiev - h~est I ' 8hi lhiev - hrst'' 

and the four Ijk input-current derivatives given by the expressions, 

(No. N/3) Gee 8Se 
ee + ee 8h 

'Ye e 

(No. N/3) Gee 8Se 
ei + ei ah 

'Ye e 

A Nfe Gie 8Si 

'Yi 8hi 

AN~ Gie 8Si 
'Yi 8hi . 

The firing-rate sigmoids Se,i have derivatives 

-ge s~ax exp[-ge(he - Oe)] 

[ 1 + exp[-ge(he - Oe)l] 2 

9i Sf1ax exp[-gi(hi - Oi)] 

[1 + exp[-gi(hi - Oi)l] 2 · 

(4.25a) 

( 4.25b) 

(4.26a) 

(4.26b) 

(4.26c) 

(4.26d) 

(4.27a) 

(4.27b) 

The J Jacobian matrix can now be evaluated as a function of GABA anaesthetic effect at 

arbitrary points along the trajectory of (he, hi) steady states. 

4.3.2 Results 

Equations ( 4.24-4.27) were coded into MATLAB and the eigenvalues of the J matrix determined 

using the MATLAB eig function. The retrieved eigenvalue pairs are plotted in Fig. 4.1 as a 

function of\ the GABA anaesthetic effect. 

Only the dominant eigenvalue need be inspected in order to determine the stability of a 

given stationary point. By "dominant" is meant that member of the eigenvalue pair whose 

signed real part is the larger of the two (i.e., for eigenvalues (A1,A2) = (0-1 +iw1,o-2+iw2), A1 is 

dominant if 0-1 > 0-2). Nevertheless, it is informative to plot the evolution of both eigenvalues as 

a function of anaesthetic. Figure 4.lb shows the real part of both eigenvalues. When the real­

part curves coincide (grey dots), the eigenvalues form complex-conjugate pairs whose imaginary 

content is displayed in Figure 4.lc. Because all of the complex eigenvalues have large-amplitude 

negative real parts, the oscillatory component will be extremely strongly damped. For example, 

the complex eigenvalue -4095.8 + 283.5i (which belongs to a point on the upper branch at 

A = 1.52 just prior to the the A3 turn) suggests an oscillation frequency about steady state 

of 283.5 rad/s = 45.1 Hz, but the attentuation factor of e-4096 ;::::; 10-1soo ensures that this 

oscillation will never be seen. 

The more significant feature Fig. 4.lb is the fact that the dominant eigenvalue crosses zero 

at the turning points A3 (induction jump) and Q1 (emergence return), looping into the positive 
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half-plane, indicating that any small perturbation away from the midbranch stationary states 

of Fig. 4. la will grow exponentially. Hence, the midbranch is unstable. Conversely, all points 

along the upper and lower branches are stable with respect to small perturbations because, for 

these regions, the real part of the dominant eigenvalue is always negative. 

These stability results confirm the notion that the macrocolumn can persist in one of two 

stable states: either on the "active" upper branch where firing rates are high, or on the "qui­

escent" lower branch where firing rates are very subdued. These two stable regions (potential 

energy valleys) are separated by the potential hill defined by the unstable mid branch which joins 

the A3 and Q1 turning points. 

4.4 Stability Analysis for the 1/J 

4.4.1 Unity-1/, Equations 

1 Macrocolumn 

In Chapter 3.4 I investigated the consequences of setting the 1Pjk neurokinetics coefficients to 

unity: 

1Pee = 1Pei = + 1 , and ( 4.28) 

thus removing their dependence on soma voltage (see Fig. 3.1). Compared with the standard 

reverse-S graph of Fig. 3.4, the trajectory of unity-'ljJ steady states of Fig. 3.5 gives the impression 

of an S-bend which has suffered multiple traumas: a stretch (by a factor of rv250) along the 

>.-axis, a truncation of the upper and lower branches, and a rotation about the turning points 

of these vestigial branches to near vertical. The dominant feature of the graph is the elongated 

midbranch of positive slope, and the claim was made earlier that because this midbranch has 

a positive he versus >. slope, these midbranch steady states are unphysical. Here I use linear 

stability analysis to verify the claim: the entire midbranch set of unity-'ljJ equilibrium states is 

unstable, and therefore disallowed. 

Setting the 'ljJ weights to ±unity simplifies the terms of the J Jacobian matrix; thus Eqs ( 4.24a-

4.24d) become: 

111 
8Fi ~ [-1 + a1Pee] (4.29a) 
8he Te 8he 

112 
8Fi ~ [- 8Iie] ( 4.29b) = ahi Te 8hi 

h1 
8F2 _!_ [ 8Iei] (4.29c) 
8he Ti 8hi 

122 = 8F2 
![-1-8h] (4.29d) 

8hi Ti 8hi 

where the form of the four I1k input-current partial derivatives remain unchanged from those 

listed in Eqs ( 4.26a-4.26d). The eigenvalues for the revised Jacobian matrix are now presented. 

4.4.2 Results 

Figure 4.2 illustrates the stability chacteristics for the unity-'ljJ macrocolumn. The top panel (a) 

redraws the Fig. 3.5 stretched S-bend of steady-state soma voltages, but now with the mid branch 
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Figure 4.2: Stability chacteristics for the unity-111 macrocolumn. (a) Steady-state trajectory for he 
as a function of >.. (Refer to Fig. 3.5 for the corresponding hi trajectory.) The unstable mid branch is 
drawn in grey. (b) Dominant eigenvalue graph. Only the small hooks below the turning points at the 
left and right extremes of the graph show a stable (i.e., negative) dominant eigenvalue. (c) and (d) give 
zoomed-in views in the vicinity of the Q1 and A3 turning points respectively. 

from turning point Q1 to turning point A3 drawn in grey to symbolize its instability. This sta­

bility information comes from Figure 4.2b where we see that apart from the easily-overlooked 

reentrant hook regions at either end, the dominant eigenvalue is almost always positive. F ig­

ures 4.2c,d give zoomed in views of the tiny regions of stability: the hyperpolarized bottom 

branch near Q 1, and the depolarized top branch near A3 . 
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It is hard to imagine any physiologically plausible significance to these tiny regions of stability 

which are separated by such a vast distance in ..\ space. Accordingly, I conclude that the unity-?J, 

limit for the adiabatic macrocolumn is uninteresting, and no further space will be devoted to its 

study in this thesis. 



Fluctuation Spectrum for the 

Macrocolumn 

Chapter 5 

In the first part of this chapter I describe how the Liley equations for the homogeneous macro­

column are transformed into stochastic differential equations by incorporating a white-noise 

perturbation about the macrocolumn steady state. The response function, expressed in fre­

quency space, defines a theoretical EEG spectrum. By steadily increasing the >. anaesthetic 

parameter (i.e., by reducing the inhibitory rate constant 'Yi= ri/>.), we are able to investigate 

how the EEG spectrum is expected to vary during the controlled induction of unconsciousness. 

Similarly, by reducing>. we can predict the EEG spectral changes expected to occur as a patient 

emerges from unconsciousness. We will find that the theoretical model makes the following 

predictions: 

1. There will be a strong surge in the EEG fluctuation power as the transition point into 

unconsciousness is approached; 

2. There will be a second, distinct EEG power surge for the emergence phase as the cortex 

approaches the jump return back to consciousness; 

3. These fluctuation maxima will occur at the turning points of the reverse-S equilibrium 

curve, implying a hysteresis separation of the induction and emergence trajectories: the 

macrocolumn return to its high-firing state (consciousness) will occur at a lower anaes­

thetic concentration than that required for the initial induction of the low-firing state 

(unconsciousness); 

4. As transition is approached, there will be a change in the distribution of the spectral energy 

of the fluctuations, with a strong growth in the lower-frequency components occurring at 

the expense of the higher frequencies; 

5. The spectrum for the unconscious cortex will have a pronounced 1/ f 2 characteristic, 

whereas the spectrum for the conscious cortex will be comparatively flat. 

In the final part of this chapter I will compare these model predictions with clinical measure­

ments of the so-called anaesthetic biphasic effect performed in The Netherlands by Kuizenga 

and colleagues in 1998. Kuizenga's work examined the changes in EEG spectral characteristics 

as a function of anaesthetic blood concentration for the widely-used propofol anaesthetic agent. 

Numerical simulation of the model equations will provide a second test of the veracity of the 

theoretical analysis presented in the present chapter. Description of the simulations will occupy 

a later chapter of this thesis. 
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5.1 Stochastic Perturbations to the Adiabatic Steady State 

There are two fundamental assumptions in the present work. The first is that the cerebral 

cortex can be modelled as a (single!) macrocolumn that is never far from one or other of its 

stable equilibrium1 states as mapped out in Fig. 3.4. The second assumption is that we may 

make an adiabatic simplification in which the four I1k input currents to the macrocolumn are 

taken as being rapidly-varying quantities which have already settled to their final steady-state 

values. The justification for adiabaticity, in terms of characteristic relaxation times, was given 

earlier in Chap. 4.1. Adopting Haken's slaving principle terminology (Haken, 1978), one would 

say that the soma voltages are "slow" variables to which the "fast" variables (the input currents) 

have become enslaved. 

The resulting adiabatic equations of motion for he and hi, the excitatory and inhibitory 

voltages, listed in Eq. (4.1), are, 

dhe 
dt 

(5.la) 

(5.lb) 

where the four I1k input currents are as defined in Eqs (4.2-4.3). By setting the left-hand sides 

of Eq. (5.1) to zero and solving for (he, hi), we can identify the coordinates of the macrocolumn 

steady states. This was done in Chap. 3. 

We suppose that it is the small fluctuations in he about its steady-state value which constitute 

the source of the scalp-recorded EEG signal, i.e., 

EEG(t) = Ohe(t) = he(t) - h~. (5.2) 

But what causes these 8he fluctuations? In our model we assume that there is a continuous wash 

of white-noise variability entering the macrocolumn from the exogenous subcortical connections. 

Specifically, we say that each of the four Pjk subcortical spike rates varies randomly about a 

predefined mean value (Pjk). Thus we replace the Pjk terms which appeared in the I1k currents 

of Eqs (4.2-4.3), expressing each as a random variation(:-::) about its ( ... ) mean, 

Pee - (Pee) + Pee(t) (5.3a) 

Pei - (Pei) + Pei(t) (5.3b) 

Pie - (Pie) + Pie(t) (5.3c) 

Pii - (Pii) + Pii(t) (5.3d) 

where the Pjk(t) stochastic parts are defined as follows, 

Pee(t) O'.ee vTP:) ~1 (t) (5.4a) 

Pei ( t) O'.eiJTi:J 6(t) (5.4b) 

Pie ( t) O'.ieJTi:J 6(t) (5.4c) 

Pii ( t) O'.iiv(p;J ~4(t) (5.4d) 

1 Note that although the cortex is a dissipative, energy-consuming system, and therefore, in the strict sense, 
far from equilibrium, we declare "steady-state" and "equilibrium" to be synonyms here. This invocation of a local 
equilibrium frame of reference is justified in Chap. 6. 
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The ~n(t) are four independent Gaussian-distributed white-noise sources defined to have zero 
mean, 

(~n(t)) = 0 (5.5a) 

and delta-function covariances, 

(~m(t) ~n(t')) = Dmn 8(t - t'). (5.5b) 

Given that J.!";: 8(t) dt = 1, i.e., the total area under the 8(t) Dirac delta-function is a dimen­

sionless unity, it follows that 8(t) must carry units of inverse-time, and therefore each ~(t) noise 

source has units of 1/vtime = s-1/ 2 . (The Dmn Kronecker delta is dimensionless.) 

The CXjk of Eq. (5.4) are dimensionless scale factors introduced to ensure that the fluctuations 

always remain very small: if the fluctuations are allowed to become too large, then there exists 

the possibility that the spike rates could momentarily go negative-this must be disallowed since 

no physical meaning can be attached to a negative number of spike events per time interval. For 

our numerical simulations we set all four scale-factors to a common value, 

O'.jk = 0.1. (5.6) 

How this value was selected will be discussed in Chap. 7. A correct choice for a becomes rather 

important when one attempts to use numerical simulations to verify theoretical predictions for 

the fluctuation spectrum. 

It is reasonable to expect that spike rates with a larger mean will have a larger stochastic 

fluctuation about the mean. However, rather than a direct proportionality2 of the form p ex: 

(p) ~(t) (which, because ~(t) carries units, would be dimensionally improper), we choose the 

power-law relationship p ex: v(p) ~(t) which retains dimensional integrity for a spike rate: 

(5.7) 

Here, the square brackets [ ... ] are to be thought of as a "dimensions of" operator. 

5.2 Stochastic Differential Equations 

By incorporating the sub-cortical white-noise sources of Eq. (5.3) into the Ijk equations (4.2-

4.3), we transform the Eq. (5.1) ordinary differential equations into a pair of coupled stochastic 

differential equations (SDEs), also known as Langevin equations, for the adiabatic macrocolumn.3 

These can be written as the sum of an average or drift part, plus a randomly-fluctuating or 

diffusive part: 

2In our original paper (Steyn-Ross et al., 1999), we assumed a direct proportionality between mean and 
stochastic amplitude: p = (p) ~(t). I subsequently realized that this stochastic mapping was dimensionally 
inconsistent, and M. Steyn-Ross suggested the careful square-root formulation given above. This revised form 
was adopted for the Steyn-Ross et al. (2001a) and Steyn-Ross et al. (2001b) follow-up papers. 

3This scheme for transforming the Liley cortical equations into a set of stochastic differential equations was 
developed by M. Steyn-Ross after discussions with D. Liley and J. Sleigh to confirm that its assumptions are 
physiologically plausible. 
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where the Fi and F2 drifts define the non-stochastic motion, 

Fi (he, hi) 

F2(he, hi) 

[h~est - he+ 'l/Jee(he) fee(he) + 'l/Jie(he) fie(hi)] /Te 

[hiest - hi+ 'l/Jei(hi) fei(he) + 'lpii(hi) h(hi)] /Ti· 

(5.8) 

(5.9a) 

(5.9b) 

The Ijk currents entering the Fi and F2 drifts are as given by Eqs (4.2-4.3), but with the Pjk 

subcortical spike-rate sources replaced by their time-averaged values (Pjk), 

fee(he) [(N! + N!) Se(he) +(Pee)] Geehe (5.10a) 

fei(he) [(N6 + N~)Se(he) + (Pei)] Gee/'Ye (5.10b) 

fie ( hi) >. [Nfe Si(hi) + (Pie)] Giehi (5.lla) 

h(hi) >. [Ne Si(hi) + (Pii)] Gie/,i. (5.llb) 

The Pjk(t) white-noise parts have been factored out to define the f j(t) time-dependent diffusion 

terms, 

re ( t) = bee 6 ( t) + bie 6 ( t) 

ri(t) = bei 6(t) + bii ~4(t) 

(5.12a) 

(5.12b) 

where the bjk coefficients depend on GABA anaesthetic effect >. and (he, hi) soma voltage coor-

dinate, 

bee 'l/Jee(he) O:ee-/fi:J Gee/reTe (5.13a) 

bei 'l/Jei(hi) O:ei ..;r;;:J Gee/ re Ti (5.13b) 

bie A 'l/Jie (he) O:ie ..;r;;:J Gie/ riTe (5.13c) 

bii A'lpii(hi) O:iiJti:J Gie/,iTi. (5.13d) 

Checking these equations for dimensional consistency, we see that in Eq. (5.13), the vfiiJ Gj 

product gives the bjk units of m V / ..js (the Gj is the post-synaptic amplitude in m V-see Ta­

ble 3.1; the units of the rjTk product of rate- and time-constants cancel each other; the 'l/Jjk 

and O:jk are dimensionless), so that the r diffusion terms of Eq. (5.12) carry units of m V /s, 

consistent, as they must be, with the units for the F drifts. 
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5.3 Linearized Langevin Equations 

In order to apply the tools of stochastic calculus to the adiabatic macrocolumn, we linearize the 

stochastic differential equations (5.8) about steady state. Let the macrocolumn lie exactly on 

an equilibrium point (..X, h~, h?) so that the drift terms are identically zero, i.e., 

(5.14) 

Now turn on the Pjk(t) subcortical noise sources. This will generate soma voltage perturbations 

via the f e,i(t) diffusion terms of Eq. (5.12), 

8he(t) J f e(t) dt = he(t) - h~ 

8hi(t) = J ri(t) dt = hi(t) - h?. 

(5.15a) 

(5.15b) 

From Eq. (5.8), the time-derivative of these perturbations can be written as the sum of drift 

plus diffusive parts, 

d 
dt (8he) = 

d 
d/8hi) = 

(5.16a) 

(5.16b) 

As was done for the linear stability analysis of the adiabatic macrocolumn in Chap. 4.2, we 

perform a two-variable Taylor expansion of the F1, F2 drifts about steady state. To first order 

in drift ( and to zeroth order in diffusion), the linearized Langevin equations read, 

or, 

[
~ (dh,)l 
-(8h·) dt i 

~6h 
dt 

I BFi I BFi I ] [8hel [f e(t)l 8he O 8hi o 

::: I. ::: I. ""' + r,(t) eq. 

(5.17) 

-A 6h + r(t)eq. (5.18) 

where 6h = [8he 8hijT is the perturbations column vector, and A is the negative4 of the 

Jacobian matrix of partial derivatives evaluated at equilibrium. Here r eq. is the 2 x 1 diffusion 

vector also evaluated at equilibrium, so that the b1k diffusion coefficients of Eq. (5.13) become 

fluctuation-independent constants, 

bee = 

bei = 

bie = 

bii = 

1Pee(h~) O:eey'(i;J Gee/,eTe 

1Pei(h?) O:ei /(i:J Gee/,eTi 

A 1Pie(h~) O:ie /<i:J Gie/,iTe 

..X 1Pii(h?) o:ii .J(i;J Gie/ 'YiTi. 

(5.19a) 

(5.19b) 

(5.19c) 

(5.19d) 

4The negative sign has been introduced here for consistency with the usual sign convention adopted for the 
prototypical linear Langevin equation which, in one dimension, reads dx/dt =-Ax+ r; for A> 0, the system is 
stable so relaxes to equilibrium. 
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We emphasize that in this linearization scheme, the diffusion terms are evaluated exactly at 

a given (>., h~, h?) equilibrium point-by assumption, the four random-noise sources vary only 

with time, and do not depend on the fluctuations in soma voltage. In other words, although the 

( >., h~, h?) steady-state coordinate determines the amplitude of the noise ( via the 'I/Jjk functions 

acting as scale factors), the soma voltage fluctuations themselves (i.e., the EEG signal) have no 

feedback influence on the diffusion noise which is generating the fluctuations. 

5.3.1 Diffusion Matrix 

Gardiner (1985, pp. 53 & 96) shows that there is a complete equivalence between an Ito SDE 

(such as Eq. (5.18)) and a (Fokker-Planck) diffusion process defined by the drift matrix A and 

a diffusion matrix D which is calculated from the covariance of the white-noise terms. For the 

adiabatic macrocolumn, the 2 x 2 diffusion matrix is given by, 

D o(O) 

or, writing out the components in full, 

Evaluating each element in turn, 

[
(re(t) re(t)) (re(t) ri(t))l 
(ri(t) f e(t)) (ri(t) f;(t)) . 

Du o(O) = ((bee6(t) + b;e6(t))(bee6(t) + bie6(t))) 

= b;e (6 (t) 6 (t)) + bTe (6(t) 6(t)) + 2 beebie (6 (t) 6(t)) 

= b;e o(O) + bTe o(O) + 0 

D12 o(O) = D21 o(O) 

= ((be;6(t) + biie4(t))(bee6(t) + bie6(t))) 

(5.20a) 

(5.20b) 

(5.21a) 

= beibee (6(t) 6 (t)) + beibie (6(t) 6(t)) + biibee (e4(t) e1 (t)) + biibie (e4(t) 6(t)) 

=O+o+o+o 

D228(0) = ((be;6(t) + b;;e4(t))(bei6(t) + biie4(t))) 

= b;; (6(t)6(t)) + b7i (e4(t)e4(t)) + 2be;b;; (6(t)e4(t)) 

= b;i o(o) + bTi o(o) + o 

(5.21b) 

(5.21c) 

where we have applied the correlation property of Eq. (5.5b) to contract the (em(t) en(t)) white­

noise expectations onto delta functions: (e(t) e(t)) = 8(0). Finally, substituting the Eq. (5.19) 

definitions for the bjk gives the diffusion matrix elements as, 

Du = :; { ( 'I/Jee ( h~) lXee Gee he) 2 (Pee) + A 2 ( '!pie ( h~) lXie Gieh;) 2 (Pie)} 

: 2 { ( 'I/Jei(h?) CXei Gee he) 2 (Pei) + >-2 ( 'lpii (h?) a;; Giehi) 2 (Pii)} 
i 

D21 = 0. 

(5.22a) 

(5.22b) 

(5.22c) 
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Performing a dimensional check on Eq. (5.22) shows that the Du and D22 matrix elements 

carry units of (m V) 2 /s, as expected for a voltage diffusion coefficient. 

5.3.2 Drift Matrix 

The matrix elements of the drift matrix A follow directly from Eq. (4.24) after replacing J by 

-A, giving, 

Au 8F1 I 
8he 0 

1 [ 81/Jee /Hee 81/Jie ] 
- Te -l + 8he lee + 1Pee 8he + 8he fie eq. (5.23a) 

A12 8F1 I 
8hi 0 

_ ~ [ 1Pie 8fie] 
Te 8hi eq. 

(5.23b) 

A21 8F21 
8he 0 

_ ! [ 1Pe/Iei] 
Ti 8hi eq. 

(5.23c) 

A22 = 8F21 1 [ 81/Jei 81/Jii 8Iii] (5.23d) 
8hi 0 

----:- -1 + ah- lei+ ah- Iii+ 1Pii ah-
Ti i i i eq. 

where the 8Ijk/ 8hj partial derivatives of the input currents are given by the Eq. ( 4.26) expres-

sions, 

8Iee (N°' N/3) Gee 8Se (5.24a) 
8he ee + ee 'Ye [)he 

8Iei (N°' N/3_) Gee 8Se (5.24b) 
8he ei + ei 'Ye 8he 

8Iie >. Nfe Gie 8Si 
(5.24c) 

8hi 'Yi 8hi 

8Iii >. Ne Gie 8Si . (5.24d) 
8hi 'Yi 8hi 

The partial derivatives for the firing-rate sigmoids Se,i and the 1Pjk neurokinetics weighting 

functions were listed earlier in Eqs ( 4.27) and ( 4.25) respectively. It is understood that all soma­

voltage-dependent terms in Eqs (5.23-5.24) are to be calculated at a given(>., h~, h?) equilibrium 

point. 

5.4 Linearized Covariance and Linearized Spectrum 

By linearizing about steady-state, we have transformed the stochastic equations of motion for 

the (he, hi) soma voltages of the adiabatic macrocolumn, as given by Eq. (5.8), 

(5.25) 

into a pair of linear, constant-matrix equations for ( 8he, 8hi), the small fluctuations about steady­

state, 

d [8he] 
dt 8hi 

-A [8he] + VD [(e(t)] 
8hi (i(t) 

(5.26) 

where D is a diagonal matrix, and 
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-jD;; ~e(t) = re(t) 

.;n:;;_ ~i(t) C(t) 

bee 6 ( t) + bie 6 ( t) 
bei 6(t) + bii ~4(t). 

(5.27a) 

(5.27b) 

This is a two-variable Ornstein-Uhlenbeck process5 whose stationary statistics have been 

extensively studied and are well documented (e.g., see Gardiner (1985, pp. 109-112)). The 

statistical descriptors of prime interest for the macrocolumn are the covariance matrix <T, the 

time-correlation matrix G(T), and the spectrum matrix S(w). 

5.4.1 Covariance Matrix 

Following Gardiner (1985, p.111), the stationary covariance matrix <T (sometimes referred to as 

the zero-time correlation matrix) for our two-dimensional Ornstein-Uhlenbeck process can be 

expressed in terms of its drift matrix A and diffusion matrix D, 

(T 
Det(A) D + [A -Tr(A) I] D [A -Tr(A) I]T 

2Tr(A) Det(A) 
(5.28a) 

(5.28b) 

in which I is the 2 x 2 identity matrix; Det and Tr are the determinant and trace operators 

respectively. The individual elements of the covariance matrix are defined, 

var{ 8he} 

( (8he - (8he) )2) (5.29a) 

var{ 8hi} 

( ( 8hi - (8hi) )2) (5.29b) 

cov{ 8he, 8hi} 

((8he - (8he)) (8hi - (8hi) )) 

(5.29c) 

By writing out Eq. (5.28a) in full, we obtain expressions for the O"jk in terms of the drift and 

diffusion elements: 

(AuA22 - A12A21 + A~2 ) Du + Ay2 D22 
2 (Au+ A22) (AuA22 - A12A21) 

A~1 Du + (Ay1 + AuA22 - A12A21) D22 
2 (Au+ A22) (AuA22 - A12A21) 

(5.30a) 

(5.30b) 

(5.30c) 

5 In Chap. 7 we will use the theoretical predictions from a one-variable Ornstein-Uhlenbeck process as a simple 
test-case against which the correctness of our numerical simulation procedures for stochastic differential equations 
can be checked. 
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The rms values of the excitatory and inhibitory voltage fluctuations and co-fluctuations 

about their respective steady-states can be extracted directly from the covariance elements, 

hrms e = Jvar{<5he} = Juii (5.31a) 
h~ms 

i = Jvar{<5hi} = ../uii (5.31b) 
hrf!IS ei = vlcov{ ahe, ahi}I = ~- (5.31c) 

From its definition in Eq. (5.29c), one observes that the cov{ 6he, 6hi} cross-covariance can be 

negative-this will happen when excitatory and inhibitory fluctuations are anticorrelated, e.g., 

when a depolarizing (positive-going) fluctuation in he leads to a hyperpolarizing (negative-going) 

fluctuation in hi, and vice versa. Hence the need for an absolute value in the Eq. (5.31c) definition 

for h~r.{18 • However, because it may be useful to distinguish the regions of anticorrelation, I 
introduce the notion of a "signed rms" value for the square-root of the covariance: 

(5.32) 

where sgn is the signum (sign-of) function. With this definition, h!rms will carry the sign of the 

a12 covariance, thus will be negative when 6he and 6hi are anticorrelated, and will be positive 

otherwise. 

5.4.2 Time-Correlation Matrix 

The autocorrelation function G(T) for a time-series x(t) was defined in Eq. (2.6), 

11T G(T) = (x(T) x(O)) = lim T x(t + T) x(t) dt. 
T--+oo o 

(5.33) 

The autocovariance of x(t) is defined 

cov{x(T), x(O)} = (x(T) x(O)) - (x(T)) (x(O)). (5.34) 

The autocovariance will be identical to the autocorrelation if the fluctuations x(t) have zero 

mean. Unless stated otherwise, we will assume that all means have been removed (e.g., the 

EEG signal, 6he(t) = he(t)-h~, is the ac component of the soma-voltage variation), so that the 

autocovariance of a time-series x(t) can be taken as its autocorrelation, 

G(T) = cov{x(T), x(O)}. (5.35) 

For a two-variable system, the autocorrelation function generalizes to a time-correlation 

matrix G(T). Replacing the x(t) above by the soma-voltage fluctuations 6he(t) and 6hi(t), their 

correlation matrix would read, 

[
cov{6he(T), 6he(O)} 

G(T) = 
cov{6hi(T), 6he(O)} 

cov{6he(T), <5hi(O)}l · 

cov{6hi(T), 6hi(O)} 
(5.36) 

Gardiner (1985, p. 111) shows that for a two-dimensional Ornstein-Uhlenbeck process, the 

stationary correlation matrix can be computed directly from the drift matrix A and covariance 

matrix u: 
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G(r) exp[-Ar] u, r>O (5.37a) 

and, 

r<O (5.37b) 

with symmetry property (because u = uT), 

G(-r) = [G(r)]T . (5.38) 

The exp [-Ar] term denotes a matrix exponential (and not the exponential of the matrix 

elements) defined by its Taylor expansion, 

ex = I+ X + X 2 /2 + X3 /6 + ... + Xk /k! + ... (5.39) 

In the control systems literature, exp [-Ar] is known as the transition matrix. To gain in­

sight into the structure of its elements, we will apply an alternative definition6 for the matrix 

exponential expressed in terms of eigenvalues and eigenvectors, 

(5.40) 

where V is the 2 x 2 matrix of eigenvectors corresponding to the eigenvalues ..\1, ..\2 of the X 

matrix. From Wiberg (1971, p. 108), the transition matrix will be 

(5.41) 

where A1 and A2 are now the A-matrix eigenvalues. The corresponding eigenvector matrix is 

[ Vl 1] [A1-A22 1 l V - - A21 
- 1 V - l ArA11 

2 A12 
(5.42) 

which follows from the eigenvector definition 

AV=VA=V (5.43) 

From Eq. (5.37a), the correlation matrix becomes 

(5.44) 

Expanding, then selecting the terms for the G 11 ( r) element, we obtain the correlation function 

for the Jhe(t) fluctuations as, 

(5.45) 

6This definition appears in the MATLAB help documentation for its expm (matrix exponential) function. Also 
see Wiberg (1971, p. 101, Eq. 5.17). 
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where 

and -uu + u21 v1 

V1 V2 -1 

75 

(5.46) 

Setting T - 0 in Eq. (5.45), we see that, as expected, the autocovariance of 8he collapses to its 
variance u 11 , 

Gu (0) = cov{ 8he(O), 8he(O)} 

= 0'11 

var{8he}, (5.47) 

It is evident from Eq. (5.45) that the two-time correlation function for 8he is a linear com­

bination of two exponential decay processes whose rate constants are the eigenvalues of the drift 

matrix. The relative weighting of the exponentials depends on the u 11 and u 21 entries of the 

covariance matrix (usefully thought of as the zero-time correlation matrix), and on the v1 and 

v2 eigenvector elements. 

Parallel conclusions apply to the correlation functions for the 8hi inhibitory fluctuations and 

for the 8he,i cross-fluctuations. 

5.4.3 Generalized Correlation Time 

The correlation time T was defined in Sect. 2.4 as the time required for the autocorrelation 

function G(r) to decay to 1/e of its zero-lag value. This definition assumes the autocorrelation 

function is a simple, single-exponential decaying function of time of the form, 

G(r) = G(O) e-kT, (5.48) 

for which T = 1/k. A (semilog) graph of ln G(r) vs T will give a straight line 

lnG(r) = lnG(O) - kr (5.49) 

whose slope retrieves k, the inverse of the correlation time. 

For our two-dimensional OU (Ornstein-Uhlenbeck) process, the Eq. (5.45) autocorrelation 

function is the sum of two exponential decays, so a simple 1/e-folding-time (or slope-of-semilog­

graph) rule for extracting the correlation time is no longer appropriate. 

Gardiner (1985, p. 78) gives a generalized correlation-time definition which can be applied 

to arbitrary processes, 

T _ Jo"° cov{x(r), x(O)} dr = Jo"° G(r) dr 
- var{x} - G(O) 

(5.50) 

and which certainly works for the single-exponential decay process of Eq. (5.48), retrieving the 

correlation time 

T = Jo"° G(O) e-kT dr 

G(O) 
1 
k' 

(5.51) 
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as required. Applying Eq. (5.50) to the two-dimensional OU process, we are able to derive two 

equivalent expressions for the correlation time, the first derivation proceeding via the eigenvec­

tor decomposition of Eq. (5.45), and the second proceeding directly from the matrix form of 

Eq. (5.37a). 

Correlation Time: Eigenvector Method 

The eigenvector decomposition gave a scalar (sum of exponentials) equation (5.45) for Gu ( T), 

the 8he autocorrelation function. Substituting into Eq. (5.50) gives 

1 f'XJ 
T = Gu(O) lo G11 (T)dT 

(5.52) 

where the a1, a2 are defined in Eq. (5.46) in terms of the v1, v2 eigenvectors, and 0'11 is the 

Eq. (5.29a) variance of the 8he fluctuations. 

Correlation Time: Matrix Method 

Working directly with the time-correlation matrix G(T) defined in Eq. (5.37a), we can derive 

an alternative expression for the 8he correlation time by integrating the matrix exponential, 

fo 00 
exp [-AT] u dT 

A-1u. (5.53) 

Extracting the 1,1 element, and dividing by the 8he variance 0"11 gives the alternative expression 

for the generalized correlation time for the two-dimensional OU process, 

1 [ -1 ] T=- A u 11 . 
O"u 

(5.54) 

These equivalent forms listed in Eqs (5.52) and (5.54) for correlation time provide a convenient 

numerical cross-check. This concept of generalized correlation time will be revisited in Chap. 8. 

5.4.4 Spectrum Matrix 

The power spectral density S(w) for a time-series can be calculated from its autocorrelation 

function via the Wiener-Khinchin theorem of Eq. (2.5), 

1 100 
. S(w) = - G(T)e-iwrdT. 

21r -oo 
(5.55) 

Replacing the autocorrelation function G(T) in Eq. (5.55) with the correlation matrix G(T) leads 

to the spectrum matrix S ( w): 
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S(w) 1 100 . = - G(r) e-iw-r dr 
271" -00 

= [8n(w) 

821(w) 

77 

(5.56a) 

(5.56b) 

For the two-dimensional Ornstein-Uhlenbeck process, Gardiner (1985, p. 111) shows that 

the stationary spectrum matrix can be expressed in terms of the drift and diffusion matrices, 

(5.57) 

Expanding Eq. (5.57), we can write explicit expressions for each of the spectral elements: 

8[he(w)] 8n(w) 

= 1 A?2D22 + A~2Dn + Dnw2 

21r (AuA22 - A12A21 - w2)2 + (Au + A22) 2 w2 

8[hi(w)] = 822(w) 

8[he,i(w)] 

= 

1 A?1 D22 + A~1 Du + D22w2 

21r (AuA22 - A12A21 - w2)2 + (Au + A22)2 w2 

812(w) 

821(w) 

1 -AuA12D22 - A21A22Du + iw (A12D22 - A21D11) 

21r (AuA22 - A12A21 - w2)2 + (An + A22)2 w2 

(5.58a) 

(5.58b) 

(5.58c) 

We observe that the excitatory spectrum 8[he(w)] and the inhibitory spectrum S[hi(w)] are 

both real, even functions of w, since these are computed from their time-series autocorrelations 

which have even symmetry about zero lag. In contrast, the 8[he,i(w)] cross-spectrum is complex 

since it comes from a Fourier transformation of the ('5he(r), <5hi(O)) cross-correlation which, 

in general, will be asymmetric about r = 0. The two cross-spectra, 812 = 8[he,i(w)] and 

821 = 8[hi,e(w)], are complex conjugates of each other. 

The square-roots of the Eq. (5.58) power spectra [units: 

spectral rms amplitudes [m V / v'Hz] defined as, 

(m V)2 /Hz] give spectral and co-

h~ms(w) 

hims(w) 

h~f5 (w) 

= 

= 

J8u(w) 

J822(w) 

Jl812(w)I -

Because the 812 co-spectrum is complex, it is useful to define its phase angle f3ei, 

_1 (Im[812(w)]) 
f3ei(w) = tan Re[812(w)] . 

(5.59a) 

(5.59b) 

(5.59c) 

(5.60) 

Before presenting the theoretical variances and spectra, we will examine first the predicted 

behaviours of the drift and diffusion matrices as a function of GABA anaesthetic effect. 
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5.5 Drift and Diffusion Response to GABA Anaesthetic 

Using Eqs (5.23 and 4.25-4.27), I computed the drift matrix A for the range of steady-state 

versus GABA coordinates illustrated earlier in the reverse-S graph of Fig. 3.4. The results are 

displayed in Fig. 5.1. 

Each curve in Fig. 5.1 exhibits a re-entrant arc joining the A3 (induction) and Qi (emergence) 

turning points: this arc corresponds to the unstable mid-branch of Fig. 3.4. As expected, the 
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Figure 5.1: Variation of drift matrix A with GABA anaesthetic for the adiabatic macrocolumn. The 
four matrix elements occupy the top four panels: (a) Au; (b) A12; (c) A21; (d) A22, (e) shows the 
sum of the diagonal elements: Tr(A) =Au+ A22 (equivalent to the sum of eigenvalues), and (f) is the 
determinant of A (product of eigenvalues): Det(A) = AuA22 - A12A21, These graphs belong to the 
steady-state trajectory of Fig. 3.4. For each curve, the A 3 Q1 section identifies the unstable branch. 
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curve in (f) showing Det(A) has zeros at its A3 and Q1 turning points (the dominant eigenvalue 

passes through zero at these points-see Fig. 4.1 b). 

Re-entrant A3 Q1 arcs are also evident in Fig. 5.2 which displays the D11 and D22 elements 

of the (diagonal) diffusion matrix. These curves, calculated from Eqs (5.22), are always positive, 

as verified by (c) and (d) showing a zoomed view in the vicinity of the Q1 cusp. 
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Anaesthetic Effect, A.GABA Anaesthetic Effect, A.GABA 

Figure 5.2: Variation of diffusion matrix D with GABA anaesthetic. The diffusion matrix elements 
are shown in the top two panels: (a) D 11 ; (b) D22 . Panels (c) and (d) give a close-up view of the Q1 cusp. 
Both excitatory and inhibitory diffusion coefficients are always positive, and exhibit a slowly increasing 
trend with A on the bottom (hyperpolarized) branch. 

5.6 Adiabatic Fluctuations and Spectra 

5.6.1 Fluctuation Amplitude vs GABA 

Having established the response of the the drift and diffusion matrices to GABA anaesthetic, 

it is a relatively straightforward matter to compute the covariance matrix u from Eq. (5.28), 

and hence determine the macrocolumn predictions for the rms amplitude of the excitatory and 

inhibitory soma voltage fluctuations about equilibrium. The fluctuation trends are shown in 

Fig. 5.3. 

At first sight, the dramatic surge in fluctuation power as the macrocolumn approaches in­

duction point A3 on the top ("conscious") branch is astonishing. After all, the prime purpose 

of general anaesthetic is to dampen down the firing activity of the cerebral cortex to the extent 
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Figure 5.3: Effect of GABA anaesthetic on the fluctuations covariance matrix u. Plotted here are 
the standard deviations for the small white-noise-driven fluctuations of soma voltage about equilibrium: 
(a) excitatory fluctuations, h~ms = fou"; (b) 0 fluctuations, h~ms = Vo"22; and (c) signed excitatory­
inhibitory co-fluctuations: h"';;rms = sgn(a12)~. Region SA3 is the high-firing active branch (top­
branch of Fig. 3.4); region Q1C is the low-firing anaesthetized or quiescent branch (bottom branch of 
Fig. 3.4). The unstable A3 Q 1 mid-branch has been suppressed. Note the remarkable surge of fluctuation 
power on approach to induction (A3 ), and again on approach to emergence (Q1). 
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that the patient enters the "unconscious" or quiescent state. Yet these graphs show that corti­

cal activity surges to a maximum immediately prior to the induction collapse into quiescence. 

Moreover, there is a second power surge for the return journey at the Q1 emergence jump back 
to consciousness. 

The meaning of these power surges becomes clear when we recall that the macrocolumn 

is exhibiting a pair of hysteretically-separated first-order phase transitions. As Reichl (1980) 

puts it, the growth in fluctuations as transition is approached is the system's way of readying 

itself for its impending new state. So we can think of the macrocolumn preparing for an im­

pending step change in its (he, hi) de voltage by becoming exquisitely sensitive to the incoming 

white-noise perturbations; although the resulting exaggerated ac excursions are still quite small 

(-0.2 mVrms) compared with the size of the step change (-30 mV), they enable the macrocol­

umn to "sample" its dramatically altered potential landscape. (This picture will become clearer 

in Chap. 6 when we compute the "hills-and-valleys" potential graphs for the macrocolumn.) 

We observe from Fig. 5.3b that the inhibitory fluctuations grow in a similar fashion to those 

of the excitatory population, although with a delayed, then more steeply-rising trend as the A3 

induction point at .X = 1.53 is approached. Fig. 5.3c is the "signed rms" measure introduced in 

Eq. (5.32) which is positive when 8he and 8hi co-vary, and negative when they anti-vary. 

5.6.2 Spectral Amplitude vs GABA 

Using Eqs (5.58) and (5.59), I calculated the spectral amplitudes for the excitatory and inhibitory 

fluctuations at three specific point frequencies: 1, 10, and 100 Hz. The results appear in Fig. 5.4. 

These single-frequency response pictures are rather similar in character to the total fluctua­

tion graphs of Fig. 5.3: for both sets of graphs there is a strong growth in amplitude as either 

the A3 (induction) or the Q1 (emergence) phase-transition jumps are approached. However, we 

can now glean some information about the spectral composition of the peaks by comparing the 

relative amplitudes of the three graphs within a column. While the emergence peak Q1 contains 

little high-frequency energy, the induction power surge at A3 is relatively broad-band, with little 

attenuation at 100 Hz. This contrast will become more apparent in the following section when 

we view the complete spectra as three-dimensional "waterfalls." 

The co-spectral graphs appear in Fig. 5.5. Because the co-spectrum is complex, the spectral 

information is split into its amplitude magnitude Ti~rs = ~ (left-hand panels) and spectral 

phase f3ei = tan-1[Im(S12)/Re(S12)] (right-hand panels). 

5.6.3 Spectral Power Waterfalls 

In the previous section we evaluated the linearized fluctuation spectrum equations for specified 

point frequencies. Now we will allow the frequency to vary in fine steps from de up to a reasonable 

upper limit to reveal the full excitatory spectrum for a given value of anaesthetic effect .X. (For 

the remainder of this chapter we ignore the inhibitory spectrum and the excitatory-inhibitory 

cross-spectrum, and focus exclusively on the excitatory spectrum S11(w) since it is the 8he 

variations which are the putative source of the scalp-measured EEG.) 

Using Eq. (5.58a), each value of .X will generate a distinct fluctuation spectrum. If .X is 

stepped appropriately, the resulting family of spectra can be displayed in a three-dimensional 
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Figure 5.4: Variation of spectral amplitude with GABA anaesthetic at specified point frequencies. 
Left-hand panels show excitatory spectral amplitude, h~ms; right-hand panels show inhibitory spectral 
amplitude, h):ms. The point frequencies are (a, b) 1 Hz; (c, d) 10 Hz; (e, f) 100 Hz. Spectral amplitudes 
carry units ofµ V / JHz. 
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Figure 5.5: Variation of co-spectral amplitude and phase with GABA anaesthetic at specified point 
frequencies. Left-hand panels show excitatory-inhibitory co-spectral amplitude, h~'['8 ; right-hand panels 
show the phase angle f3ei for the co-spectrum. The point frequencies are (a, b) 1 Hz; (c, d) 10 Hz; 
(e, f) 100 Hz. Phase angles are expressed as a fraction of 1r (i.e., an ordinate of unity corresponds to 
(3 = 1r rads); the vertical scale for phase angle has been reversed to permit the transition arrows at Q1 
and A3 to point downwards, consistent with the amplitude graphs. 
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Figure 5.6: Variation of spectral power for anaesthesia-induction path A 1A3 Q3C of Fig. 3.4. Note 
the substantial slab of biphasic power at >. = 1.53 marking the A3 extremum immediately prior to the 
A3 - Q3 slump from the active ("conscious") to the quiescent ("unconscious") branch. 

"waterfall" presentation showing the "flow" of spectral power ( z-axis) versus frequency (y-axis) 

and versus anaesthetic effect (x-axis). 

The 3D waterfall plot for the induction of unconsciousness (path A 1A3Q3C in Fig. 3.4) 

appears in Fig. 5.6. For ,\ ,:;j 1 on the top branch, the spectrum is rather flat over the 0-400-Hz 

range plotted here. However, the spectral area and shape change radically on approach to the 

point of phase change at A3: the total fluctuation power grows dramatically as the spectrum 

redistributes energy towards zero frequency, tending to take on the low-frequency character 

of the post-jump quiescent macrocolumn-albeit at vastly higher power levels (by a factor of 

"'3000). 

The same induction waterfall is pictured in Fig. 5.7(b), but viewed from a different perspec­

tive. Figure 5.7(c) and (d) give two views of the ,\ = 0.28 emergence return to consciousness 

for the Fig. 3.4 path CQ1A1S. The redistribution of fluctuation activity toward zero frequency 

becomes even more pronounced along the bottom branch as the macrocolumn approaches its 

Q1 jump return to the active branch. These characteristic alterations in spectral shape can 

be quantified using the concept of spectral entropy; this notion will be investigated further in 

Chap. 8. 



5. 7 Source and Significance of Fluctuation Surges 

50 

40 

~ 30 
cii 

20 ;: 
0 
a.. 

10 

0 
0 

50 

40 

iii' 30 
~ 

I 20 

a.. 10 

0 

0 

(a) Induction (view 1) 

(c) Emergence (view 1) 

1.5 

50 

40 

30 

20 

10 

0 

50 

40 

30 

20 

10 

0 

(b) Induction (view 2) 

400 
300 

200 ~i\ 
100 ~0~&, 1.5 

0 «~0~ 

(d) Emergence (view 2) 

85 

Figure 5.7: Comparative 3D spectral power plots for (a, b) induction and (c, d) emergence. Two views 
are shown for each trajectory to allow visual comparison of the relative flatness ("whiteness") of the 
spectral curves before and after transition. Graph (a) is a repeat of Fig. 5.6. All spectra have maximum 
power at de, with the de-peakiness becoming more pronounced prior to induction at>,= 1.53 (a, b), and 
even more pronounced just prior to emergence at>,= 0.28 (c, d). 

5. 7 Source and Significance of Fluctuation Surges 

5. 7 .1 Fluctuation Infinities 

What is the origin of the Fig. 5.7 surge in fluctuation power as the macrocolumn approaches the 

A3 point of induction and the Q1 point of emergence? The elements of the u covariance matrix 

were listed in Eq. (5.30). The equation for var{ohe} reads, 

{ _ _ (Det(A) + A~2) Du + Af2 D22 
var Ohe} - au - 2Tr(A) Det(A) . (5.61) 

We will find that the denominator of the right-hand-side expression goes to zero at the turning 

points of the steady-states trajectory of Fig. 3.4, thus generating a pair of infinities (poles) in 
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the fluctuation variance. To see this, recall from Eq. (5.17) that the drift matrix A was defined 

to be the negative of the Jacobian matrix J introduced in Eq. (4.23), thus, 

Tr(A) = An+ A22 = -Ju - 122 = -Tr(J) (5.62a) 

and, 
-111 -112 

Det(A) = Det(-J) = = Det(J) . (5.62b) 

Using the matrix property that the trace of a matrix equals the sum of its eigenvalues, and 

the determinant of a matrix equals the product of its eigenvalues,7 we can write the trace-­

determinant product in terms of A1 and A2, the eigenvalues of matrix J: 

Tr(A) Det(A) = -Tr(J) Det(J) = -(A1 + A2) · (A1 A2). (5.63) 

The A1, A2 eigenvalue pairs for Jacobian matrix J were plotted in Fig. 4.1. The A3 and 

Q1 turning points in Fig. 4.la correspond to the zero-crossing in Fig. 4.lb by the dominant 

eigenvalue A1; the second eigenvalue A2 is negative. Thus the determinant of the drift matrix 

is identically zero at the two turning points (t.p.), 

lim Det(A) = lim Det(J) = A1 A2 = 0 · A2 = 0 
.>.--.t.p. .>.--.t.p. 

(5.64) 

and, from Eq. (5.61), the fluctuation variance for 8he will diverge to positive infinity, 

1. A§2 Du + Ar2 D22 
1m 0"11 = ( ) ( ) - +oo . .>.--.t.p. -2 O + A2 O · A2 

(5.65) 

An identical conclusion applies to the variance for the inhibitory fluctuations, var(8hi) = 0"22 . 

For the covariance of the cross-fluctuations of Eq. (5.30c), 

(5.66) 

it seems, at first sight, that there is a possibility of a divergence to negative infinity. Figure 5.2 

shows that Du and D22, the diagonal elements of the diffusion matrix, are always positive. 

From Fig. 5.1 we see that in the vicinity of A3 the drift-matrix products A11A12 and A21A22 are 

negative, so the numerator will be positive, and, because the denominator is also positive, the 

0"12 covariance will behave in fact as indicated in Fig. 5.3c by diverging to positive infinity. 

7 For a general proof of this property, see Wiberg (1971, p. 88). The demonstration for a 2 x 2 matrix X 
proceeds as follows. Write the characteristic polynomial in eigenvalue-factored form, 

Now write the polynomial out in full, 

Det(X -AI) = I xii - A x 12 I = (x 11 - A)(x22 - A) - x12x21 
x21 x22 - A 

= A 2 - A (x11 + x22) + x11x22 - x12X21 

= A2 - A Tr(X) + Det(X). 

Equating polynomial coefficients between the two expansions gives, 

Tr(X) = A1 + A2 , and 
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5.7.2 Spectral Divergence at Low Frequency 

Insight into the spectral character of these infinite fluctuations can be gained by examining the 

spectrum matrix equations. The excitatory fluctuation spectrum is given by Eq. (5.58a), 

Su(w) = _.!_ Ay2D22 + A~2Dn + Duw2 • 

21r [Det(A) - w2] 2 + [Tr(A)] 2 w2 
(5.67) 

At the phase-change turning points we have Det(A) = 0 and Tr(A) = -A2 (where A2 is the 

non-zero eigenvalue of the Jacobian matrix), so the spectrum becomes 

1. s ( ) 1 Ar2D22 + A~2Dn + Duw2 
1m 11 w = - -------,---,a-----,----

>. ...... t.p. 21r w4 + A~ w2 
(5.68) 

which will be finite everywhere except at zero frequency: 

(5.69) 

Thus Su(w) diverges to infinity as 1/w2 at the turning points. This means that as the 

macrocolumn approaches an emergence or induction jump, very low-frequency fluctuations will 

grow without limit, with the fluctuations becoming infinitely slow at the jump. This is the so­

called critical slowing down phenomenon which is characteristic of phase transitions. Another 

way of tracing the progress of a phase change is to measure the lengthening correlation times: 

the correlation time becomes infinite as the fluctuations slow down to de. This aspect will be 

treated in detail in the latter part of Chap. 8. 

5.7.3 Lorentzian Limit at High Frequency 

It is also of interest to examine the high-frequency spectral limit of Eq. (5.67), 

lim Su(w) 
W-+00 

in which 

1 Du 
21r w2 - 2 Det(A) + [Tr(A)] 2 

1 Du 
21r w 2 + k2 

(5.70) 

(5.71) 

We recognize the form of Eq. (5.70) as a Lorentzian spectrum (cf Eq. (2.29)) whose -3-dB 

frequency is k and whose correlation time is Tc = l/k. At the phase-change points, Eq. (5.70) 

simplifies to 

. . 1 Du 
hm hm Su(w) = -2 2 A2 . 

>.-+t.p. w-+oo 7l" W + 2 
(5.72) 

This means that at a fluctuation pole, the correlation time for the the high-frequency components 

is determined by the value of the non-zero eigenvalue: Tc= IA21- 1. 
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5.8 Recapitulation: Predictions for Spectral Response 

A list of predictions for the anaesthetic-induced alterations in EEG behaviour is given on the 

opening page of this chapter. To recap, the adiabatic macrocolumn predicts-

• a pronounced growth in fluctuation power as the point of induction into unconsciousness is 

approached; a second power surge as the moment of return of consciousness is approached 

(Fig. 5.3); these change-of-phase points will be separated by a hysteresis gap (Fig. 3.4) 

• a redistribution of spectral energy towards lower frequencies as transition points are ap­

proached (Fig. 5. 7) 

• a relatively broad spectrum for the top branch; a 1/ / 2 spectrum on the bottom branch 

(Fig. 5.7 and Eq. (5.69)). 

In the next section we present clinical results reported by Kuizenga, Kalkman, and Hen­

nis (1998) that seem to give good support to the first of our model predictions: distinct, 

hysteretically-separated EEG power surges when the anaesthetized cerebral cortex changes state 

into unconsciousness and then recovers. 

5.9 The Kuizenga Experiment 

5.9.1 The Biphasic Response 

It is well-known within the anaesthesiology community than many commonly used general­

anaesthetic agents exhibit what is referred to as a "biphasic" or activation/depression response: 

at low (sedative) anaesthetic concentrations there is a significant increase above baseline values 

in both the total EEG power and in the frequency at which peak power occurs; as concentration 

is further increased to hypnotic (surgical anaesthesia) levels, the total power and median fre­

quency fall away to levels below baseline. This "biphasic" response has been observed on human 

volunteers dosed with thiopental (Biihrer et al., 1992), and the widely-used propofol (Kuizenga 

et al., 1998). It has also been measured in rats dosed with thiopental (Maclver et al., 1996; 

Archer and Roth, 1997). Figure 5.8 shows a typical activation/depression response from one of 

the patients in the Kuizenga et al. (1998) study. 

5.9.2 Clinical Details 

In their clinical study, Kuizenga et al. (1998) examined the biphasic relationship between the 

concentration of a general anaesthetic agent (propofol) in arterial blood and EEG effects during 

the transition from the awake state to hypnosis and during subsequent emergence. The subjects 

were 10 healthy male patients who were scheduled for lower-limb surgery. A scalp electrode pair 

was placed at the mastoid (bone behind the ear) and the forehead to monitor the differential EEG 

signal developed across the hemisphere. Each patient received a 10-min infusion of propofol. 

The EEG was recorded continuously from 5 min before the start of propofol infusion until 

the patient regained consciousness (approximately 15 min after conclusion of infusion), and 

thereafter intermittently for 5-min periods, coinciding with blood sampling, until 190 min after 

start of infusion. Blood samples were drawn from a femoral artery at 2-min intervals during the 

first 22 min, then at more widely spaced intervals thereafter. 
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5.9.3 EEG Processing 

The EEG signal was processed, over 15-s epochs, into one of six frequency bands (0-5, 6-10, 

11-15, 16-20, 21-25, and 26-30 Hz) using "aperiodic analysis." This technique measures the 

vertical distance between consecutive peaks and valleys in the voltage trace and computes an 

effective instantaneous frequency from (half the reciprocal of) the time interval for the peak­

to-trough excursion. These voltage excursions are then accumulated, unsigned, into one of the 

six frequency bins to give a total voltage deviation in each frequency band for the 15-s epoch. 

Dividing each band total by 15 s then gives a measure of the average amplitude "slew-rate," in 

µV /s, which Kuizenga refers to as "EEG amplitude." 

5.9.4 Relationship between Aperiodic and Fourier Analysis 

Before we can compare the theoretical spectra against the Kuizenga results, we need to establish 

the relationship between Fourier analysis (which assumes that the EEG fluctuations can be 

resolved into sinewave vibrations) and aperiodic analysis. Paraphrasing Gregory and Pettus 

(1986), I offer the following brief definition: 

Aperiodic Analysis: A method that analyzes the EEG signal in the time­

domain by measuring the rate at which the signal slews between consecutive peaks 

and troughs. 

This algorithm, which pre-dates modern wavelet analysis, was patented in the 1980s for use 

in the Neurometrics Lifescan EEG monitor (Diatek Corporation, San Diego, California). It 

seems that this equipment, and its associated analysis software, is a not uncommon choice at 

-e- Oto 5 Hz 
-A- 11 to 15 Hz 

200 -~ g Propofol infusion 

a> 150 ii-------­
"O 
::::, 

.'!:: 
C. 
~ 100 
CJ 
w 
w 

50 

5 10 15 
Time (min) 

20 25 

Figure 5.8: Biphasic effect of propofol anaesthetic on 0-5-Hz and 11-15-Hz EEG signal. During 
the 10 min of propofol infusion, anaesthetic concentration increases steadily. At low concentrations, the 
EEG signal shows an initial increase in power (activation). EEG power then falls away (inhibition) as 
concentration is further increased and the patient becomes deeply unconscious. A second EEG activa­
tion peak is observed as the anaesthetic concentration declines and the patient begins to emerge from 
unconsciousness. [Data supplied courtesy of K. Kuizenga, and reported as "Patient 7" in Kuizenga et al. 
(1998).] 
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anaesthesiology research laboratories around the world. Kuizenga used it to analyze his EEG 

datasets (Kuizenga et al., 1998, 2001) for propofol anaesthetic, and Biihrer found that aperiodic 

analysis gave a more consistent quantification of the EEG effect of midazolam and thiopental 

anaesthetics than did the Fourier analysis measures (such as spectral edge and total power) 

(Biihrer et al., 1990, 1992). 

To date, no attempt seems to have been made to relate the aperiodic slew-rate measure, 

measured in µV/s (but misleadingly referred to as "EEG amplitude" (Kuizenga et al., 1998) or 

"EEG voltage" (Biihrer et al., 1990)), to the conventional harmonic measures such as rms voltage 

obtained by summing Fourier spectral amplitudes across a given frequency range. I will show 

that for the ideal case of a single-frequency sinewave, the aperiodic analysis gives a result equal 

to the average absolute slew-rate of the sinewave, and that for more complicated waveforms, 

the aperiodic analysis is roughly equivalent to a Fourier analysis of the time-derivative of the 

waveform. 

Slew-Rate for a Sinewave 

Consider the waveform y(t) = Asin(wt), a pure sinusoid of amplitude A [in, say, µVJ and 

frequency f = w/21r [Hz] pictured in Fig. 5.9. The aperiodic analysis would detect a peak-to­

peak slew of f:,,,y = 2A in a half-period t:,,.t = 1/2! = 1r /w, and would accumulate this activity, 

unsigned, to frequency bin f. The slew-rate contribution from this wave-fragment would be 

t:,,.y = 2A = ~Aw 
t:,,.t 1r/w 1r 

[units: µV/s]. (5.73) 

Effectively the sinewave has been replaced by a triangular wave formed by drawing a straight 

line from peak to peak; the calculated slew-rate is the triangle's rate-change of voltage with 

respect to time. 

The actual slew-rate of the sinewave is given by 

d . 
v(t) = dtAsm(wt) = Awcos(wt) (5.74) 

which varies over a half-cycle from zero at the sinewave peaks to a maximum of Aw at the 

sinewave zero-crossing. The average absolute slew-rate, given by averaging over a (positive­

slope) half-period of width t:,,.t = 1r /w, is given by, 

1 1+11'/2w W 1+7r/2w 2 
Vav = A v(t) dt = -Asin(wt) = -Aw, 

ut -11'/2w 7r -7r/2w 7r 
(5.75) 

exactly matching the value calculated for the equivalent triangular waveform interpolated by 

aperiodic analysis. Therefore, for a single-frequency sinusoid, the aperiodic analysis is detecting 

the average speed (unsigned) of the simple harmonic vibration. 

Slew-Rate for a Mix of Sinewaves 

Figure 5.9b illustrates a more realistic signal obtained by summing different-frequency sinewaves. 

The Gregory and Pettus (1986) algorithm analyzes such a signal on two scales: the "fast-wave" 

(9-30 Hz) detection looks for local excursions between consecutive extrema, while the "slow­

wave" (0.5-8.5 Hz) detection requires that the extrema bracket a zero-crossing. These two 
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searches are done in parallel on two differently pre-filtered copies of the signal: for the fast-wave 

detection, the signal has been low-pass filtered to 30 Hz, and for slow-wave detection, it has 

been low-pass filtered to 8 Hz. The algorithm will require a specification for the noise threshold 

(i.e., a minimum voltage excursion considered to be significant), but Gregory and Pettus make 

no mention of this. 

It is clear that the precise output of such a time-domain analysis will be dependent on the 

implementation details. Nevertheless, it also seems clear that the aperiodic method is performing 

a kind of "unsigned velocity" analysis of the EEG signal. Ignoring the complications arising from 

the implied absolute value, I will argue that since derivative in the time-domain corresponds 

to frequency multiplication in the Fourier domain, a plausible slew-rate power spectrum R(w) 

for the macrocolumn can be constructed by scaling the Su excitatory fluctuation spectrum of 

Eq. (5.58a) by w2: 

R(w) = w2 Su(w) (5.76) 

suggesting an rms slewing "velocity" measure v~ms, 

(5.77) 

(a) Single Sinewave 

··r ................................. . 

tiy 

1-x/2ro 

(b) Mix of Sinewaves 

Figure 5.9: Aperiodic analysis is a form of slew-rate estimation for each distinct wave-fragment in a 
signal. (a) For a single-frequency sinewave y(t) = Asin(wt), the fragment shown in bold slews a vertical 
distance D.y = 2A in a time interval D.t = 1r / w. (b) The aperiodic measure for a more complicated 
signal will depend on fine details of the algorithm, e.g., number of time-scales over which each fragment 
is analyzed, noise threshold, amount of pre-filtering. In the Gregory and Pettus (1986) algorithm, AB 
would be a fast-wave (local) excursion, while AC would be a slow-wave (zero-crossing) excursion. 



92 Fluctuation Spectrum for the Macrocolumn 
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Figure 5.10: Variation of fluctuation slew-rate with GABA anaesthetic. The ordinate is the rms 
slewing velocity v~ms predicted by Eq. (5.77) for two frequency bands: (a) 0-5 Hz, and (b) 11-15 Hz. 
Compare these theoretical curves with Kuizenga's clinical results of Fig. 5.11 obtained via aperiodic 
analysis of scalp-recorded EEG signals. The peaks are labelled / for induction and E for emergence. 

defined so that ( v~ms) 2 equals the area under the slew-rate spectrum over the frequency interval 

[w1,w2]. 
The macrocolumn predictions for rms slewing velocity for the two frequency bands [0-5 Hz] 

and [11-15 Hz] are shown in Fig. 5.10. Because of the scaling by win the Eq. (5.77) definition, 

the slew-rate spectrum will have its low-frequency components suppressed, and higher frequency 

components enhanced. A comparison of the Fig. 5.10 slew-rate activity against the point­

frequency amplitudes of Fig. 5.4 bears this out. 

5.9.5 Measured EEG Activity vs Anaesthetic Concentration 

Figure 5.8 showed the time-course of EEG slew-rate activity for the 0-5 and 11-15-Hz bands 

for Patient 7 of the Kuizenga et al. study, and Fig. 5.11 shows the same information, but now 

plotted as a function of propofol concentration at the femoral artery. Both bands show a pair 

of pronounced activation peaks: the first peak occurs during the induction phase as the patient 

becomes unconscious; the second peak occurs some time later when the concentration is reduced, 

allowing the patient to emerge from unconsciousness. For the 0-5-Hz band, the induction peak 

is stronger, while for the 11-15-Hz band the emergence peak is strongly dominant. 

Drug-Effect Hysteresis 

Comparing the experimental graphs of Fig. 5.11 with the theoretical predictions of Fig. 5.10 

shows a very pleasing qualitative agreement in their general shape and character: there are two 

distinct surges in slew-rate activity, one during induction of anaesthesia and the second dur­

ing emergence from anaesthesia. These two activity surges are well separated in concentration 

space: the patient becomes unconscious at a considerably higher propofol ( about 2.5 x) concen­

tration than that at which she wakes up. The existence of a hysteresis effect (i.e., an emergence 
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Figure 5.11: EEG "amplitude" (actually slew-rate) data from Fig. 5.8 plotted as a function of measured 
propofol blood concentration. (a) 0-5 Hz; (b) 11-15 Hz. Each trajectory commences at the lower-left 
corner at zero concentration. For the 0-5-Hz band, the activation peak is stronger during the induction 
phase (right-hand peak); for the 11-15-Hz band, the activation peak is considerably stronger at emergence 
(left-hand peak). [Data supplied courtesy of K. Kuizenga, and reported as "Patient 7" in Kuizenga et al. 
(1998).] 

trajectory which is distinct from the induction trajectory) is exactly what is expected from the 

first-order phase-transition model of the macrocolumn. 

Some caution is in order. Many anaesthetics researchers would not be convinced that the 

hysteresis separation is anything other than a measurement artifact. In comparing our model 

with the Kuizenga et al. results, we are assuming that our >.-factor ( degree of prolongation of the 

inhibitory time constant) corresponds to propofol concentration at the cortex. However, what 

was actually measured was the propofol concentration in the femoral artery. The extrapolation 

from artery concentration to cerebral cortex concentration is a complicated exercise in pharmaco­

kinetics modelling (requiring several assumptions about multiple-compartment time-constants) 

whose intent is to compensate for the fact that the site of anaesthetic action {the cortex) does 

not coincide with the site of anaesthetic measurement (in this case, the major artery in the 

thigh). In such modelling it is standard practice to adjust the drug-model parameters until the 

hysteresis loop closes, so that, in effect, the patient induction and emergence events occur at 

that same extrapolated drug concentration. 

However, our phase-transition model asserts that even if the concentration were to be mea­

sured at the cortex so that there were no site/effect displacement errors, there should still be a 

hysteresis effect with emergence occurring at a lower concentration than induction. If our model 

is correct, then the pharmaco-kineticists are over-compensating when they null the hysteresis 

loop. 

In order to convince the anaesthetics community, one would need an experimental setup that 

eliminates site/effect timing errors without recourse to a pharmaco-kinetics model. One way of 
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achieving this might be to run a very slow induction/emergence experiment in which the anaes­

thetic concentration is altered so gradually that concentrations at the measurement and effect 

sites can reasonably be assumed to be identical. Then no pharmaco-kinetics corrections would 

be required, and the underlying true hysteretic separation between induction and emergence 

should become apparent. 

Biphasic Power 

The biphasic power surges predicted in Fig. 5.10 are clearly evident in the clinical record of 

Fig. 5.11. The theoretical curves suggest that, for the low-frequency band (0-5-Hz), the slew­

rate activities at the induction and emergence peaks should be rather similar, while for the 

high-frequency band (11-15-Hz), the peak at induction should be about four times larger than 

the emergence peak. The latter prediction is the reverse of what was actually found in Fig. 5.llb. 

Another point of distinction concerns the shapes of the curves: the macrocolumn predicts an 

abrupt collapse into unconsciousness, whereas the clinical records show a gradual "crumbling" 

of slew-rate activity. 

It is likely that these discrepancies arise because the model is predicting the fluctuations in 

soma voltage for a single representative macrocolumn in the cortex, while the EEG measurement 

is a recording of the superposition of signals from thousands of macrocolumns in the vicinity 

of the scalp electrodes, after attenuation and filtering by the intervening cerebra-spinal fluid, 

skull and skin. The fact that the activation peaks can be detected at all suggests that, near the 

critical points, a significant fraction of the macrocolumns must be behaving coherently. 



Chapter 6 

Thermodynamics Analogy for the 

Conscious-to-Unconscious Transition 

A common characteristic of thermodynamic phase transitions is the observation of divergences in 

one or more parameters. The fact that EEG power appears to diverge at a critical point during 

induction motivates the present chapter's attempt to understand the nature of this transition 

from a statistical mechanics perspective. The approach will be to assert a formal correspondence 

between the cortical system (the adiabatic macrocolumn) and a classical system which can 

be described using the language and ideas of equilibrium thermodynamics. These ideas were 

first presented in our Steyn-Ross et al. (2001a) paper. M. Steyn-Ross provided the theoretical 

backbone, J. Sleigh located the clinical evidence in support, and I performed all numerical 

calculations. 

First we discuss what is meant by "equilibrium" for the (dissipative) cortical system. From 

the Langevin equations for the adiabatic macrocolumn we derive a Fokker-Planck equation for 

the time evolution of the probability density function (PDF) for the he and hi soma voltages. 

The uncoupled stationary PDFs for he and hi are generated by treating the stationary state 

diagram of Fig. 3.4 as an effective equation of state which allows hi to be expressed as a variable 

offset from he: hi = he - ~- From the stationary PDFs we can extract potential functions 

Ue,i, so-called because when plotted as a function he, we see a hills-and-valleys picture whose 

maxima and minima locate the unstable and stable equilibrium points. These potential function 

diagrams evolve with anaesthetic in such a way that the zero-gradient points always coincide 

with the coordinates defined by the Fig. 3.4 graph of stationary points. 

To continue the analogy, we need to choose a quantity for the cortex which behaves like the 

physical temperature of a classical thermodynamic phase transition. For guidance, we examine 

how the predominant intracellular ion processes in the anaesthetic-damped cortex might be 

viewed from a canonical ensemble perspective, then discuss the ferroelectric phase transition 

as an example of a true thermodynamic phase transition which has stronger similarities to 

the cortical transition than do some of the more familiar phase changes (e.g., liquid - solid, 

para- - ferromagnetic). These considerations lead us to argue that anaesthetic effect behaves 

like an inverse temperature, but to avoid confusion with physical temperature we christen this 

temperature-like entity excitability, symbol 8, and claim that excitability and anaesthetic effect 

must be, in some functional form, oppositely proportional: 8 ,...., ;.-1. 

Having identified a temperature analogue, we can map from potential function U to effective 

Helmholtz free energy V, and from there to cortical entropy and cortical "heat capacity." But 
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then we need to pause to ask, "Do these theoretical cortical constructs have any physical reality?" 

While it is not obvious how one might test the model predictions for cortical entropy, there does 

appear to be clinical evidence for a "latent heat" effect in the research reported by Stullken 

and colleagues (Stullken Jr. et al., 1977). Their investigation looked at the change in metabolic 

energy requirements of the cortex as anaesthetic concentration is slowly increased. Rather than a 

gradual decline in energy consumption, Stullken et al. found an abrupt decrease which coincided 

with changes in the character of the EEG waveform. 

6.1 What is .. Equilibrium" in an Open Dissipative System? 

We need to elucidate what we mean by applying the words "thermodynamics" and "equilibrium" 

to the phase transition of a complex biological system such as the cerebral cortex. First, we are 

not implying that the phase transition is in any way caused by changes in the thermometer­

measured physical temperature of the cortex. Rather, we are asserting that the anaesthetic acts 

in a temperature-like manner to drive the cortex through its "anaestheto-dynamc" phase tran­

sition into unconsciousness, and that once a suitable anaesthetic-effect/analogous-temperature 

mapping has been established, we are free to use generalized thermodynamics concepts to de­

scribe the change. 

Second, the equilibrium assumption is fundamental to our model: At all times the cortex 

never deviates far from the anaesthetic-determined equilibrium points defined by the inverse-S 

curve of steady-states shown in Fig. 3.4. The assumption that the cortex can be regarded as being 

in an equilibrium state requires justification-after all, the conventional picture of the cortex 

would say that it is an open, dissipative biological system which is far from equilibrium because 

its steady-state behaviour is maintained by a continuous flux of chemical energy associated 

with nutrients and oxygen required for metabolic functioning. We argue that our equilibrium 

treatment can be justified on the basis of (1) localization, and (2) scale. 

1. Local equilibrium: Glansdorff and Prigogine (1974) explain how it is possible to ascribe 

a state of local equilibrium to a small mass element (in our case, the macrocolumn) which is part 

of a larger system (i.e., the cerbral cortex) which, as a whole, is out of equilibrium. This can be 

done if the local state (i.e., the soma voltage) is completely described by an equation of state 

which is independent of the gradients (e.g., of chemical energy). In our case, the equation of 

state is represented by Fig. 3.4: the anaesthetic-determined trajectory of soma-voltage steady 

states. 

This adoption of local equilibrium is analogous to a technique used in engineering mechanics 

whereby an accelerated body is treated as if it were in static equilibrium by mapping to an 

accelerated frame of reference in which the body is locally at rest. One incorporates into the 

equations of motion the inertial forces which arise from the fact that the measurements are now 

being performed in the accelerated frame [see, e.g., Tipler (1990, p. 121); Kleppner and Kolenkow 

(1978, p. 346); Steyn-Ross and Ivey (1992)]. 1 For the cortex, the "inertial" forces would be the 

1The principle of equivalence asserts that the laws of physics in a uniformly accelerated system are identical 
to those in an inertial system provided that one introduces a fictitious force to act on each particle, Ffict = -ma. 
An acceleration a produces an effect which locally is indistinguishable from a gravitational field g = -a; this 
equivalence underlies Einstein's general theory of relativity. 
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generalized forces responsible for the flow of energy and matter driving the intracellular processes 

which maintain the biological state of the cortex. 

2. Scale: Glansdorff and Prigogine emphasize that 

" ... the local equilibrium assumption implies that dissipative processes are suffi­

ciently dominant to exclude large deviations from statistical equilibrium ... There 

must be sufficient dissipative 'collisions' to compensate for the effect of imposed 

gradients." 

For the cortex, we picture these dissipative processes as the myriad openings and closings of the 

millions of ion channels which service an individual neuron. These collisions occur on timescales 

several orders of magnitude faster than timescales of our "mesoscale" soma-voltage model, so 

the requirement for plentiful collisions is well satisfied. Further, because we are modelling at the 

meso scale of the neural assembly, and not at the microscopic scale of the molecular and ionic 

channel processes, it is not unreasonable to replace the fine details of biological maintenance 

with steady-state parameters in the model (e.g., the 'lfjk weighting functions represent the time­

averaged neurokinetics), then to treat the steady state as if it were a true equilibrium. 

6.2 Langevin Equations in the Adiabatic Limit 

In Chap. 4.1 we inspected the various time-scales for the he,i soma voltages and the four Ijk 

input currents, and showed that it was reasonable to assume that the input currents would equili­

brate much faster than the soma voltages. This justified the so-called "adiabatic" simplification 

in which we eliminated the time-variation of the currents (i.e., we set to zero all d/dt terms 

appearing in Eqs (3.2-3.4)), giving the reduced set of adiabatic differential equations listed as 

Eqs (4.1-4.3). These were transformed in Chap. 5.1 into a pair of stochastic differential equa­

tions by incorporating into each of the Ijk input currents a white-noise term originating from 

the subcortex via fluctuations about a mean value in its Pjk spike rate. The resulting stochastic 

equations are, 

where the drift terms are 

Fi(he, hi) = { (h~est - he)+ 'lfee(he) [ (N! + N!) Se(he) + (Pee)] Geehe 

+ A'lfie(he) [NfeSi(hi) + (Pie)] Gie/,i }/Te, 

F2 ( he, hi) { ( hiest - hi) + 'lfei ( hi) [ ( N~ + N!) Se ( he) + (Pei)] Gee/'Ye 

+ A'lfii(hi) [NflSi(hi) + (Pii)] Gie/,i }/Ti, 

and the corresponding diffusion terms are 

f e(he, t) = { 'lfee(he) Clee.J{i:J 6(t) Geehe 

+ A 'lfie(he) ClieJfi:J 6(t) Gie/,i} /Te, 

(6.1) 

(6.2a) 

(6.2b) 

(6.3a) 
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{ 'l/Jei(hi) CXei J7i:J 6(t) Gee/'Ye 

+ >. 'lpii(hi) £xii v(iJ ~4(t) Giehi} /Ti. (6.3b) 

Whereas in Chap. 5 we linearized these coupled equations about steady state in order to 

compute the fluctuation spectrum for he, here we will use the he-vs->. and hi-vs->. steady­

state curves to extract the highly nonlinear and >.-dependent steady-state voltage difference 

(h~ - h?). Knowing the voltage offset then allows us to decouple the Langevin equations, and 

hence obtain a pair of uncoupled Fokker-Planck equations for the soma voltage probability 

distribution functions. 

6.3 Fokker-Planck Equation for the Macrocolumn 

In order to explore the statistical mechanics nature of the anaestheto-dynamic phase transition, 

we need to derive probability distribution functions Pe and Pi for the excitatory and inhibitory 

neuron populations of the macrocolumn. We generate an expression for the time-evolution of the 

joint probability distribution P(he, hi) by writing down the Fokker-Planck equation2 equivalent 

to the coupled Langevin equations of the preceding section, giving, 

a a 
- ohe [Fi(he, hi) P(he, hi, t)] - ohi [F2(he, hi) P(he, hi, t)] 

1 a2 1 a2 
+ 2 8h2 [Du (he) P(he, hi, t)] + 2 8h2 [D22(hi) P(he, hi, t)] . (6.4) 

e i 

The Du and D22 are the diffusion terms defined by the delta-correlation requirement of Eq. (5.20), 

so that 

(f e(t) f e(t')) 

(ri(t) ri(t')) 

Du <5(t - t') 

D22 <5(t - t') 

D22(hi) = :2 { ('l/Jei(hi) CXei Gee/,e) 2(Pei) + A2('l/Jii(hi) £xii Gie/,i) 2(Pii)} · 
t 

2 Gardiner (1985, p. 119) gives the general Fokker-Planck equation¥ 
8p(z, t) '°"' 8 1 '°"' 8 - 8-t- = -L..., 02 Ai(z,t)p(z,t)+ 2 L...,aa Bik(z,t)p(z,t) 

j J j,k J k 

which can be rewritten in terms of the gradient ~f the probability currents Ji 
op(z, tJ = - '°"' _!__}( t) 

at L..., 8zj J z, 
J 

where the Ji are defined 

(6.5a) 

(6.5b) 

(6.6a) 

(6.6b) 
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In order to compute equilibrium parameters, such as entropy, using a statistical mechanics 

framework, we require the stationary distribution function P(he, hi)· This is found by setting 

8P/8t = 0 in Eq. (6.4), then solving for P, subject to appropriate boundary conditions. 

6.3.1 Boundary Conditions 

To solve the Fokker-Planck equation (6.4) we need to impose boundary conditions at the ends 

of the interval over which the soma voltages are constrained. Soma voltage cannot go more 

positive than h~ev = +45 mV (sodium reversal potential), and cannot go more negative than 

hiev = -90 mV (potassium reversal potential).3 Thus the excitatory and inhibitory voltages are 

constrained by, 

h~ev < h . < hrev 
i e,i e (6.7a) 

i.e., 

-90 mV < he,i < +45 mV (6.7b) 

and soma voltages outside these bounds cannot occur in the model. These hard limits constitute 

what Gardiner (1985, p. 121) describes as a "reflecting barrier": there is no net flow of probability 

across the boundary, so the probability "particles" must be reflected there. 

Because the drifts (Eq. (6.2)) and diffusions (Eq. (6.3)) are time-independent, the macrocol­

umn is a homogeneous system whose steady-state probability currents must settle down to zero 

(Gardiner, 1985, pp. 124, 146), so the task of solving the second-order Fokker-Planck equation 

(6.4) at steady state is replaced by the task of solving a pair of coupled first-order DEs obtained 

by setting the excitatory and inhibitory probability currents to zero. If the system has sufficient 

symmetry such that it satisfies the potential conditions (defined below), then the DEs can be 

solved to yield a joint potential-energy function V(he, hi), We will find that the macrocolumn 

does not satisfy the potential conditions, and this will motivate an alternative approach to deriv­

ing separated potential energy functions V(he) and V(hi) by uncoupling the he and hi Langevin 

equations and their associated Fokker-Planck probability currents. 

6.3.2 Potential Conditions 

The probability currents (see footnote on p. 98) for the excitatory and inhibitory neural popu­

lations of the macrocolumn are given by, 

1 {) 
2 {)he [Du P(he, hi, t)] 

1 {) 
2 {)hi [D12 P(he, hi, t)] (6.8a) 

1 {) 
2 {)hi [D22 P(he, hi, t)] (6.8b) 

where the D12 and D21 off-diagonal elements of the diffusion matrix are actually zero. For steady 

state, we set the probability currents to zero and replace P(he, hi, t) by its time-independent 

steady value P(he, hi). Expanding the derivatives in Eq. (6.8) and rearranging, we have 

3 Refer to earlier discussion in Chap. 3.3.5 on the seizure (,\GABA -+ 0) and coma (,\GABA -+ oo) asymptotic 
limits for soma voltage. 
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l ~ 'P(h h·)] 
P(he, hi) ohe L-' e, 2 

(6.9a) 

1 a 'P(h h )] 
P(he, hi) ohi L-' e, i 

(6.9b) 

The left-hand sides can be written as gradients 

a!e [loge P(he, hi)] (6.10a) 

0~i [loge P(he, hi)] = Z2(he, hi). (6.10b) 

Equations (6.10) can be solved analytically if the Z1,2 are also gradients. A necessary and 

sufficient condition for this is that the curl should vanish (Gardiner, 1985, p. 147): 

(6.11) 

in which case the steady-state probability P is obtained by solving the line integral 

_ ? [Jhe,hi ] 
P(he, hi) == exp Z1 dh~ + Z2 dh~ . (6.12) 

The question-sign above the equality in Eq. (6.12) emphasizes that the equation is true only if 

the so-called potential conditions of Eq. (6.11) hold. 

We will find that the potential conditions do not hold for the macrocolumn model. Inspecting 

Eq. (6.6), we see that the Du diffusion term is a linear function of he only (via the 'I/Jee and 'I/Jie 

weighting functions), and similarly D22 is a linear function of hi only, so the diffusion terms (and 

their derivatives) make zero contribution to the curl. But the Fi,2 drift terms make asymmetric 

contributions: evaluating the cross-derivatives of the Z1,2 in Eq. (6.9) for the drifts defined in 

Eq. (6.2), we obtain, 

Du ohi 

2 >-.'l/JieNfeGie 8Si 

Du 'YiTe Ohi 
(6.13a) 

and 

D22 ohe 

2 (Nj + N!)'l/JeiGee 8Se 
D22'Ye Ti ohe . 

(6.13b) 

It is clear that Eqs (6.13a) and (6.13b) cannot be equal: the first depends on anaesthetic effect 

).. and on the slope of the inhibitory firing-rate sigmoid 8Sif 8hi, while the second is independent 

of anaesthetic and proportional to the slope of the excitatory sigmoid 8Se/8he. 
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6.4 Decoupling the Langevin Equations 

We have just observed that the two-variable adiabatic macrocolumn system does not satisfy 

the potential conditions of Eq. (6.11), so an analytic expression for the steady-state probability 

distribution P(he, hi) is unavailable to us. 

However, an approximate solution for P is achievable if we use the equilibrium values of 

Fig. 3.4 to decouple the Langevin equations Eq. (6.1) into two independent equations, one for 

he alone and a second for hi alone. From the separated Langevin pair will follow a pair of 

now independent Fokker-Planck equations whose respective long-time solutions will give us the 

desired P(he) and P(hi) stationary probability distribution functions. First, though, we must 

explain precisely how the decoupling is to be done, then check the quality of the decoupling 

by asking the question: Have the essential features of the anaestheto-dynamic phase transition 

· been preserved in the transformation to a single-variable system? 

Inspection of Fig. 3.4 shows that the >.-dependence of he and hi is rather similar: the curves 

are almost coincident on the bottom branch, become distinct on the middle and upper branches, 

then converge again as they approach the top-left seizure corner. So it seems not unreasonable 

to express the locus of equilibrium values of hi as an he-dependent offset from the matching 

locus of equilibrium values of he: 

(6.14) 

where the offset term A(he), obtained numerically from the Fig. 3.4 stationary curves, is shown 

in Fig. 6.1 plotted as a function of he and of>.. We will assume that the A(he) offset formula, 

which is exact for the locus of equilibrium points, can also be applied to points nearby which 

are very close to equilibrium, so generalize Eq. (6.14) to read 

(6.15) 

This generalization is equivalent to making a Taylor expansion about equilibrium and requiring 

that the first-order term in the expansion, the gradient (8A/8he)l 0 , be small. 

Examining Fig. 6.2c, we see that the absolute value of the offset slope is generally less than 

rv0.2, except along the unstable branch A3Q1 (which is of little interest since the macrocolumn 

can never remain here) and in the vicinity of the jump points A3 and Q1; and also approaching 

seizure point S where the slope has magnitude rv0.35. For these regions, Eq. (6.15) will not be 

very accurate, but this is of little consequence for the stationary potential and probability dis­

tribution function curves that are to be derived shortly, since it the locations of the distribution 

maxima and minima which are of prime interest, and for these points, Eq. (6.15) is exact. (The 

inaccuracies in the distribution curves will manifest as shape errors between the distribution 

extrema, and might compromise calculations for first-passage times, but this is not the focus of 

our present work.) 

Applying the offset relationship decouples the original Langevin equations (6.1) into two 

independent, stochastic equations of motion, one for he, and one for hi, 

dhe 

dt 

dhi 

dt 

(6.16a) 

(6.16b) 
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Figure 6.1: Offset between excitatory and inhibitory soma voltages for the steady-state trajectory of 
Fig. 3.4. The offset, defined 6.(he) = h~ - h?, tends to zero at the seizure and coma extremes. See also 
Fig. 6.2. 

where the overtilde variables are defined 

Fi (he, he - ~) 

F2(hi +~'hi) . 

6.5 Behaviour of the Uncoupled Pseudocolumns 

(6.17a) 

(6.17b) 

A truly fundamental feature of the cortical macrocolumn is the strong feedforward and feedback 

interconnectedness of the excitatory and inhibitory neural populations. Yet we seem to have 

boldly severed these connections by invoking internal knowledge of the soma voltage offsets 

which pertain at equilibrium. Effectively, the offset ruse has allowed us to engineer a pair 

of new, and apparently independent excitatory and inhibitory systems that I shall refer to as 

pseudocolumns to distinguish them from the fully-coupled macrocolumn. It is our hope that 

the essential physics arising from the excitatory- inhibitory coupling has not been lost from 

the pseudocolumns, but is now encapsulated within the offset itself. The first test will be to 

examine the stability characteristics of the excitatory and inhibitory pseudocolumns defined by 

Eq. (6.16). 
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Figure 6.2: Relationship between stationary he and hi expressed as (a) actual values; (b) an offset 
Do = (he - h;); and (c) the gradient of the offset, dD./dhe. Panel (b) shows the same information 
as Fig. 6.la, but with data-point markers removed and replaced with a spline fit for clarity, and with 
horizontal axis restored to conventional presentation (i.e., increasing to the right). Unstable A3Q1 branch 
is drawn with a thin pen. 

6.5.1 Pseudocolumn Rate Equations 

The pseudocolumn rate equations are generated by replacing hi by (he - ~) in Eq. (4.la), and 

he by (hi+~) in Eq. (4.lb), 

[h~est - he+ 1Pee(he) lee(he) + 1Pie(he) lie(he - ~)] /re 

[hrest - hi+ 1Pei(hi) Iei(hi + ~) + 1Pii(hi) Iii(hi)] /ri. 

(6.18a) 

(6.18b) 

Following the linear stability analysis of Chap. 4.2, we assess the sensitivity of the pseudocolumn - -to soma voltage perturbation by examining the drift gradients dFif dhe and dF2/dhi, 
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(6.19a) 

(6.19b) 

The coupling-term derivatives appearing in these two equations can be rewritten 

dfie(he - ~) d dfie dhi dfie (i - d~) (6.20a) dhe fie(hi) --
dhe dhi dhe dhi dhe 

dfei(hi + ~) d dfei dhe dfei ( d~) (6.20b) dhi fei(he) --
dhe l + dhi · dhi dhe dhi 

The right-hand sides of Eq. (6.19) can now be re-expressed as paired combinations of the elements 

of the J Jacobian matrix for the fully-coupled system presented in Eq. (4.24): 

(6.21a) 

(6.21b) 

I will now demonstrate that it is the sign of K1 and K2 which determines pseudocolumn 

stability. 

6.5.2 Stability 

Let the pseudocolumn pair suffer small independent perturbations ohe, ohi away from the equi­

librium soma voltages h~, h?: 

he(t) - h~ 

hi(t) - h?. 

(6.22a) 

(6.22b) 

The time rate-of-change of these perturbations determines the stability of the stationary state: 

d dhe _ O = - dFil d/8he) Fi ~ Fi lo+ ohe dh (6.23a) 
dt e 0 

d dh· - - dF21 -(oh·) = _i -0 = F2 ~ F2 IO + 8 hi dhi 0 (6.23b) dt i dt 

where we have neglected quadratic and higher-order terms in the Taylor expansion about steady 

state. By the definition of steady state, Filo= F2lo = 0, and from Eq. (6.21), (dFi/dhe)l 0 = K1 

and (dF2/dhi)l 0 = K2, so Eq. (6.23) leads to a pair of fractional-change equations for the 

perturbations, 

(6.24a) 

(6.24b) 
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leading to exponential growth or decay depending on the sign of the K coefficients: 

b"he(O) eK1t 

b"hi (0) eK2t . 

(6.25a) 

(6.25b) 

These perturbations will decay with time if both K 1 and K 2 coefficients are negative. Thus, the 

condition for the stability of a given equilibrium state of the uncoupled excitatory ( or inhibitory) 

pseudocolumn is simply, 

(6.26) 

Figure 6.3(a) plots the variation of the K1 (as defined by Eq. (6.2la)) and K2 (from 

Eq. (6.21b)) pseudocolumn rate constants for the trajectory of soma voltage steady states 

mapped out earlier in Fig. 3.4. The overall shape for the rate-constants graph (a) is very 

similar to that shown in Fig. 6.3(b) for the dominant and non-dominant eigenvalue pair of the 

two-variable coupled macrocolumn system of Eq. (4.1). In particular, the zero-crossings of K1,2 

at A3 (induction) and Q1 (emergence) exactly match those of the dominant eigenvalue plotted 

in (b). Therefore, for both coupled macrcocolumn and uncoupled pseudocolumn systems, the 

A3Q1 mid-branch of stationary states is unstable. 

Since K1,2 goes to zero at the A3 and Q1 turning points, it follows that the amplitude 

of the stochastic fluctuations about equilibrium will grow without limit as the pseudocolumn 

(a) Pseudocolumn Rate Constants (b} Macrocolumn Eigenvalues 
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Figure 6.3: Stability comparision between the decoupled pseudocolumn model (left) and the standard 
adiabatic macrocolumn (right). (a) Variation with anaesthetic effect of pseudocolumn rate constants K1 
(excitatory: bold line) and K 2 (inhibitory: thin line). For comparison, (b) shows the real part of the 
dominant (bold line) and non-dominant (thin line) eigenvalues for standard macrocolumn. (Panel (b) is 
a copy of Fig. 4.l(b) with the imaginary part suppressed). 
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approaches the turning point; this will be demonstrated in the following section. Thus the first­

order phase-transition behaviours of the macrocolumn have been preserved in the transformation 

to (apparently) independent pseudocolumns. 

6.5.3 Ornstein-Uhlenbeck Equations for the Pseudocolumn 

By applying the offset relationship of Eq. (6.15), we have uncoupled the drift terms4 of the 

Langevin equations of Eqs (5.8, 6.1) 

to give the independent Langevin pair of Eq. (6.16) 

dhe 

dt 

(6.27) 

(6.28a) 

(6.28b) 

We are interested in the magnitude and spectral character of the random voltage fluctuations 

about pseudocolumn steady state, so, as was done in Sect. 5.3, we linearize about steady state 

while retaining the diffusion terms. Thus Eqs (6.28) become ( cf. Eq. (5.17)) 

(6.29a) 

(6.29b) 

which we can rewrite as a pair of independent Ornstein-Uhlenbeck equations (cf. Eq. (5.26) and 

Gardiner (1985, p. 106)) 

(6.30a) 

(6.30b) 

where the Djj were given in Eq. (6.6), and the ~e,i noises were defined in Eq. (5.27). The A1,2 

drift factors are the negative of the rate coefficients evaluated at equilibrium: 

A1 = -Ki = _ dF1) I 
dhe 0 

(6.31a) 

A2 = -K2 = _ dF2) I . 
dhi o 

(6.31b) 

Following Gardiner (1985, pp. 106-107), we can write down expressions for steady-state 

variance, time-correlation, and spectrum for the uncoupled pseudocolumn fluctuations, and 

these can be compared with the coupled macrocolumn results of Sect. 5.4. 

4 Unlike the Fi,2 drifts, the diffusion terms (see Eqs (5.22, 6.6)) have been uncoupled from the outset; i.e., 
D11 = D11(h.), D22 = D22(h;). 
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Figure 6.4: Fluctuation amplitude for the pseudocolumn model. (a) 8h~ms versus >.; (b) 8h~ms versus 
>.. Comparing these graphs with those in Fig. 5.3 shows that the pseudocolumn fluctuations are about 
one-third as large as those for the macrocolumn on approach to induction at A3, and have an overall 
shape which is rather similar to the 8h~T" cross-fluctuations of Fig. 5.3(c). 

Variance of the Fluctuations 

The fluctuation variance for the excitatory and inhibitory pseudocolumns at steady state is, 

var(c5he) (6.32a) 

(6.32b) 

Contrast these single-dimensional results with the macrocolumn covariance matrix listed in 

Eq. (5.28). Fluctuation amplitude will grow without limit as A1,2 --+ 0 on approach to the 

turning points; this is shown in Fig. 6.4. 

Time-Correlation for Fluctuations 

The stationary autocorrelation functions for the pseudocolumns are given by, 
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Du 
-A exp [-A1 T] 
2 1 

(6.33a) 

(6.33b) 

Here the correlations decay with a single time-constant, whereas the macrocolumn autocorrela­

tion functions are the sum of two exponential decays (see Eq. (5.45)). 

Fluctuations Spectrum 

The steady-state fluctuation spectrum for the pseudocolumn will have a pure Lorentzian profile 

(see Eq. (2.29)), 

1 Du 
21r Ay + w2 

1 D22 
S2(w) = 21r A~+ w2 . 

(6.34a) 

(6.34b) 

These spectra will develop a 1/w2 power-law characteristic as the pseudocolumn approaches its 

induction or emergence turning points with A1,2 --+ 0. Thus the growth in fluctuation power will 

be entirely at the low-frequency end of the spectrum, with the de spectral component diverging 

to infinity at the point of phase-change. 

These investigations of the single-dimensional pseudocolumn model demonstrate that, de­

spite the decoupling simplification, the significant features of macrocolumn behaviour (regions 

of stability, divergent fluctuations, growth of low-frequency power) have been preserved. This 

gives us some confidence that the work which follows, applying a thermodynamics analogy to 

the pseudocolumn, has relevance also to the two-variable macrocolumn. 

6.6 Steady-State Probability Distribution for the Pseudocolumn 

This decoupling of the Langevin equations, as discussed in the preceding section, leads to two 

independent Fokker-Planck equations which are expected to be valid for points close to equilib­

rium: 

aPe(he, t) 
at 

aP; (h;, t) 
at 

(6.35a) 

(6.35b) 

The corresponding probability currents L_ and J; (see Eq. (6.8)) also become uncoupled: 

(6.36a) 

(6.36b) 

These currents go to zero in the steady state. Setting L_ = J; = 0 in Eq. (6.36), and replacing 

the time-varying probabilities Pe(h;, t), P; (h;, t) with their steady values Pe(he), P;(h;), gives 



6.6 Steady-State Probability Distribution for the Pseudocolumn 

2F1(he)Pe(he) = Pe(he) d1e [Du(he)] + Du(he) d1e [Pe(he)] 

- - - d [ ] d [- ] 2 F2(hi) Pi(hi) = Pi(hi) dhi D22(hi) + D22(hi) dhi Pi(hi) . 

Rearranging for Pe, Pi we have, 

df\(he) 

Pe(he) 

dPi(hi) 
Pi(hi) 

which integrates to 

lhe 2F\(h~) dh' _ l [ Du(he) ] 
-90 Du (h~) e oge Du (-90) 

1h; 2 p;(hD dh~ _ l [ D22(hi) ] 
-90 D22(hD i oge D22(-90) 
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(6.37a) 

(6.37b) 

(6.38a) 

(6.38b) 

(6.39a) 

(6.39b) 

where the lower bound for both integrations has been set to -90 m V (potassium reversal po­

tential), and the upper bound will be +45 mV (sodium reversal potential). Solving Eq. (6.39) 

for Pe, Pi gives 

- - [lhe 2Fi(h~) I l Pe(he) - N1exp D (h') dhe - loge[Du(he)] 
-90 11 e 

= N1 exp [-Ue(he)] (6.40a) 

- - [1h; 2 F2 ( hD I l Pi(hi) - N2 exp D (h') dhi - loge [D22(hi)] 
-90 22 i 

= N2 exp [-Ui(hi)] (6.40b) 

where the N1 and N2 are constants which normalize their respective probability distributions 

to unit area: 

(6.41) 

Equations (6.40) constitute the steady-state probability distributions for the decoupled 

macrocolumn which shortly we will evaluate numerically. First, though, we wish to focus on the 

argument of the exponential terms which define the excitatory and inhibitory potential functions 

Ue and U( 

(6.42a) 

(6.42b) 

The potential functions serve as statistical mechanics building blocks from which expressions for 

macrocolumn free energy, entropy, and "heat capacity" can be derived. 
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6.6.1 The U Potential Functions 

Equations (6.42) define the pseudocolumn potential functions Ue and Ui, so named because 

their negative gradient can be pictured as a generalized force. Thus we interpret -dUe/ dhe as 

a force that drives the excitatory neuron voltage, and similarly -dUi/dhi as a force driving the 

inhibitory voltage. This abstract notion becomes more concrete when we evaluate Eq. (6.42) 

numerically5 for several representative values of >., the GABA anaesthetic parameter, then 

examine the resulting hills-and-valleys graphs displayed in Fig. 6.5. 

Figure 6.5 which shows how the Ue,i potential functions vary with soma voltage he,i· The 

points on these curves at which the gradient is zero are the "zero-force" or equilibrium coor­

dinates. The stability or otherwise of a given equilibrium point is determined by the sign of 

the curvature in the region immediately bracketing the point. Thus if the equilibrium point lies 

at the bottom of a potential valley (positive curvature), any small deviations away from the 

local minimum will be opposed by a force acting to restore the equilibrium, making it stable. 

The converse is true for the equilibrium point at the top of a potential hill (region of negative 

curvature): a small perturbation away from the peak will produce a force tending to enhance 

the perturbation, so the equilibrium there will be unstable. 

Figures 6.5(a-g) show graphs of Ue,i as a function of he,i for the seven representative values 

of>. shown in (h), the last panel of the figure. These seven slices provide a coarse sweep through 

regions III (seizure), region II (upper branch), and into region I (coma) of Fig. 3.4. 

We observe that the extrema of the Ue,i potential functions coincide with the equilib­

rium soma voltages highlighted by the vertical lines marked on Fig. 6.5(h).6 For example, 

in Fig. 6.5(a), Ue exhibits a single valley minimum whose (>., he) coordinate belongs to the 

upper-left "seizure" corner of the equilibrium soma trajectory in (h). This is consistent with 

the vertical slice through this coordinate (labelled "a" in Fig. 6.5(h)) cutting the he trajectory 

once only, implying that for >. = 0.25 only a single equilibrium state is possible. The potential 

function is a minimum here, so this state is stable. 

In Fig. 6.5(b) for>.= 0.50, three well-defined extrema have developed (two unequal valleys 

separated by small hill), corresponding to three distinct steady-state solutions and therefore 

three intersections on the (b)-slice of Fig. 6.5(h). Only the two valley-point equilibria (upper 

branch at he = -40 m V, and lower branch at he = -85 m V) are stable, while the mid-branch 

equilibrium point defined by the potential-function peak ( at he = - 73 m V) which separates the 

two valleys is unstable. In principle, the macrocolumn could sit delicately balanced at the top 

of this hill, but given the slightest nudge, would "slide" off the hill to nestle into one of the 

adjacent valleys. 

The relative depth of the two valleys changes as >. varies, indicating that the probability 

of occupation also changes with >.. For >. < 1, the upper (high-firing) branch is more likely; 

5 The fast quadrature algorithm I developed to evaluate the F / D integral is described in Appendix B. As it 
turns out, there is an equivalent algorithm, trapz, built into MATLAB, but I only became aware of its existence 
much later. 

6 Actually, this is not quite true. The extrema of the potential functions can only coincide with the equilibrium 
soma voltages in the particular case that the D diffusion terms are constant functions that are independent of the 
noise. However, if the diffusion functions are small compared to the F drift functions, as is the case here, then 
this shift in the stable states will be small. I am grateful to external examiner Dr Daniel Gillespie for pointing out 
this "slight swindle" in my analysis. [The noise dependence of the locations for the steady states of a univariate 
Markov process is discussed in Gillespie (1992, Secs. 3.5-3.9).] 
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Figure 6.5: Hills-and-valleys potential function diagrams for the decoupled macrocolumn. (a)-(g) Ue,i 
potential functions for seven representative values of .X. Solid curve: Ue; dashed curve: U;. (h) Copy 
of Fig. 3.4 showing the seven vertical slices through the stationary-state trajectory which were used to 
evaluate the displayed U-functions. Circles: he; squares: h;. (b)-(f) show two valleys separated by a hill; 
the valleys belong to the stable upper (high-firing) and lower (low-firing) branches of the trajectory curve, 
while the hill belongs to the unstable mid-branch. Each of the labelled points in (h) maps to a valley 
point (local minimum) in the correspondingly labelled figure. Note that for .X = 1, the two valleys are 
approximately symmetric. The cortical state "rides" the upper-branch valley as the U-curve is distorted 
by the anaesthetic, until the cortical state is "tipped out" into unconsciousness in (g). 

while for .X > 1 the lower (low-firing) branch is favoured. For .X ~ 1, both stable-branch values 

for he are equally likely; and if there are perturbations of sufficient magnitude to overcome 

the potential hill, then there is the possibility that the macrocolumn could repeatedly switch 

between the upper- and lower-branch stable states. 
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In statistical thermodynamics, it is the Helmholtz free energy V which is minimized when 

the system is in equilibrium. The fact that our Ue,i potential functions have minima which 

correctly locate the stable equilibria leads us to suggest that these potential functions behave 

like Helmholtz free energy functions for the macrocolumn. We expand on this idea later in this 

chapter. Before doing so, we will examine the Eq. (6.40) stationary probability distributions 

obtained from the negative exponential of the Ue,i potential functions. 

6.6.2 The P Stationary PDFs 

From Eq. (6.40) I calculated Pe and Pi, the stationary probability distributions for the decoupled 

excitatory and inhibitory macrocolumn populations. The results appear in Fig. 6.6. 

In the hills-and-valleys potential graphs of Fig. 6.5 we could picture the macrocolumn as a 

"particle" that would slide to the bottom of valley to minimize its potential energy. The PDF 

diagrams flip this orographic notion on its head: now it is the probability peaks that show where, 

in soma voltage space, the macrocolumn particle is most likely to be found, with each probability 

peak in Fig. 6.6 mapping precisely to a potential trough in Fig. 6.5. 

For >. = 0.25, the depolarized upper branch at he ~ -22 mV is strongly favoured; this is 

point ( a) on Fig. 6.6(h). As >. increases, this peak migrates to the left and lowers in height 

as a new probability peak close to -90 m V on the lower branch begins to emerge, with the 

depolarized (upper branch) and hyperpolarized (lower branch) peaks being of approximately 

equal height at >. = 1.0 (point (c)). By>.= 1.5 (f) the hyperpolarized peak is stronger, and by 

>. = l. 75 (g) the depolarized option has disappeared altogether. 

Although the soma voltage bounds for Eq. (6.41) were set by Eq. (6.7) at 

-90 mV < he,i < +45 mV, (6.43) 

I chose to truncate the PDF graphs in Fig. 6.6 to an upper bound of he,i = +20 m V for display 

purposes since no interesting probability "events" were apparent in the fully-depolarized >. -----+ 0 

regime (i.e., top-left corner of Fig. 3.4). The PDF graphs are normalized to unity on the interval 

[-90, +45] m V, and are abruptly zero outside this interval. 

6.6.3 The V Free-Energy Functions 

We wish to construct a statistical mechanics description of the anaesthetic-induced cortical 

phase transition. We proceed by deriving a (phenomenological) free energy function V. The 

"free energy" concept is very useful in statistical mechanics as its negative rate-change with 

temperature, at constant internal energy E, gives entropy: 

S = -8V/8TIE. (6.44) 

But this step will require us to identify carefully exactly what is meant by the "temperature" of 

the cerebral macrocolumn; by macrocolumn "temperature" we do not mean the physical tem­

perature measured with a thermometer. In the next section we present a line of argument, based 

on the idea of a canonical ensemble, to enable identification of a plausible cortical temperature 

analogue. 
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Figure 6.6: (a)-(g) Stationary probability distributions Pe,i for the decoupled macrocolumn at the 
seven representative values of>. shown in (h). Solid curve: Pe; dashed curve: Pi. These probability 
pictures correspond to the potential functions of Fig. 6.5: the highest probability peaks here map to the 
deepest (most stable) potential wells. The evolution of twin probability peaks as>. increases corresponds 
to the appearance of double potential wells, indicating that the macrocolumn can exist in either of two 
stable states. The boundaries at -90 mV (left edge) and at +45 mV (not shown) are reflecting, so the 
PDFs are zero beyond these bounds. 

The construction of our statistical mechanics theory is motivated by the obvious similarities 

between the form of the Ue,i potential functions of Fig. 6.5 and the potential-well description of 

phase transitions common in quantum optics (Gibbs, 1985). For a quantum optics system de­

scribed in terms of a parameter x, Lugiato and Bonifacio (1978) write the stationary probability 

distribution P(x) in the form, 

PLB(x) = N exp [-V(x)/ko] (Lugiato & Bonifacio) (6.45) 
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Table 6.1: A mapping between thermodynamics theory and the macrocolumn model of the cortex. 

Thermodynamic Space 

Temperature 
Internal energy 

Helmholtz free energy 
Entropy 

Heat capacity 
Latent heat 

T 
E 
V=E-TS 
S = -(8V/8T)IE 
C = T (8S/8T)IE 
T!:::..S 

Cortical Space 

Excitability 
Internal energy of macrocolumn 

Cortical free energy 
Cortical entropy 

Cortical "heat" capacity 
Cortical latent "heat" 

e 
Ee,i 
Ve,i = Ee,i - 8 Se,i 
Se,i = -(8Ve,i/88)IE 
Ce,i = 8 (8Se,i/88)IE 
et::..s. e,, 

where N is a normalization constant, and k is a constant introduced to ensure dimensional 

consistency. The quantity V(x) plays the role of a "generalized free energy" (Lugiato and 

Bonifacio, 1978; Graham, 1973). Haken (1978) follows a similar approach in his Fokker-Planck 

treatment of an analogous phase transition, but in his exponential term the denominator is the 

product of Boltzmann's constant kB and a parameter he identifies as an equivalent temperature 

T, 

PH(x) = N exp [-V(x)/kaT] (Haken) (6.46) 

which is very suggestive of the Boltzmann distribution. The assertion in Eqs (6.45, 6.46) that 

V(x) is a free energy is justified phenomenologically on the grounds that the extrema of V locate 

the equilibrium states. 

We postulate that there exists a formal equivalence between ( one or other of) the probability 

distribution functions of Eqs (6.45) or (6.46) and the cortical PDFs of Eq. (6.40), and assume 

that the cortical phase transition can be described in a space which is dual to that of statistical 

thermodynamics. The proposed dual-space mapping is set out in Table 6.1;7 the various elements 

of this table will be discussed at relevant points later in this chapter. 

Equating the cortical potential function U from Eq. (6.40) first with the exponential argu­

ment of Eq. (6.46) (Haken form), then with the exponential argument of Eq. (6.45) (Lugiato 

and Bonifacio form), we obtain two alternative thermodynamic+-+ cortical mappings for the free 

energy of the cortex: 

U(x) = V(x)/kBT ====> VH(he,i) = kB 8 U(he,i) (Haken) (6.47a) 

U(x) = V(x)/k ====> VLB(he,i) = ko U(he,i) (Lugiato & Bonifacio) (6.47b) 

From Table 6.1 and Eqs (6.47, it will be apparent that for the cortical system we have 

introduced the symbol 8, which we define to be cortical excitability, and which, as we show 

using plausibility arguments developed later in the chapter, plays a role in the cortex analogous 

to that of temperature Tin thermodynamic systems. We will show that excitability 8 is inversely 

related to anaesthetic effect >.. This ( >., 8) mapping provides the crucial link between the cortical 

general-anaesthetic phase transition and the world of thermodynamic phase transitions, and 

allows us to apply the language and concepts of thermodynamics (e.g., entropy, heat capacity) 

to the cortical transition. 

7 These correspondences were crafted by M. Steyn-Ross, and first appeared in Steyn-Ross et al. (2001a). I 
selected the name "excitability" to convey the notion of an inverse-anaesthetic effect on the cortex, with symbol 
8 after the nomenclature used in meteorology for the potential temperature of a parcel of air. 
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6.6.4 Relating Anaesthetic Effect to Cortical Excitability 

In our model, for A 2:, 1.53 the macrocolumn must reside on the low-firing quiescent branch. 

As anaesthetic concentration is increased, the duration of the inhibitory post-synaptic potential 

(IPSP) is prolonged, producing greater inhibition and reduced neuronal firing. Increased anaes­

thetic depth A corresponds to reduced cortical excitability e, so A and e are inversely related. 

In the A ----. oo limiting case of extreme anaesthesia, there can be no activity in the presence of 

an infinitely-prolonged IPSP, so e = 0 in this extreme frozen limit. This point is our absolute 

zero "temperature" at which all neurons are fully hyperpolarized. 

For the emergence trajectory, e will increase as the hyperpolarization ordering diminishes 

with reductions in A, and more neurons become depolarized (able to fire). With sufficient 

reduction in A, the macrocolumn will eventually reach the seizure extremum (top-left corner 

of Fig. 3.4) at which point all neurons are fully depolarized and firing maximally, since A = 0 

means that the IPSP has zero duration so there is no inhibitory restraint on macrocolumn firing 

activity. At this seizure extremum, cortical excitability will have its maximum value emax· 

From a biological energy resources perspective, it is reasonable to argue that emax will have 

a large but finite value, while from a mathematical modelling perspective one might argue that 

emax ----. oo as A ----. 0 and then avoid the finite resources problem by asserting that A = 0 is a 

model abstraction which will never occur in practice. In either case, we seek a mapping whose 

model predictions for entropy change are not unduly sensitive to the finiteness or otherwise of 

emax· 

The mathematical equation relating e to A is unknown, but based on the foregoing discussion 

a plausible mapping would have all of the following properties: 

(i) e----. 0 as A----. oo (deep coma); 

(ii) e is a monotonic decreasing function of\ 

(iii) e----. emax as A----. 0 (extreme seizure), where emax may be finite or infinite. 

Two of the simplest inverse relationships which satisfy these criteria are 

er 

err 

co/ Aci , and 

emax exp (-co Aci) 

(6.48a) 

(6.48b) 

where co and c1 are positive constants. Both functions decay smoothly to zero as A ----. oo; for the 

A ----. 0 seizure extreme, er ----. oo while err ----. emax, a finite maximum value. For definiteness 

and simplicity, we will set co = 1, emax = 1, and only the c1 exponent will be altered. Fig. 6.7 

shows sample e-vs-A mappings for c1 = 0.2 (curves 1 and 3), ci = 3 (curve 2), and c1 = 1.0 

(curve 4). Curves 1 and 2 correspond to infinite activity at A = 0 (i.e., er-mapping), while 

curves 3 and 4 have finite activity e = emax at A= 0 (i.e., err-mapping). 

6.6.5 Cortical Entropy 

The entropy definition of Eq. (6.6.3) is now rewritten as the cortical excitability gradient of the 

free energy, 

s = -av;ae. (6.49) 
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Figure 6. 7: Plausible excitability 8 versus anaesthetic effect ,\ mappings. Curves 1 and 2 have 
unbounded excitability ("temperature") as ,\ --> O; curves 3 and 4 have finite excitability at ,\ = 0. 

We have two candidate free energy formulations (Haken: Eq. (6.47a), and Lugiato and Bonifacio: 

Eq. (6.47b)), and two excitability-effect mappings (Eqs (6.48a, 6.48b)), giving a total of four 

possible entropy expressions, 

Si, Haken 

Sn, Haken 
kB (_xl-ci f)U - u) 

coc1 8,\ 

,\ i+c1 aU 
ko----

coc1 a,\ 
.x1-ci aU 

Sn L&B = ko 8 exp[co.Xc1 ] ~\ 
' coc1 - max u/\ 

(6.50a) 

(6.50b) 

(6.50c) 

(6.50d) 

where, for example, Eq. (6.50c) was derived by applying the Maxwell relation S = -aV/88 to 

the Lugiato and Bonifacio potential form V = kU and using the chain rule: 

av au au a.x au /881 
Si, L&B = - 881 = -k 881 = -k f),\ 881 = -k 8,\ a,\ (6.51) 

with the 81-mapping giving the partial-derivative result 

(6.52) 

Graphs showing the ,\-dependence of the Haken and LB entropies appear in Fig. 6.8. All 

three graphs assume the type-I "temperature" mapping 8 = 1/ ,\CJ (the type-II mappings give 

qualitatively similar results, so are not shown here), with c1 = 0.2 for graphs (a) and (b), and 
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c1 = 3 for graph {c). Note that for the smaller value of c1, the Haken and LB entropy graphs 

are very similar, showing a maximum entropy in the top-left corner (seizure), and minimum 

entropy in the bottom-right corner (coma). The upper (active) and lower (quiescent) branches 

are separated by step discontinuities at A3 {induction point), and at Q1 {emergence point). 

Inspection of Eqs {6.50a-6.50c) shows that the Haken and LB forms will give entropy curves 

which become more alike for small q. This is because the potential gradient 8U/8>.., which is 

scaled by l/c1, will tend to dominate the U-potential term. For large c1, the entropy curves 

become dissimilar. However, the presence of the subtractive U term in the Haken form places an 

upper bound on the maximum permissible value for c1: we found that for c1 ~ 0.4 the Haken 

entropy becomes negative on the upper branch when ).. ~ 1.4. Since we require entropy to be 

always positive (reaching zero only in the limit of perfect order), then the range of permissible 

power-law exponents for the 0-vs->.. mapping is limited to O < c1 ;S 0.4 for Haken entropy. 

The absence of the U subtraction in the LB form means that in principle there is no upper 

bound for the c1 exponent in the LB entropy expression. We have selected ci = 3 as a repre­

sentative "large" exponent value since this produces an LB entropy curve {Fig. 6.8{c)) which 

has strong qualitative similarity to the theoretical spectral entropy curves presented later in 

Chapter 8. 

Compared with the small-c1 entropy graphs of Figs 6.8(a) and {b), the large-c1 graph (c) 

shows a significantly different profile: the position of maximum entropy has shifted from the 

top-left seizure corner to a position on the upper branch in the vicinity of).. = 1. This feature 

suggests that the normal conscious state is associated with maximum entropy, and that both 

the coma and seizure extremes have reduced entropy {increased order). 

While this is an intuitively attractive result, the supporting evidence is sparse at present. The 

work of Viertio--Oja and colleagues Viertio--Oja et al. {2000) shows that EEG spectral entropy 

diminishes during anaesthetic induction {discussed later in Chapter 8). Spectral entropy also 

appears to diminish for the cortical transition into epileptic seizure (Quiroga et al., 2000, Figs 

2, 3). These early findings indicate that the large-c1 LB entropy graph of Fig. 6.8( c) is at 

least plausible, assuming that there exists a direct relationship between thermodynamic entropy 

(availability of cortical microstates) and spectral entropy (availability of electrical vibration 

modes). 

We note that for both Haken and LB forms there is an abrupt and discontinuous negative 

change in the macrocolumn entropy at the A3 point of induction. A step change in entropy, 

!),,,.S, is characteristic of a first-order thermodynamic phase transition, and implies the existence 

of an analogous "latent heat," 01),,,.S, for the cortex. The detection of this latent effect should 

provide a direct clinical means by which we can determine the amount of energy which must be 

removed from each macrocolumn in order to transform the cortex from a depolarized, disordered, 

conscious state to a hyperpolarized, ordered, hypnotic state. 

6.6.6 Cortical "Heat Capacity" and "Latent Heat" 

For a thermodynamic system consisting of a sample and its environment, the heat capacity of 

the sample is the energy required to raise the temperature of the sample by one kelvin. This 

is a "heating" experiment in which energy flows inwards, from the environment to the sample. 
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Figure 6.8: Theoretical cortical entropy curves for the excitatory and inhibitory neural populations 
of the macrocolumn as a function of anaesthetic effect. Assumed excitability ("temperature") mapping 
is 8 = l/>.C 1 . (a) Haken form, c1 = 0.2. (b) Lugiato and Bonifacio form, c1 = 0.2. (c) Lugiato and 
Bonifacio form, c1 = 3. 
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Equivalently, heat capacity can be determined in a "cooling" experiment which measures the 

energy required to lower the temperature of the sample by 1 K; in this case the energy flow is 

outwards, from the sample to its environment. For the cortex, we seek to design an experiment 

which measures the outflow of energy from the cortex as it is "cooled" (its excitability reduced) 

under the influence of a general anaesthetic. 

The heat capacity depends on the phase or bonding structure of the sample. If the sample 

changes phase during the cooling experiment, then we should expect the change of phase to 

show up as an anomalous peak in the heat capacity. For a ferromagnetic substance cooled 

through its Curie temperature, the transition from the disordered, non-magnetic state to the 

ordered, magnetically-aligned state is smooth and continuous, and the transition is classified 

as second-order. In contrast, the freezing of water and the cooling of a ferroelectric material 

through its Curie point are classified as first-order transitions, since both exhibit an abrupt 

and discontinuous change in order, quantifiable as a negative step change b..S in entropy as the 

sample transforms from its liquid water ( c.f. non-polarized ferroelectric) disordered state to its 

crystalline ( c.f. polarized ferroelectric) ordered state. This discontinuous change in entropy is 

detectable as a sudden release of latent energy equal to ITc b..SI, where Tc is the temperature at 

transition. 

Our model of the cortex predicts that as anaesthetic effect is increased, the soma voltage 

he and associated free energy V will change abruptly at a critical value for anaesthetic effect 

.X. If the unconscious state is the more ordered, then the entropy change for the transition 

from the disordered, conscious state to the well-ordered, unconscious state will be negative, and 

latent energy should be released at the instant of transition. However, because of the uncertainty 

introduced by the presence of subcortical noise, we would not expect all 105 macrocolumns of the 

cortex to jump simultaneously (the larger the noise input into a given macrocolumn, the larger 

the probability that it will jump "early"). Instead, the downward jumps into unconsciousness 

will occur over the noise-broadened range .\1 < Ajump < AA3 , where .X1 > 1.0 and AA3 = 1.53 

(see Fig. 3.4). For small subcortical noise, .\1 --. 1.53 and the transition range will be quite 

narrow; for large subcortical noise, the transition range will be comparatively broad. 

What are the requirements for the definitive thermodynamics experiment applied to the 

anaesthetic-damped cortex? Essentially we need to know how the energy uptake of the cortex 

varies as a function of anaesthetic concentration. Ideally there would be simultaneous recordings 

of the EEG waveforms in order to correlate cortical electrical activity with cortical energy 

consumption as the brain moves into comatose unconsciousness. 

Recently J. Sleigh located an historical paper by Stullken Jr. et al. (1977) that investigated 

the changes in cerebral metabolic rate induced by general anaesthetic agents. In the next section 

we examine the Stullken paper and compare its clinical findings against our macrocolumn model 

predictions. 

6. 7 The Stull ken Experiment 

The "cortical cooling" experiment we seek was performed over 20 years ago by Stullken Jr., 

Milde, Michenfelder, and Tinker (1977), albeit for purposes quite different from ours. Stullken 

and colleagues were investigating the response in dogs of the cerebral metabolic rate for oxygen 
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(CMRo2 ) to increasing concentrations of four different anaesthetic agents: halothane, enflurane, 

isoflurane, and thiopental. 

Cerebral oxygen consumption was determined by measuring the change in blood oxygen 

concentration for blood entering and leaving the cerebral hemispheres, then multiplying this 

difference by the cerebral blood flow rate. The shapes of the anaesthetic dose-response curves 

for CMRo2 were examined by multiple measurements made at small, progressive concentration 

increments. For example, the six dogs in the halothane group received increasing concentrations 

of halothane such that the measured end-tidal (end-of-breath) concentration increased at a rate 

of 0.05 per cent (of atmospheric pressure) every five minutes to 1.1 per cent, and thereafter, at 

increments of 0.10 per cent every five minutes. The EEG was continuously recorded and changes 

in EEG patterns from "awake" to "anaesthetic" were correlated with changes in anaesthetic 

concentration and CMRo2 • The points of EEG change for "awake" to transitional "shifting" 

patterns, and from "shifting" to "anaesthetic" patterns were determined by inspection of rhythm, 

amplitude, and frequency. High-frequency, low-amplitude activity (15 ± 5 Hz, 50 ± 40 µ V) was 

classified as an "awake" pattern, while onset of persistent lower-frequency and higher-amplitude 

activity (10±8 Hz, 300±150 µV) was classified as an "anaesthetic" pattern. "Shifting" patterns 

showed alternation between "awake" and "anaesthetic" characteristics. 

Prior to the Stullken et al. experiment, it had been assumed that there was a linear negative­

slope relationship between cerebral oxygen consumption (CMRo2 ) and anaesthetic concentra­

tion, but these earlier inferences of linear dose-response had been based on a small number of 

isolated measurements. In contrast, Stullken's careful and detailed study revealed that CMRo2 

dose-response curves are nonlinear at anaesthetic concentrations less than 1 MAC (minimum 

anaesthetic concentration at which half the subjects are unresponsive to surgical incision; the 

MAC is a standard measure of anaesthetic potency). For all four anaesthetic agents studied 

(three inhalational, one intravenous), Stullken found that CMRo2 decreased precipitously until 

a stable "anaesthetic" EEG pattern was observed; thereafter CMRo2 decreased only slowly. 

These results demonstrate that the change in EEG pattern from "awake" to "anaesthetic" is ac­

companied by an abrupt metabolic depression, and the researchers speculated that these events 

coincide with the onset of functional depression (loss of conscious awareness). The Stullken 

graph for the variation of metabolic rate with halothane concentration is shown in Fig. 6.9a. 

It is pertinent to emphasize an important distinction between a "standard" thermodynam­

ics cooling experiment designed to determine the heat capacity of a closed, thermally-insulated 

physical sample, and the biological experiment performed by Stullken and coworkers. In the 

latter case, the "sample" is the living and metabolizing cerebral cortex of a dog which is nec­

essarily an energy-dissipative, open system. In order to maintain an equilibrium state of the 

cortex, there must be a continuous flux of energy (oxygen plus nutrients) from the arterial blood 

to the cortex, and then from the cortex to the venous blood (metabolic waste products). As 

discussed earlier in Section 6.1, this molecular metabolic activity is occurring at spatial and 

temporal scales several orders of magnitude below that of our model, and serve to maintain the 

macrocolumn in its (local) equilibrium state. We picture the biological system as analogous to 

a non-ideal "lossy" physical system. 
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Figure 6.9: Effect of general anaesthetic (halothane) on the cerebral metabolic rate (CMR via oxygen 
consumption) for dog, as reported by Stullken Jr. et al. (1977, Fig. 3) (a) CMR (as per cent of con­
trol) is plotted versus end-of-exhalation halo thane concentration ( as per cent of atmospheric pressure). 
Regression lines for changes in metabolic rate are drawn for each EEG-determined region. (b) Here I 
have computed the negative slope of the regression lines of (a) to give the rate of decrease of metabolic 
rate with increasing anaesthetic. The abrupt change in metabolic sensitivity to anaesthetic during the 
transition stage is very suggestive of a "latent heat" effect signaling a change of phase to the more ordered 
state. 

6.7.1 Biological "Heat Capacity" 

A reasonable working definition for "heat capacity" of a dissipative biological system such as 

the cortex might be 

"the amount by which the metabolic rate must change in order to change, by one 

unit, the state of excitability of the cortex," 

where "excitability" is an inverse measure of anaesthetic effect (see Section 6.6.4). This definition 

implies that it is the rate of energy delivery which determines the state of the neuron, whereas 

in fact the causality is the other way around: it is the state of the cell, as set by the anaesthetic 

concentration, which determines the metabolic requirement and hence the bloodflow. With this 

caveat in mind, we will apply this working definition to the Stullken experiment. 
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Figure 6.10: Predicted variation in (a) entropy and (b) heat capacity for the excitatory neurons 
of a single macrocolumn during induction of anaesthesia. The entropy curve assumes a simple inverse 
mapping between excitability ("temperature") and anaesthetic effect: 8 = 1/>., and follows the Lugiato 
and Bonifacio scheme for free energy (see Eqs 6.45, 6.50c). The heat capacity is computed from the 
derivative of the entropy curve, C = ->.(8S/8>.). The negative step-discontinuity in entropy at>.= 1.53 
produces a positive delta-function in the heat capacity which we approximate as a triangular spike of 
area l.53l~S1 and half-width equal to the sampling resolution of>.. 

The halothane results of the Fig. 6.9a graph show that the overall trend is for metabolic 

rate to diminish as anaesthetic depth increases. The gradient of this graph is negative, and 

its magnitude gives the percentage reduction in metabolic rate per unit increase in halothane 

concentration, or equivalently, per unit decrease in excitability (assuming an inverse relationship 

between halothane concentration and cortical excitability). Thus the slope magnitude can be 

interpreted as a cortical heat capacity; see Fig. 6.9b. 

Unlike the "awake" and "anaesthetic" regions which have similar (gentle) slopes and therefore 

similar heat capacities, the intermediate "shifting" region has dramatically steeper slope. This is 

the heat capacity anomaly which signals the thermodynamic phase change from the high-firing, 

high-metabolic-rate upper branch to the low-firing, low-metabolic-rate quiescent branch. The 

area of the anomaly gives the average decrease in the rate of energy consumption (~14%) during 

transition. We may also interpret this area as a measure of the rate of latent energy release from 

the cortex arising from the loss of entropy (gain in order) as the cortex transits to its unconscious 
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state. Thus, during transition, the metabolic requirements of the cortex are offset by the latent 

energy which becomes available to the cortex as it "crystallizes" into hyperpolarized order. 

In order to compare the Stullken experimental results with the model predictions for a single 

macrocolumn, we will focus on the excitatory neuron population (inhibitory results are very 

similar), assuming the Lugiato and Bonifacio form for free energy, and taking a "temperature" 

mapping 8 = co/ )..C1, with co = c1 = 1.0. This gives the LB entropy trajectory for induction 

shown in Fig. 6.10a which lies between those shown in Fig. 6.8b (c = 0.2) and Fig. 6.8c (c = 3). 

Applying the assumed temperature mapping to the definition for cortical "heat capacity" 

listed in Table 6.1, we obtain 

(6.53) 

The resulting single-macrocolumn heat capacity is shown in Fig. 6.10b. As expected, the step 

decrease in entropy produces a heat capacity anomaly corresponding the release of latent "heat" 

as the model "freezes" into its hyperpolarized state. Only a single latent-heat spike is shown. 

This narrow peak would be expected to broaden if the contributions of all 105 macrocolumns 

participating in the CMRo2 bloodflow experiment could be summed, taking into account the 

expected variability for the various biological parameters (threshold voltage, input spike rates, 

noise amplitudes, etc). This qualitative agreement between our preliminary theory and clinical 

experiment is very encouraging. 

6.8 Chapter Summary 

The cerebral cortex is an open, dissipative, biological system whose far-from-equilibrium steady 

state is maintained by a continuous flux of energy. However, because for the two-variable 

adiabatic macrocolumn we have an effective equation of state (Fig. 3.4) linking the population­

average excitatory and inhibitory soma voltages, it is possible to treat each (.X, h~, h?) steady 

state as if it were a local equilibrium. This effective equation of state, as re-plotted in Figs 6.1 

and 6.2, allowed us to decouple the Langevin and Fokker-Planck equations, and to derive hills­

and-valleys potential functions U (Fig. 6.5) and their corresponding stationary PDFs (Fig. 6.6). 

In order to derive thermodynamics-like equilibrium statistics such as entropy and heat capac­

ity, we needed to identify an analogous temperature and also a free-energy function V. We argued 

that the analogous temperature, named excitability, 8, should scale inversely with anaesthetic 

effect .X, and posited two simple functional forms for 8 = 8(.X) (Eq. (6.48)). 

Previous work by Lugiato and Bonifacio (1978) and Haken (1978) suggested that the V 

free-energy function could be obtained from the potential function U either directly (LB form: 

Eq. (6.47b)), or after scaling by temperature (Haken form: Eq. (6.47a)). Applying the Maxwell 

relation S = -8V/88 gave us four possible entropy expressions (Eq. (6.50)). By allowing 

anaesthetic effect to vary along the induction and emergence steady-state trajectories, we ob­

tained graphs of entropy as a function of anaesthetic effect (Fig. 6.8). These graphs showed a 

discontinuous step reduction in entropy at induction, and a step increase at emergence. A dis­

continuous change in thermodynamic entropy implies that there will be a "latent heat" anomaly 

at phase change: if the quiescent state is the more ordered, then energy will be released from 

the macrocolumn at induction. 
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This suggestion of latent energy release was able to be tested in a qualitative way by ex­

amining the experiment of Stullken Jr. et al. (1977). The fact that the experiment showed a 

sudden reduction in metabolic energy requirement as the EEG waveforms were shifting from 

their "awake" to their "anaesthetic" characteristic pattern provides support for the prediction 

of a first-order change of phase to a more ordered state. 

The Kuizenga experiment of Chapter 5 provided the first test of the adiabatic macrocolumn 

predictions, and the presently-described Stullken dog experiments constitute the second. The 

third clinical test will use spectral entropy to compare the spectral flatness of the theoretical 

fluctuation spectrum against that measured from EEG records for patients undergoing general 

anaesthesia. However, before discussing spectral entropy in Chap. 8, in Chap. 7 we will examine 

the results of stochastic simulations of the Langevin equations to verify numerically the cor­

rectness of the Chap. 5 predictions for fluctuation growth and spectral change as anaesthetic is 

varied. 



Chapter 7 

Numerical Simulations and Verification 

of Adiabatic Predictions 

Thus far we have described two clinical experiments that provide qualitative confirmation of the 

major predictions of the adiabatic macrocolumn model: the Kuizenga experiment (Sect. 5.9) 

showing biphasic fluctuation power growth at induction and at emergence; and the Stullken dog 

experiment (Sect. 6.7) illustrating a "heat capacity" anomaly at the conscious-to-unconscious 

change of phase. Before proceeding further, it would be prudent to seek quantitative verification 

of the adiabatic theory. This is the motivatation for the present chapter's focus on numerical 

simulation of the macrocolumn stochastic differential equations. 

As a careful and conservative first step towards numerical validations, I chose to simulate a 

simple but non-trivial Langevin equation whose stationary properties are well documented: the 

Ornstein-Uhlenbeck process. I refer to this preliminary investigation as a "calibration" experi­

ment since its intention is to provide guidance as to appropriate choices for important numerical 

details, such as: quadrature time-increment, random-number scaling, windowing functions for 

the time-series, Fourier transform scale factors for spectral amplitude normalization. 

The Ornstein-Uhlenbeck equation is an appropriate choice as a calibration test case since the 

linearized macrocolumn of Sect. 5.4 constitutes a two-dimensional Ornstein-Uhlenbeck system 

which decouples into a pair of one-dimensional Ornstein-Uhlenbeck processes in the pseudocol­

umn treatment of Sect. 6.5.3. 

This conservative approach of running an initial calibration experiment seems not unwise 

given some salutary messages in the literature. Gardiner (1985) states that "differential equa­

tions which include white noise as a driving term have to be handled with great care." Craig 

and McNeil (1989) show that when simulating a quantum optical system using complex noise, 

unexpected "spiking" behaviours can occur which are not numerical artifacts (e.g., poor time 

resolution giving degraded stochastic accuracy), but actually are caused by the stochastic phase 

fluctuations pushing the sytem into deterministically unstable trajectories. 1 In his recent text, 

Gardiner (Gardiner and Zoller, 2000, pp. 209-210) describes some of the characteristics exhibited 

by quantum stochastic simulations which have gone bad. 

In constrast to the Craig and Gardiner experiences, we do not anticipate pathological be­

haviours in our macrocolumn simulations. We do not have stochastic phase terms, so our 

simulations are modelling what is essentially a classical diffusion problem, and this is expected 

1 Spiking misbehaviours in quantum stochastic simulations had been observed a decade earlier by M. Steyn-Ross 
(1979) in her MSc thesis investigations of molecular vibrational modes. 



126 Numerical Simulations and Verification of Adiabatic Predictions 

to be quite well-behaved-provided that care is taken to ensure that the noise perturbations 

remain small. This aspect will be discussed later in Sect. 7.2.1. 

7.1 The Ornstein-Uhlenbeck Calibration Experiment 

7.1.1 Historical Context 

The Ornstein-Uhlenbeck (OU) process is the oldest example of a stochastic differential equation 

(Arnold, 1974, p. 134): 

d~~t) = -Av(t) + vD~(t). (7.1) 

This is the Langevin equation describing the velocity v of a Brownian particle, such as a pollen 

grain suspended in water. The positive constant A is a damping or fluid friction coefficient, ~(t) 

is random forcing function, and D is a diffusion coefficient. The particle is buffeted by ,....., 1021 

collisions per second from all sides. Each collision causes a sudden and random velocity change, 

but any imposed velocity tends to be damped out by subsequent collisions. Thus the molecules 

of the suspension liquid induce two counteracting effects: the myriad random kicks from ~(t) 

make v spread out over an ever broadening range of values, while the frictional damping -Av 

tries to bring v back to zero (van Kampen, 1981, p. 238). 

For a spherical particle of mass m, radius a suspended in a fluid of viscosity T/ [units: 

kgm- 1 s- 1] and temperature T, the damping and diffusion constants are given by [Arnold (1974, 

p. xii); Schuss (1980, p. 91)], 

A 
61rary 

[units: s- 1 J 
m 

(7.2) 

D= 
2kBTA 

[units: (m/s) 2 s- 1] 
m 

(7.3) 

where kB is Boltzmann's constant. These latter two equations show that there is a monotonic 

relation between the fluctuation coefficient ,Jl5 and the dissipative drag coefficient A. This is 

an expression of the fluctuation-dissipation theorem (Gillespie, 1993). 

The damping constant A, carrying units of frequency, is a parameter that describes the 

frequency of collisions. Between collisions the constant straight-line motion of the particle is 

perfectly correlated. Therefore A is an inverse measure of the correlation between velocities of 

a Brownian particle at various times (Schuss, 1980, p. 92). 

The random fluctuation ~(t) [units: s- 112] is a Gaussian-distributed white noise of zero mean, 

(~(t)) = 0 (7.4) 

and zero autocorrelation everywhere except at lag T = 0, 

(7.5) 

Gillespie (1996a) defines the white noise ~(t) as the dt -t O limit of a temporally uncorrelated 

normal random variable with mean zero and variance 1/dt. 

Equation (7.1) is often written in terms of differentials (Gardiner, 1985, p. 106), 
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dv(t) -A v(t) dt + .JJ5 ~(t) dt 

-Av(t)dt + .JJ5dW(t) 

where 

dW(t) = ~(t) dt 
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(7.6a) 

(7.6b) 

(7.7) 

is a temporally uncorrelated normal random variable with mean O and variance dt. The incre­

ment dW(t) is the differential of a random process W(t) given by 

(7.8) 

If the observations of the Brownian particle are at time intervals much larger than the charac­

teristic settling time 1 / A, then W ( t) gives a measure of the temporally coarse-grained position 

of the particle. Gillespie (1996a; 1996b) refers to W(t) as the driftless Wiener process. 

Because of the presence of white noise, the Langevin equation 7.1 is, strictly speaking, 

mathematically improper (Gillespie, 1996b). To give the equation meaning, we take the dv 

infinitesimal to have an Ito forward-difference interpretation of "pointing towards the future" 

dv(t) = v(t + dt) - v(t) (7.9) 

so that the differential form of Eq. (7.6a) can now be interpreted as an updating formula for v: 

V ( t + dt) = V ( t) - A V ( t) dt + ,JJ5 ~ ( t) dt . (7.10) 

Equation (7.10) is the form we will use for the numerical simulations of the Ornstein-Uhlenbeck 

process. 

7.1.2 Solutions of the Ornstein-Uhlenbeck Process 

In the limit of zero diffusion (D = 0), Eq. (7.1) predicts that any initial velocity v(t = 0) will 

decay exponentially to rest with characteristic time-constant 1/ A, 

v(t) = v(O) e-At (t ~ 0). (7.11) 

In the presence of diffusion, it is the time-averaged velocity that follows an exponential decay 

trajectory to zero (Gardiner, 1985, p. 106), 

(v(t)) = v(O) e-At 

with variance 
D 

var {v(t)} = 2A [1- e-2At] 

Of primary interest are the t---. oo steady-state (ss) characteristics, 

(7.12a) 

(7.12b) 
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(v(t)) lss 0 (mean) (7.13a) 

var {v(t)} lss 
D 

(variance) (7.13b) 
2A 

G(r) cov{ v( T ), v(O)} I ss !}_ e-AITJ 
2A 

(autocorrelation) (7.13c) 

S(w)lss 
D 

(intensity spectrum). (7.13d) 
A2 +w2 

7.1.3 Quadrature 

Following the Murthy (1983) scheme of Sect. 2.3, we approximate the infinite-variance white 

noise ~(t) with a sequence of (dimensionless) Gaussian-distributed random numbers {~n} scaled 

by 1/...fl;t, 

t = nb.t (7.14) 

where ~n is explicitly defined to be the normal random variable with mean O and variance 1, and 

b.t is an appropriately chosen time-step. Replacing the infinitesimal dt in Eq. (7.10) with finite 

time-step b.t, and substituting ~n/...fl;t for ~(t) gives an approximate finite-difference updating 

rule for Vn, 

Vn -Avnb.t + JD~(t)b.t 

Vn(l - A flt) + ~n J Db.t. (7.15) 

This Euler one-step quadrature should give accurate results provided the time-step b.t is much 

smaller2 than the 1/ A relaxation time, i.e., provided JAb.tJ « 1. 

7.1.4 Simulation Results for an OU Process 

In order to verify the OU updating formula of Eq. (7.15) against the theoretical predictions of 

Sect. 7.1.2, I fixed the diffusion constant at D = l m2 /s3, and set the drift constant A at one of 

three values: [1, 10, 100] s-1, corresponding to relaxation times of [1, 0.1, 0.01] s respectively. 

The time-step was set at b.t = 10-3 s, sufficiently fine to give good temporal resolution for the 

most rapidly evolving case (A = 100 s-1 ). A vector of 6000 unit-normal random numbers were 

generated (via MATLAB's randn function) and stored; this stored sequence was re-used for each 

run in order to highlight the effect of variations in the A rate constant. 

The results are illustrated in Fig. 7.1. For the three panels on the left (a, c, e), the initial 

condition was set at vo = l m/s, allowing us to view the relaxation to steady-state (v(oo)) = 0. 

As expected, the relaxation becomes increasingly rapid as the A rate constant is increased, with 

the fluctuations following the Eq. (7.12a) prediction for average velocity. 

2 Because the OU process is analytically solvable, it is possible to derive an updating formula which is exact 
for any positive value of !::.t (Gillespie, 1996a): 

-A~t . ID A~ 
Vn+l = Vne + '.Rn y 2A (1 - e- 2 1). 

which reduces to Eq. (7.15) when IA!::.tl « 1. Thus Eq. (7.15) is a first-order approximation to Gillespie's exact 
updating formula. 
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Figure 7.1: Six simulations for the velocity of an OU process computed from the Eq. (7.15) updating 
rule. Each run used the identical set of 6000 unit-normal random numbers. The timestep was 6.t = 10-3 s, 
and the diffusion constant D was set at unity. The drift constant A was varied over three orders of 
magnitude (from top to bottom). The initial velocity was set at 1 m/s for the left-hand panels (a, c, e), 
and at O for the right-hand panels (b, d, f). For the left panels, the dashed curve shows the Eq. (7.12a) 
prediction for average velocity. For the right panels, the dashed curves show the ±1 standard deviation 
envelope calculated from the Eq. (7.12b) variance. [After Gillespie (1996a, Figs 3-5)] 

For the three right-hand panels (b, d, f) of Fig. 7.1, the system was started with initial 

condition v0 = 0, allowing us to view the fluctuations about steady state. The pair of dashed 

curves give the ±1 standard-deviation envelope predicted by Eq. (7.12b): the velocity values are 

expected to lie inside this envelope approximately two-thirds of the time. 

The correlations for the steady-state fluctuations were calculated using the discrete autocor­

relation formula of Eq. (7.17), and plotted in Fig. 7.2; the corresponding Eq. (7.13c) autocorre­

lation predictions are drawn with a dashed line. 
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Figure 7.2: Autocorrelation functions for the time-series pictured in Fig. 7.l(b, d, f). The dashed 
trends are the theoretical predictions from Eq. (7.13c); the joined lines are calculated from the simulation 
time-series using Eq. (7.17). 

These simulation runs3 confirm that 1/ A determines not only the correlation time for fluc­

tuations about steady state (Fig. 7.2 and Eq. (7.13c)), but also sets the relaxation time for a 

perturbed OU process to recover its steady state (left panels of Fig. 7.1 and Eq. (7.12a)). 

3 For completeness, I compared the present results against those obtained using the Gillespie ( 1996a) exact 
updating formula listed in the footnote on p. 128. At the scale of the graphs plotted in Fig. 7.1, the Gillespie 
results are indistinguishable from mine. However, this situation changes dramatically if the timestep t.t is made 
larger than the relaxation time 1/ A: the Eq. (7.15) first-order Euler approximation becomes numerically unstable, 
while the Gillespie exact algorithm remains reliable and accurate. 
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The agreement between experiment and theory for these simulation test runs has so far 

been entirely satisfactory. All that remains is to verify the steady-state spectrum prediction of 
Eq. (7.13d). 

7.1.5 OU Simulation Spectrum 

The steady-state spectral amplitudes Vfms [units: (m/s) Hz-112] for the OU velocity simulation 

can be estimated either directly from the discrete Fourier transform of the time-series, or indi­

rectly via a discretized version of the Wiener-Khinchin theorem of Eq. (2.5). The direct method 

substitutes the time-series vector v into the Eq. (2.13) discrete spectral amplitude expression to 

give, 

k = 0, l, ... , N-1 (7.16) 

where v = [vo, v1, ... , VN-1] is the N-element vector of random velocity samples generated via 

Eq. (7.15), k is the frequency index, and DFT denotes the discrete Fourier transform operator. 

The indirect method first computes G, the autocorrelation vector estimate4 of 2N -1 lagged 

products formed from the time-series via 

j = -(N-1), ... , N-1. (7.17) 

The Fourier transform of G gives the spectral power, and the square root of the spectral power 

yields the rms spectral amplitude estimate, 

Vfms = J ~t · \DFT{Gh\' k = 0, l, ... , N-1. (7.18) 

In the event that the v time-series vector has been pre-conditioned by a Hanning ( or other) 

shaping window W, the N appearing in the denominator of Eqs (7.16) and (7.17) should be 

replaced by IIWIJ2, the square of the window-norm (see Eq. (2.18)). 

Results 

Fig. 7.3 illustrates log-log and semilog graphs for the spectral amplitudes Vfms of time-series 

corresponding to the steady-state (vo = 0) fluctuations plotted in the right-hand panels of 

Fig. 7.1. The drift coefficient A was set at 1 s-1 (top pair), 10 s-1 (middle pair), or 100 s-1 

(bottom pair); the diffusion constant was left fixed at D = l m2 /s3 throughout. For each 

setting of the drift coefficient, 10 Ornstein-Uhlenbeck velocity simulations were run using the 

Eq. (7.15) first-order updating rule with a time-step ~t = 10-3 s. The amplitude spectrum for 

each 6000-point simulation run was computed via Eq. (7.16). I compared these results with those 

obtained using the autocorrelation method of Eq. (7.18), but observed no significant difference 

in the spectral amplitude estimates. For both methods, the spectra were quite noisy, so the 10 

successive spectral runs were averaged to provide some smoothing. 

4In MATLAB, Eq. (7.17) is evaluated via the code 
G = xcorr(v, 'biased'); 

returning a biased estimate of the autocorrelation since no correction is made for the the fact that there are 
fewer lagged-product contributions at the wings of the correlation function. The unbiased version scales the raw 
autocorrelation by 1/(N - IJI), but this correction typically results in very noisy wings. 
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Figure 7.3: Amplitude spectra for the OU steady-state (v0 = 0) stochastic time-series illustrated in 
Fig. 7.l(b, d, f): D = 1 m2 /s3 , !),.t = 10-3 , A E {1, 10,100} s- 1 as indicated. The spectra are presented 
here both as log-log plots (left-hand panels) and as semilog plots (right-hand panels). The smooth curves 
are the OU theoretical prediction given by the square-root of Eq. (7.13d); the grey background traces are 
the average of 10 experimental spectra computed by applying Eq. (7.16) to the simulation time-series. 
The vertical markers in (a, c, e) indicate the frequency f = A/21r at which the spectral amplitude has 
decayed to 1/./2 of its de value (i.e., the half-power frequency). The smoothed inset in (f) highlights the 
aliasing error evident on approach to the 500-Hz Nyquist frequency limit. 

Minor Spectral Errors: High-frequency aliasing 

As can be seen from Fig. 7.3, the agreement between theoretical prediction (the square-root of 

the Lorenztian spectrum of Eq. (7.13d)) and experiment is very good, except perhaps for a small 

imperfection at the high-frequency end where the experimental values somewhat overestimate 
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(a) Log-log: Aliased vrms vs Freq (b) Semilog: Aliased vrms vs Freq 
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Figure 7.4: Aliased amplitude spectrum generated by taking the discrete Fourier transform of a non­
bandlimited Lorentzian process; plotted (a) on a logarithmic frequency axis, and (b) on a linear frequency 
axis. The full curve OPQ is the theoretical Lorentzian amplitude vrms(f) = [D /(A2 + (27r !)2)]112 with 
D = l m 2 / s3 , A = 100 s- 1 . The dashed segment PQ' is the reflection of segment PQ in the Nyquist 
mirror, here set at /Ny = 50 Hz (corresponding to a sampling interval of tlt = 10-2 s). The bold curve 
0 R is the sum of the true spectrum OP plus the Q' P reflection ("alias") of Q P. The discrepency RP is 
! loglO 2 = 0.15. 

the expected spectral trend. This is highlighted in the inset graph of Fig. 7.3(f) which has been 

additionally smoothed by applying a 5-point moving average filter. 5 

This small but systematic high-frequency error is not eliminated by applying a Hanning 

pre-conditioning window. (In fact, I found that provided the time-series was started at steady­

state (i.e., v0 = 0), the all-ones ("boxcar") and Hanning windows produced spectra which were 

virtually indistinguishable). 

All of the Fig. 7.3 graphs show the same high-frequency blemish, irrespective of the setting 

for the Ornstein-Uhlenbeck decay rate A. Close inspection of the high-frequency tail at the 

fNy = 500 Hz Nyquist frequency shows that in all cases, the time-series amplitude spectrum 

overestimates the theoretical OU prediction by r-v0.15 on the base-10 logarithm scale, 

(7.19) 

giving, 

v:x~HJNy) 
~h~ry(!Ny) 

(7.20) 

Squaring this amplitude ratio, we see that the spectral intensity is too high by a factor of 2. 

This is precisely the error magnitude expected at the Nyquist point for a (moderately) aliased 

power spectrum-assuming that only first-order aliasing (i.e., a single fold about the Nyquist 

frequency) need be considered. This is elucidated in Fig. 7.4. 

5 A moving-average filter is equivalent to a convolution with a vector of ones. Thus a 5-point smoother for a 
vector X can be implemented in MATLAB as, 

X = conv(X, [1 1 1 1 1) /5); 
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(a) Log-log: vrms vs Freq (A= 100 s-1) 
-1.9 ~--~---~--~---~ 

-2 

-2.1 

"' E ~ -2.2 

0 

ci -2.3 
0 

...J 

-2.4 

-2.5 

-2.6 '----~---~--~--'---------" 
10-2 10-1 10° 10, 102 

Frequency [Hz] 

(b) Semilog: vrms vs Freq (A= 100 s-1) 
-1.9 ~ --~-~--~-~--~-, 

-2 

-2.1 

-2.2 

-2.3 

-2.4 

-2.5 

0 10 20 30 40 50 
Frequency [Hz] 

Figure 7.5: Spectral damage caused by inadequate temporal resolution in the stochastic simulation; 
plotted (a) on a logarithmic frequency axis, and (b) on a linear frequency axis. The dark-grey background 
trace shows the amplitude spectrum obtained from the DFT of a time-series generated using the Eq. (7.15) 
updating rule with D = l m2 /s3 , A = 100 s- 1 , and 6.t = 10-2 s. Although the dark-grey high-frequency 
spectrum is grossly incorrect, there is reasonable agreement with theory (black curve) at low frequencies. 
The light-grey foreground trace is the spectrum calculated for the Gillespie-generated time-series. Apart 
from the not unexpected aliasing effect (giving the spurious v'2 amplitude boost at the 50-Hz Nyquist 
frequency), the Gillespie time-series gives a reliable spectrum. The vertical lines mark the A/ 21r = 15.9 Hz 
half-power frequency. 

It seems that such spectral aliasing is an unavoidable consequence of the stochastic simulation 

itself. With a time-step of !:l.t = 10-3 s, the discrete Fourier transform has a Nyquist upper­

frequency limit of /Ny = 1/2!:l.t = 500 Hz. Any activity in the time-series which has frequency 

components higher than this 500-Hz limit will be undersampled: activity at frequency fNy+E will 

appear in the DFT spectrum at its mirror frequency /Ny - E. And yet, by design, the simulation 

experiences a random kick ~n at every step, so is being driven at twice the Nyquist frequency. 

Despite this, the resulting spectral discrepency is surprisingly small, with the distortion being 

confined to the high-frequency tail. This is presumably because the high-frequency random kicks 

tend to be damped out by the viscous drag term, acting rather like an integrating capacitor in 

an RC low-pass filter circuit. 

Gross Spectral Errors: Temporal undersampling 

It was pointed out earlier in Sect. 7.1.3 that the Euler one-step quadrature of Eq. (7.15) can 

only be expected to give accurate results provided !::l.t « 1/ A. Here I demonstrate the spectral 

consequences of violating this "small time-step" condition by deliberately setting the time-step 

equal to the decay-time, Di.t = 1/A = 0.01 s. As is obvious in Fig. 7.5, the resulting OFT 

spectrum (dark-grey background trace) is ruined. 

This ruination occurs because the fidelity of the simulation itself has been compromised: the 

large time-step prevents the time-series from adequately sampling the velocity relaxation which 

follows each stochastic kick. 



7.2 Mapping the Macrocolumn SDEs to Difference Equations 135 

However, because an exact updating formula for the OU process exists (Gillespie (1996a); 

and see footnote on p. 128 of this thesis), it is in fact possible to run a "low temporal fidelity" 

simulation and still recover the correct spectrum. That this is so is demonstrated in the light­

grey foreground spectrum in Fig. 7.5. This Gillespie result is instructive, but is really a rather 

special case. For most SDEs, the exact solution is unknown, and therefore a "suitably small" 

value for b..t is mandatory in any SDE simulation which adopts an Euler-type quadrature scheme. 

This completes the Ornstein-Uhlenbeck calibration experiments. We are now ready to simu­

late the stochastic differential equations that define the white-noise-driven macrocolumn model 

for the cerebral cortex. The primary purpose of these macrocolumn simulations is to give quan­

titative verification of the various theoretical predictions made in earlier chapters. In particular, 

we will find that these simulation experiments-

• Confirm the predicted number, character, and location of the macrocolumn steady states 

as a function of anaesthetic effect; 

• Establish the range over which the adiabatic and full equations give similar results, and 

identify the point at which their behaviours are expected to diverge; 

• Give numerical demonstration of the growth in fluctuation power (the "biphasic effect") 

as the conscious-;unconscious transition point is approached. 

7 .2 Mapping the Macrocolumn SD Es to Difference Equations 

7 .2 .1 Adiabatic Difference Equations 

The adiabatic macrocolumn stochastic equations of motion (Langevin equations) were listed 

earlier as Eqs (6.1-6.3). Recasting the Eq. (6.1) pair of first-order differential equations as a 

pair of difference equations in he and hi, we obtain, 

(7.21a) 

(7.21b) 

where the superscript n means "value at time-step n," and b..t is the time increment. Thus the 

he and hi soma voltages evolve in response to two counteracting influences: a diffusive term 

rb..t (proportional to ..Jl;i,; see below) that randomly perturbs the voltage away from steady 

state, and a drift term F b..t that causes these voltage perturbations to die away, allowing the 

macrocolumn to return to its equilibrium state. The Ff 2 drift coefficients are straightforward 

discretizations of Eqs (6.2): 

Ff = { (h~est - h;) 

+ 7Pee(h;) [ (N: + Nfe) Se(h;) +(Pee)] Gee/,e 

+).. 7Pie(h;) [Nfe Si(hi) +(Pie)] Gie/,i} /Te, (7.22a) 
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p,n 
2 { (hiest - h':) 

+ VJei(h':) [ (N~ + N~) Se(h~) +(Pei)] Gee/,e 

+ ,\ VJii(h':) [Nfl Si(h':) + (Pii)] Gie/'Yi} /Ti. (7.22b) 

The discretization of the diffusion equations (6.3) requires some care; the resulting equations 

read, 

r~ 
t 

{ 1Pee(h~) neev(p;J Jb Geehe 

+AVJie(h~)niev(i:J Jbcie/'Yi}/Te, 

{ VJei(h':) neiJTi:J Jb Gee/'Ye 

+ A VJii(h':) aii v'(iJ :b Giel,i} /Ti. 

(7.23a) 

(7.23b) 

The VJjk(hk) (j, k E { e, i}) are the voltage-dependent psi-weighting functions of Eq. (3.5), 

1Pee(h~) (h~ev - h~) I lh~ev - h~est I (7.24a) 

1Pie ( h~) (hiev - h~) I lhiev - h~est I (7.24b) 

1Pei (hi) (h~ev - h':) I lh~ev - hiestl (7.24c) 

VJ ii ( h':) ( hiev - hi) I I hiev - hiest I (7.24d) 

and the Se,i are the Eq. (3.6) sigmoidal coupling strengths (voltage-to-firing-rate transfer func­

tions), which are also soma-voltage dependent, 

Se(h~) 

Si(h':) 

s~ax / [1 + exp (-ge(h~ - lie))] 

syiax / [1 + exp (-gi(h': - ei))] . 

Other symbols are as defined in Table 3.1. 

Simulation of White-Noise Sources 

(7.25a) 

(7.25b) 

There are two points to note regarding the discretized diffusion equations (7.23). First, each 

of the four independent white-noise sources ek, (k E {1, ... , 4}) appearing in Eq. (6.3) has been 

replaced in the simulation equations by its discrete approximation 'Rk//lii where the 'Rk are 

Gaussian-distributed zero-mean unit-variance random numbers. (This is the Murthy scheme 

discussed earlier in Sect. 7.1.3.) The division by /lii ensures that the diffusion increment f b.t 

scales as the square root of the time increment as required for a Wiener process. 

Second, as stated in Sect. 5.1, the four stochastic terms are scaled by dimensionless "safety 

factors" a1k to ensure that the random fluctuations in the Pjk subcortical inputs always remain 

small. How these safety factors are determined will now be discussed. 
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For definiteness, consider Pie, the i-e spike-rate for events originating from subcortical sources 

giving inhibitory modulation of the excitatory neuronal population of the macrocolumn. In 

Sect. 5.1 we transformed Pie from a sure number (Pie = 1600 s-1-see Table 3.1) into a Gaussian­

distributed random number 

(7.26) 

which we now wish to simulate by mapping the e(t) white-noise source to its 'R/v'tii discrete 

approximation. The continuous-time Pie(t) of Eq. (7.26) is then replaced by the discrete random 

sequence {Pie}, 

'Rn 
Pie(t) -t Pfe = (Pie)+ Oie../fi:J v'tii, t = nfl.t 

which is Gaussian-distributed with mean (Pie) = 1600 s-1 and standard deviation 

For a time-step of fl.t = 10-4 s, the ±3 standard-deviation bounds on Pie are 

(Pie) ± 3 sdev{Pie} = 1600 ± 12 000 Oie 

(7.27) 

(7.28) 

(7.29) 

Eq. (7.29) indicates that the spike-rate can go negative. This is unphysical, since our model 

assumes that the noise enters the macrocolumn from the subcortex, and can never reverse 

direction to "flow" back to the subcortex from the macrocolumn; therefore we require that the 

probability of generating a negative spike-rate be made vanishingly small. Accordingly, we will 

work at the -3-standard-deviation limit in Eq. (7.29), and require that 

1600 - 12 000 Oie > 0 

giving an upper bound for the Oie scale-factor 

Oie < 0.133. 

(7.30a) 

(7.30b) 

For a Gaussian distribution, the probability of an excursion which is more than 3 standard 

deviations below the mean is 0.0013. So by setting the scale-factor at Oie = 0.133, we are 

tolerating the fact that about once every one-thousand calls to the random-number generator 

we will obtain a (slightly) negative, and therefore (slightly) unphysical, subcortical spike-rate. 

Applying the same 3-standard-deviation criterion to each of the other three Ojk, we derive 

safety scale-factors 

Oie,ei < 0.133 for Pie, Pei, and Oee,ii < 0.111 for Pee, Pii, (7.31) 

For simplicity, we set a = 0.1 as a conservative safety scale-factor which applies to all four 

subcortical noise inputs. 
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Quadrature Initialization 

To start the integration, the initial values for soma voltages he and hi typically would be set 

equal to their zero-noise equilibrium values, derived from Fig. 3.4, appropriate to the given value 

of anesthetic effect >.: 

ho = heq. (>.) e e , (7.32) 

For >. in the range 0.28 < >. < 1.53, the equilibrium curve has a multi-valued ordinate, so we 

would select either the top-, middle-, or bottom-branch (h:q., h~q.) equilibrium values, depending 

on the particular numerical experiment we wished to run. 

7 .2.2 Full, Non-Adiabatic Difference Equations 

Simulating the full non-adiabatic DEs requires rather more effort. If we do not wish to impose 

the simplifying adiabatic assumption of slow soma voltages, fast input currents, then we must 

work with the full set of eight coupled partial-differential equations for the spatially homogeneous 

macrocolumn listed in Eqs (3.1-3.4). This equation set consists of a pair of first-order DEs for 

the he and hi soma voltages; these are coupled to four second-order DEs, one for each of the four 

input currents lee, lei, lie, h; plus a pair of second-order DEs for the long-range spike inputs 

<Pe, <Pi from distant macrocolumns. 

For simulation purposes, the two first-order DEs for he and hi are replaced by first-order 

difference equations, and each of the six second-order DEs are recast as a pair of first-order 

difference equations; this gives a total of 14 coupled first-order difference equations which can 

be integrated using a simple Euler one-step quadrature scheme. 

The conversion to stochastic difference equations proceeds exactly as for the adiabatic case 

described in Sect. 5.1: each of the four Pjk subcortical spike-rates entering the ljk currents is 

converted from a sure value to a Gaussian-distributed random value defined by 

(7.33) 

where the randomly fluctuating part 

Pjk(t) (7.34) 

will be approximated in simulation as 

(7.35) 

and O:jk = 0.1 is the "small fluctuations" safety factor. 

Appendix A lists the 14 discretized equations and explains how the quadrature is initialized. 

7 .3 Verification of Macrocolumn Steady States 

The theoretical distribution of macrocolumn steady states illustrated in Fig. 3.4 were verified 

numerically by running simulations of both the full equations (see Appendix A) and of the 
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Figure 7.6: Relaxation to stable equilibrium for stochastic simulations of the adiabatic equations (see 
Eqs (6.1-6.3, (7.21-7.23)) for three values of anaesthetic effect lying within region II of the S-bend (see 
Fig. 3.4 on p. 47): (a) >. = 0.5; (b) >. = 1.0; (c) >. = 1.3. The four random noise sources for the Pjk 

subcortical spike inputs each have scale-factor a = 0.1. Time-step is D1t = 10-4 s. Dark (light) curves 
show time evolution for he (hi), For each >.-value, 10 independent runs are shown. Each run is started 
on the unstable (h~, h?) equilibrium point at the crest of the potential hill separating the two valleys (see 
Fig. 6.5, p. 111), but cannot remain there. Random fluctuations cause the soma voltages to roll off the 
hill into either valley with equal probability. The upper stable equilibrium is the high-firing, active state; 
the lower stable equilibrium is the hyperpolarized, quiescent state. [Source: Adiabatic simulation dataset 
from Wilcocks (2001)] 

adiabatically-simplified equations (Sect. 7.2.1). The integration scheme was an Euler one-step, 

with a time-step of f:lt = 10-4 s. A small time-step is necessary because the equations are 

strongly nonlinear, and the Euler method fails dramatically (becomes unstable) for large time­

steps. We established that 10-4 s was a safe value by confirming that the deterministic behaviour 

of the simulations was unchanged if re-run using smaller time-step values. The noise consisted 

of four independent Wiener-process inputs as described earlier. 

These simulation runs showed that the steady-state values calculated in Sect. 3.3.3 are cor­

rect, that the upper and lower branches are stable (with the exception of the high->. top branch 

for the full equations; this is discussed below), and that the middle branch is unstable. We 

demonstrated this by starting the system on the middle (unstable) equilibrium point. The 

macrocolumn would never sit there, but would "fall" off the potential hill, settling into either 

the upper-branch (high-firing) equilibrium valley, or the lower-branch (low-firing) equilibrium 

valley. The "splitting probability" (i.e., the probability of falling into a given valley) was found 

to be "'50%. See Figs 7.6 and 7.7. 

Figure 7.6 shows that the adiabatic runs settle to one of the stable states within about 200 

samples (20 ms). It appears that the time required to settle decreases with increasing >.. 
Figure 7.7 illustrates the much slower evolution of the full equations, typically taking an 

order of magnitude longer (2000 samples, 200 ms) than the adiabatic equations to settle to one 

of the stable steady-states. We also see that for>.= 1.3 (Fig. 7.7c), the upper branch is unstable: 

all runs which go to the upper branch develop an exponentially-growing oscillation about that 

branch before collapsing to the bottom branch. 
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Figure 7. 7: Relaxation to stable equilibrium for the stochastic simulations of the full, non-adiabatic 
equations (see Eqs (3.1-3.4), and Appendix A) for (a)>.= 0.5; (b) >. = 1.0; (c) >. = 1.3. Initial settings, 
noise scale-factor, and time-step as in Fig. 7.6. Full-equation runs generally demonstrate the same steady­
state asymptotes as the adiabatic runs, but note that settling times are an order of magnitude longer 
here, and the upper branch is now characterized by an oscillatory dynamic, of frequency rvlO Hz, which is 
strongly damped for small >., but becomes much less damped as >. is increased. For >. ,2: 1.3, the oscillation 
about the upper branch becomes so strong that the upper equilibrium becomes dynamically unstable, 
causing trajectories originally headed towards the high-firing branch to deviate and collapse into the 
hyperpolarized quiescent branch. [Source: Full, non-adiabatic simulation dataset from Wilcocks (2001)] 

This oscillation has a frequency of ""'10 Hz, lying within the so-called EEG alpha-band (8-

14 Hz). These time-series results indicate that, along the top branch of steady states, the full 

equations can be characterized as having the impulse response of a damped, single-frequency 

(rvlO Hz) sinewave, whose damping diminishes (i.e., whose resonance spectrum becomes nar­

rower and stronger) as the macrocolumn approaches the top-branch A3 induction point. 

However, time-frequency analysis of clinically-measured EEG waveforms (e.g., the Kuizenga 

results presented in Figs 5.8 and 5.11) do not show a preferential growth of alpha-band power 

during anaesthetic induction. Instead, the clinical traces show a broad transfer of power from 

higher to lower frequencies as the induction point is approached, just as predicted by the simpler, 

adiabatic theory (e.g., see waterfall spectra in Fig 5.7, slew-rate spectra of Fig. 5.10; also Fig. 7.9 

discussed later in the present chapter). 

For the purposes of modelling anaesthetic induction, the simpler, adiabatic theory seems to 

provide a better match with clinical measurement than does the full, non-adiabatic theory. For 

this reason, this thesis focuses on the adiabatic predictions. 

7.4 Verification of Fluctuation Divergence at Induction 

Figure 5.3 (p. 80) illustrated the (linearized) adiabatic-theory prediction of a dramatic increase in 

rms amplitude for the fluctuations in soma voltage as the conscious ---. unconscious transition is 

approached. This prediction compares nicely with the actual results for a (nonlinear) adiabatic 

simulation run presented in Fig. 7.8. We see that the simulation produces an he time-series 
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Figure 7.8: Time-series of excitatory soma voltage he for induction into unconsciousness: fluctuation 
amplitude grows strongly as t he induction point A3 is approached. (a) Time development (in grey) along 
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component. The he time-series was generated by a 30-s adiabatic simulation run in which A was steadily 
increased from 0.3 to 2.3 during the course of the run. Time-step: 6.t = 10-4 s for 300,000 samples; noise 
scale-factor Cl'. = 0.1. In (a), the fluctuations are displayed at 300x actual size in order to make them 
visible on the equilibrium voltage scale. Their true scale is shown in (b). [Adiabatic induction time-series 
in (a) abstracted from Wilcocks (2001)] 

whose fluctuations about steady state grow markedly as the macrocolumn nears the A3 critical 

point. 

The adiabatic macrocolumn is started at >. = 0.3 on the upper-branch of the Fig. 3.4 S-curve 

trajectory of steady states. During a 30-s simulation run, anaesthetic effect is slowly and steadily 

increased to reach a final value of >. = 2.3 after 300,000 iterations with a time-step ~t = 10- 4 s. 

The simulation results in Fig. 7.8 show a flaring cornucopia of soma-voltage fluctuations which 

reach their maximal extent at the moment of transition, then abruptly collapse immediately after 

the jump to the much lower values characteristic of a low-firing, hyperpolarized macrocolumn. 

As discussed earlier in Chap. 5.9.1, such a power surge in the EEG signal would be described 

by the anaesthesiology community as the "biphasic" or activation- depression response to general 

anaesthetic. This growth in fluctuation power is reminiscent of the divergent behaviour observed 

in many physical phase transitions, supporting the notion that the conscious t-t unconscious 

transition is analogous to a physical change of state. 

7 .5 Verification of EEG Spectral Changes 

7.5.1 Spectrum for Adiabatic Simulations 

The theoretical fluctuation spectrum for the (linearized) Langevin equations describing the adi­

abatic macrocolumn was stated in Eq. (5.58a) (p . 77) and plotted as a set of waterfall graphs 
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in Fig. 5.7 (p. 85). These provide the spectral reference against which the simulation results are 

tested. 

The simulation spectra were computed by Fourier transforming the pseudo-EEG waveforms 

generated by iterating the coupled, nonlinear adiabatic equations of motion listed in Eqs (7.21-

7.23). We started the macrocolumn at the upper- or lower-branch stable equilibrium point 

corresponding to a given value of A, then induced fluctuations about steady state by driving the 

four subcortical inputs (Pee,Pie,Pei,Pii) with four independent white-noise sources (6,6,6,~4). 
The simulated EEG waveform h(t) is extracted from the resulting time-series as the deviation 

of the he(t) excitatory voltage from its known steady-state value h~: 

EEG(t) = h(t) = he(t) - h~. (7.36) 

A simulation run consisted of 100,000 iterations with a time-step 6.t = 10-4 s, giving a 10-s 

pseudo-EEG record. Simulation runs were recorded for A values ranging from 0.3 to 1.8 in steps 

of 0.1. 

Each 10-s record was split into 10 non-overlapping 1-s sections, tapered with a 10,000-

point Hanning window W (defined in Eq. (2.14)) to reduce spectral leakage, then fast Fourier 

transformed, giving an N = 10, 000-point intensity spectrum S(ktl.f) [units: (m V)2 /Hz] with a 

resolution of 6.f = 1/ N 6.t = 1 Hz from O to 5000 Hz (the Nyquist frequency), 

6.t I 12 S(ktl.f) = IIWll2 DFT{hW}k , k = 0, 1, ... , N /2 (7.37) 

where hW is the element-by-element product of the pseudo-EEG time-series vector h with 

Hanning windowing vector W, 

(7.38) 

(Because the spectrum is symmetric about de, we can ignore negative frequencies, i.e., index 

values N/2 < k < Nin Eq. (7.37).) The scaling by time-step in Eq. (7.37) ensures that the 

rate of energy delivery (area under the power spectral density curve) is independent of sample 

rate. As was discussed in Sect. 2.2.2, the division by the squared norm of the Hanning window 

(i.e., the sum of the squares of the window function) is required to compensate for the loss of 

power due to the tapering; for a rectangular ("boxcar") window, the squared norm evaluates to 

N, and for the Hanning window 1111 2 ~ N/2.7. 

Each run produced 10 power spectral density estimates which were averaged, then smoothed 

with a 5-point moving average filter. See Fig. 7.9. 

For frequencies below 400 Hz, we see excellent agreement between the theoretical Ornstein­

Uhlenbeck spectrum of Eq. (5.58a) and the Eq. (7.37) experimental spectrum calculated from the 

Fourier transform of the numerical simulation. However, at higher frequencies, the simulation 

spectra overestimate the theoretical result, particularly when the macrocolumn is predicted to 

have a relatively flat spectral response (e.g., A = 0.3 and A = 1.0 on the top branch: see 

Figs 7.9(a),(b)). Agreement at high frequencies is more convincing in those cases for which the 

macrocolumn is predicted to have a strongly low-pass filtering characteristic (Figs 7. 9( c )-( f)). 

When we first reported these results [see Fig. 5 of Steyn-Ross et al. (2001b)J, we asserted 

that these high-frequency spectral discrepancies between theory and experiment are an inevitable 
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Figure 7.9: Comparison of theoretical fluctuation spectra (black curves) with stochastic simulation 
spectra (gray curves) for the adiabatic equations. (Time-step and noise scale-factor as for Fig. 7.6.) 
Simulation graphs were computed as the averaged spectra for 10 1-s time-series segments (10,000 samples 
per segment) which were then smoothed with a 5-point moving-average filter. Plots (a)- (c) are fluctuation 
spectra for three representative anaesthetic values on the top (high-firing) branch; plots (d)-(f) are the 
corresponding spectra for the bottom (low-firing, quiescent) branch. At low frequencies, agreement 
between theory and simulation is excellent (see inset graphs for 0- 400-Hz detail in (a)- (c)). At higher 
frequencies, simulation spectra become inaccurate. Spectral accuracy improves when the macrocolumn 
has a strong low-pass filtering characteristic (e.g., bottom branch: (d)-(f), and top branch near transition: 
( c) ), but degrades when the macrocolumn frequency response is relatively flat. [Adiabatic time-series 
abstracted from Wilcocks (2001)] 

aliasing artifact arising from the fact that the macrocolumn is being driven by unfiltered white 

noise, so the only "antialiasing protection" in the sampled pseudo-EEG time-series is that pro­

vided by the low-pass filtering characteristic of the macrocolumn itself. Indeed, the discrepancy 

of 0.3 (on the base-10 logarithmic power scale) that we see in Figs 7.9(d)-(f) at the /Ny= 5000-

Hz Nyquist frequency limit corresponds to the anticipated spurious power-doubling arising from 

a first-order "folding" of the spectrum about the Nyquist limit. This effect was illustrated (as 

an rms amplitude error of x v'2) in Fig. 7.4 (p. 133). 

But the spectral errors apparent in Figs 7.9(a),(b) are far too severe to be explained away 

as aliasing artifact. A plausible explanation suggests itself when we observe how similar are 

the patterns of spectral ruination evident both here in Figs 7.9(a),(b) and seen previously in 
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Fig. 7.5: fair agreement with theory at low frequencies, but flattened spectrum with degraded 

accuracy at middle and high frequencies. Evidently these ruinations are one of the signatures 

of inadequate temporal resolution. The clue that our quadrature time-stepping is too coarse 

to track the temporal evolution of the macrocolumn is provided by the eigenvalues graph of 

Fig. 4.l(b) on p. 61. 

For the top branch of steady states, the high-frequency response of the macrocolumn will 

be determined by the non-dominant eigenvalue,6 since it has the larger magnitude. At ,\ = 0.3 

and 1.0, this eigenvalue has magnitude 5836 s- 1 and 14,240 s- 1 respectively, giving 1/e decay 

times of T = 1. 7 x 10-4 s and 0. 7 x 10-4 s. With our time-step setting of b..t = 1.0 x 10-4 s, it 

is clear that the temporal accuracy criterion b..t « T has been violated. 

The macrocolumn has a maximum neuronal firing rate, set by the s~ax and syiax constants 

in the Eq. (3.6) sigmoidal transfer functions, of 1000 s-1 (see Table 3.1). This is physiologically 

rather high. In Chap. 9 I investigate the impact of lowering this saturation firing rate to 100 s- 1 , 

and find that the eigenvalues for the low-firing-rate macrocolumn are lowered by about an order 

of magnitude (see Fig. 9.7(b)), indicating that a time-step of b..t = 10-4 s should be safe for 

all values of anaesthetic effect. L. Wilcocks (2001) has run numerical simulations for this case, 

and has verified that the half-power frequency is also reduced by about an order of magnitude 

compared with the high-firing model, with consequent improved agreement between theoretical 

and experimental spectra. 

We also computed the total fluctuation power in the range de to 5000 Hz and de to 400 Hz 

by summing the areas of the 1-Hz histogram bins. The comparisons between simulation and 

prediction are shown in Fig. 7.10. The biphasic power peaks demarcating the induction and 

emergence transition points are of similar magnitude for both frequency bands, indicating that 

most of the fluctuation power near transition resides in the lower frequencies. We observe that 

the agreement between simulation and theory is excellent for the 0-400 Hz band (Fig. 7.10b), but 

degraded for 0-5000 Hz band (Fig. 7.lO(a)) for the upper branch where temporal undersampling 

errors are likely to be most apparent. 

The band-limited total-power curves of Fig. 7.lO(a) can be cross-checked against the pre­

dicted 8he(t) rms fluctuation amplitudes of Fig. 5.3(a) on p. 80. Both graphs show an intersection 

between the induction (top-branch) and emergence (bottom-branch) traces (implying equal fluc­

tuation activity in the active and quiescent states) at ,\ ~ 0.5. For the top branch at ,\ = 1, 

Fig. 5.3(a) predicts an rms amplitude of 8he ~ 0.032 mV, implying a fluctuation power level [in 

(m V)2] of log10 (0.0322 ) = -3.0. As expected, this is larger than, but not too dissimilar from, 

the area under the ,\ = 1 band-limited (0-5000-Hz) waterfall slice. 

7 .5.2 Spectrum for Non-Adiabatic Simulations 

As mentioned earlier, numerical simulations of the full 14-equation model (Eqs A.2-A.14) showed 

that the non-adiabatic macrocolumn becomes unstable along the upper branch for,\ > 1.3. Un­

like the adiabatic case, small soma-voltage fluctuations about the upper-branch steady state 

would evolve into a ""10-Hz oscillation whose amplitude would grow inexorably until the macro­

column collapsed "early" to the low-firing-rate lower branch, whereupon the oscillations would 

6The dominant eigenvalue determines the stability of a given equilibrium point. See p. 60 for a definition. 
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Figure 7.10: Total fluctuation power (a) to 5000 Hz, (b) to 400 Hz for the macrocolumn as a function 
of anaesthetic effect; solid lines: theoretical prediction; points: simulation results. Curves show the 
predicted trends in fluctuation power computed from the area under the theoretical spectral density 
curves of Fig. 5.7. Points are obtained from the power spectra of the pseudo-EEG h(t) time-series 
generated by numerical simulation of the adiabatic equations (timestep /:}.t = 10-4 s; noise scale-factor 
a = 0.1). Total power was estimated by summing into 1-Hz bins the area under the power spectral 
density curves from 0-5000 Hz (a) and 0-400 Hz (b). [Simulation data points from Wilcocks (2001)] 

vanish. It is therefore not possible to define a steady-state fluctuation spectrum for the >. > 1.3 

regime using the full equations, since the deterministic growth completely swamps the stochastic 

behaviour. 

7.6 Chapter Summary 

The Ornstein-Uhlenbeck (OU) velocity process for a Brownian particle provided a calibration 

test-bed for proving the quadrature techniques to be applied to the stochastic equations of 

motion for the macrocolumn. These preliminary calibration experiments provided the following 

guidance: 

• the time-step fl.t should be small compared with the relaxation time of the drift; if the 

time-step is not small, then the Euler update rule will give inaccurate time-series and 

ruined spectral estimates; 
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• a white-noise infinite-variance Wiener process can be simulated accurately using appro­

priately scaled Gaussian-distributed unit-variance random numbers (this is the Murthy 

(1983) scheme of Eq. (7.14)); 

• application of a Hanning window to a stochastic time-series improves the accuracy of its 

spectrum if the process is still evolving towards steady state; once the process has settled, 

the window has negligible effect on the spectrum, but its continued use is probably good 

signal-processing practice; 

• to obtain the correct magnitude and dimension for spectral intensity, the mod-square of an 

N-point DFT of a time-series should be scaled by b..t/N (see Eq. (2.12)), or by b..t/11Wll2 

if a window function W has been applied (Eq. (2.15)); 

• the DFT spectrum will exhibit a spurious power doubling, relative to theoretical OU 

prediction, at the Nyquist frequency-this is a predictable (see Fig. 7.4) and (apparently) 

unavoidable aliasing artifact in any unfiltered white-noise-driven numerical simulation. 

Applying these lessons to the macrocolumn model of the cerebral cortex, we were able to demon­

strate numerically that-

• the mid-branch set of steady states for the adiabatic macrocolumn is unstable, and the 

upper and lower branches are stable (Fig. 7.6); 

• the full non-adiabatic macrocolumn has similar stability characteristics, except that the 

upper branch becomes dynamically unstable for >. ;::: 1.3, causing the macrocolumn to 

collapse to quiescence "early" (Fig. 7. 7); 

• the adiabatic macrocolumn exhibits a dramatic increase in fluctuation power on approach 

to the A3 critical point on the upper branch (Fig. 7.8); 

• after allowance has been made for aliasing and temporal undersampling errors, the simulation­

derived fluctuation spectra show the expected and pronounced redistribution of spectral 

energy towards zero-frequency as the A3 (induction: Fig. 7.9(c)) and Q1 (emergence: 

Fig. 7.9(d)) change-of-phase points are approached. 

We now turn our attention to the time-correlation properties of the fluctuations about macrocol­

umn steady state. We seek to examine and quantify the inverse relationship between correlation 

time and frequency distribution. 



Chapter 8 

Spectral Entropy and Correlation Time 

The state of disorder of a system is naturally expressed in terms of its entropy which gives a 

measure of the availability of accessible states. For the cerebral cortex there are many candidate 

entropies which could be used. The three entropies I choose to discuss here are thermodynamic, 

statistical, and spectral. In the section which follows I will present a brief overview of these 

three entropies in order to establish the relative utility of each measure. This will be followed by 

a more detailed discussion of the properties of spectral entropy, both for discrete and continuous 

functions of frequency. I will demonstrate that the standard sampled-frequency definition for 

spectral entropy does not pass over to the expected continuous-frequency result in the limit of 

an infinitesimal frequency step, i.e., in the limit ~w - dw. However, the continuous-domain 

result can be recovered provided an appropriate correction to the discrete-frequency formula is 

made. This finding is significant because it permits one to make meaningful intercomparisons 

of spectral entropy measurements for clinical EEG reported by different research groups. 

I will then investigate the application of spectral entropy to the adiabatic macrocolumn 

model, and examine how the model predictions compare against clinical results for patient EEG 

reported by colleagues in Finland. The chapter concludes by establishing a quantitative inverse 

link between spectral entropy, a relatively modern concept, and correlation time, a fundamental 

concept used to quantify temporal order in fluctuating systems. 

8.1 Entropies for the Macrocolumn 

8.1.1 Excitability Entropy 

An implicit assumption in the present work is that the model behaviour of a single macrocol­

umn of "'105 cooperating neurons can serve as a proxy for the bulk behaviour of the ""'106 

macrocolumns comprising the "'1011 neuron population of the cortex. This "one speaks for all" 

macrocolumn picture is probably not too unreasonable when applied to the task of characteriz­

ing the gross changes which occur when there is a massive switchover in cortical function from 

active-consciousness to comatose-unconsciousness. After all, these gross changes can be, and 

routinely are, detected using a single EEG electrode which is only sampling "'1 % of the total 

macrocolumn population. In Ch. 6 I described how, once a feasible mapping between anaesthetic 

effect and "temperature" has been established, it is possible to use the language and concepts of 

thermodynamics to quantify this gross change in state in terms of a "cortical entropy" defined 

as the negative rate of change of macrocolumn free energy with respect to its excitability, 
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He= 
dV 

d8 

8.1.2 Microstate Entropy 

Spectral Entropy and Correlation Time 

(cortical excitability entropy). (8.1) 

Another means for quantifying the state of orderliness of the cortex would be to use statistical 

mechanics to define an entropy Hn in terms of n, the statistical weight of the macrostate (i.e., 

the number of micmstates equivalent to the given macrostate), 

Hn = ks loge n, (microstate entropy) (8.2) 

where ks is Boltzmann's constant. Hn is a measure of the availability or spread of the mi­

crostates, indicating their degree of randomness or disorder. For the macrocolumn picture, a 

microstate is one particular depolarized/hyperpolarized electrical configuration of the 105 neu­

rons within the macrocolumn. The weight for this microstate would be the number of distinct 

voltage configurations of the 105 excitatory and inhibitory neurons, whose net effect, when 

summed over the whole macrocolumn, is to produce a given excitatory and inhibitory (>., he, hi) 

voltage "coordinate." The equilibrium state for a given value of GABA anaesthetic effect >. 
would then be that state which maximizes the number of available microstates. 

Our model has no detailed knowledge of the state of its constituent neurons, so cannot be 

used to count microstates (except perhaps for the fully-hyperpolarized state of extreme coma: 

in this case all neurons are assumed to be in the same zero-firing state at -90 m V, giving a 

microstate count of unity). Clinical measurements of scalp-detected EEG are also unable to 

reveal microscopic details of the individual neuron states. This is because the recordings are the 

summation of the electrical activity of the several hundred macrocolumns in the vicinity of the 

electrode: all internal microstate structure has been irretrievably blurred out by the spatial and 

temporal averaging. 

8.1.3 Internal Physics from External Measures? 

Despite the fact that knowledge of the internal microstate structure is unavailable to us, our 

simple macrocolumn model has demonstrated considerable utility with respect to the anaes­

thetic transition: it predicts the "biphasic" power peak and the sudden loss of higher frequency 

components in the EEG spectrum, and predicts a "latent heat" effect in which cortical energy 

requirements will be dramatically lowered during transition. This predictive utility suggests that 

the model equations provide a not unreasonable coarse-grained picture of the bulk behaviour of 

the anaestheto-dynamic phase transition. 

This leads us to ask: Can the model be used to infer some of the internal physics of the brain 

from the external EEG signal? Specifically, can we uncover and quantify the link between the 

externally-measurable EEG spectral entropy ( defined below) and the internal state of disorder 

of the cerebral cortex during the transition into unconsciousness? 

That there is a link between EEG and brain-state is well established. For example, Steriade 

et al. (1993) observe: 
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"The rapid patterns characteristic of the aroused state are replaced by low­

frequency, synchronized rhythms of neuronal activity when the brain falls asleep" 
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so the unconscious brain has a relatively simple EEG spectrum, whereas the spectrum for the 

conscious brain is noisier and more complex. 

8.1.4 Shannon Information and Spectral Entropy 

Following recent work by Rezek and Roberts (1998) and Quiroga et al. (2000), EEG complexity 

can be quantified by applying to the computed EEG frequency spectrum the Shannon (Shannon 

and Weaver, 1949) 1 definition for discrete information entropy H 1 

N 

H1 = - LPi lnpi 
i=l 

(Shannon information entropy). (8.3) 

In the Shannon formula, Pi is the probability that a communication channel is in cell i of its 

phase space, and H1 is the entropy of its set of probabilities P1,P2, ... ,PN· H1 is maximized 

when every cell is equally likely with Pl = P2 = ... = i:,. (The leading minus sign ensures that 

the entropy is always positive: each of the ln Pi terms is negative.) 

In a similar vein, given a set of spectral probabilities ( derived from a histogrammed power 

spectrum), one can compute an entropy for the distribution of spectral power. If over the range 

of sampled frequencies the spectrum is "flat" with all frequency bins equally populated, then the 

spectral entropy will be maximized. Conversely, if the spectrum is "rough" ( e.g., has resonance 

peaks, or follows a power-law decay "' 1/ r), then the spectral entropy will be diminished. 

Our phase-transition model for the cortex suggests that cortical entropy He will be smaller 

in the hyperpolarized (unconscious) state. Since the cortex will have fewer microstates available 

to it in this well-ordered state, its firing behaviour and resulting EEG spectrum should be 

relatively simple, so it is reasonable to expect that spectral entropy should also be smaller in 

the unconscious state. In the more complex, relatively disordered, active state, both kinds of 

entropy should be larger. So changes in the measured spectral entropy should track changes 

in the internal thermodynamic entropy, thereby providing an external measure of the internal 

state of the cortex. 

We now examine how the Shannon information entropy is generalized to define an entropy for 

spectral power, and in the process uncover an important, and apparently overlooked, subtlety 

in the application of the discrete Shannon formula to the continuous-frequency case of EEG 

signals. 

8.2 Properties of Spectral Entropy 

8.2.1 Shannon Form of Spectral Entropy 

In order to use the Shannon definition of Eq. (8.3) to calculate the entropy of a continuous power 

spectrum S(w), the continuous-frequency distribution must be approximated by a histogram 

obtained by sampling S(w) at N discrete frequencies wi = ib..w, i = 1, 2, ... , N. Figure 8.1 

1Shannon's classic 1949 paper "A mathematical theory of communication" is conveniently accessed in a recently 
published volume of his collected papers edited by Sloane and Wyner (1993). 
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S(w) 

S(w;) - --------------

····· 
(J) 

W; :+~w+: 
' ' 

Figure 8.1: Histogram approximation to a continuous-frequency spectrum. The spectrum S(w) is 
sampled at discrete frequencies Wi with a sampling resolution (histogram binwidth) of ~w. 

illustrates the procedure. We assume that the frequency resolution b,,.w is fine enough to give 

reasonable fidelity. The relative height of each histogram bin provides the distribution of discrete 

spectral probabilities Pi, 

N 

where LPi = 1. (8.4) 
i=l 

Unfortunately we discover that the naive replacement of a continuous frequency function 

S(w) by its histogram samples S(wi) produces incorrect entropy results. This is because a 

b,,.w --+ 0 limiting value for information entropy does not exist: taking ever finer frequency 

samples improves the spectral resolution but gives a spectral entropy which grows monotonically 

with the number of samples, so does not converge. For example, consider an N-sample spectrum 

that is perfectly flat over the region of interest, and that therefore has maximal entropy. For 

such a band-limited white spectrum, the N bin-probabilities are equal, 

1 
Pi= N, 

giving a discrete spectral entropy of 

i = 1, 2, ... , N 

H1 - (p1 lnp1 + P2 lnp2 + ... + PN lnpN) 

- ( i{ ln i{ + i{ ln i{ + ... + i{ ln i{) 
-ln i 
lnN 

(8.5) 

(8.6) 

which increases without limit as N--+ oo. This result suggests the replacement of Eq. (8.3) with 

a normalized form, 
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N 

H norm 1 ~ l 
1 = -lnN ~Pi npi 

i=l 

(normalized discrete entropy) (8.7) 

that is guaranteed to have a value in the range [O, 1]. However, this revised definition is also 

unsatisfactory, since any reasonable spectrum, no matter how non-uniform, will, in the N-+ oo 

limit, tend to an entropy value of unity. I will demonstrate this later for the case of a band-limited 

Lorentzian spectrum. 

8.2.2 Histogram Spectral Entropy 

While Eqs {8.3) and (8.7) are correct representations for the entropy of a distribution which is 

truly discrete, what we require is a form which retrieves an accurate estimate of the entropy of 

the underlying continuous spectrum from which the discrete spectral samples were drawn. 

We assume that the underlying spectrum S(w) is upper-band limited to some maximum 

frequency WJim, i.e., S(w) = 0 for w > WJim· Let s(w) be the PDF (probability density function) 

of S(w), where O ~ w ~ WJim, then 

(W!im 
Jo s(w) dw = 1. (8.8) 

The spectral entropy for the continuous S(w) will be given by the integral 

Hw = -1wlim s(w) lns(w)dw ( continuous spectral entropy). (8.9) 

From the s(w) density function we construct a histogram of binwidth Aw using the set of PDF 

spectral samples Si. We require the histogram to have unit area, so 

N 

LSiAW = 1 
i=l 

and the entropy for the area-normalized histogram will be 

N 

H2 = -AwLsilnsi 
i=l 

(histogram spectral entropy) 

(8.10) 

(8.11) 

where N Aw= WJim· Unlike the H1 discrete entropy of Eq. (8.3), the histogram entropy H2 has 

the desired property of converging to the "true" H value in the limit as N-+ oo and Aw -+ 0. 

Thus H2 is an unbiased estimator for Hw. This assertion will be demonstrated in Sect. 8.4. 

8.2.3 Linking Histogram Entropy to Shannon Information 

What is the link between histogram entropy H2 and information entropy H1? Comparing the 

unit-summation equations (8.4) and (8.10) gives 

N N 

1 = LPi = LSiAW (8.12) 
i=l i=l 

so 
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Pi 
~w· 

Substituting this result in Eq. (8.11) provides the linking relationship, 

N 
H2 = - ~ _i ln _i ~w p· ( p· ) 

~~w ~w 
i=l 

- LPi lnpi + LPi ln~w 

Thus H1 and H2 are identical only in the special case ~w = 1. Rearranging, 

(8.13) 

(8.14) 

(8.15) 

so as ~w --. 0, H1 will overestimate H2, with the discrepency growing to infinity as ln CL). 
In view of this inherent ~w-dependent bias, the discrete information entropy H1 is not a use­

ful measure of the spectral flatness of continuous-frequency signals such as EEG. Instead, the 

histogram entropy H2 should be used since it provides an unbiased estimate of the underlying 

continuous spectral entropy Hw. 

8.2.4 Normalizations for Spectral Entropy 

It is convenient to normalize Hw and H2 so that they return maximum values of unity for an 

ideal band-limited flat spectrum. From Eq. (8.8), such a spectrum has the rectangular PDF 

s(w) 

giving a two-level block histogram 

1 
0 ~ W ~ WJjm 

WJim 

0 , otherwise 

1 
N~w' 

0, i > N. 

(8.16) 

(8.17) 

Substitututing these probability distributions into Eqs (8.9) and (8.11), we obtain expressions 

for the spectral entropy upper bounds, 

H!:}ax = - {Wlim _1 ln [-1 ] dw 
lo WJim WJim 

lnWJim (8.18) 

and 
N 

H2ax = - ~ N ~w ln [ N ~w] ~w = ln [N ~w] (8.19) 

and hence the final equations for spectral entropy, normalized with respect to an upperband­

limited flat spectrum, are 
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1 1W[im 
--1 - s(w) ln s(w) dw 

nWJim 0 
(8.20a) 

( normalized continuous entropy) 

where 

and 

s(w) 

Hnorm 
2 

S(w) 
(8.20b) 

~w N 

- 1n [ N ~w J ; si ln Si (8.21a) 

( normalized histogram entropy) 

where 

(8.21b) 

It is interesting to recognize that for any sufficiently jagged spectrum, both histogrammed 

and continuous entropies can return negative results, unlike the discrete entropy H 1 which can 

never be smaller than zero. Since H2 = H1 +ln~w (Eq. 8.14), a negative H2 entropy will occur 

whenever the spectral resolution ~w is sufficiently fine that its logarithm "swamps" the positive 

H1 information entropy, i.e., 

~w < exp(-H1) (8.22) 

Table 8.1 summarizes the three kinds of spectral entropy discussed in this chapter. 

8.3 Spectral Entropy for Lorentzian and Gaussian Distributions 

8.3.1 Lorentzian Distribution 

I will now derive the entropy of a Lorentzian spectral distribution. The continuous-frequency 

Lorentzian is of particular relevance to any white-noise-driven system-such as our adiabatic 

macrocolumn-which can be modelled as a Brownian or diffusive process. As well as being of 

theoretical interest, this continuous-frequency result provides an ideal test-bed against which 

Table 8.1: Summary of discrete and continuous spectral entropies. All summations assume N samples 
indexed from 1 (i.e., L!i) at frequency spacing Dow up to maximum frequency WJim = N Dow. The 
continuous entropy is defined over the band-limited frequency domain O ~ w ~ Wtim via integrals of the 
C fWlim dw 1orm Jo . . . . 

Name Definition PDF Normalized Entropy 

Shannon information H1 = - LPi lnp; p; = rst6 Hnorm _ ..!i..J..... 
1 - lnN 

Histogram entropy H2 = -Dow Ls; lns; s Hnorm_~ 
S; = LI.wt S, 2 - In NLl.w 

Continuous-frequency entropy Hw = - J s(w) ln s(w) dw ( ) S(w) 
SW = f S(w)dw 

Hnorm _ --1L.,_ 
W - lnw11m 
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the predicted properties of the discrete H 1 and H2 spectral entropy estimators can verified. For 

example, using this theoretical result we will be able to demonstrate that the H2 discrete entropy 

provides an unbiased estimate of Hw continous entropy. 

Consider the prototypical single-sided Lorentzian spectrum 

S(w) 1 
o:s;w<oo (8.23) 

k2 + w2' 

0 , otherwise 

whose decay-rate k sets the half-power or -3-dB frequency. Following Eq. (8.20b) with WJim --. 

oo, we convert the spectrum to a probability density function (PDF) by normalizing with respect 

to total spectral area 

S(w) 
s(w) = fa°° S(w) eu,.;. (8.24) 

The area for the Lorentzian distribution is 

1 1(W)loo k tan- k o 
7r 

2k 
(8.25) 

giving the Lorentzian PDF 

2k 1 
s(w) = - k2 2. 

7r +w (8.26) 

The continuous spectral entropy Hw is obtained by evaluating the negative of the expectation 

value of ln s(w): 

- fo 00 s(w) ln s(w) eu,.; (8.27) 

r= 2k 1 1 [2k 1 ] CU,.; 
- lo -:; k2 + w2 n -:; k2 + w2 

[
00 ln [ k2 + w2] eu,.;} 

lo k2 + w2 

The value of the definite integral Ii is tabulated [see formula 4.295.7 on p.560 of Gradshteyn 

and Ryzhik (1965)2]: 

7r 
Ii = k ln2k, (8.28) 

thus enabling us to write the spectral entropy Hw for the continuous Lorentzian spectrum in a 

simple and elegant closed form which depends only on k, the Lorentzian decay-rate: 

2The tabulated integral reads: 

l oo ( 2 2 2) 1 .!!... In [ag + be] ' In a + b x · 2 2 2 dx = 
o C + g X cg g 

a,b,c,g > 0 

which solves our integral when b = g = l and a = c = k. 
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Hw = ln(21rk) (Lorentzian spectral entropy). (8.29) 

Examining this result, we see that the Lorentzian spectral entropy Hw exhibits the following 

limiting and scaling behaviours: 

1. Hw -+ +oo as k -+ oo. As decay-rate k increases, we approach the white-noise flat­

spectrum limit in which energy is uniformly distributed over all frequencies, giving extreme 

maximum spectral entropy. 

2. Hw = 0 when k = 1/21r. If the spectrum is sufficiently jagged, its entropy can be zero, and 

a more jagged spectrum will have a negative entropy. This possibility of a negative con­

tinuous entropy is quite unlike the behaviour of the discrete Shannon entropy of Eq. (8.3) 

which can never go negative. 

3. Hw -+ -oo as k -+ 0. In this limit the Lorentzian distribution tends to the infinitely­

peaked delta-function 8(w) which is zero everywhere except at zero frequency. For this 

delta-spike spectrum, spectral entropy reaches its extreme negative value. 

4. The numerical value for spectral entropy is frequency-scale dependent. Consider the trans­

formation of the prototypical Lorentzian of Eq. (8.23) from angular frequency w [rad/s] to 

linear frequency f [Hz] via the change of variable w = 21r f. Then Eq. (8.23) is rewritten 

1 
S(f) = k2 + (21r !)2 

1 
47r1 

K2+J2 

where K = k/21r, leading to a revised spectral entropy HJ 

Hi= ln(21rK) = lnk. 

Comparing Eqs (8.29) and (8.31), we see that Hi is smaller than Hw: 

H1 lnk 

ln(21rk) - ln(21r) 

Hw - ln(21r), 

(8.30) 

(8.31) 

(8.32) 

a rather surprising result. It seems that the numerical value for spectral entropy depends 

on the choice of spectral unit [rad/s or Hz]. On reflection, this can be understood in terms 

of the relative size of the two units. The hertz is the larger unit, so when a given Lorentzian 

spectrum is graphed against a horizontal frequency scale expressed in Hz, the spectrum 

will decay more rapidly with respect to the numerical values on that scale, consequently 

the spectrum will be "less flat," giving a smaller entropy result. Still, this scale-dependence 

of the continuous spectral entropy is a little disconcerting. 

Normalization for Lorentzian Spectral Entropy 

Any real experiment involving a Lorentzian process will necessarily be band-limited to some up­

per limit frequency Wiim· In principle we could determine the spectral entropy of a band-limited 
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Lorentzian by replacing oo by WJim in the integrals of Eqs (8.24) and (8.27), but unfortunately the 

resulting expression for H cannot be integrated analytically and must be computed numerically. 

An alternative approach to band-limiting is to reference the entropy of the unlimited Lorentzian 

against the maximum entropy achievable on the band-limited domain O ~ w ~ WJim as illustrated 

in Fig. 8.2. The reference is then the rectangular spectrum of Eq. (8.16) which is flat up to Wiim, 

and zero beyond: 

1 

WJim 
0 ~ W ~ WJim (8.33) 

0 , otherwise 

and whose spectral entropy (from Eq. 8.18) H~ect is, 

H rect 1 
w = nWJim. (8.34) 

Thus we may define a Lorentzian spectral entropy H~orm which has been normalized with respect 

to a band-limited rectangular reference, 

( normalized Lorentzian entropy). (8.35) 

With this normalization, H~orm = 1 when k = WJim/21r, meaning that for this value of 

decay-rate k, the entropy of the open-ended Lorentzian matches that of a rectangular reference 

spectrum which is upper-band limited to WJim· 

8.3.2 Gaussian Distribution 

Is the simple Eq. (8.29) Hw ex ln k relationship between spectral entropy and decay rate k unique 

to the Lorentzian distribution? It seems that the answer is no, since the Gaussian distribution 

also shares this property. Consider the single-sided Gaussian spectral distribution, 

Lorentzian spectrum S(co) 

OdB 

-3dB 

0 k co 

Rectangular spectrum 

0 co 

Figure 8.2: Establishing a rectangular reference for an open-ended Lorentzian spectrum S(w) 
1/(k2 + w 2); decay-rate constant k sets the half-power point. The entropy of a band-limited rectanglular 
spectrum can be used to normalize the entropy of the open-ended Lorentzian. 
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S(w) exp [-w2 /2k2] 

o, 

The PDF for the one-sided Gaussian is 

s(w) 

where the area normalization N is 
N 

O<w<oo 

otherwise. 

N = 100 e-w2/2k2 dw = !~ k. 
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(8.36) 

(8.37) 

(8.38) 

which was obtained via an integral identity. 3 The spectral entropy for the half-Gaussian is then 

Hw = -100 s(w) ln s(w) dw 

-100 s:;) ln [ s:;)J dw 

-! {1 00 
S(w)ln S(w) dw - lnN 100 

S(w) dw} 
1 

- N {Ii - NlnN} (8.39) 

where the integral Ii is 

11 = {000 e-w2/2k2 (-w2) dw = __ 1_ roo 2 -w2/2k2 dw = -~ ~ 
j o 2k2 2k2 j O W e 4 V L.7r 

(8.40) 

and we have made use of a second exponential identity.4 Substituting Ii in Eq. (8.39) gives the 

result we seek, 

- Ii + lnN 
N 

! + ln [!~k] 
ln e112 + ln [ ! ~ k] 
ln [ ! ~ k] (half-Gaussian spectral entropy). (8.41) 

For completeness, I have also calculated the entropies for the full (i.e., double-sided) Gaussian 

and Lorentzian distributions; the results are summarized in Table 8.2. Because the double­

sided distributions have even symmetry about zero frequency, there is a factor of two difference 

between the single- and double-sided area normalizations, and this comes through as a factor of 

two difference in the logarithm arguments for entropy (refer to last column of Table 8.2). 
3 Spiegel (1968), p.98, integral 15.72: 

100 
-ax2 d _ 1 l e X - - -

o 2 a 

4 Spiegel (1968), p.98, integral 15.77: 

100 r(2!) 
0 

x2 e-ax2 dx = 
2a3/2 

1~ 
4 y-;; 
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Table 8.2: Spectral entropy values for Lorentzian and Gaussian spectra. Here N is the area normal­
ization, N = J S(w) dw, from which the spectral PDF is constructed: s(w) = S(w)/N. 

Spectral Shape Domain N Spectral Entropy 

Half-Lorentzian [O, oo) 1r/2k ln (21rk) 

Lorentzian (-oo, oo) 1r/k ln ( 47rk) 

Half-Gaussian [O, oo) !J21rk ln ( ! \/'27re k) 

Gaussian (-oo, oo) v21rk ln ( \/'27re k) 

It is instructive to compare the form of the PDF for the double-sided Gaussian spectrum 

drawn from Table 8.2 

( ) 1 -w2/2k2 s w = --e 
k ../5:rr 

(8.42) 

with that of a standard Gaussian PDF p(x) whose mean is zero and whose standard deviation 

is er, 

( ) - 1 -x2 /2a2 
px - rrce . 

CT V 21r 
(8.43) 

It becomes immediately clear that for the special case of the double-sided Gaussian spectrum, 

the decay-rate parameter k is identical to the standard deviation er. So our Hw ex ln k result 

permits the intuitively pleasing conclusion that the spectral entropy of a Gaussian spectrum is 

directly proportional to the logarithm of the standard deviation of the distribution. In fact, the 

Gaussian distribution is a significant limiting case since, of all possible PDFs, it is the one which, 

for a given standard deviation, has maximum entropy. This was proved by Shannon using the 

calculus of variations (Shannon and Weaver, 1949). 

Figure 8.3 compares the Lorentzian and Gaussian double-sided spectral profiles. Relative to 

the Gaussian, the Lorentzian is peakier, yet decays to zero much more slowly-so has "heavier 

tails." 

8.4 Numerical Verification of Spectral Entropy Properties 

In this section I will verify numerically the claims made earlier regarding the theoretical prop­

erties of the three forms of spectral entropy: Shannon information, histogram entropy, and 

continuous-frequency entropy. In particular, I will demonstrate that histogram entropy H 2 pro­

vides an unbiased estimator for continuous-frequency entropy Hw. 

From the previous work we know that the spectral entropy of a Lorentzian spectrum is 

directly proportional to the logarithm of the decay constant k. Provided the spectrum is sampled 

sufficiently finely, i.e., provided Llw is sufficiently small, we would expect that an unbiased 

discrete entropy measure should recover this underlying logarithmic relationship. 

For the numerical experiments I chose a frequency range O ~ w ~ 1000 rad/s, and computed 

the discrete entropies for a comprehensive set of Lorentzian spectra whose decay rates varied 
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Figure 8.3: Comparison of Lorentzian and Gaussian spectral profiles. The Lorentzian profile is 
5Lor(w) = k2 /(k2 + w2 ), and the Gaussian is 5Gau(w) = exp(-w2 /2k2 ). For both distributions, the 
spectral entropy is logarithmically proportional to the decay constant: Hw ex ln k. 

over 51 decades, from k = 0.01 rad/s, an extremely de-peaked spectrum, to k = 2560 rad/s, 

a relatively flat spectrum. The effect of k variation is illustrated in Figure 8.4 where we see 

three sample spectra with successive k-values spaced at geometric intervals of x 16 (i.e., k E 

{ko, 16ko, 162 ko} with ko = 5 s-1), covering a range ink of """21 decades. 

For each single-sided, continuous Lorentzian curve, I sampled the spectrum at three different 

frequency resolutions, Llw E {0.1, 1, 10} rad/s, over the frequency range O :S w :S 1000 rad/s, 
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Figure 8.4: Three double-sided Lorentzian power spectra illustrating the influence of the k decay-rate 
constant. 
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and, for each resolution, computed the corresponding Shannon (H1) and histogram (H2) discrete 

entropies. These discrete values could then be compared with the continous entropy prediction 

Hw = ln(21rk). In all, a total of 19 spectra were assessed. The 19 k-values were chosen to be at 

octave intervals [k/ko E {2-9 , 2-8 , 2-1 , ... , 29 } with ko = 5 s-1 J in order to give uniformly-spaced 

points when plotted on a logarithmic axis. 

Figure 8.5(a) demonstrates that the magnitude of the H1 Shannon entropy depends on the 

frequency resolution ~w. Only when ~w = 1 rad/s (t:. points) do the H1 measurements line up 

with the Hw prediction for continuous open-ended Lorentzian spectra (bold linear trend). For 

the coarser sampling of ~w = 10 rad/s ( x points), the number of sample points per spectrum 

is reduced by a factor of 10, and the Shannon entropy reduces by ln 10 = 2.3026 ... , resulting 

in a downwards offset of these points relative to the ~w = 1 trend. If the sampling density is 

increased to ~w = 0.1 rad/s (o points), the H 1 values rise by ln 10. Thus it becomes apparent 

that Shannon information will grow without limit as the frequency resolution is made ever finer. 

At the high-k end of the range, the discrete entropy curves of Fig. 8.5(a) deviate away 

from the expected ln(21rk) trend towards individual saturation plateaus. This is an unavoid­

able consequence of the fact that all sampled spectra are necessarily band-limited, in this case 

to an upper-frequency limit of WJim = 1000 rad/s (as plotted in Fig. 8.4). The bold line of 

constant slope is the (unachievable) theoretical ideal for an open-ended Lorentzian which goes 

on to infinite frequency, hence its Hw(oo) label. The curved trend-line labelled Hw(lim) is the 

numerically-computed entropy graph for Lorentzian spectra which are abruptly truncated at 

(i.e., assumed to be zero beyond) the limiting frequency WJim = 1000 rad/s. It is reassuring to 

note that the ~w = 1 measurements (t:. points) accurately follow this curved trend-line. 

At the low-k end of Fig. 8.5(a), the discrete entropy measurements "bottom-out" to a limiting 

value of zero, deviating away from the Hw ( oo) line which inexorably approaches negative infinity 

ask goes to zero. This mismatch can be regarded as a sampling-fidelity error: the low-k spectra 

are so strongly de-peaked that they become like 8(w) functions, and therefore can only be 

adequately represented if they are sampled very finely indeed. Note that of the three sampling 

intervals tested, the curve which exhibits the least low-k "distortion" is that which has the best 

sampling resolution ( o points: ~w = 0.1 rad/s). 

Figure 8.5(b) demonstrates the effect of dividing the Shannon entropy measurements by a 

normalization factor ln N, where N = 1 +wiim/ ~w is the number of spectral samples drawn from 

each spectrum. For the continuous entropy, the normalization is ln WJim, so that H~orm ( oo) = 1 

when ln(21rk) = lnw1im, giving k = 1000/21r and log10 k = 2.2018 (see vertical dashed line drawn 

to the x-axis). Although the three sets of Shannon measurements are now constrained to lie 

in the interval [O, 1], they no longer share the same mid-range gradient: in fact, the gradient 

increases with the number of sample points, and, in the limit ~w --. 0, the normalized Shannon 

entropy will converge unhelpfully to unity. 

Figures 8.5( c) and ( d) are the corresponding set of graphs for the H2 histogrammed entropy. 

The vertical offsets apparent in Fig. 8.5(a) have disappeared in Fig. 8.5(c), and there is now 

excellent agreement between the discrete H2 and continuous Hw(lim) curves for the mid- and 

high-k range of spectra. The distortion arising from undersampling at the low-k extreme is 

still present, of course, but it is clear that the distortion is reduced as the sampling fidelity is 
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improved. It is also apparent that the histogrammed entropy has the correct limiting behaviour: 

in the limit ~w --+ 0, the underlying continuous entropy curve is recovered, demonstrating 

graphically that H2 is an unbiased estimator for the (band-limited) Hw, 
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Figure 8.5: Comparison of Shannon and histogrammed entropies for 19 Lorentzian spectra. The band­
limited spectra, defined over the frequency range O ::; w ::; 1000 rad/s, were sampled with three different 
frequency resolutions: ~w = 10 (x), 1 (t.), and 0.1 rad/s (o). The bold straight line labelled Hw(oo) gives 
the theoretical open-ended continuous-frequency entropy Hw = ln 21rk, and the non-bold curve labelled 
Hw(lim) gives the entropy for a Lorentzian which is truncated abruptly at frequency WJim = 1000 rad/s. 
(a) Shannon entropy H 1 increases in absolute value as frequency resolution is made smaller, and does 
not recover the underlying continuous entropy except for the special case ~w = 1 rad/s. (b) Normalized 
Shannon entropy exhibits an increase in gradient as ~w is made smaller. (c) Histogrammed entropy H2 
recovers the underlying Hw entropy with improving fidelity as ~w is made smaller. (d) The normalized 
histogram entropy H!]orm is a well-behaved estimator of H~orm. The point marked with a filled square 
( •) in (b) and ( d) highlights the value of decay constant k at which the open-ended spectral entropy 
reaches a normalized value of unity. 
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This excellent limiting behaviour of the H2 measure is in no way spoiled when we normalize 

it via a division by ln[N ~w] (Fig. 8.5(d)). The H2°rm values are thereby constrained to a 

maximum positive value of unity. If ~w is made sufficiently small, and the spectrum is strongly 

de-peaked (i.e., has a very small k-value), then H2orm can go negative as it tracks the theoretical 

ln(21rk) trend. This is quite unlike Shannon information whose minimum value is zero. 

8.5 Applications of Spectral Entropy 

8.5.1 Spectral Entropy for the Adiabatic Macrocolumn 

Having completed this rather detailed investigation of the general properties of spectral entropy 

and its estimation via discrete measures, we finally are ready to apply this statistic to the 

steady-state fluctuation spectra generated by the adiabatic macrocolumn. We are particularly 

interested in tracking the changes in spectral entropy as the macrocolumn changes state under 

the influence of a GABA anaesthetic agent; both induction and emergence transitions will be 

examined. 

The theoretical form of the linearized fluctuation spectrum for the adiabatic macrocolumn 

was presented earlier as Eq. (5.58a), 

S[he(w)] = I_ Ar2D22 + A~2D~1 + Duw2 
2 

21r (A11A22 - A12A21 - w2) + (Au + A22) w2 
(8.44) 

where the elements of the drift matrix A and diffusion matrix D were listed in Eqs (5.23) and 

(5.22) respectively. Three-dimensional waterfall graphs of the adiabatic spectral variation with 

GABA anaesthetic effect ,\ appeared in Fig. 5.7 (p. 85). 

Using the fluctuation spectra calculated from Eq. (8.44), I computed the normalized his­

togram entropy H2°rm (Eq. 8.21) with 1-Hz histogram bins for frequency ranges 0-5000 Hz 

and 0-400 Hz. See Fig. 8.6. Superimposed on these graphs are the point data measurements 

extracted from adiabatic simulation runs performed by L. Wilcocks (2001), and described in 

Sect. 7.5.1. 

For both frequency bands, the spectral entropy is higher on the high-firing upper branch, 

and lower on the bottom branch. This is consistent with the notion that spectral entropy will 

be large when the spectrum is relatively flat or "white" (all frequency bins equally populated), 

and small for a peaked spectrum (low-frequency bins more favoured than high-frequency bins). 

As the 3D plots in Fig. 5.7 show, for small values of,\ the shape of the adiabatic power spectra 

for the top branch is considerably flatter than for the bottom branch. As ,\ - 1.53 along the 

top branch, the total fluctuation power rises to a peak, but its spectral distribution becomes 

increasingly concentrated towards lower frequencies, so the spectral entropy decreases to a local 

minimum at the A3 critical point immediately prior to the A3 - Q3 induction jump. 

For the Q3 - Q1 emergence trajectory along the bottom branch, the fluctuation spectra 

become even more de-peaked, hence the steep decline in spectral entropy in anticipation of the 

Q1 ---t A1 jump return to the upper branch. 
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8.5.2 Spectral Entropy for the Anaesthetized Patient 

We have recently become aware of clinical research by Viertio-Oja and colleagues (Viertio-Oja 

et al., 2000) investigating the feasibility of using spectral entropy of patient EEG as a robust 

measure of depth of anaesthesia. 105 patients undergoing routine general anaesthesia were 

monitored using 12-lead EEG. The state of consciousness was manually scored by an expert 

observer using the 6-level OAAS scale (observer's assessment of alertness and sedation: 5 = 
fully awake; 0 = deep anaesthesia). Loss of consciousness is defined as the transition from 

OAAS 3 to OAAS 2. After the transition, the patient no longer responds to spoken commands 

and the eyelid reflex is lost. 

The OAAS scores were compared with the EEG spectral entropy values, and it was found 

that the entropy tracked the anaesthesiologist's rating, with loss of consciousness occurring at 

a universal critical value of entropy (Hform = 0.73) which was found to be patient indepen­

dent. Figure 8.7 illustrates the strong correlation between the EEG measure and the observer 
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Figure 8.6: Theoretical prediction and simulation results for spectral entropy H2°rm for (a) 0-5000 Hz, 
(b) 0-400 Hz; solid lines: prediction; discrete points: simulation results. Spectral entropy is typically 
high on the upper (active) branch, and low on the quiescent branch. For induction into unconsciousness, 
spectral entropy declines steeply but continuously. In contrast, during emergence into consciousness the 
spectral entropy makes a discontinuous upwards jump at transition. The points labeled A3 and Q1 mark 
the cusps in fluctuation power which occur at the instant preceding induction into unconsciousness, and 
preceding emergence from unconsciousness, respectively. [Source: Discrete points furnished by L.Wilcocks 
(2001)] 
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(a) Spectral Entropy 

0.8 

0.75 

0.7 

0.65 '-------'-------'--------'-------'-'-__.._,----'.._._----"-L......C...._ __ _._.w..L._._ ......... 
2 4 6 8 10 12 14 

(b) OAAS Level 

2 4 6 8 10 12 14 

Time (min) 

Figure 8.7: (a) Spectral entropy derived from patient scalp EEG during induction of anaesthesia. 
Dashed curve shows 5-s averages; heavy curve shows one-minute median-filtered averages. The EEG 
was sampled at 10,000 s- 1 , decimated to 500 s- 1 , and processed in 5-s segments. For each segment, 
spectral entropy was calculated using a frequency-histogram binwidth of 0.2 Hz. (b) OAAS ( observer's 
assessment of alertness and sedation) level as assessed by an anaesthesiologist. Level-5 is fully awake; 
level-0 is a deep hypnotic state in which the patient shows no response to tetanic stimulation of the 
ulnar nerve (50 mA, 5 s). In both figures, the horizontal line shows the level at which transition from 
consciousness to unconsciousness occurs (OAAS 3 -+ 2). [Data supplied courtesy H. Viertio-Oja, and 
reported as patient 75 in Anesthesiology News, vol. 26, no. 4, 2000.] 

assessment of consciousness. 

Comparing the clinical results of Fig. 8. 7 against the adiabatic prediction of Fig. 8.6, there is 

good qualitative agreement for the induction trajectory: adiabatic spectral entropy declines as 

the macrocolumn transits from the high-firing upper branch to the low-firing quiescent branch; 

this parallels the decline in clinical spectral entropy as the patient becomes anaesthetized. In 

both cases, the rate of decline is steepest at transition. 

However, theory and experiment diverge for the emergence trajectory. The adiabatic theory 

predicts that once the macrocolumn has reached the low-firing branch, reducing the anaesthetic 

concentration should lead to ever-diminishing spectral entropy as the macrocolumn approaches 

the Q1 critical point from the right, yet the clinical measurements seem to bottom-out at a 

minimum value of ""'0.66. 

A possible explanation for this discrepancy might be that the stochastic fluctuations for the 

bottom-branch macrocolumn are expected to be very much smaller than for the top-branch 
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(compare the "before" and "after" fluctuation amplitudes of Fig. 7.8), consequently the stochas­

tic component of the unconscious cortex could easily be swamped by any broad-band cortical 

resonances generated by the relatively ordered macrocolumns of the hyperpolarized cortex. 

It is interesting to observe that the critical spectral entropy value of 0. 73 (horizontal line 

drawn in Fig. 8.7(a)), identified by Viertio-Oja as separating the conscious and unconscious 

states, would serve equally well to demarcate the active and quiescent branches of the adiabatic 

macrocolumn of Fig. 8.6(a). 

Unfortunately I suspect that this apparent congruence may be somewhat fortuitous, for two 

reasons. First, the adiabatic model predicts the raw, unfiltered soma voltage fluctuations for a 

single macrocolumn, whereas any real EEG measurement will be the spatial sum of the voltages 

generated by the thousands of macrocolumns sampled by the scalp electrode, and which have 

been low-pass filtered by the intervening cerebra-spinal fluid, skull, and skin. Our modelling 

ignores filtering and spatial averaging effects. In addition, as remarked earlier in Sect. 7.5.1, 

our saturation firing rates of s~ax = syiax = 1000 s-1 are probably too high by an order of 

magnitude, leading to a theoretical fluctuation spectrum which is over-broad. 

Second, in her calculations for spectral entropy, Viertio-Oja applied the Shannon information 

formula5 Hrorm = - I::plnp/lnN (see Table 8.1 on p. 153), rather than the H~orm histogram 

form which would have compensated for the non-unity (!::.f = 0.2 Hz) frequency interval. Based 

on the numerical experiments summarized earlier in Fig. 8.5(b) on p. 161, since D.f < 1, the 

critical Shannon value of 0. 73 is likely to be an overestimate of the underlying continuous-entropy 

value at induction. We can generate a corrected value for the critical entropy if we know the 

number of frequency bins used in the analysis. Let us suppose, for definiteness, that the EEG 

frequency analysis extended to 47 Hz (this allows a 3-Hz safety margin in order to stay clear of 

any 50-Hz mains-induced electrical artifacts). Then, for D.f = 0.2 Hz, we have 

N D.f = 4 7 Hz ===> N = 235 bins. 

From Eq. (8.14), writing D.f for the frequency interval, 

(8.45) 

Dividing through by ln[N D..f] gives the normalized histogram entropy, 

ln[N!::.f] 

H1 ln!::.f 
= ln[N !::.f] + ln[N D..f] 

ln N Hnorm ln D.f 
ln[N D..f] 1 + ln[N D..f] 

(8.46) 

which, after substituting the assumed value for N, and the known values for Hr0 rm and !::.f, 

gives the revised (and lowered) value for critical entropy: 

(8.47) 

5 Personal communication, H. Viertio-Oja (2000) 



166 Spectral Entropy and Correlation Time 

Even after histogram correction for a non-unity frequency interval, it is clear that the signature 

value for spectral entropy (i.e., the critical entropy level which separates the conscious and 

unconscious states) will depend on the bandwidth used in the spectral analysis. 

8.6 Correlation Time and its Relationship to Spectral Entropy 

For the single-sided Lorentzian fluctuation spectrum whose half-power frequency is k [rad/s] 

S(w) 
D 

0:Sw<oo (8.48) 
k2 + w2' 

0 , otherwise 

we have demonstrated (see Table 8.2) that the spectral entropy is 

Hw = ln(21rk) . (8.49) 

By applying the Wiener-Khinchin theorem (see Sect. 2.4) to Eq. (8.48), we obtain the autocor­

relation function, 

(8.50) 

where we define T = 1/k as the correlation time of the fluctuations. (T is sometimes referred 

to as the decorrelation time since for lags T > T the fluctuations are effectively uncorrelated.) 

Substituting T in Eq. (8.49) gives the inverse relationship between correlation time and spectral 

entropy, 

Hw = - ln(21rT) (8.51) 

or, if the spectrum is written as a function of linear frequency f, from Eq. (8.31) we get 

H1 = -lnT. (8.52) 

Thus a short correlation time is associated with an extended k half-power frequency (i.e., a 

"flat" spectrum), and a large spectral entropy. Conversely, a long correlation time is associated 

with a small k value giving a strongly de-peaked spectrum and a small spectral entropy. 

8.6.1 Correlation Function for the Adiabatic Macrocolumn 

To what extent can these ideas linking correlation time with spectral shape be extended to 

the two-dimensional Ornstein-Uhlenbeck macrocolumn model? We know from Eq. (5.45) that 

the correlation function for ohe, the excitatory fluctuations of the macrocolumn, is the sum of 

two exponential decay processes whose decay rates are the eigenvalues A1,2 of the 2x2 A drift 

matrix: 

(8.53) 



8.6 Correlation Time and its Relationship to Spectral Entropy 167 

where the a1, a2 scale factors were defined in Eq. (5.46) in terms of the eigenvectors and 

covariance matrix entries. 

In Fig. 8.8 I have plotted Gu ( r ), and its two exponential-decay components, for six different 

locations on the Fig. 3.4 trajectory of steady states. The top three panels (a)-(c) belong to the 

top branch, and show the evolution of G11 (r) as GABA anaesthetic effect is increased towards 

the point of induction at A3. In the waterfall graph of Fig. 5.6 (p. 84) we saw a prediction 

for a surge in spectral power and a narrowing of the spectrum at the A3 critical point. The 

power surge appears in Fig. 8.8(c) as a pronounced increase in autocorrelation height at zero lag, 

and the spectral narrowing is evidenced as a broadening of the correlation function. The value 

for (generalized) correlation time T printed in each panel was calculated from the Eq. (5.52) 

definition, 
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Figure 8.8: Macrocolumn autocorrelation functions for three values of anaesthetic effect on the top 
(active) branch (a-c), and for the same three anaesthetic values on the bottom (quiescent) branch (d-f). 
The generalized correlation time T, calculated from Eq. (5.52), increases for the induction trajectory 
(A1 ------> A3 ------> Q3), and increases further for return journey along the bottom branch (Q3 ------> Q1), before 
collapsing abruptly at emergence (Q 1 ------> A1). Note the x 10 change in scale for the lag axis for the 
bottom-branch graphs (d-f). The bold curve shows the Gu(r) autocorrelation function ofEq. (8.53); its 
two exponential-decay components, o:1 e-Ai 7 and o:2e-A 2 T, are drawn with a thin pen. 
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T 

1 
0"11 

and cross-checked against the Eq. (5.54) formula 

1 [ -1 ] T=- A u 11 , 
0-11 

(8.54) 

(8.55) 

the two methods returning values for T that, to within expected precision (i.e., to within a small 

multiple of machine epsilon), were identical. 

Correlation time increases by a factor of ""4 for the Ai ----, A3 approach to induction (panels 

(a)---t(c) of Fig. 8.8), increases by a similar amount across the A3 ----, Q3 phase jump (panels 

(c)---t(f); note the decade change in scale between top and bottom panels), compounding further 

by almost an order of magnitude along the Q3 ---t Q1 emergence trajectory (panels (f)---t(d)). The 

emphatically extended correlation time in panel ( d) corresponds to the exceedingly de-peaked 

waterfall slice of Fig. 5.7(d) (p. 85) at ).. = 0.29. At this point, the macrocolumn is about to 

make its jump return from the quiescent bottom branch to the active top-branch. These pictures 

provide an excellent illustration of the critical slowing down and divergent growth of fluctuations 

in the vicinity of a first-order phase transition. 

8.6.2 Correlation Time and Anaesthetic Effect 

By repeating the Eq. (8.54) generalized correlation-time determinations for finely-stepped incre­

ments in GABA anaesthetic effect (~)..GABA= 0.01), a detailed picture showing the T-vs-AaABA 

dependence emerges-see Fig. 8.9. 

The graph shows that correlation time is longer on the low-firing Q1-Q3 quiescent branch, 

and shorter (i.e., fluctuations are less correlated) on the A1-A3 active branch where, because the 

average firing rate is higher, the intensity spectrum is broader. On both branches, correlation 

time rises to a local maximum value ( on the top branch at the A3 induction; on the bottom 

branch at the Q1 emergence) in the immediate vicinity of the change of state, although for the 

active branch, the peak at A3 only becomes readily discernible in Fig. 8.9(b) where correlation 

time is plotted on a logarithmic scale. 

8.6.3 Correlation Time and Spectral Entropy 

The second panel of Fig. 8.9 bears a remarkable mirror symmetry with the band-limited spectral 

entropy Hgorm plotted earlier in Fig. 8.6(a). To explore this apparent symmetry, I have replot­

ted the spectral entropy and correlation-time graphs in a pair of opposing panels in Fig. 8.10. 

Now the x-axis reflection symmetry becomes obvious: it seems that for the two-dimensional 

adiabatic macrocolumn, the spectral entropy of the excitatory fluctuations is, to fair approxi­

mation, proportional to the negative of the logarithm of the generalized correlation time of those 

fluctuations. 
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Figure 8.9: Generalized correlation time T as a function of anaesthetic effect for the adiabatic macro­
column plotted (a) with linear axes, and (b) with a logarithmic y-axis. Correlation time is small on 
the conscious (active) branch A1A3 , and large on the unconscious (quiescent) branch Q3 Q1. For both 
branches, maximum correlation time occurs at the A3 (induction) or Q1 (emergence) phase transition 
point. 

To test this assertion, Fig. 8.11 plots spectral entropy versus generalized correlation time, 

first with (a) linear axes, giving a close-to-exponential decay curve; and second, with a (b) 

logarithmic correlation-time axis, giving an almost-linear trend line of negative slope. (The gap 

in the thick-pen lines corresponds to the set of inaccessible (T, H~orm) coordinates belonging to 

the unstable equilibrium points on the A3Q1 midbranch of Fig. 3.4.) 

Superimposed with a thin pen on Fig. 8.11 is the normalized entropy prediction which would 

apply if the autocorrelation function could be represented as a single exponential decay curve 

whose time constant is given by T, the generalized correlation time of Eq. (8.54). The thin-pen 

prediction is 

Hnorm 
f 

lnT 
log 5000 

(8.56) 
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Figure 8.10: Comparision of the anaesthetic dependence of (a) spectral entropy and (b) generalized 
correlation time. (a) Spectral entropy H~orm calculated by applying Eq. (8.21a) to the 8he fluctuation 
spectrum of Eq. (8.44), and normalized to a frequency upper limit of 5000 Hz. [This graph is the same as 
Fig. 8.6(a), but plotted to a finer resolution (0.01 steps in >.GABA), with steady-state coordinates located 
with a different root finder (presented later in Sect. 9.2).] Note the close mirror symmetry between the 
spectral entropy graph of (a) and the correlation-time graph of Fig. 8.9(b), duplicated here for ease of 
comparison. 

where the log 5000 denominator provides the normalization to Eq. (8.52) by referencing to a 

rectangular spectrum which is flat on the frequency interval O ~ f ~ 5000 Hz (see Fig. 8.2)­

this matches the frequency range used to calculate the normalized histogram entropy Hgorm. 

Because the autocorrelation function for a two-dimensional Ornstein-Uhlenbeck process is 

the sum of two exponential decays, it is not surprising that the attempt at a single time-constant 

fit in Fig. 8.ll(b) is not particularly accurate. Nevertheless, the general conclusion that: for 

OU processes, spectral entropy and correlation time are inversely related provides a fair rule-of­

thumb for two-dimensional processes, and becomes an exact statement for the special case of a 

one-dimensional system. 
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Figure 8.11: Spectral entropy versus generalized correlation time plotted with (a) linear axes, and (b) 
a logarithmic x-axis. The bold curves are the data extracted from Fig. 8.10; the gap corresponds to the 
region of correlation-time-entropy space belonging to the unstable midbranch, therefore inaccessible to 
the macrocolumn. The continuous thin line is the entropy prediction H1orm = - ln T / ln 5000 given by 
assuming that the autocorrelation function can be approximated by a single exponential decay whose 
decay constant is given by T, the generalized correlation time. 

This conclusion suggests that instead of tracking cortical state in the frequency domain by 

way of changes in spectral entropy, one could examine the time-domain properties of the EEG 

signal, looking for increases in correlation time as an indicator of an imminent change of phase. 

This should be a particularly sensitive detector for the return of conscious awareness, since it is 

for this transition that the growth and subsequent collapse of correlation time is most dramatic. 

How robust this measure would be with respect to contamination from non-stochastic variations 

(e.g., alpha rhythms, mains electrical interference) and other artifacts (e.g., muscle-generated 

voltages) would be a matter requiring further investigation. 
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8. 7 Context of Present Chapter and Paper 2 

Some of the work in the present chapter has been reported in paper 2 (Steyn-Ross et al., 

2001b), but the reader will find that the state of knowledge reported in this thesis has advanced 

somewhat. I wish to establish the context of the present chapter with respect to paper 2, both 

for the record, and also because it nicely demonstrates the role of serendipity and surprise in 

the uncovering of new knowledge. 

It was recognized in paper 2 that at the high-frequency limit, the steady-state fluctuation 

spectrum of Eq. (8.44) is Lorentzian. (This was discussed earlier in Sect. 5.7.3; note that 

Eq. (5.70) corrects an error in Eq. (3.3) in paper 2.) Because the decay rate of the Lorentzian 

profile can be interpreted as the inverse of a correlation time for the fluctuations, I was interested 

in learning how the correlation time varied with anaesthetic effect. 

To extract the correlation times, I computed the autocorrelation functions of the theoretical 

adiabatic spectra shown in Fig. 5. 7. This was done numerically6 by converting each single-sided 

spectrum to a de-centred, double-sided spectrum, applying a Hanning window, then taking the 

absolute value of its discrete inverse-Fourier transform. The autocorrelation graphs showed an 

approximately exponential decay from a peak at zero lag. The decay time T was determined 

as the negative of the inverse-slope for a straight-line best-fit to each of the semilog plots of 

autocorrelation versus lag-time (see Eq. (5.49)). When I compared the resulting T-vs->-. graph 

(Fig. 9 of paper 2) with the spectral entropy-versus->-. graph (Fig. 7(a) of paper 2), I was struck 

by their almost perfect mirror symmetry, convincing me that there must exist a direct and 

simple relationship between spectral entropy and correlation time. This motivated the spectral 

entropy investigation reported in Sect. 8.3.1, revealing the direct logarithmic proportionality 

Hw = ln(21rk) = ln(21r /T) for an ideal Lorentzian spectrum. Then followed the attempt to 

estimate the (continuous) Hw entropy from the (discrete) Shannon information H1, and the 

discovery that a histogram correction was required if the frequency resolution for the sampled 

spectrum was other than unity. 

Finally came the realization that the Gardiner (1985, p. 111) expression for the 2x2 time­

correlation matrix for a two-dimensional Ornstein-Uhlenbeck process involved a matrix expo­

nential that could be expressed in terms of drift-matrix eigenvalues and eigenvectors, and this 

lead naturally to the Eq. (5.45) sum-of-exponentials formula for the autocorrelation function, 

and to the notion of a generalized correlation time given by Eq. (5.52). Thus the correlation time 

for the macrocolumn can now be calculated directly from the eigenvalues, giving Fig. 8.lO(b) as 

the accurate and informed replacement for Fig. 9 of paper 2. 

6 At that time I was unaware that this information could be extracted from the time-correlation matrix; the 
exposition in Sect. 5.4.2 and the development of the notion of a generalized correlation time came much later. 



Modelling NM DA Effects in the 

Adiabatic Macrocolumn 

9.1 Adiabatic Equations for NMDA Anaesthetic 

9.1.1 Modelling the NMDA Effect 

Chapter 9 

The cerebral cortex can be made less active via anaesthetic agent in either of two complementary 

ways. Either: The overall level of inhibition can be increased by lengthening the duration of 

the inhibitory post-synptic potential (PSP)-this is the mode of action of the GABA-enhancing 

class of general anaesthetics (such as propofol). Or: The overall level of excitation can be 

decreased by shortening the duration of the excitatory PSP-this is thought to be the mode of 

action of the NMDA-suppression class of anaesthetics (e.g., xenon, nitrous oxide). The earlier 

work presented in this thesis assumes a GABA-enhancing pro-inhibitory action which acts by 

reducing the 'Yi inhibitory rate-constant; the present chapter investigates the NMDA-suppressing 

anti-excitatory action which increases the 'Ye rate-constant (i.e., reduces the ,;1 time-constant). 

The GABA-enhancement adiabatic equations were presented as Eqs (4.la-4.3b). In order to 

adapt these to incorporate NMDA effects, I will replace the excitatory rate-constant 'Ye appearing 

in Eqs ( 4.2a, 4.2b) with an expression dependent on a dimensionless parameter labelled >.NMDA 

which is presumed to increase monotonically with concentration of anti-NMDA anaesthetic 

agent: 

-1 -1 SNMDA(he) _ (h , ) 
le -- le + \ = TE e, "'NMDA ' 

"'NMDA 

(9.1) 

where SNMDA(he) is a sigmoid function of the excitatory soma voltage, 

(9.2) 

The experimental basis for the sigmoid form will be given in the following section. Note that 

the NMDA-dependent time-"constant" TE defined in Eq. (9.1) depends on both the anti-NMDA 

anaesthetic concentration parameter >.NMDA and on the average membrane voltage he of the 

excitatory neurons in the macrocolumn. 

A graph for TE for variable >.NMDA appears in Fig. 9.1. Note that in the limit of >.NMDA ---too, 

TE - ,;1 , all NMDA effect has been suppressed, and the original pure-GABA model with 

,;1 = 3.3 ms is recovered. The curve shown for >.NMDA = 1 is my (deliberately approximate) 
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Figure 9.1: Dependence of NMDA-mediated time-constant TE on soma voltage. Unlike GABA­
enhancing anaesthetics whose IPSP time-decay-constant depends only on anaesthetic concentration, 
NMDA-suppressing anaesthetics have an EPSP duration which depends on both concentration and mem­
brane voltage. Maximum time-constant occurs for a fully-depolarized neuron (top-right of graph); min­
imum time-constant for a hyperpolarized neuron (lower-left). Circles are time-constants extracted from 
work reported by Hestrin et al. (1990); the >.NMDA = 1 curve is our approximate fit to these data via 
Eqs (9.1) and (9.2): S~\~1A = 83.7 ms, 9NMDA = 0.11 (mV)- 1 , BNMDA = -28 mV (see Section 9.1.2 for 
details). Anaesthetic effect deepens as >.NMDA increases. 

sigmoid fit 1 to data extracted from NMDA-effect measurements first reported by Hestrin, Nicoll, 

Ferkel, and Sah (1990), and subsequently included in one of the standard neuroscience textbooks 

(Kandel and Schwartz, 1991, p. 159). The data of Hestrin et al. are plotted in Fig. 9.1 as bold 

circles. My treatment of their measurements will now be described. 

9.1.2 Measurements of Hestrin, Nicoll, Perkel, and Sah 

Figure 9.2 shows the results reported by Hestrin et al. (1990) indicating the presence of two 

distinct components in the excitatory post-synaptic current for a hippocampus neuron: an 

"early" rapidly-decaying current pulse due to AMPA receptors, on which is superimposed a 

"late" slowly-decaying trend due to NMDA receptors. By applying APV, an NMDA-blocking 

1 It was the suggestion of M. Steyn-Ross (personal communication) to try fitting a sigmoid function to the 
NMDA current-decay data of Hestrin et al. (1990). 
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agent, this late-phase current is suppressed, revealing the underlying early-phase current. The 

significant observation from these Hestrin graphs is the fact that the decay-rate for the NMDA 

component depends on the membrane potential he: the more depolarized the membrane, the 

greater the NMDA current and the slower its rate of decay. Note that these experiments are an 

instantiation of the extreme adiabatic assumption (i.e., he varies on extremely slow time-scales) 

since the membrane voltage is held constant at preset levels by a voltage clamp. 

Estimating Tearly 

The decay-constant Tearly for the fast AMPA process can be estimated by comparing the exci­

tatory current at t = 25 ms with the peak excitatory current at t = 0. Let a be the slope of 

the fitted line for peak current J(O) versus he (• symbols in Fig. 9.2), and /3 the slope of the 

NMDA-suppressed trend line ( o symbols); then 

rarly (0) = a he 

and 

rarly (t) 

A Peak current 
/ : Late current NMDA-activated 

: / 

APV 
-40 

APV 
-80 / 

~100oA 

50 msec 

B 

- 150 

... 
~ Peak(earty)current 

(kainate-Quisqualate) 

(9.3) 

(9.4) 

pA +100 

+50mV 

-300 

Figure 9.2: Early and late components of the excitatory post-synaptic current. NMDA receptors are 
responsible for a "late," slowly-decaying component of the current which can be suppressed with appli­
cation of APV, an NMDA-blocking agent. The underlying "early," rapidy-decaying component remains. 
(A) Synaptic current shown for three different membrane potentials before and during application of 
APV. The shaded areas indicate the size of the NMDA (APV-sensitive) component. The vertical dotted 
line indicates 25 ms after the I(t = 0) current peak. (B) At each of seven membrane voltages, the peak 
synaptic current I(t = 0) was recorded for no exposure to APV (A), and with exposure to APV (l1). The 
circles show the synaptic current at 25 ms for no APV exposure ( • ), and with APV exposure ( o ). Note 
that the decay-rate of the APV-sensitive component ( •) is dependent on membrane voltage. [Source: 
(Kandel and Schwartz, 1991, Fig.11-6, p.159), after Hestrin et al. (1990)] 
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where t = 25 ms and, measuring from Fig. 9.28, the slope-ratio is a//3 = 12.57. Solving Eqs (9.3) 

and (9.4) for Tearly gives 

Tearly = 
25 ms 

= 9.88 ms. 
ln( a//3) 

(9.5) 

Encouragingly, this result is of the same order-of-magnitude as the inverse of the excitatory 

rate-constant assumed in the Liley model: ,;1 = 3.3 ms. 

Estimating 7late 

A similar procedure estimates the slow-process decay "constant" (not really a constant because 

of its he dependence). We write the decay equation for the total current as I(t), 

I(t) = I(O) e-t/rE 

where the composite time-constant TE is defined as the sum 

Solving Eq. (9.6) for TJate gives 

Tearly + TJate(he) · 

(constant) (voltage-gated) 

t 
TJate = 

ln [J (0) / I( t)] 
- Tearly 

(9.6) 

(9.7) 

(9.8) 

with the ratio in the denominator measured directly from the (t:.= I(O)) and ( • = J(t)) points on 

Fig. 9.28 at time t = 25 ms. The calculated values for TE which appear in Table 9.1 are plotted 

as circles in Fig. 9.1. We choose to fit a sigmoid which passes through the underlined (he, TE) 

table entries for the depolarized regime, but allow the sigmoid to deviate from the tabulated 

results in the hyperpolarized limit in order to match the ,;1 = 3.3 ms Liley value. This permits 

a smooth modelling transition from the pure-GABA results of the previous chapters (which 

ignore all slow-NMDA effects) to the NMDA-inclusive work of this chapter. 

Table 9.1: Variation of excitatory post-synaptic time-"constant" TE with excitatory membrane voltage 
he calculated from Eq. (9.8) for the Hestrin et al. (1990) measurements. We modify the Liley model by 
curve-fitting to the three most depolarized entries (shown underlined). See Fig. 9.1. 

he TE Tearly T}ate 

(mV) (ms) (ms) (ms) 

+20 86.9 9.9 77.0 
-20 61.7 9.9 51.8 
-40 20.2 9.9 10.3 
-60 12.8 9.9 2.9 
-80 10.2 9.9 0.25 
-100 9.9 9.9 0 
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9.1.3 Justification for the Extreme Adiabatic Assumption 

We wish to incorporate slow-NMDA effects into the macrocolumn model by assuming that on 

the time-scale of the excitatory events arriving at the post-synapse of the excitatory mean-field 

neuron, the membrane voltage he of that neuron is effectively constant. While this condition is 

precisely true of the Hestrin measurements reported in Section 9.1.2 (since the cell voltage was 

held fixed for each recording via voltage-clamping circuitry), at first glance it does not seem to 

be a valid assumption for the Liley model. Up until this point, we have taken the membrane 

time-constants to be Te = Ti = 40 ms, which is comfortably larger than the default synaptic time­

constants ,;1 = 3.3 ms, ,;1 = 15.4 ms. But when we wish to include the slow-NMDA effects, it 

is clear from Fig. 9.1 that in order to use Eq. (9.1) to replace ,;1 with Ts(he) in Eqs (4.2a, 4.2b) 

for the Iej, we are requiring that variations in he be on time-scales slower than Tfax = 87 ms. 

We describe this requirement for slow he variations as the extreme adiabatic assumption (since 

it is a more severe requirement than that needed for the earlier GABA-anaesthetic modelling). 

There do not appear to exist any compelling a priori justifications for extreme adiabaticity. 

But we will find that if we allow he to be "as slow as necessary," then the theory predicts that 

instead of three soma-voltage steady-states (two of them stable), there can be up to five steady­

states with three of these being stable to small perturbations. The discovery of this extra state, 

lying between full consciousness and coma, helps explain why the anti-NMDA anaesthetics do 

not, when used alone, induce fully-developed unconsciousness. Instead, they seem to induce a 

"disconnected" or "dream-like" state in which the EEG patterns are almost indistinguishable 

from normal wakefulness. 

There is another a posteriori justification for extreme adiabaticity. We will show that the 

model predicts that as the NMDA-anaesthetic concentration is increased, there will be a first­

order (discontinuous) transition from the upper to the intermediate stable-state at a critical value 

of concentration. This state-transition will be heralded by fluctuations of growing amplitude 

and slowing frequency, i.e., there will be a "critical slowing down" during which the spectrum of 

the he fluctuations will develop a strong peak at zero-frequency. Thus the assumption of slow-he 

becomes precisely true at the point of transition, and, in a sense, the assumption has become 

self-fulfilling since it allows for state transitions which generate the critical slowness. 

The correctness of the adiabaticity assumption can be tested by comparing the model predic­

tions for spectral and temporal changes at NMDA transition against clinical EEG measurements 

of patients treated with anti-NMDA anaesthetic agents. 

9.1.4 Incorporating Ts into the Macrocolumn Model 

As discussed in the previous section, we will assume that he varies rather slowly (i.e., the 

membrane voltage equilibrates on a much longer time-scale than its synaptic stimulation) so 

that we are justified in replacing ,;1 in Eqs (4.2a, 4.2b) with Ts(he) defined in Eq. (9.1). The 

revised adiabatic equations for the macrocolumn are now as follows: 

(9.9a) 

(9.9b) 
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Iee(he) [ (N! + Nfe) Se(he) +Pee] Gee Ts(he, ).NMDA), 

fei(he) [ (N6 + N!) Se(he) + Pei] Gee Ts(he, ).NMDA), 

Iie(hi) >.GABA [Nf Si(hi) +Pie] Gie/-yi, 

Iii(hi) = >.GABA [Nfl Si(hi) + Pii] Giehi· 

(9.10a) 

(9.10b) 

(9.lla) 

(9.llb) 

For convenient reference, we repeat the definition for the synaptic-current time- "constant" 

(9.12) 

with its sigmoid function of membrane voltage, 

(9.13) 

It is clear from these equations that we now have the scope to vary either the inhibition­

enhancement parameter >.GABA (simulating a pro-GABA anaesthetic such as propofol), or the 

excitation-suppression parameter >.NMDA (simulating an anti-NMDA anaesthetic, e.g., APV, ni­

trous oxide, xenon), or to vary both simultaneously (simulating a dual-effect anaesthetic cocktail; 

some anaesthetic agents are thought to behave in this manner). 

In the next section we will determine the new steady-states, and trace their evolution as a 

function of anaesthetic effect. We will establish the stability of these states, then compute the 

theoretical spectra for white-noise-driven fluctuations about the stable steady-states. 

9.2 Steady States for the NMDA-Sensitive Macrocolumn 

9.2.1 Root Searching 

Finding the steady-states for the NMDA-sensitive macrocolumn requires a somewhat different 

iterative scheme from that used in section 3.3.1 for the original GABA-only macrocolumn. This 

is because the Iej current equations now contain two distinct sigmoidal functions of he ( the 

firing-rate sigmoid Se(he) and the synaptic time-constant sigmoid SNMoA(he)), so it is no longer 

possible to "invert the excitatory sigmoid" to extract iterated he trial-root values. 

The revised root-extraction scheme proceeds as follows: 

1. Set dhe/dt = 0 in Eq. (9.9a). Observe that while he appears multiple times in this equation, 

hi occurs only in the Iie(hi) current. Rearrange Eq. (9.9a) to make lie the subject, 

(9.14) 

where te is the i-e current computed from the first-guess he stationary voltage, and Iee(he) 

is the corresponding e-e current computed from Eq. (9.10a): 

(9.15) 
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he 

2. Rearrange Eq. (9.lla) to make Si the subject, and replace its lie(hi) term by the te values 

from Eq. (9.14): 

(9.16) 

The inhibitory sigmoid-inverse of Si yields the first-guess hi stationary values: 

(9.17) 

where the inhibitory sigmoid function is defined in Eq. (3.6b). 

3. Set dhif dt = 0 in Eq. (9.9b), and rearrange to make lei the subject (lei is the only term 

dependent on he)- Call this l2Jhi) since this provides an estimate for the lei steady-state 

based on the hi values from Eq. (9.17), 

(9.18) 

4. Unlike the pure-GABA case discussed in Chapter 3, it is no longer possible to retrieve he 

by computing the excitatory sigmoid-inverse of l2i(hi); this is because there are now two 

independent sigmoidal functions of he in Eq. (9.10b). Instead, we allow Eq. (9.10b) to 

provide a second estimate, l2Jhe), this new estimate based on the initial he values entered 

in Eq. (9.14), 

(9.19) 

5. The difference between the Eqs (9.18) and (9.19) estimates for l2i provides an error function 

fllei, 

(9.20) 

which will be zero when (he, hi) is a stationary soma-voltage coordinate, and which will 

exhibit a sign-change as the soma voltages traverse a stationary point. By locating the 

sign-changes in fl lei, we are able to bracket the stationary-state roots, then iterate to 

convergence using the MATLAB fzero O bisection routine. 

Eq. (9.14) 

Eq. (9.15) hi lei(hi) 
Eq. (9.16) Eq. (9.18) 

Eq. (9.17) ...................... Eq. (9.20) fllei 

he 
Eq. (9.19) 

fei(he) 

Figure 9.3: Calculation of the 6.le;(he, h;) error function for the NMDA-sensitive macrocolumn. he is 
a first-guess for the excitatory steady-state voltage; hi is the corresponding first-guess for the inhibitory 
steady-state. 6.Iei = 0 at an actual (h~, h?) steady-state coordinate. 
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The calculation sequence required to compute the b..Iei error function is summarized in 

Fig. 9.3. 

As was the case for the pure-GABA macrocolumn, I found that unless the mesh of he trial 

values was made extremely fine, it was often the case that roots in the firing-rate sigmoid tails 

would be missed. To avoid the need for a dense (and computationally expensive) search grid, I 

adopted the same NaN boundary-pushing scheme described in Section 3.3.5. 

Unfortunately, and apparently because of the presence of the third sigmoid function ( the 

NMDA term of Eq. (9.13)), these boundary-point explorations now unearthed several additional 

"roots" which were clearly spurious since, although the retrieved h~ values seemed plausible, the 

retrieved h? values were invariably "stuck" at +45 m V, and the F2 rate equation (9.9b) for 

dhd dt was far from zero. In order to detect and reject these spurious roots, I added a final 

check for stationarity: a putative root must satisfy dhe/dt = 0 and dhif dt = 0 within tolerance. 

While this test should have been completely unnecessary (since the numerical algorithm was 

derived on the assumption of stationarity in the first place), the need for it seems to arise from 

the numerical stresses occurring at the NaN/real-number boundary. 

9.2.2 Distribution of Steady States 

1. Reduction to Pure-GABA Case: Infinite NMDA suppression 

In the limit of complete NMDA suppression (i.e., >.NMDA --+ oo), the behaviour of the NMDA­

enabled macrocolumn should collapse to that of the pure-GABA macrocolumn previously ana­

lyzed in Chapter 3. I used this idea to check the correctness of the steady-state roots retrieved 

via the lei algorithm of Eqs (9.14-9.20), in the infinite anti-NMDA limit, against those retrieved 

via the dual sigmoid-inverse method of Chapter 3. The graphs of Fig. 9.4 show the comparison. 

It is clear from Fig. 9.4a that the two algorithms retrieve (>.GABA, h~) steady-state coordinates 

which, to printing resolution, appear identical: the dots (lei retrievals for h~) are co-centred 

with the circles (inverse-sigmoid retrievals for h~); similarly, the crosses (lei retrievals for h?) 

are co-centred with the boxes (inverse-sigmoid retrievals for h?). That the two methods are 

distinct and do not return identical results can be established by differencing one from the other 

to compute the mismatch residues for he and hi: 

h[Iei] _ h[inv.sig.] 
e e , 

= h[Iei] _ h[inv.sig.] 
i i • 

(9.21a) 

(9.21b) 

To quantify the numerical agreement achieved by the two algorithms, Fig. 9.4b presents a 3-D 

plot showing the mismatch residues for b..he and b..hi, plotted on the z-axis, versus soma voltage 

and >.GABA· As might be anticipated, the largest residue excursions occur along the bottom 

(hyperpolarized) branch where the firing-rate sigmoids are close to zero and root-retrievals are 

consequently difficult. (The opposite extreme of saturated firing in the top-left corner also 

presents numerical difficulties: large residues become evident for >.GABA < 0.15, but are not 

shown here.) Nevertheless, for the 99 coordinates of Fig. 9.4b, the mismatch statistics (mean ± 
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show b..h~; squares show b..h?-
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standard deviation) are quite satisfactory: 

fl.he = (0.14 ± 1.74) X 10-12 mV 

fl.hi = (-0.26 ± 6.85) x 10-12 m V. 

This excellent agreement between the two algorithms gives me confidence that the lei-based 

root-retrieval code is working properly. 

2. Variable NMDA Suppression 

We have now verified that in the >.NMDA-+ oo limit, the NMDA-sensitive macrocolumn can exist 

in either one or three >.GABA-determined steady states, and that the distribution of these steady 

states is identical to that obtained for the original GABA-only adiabatic model of Chapter 3. 

Here, we will allow >.NMDA to be relaxed from this infinitely-suppressed limit in order to investi­

gate the effect of including the slow-acting NMDA neurophysiology into the model. We will find 

that the presence of the slow NMDA TE term in Eqs (9.lOa-9.lOb) permits new macrocolumn 

steady-states to come into existence. 

Figure 9.5 shows the results of a search for soma-voltage steady states for the NMDA-enabled 

macrocolumn for a range of >.NMDA NMDA-suppression factors. The >.NMDA = 1 curves in Fig. 9.5 

corresponds to incorporation of a fully-extended excitatory response, giving an EPSP decay time 

(see Eqs (9.1, 9.2) and Fig. 9.1), for a maximally depolarized macrocolumn, of 

3 3 83.7 87 0 . + 1 = . ms. 

The five other curves, corresponding to >.NMDA = 2, 3, ... , oo, demonstrate the effect of incre­

mental increases in NMDA suppression. As expected, for >.NMDA = oo the pure-GABA curve of 

Fig. 9.4a is recovered. 

The significant feature of Fig. 9.5 is the appearance of a new turning point in the vicinity of 

the ONMDA = -28 m V threshold voltage. The magnitude and curvature of this NMDA feature 

scales inversely with >.NMDA. The discovery of an additional turning point means that there 

can now be up to five stationary solutions for a given >.GABA value. For example, consider the 

>.NMDA = 3 curve: there are five (>.GABA, h~,i) intersections with vertical lines drawn through 

>.GABA = 1.5 in Figs 9.5a,b. I will demonstrate shortly that for the 5-root NMDA macrocolumn, 

three states are stable. This has important implications for predicted neural behaviour. 

For the pure-GABA macrocolumn with two stable states, only a single downward transition 

is possible: from the depolarized upper branch to the hyperpolarized lower branch. With the 

incorporation of NMDA effect into the macrocolumn, there is now the possibility of a new family 

of first-order phase transitions: an initial jump from the strongly depolarized upper branch to 

the intermediate branch at a critical value of GABA concentration, and then as >.GABA increases 

further, a second downward transition from the intermediate to the hyperpolarized branch. 

The presence of the intermediate branch also permits interesting hysteresis behaviours with 

implications for the modelling of memory and learning. 

3. Effect of Firing-Rate on NMDA Steady States 

Note that the inclusion of an NMDA term in the model means that, because the excitatory post­

synaptic potentials now have extended duration, for a given value of AoABA, the macrocolumn 
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F igure 9.5: Distribution of soma-voltage steady states as a function of >.GABA for the NMDA-enabled 
macrocolumn. Roots were recovered at 0.05 steps in >.G ABA, with additional searching undertaken to 
accurately locate each turning point. Roots were sorted by soma potential, then spline-fitted to give the 
continuous curves shown here. Top two panels show (a) excitatory (h~) and (b) inhibitory (h?) steady 
states for the default high-firing case (S:,nax = srax = 1000 s- 1) . Bottom two panels ( c, d) show alteration 
in distribution of steady states when the maximum firing rate is lowered to s:,nax = srax = 100 s-1 (black 
curves) . For ease of comparison, the high-firing curves of (a, b) are replicated in grey. 
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will tend to be more excited (i.e., more neurons firing) than previously. So if >.GABA = 1 in the 

previous pure-GABA model represented some sort of "normal" range of excitation, then enabling 

the NMDA terms will tend to give a relatively "over-excited" macrocolumn. This NMDA boost 

in excitation can be seen clearly in the upper-branch regions of Fig. 9.5a,b by comparing the 

pure-GABA (>.NMDA = oo) curve with, say, the >.NMDA = 10 curve: for a given value of >.GABA, 

we see that the upper-branch steady-state values for h~ and h? have been raised (made more 

depolarized). Equivalently, for a given soma voltage, a larger GABA concentration is required 

in order to reach the turning point at which the transition to the hyperpolarized bottom branch 

can occur. 

In short, the amount of inhibition required to anaesthetize the macrocolumn has to be 

increased in order to compensate for the excitatory boost generated by the NMDA effect. 

We can partly compensate for this (presumed) over-excitation by adjusting the saturation 

setting of the Se(he) and Si(hi) firing-rate sigmoid functions downwards from their 1000 s-1 

default value: a maximum setting of 100 s-1 is perhaps more physiologically plausible. The 

result of such adjustment is shown in Fig. 9.5c,d. By comparing the low-firing curves (in black) 

with the high-firing curves (in grey), we see that the upper-branch turning points have been 

shifted to the left by the reduction in firing rate (a smaller GABA concentration is required to 

achieve anaesthesia). However, for the hyperpolarized branch, the lower-left turning point has 

been raised and shifted to the right, indicating that in this regime the low-firing macrocolumn 

has actually become more rather than less excited. This occurs because although the inhibitory 

neurons dominate here, their average firing rate has been lowered, so there is less inhibition. 

4. Standard ..XNMDA Settings for Low-Firing-Rate Macrocolumn 

In view of the fact that the pure-GABA model seems to have predictive veracity (it successfully 

predicts the power surge, the frequency shift, and spectral entropy changes observed in clinical 

settings), it seems wise to retain the pure-GABA model as a baseline against which the behaviour 

of the NMDA-enabled macrocolumn can be compared. I will assume that the inclusion of NMDA 

effects is in the nature of a perturbative correction to the GABA model, rather than a dramatic 

replacement for what has gone before. Thus, rather than taking the "strong" >.NMDA = 1 

curves of Fig. 9.5 as being typical, I will opt for the "moderately weak" NMDA effect given 

by setting the NMDA-suppression at >.NMDA = 4, and setting the maximum firing rates at 

s:ax = syiax = 100 s- 1. This prototypical NMDA curve, which has a maximum of five steady 

states, is plotted in Fig. 9.6. Also shown is the weaker >.NMDA = 8 trajectory which is sufficiently 

NMDA-suppressed that the pair of (local) maximum and minimum >.GABA turning points which 

would have appeared at about -20 and -30 m V respectively have flattened out, being replaced 

by a point of inflection at rv-30 mV. Like the pure-GABA (>.NMDA = oo) case, this weaker 

pro-NMDA setting permits a maximum of only three steady states. 

Listed in Table 9.2 are the four "standard" pro-NMDA settings which will be used for 

comparison purposes when examining stability and spectral predictions for the NMDA-enabled 

adiabatic macrocolumn. 
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Figure 9.6: Excitatory (left) and inhibitory (right) soma-voltage steady states as a function of AGABA 

for the "moderately" (.XNMDA = 4) and "weakly" (.XNMDA = 8) NMDA-enabled macrocolumn. Maximum 
firing rates are s~ax = srax = 100 s- 1. Roots were recovered at 0.01 steps in AGABA, with additional 
searching undertaken to accurately locate each turning point. Roots were sorted by soma potential, then 
spline-fitted to give the continuous curves shown here. ( a) h~ vs AGABA; (b) h? vs .XGABA. For reference, 
the distribution of steady states for the pure-GABA (.XNMDA = oo) low-firing model is drawn with a thin 
pen. 

9.3 Stability of the NM DA-Enabled Macrocolumn 

We have established that the inclusion of NMDA neurotransmitter in the cortical model (via 

extension of the time-course of the excitatory post-synaptic potential) alters both the distribution 

Table 9.2: Reference settings for NMDA-enabled macrocolumn. Five-root (four turning-point) be­
haviour is observed only for "moderate" pro-NMDA settings. If the pro-NMDA setting is too strong 
(e.g., ANMDA :::; 1: unsuppressed NMDA excitation), or too weak (e.g., ANMDA ~ 8: NMDA excitation 
strongly suppressed), then no more than three steady states are available. 

ANMDA 
Tmax 

E max. number of pro-NMDA Effect 
(ms) steady states 

1 87.0 3 "strong" (i.e., no NMDA suppression) 
4 24.2 5 "moderate" 
8 13.8 3 "weak" 

00 3.3 3 "zero" (i.e., complete NMDA suppression) 
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and number of soma-voltage steady states. For a moderate NMDA-suppression factor of ANMDA = 
4, the number of possible steady states increases to five, two more than for the pure-GABA 

model. By performing a linear stability analysis, I will demonstrate that two of these five states 

are unstable, leading to the interesting possibility that the NMDA-sensitive macrocolumn can 

exist on one of three stable branches-active, intermediate, and quiescent-with first-order jump 

transitions being required to move between branches. 

9.3.1 Stability Analysis: Equations 

To establish the stability characteristics of the steady states for the NMDA-sensitive macrocol­

umn, I will follow the small-fluctuations stability analysis technique described in Chaper 4. This 

involves examination of the eigenvalues for the 2 x 2 Jacobian matrix 

8Fil 8hi 

8F2 

8hi 

(9.22) 

evaluated at the (h~, h?) points resulting from the stationarity requirement Fi = dhe/dt = 0 and 

F2 = dhi/ dt = 0. The adiabatic equations for the NMDA-sensitive macrocolumn were listed as 

Eqs(9.9a-9.13). Using these, the four elements of the J matrix are evaluated as follows: 

111 
8F1 1 [ 8'1/Jee 8lee 8'1/Jie ] (9.23a) 
8he Te - l + 8he lee + 'I/Jee 8he + 8he lie 

112 
8F1 _!_ [ . 8lie] (9.23b) 
ahi '1/Jie ah. Te i 

121 
8F2 _!_ [ '1/Jei a lei] (9.23c) 
8he Ti 8hi 

122 = 8F2 1 [ 8'1/Jei 8'1/Jii 8lii] (9.23d) = Ti - l + 8hi lei + 8hi h + 'lpii 8hi 8hi 

The four partial derivatives of the '1/Jjk weighting-functions were listed earlier in Eq. (4.25). The 

derivatives of the NMDA-enhanced lee and lei input currents defined by Eq. (9.10) are altered 

by the presence of the voltage-gated TE time-factor, and now read, 

8lee 
Gee (N: + Nfe) :!: TE+ Gee [(N: + Nfe) Se+ Pee] 

8TE 
(9.24a) --

8he 8he 

8lei 
Gee (N~ + N!) :!: TE+ Gee [(N~ + N!) Se+ Pei] 

8TE 
(9.24b) 

8he 8he 

8lie 
AcABA · 

Gie Nfe asi 
(9.24c) 8hi 'Yi 8hi 

8h 
AcABA · 

GieNfl 8Si 
(9.24d) -

8hi 'Yi 8hi 

where the derivative of the NMDA time- "constant" is 

_1_. 9NMDA S~~A exp[-gNMDA(he - (}NMDA)] 

ANMDA [1 + exp[-gNMoA(he - BNMoA)]] 2 (9.25) 
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Note that there is no NMDA effect in the lie and Iii currents originating from the inhibitory 

neurons, so Eqs (9.24c,d) are unchanged from the pure-GABA case. The derivatives for the 

firing-rate sigmoids Se,i were listed earlier in Eq. ( 4.27). 

Each (h~, h?) coordinate on the S-bend graph of stationary states will return a pair of eigen­

values. The stability of the stationary state is determined by the larger (i.e., least negative) of 

the eigenvalue pair: if the real part of the dominant eigenvalue is negative, the state is stable 

with respect to small perturbations; if the real part is positive, perturbations will grow, so the 

point is unstable; and if the eigenvalue is zero, the point has neutral stability, indicative of a 

turning point in the S-graph. If the eigenvalues are complex, then there is the possibility of 

oscillations, but these will be rapidly damped out if the real part of the eigenvalue is negative. 

Equations (9.23-9.25) were coded into MATLAB and applied to each of the standard ANMDA 

settings listed in Table 9.2 for a finely-stepped range of AaABA values. The results of these 

computations now follow. 

9.3.2 Results 

The top row of trajectories of Fig. 9. 7 plot the soma voltage steady states as a function of 

AaABA for four representative values of NMDA suppression: ANMDA = oo, 8, 4, 1. Below each 

steady-state trajectory is a pair of graphs showing the distribution of the real (second row) and 

imaginary (third row) parts of the eigenvalues. Only the dominant eigenvalues are plotted, since 

these determine system stability. 

The left-hand column of three panels of Fig. 9.7(a-c) give the results for a low-firing (S~f" = 
100 s- 1 ) macrocolumn in which all NMDA activity has been suppressed (ANMDA = oo). The 

results in (a)-(c) are similar to those presented in Chap. 3 for the high-firing (S~f" = 1000 s-1) 

GABA-only macrocolumn, except that the induction transition point now occurs earlier at 

AaABA ~ 1.3. The pair of S-bend turning points labelled "3" and "4" in (a) correspond to 

the pair of zero-valued eigenroots in (b). Between these two zero crossings, the intermediate 

eigenvalues loop up into the positive half-plane, indicating that, as expected, the S-bend region 

of positive slope in (a) is unstable. In contrast, regions above "3" (depolarized), or below "4" 

(hyperpolarized), are always stable. 

There are three regions (indicated with grey shading in (b) and (c)) which return com­

plex eigenvalues, but these cannot support oscillations because in all cases the real part of the 

eigenvalue is very strongly negative. 

Panels (d) and (g) of Fig. 9.7 show the respective effects of weak (ANMDA = 8) and moderate 

(ANMDA = 4) enabling of NMDA prolongation of the EPSPs. The steepening negative gradient 

at he ~ -30 m V in ( d) becomes, in (g), a fully developed positive-gradient region, bracketted 

by a new pair of steady-state turning points labelled "l" and "2." Inspection of the eigenvalues 

trajectory of (h) shows that the dominant eigenvalue now loops twice into the positive half­

plane, with each of the four zero-crossings in (h) coinciding with one of the four numbered 

turning points of (g). Thus there are now three stable steady-state branches for the ANMDA = 4 

macrocol umn: 

• he > he,l 

• he,2 < he < he,3 

strongly depolarized upper branch; 

moderately depolarized middle branch; 
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Figure 9. 7: Distribution of steady states and their eigenvalues for four representative values of NMDA 
suppression: >.NMDA = oo (panels a- c), >.NMDA = 8 (d-f), >.NMDA = 4 (g- i: next page), >.NMDA = 1 (j-1: 
next page). Top panels (a, d on this page; g, j on next page) : S-bend and double-S-bend equilibrium 
soma voltages as a function of pro-GABA anaesthetic effect; numbered asterisks ( *) mark the S-bend 
turning points. Middle panels: Real part of dominant (i.e., least negat ive) eigenvalue; eigenvalue becomes 
complex at positions marked wit h filled-grey circles. Bottom panels: Imaginary parts of eigenvalues. 
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Figure 9.7 (cont.): Distribution of steady states and eigenvalues for weak (.XNMDA = 4: left panels) 
and zero (.XNMDA = 1: right panels) NMDA suppression. (g) Only the .XNMDA = 4 setting exhibits the 
full complement of four turning points; for higher (j) and lower (a, don previous page) .XNMDA settings, 
two of the turning points have disappeared. S-bend regions of positive slope (e.g., regions 1-2 and 3-4 
of panel g) are associated with a positive eigenvalue, and are therefore unstable. 
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hyperpolarized bottom branch. 

The emergence of an isolated and stable mid-branch is the significant NMDA contribution 

to model behaviour, since it now permits the macrocolumn to exist in a "half-way" polarization 

state lying between the extremes of hyperpolarized quiescence and strongly depolarized activity. 

This leads to the interesting possibility of first-order jump transitions to and from this interme­

diate state, and to the prediction of two biphasic power surges as the GABA anaesthetic damps 

the conscious brain from normal activity into unconsciousness-this idea will be discussed in 

the next section. 

Figure 9.7(j) shows the result of allowing the full extent of EPSP prolongation (.XNMDA = 1, 

TE --t 84 ms for the completely depolarized macrocolumn; see Fig. 9.1) permitted by the model. 

Access to the 2-3 intermediate zone has been lost because the entire 1-4 region is now unstable, 

so once again the macrocolumn has only two stable branches available to it. The induction 

transition which would have occurred at the he ,::::: -60 mV turning point labelled "3" in (a), 

(d), or (g) now occurs at turning point "l" (he,::::: -20 mV), and requires a much larger GABA 

concentration to compensate for the enhanced EPSP duration. 

9.4 Fluctuation Analysis for NMDA Model 

9.4.1 Fluctuation Analysis: Equations 

As was the case for the pure-GABA adiabatic macrocolumn examined earlier, the NMDA­

enabled macrocolumn is a two-dimensional Ornstein-Uhlenbeck process whose covariance matrix 

u and spectrum matrix S(w) can be expressed in terms of its drift matrix A and its diffusion 

matrix D. The 2 x 2 drift matrix A is the negative of the Jacobian matrix, 

8F1 I ahi 

8F2 
ahi 

thus the elements of A are the negative of the right-hand sides of Eq. (9.23). 

(9.26) 

The NMDA-enabled diffusion matrix is obtained by editing the pure-GABA diffusion matrix 

of Chap. 5: each occurrence of the excitatory inverse-rate constant ,;1 is replaced by the 

NMDA-dependent time- "constant" TE as highlighted with double underlines as below, 

(9.27a) 

and 

(9.27b) 

where the definition for TE, the voltage-gated NMDA duration, was listed earlier in Eqs (9.1-9.2): 
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(h \ ) -1 + _1_, s~~A 
TE e, "NMDA = 'Y 

e ANMDA 1 + exp[-9NMDA(he - ONMDA)] . 
(9.28) 

The two-variable Ornstein-Uhlenbeck theory presented in Sect. 5.4 gave Eq. (5.30a) for the 

variance of the excitatory fluctuations, 

var(he) a11 

(A11A22 - A12A21 + A~2) D11 + A?2 D22 

2 (A11 + A22) (A11A22 - A12A21) 

and Eq. (5.58a) for their spectral intensity, 

S[he(w)] S11(w) 

1 A?2D22 + A~2D11 + D11w2 

21r (A11A22 - A12A21 - w2)2 +(An+ A22)2 w2 . 

(9.29) 

(9.30) 

We can now examine how the character of these fluctuations is altered by the inclusion of NMDA 
sensitivity. 

9.4.2 Results 

Figure 9.8 shows the Eq. (9.29) predictions for h~ms = Jcru, the rms value of the he voltage 

fluctuations, as a function of GABA effect (which sets the inhibitory post-synaptic duration) 

for four representative values of .XNMDA· The maximum firing rate was set at S~F = 100 s-1. 

In Fig. 9.8(a), setting .XNMDA = oo has suppressed all NMDA excitatory effect, giving the ex­

pected pure-GABA response which exhibits biphasic fluctuation surges at both induction and at 

emergence. The induction surge occurs for a macrocolumn moving to the right with increasing 

AcABA along the top-branch locus of steady states shown previously in Fig.9.7(a): the approach 

towards the turning-point labelled "3" there corresponds to the climb towards the peak labelled 

I (induction) here which precedes the sudden downward jump into unconscious quiescence. The 

emergence power surge occurs for the return path when the macrocolumn is moving to the left 

with decreasing AcABA along the bottom-branch of Fig.9.7(a) towards turning-point "4"-this 

heralds the point of re-emergence E to conscious activity in Fig. 9.8(a). 

In Fig. 9.8(b), we see the dramatic effect of allowing even a modest amount of NMDA 

activity: .XNMDA = 8.2 In addition to the expected surge of fluctuation power as .XcABA -+ 1.4 

(the point of induction), there is now a new peak, labelled D, which develops in the vicinity of 

AcABA = 0. 7 and which is associated with the NMDA-induced point of inflexion, apparent at 

he ::::: -30 mV in Fig. 9.7(d), and highlighted by a pronounced spike-like eigenvalue excursion 

towards the positive half-plane in Fig. 9.7(e). 

If we take AcABA = 1 (on the upper branch of Fig. 9.7(d)) as the normal macrocolumn "op­

erating point" for consciousness, then the D power surge of Fig. 9.8(b) will only be encountered 

if the macrocolumn is moved along the top branch to the left towards smaller .XcABA values by, 

2Setting >.NMDA = 8 allows the duration of the excitatory post-synaptic potential to take values which range 
from its default minimum of ,; 1 = 3.3 ms (fully hyperpolarized quiescent macrocolumn) out to a maximum of 
TE= 3.3 + SN~roA/8 = 13.8 ms (fully-depolarized, maximally active macrocolumn); see Fig. 9.1. 
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for example, administering an anti-GABA (i.e., an analeptic) anaesthetic agent to the patient. 

In the more usual case, the macrocolumn will start from .\GABA = 1 and will be moved to the 

right via pro-GABA drugs: for this Fig. 9.8(b) case of weakly-enabled NMDA effect, the model 

predicts that only a single surge in fluctuation power will be detected, and this peak will occur 

at the moment of collapse to the bottom branch. 

The situation changes if we allow a stronger pro-NMDA effect. For the .XNMDA = 4 graph of 

Fig. 9.8(c), we see that not only does the D peak occur to the right of .\GABA = 1 (so will be 

encountered during a GABA-propelled traversal into unconsciousness), but also that the peak 

has changed character by evolving into a pair of discontinuous jump transitions at .\GABA ~ 1.2 

(for motion along the top branch of Fig. 9.7(g) towards turning-point "l"), and at .\GABA~ 1.1 

(reversed motion along the mid-branch of Fig. 9.7(g) towards turning-point "2"). 

These jump discontinuities arise because the eigenvalue-spike excursion visible in Fig. 9.7(e) 

for .XNMDA = 8 has evolved for .XNMDA = 4 into a fully-fledged loop into the positive half-plane in 

Fig. 9.7(h), and all steady states of Fig. 9.7(g) between turning points "l" and "2" are unstable. 
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Figure 9.8: Fluctuation amplitude of he soma voltage as a function of GABA effect for the NMDA­
enabled macrocolumn. These are rms values calculated from the leading element of the u covariance 
matrix: h~ms = Ja'u. Fluctuations grow strongly at onset of induction (labelled /), at the point of 
emergence from unconsciousness E, and at D, marking the approach to (or emergence from) the NMDA­
generated midbranch M. (Only the stable-branch trajectories are shown.) 
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Thus the NMDA effect has allowed a new stable branch, suspended between turning points 

"2" and "3," to come into existence. Because the NMDA-enabled transitions at turning points 

"l" and "2" are discontinuous (as are the pre-existing GABA-dependent transitions at "3" and 

"4"), these new turning points define a new pair of first-order phase transitions which, at their 

critical points, exhibit the expected singularity in fluctuation power. There should also be a 

pronounced redistribution of spectral power towards low frequencies at these points ( "critical 

slowing down"). These critical-point changes in spectral characteristics will be examined later 

in this chapter. 

The situation changes again if we allow yet more NMDA effect-see Fig. 9.8(d) showing the 

>.NMDA = 1 graph for a fully-prolonged EPSP duration. The NMDA effect is now so pronounced 

that the turning point "l" in Fig. 9.7(j) has been pushed out to >.GABA :::::J 4.1, well beyond 

the previous >.GABA :::::J 1.6 induction turning point "3" of Fig. 9.7(g), and the "2"-"3" NMDA­

enabled mid-branch has been completely lost. As a result, the Fig. 9.8(d) fluctuations graph has 

considerably simplified, having much in common with the pure-GABA graph of Fig. 9.8(a): a 

single pair of induction and emergence fluctuation peaks, albethey much more widely separated 

in the >.NMDA = 1 case--a much greater concentration of GABA agent is required to overcome 

the enhanced excitation arising from the fully-prolonged EPSPs. 

In summary, the adiabatic model predicts that the inclusion of NMDA effects can lead to 

the generation of a second biphasic power surge as the macrocolumn moves into unconsciousness 

via GABA anaesthetic agent. This prediction can be tested against clinical measurements by 

looking for the occurrence of a double-peak in the EEG power recorded for a patient undergoing 

general anaesthesia. 

Fluctuation Spectra for NMDA Macrocolumn 

We now examine how the inclusion of NMDA sensitivity alters the spectral character of the 

macrocolumn voltage fluctuations. 

Figure 9.9 presents a set of 3D "waterfall" views of the spectral amplitude (in units of 

m V / v'Hz) as a function of frequency and GABA effect. These waterfall slices were calculated 

by fixing >.NMDA at one of the four standard values ( oo, 8, 4, or 1), then evaluating Eq. (9.30) to 

give the spectral power S[he(w)] (in units of mV2 /Hz) over the frequency range O::; f::; 100 Hz 

for finely-stepped increments in >.GABA· The displayed spectral amplitudes he(w) are the square­

root of the Eq. (9.30) spectral power, 

he(w) = J S[he(w)]. (9.31) 

The Fig. 9.9 waterfall graphs verify the rms fluctuation trends shown earlier in Fig. 9.8: 

there is a surge in fluctuation activity on approach to an S-bend turning point associated with 

induction (I), emergence (E), or NMDA mid-branch (M). In all cases the spectral curves 

become more steeply de-peaked prior to transition, and this de-peakiness is particularly evident 

at emergence. This is consistent with the notion of a critical slowing down prior to a jump 

transition-the macrocolumn readies itself for the imminent large change in de operating point 

by a pronounced redistribution, towards the de end of the spectrum, of the white-noise driving 

energy entering the macrocolumn from the sub-cortex. 
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Figure 9.9: Spectral amplitude waterfalls for he(w) (units: mV/JHz) as a function of GABA effect 
for the NMDA-enabled macrocolumn. The black curves correspond to increasing GABA effect as the 
macro column traverses from the active (conscious) branch to the lower quiescent (unconscious) branch; 
the gray curves are for decreasing GABA effect as the macrocolumn is revived from its comatose state. The 
fluctuation surges at induction (/), emergence (E), and on approach to the NMDA-generated midbranch 
(M) are accompanied by a pronounced redistribution of spectral power towards zero frequency. 
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9.5 Clinical Evidence for Biphasic Peak-Splitting 

If NMDA effects are included in the macrocolumn model, then the adiabatic theory predicts 

that, depending on the background level of NMDA-determined excitation, there can be either 

one or two distinct EEG power surges for a GABA-anaesthetic journey into unconsciousness. 

For example, suppose the macrocolumn operates at a "weak" pro-NMDA level (i.e., >.NMDA = 
8; see Table 9.2), and suppose that it begins its GABA journey at >.GABA = 1 on the top branch of 

Fig. 9.8(b). Then only the single fluctuation surge at I will be encountered as the macrocolumn 

transits to its quiescent state. In contrast, for a "moderate" pro-NMDA level (i.e., >.NMDA = 4), 

a GABA traverse in Fig. 9.8(c) from >.GABA = 1 (top branch) to >.GABA = 2 (quiescent branch) 

will generate the additional power surge at D as the macrocolumn negotiates the transition to 

the intermediate mid-branch region (2-3 of Fig. 9.7(g)). 

Thus the prediction is that for "moderate" levels of NMDA neurotransmitter, there should 

be two distinct peaks in EEG activity in the GABA-anaesthetic traversal between conscious and 

unconscious states. I will refer to the occurrence of a double-peak as "biphasic peak-splitting." 

A recent paper by Kuizenga, Wierda, and Kalkman (2001) reports biphasic EEG changes 

during induction of general anaesthesia for five different anaesthetic agents. This new study is 

similar to that described in Sect. 5.9 (Kuizenga et al., 1998), except that this time the focus was 

on establishing whether or not there existed a consistent relationship between the time of loss-of­

consciousness (LOC) and the time of peak biphasic activity in the EEG slewrate. Although their 

findings were negative (i.e., it appears that there is no consistent timing relationship between 

LOC and biphasic peak), the EEG activity graphs for some of their propofol patients (Fig. 2 of 

Kuizenga et al. (2001)) seemed to show double peaks, so we requested access to these datasets. 

Figure 9.10 shows their aperiodic analysis results for the 11-15 Hz band for the five propofol 

patients. Two graphs are shown for each patient: the left panel analyzes the EEG activity for a 

pair of scalp electrodes connected between top-of-head (Cz) and centre-forehead (Fpz); the right 

panel corresponds to EEG activity for a second pair of electrodes connected between right-hand 

mastoid (M2: bone behind the ear) and right forehead (Fpz2). Following a 3-min recording of 

EEG to establish baseline activity, patients were infused with propofol.3 Loss of consciousness 

occurred about 2-3 min after commencement of drug infusion. 

As expected from our first-order phase transition model, all five patients show a surge in 

cortical activity in the vicinity of loss of consciousness. For three patients (2, 4, 5), we observe 

two distinct peaks: the first peak close to the time of LOC, and the second about 3 min later. 

I have labelled these peaks as a and b, and our theory would suggest that peak-a is associated 

with the NMDA-enabled mid-branch transition D, and peak-bis associated with the I transition 

to quiescence. 

Two patients do not show peak-splitting in EEG activity: patient-3 is lacking the first peak, 

and patient-I is lacking the second. 

3The drug was infused at a constant rate of 0.5 mg per "kg" per min, where the "kg" pseudo-unit represents 
the effective dose body weight (DBW) given by subtracting 100 from the patient's height H in cm: 

DBW (in "kg") = H (in cm) - 100 

This is a way of estimating lean body mass; actual body mass is less useful for dose calculations because of the 
lower blood flow to fat. Presumably this rule of thumb is only applied to adult patients of normal stature ... 
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Figure 9.10: Aperiodic analysis of the 11-15-Hz EEG slew-rate activity for five patients undergoing 
propofol-induced anaesthesia. Left column is for the Cz-Fpz electrode pair; right column is for the M2-
Fpz2 electrode pair. Vertical lines mark the time of loss of responsiveness (patient stops responding to 
verbal command). For each patient, the 10-min propofol infusion began 3 min into the recording (infusion 
duration indicated with a horizontal bar under the time axis). Patients 2, 4, and 5 show two EEG activity 
peaks labelled a and b; patients 1 and 3 appear to have a single activity peak. [Graphs plotted from data 
supplied courtesy of K. Kuizenga (personal communication, 2001)] 
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Figure 9.11: Average time-course for 11-15-Hz EEG slewrate activity for propofol induction. Bold 
curve is the average obtained from the 10 plots (5 patients; 2 traces per patient) shown in Fig. 9.10. Each 
slewrate curve was prescaled to give a vertical range of [O, 1] prior to averaging; the scaled curves appear 
as grey background traces. The horizontal bar gives the duration of propofol infusion; the vertical lines 
mark the time of loss of responsiveness for each patient. 

The individual traces of Fig. 9.10 are quite noisy. Since each patient is exposed to a nominally 

identical time-course of drug concentration (a 10-min exposure commencing at the third minute, 

and a dose-rate adjusted for body size), it seems not unreasonable to average the time course 

of EEG activity across all five patients in an attempt to extract a smoothed "average patient" 

response. The averaged propofol-response curve is presented in Fig. 9.11. 

Figure 9.11 is quite unambiguous: the averaged induction curve for propofol exhibits a double 

biphasic peak. As far as I am aware, the observation of a peak splitting for induction has not 

previously been reported. Had the infusion been performed at "normal" clinical rates (typically 

the bolus of propofol would be administered over a period of, say, 20 s rather than over the 

extended duration of 10 min used in the Kuizenga experiment), the valley separating the peaks 

would almost certainly not have been resolvable in the more rapidly evolving EEG time-series. 

The observation of peak splitting is a very encouraging endorsement of our adiabatic macro­

column theory. It suggests that the patient response to propofol GABA anaesthetic can be 

modelled as a moderately-NMDA-enabled (i.e., >,NMDA = 4) macrocolumn whose inhibitory PSP 

duration is set by the concentration of the anaesthetic (i.e., by the value of >-cAeA)· 
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9.6 Steady States for an NMDA Anaesthetic 

So far, this chapter has focused on the effect of a standard GABA-type anaesthetic (such as 

propofol) on an NMDA-enabled adiabatic macrocolumn. Now I wish to investigate the char­

acteristics of the induction cycle resulting from the application of a purely NMDA-suppressing 

anaesthetic agent such as nitrous oxide (N20: "laughing gas" (Jevtovic-Todorovic et al., 1998)) 

and xenon (Franks et al., 1998). Both of these gases are thought to act in a similar way to APV: 

the "late" component of the excitatory post-synaptic current is suppressed, and then completely 

abolished, as the concentration of the NMDA-blocking agent is increased; see Fig. 9.2 on p. 175. 

Figure 9.12 shows how the distribution of steady states for the excitatory neural popula­

tion varies as the concentration of NMDA-antagonist agent is increased. For each curve, the 

GABA level was held constant at the labelled value. The steady states were located using the 

root-searching algorithm described in Sect. 9.2. A small-perturbations stability analysis of the 

Eq. (9.22) eigenvalues verified that, as was the case for the stepped NMDA curves of Fig. 9.7, the 

positive-slope regions (i.e., sections in which the curve becomes re-entrant) of Fig. 9.12 are un­

stable. Thus a first-order transition to quiescent state Q is achievable for an NMDA-antagonist 

induction, but only if the GABA level is held rather high (i.e., AcABA ,2: 1.5). However, once 

the macrocolumn has reached quiescence, it cannot recover to its active high-firing state via 

reduction of anti-NMDA agent alone-the GABA level must also be reduced to achieve recovery 

(this observation becomes clearer after examining the 3D manifold of steady states of Fig. 9.14). 

The most interesting observation from Fig. 9.12 is that for low or moderate values of 

GABA (i.e., >-cABA < 1.0), infusion of an NMDA-antagonist anaesthetic moves the macracolumn 

smoothly to a "mid-state" M that lies between normal activity A and quiescent inactivity Q. 
It seems plausible that this state of intermediate activity corresponds to the "dissociated" state 

in which the patient has become disconnected from her surroundings and unaware of painful 

stimuli-the patient is neither fully conscious nor fully unconscious. Nitrous oxide and xenon 

are both classified as dissociative anaesthetics.4 

Figure 9.13 places the (a) stepped-NMDA and (b) stepped-GABA steady-state graphs along­

side each other. We observe that while the range of GABA responsiveness of the macrocolumn 

is sensibly explored using a linear scale for >-cABA, exploration of NMDA response requires a 

logarithmic scale. This is because the two effects enter the adiabatic model in mathematically 

distinct ways. GABA-effect enters as a direct linear scaling by AcABA of the lie and Iii inhibitory 

currents (see Eq. (9.11)); in contrast, NMDA effect is represented as an (almost) inverse scaling 

by >.NMDA of the lee and lei excitatory currents (see Eqs (9.12) and (9.10)), with complete NMDA 

suppression requiring >.NMDA -t oo. 

By comparing the two graphs of Fig. 9.13, and by examining their co-presentation on or­

thogonal axes of the 3D manifold of Fig. 9.14, it is clear that, by appropriate manipulations of 

NMDA and GABA levels, the "half-way" or dissociated M-state can be reached via a multitude 

of different paths. For example, one could fix the level of NMDA suppression at >.NMDA = 4 

in Fig. 9.13(a), then steadily increase the GABA prolongation of the IPSP from AcABA = 1 to 

>-cABA :::::J 1.4. Or, considering an orthogonal trajectory, one could fix AcABA = 1 in Fig. 9.13(b), 

then steadily increase the level of NMDA suppression to >.NMDA = 10 (i.e., log10 >.NMDA = 1). 

4 In contrast, propofol belongs to the class of induction anaesthetics. 
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Figure 9.12: Distribution of excitatory steady states as a function of ANMDA, the NMDA suppression 
factor. For each curve, the level of GABA effect was fixed at the value indicated by the label. Note that 
in the absence of GABA enhancement (i.e., AcABA ~ 1), the low-firing quiescent state Q is inaccessible 
from the high-firing active state A; instead, only the medium-firing intermediate state M can be reached. 
The dashed end-caps identify which segments belong to a given AcABA trajectory. 

9. 7 Fluctuation Amplitude and Spectrum for an NM DA 
Anaesthetic 

Figure 9.15 shows the predicted amplitude and spectral composition for the steady-state fluctua­

tions in excitatory soma voltage for an adiabatic macrocolumn infused with a steadily increasing 

concentration of NMDA-antagonist agent. Each pair of graphs corresponds to a constant-GABA 

slice through the Fig. 9.14 manifold of steady states. In all cases there is a surge in low-frequency 

activity as the turning point (point of inflexion) between the active (A) and mid-branch (M) 

steady states is traversed. As GABA effect is increased, the slope of the manifold along the 

NMDA direction steepens, and the fluctuation surge becomes more pronounced. 

Figures 9.15(a)-(d) suggest another clinical test for the model. For moderate (i.e., >-cABA ~ 

1.0), fixed GABA levels, the induction of the mid-state M via NMDA anaesthetic is predicted to 

be smooth, continuous, and exactly reversible. This means that the return path A+- M should 
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Figure 9.13: Distribution of excitatory steady states as (a) a continuous function of >.GABA for stepped 
values of ANMDA, and as (b) a continous function of ANMDA for stepped values of >.GABA· In (a), the 
NMDA suppression factor >.NMDA was set at each of the 5 labelled values in turn (these curves belong to 
the same family shown in Fig. 9.5(c) and Fig. 9.6(a)). (b) is copy of Fig. 9.12, repeated here to allow 
easy comparison between GABA and NMDA effect. 

be an exact retracing of the induction path A - M, so there should be no hysteresis between 

EEG effect and drug concentration: the patient should awaken at the same drug concentration 

as that at which she went to sleep. This is quite unlike the prediction for an A - Q induction 

of quiescence via GABA infusion-the active and quiescent states are separated by a jump 

discontinuity, so the drug concentration at the point of induction is expected to be much greater 

than at the point of emergence. 

9.8 Adiabatic States for a Slow Propofol Infusion 

This chapter has demonstrated that, by incorporating a voltage-gated Ts term representing 

the NMDA contribution to the excitatory post-synaptic potential, it becomes possible for the 

adiabatic macrocolumn to reside in a new stable state M lying somewhere between normal 

activity A and anaesthetic quiescence Q. It is well established in the anaesthesiology community 

that infusion with a dissociative anaesthetic such as xenon, ketamine, or N20 (i.e., increasing 

levels of NMDA suppression with GABA levels remaining fixed) induces a dreamy, disconnected 
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Figure 9.14: Three-dimensional view of the GABA-NMDA manifold of excitatory steady states. The 
dots form a point cloud of steady states; the superimposed curves are parallel and orthogonal "slices" 
though the manifold giving trajectories for constant NMDA effect (cf Fig. 9.13(a)), and for constant 
GABA effect (cf Fig. 9.13(b)). 

state. 5 Thus it seems that there exists a direct mapping between the stable steady states of 

the adiabatic macrocolumn and the major states of human consciousness ( at least as viewed 

from the specific and narrow perspective of a clinical anaesthetist). Table 9.3 summarizes our 

putative state mapping. 

This mapping is consistent with the Kuizenga et al. (2001) aperiodic analysis of the slow 

propofol-induction experiment presented earlier in Fig. 9.11. If the adiababic model is correct, 

then we can identify the valley separating the pair of slew-rate peaks as the marker for the 

dissociated M-state. Figure 9.16 is a copy of Figure 9.11, but with the individual patient traces 

removed and with the state labellings of Table 9.3 superimposed. I have christened the first 

5 J. Sleigh, personal communication 

Table 9.3: Proposed mapping between stationary states of the macrocolumn and the anaesthetic states 
of consciousness 

Macrocolumn Steady State 

A: Active firing <==> 
M: Mid-level <==> 

Q: Quiescent, low-firing <==> 

State of Consciousness 

Conscious awareness 
Dreamy dissociation 
Unresponsive unconsciousness 
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Figure 9.15: Fluctuation amplitude h~ms (left) and its spectral structure he(w) [m V / v'Rz] (right) for 
an induction using an NMDA-antagonist anaesthetic agent. Each left-right pair of graphs corresponds 
to a distinct constant-..\GABA slice through the Fig. 9.14 manifold of steady states. The waterfalls on the 
right are for a traversal along the upper branch of Fig. 9.13(b) from A (active) to M (mid-state); for 
these selected GABA values [(a), (b): ,\GABA= 0.5; (c), (cl): ,\GABA= 0.75], the Q quiescent state cannot 
be reached by application of a purely anti-NMDA anaesthetic. 
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Figure 9.15 (cont.): Fluctuation amplitude and spectrum for an NMDA-antagonist induction with 
GABA levels fixed at (e), (f) ,\GABA = 1.0, and at (g), (h) ,\GABA = 1.5. Only at the higher level of 
GABA effect is a full induction to the low-firing quiescent state Q achievable, but the macrocolumn 
cannot then exit from this quiescent state via reduction of NMDA-antagonist effect: emergence would 
require a simultaneous reduction in GABA effect. 
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Figure 9.16: Adiabatic state labellings for a slow propofol infusion. The macrocolumn model leads us 
to believe that the distinct EEG activity peaks mark the passage to distinct states of consciousness. 

of the slew-rate maxima the dissociative peak, since this fluctuation surge signals the passage 

to the dissociated state, and the second maximum as the inductive peak since it presages the 

induction of full, non-responsive anaesthesia. 

9.9 Slow-Infusion Tests of the Adiabatic Theory 

Figures 9.15 and 9.16 suggest several slow anaesthetic-infusion experiments that could be run 

to test the various predictions of the adiabatic theory. 

A ~ M dissociative round trip via NMDA-antagonist The dissociative EEG activity 

peak should occur at the same drug concentration on emergence as it did on entry (e.g., 

see Fig. 9.15(c)). This absence of drug-effect hysteresis-after proper compensation for 

timing offsets arising from displacement between measurement site (e.g., femoral artery) 

and effect site (i.e., cerebral cortex)-is expected when the A active state and the M 

dissociated state both lie on the same locus of stable equilibria. This is the case, for 

example, for the >.GABA = 0.75 curve of Fig. 9.13(b). 

A ~ M dissociative round trip via GABA In this case, the presence or absence of drug­

effect hysteresis will depend on the background level of NMDA. Figure 9.13(a) predicts a 

small hysteresis for >.NMDA = 4, but none for ANMDA = 8. 
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A ~ Q inductive round trip via GABA Here, the prediction of pronounced hysteresis is 

quite unambiguous. The inductive peak I will occur at a much greater drug concentration 

than the emergence peak E. This was demonstrated in Figures 9.9 and 9.8. 

A -++ Q via NMDA-antagonist For an anti-NMDA anaesthetic acting alone, it should be 

virtually impossible to progress beyond the dissociative state to achieve the fully unre­

sponsive unconscious state Q. Figure 9.12 shows that the M half-conscious state lies on a 

saturation plateau which is close to horizontal. 





Chapter 10 

Summary and Future Work 

10.1 Summary 

This thesis has investigated the construction and performance of an electrical model for the 

effects of a general anaesthetic agent on EEG. The model incorporates the ion-channel theory of 

Franks and Lieb which asserts that anaesthetic agents act on specific synaptic receptors to con­

trol the flow of ions through the lipid membrane of the nerve cells in the cerebral cortex, thereby 

altering the transmembrane voltage of the nerve cell. GABAergic anaesthetics tend to inhibit 

brain action by increasing the duration of each inhibitory PSP (postsynaptic potential), holding 

the GABAA chloride channels open longer, thereby allowing an increased number of c1- ions to 

diffuse down their concentration gradient into the cell. As a result, the cortical neurons become 

hyperpolarized (more negative) and therefore less likely to fire. Thus a GABAergic anaesthetic 

agent increases the effectiveness of each inhhibitory postsynaptic event. The dissociative class 

of anaesthetics has a quite different mode of action. These anaesthetics are thought to reduce 

the duration of the excitatory postsynaptic potentials mediated by the slow-acting NMDA re­

ceptor, thereby limiting the influx of sodium ions and consequently lowering the overall level of 

excitability of the postsynaptic cell. Thus dissociative anaesthetics reduce the effectiveness of 

each excitatory postsynptic event. 

Liley Mean-Field Equations 

The Liley equations adopted here describe the spatially-averaged or mean-field behaviour of 

strongly interacting populations of excitatory and inhibitory neurons residing within a small 

volume of cerebral cortex. These interacting populations define a "macrocolumn." A one- or 

two-dimensional assembly of such macrocolumns, driven by subcortical inputs and interacting via 

long-range excitatory connections, might define a plausible spatial model for the cerebral cortex. 

However, for these investigations I chose to explore the behaviour of a spatially homogeneous 

cortex in which all macrocolumns are identical. 

In order to apply this spatially homogeneous picture to the problem of modelling anaesthetic 

action, the Liley model was modified to incorporate drug-mediated changes in the postsynaptic 

response functions, and then collapsed to an "adiabatic" subset that replaces the detailed time 

evolution of the postsynaptic potentials by their steady-state values. 
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Modelling Anaesthetic Action 

The drug-mediated changes were modelled as alterations to either the IPSP time-constant (,i-l is 

increased for GABAergic induction anaesthetics), or to the EPSP time-constant (voltage-gated 

TE = ,-1 + sNtoA(he) is reduced for NMDA-antagonist dissociative anaesthetics). The adiabatic 
e NMDA 

simplification is based on the notion that, compared to the time-constant of the average nerve 

cell (Te, Ti ~ 40 ms), the neurotransmitter-induced synaptic inputs have fast kinetics which 

rapidly settle to steady-state. This permitted setting dljk/ dt to zero in each of the equations of 

motion for the four Ijk synaptic inputs, and the adiabatic macrocolumn could then be described 

using a pair of first-order nonlinear differential equations in the he,i soma voltage (in contrast, 

the full Liley set consists of eight DEs). 

Stability Analysis 

A linear stability analysis of the adiabatic equations showed that, depending on the level of 

anaesthetic, there could be either one or three steady states, and that in the latter case, the 

middle state is unstable to small perturbations. This implies the possibility of sudden state 

switching at particular ( critical) levels of anaesthetic effect. 

Fluctuation Variance and Spectrum 

Incorporating white-noise perturbations into the Pjk subcortical inputs transformed the adiabatic 

equations into 2D Langevin equations for which theoretical predictions for fluctuation variance 

and spectral distribution could be made. The significant findings were: 

• the intensity of the random fluctuations about steady state will grow strongly as the state­

change jump points are approached; 

• the spectral distribution of the fluctuations will shift towards low frequencies on approach 

to state-change; 

• the cortical state will depend on both the level of anaesthetic and on the previous history 

of cortical states-in other words, the cortical model exhibits hysteresis. 

Thermodynamic Analogy 

The excitatory and inhibitory populations can be uncoupled by applying the trajectory of steady 

states as an "equation of state." Then, after proposing possible mappings between analogous 

temperature ("excitability," 8) and anaesthetic effect, we were able to extract analogous entropy 

and "heat" capacity for the excitatory population of the macrocolumn. The prediction of a 

discontinuity in biological "heat" capacity seems to receive support in the Stullken (1977) dog 

experiments. 

Simulations, Spectral Entropy, and Correlation Time 

Simulations of the adiabatic equations were in qualitative and quantitative agreement with the­

oretical predictions. Simulations of the full Liley equations demonstrated an unexpected narrow 

resonance on the top branch of steady states at moderate (,\GABA ~ 1.2) levels of anaesthetic 

effect; at higher values of anaesthetic, the resonance developed into a dynamic instability that 
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caused premature collapse to the bottom branch. I suspect, but have not yet confirmed, that 

this failure of the full equations occurs because the prolonged IPSP now has a duration which 

is similar to the membrane time-constant. This means that the IPSP conductance is no longer 

neglibible, so the effective membrane time- "constants" Te and Ti can no longer be taken as a 

fixed, pre-determined number. I discussed this possibility in Sect. 1.7.1 (p. 21). 

Investigations of the theoretical properties of fluctuation spectral entropy showed that, for 

the special case of a Lorentzian spectrum, there is a direct and simple relationship between 

spectral entropy and correlation time. The investigations also indicated that considerable care 

is required when attempting to use a discrete sample to estimate the entropy of a continuous 

function. In particular, the discrete formula for spectral entropy as given in several recent EEG 

papers will only render correct results when the spectral interval is unity. For non-unity spectral 

steps, a histogram form for spectral entropy should be used. 

Reversal Potentials 

One of the distinguishing characteristics of the Liley equations, compared with other mean-field 

cortical models, is the inclusion of reversal potentials as 7Pjk weighting factors. For example, 

synaptic input lei (that is, excitatory input to the inhibitory population) is scaled by a factor 

proportional to (h~ev - hi)- This factor will be positive (therefore depolarizing) in the usual case 

of hi< h~ev, but will become negative (a hyperpolarizing effect) in the unusual over-depolarized 

case of hi > h~ev. If hi = h~ev, the lei input is neutral and has no effect on the nerve cell. 

How significant are reversal potentials for cortical modelling? To answer this question, I 

varied the AaABA anaesthetic effect and compared the distribution of steady states both with 

(i.e., using standard 'lj; weights) and without (i.e., unity-'lj; case: 7Pek = +1, 7Pik = -1, where k = 
e, i) the reversal-potential scale-factors. For the standard 'lj;-enabled case, the he,i steady-state 

voltages mapped out a reverse-S trajectory whose .XaABA ---t O depolarized extreme ("seizure") 

was close to the sodium reversal potential of +45 m V, and whose AaABA ---t oo hyperpolarized 

extreme ("coma") matched the potassium ( or chloride) reversal potential of -90 m V. In contrast, 

the unity-'lj; case was wildly under-constrained, giving a depolarized limiting soma voltage of 

several thousand millivolts, and a hyperpolarized voltage asymptote of -oo(!) I conclude that 

inclusion of the reversal potentials is crucial for a physiologically plausible mathematical model 

of nerve cell response to a GABAergic anaesthetic agent. 

Modelling NMDA-antagonist Action: Extreme Adiabatic Limit 

While the adiabatic assumption is reasonable for the PSP effects of GABAergic anaesthetics 

(since they act on the relatively fast-responding GABAA receptor), it seems distinctly dubious 

for slow NMDA effects lasting, say, ,...., 100 ms or more. In order to make progress on a model 

for NMDA receptor disruption by dissociative anaesthetics, I made the working hypothesis that 

the membrane time-constant could be made "as long as necessary." The validity of this working 

hypothesis can be assessed by testing clinically the predictions of the adiabatic NMDA-enabled 

macrocolumn. If the modelling assumptions are correct, then the following behaviours should 

be observed in the clinical EEG records: 
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• a slow GABAergic induction should show two EEG activity peaks: the first signalling 

the transition to the "dissociated" unconscious state; the second, at a higher anaesthetic 

concentration, marking the discontinuous transition to the hyperpolarized, unresponsive 

state of unconsciousness required for safe surgery; 

• there should be little or no hysteresis for a slow GABAergic return journey to and from 

the dissociated state (i.e., dissociation and emergence should occur at the same level of 

anaesthetic). 

10.2 Future Work 

Spatial Variability 

An obvious and deliberate limitation of the present study is the neglect of spatial variability 

among populations of connected macrocolumns. The possibility of such variablity is built into 

the Liley model equations for <Pe and <Pi, the excitatory and inhibitory inputs from distant 

excitatory cortical sources. The simplest spatial case would consider a one-dimensional "line" 

of continuous macrocolumn "mass." There are three possibilities for boundary conditions: (i) 

periodic (the "line" is deformed into a "circle"); (ii) zero-flux (no excitation enters at either 

end); or (iii) an infinite line of macrocolumn mass (in which case there are no boundaries). If 

a macrocolumn contains 104 to 105 neurons, then the "'1011 neurons of the cerebral cortex will 

be distributed across 106 to 107 macrocolumns, so, on the scale of a single macrocolumn, the 

picture of the cortex as of an infinite lD line of macrocolumn mass is not too unreasonable. 

The adiabatic philosophy identified he as the "slow" state variable of interest. Relative to 

its time-scale, the input PSPs relax rapidly to their final states, so their time evolution can 

be ignored-this was the "temporally adiabatic" treatment (of the Ijk synaptic inputs) used 

in this thesis. As a first step towards solving for spatial variations, we can apply a "spatially 

adiabatic" treatment to the lD <Pe (he) and <Pi (he) wave equations. Assume that <Pe and <Pi are 

both slowly varying functions of space, and that he is never far from its spatially homogeneous 

steady-state value. Then, by applying a Born-like approximation for small perturbations in <Pe 

about its spatially uniform state, we can derive a first-order solution for the steady-state spatial 

distribution for he. 

Very recently, M. Steyn-Ross (personal communication) has derived an analytic result for 

the spatial covariance of he fluctuations in this spatially adiabatic limit for the infinite lD case, 

and I have evaluated the correlation lengths as a function of GABAergic effect. Our preliminary 

results suggest that the covariance can either decay exponentially with space, or can be periodic 

in space. This latter finding is most intriguing, for it suggests that non-adjacent regions of the 

cortex can have correlated activity, and that these "islands of cooperation" will be separated by 

intervening cortical space that exhibts no correlation. The critical parameter which determines 

the type of spatial behaviour is R = Aee/ Aei, the ratio of connectivity decay rates for the 

cortico-cortical e ---+ e and e ---+ i couplings. This work is continuing, and will be written up for 

publication shortly. 
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Drug-Effect Hysteresis 

It is now well established in the anaesthetics community that there is a strong surge in EEG 

activity ( the so-called "bi phasic peak") at the point of induction of anaesthetic unconsciousness, 

followed by a distinct second surge that occurs later as the anaesthetic dissipates and the patient 

emerges from unconsciousness. The Kuizenga results of Fig. 5.11 (p. 93) show that the measured 

propofol concentration in the blood is significantly larger at induction than at emergence. The 

fact that the induction and emergence EEG-activity peaks are not coincident (i.e., do not occur 

at the same anaesthetic concentration) indicates an apparent history dependence or hysteresis 

between drug effect and drug concentration. This observation of a hysteresis effect is entirely 

consistent with our anaestheto-dynamic phase transition theory, but this phase transition idea 

is too new to have achieved any currency among anaesthetics modellers. 

The traditional explanation for drug-effect hysteresis is that the measurement site (e.g., 

femoral artery in the thigh) is displaced from the effect site (the cerebral cortex), and that it 

takes some time ( 1-2 min) for the drug to diffuse across the blood-brain barrier. It has therefore 

been the goal of pharmacokinetics modellers to tune their model parameters ( specifically the 

time-constants of the multiple "compartments") in such a way that the history dependence is 

eliminated, thereby "closing" the hysteresis loop. The implicit assumption of such modelling is 

that the hysteresis is due entirely to measurement-displacement error. 

However, if we accept the anaestheto-dynamic model prediction of a first-order phase transi­

tion, then a true hysteresis effect is expected, and therefore a pharmacokinetics-based nulling of 

the hysteresis loop is in fact an over-compensation. To establish the reality of hysteresis, we need 

an induction-recovery cycle which is so slow and gradual that the drug concentrations in blood 

and brain are close to steady state and the measurement-displacement errors become negligi­

ble. I have begun analyzing some very recent (2001) Kuizenga recordings for three consecutive 

propofol induction-emergence cycles: the first two cycles each had propofol-infusion periods of 

10 min, and the third cycle had a 20-min infusion. My preliminary analysis indicates that the 

blood concentration at induction is rv4x the concentration of emergence, and that this ratio is 

independent of the rate of infusion. This research is continuing, and when complete should be 

written up for one of the anaesthesiology journals. 

Sleep 

There are EEG-pattern similarities between anaesthetic unconsciousness and natural sleep. 

However, modelling sleep processes is a vastly more difficult problem than modelling anaesthe­

sia. For anaesthetic "sleep," the externally-administered drug provides the quantifiable forcing 

function that determines ( albeit in a highly nonlinear way) the cortical response. In contrast, 

the cycling between consciousness and normal sleep, and the subcycling between REM (rapid 

eye-movement) sleep and nonREM sleep, are all under the control of locally-generated hormones 

and neurotransmitters-there is no easily identified "forcing function" driving the sleep cycles. 

If there are phase transitions in natural sleep, then we might expect to find biphasic surges in 

EEG activity as the brain switches state. Thus a preliminary investigation might look for such 

activity surges, seeking to correlate these with traditional measures for sleep staging. Perhaps a 
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phase-transition theory of sleep might allow us to begin to begin to understand the underlying 

mechanisms and functions of sleep. 



Appendix A 

Difference Equations for the Full, 

Non-Adiabatic Macrocolumn 

This appendix shows how the eight first- and second-order stochastic DEs (Eqs 3.1-3.4) for 

the non-adiabatic cortical macrocolumn can be solved numerically by iterating 14 first-order 

difference equations. 

The Euler one-step method is a simple iteration scheme which predicts the value of the soma 

voltage he,i at timestep n + 1 (i.e., at time t = (n + l)~t) via linear extrapolation from the 

previous timestep n: 

hn+I = hn. + ~ ~t. [dh ]n 
e,i e,i dt (A.l) 

The implicit assumption is that the iteration will give an accurate estimate for h;,t1 provided 

the timestep ~t is sufficiently small. The rates of change of the soma voltages at timestep n, 

( dhe,d dt r, are given by recasting the first pair of Liley differential equations (3.1) as difference 

equations: 

[d~e r 
[d;ir 

(A.2a) 

(A.2b) 

The equations for the four ljk "currents" (Jee, lei, lie, h) are second-order DEs. Equation 

(3.2) for lee, for example, reads, 

(A.3) 

so we define an ancillary variable lee = dlee/ dt, then recast the DE as the pair of difference 

equations for (dlee/dt)n and (dlee/dtt, 

[ d~;e r 
[ d:;e r 

(A.4a) 

(A.4b) 
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which, on application of an Euler one-step, give the updating equations for lee and lee, 

r+1 
ee = In [ dlee r ~ 

ee + dt t (A.5a) 

jn+I 
ee = 1n [ dlee r ~ 

ee + dt t. (A.5b) 

A similar recasting gives the difference equations for the lei input term, 

(A.6a) 

(A.6b) 

For the lie and h equations (3.3), we incorporate the effect of anesthetic by replacing the 

inhibitory rate constant ,i by ,d .\ where >. is the IPSP prolongation factor dependent on 

anesthetic concentration. The difference equations for lie and h are then given by 

[ddJtie] n = 1: (A.7a) 

[ d~e r [NfeSi(hf) + (Pie)] Gi ~ e + f2 - 2 ~ 1: - [~r I: (A.7b) 

(A.8a) 

(A.8b) 

The long-range spike-input equations are also second-order. For example, equation (3.4) for 

<Pe reads 

-A No dSe -2A2 No S 
V ee ee dt + V ee ee e 

so we define ancillary variable <I>e = d¢e/ dt, giving 

d<I>e -A [NQ dSe -A NQ - ] dt = v ee ee dt + v ee eese - 2<I>e - vAee<Pe 

Applying the chain rule to the time-derivative of the sigmoid function, 

dSe _ 8Se dhe _ Q dhe 
dt - 8he dt - e dt 

where 

Q _ ge s~ax exp (-ge(he - Be)) 
e - [1 + exp (-ge(he - Be))] 2 ' 

leads to the following difference equations for <Pe, 

[d</Je] n = <I>n 
dt e 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13a) 

(A.13b) 



Finally, for <Pi we have 

[dd</>ti] n = <I>i 

The f 1...4 stochastic terms in Eqs (A.4-A.8) are given by 
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(A.14a) 

(A.14b) 

(A.15a) 

(A.15b) 

(A.15c) 

(A.15d) 

where the 9<1...4 are independent Gaussian-distributed random numbers with mean zero, variance 

unity. As was the case for the adiabatic simulations, the noise-amplitude scale-factor Ojk is set 

to 0.1 in all four stochastic terms. 

To start the integration, we fix >., then read off the appropriate ( h~ ( >.), h? ( >.)) coordinate 

from the soma voltage steady-states curve (Fig. 3.4) The matching steady-state values for lee, 

lei, lie, Iii, <Pe, <Pi are determined by solving Eqs (3.2-3.4) in the limit of zero noise and zero 

time-derivatives, giving: 

where the </>~ and <I>? are 

I2e [N!Se(h~) + </>~ + (Pee)] Gee/re 

I2i [N!Se(h~) +<I>?+ (Pei)] Gee/re 

IPe [Nfesi(h?) + (Pie)] Gie>.hi 

I~ = [Nisi(h?) + (Pii)] Gie>.f'yi 

</>~ = N~Se(h~) 

<I>? = N6Se(h~) 

and the six ancillary variables have initial value zero: 

(A.16a) 

(A.16b) 

(A.16c) 

(A.16d) 

(A.16e) 

(A.16f) 

(A.16g) 

The numerical simulation proceeds by iterating up from this initial state with a time-step of 

/),,t = 10-4 s. 





Approximate Quadrature via 

Cumulative Sum 

Appendix B 

In Chapter 6.6 we compute the negative of the area under the "driving-force" versus soma 

voltage curves to obtain the Ue and Ui potential curves, e.g., 

(B.l) 

where the F / D drift-on-diffusion integrand is evaluated numerically for finely stepped incre­

ments in he. Let f = [Ji, h, ... , fN] be the N-element vector of F / D values sampled at 

uniformly-spaced soma voltages [h1, h2, ... , hN] with sample spacing b..h. F / D is a smoothly­

varying function of he, so provided the voltage step b..h is sufficiently small, the area can be 

well approximated by summing the areas of the individual trapeziums defined by the Jj sample 

points illustrated in Fig. B. l. 

The trapezium area can be evaluated directly from the cumulative sum of the elements of 

f (in MATLAB: cumsum(f)) after making appropriate end-value corrections as described below. 

But why bother with a trapezium estimate of the area when very accurate quadrature functions 

( quad and quad8) are available in MATLAB? The primary reason is speed: quad is a recursive 

function which would need to be called once for every one of the "'2500 sampled points along 

the soma-voltage axis, thus the area calculation cannot be vectorized. In contrast, cumsum is a 

very fast built-in vector operation which allows all of the cumulative areas to be computed in a 

Figure B.1: Summed trapezium areas provide an estimate for the area under a curve. 
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single call. Provided b..h is sufficiently small ( e.g., "'0.05 m V), the accuracy of the cumulative 

sum method can be made quite acceptable. 

The method proceeds as follows. Let Trap be the MATLAB vector of cumulative trapezium 

areas to be defined as 

Trap(l) 

Trap(2) = 
Trap(3) 

0 

!U1 + h) b..h 

!U1 + h) b..h + !(h + h) b..h = !U1 + 212 + h) b..h 

Trap(N) = !U1 + 2h + 2h + 2f4 + · · · + 2fN-1 + !N) b..h 

(B.2a) 

(B.2b) 

(B.2c) 

(B.2d) 

which exhibits the 1, 2, 2, ... , 2, 1 coefficient pattern characteristic of the trapezium-quadrature 

rule. Compare Trap with the vector CS of cumulative sums which would be returned by the 

MATLAB call: CS = cumsum(f), 

CS(l) 

CS(2) 

CS(3) 

Ji 
h+h 

h+h+h 

CS(N) = fi+h+h+f4+···+fN-

(B.3a) 

(B.3b) 

(B.3c) 

(B.3d) 

By comparing corresponding elements in the Trap and CS vectors we see that the cumulative 

trapezium areas may be recovered from the cumulative sums after appropriate adjustment to 

the end-point contributions to each sum, 

Trap(l) 

Trap(2) 

Trap(3) 

Trap(N) 

Writing this in vectorized notation, 

! [2 CS(l) - (Ji+ Ji)] b..h 

! [2 CS(2) - (Ji+ h)] b..h 

! [2 CS(3) - (!1 + h)] b..h 

! [2 CS(N) - (!1 + f N )] b..h. 

Trap(l: N) = !(2CS(l: N) - (Ji+ f(l: N))]b..h 

(B.4a) 

(B.4b) 

(B.4c) 

(B.4d) 

(B.5) 

where the idiom Ji +f(l: N) indicates that the Ji scalar (first element of vector f) is to be added 

to all N elements of f. This vectorized form translates directly into a single line of MATLAB 

code as, 

trapsum = del...h/2*(2*cumsum(f) - (f(1) + f)) (B.6) 

where del...h is the soma voltage sampling interval b..h, and trapsum is the returned N-element 

vector containing the N cumulative trapezium areas for the F' / D sample vector f. 
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