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Abstract

This thesis examines a stochastic model for the electrical behaviour of the cerebral cortex under
the influence of a general anaesthetic agent. The modelling element is the macrocolumn, an
organized assembly of ~10° cooperating neurons (85% excitatory, 15% inhibitory) within a small
cylindrical volume (~1 mm?3) of the cortex. The state variables are h. and h;, the mean-field
average soma voltages for the populations of excitatory (e) and inhibitory (¢) neurons comprising
the macrocolumn. The random fluctuations of h, about its steady-state value are taken as the
source of the scalp-measured EEG signal. The randomness enters by way of four independent
white-noise inputs representing fluctuations in the four types (e-e, i-e, e-i, i-i) of subcortical
activity.

Our model is a spatial and temporal simplification of the original set of eight coupled partial
differential equations (PDEs) due to Liley et al. [Neurocomputing 26-27, 795 (1999)] describing
the electrical rhythms of the cortex. We assume (i) spatial homogeneity (i.e., the entire cortex
can be represented by a single macrocolumn), and (ii) a separation of temporal scales in which
all inputs to the soma “capacitor” are treated as fast variables that settle to steady state very
much more rapidly than do the soma voltages themselves: this is the “adiabatic approximation.”
These simplifications permit the eight-equation Liley set to be collapsed to a single pair of first-
order PDEs in h. and h;. We incorporate the effect of general anaesthetic as a lengthening of the
duration of the inhibitory post-synaptic potential (PSP) (i.e., we are modelling the GABAergic
class of anaesthetics), thus the effectiveness of the inhibitory firings increases monotonically with
anaesthetic concentration.

These simplified equations of motion for h.; are transformed into Langevin (stochastic)
equations by adding small white-noise fluctuations to each of the four subcortical spike-rate
averages. In order to anchor the analysis, I first identify the ¢ — oo steady-state values for
the soma voltages. This is done by turning off all noise sources and setting the dh./dt and
dh;/dt time derivatives to zero, then numerically locating the steady-state coordinates as a
function of anaesthetic effect A, the scale-factor for the lengthening of the inhibitory PSP. We
find that, when plotted as a function of A, the steady-state soma voltages map out a reverse-S
trajectory consisting of a pair of stable branches—the upper (active, high-firing) branch, and
the lower (quiescent, low-firing) branch—joined by an unstable mid-branch. Because the two
stable phases are not contiguous, the model predicts that a transit from one phase to the other
must be first-order discontinuous in soma voltage, and that the downward (induction) jump
from active-awareness to unconscious-quiescence will be hysteretically separated from (i.e., will
occur at a larger concentration of anaesthetic than) the upward (emergence) jump for the return

of consciousness.
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By reenabling the noise terms, then linearizing the Langevin equations about one of the sta-
ble steady states, we obtain a two-dimensional Ornstein—Uhlenbeck (Brownian motion) system
which can be analyzed using standard results from stochastic calculus. Accordingly, we calcu-
late the covariance, time-correlation, and spectral matrices, and find the interesting predictions
of vastly increased EEG fluctuation power, attended by simultaneous redistribution of spectral
energy towards low frequencies with divergent increases in fluctuation correlation times (i.e.,
critical slowing down), as the macrocolumn transition points are approached. These predictions
are qualitatively confirmed by clinical measurements reported by Kuizenga et al. [British Jour-
nal of Anaesthesia 80, 725 (1998)] of the so-called EEG biphasic effect. He used a slew-rate
technique known as aperiodic analysis, and I demonstrate that this is approximately equivalent
to a frequency-scaling of the power spectral density.

Changes in the frequency distribution of spectral energy can be quantified using the notion
of spectral entropy, a modern measure of spectral “whiteness.” We compare the spectral entropy
predicted by the model against the clinical values reported recently by Viertié-Oja et al. [Journal
of Clinical Monitoring 16, 60 (2000)], and find excellent qualitative agreement for the induction
of anaesthesia.

To the best of my knowledge, the link between spectral entropy and correlation time has
not previously been reported. For the special case of Lorentzian spectrum (arising from a 1-
D OU process), I prove that spectral entropy is proportional to the negative logarithm of the
correlation time, and uncover the formula which relates the discrete H; Shannon information to
the continuous Hy “histogram entropy,” giving an unbiased estimate of the underlying continuous
spectral entropy H,. The inverse entropy—correlation relationship suggests that, to the extent
that anaesthetic induction can be modelled as a 1-D OU process, cortical state can be assessed
either in the time domain via correlation time or, equivalently, in the frequency domain via
spectral entropy.

In order to investigate a thermodynamic analogy for the anaesthetic-driven (“anaestheto-
dynamic”) phase transition of the cortex, we use the steady-state trajectories as an effective
equation of state to uncouple the macrocolumn into a pair of (apparently) independent “pseu-
docolumns.” The stable steady states may now be pictured as local minima in a landscape of
potential hills and valleys. After identifying a plausible temperature analogy, we compute the
analogous entropy and predict discontinous entropy change—with attendant “heat capacity”
anomalies—at transition. The Stullken dog experiments [Stullken et al., Anesthesiology 46, 28
(1977)], measuring cerebral metabolic rate changes, seem to confirm these model predictions.

The penultimate chapter examines the impact of incorporating NMDA, an important ez-
citatory neurotransmitter, in the adiabatic model. This work predicts the existence of a new
stable state for the cortex, midway between normal activity and quiescence. An induction at-
tempt using a pure anti-NMDA anaesthetic agent (e.g., xenon or nitrous oxide) will take the
patient to this mid-state, but no further. I find that for an NMDA-enabled macrocolumn, a
GABA induction can produce a second biphasic power event, depending on the brain state at
commencement. The latest clinical report from Kuizenga et al. [British Journal of Anaesthesia

86, 354 (2001)] provides apparent confirmation.



Preface

A Brief History

In December 1997, Dr Jamie Sleigh, a senior anaesthetist at Waikato Hospital (who had been
putting people to sleep for years), presented Waikato University theoretical physicist Dr Moira
Steyn-Ross with an interesting challenge. It had become increasingly apparent to Dr Sleigh
that conscious-awareness and anaesthetic-induced unconsciousness are completely disjoint men-
tal states which do not grade smoothly from one to the other as anaesthetic concentration is
increased. Rather, it is as if, at a critical level of anaesthetic concentration, a switch is flipped
and the patient’s brain makes a sudden, dramatic (and fortunately reversible!) change of phase
to its unaware state. Hence Dr Sleigh’s formidable challenge: Could Dr M. Steyn-Ross please
craft a set of equations which would model the patient response to anaesthetic as if it were a
thermodynamic phase change?

Serendipitously, Dr Steyn-Ross and I learned that Dr David Liley, a biophysicist from Swin-
burne University of Technology, Melbourne, Australia, would be visiting his parents in Hamilton
the following month. So I arranged that the four of us (J. Sleigh, M. Steyn-Ross, D. Liley,
A. Steyn-Ross) should meet, and that January gathering marked the start of a vigorous and
productive collaboration. We soon learned that Dr Liley had strong views about which cortical
model should be used—namely: his one! Having promptly settled that matter, discussion then
turned to how the Liley model could be modified to incorporate the effect of a GABAergic in-
duction agent such as the anaesthetic propofol which was known to lengthen the opening times
of the chloride ion channel controlled by the GABA4 receptor. It was decided that we could
model this drug-induced change as a lengthening of the inhibitory neuron’s postsynaptic impulse
response, with the degree of prolongation to be proportional to drug concentration.

While the Liley cortical mean-field equations for the average neuron voltage have been care-
fully constructed to be neurophysiologically plausible, they are mathematically daunting: eight
first- and second-order, nonlinear partial differential equations. Moira realized that the Liley
equations could be “solved” if one were to make two bold and drastic simplifying assumptions.
First, the averaged soma voltages are to evolve on time scales much slower than those of the
invading inhibitory and excitatory impulses. Second: the cortex might be imagined as being
spatially homogeneous. Then the eight equations become two—a pair of first-order ordinary
differential equations in h. and h;, the population-average excitatory and inhibitory neuron

voltages. These simplified cortical equations define what we call the “adiabatic model.”
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Moira’s plan of attack was to determine the awake and anaesthetized steady states for the
homogeneous “adiabatic” brain, and then, by incorporating subcortical white-noise perturba-
tions to generate a pseudo EEG signal, calculate the theoretical spectrum for small fluctuations
about those steady states using the tools of stochastic calculus. Her preliminary calculations had
shown that there could be three stationary points for a given value of anaesthetic concentration,
so, on the basis of her earlier work on optical bistability, she predicted that a detailed map of
the cortical steady states would reveal the “cubic” S-bend signature of a classic first-order phase
transition.

My contributions to the research began at this point. My first task was to locate numerically
the accurate locus of steady states as a function of anaesthetic concentration, and to establish
their stability with respect to small disturbances. The anticipated S-bend with unstable mid-
branch emerged, and now the cortex could reside either on the top (“conscious”) branch or the
bottom (“unconscious”) branch, and, at critical values of anaesthetic, would be forced to switch
states. So far so good.

The next step was to calculate the pseudo-EEG fluctuation spectrum for the white-noise-
forced adiabatic equations. Using the stochastic analysis techniques detailed in C. W. Gardiner’s
Handbook of Stochastic Methods, Moira derived equations for the EEG spectral variation with
anaesthetic. I coded these, and plotted the predicted variation in fluctuation power. But we
were both rather dismayed by my initial results—the model seemed to be telling us that the total
fluctuation power increases as the point of induction is approached, completely contradicting our
naive expectation that fluctuations would diminish as the inhibitory effects of anaesthetic started
to “bite.” However, when Jamie saw the results, he was delighted! He told us that it is well-
known within the community of anaesthesiologists that EEG power shows a “biphasic” response
to anaesthetic: low doses of general anaesthetic tend to produce an excited brain response;
larger doses produce the expected suppressed response. The biphasic effect had been nicely
demonstrated in a 1998 paper by Karel Kuizenga, an anaesthestist working in The Netherlands,
so we contacted him, requesting access to some of his published results.

Our biphasic “discovery” was in October 1998. By December of the following year we had
published our findings in Physical Review E in what we now refer to as “Paper 0” (Steyn-Ross
et al., 1999).! This was accompanied by an APS-sponsored Focus article “Freezing into Un-
consciousness” published at the Americal Physical Society web site.2 Shortly afterwards, we
were contacted by Dr Hanna Viertio—Oja from the Finland medical instrumentation company,
Datex-Ohmeda. Hanna is part of a design team for a novel depth-of-anaesthesia monitor that
utilizes EEG spectral entropy as an index for patient awareness. She felt that a phase-transition
model might provide the essential theoretical foundation for the Datex-Ohmeda instrument. An
invitation followed from Datex-Ohmeda for Moira to speak at the World Congress of Anaesthe-
siologists in Montreal, Canada in June 2000.

Moira wanted to develop a statistical mechanics formalism that would permit extraction

of a cortical entropy and a cortical “heat capacity” from the model, but first we needed a

1 «Theoretical EEG stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-
induced phase transition,” M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, D. T. J. Liley, Phys. Rev. E, 60,
7299-7311, 1999.

2The Americal Physical Society Focus story can be viewed at http://focus.aps.org/v4/st30.html



(non-thermal!) cortical “temperature.” I investigated a range of inverse mappings between
anaesthetic concentration and an analogous temperature that I called cortical ezcitability, ©.
Moira suggested using the locus of steady states as an effective equation of state, thereby de-
coupling the excitatory and inhibitory neural populations within the macrocolumn into a pair
of “independent” pseudocolumns. That decoupling was crucial. It permitted the construction of
free-energy hills and valleys (potential functions), thence the calculation of entropy and “heat”
capacity changes with anaesthetic, and the prediction of a “heat” capacity anomaly (release of
latent “heat”) at the point of phase change. Jamie uncovered a significant paper published in
1977 by Stullken and colleagues that seems to confirm the notion that as the brain is “cooled”
with anaesthetic, there exists a region intermediate between consciousness and unconsciousness
in which cortical metabolic requirements decline precipitously. We can interpret this anomalous
non-consumption of energy as signalling the release of latent energy as the brain transits from its
disordered conscious state to its well-ordered unconscious state. Our thermodynamics analogy
was written up in Paper 1 (Steyn-Ross et al., 2001a)3 which appeared in July 2001.

Meanwhile, our research group had been enlivened by the arrival of MSc student Ms Lara
Wilcocks. Her research task was to run stochastic simulations of both the full Liley equations
and the adiabatically simplified set. Her simulations confirmed the number and nature of the
steady states I had calculated numerically from the adiabatic theory, and her simulation spectra
were able to be brought into exact agreement with theory once I'd established the precise scale
factors that need to be applied to the discrete Fourier tranform process. (It seems that these
scale factors are normally ignored, since I found no mention of them in the standard signal
processing texts.) For me, the most satisfying aspect of Lara’s simulations was the confirmation
of a pronounced growth of fluctuation power as the point of induction is approached—this is
the “cornucopia” graph of Fig. 7.8 on p. 141. We investigated the theoretical and simulation be-
haviour of spectral entropy, and found excellent qualitative agreement with Hanna Viertio—Oja’s
clinical measurements of spectral entropy of patient EEG records. Intrigued by the apparent
inverse relationship between the correlation time 7' of the cortical fluctuations and their spec-
tral entropy H,,, I discovered that for a particular spectral distribution (Lorentzian or Cauchy),
there exists a simple closed relationship: H, = —log, T". This simulation and spectral entropy
work was written up as Paper 2 (Steyn-Ross et al., 2001b),* and published simultaneously with
Paper 1.

Contents Overview

This thesis is a comprehensive report of the work I have done helping to develop and test a
physics-based theory of anaesthesia. I have included here all the work I did for Papers 0, 1,
and 2. Also reported is some recently completed research, outlined below but not yet published:
entropy estimation for continuous frequency spectra, and the modelling of anaesthetic effects for

an NMDA-enabled macrocolumn.

3«Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: I. A thermody-
namics analogy,” M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, L. C. Wilcocks, 64, 011917, (2001).

4«Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: II. Numeri-
cal simulations, spectral entropy, and correlation times,” D. A. Steyn-Ross, M. L. Steyn-Ross, L. C. Wilcocks,
J. W. Sleigh, 64, 011918, (2001).
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The reader will find that I have attempted throughout to give full acknowledgement of
the contributions by the various members of the cortical research team. In general terms,
Moira provided the theoretical backbone for the stochastic and thermodynamic approach, David
was ever the staunch advocate for and defender of the Liley neuron, Jamie ensured that the
physics and mathematics stayed true to the biology, and Lara stress-tested my assumptions and
calculations with her careful simulations and independent insights.

The thesis proceeds as follows.

Chapter 1 lays the foundations for an electrical model of anaesthesia. I outline the three
modern theories of anaesthetic action, and explain how our electrical model, based on the Liley
equations, aims to incorporate the main ideas from the prevailing ion-channel theory. I give a
rapid tutorial of some essential concepts of neurophysiology (e.g., resting, reversal, and action
potentials of a nerve cell), then explain how these ideas were built into the Hodgkin—-Huxley
electrical model of the nerve cell. This classic model is held in high regard because it success-
fully predicts the formation and propagation of nerve action potentials. I discuss the Tuckwell
subthreshold (non-firing) model neuron, then demonstrate that the Liley model for a macrocol-
umn (an assembly of cooperating neurons) can be regarded as a mean-field generalization of the
Tuckwell neuron.

In Chapter 2 I present a brief survey of continuous and discrete Fourier transform theory
germane to the analysis of EEG and other random time-series.

The main business of the thesis gets under way in Chapter 3 where I locate the macrocolumn
steady states for both the standard Liley equations and for a restricted case which ignores cell
reversal potentials. In Chapter 4 I examine the stability of these steady states.

Chapter 5 introduces white-noise driving terms into the macrocolumn equations, thereby
transforming them into stochastic differential (Langevin) equations. Linearizing these about
steady state gives a two-dimensional Ornstein-Uhlenbeck (Brownian motion) system that can
be analyzed using well-established methods from stochastic calculus. Of paramount interest to
EEG studies are the small voltage fluctuations about macrocolumn steady state and in particular,
the statistics of these fluctuations: the variance, spectral distribution, and correlation time.
For the first time, one can now make predictions about how the statistical character of the
EEG fluctuations is expected to change with anaesthetic. The model makes three significant

predictions:

e there will be a surge in fluctuation power at the point of anaesthetic induction, and again
at the point of emergence into wakefulness;

e there will be a pronounced redistribution of spectral power towards low frequencies as the
point of induction is approached;

e a return journey into anaesthetic-unconsciousness and back will exhibit hysteresis be-
haviour (i.e., the emergence point will occur at a weaker level of anaesthetic than that

required at induction).

The aperiodic EEG analysis by Kuizenga of patients undergoing propofol induction seems to
confirm the first and third of these predictions.
Chapter 6 describes a thermodynamics analogy for the conscious-to-unconscious phase

transition. By utilizing the trajectory of steady states as an “equation of state,” the excitatory



and inhibitory neural populations become effectively uncoupled, allowing the computation of
hills-and-valleys potential functions for the cortical free energy. I test several arbitrary but
plausible inverse mappings between anaesthetic concentration and cortical “temperature,” and
from a subset of these compute the analogous thermodynamic entropy and heat capacity. A
discontinuity in heat capacity is predicted—a “latent heat” effect—arising, presumably, from
changes in macrocolumn “bonding.” I give an interpretation of a 1977 experiment by Stullken
that supports the notion of a biological “heat capacity” for the cerebral cortex.

As a prelude to the stochastic macrocolumn simulations described in Chapter 7, I run
a simple one-dimensional Ornstein-Uhlenbeck simulation as a validation test case to provide
guidance on the choice of quadrature time-step, Fourier transform scale factors and window
functions. I report L. Wilcock’s simulation results for the full and adiabatic macrocolumn equa-
tions, and demonstrate good agreement between simulation and theory for changes in spectral
distribution and power level as a function of anaesthetic effect.

In Chapter 8 I discuss the several different kinds of entropy that might be used to quantify
the state of order in the cortex. I show that the form of spectral entropy used in the EEG liter-
ature is fundamentally flawed—it assumes (falsely) that one can use the (discrete) information
entropy H; to estimate the spectral entropy H,, of the underlying (continuous) spectrum. This
flaw becomes obvious in the limit Aw — 0: H; fails to converge; in fact, it grows without limit. I
show that the correct estimator is obtained by applying a “histogrammed” entropy measure Hs.
I compute the theoretical spectral entropy for an ideal Lorentzian spectrum, and show that there
is a direct logarithmic proportionality with correlation time. For the adiabatic macrocolumn
spectrum, I calculate the predicted changes in spectral entropy, and find excellent qualitative
agreement when compared with patient EEG records furnished by H. Viertio-Oja.

Chapter 9 is an attempt to generalize the adiabatic model for the case of dissociative (anti-
NMDA) anaesthetics. The published Liley model is designed for synaptic receptors which have
“fast” kinetics (i.e., they decay on a timescale of a few milliseconds). This is a good fit for
the (excitatory) AMPA and kainate receptors, and also for the (inhibitory) GABA receptors.
Our adiabatic simplification then assumes that these synaptic timescales are very much shorter
than the membrane timeconstant of the macrocolumn, and, by a moderate lengthening of the
IPSP, we achieve a plausible model for the GABAergic class of anaesthetics. However, the
dissociative class of general anaesthetics (e.g., nitrous oxide and xenon) work by shutting down
or antagonizing the excitatory NMDA receptor, and this receptor has “slow” kinetics: its EPSP
that can extend out to ~100 ms or longer. In this chapter I investigate the implications of
enabling slow NMDA receptor action, then antagonizing this action with progressive increases
in dissociative anaesthetic concentration. The model predicts the existence of a new state of
unconsciousness hovering between normal conscious-awareness and fully-induced anaesthetic
unresponsiveness.

Chapter 10 is a brief summary of work accomplished and an outline of future research
directions. There are two appendices. The first provides details for simulating the non-adiabatic,
spatially-homogeneous Liley equations (the so-called “full” equations); the second is a MATLAB
algorithm I developed for numerically integrating the thermodynamic potential functions of
Chapter 6.
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Original Contributions

I consider myself lucky to have been part of a such refulgent research team! But, because this
document is a thesis, I need to state which components of the research originated with me. In
general, unless otherwise stated, all numerical calculations and all graphic presentations are my

own work. Here is a list of my main contributions:

e treatment of the Liley neuron as a generalization of the Tuckwell neuron; design of equiv-
alent circuits for Liley neuron and macrocolumn (Chap. 1);

e derivation of At/N forms for discrete Fourier transform normalizations (Chap. 2);

o development of algorithms to locate steady states of the GABAergic (Chap. 3) and NMDA-
enabled (Chap. 9) macrocolumns, and to establish their stability with respect to small
perturbations (Chaps 4 & 9);

e coding of equations derived by M. Steyn-Ross for the fluctuation spectrum of the adiabatic
macrocolumn (Chap. 5);

e justification of equilibrium treatment for non-equilibrium steady states; investigation of
inverse mappings between anaesthetic concentration and cortical “temperature” for ther-
modynamic analogy; interpretation of the Stullken dog results (Chap. 6);

e comparison of L. Wilcocks’ numerical simulation results against adiabatic-theory predic-
tions for fluctuation intensity, spectral distribution and spectral entropy change with anaes-
thetic (Chap. 7);

e discovery of direct logarithmic relationship between spectral entropy and correlation time
for a Lorentzian spectrum; establishing the histogram “correction” to enable unbiased esti-
mation of the entropy of a continuous spectrum from a discrete spectral sample (Chap. 8);

e modifications to Liley equations to permit modelling of NMDA-antagonist anaesthetic
agents; discovery of a “dissociated” state lying between normal consciousness and anaes-
thetic unconsciousness; prediction of “peak-splitting” during normal GABAergic induction
(Chap. 9).
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Chapter 1

Foundations for an Electrical Model of
Anaesthesia

1.1 The Anaesthesia State

The ability to safely and reversibly render a patient unconscious is an essential element of modern
surgical medicine. Most surgical procedures would be completely impossible were it not for a
series of discoveries, dating from the 1840s, that certain gaseous and volatile agents can induce

a state of general anaesthesia, defined as follows—

—a state of controlled and reversible unconsciousness characterized by lack of
pain sensation (analgesia), lack of memory (amnesia), muscle relaxation, and rela-

tively depressed reflex responses.!

It is the task of the clinical anaesthetist to administer anaesthetic drugs in doses that will not
only guarantee adequate anaesthesia with minimal side-effects for the duration of the surgical

intervention, but also enable fast emergence from anaesthesia at the end of the intervention.

1.1.1 Stages of Anaesthesia
Guedel (1937) identified four distinct stages in the induction of general anaesthesia:

1. Analgesia and Amnesia: Patient experiences pain relief and dreamy disorientation, but
remains conscious.

2. Delirium: Patient has lost consciousness, blood pressure rises, breathing can become irreg-
ular, pupils dilate. Sometimes there is breath-holding, swallowing, uncontrolled violent

movement, vomiting, and uninhibited response to stimuli.

9]

. Surgical anaesthesia: Return of regular breathing, relaxation of skeletal muscles, eye move-

ments slow, then stop. This is the level at which surgery is safe.

"N

. Respiratory paralysis: Anaesthetic crisis—respiratory and other vital control centres cease
to function, death from circulatory collapse will follow without assisted ventilation and cir-

culatory support.

Some of the patient responses during stage-2 can be medically worrisome. Because of
this, most anaesthetic protocols seek to minimise stage-2 duration, or, with appropriate pre-
medication, to bypass this stage altogether. The “ideal” anaesthetic protocol yields a quick and

smooth induction to stage-3, and allows a rapid recovery.

1Source: www.cvm.msu.edu/courses/VM303 (course notes for Veterinary Technology students)
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1.1.2 Motivation for EEG Monitoring

As a matter of standard practice, an anaesthetist will “titrate to effect,” i.e., will adjust the drug
administration amount and rate according to the clinical response of the patient. For example,
if the patient moves or vocalizes in response to surgical incision, opens her eyes, or suddenly
changes her pattern of breathing, then the level of anaesthesia is inadequate and the drug level
must be increased. However, these important clinical indicators of inadequate anaesthesia will
be unavailable if muscle-relaxant drugs have been applied, in which case the anaesthetist has to
rely on autonomic responses such as increases in heart rate and blood pressure, transpiration
(sweating) and lacrimation (tear formation). But these indirect measures of anaesthetic depth
can themselves be diminished by disease and by some co-medications, thus increasing the risk
of either under- or overdosing the anaesthetic drug (Kuizenga, 2001).

It is prudent to reduce this risk by using an alternative measure of the patient’s level of
anaesthesia: the electrical activity of the brain itself. Scalp-mounted electrodes monitoring the
activity of the cerebral cortex give voltage-vs-time traces referred to as the EEG (electroen-
cephalogram). Alterations in anaesthetic-blood concentrations produce significant changes in
the spectral character (amplitude and frequency distribution) of the EEG fluctuations. The
relationship between anaesthetic concentration and its effect on the EEG will be investigated in
detail later in this thesis.

Although it is of primary concern to the anaesthetist to ensure the patient is safely and
comfortably transported from an initial state of conscious awareness to a sufficiently deep plane
within stage-3 anaesthesia, the safety and comfort aspects of the transition are not the focus
of this thesis. Instead, we will be examining the changes in the state of consciousness from
a physics perspective, attempting to identify transition behaviours that are shared with other

changes of state that occur in the physical world.

1.1.3 The Anaestheto-Dynamic Phase Transition

As naive (i.e., non-medically trained) observers seeking simple explanations for anaesthetic-
induced loss of consciousness, it seems not unreasonable for us to assume that there exists a
roughly linear rule-of-thumb for the dose-response relationship, such as: “increases in drug con-
centration leads to proportionate reductions in brain response.” Unfortunately this intuition is
immediately contradicted by the anomalous patient responses exhibited at the stage-2 (delirium)
depth of anaesthesia. A general anaesthetic is administered with the aim of quieting or inhibiting
brain response to noxious stimuli, and yet, on route to the stage-3 fully-inhibited state, the pa-
tient transits through a “wild” uncontrolled state of delirium and uninhibited response to stimuli.
This is a most interesting paradox: the end-state of inhibition is preceded by an intermediate
stage of excitation. As we shall see later, this observation supports the idea that the conscious
— unconscious transition is analogous to a classical first-order thermodynamic phase transition
in physics. For this reason, I have coined the phrase “anaestheto-dynamic phase transition” to

describe the abrupt change in the state of consciousness induced by a general anaesthetic agent.
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1.2 Effect of Anaesthetics on Bioluminescence

Researchers have reported that the volatile anaesthetics ether (CH3-CHy-O-CHy- CH3), halothane
(CF3-CHCIBr), chloroform (CHCl3), and cyclopropane (C3Hg) reversibly reduce the intensity of
light emissions from luminescent bacteria (White and Dundas, 1970; Halsey and Smith, 1970).
This followed earlier work by Ueda (1965) showing that the light emission from the firefly lantern
extract luciferase was reversibly suppressed by both ether and halothane. (In all cases the wave-
length of the emitted light was unaffected.)

The anaesthetic concentration required to depress bioluminescent intensity by 50% was found
to be very simililar to the concentrations required for clinical induction in humans. Because of
this remarkable scale invariance (i.e., the light-emitting complex in photo-bacteria and fireflies,
and the central nervous system in humans, all seem to respond in similar ways to similar con-
centrations of a given anaesthetic), and because light intensity can be be easily and accurately
measured, bioluminescence provided a very useful means for quantifying and comparing anaes-
thetic potency.

Figure 1.1 shows the bioluminescence dose-response curve for ether reported by Halsey and
Smith (1970). At an ether partial pressure of 0.026 atm, the luminous intensity has reduced to
to 50% of its original (zero ether) value. This partial pressure is similar to the 0.032 atm value
they quote for the abolition of the righting instinct in 50% of mice exposed to ether (prior to
the bioluminescence work, small mammals had been used to calibrate anaesthetic potency).

Of particular interest to us is the observation that luminescence is stimulated by low doses of

ether (P ~ 0.009 atm). Halsey and Smith reported that stimulation also occurred at low levels

Bacterial Luminescence Response for Ether
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Figure 1.1: Dose-response curve showing the effect of the volatile anaesthetic ether on the luminous
intensity of the bacteria Photobacterium phosphoreum. [Source: Halsey and Smith (1970)]
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of chloroform, halothane, and nitrous oxide (though for the latter two agents they described the
increase as “not statistically significant,” presumably because the error bars became very large
during this transition phase). Apart from noting the low-dose stimulation effect, neither Halsey
and Smith nor White and Dundas proffered any explanation of this paradoxical excitation by an
inhibitory agent. The anomalous boost in light output seems to have been viewed as a curiosity
rather than an indicator of a deeper phenomenon.

Thus it is apparent that two quite dissimilar organisms exhibit similar but paradoxical,
dis-inhibitory responses to low-concentration anaesthetic: the human patient enters a delirium
phase of unsteady, feverish activity (stage-2 of general anaesthesia), and the photobacterium
enters an overactive phase of strongly fluctuating light intensity. In both cases, at higher con-
centrations the anomalous excitation dies away, and the organism response becomes quieter in
a monotonically dose-dependent manner.

If we picture deep-anaesthesia and conscious-awareness as being two opposite states that
bracket stage-2 delirium, then the dramatic fluctuations of stage-2 indicate that a change of
phase is imminent. It will become evident as this thesis proceeds that this picture is consistent
with clinical recordings of brain activity during induction of general anaesthesia, and is also
consistent with model predictions for changes in EEG activity during induction of an inhibited,

low-firing cortical state.

1.3 Theories of Anaesthetic Action

1.3.1 lon-Channel Theory

Although general anaesthetics have been in use for over 150 years, the way in which they work
has remained a puzzle and a source of some controversy. The prevailing view is as summed up
in the title of a recent paper by Franks and Lieb (1997): “Anaesthetics set their sites on ion
channels.” These authors argue that inhibition occurs when the anaesthetic molecule binds to a
specific site on the GABA (vy-aminobutyric acid) receptor of the postsynaptic neuron, causing
its chloride-ion channels to remain open longer, so more Cl~ ions enter the postsynaptic neuron,
and it becomes hyperpolarized (i.e., more negative), and therefore less likely to fire.

Figure 1.2(a) shows the arrival of an action potential at the terminal of the presynaptic
neuron and the subsequent release of messenger chemicals (neurotransmitters) which diffuse
across the gap (synapse) separating the pre- and postsynaptic neurons. The incoming GABA
neurotransmitter momentarily opens the Cl~ channels, allowing a brief inward flux of Cl~ ions
and consequent negative-going “impulse response” in the postsynaptic neuron (Fig. 1.2(b)). The
duration of the inhibitory impulse response is increased in the presence of anaesthetic. In our
modelling work, we will assume that the characteristic decay time of this inhibitory postsynaptic
potential (IPSP) scales proportionately with anaesthetic concentration.

Figure 1.3 presents a simple block-diagram representation of the GABA, receptor. The
GABA molecule provides the “key” which unlocks the C1~ channel via an unspecified catalytic
reaction represented by the triangle.

This enhancement of inhibitory effect is thought to be the basis of the so-called GABAergic

anaesthetics, such as the intravenous agent propofol (2:6 di-isopropylphenol), which are capable
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Figure 1.2: GABAergic model for anaesthetic action. (a) An action potential arriving at the terminal of
an inhibitory neuron results in the release of GABA neurotransmitter which diffuses across the synaptic
junction to the membrane of the postsynaptic neuron, opening chloride-permeable GABA, receptor
channels, causing the postsynaptic neuron to become hyperpolarized as Cl~ ions enter. (b) The main
effect of GABAergic anaesthetics (such as propofol) is to prolong channel opening, and hence to increase
postsynaptic inhibition. (c) Each channel consists of five protein subunits; the structure of a single
subunit is shown in (d). [Source: Fig. 1 of Franks and Lieb (1997)]
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Figure 1.3: Simplified view of the GABA-controlled chloride channel illustrated in Fig. 1.2(c). Acti-
vation occurs when the GABA neurotransmitter binds to the GABA4 receptor molecule. The chloride
channel opens, and Cl~ ions diffuse down the concentration gradient into the postsynaptic neuron, causing
it to become hyperpolarized (more negative) and less likely to fire.
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of inducing a fully-unconscious state. The bulk of this thesis (Chapters 3-8) will be concerned
with modelling GABAergic action.

There is a second class of agents referred to as dissociative anaesthetics, such as nitrous oxide
(N2O) and xenon (Xe), which do not ordinarily induce full anaesthesia. The dissociatives are
thought to act by suppressing the excitatory effectiveness of the NMDA (/N-methyl-D-aspartate)
receptor complex on the postsynaptic neuron (Franks et al, 1998; Jevtovic-Todorovic et al.,
1998), so are referred to NMDA-antagonists. Figure 1.4 shows a simplified block-diagram of
the NMDA receptor. Modelling the action of this receptor is complicated by the fact that the
duration of the excitatory postsynaptic response to a presynaptic action potential depends not
only on anaesthetic concentration (greater concentrations lead to EPSPs of shorter duration),
but also on the voltage state of the receiving neuron (the Mg?* block in the ion channel is only
removed when the neuron is depolarized). Chapter 9 develops a model for NMDA-antagonist

effect based on laboratory measurements reported by Hestrin et al. (1990).
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Figure 1.4: The NMDA receptor complex. Activation (i.e., excitation) occurs when glycine (Gly) and
one of either of glutamate (Glu) or NMDA bind to the receptor molecule. In its unactivated configuration,
a magnesium ion blocks the channel within the receptor. On activation, the Mg?* ion is removed, and
other ions are then free to diffuse down their concentration gradients: Nat and Ca?* ions enter the cell,
causing the cell to become depolarized (less negative). Dissociative anaesthetics such as nitrous oxide
and xenon are NMDA-antagonists (i.e., they reduce activation of the NMDA receptor). [Based on Fig. 1
of Thomas and Riley (1998)]

1.3.2 Volume-Change Theory and Pressure Reversal

The ion-channels theory of Franks and Lieb (described above) asserts that anaesthetics act on
specific sites on receptor proteins to alter the ionic conductance through membrane pores.
Ueda (2001) maintains a vigorous counterview—he argues that the action of anaesthetics is
both nonspecific and physical. A bewildering array of chemical agents can induce anaesthesia;?
such chemical diversity militates against the idea of a common, specific receptor. For Ueda, the
key observation that anaesthetic action is physical is the fact that anaesthesia can be reversed
by application of pressure. Johnson and Flagler (1951) reported that the spontaneous swimming

motion of tadpoles disappeared when they were anaesthetized with various liquid anaesthetics,

2e.g., alcohols, alkanes, ketones, ethers, barbiturates, isoflurane, nitrogen (at ~150 atm pressure), xenon, . ..
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or when unanaesthetized tadpoles were exposed to hydrostatic pressures of 200-350 atmospheres.
However, when anaesthetized tadpoles were exposed to hydrostatic pressures of 150-350 atm,
spontaneous swimming motions reappeared! Johnson and Miller (1970) studied the ability of a
newt to right itself under the influence of anaesthetics and pressure. Butanol, ether, or nitrogen
anaesthetic was administered in sufficient dose to abolish the righting reflex. Application of
pressure, either hydrostatically or with the non-anaesthetic helium, restored the righting reflex
at about 150 atm. Application of pressure alone led to progressive loss of righting reflex above
150 atm.

From the observation that pressure reverses anaesthesia, Ueda concludes that “the volume
of the anaesthetized state is larger than the awake state [...]; an increase in the partial molar
volume of the system is the crucial condition for anaesthesia” [my italics] but unfortunately he
never defines what he means by “system.” Also not addressed is the idea that since application
of pressure alone can induce an anaesthetic state, then apparently the anaesthetized state can
be either larger or smaller than the awake state, depending on whether the state was induced
by chemical agent (anaesthetic) or by physical agent (pressure).

It seems plausible that pressurizing an organism will cause non-specific bulk changes in
its neural membrane conformation which could disrupt ionic conduction, thereby altering the
electrical state of the neural network and leading to loss of consciousness. But it seems much less
plausible that bulk pressurization should be able to reverse an anaesthesia induced by a chemical
agent acting at specific site. Therefore pressure reversal seems inexplicable in the Franks and
Lieb ion-channel theory.

The Ueda volume-change theory says that all anaesthetics act nonspecifically at the bilipid
membrane, yet this claim is contradicted by the growing body of experimental evidence demon-
strating site specificity for anaesthetic agents.

At this stage of knowledge, neither theory is complete. Worse, the theories seem to be
mutually exclusive and irreconcilable. Nevertheless, because in our modelling work we want to
assume a direct relationship between the electrical state of the cerebral cortex and the state
of patient awareness, we will take the ion-channel theory as our starting point and reluctantly

leave the pressure-reversal paradox as an unresolved puzzle.

1.3.3 NMDA-Disruption Hypothesis
Recently Flohr, Glade, and Motzko (2000) have put up a theory of general anaesthesia which

asserts that anaesthetic loss of consciousness always involves disruption of one or more NMDA-
dependent processes. Flohr states that all agents that directly inactivate the NMDA synapse or
its subsequent plastic processes (some of which are shown in Flohr’s NMDA diagram reproduced
below as Fig. 1.5) possess dissociative anaesthetic properties. He argues that the anaesthetic
action of agents that primarily act upon other targets, such as the GABAergic anaesthetics, can
be explained as an indirect effect on the NMDA receptor.

Referring to Fig. 1.5, it is plausible that the working conditions of the NMDA receptor could
be modified by inhibitory (GABA,) and excitatory (AMPA) synapses located in the vicinity of
the receptor. Flohr presents experimental evidence which demonstrates that propofol, generally
classified as a GABAergic agent, partially blocks the uptake of radio-labelled MK-801, an NMDA
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Figure 1.5: The Flohr model of the NMDA synapse as a target of anaesthetics. Schematic representation
of the NMDA receptor channel complex with its regulatory sites and its neighbouring GABA 5 and AMPA
receptors which can influence the working conditions of the NMDA receptor. All listed agents have
anaesthetic properties; arrows indicate possible interaction sites. [Source: Fig. 2 of Flohr et al. (2000)]

antagonist that binds to the PCP site within the NMDA channel. Thus propofol is found to be
both GABAergic and (weakly) NMDA-antagonistic.

It will become apparent in Chap. 9 that our ion-channel model for the NMDA-enabled macro-
column (local assembly of cooperating neurons) makes predictions that are nicely consistent with
the Flohr hypothesis. For induction via a GABAergic agent, our theory predicts two cortical
activity peaks: the first of these peaks marks the transition to what I call the “dissociated”
state, and the second peak is the transition to the deeper state of unresponsiveness required
for surgery. Our “dissociated state” is an intermediate region of equilibrium states which only
comes into existence when slow NMDA-mediated currents are incorporated into the model.

There is fresh clinical support also: Part of Chap. 9 is an analysis of clinical data (kindly fur-
nished by our colleague K. Kuizenga), measuring changes in EEG activity during slow (20-min)
propofol infusions, and this also shows two surges in cerebral cortex activity (Fig. 9.16). Loss of
responsiveness to verbal command generally occurs prior to the first peak, and, according to the
model, the first peak is an NMDA feature. Thus, just as the Flohr hypothesis would predict,3
the GABAergic anaesthetic propofol appears to display an NMDA-antagonisic behaviour during

the preliminary phase of the induction.

3Though it is worth pointing out that I only became aware of the Flohr NMDA-disruption hypthesis several
months after the NMDA-modelling work of Chap. 9 had been completed.



1.4 Elements of Neurophysiology 9

1.4 Elements of Neurophysiology

Before we examine the Liley “average neuron” which forms the basis of our anaesthetic model,
we need to introduce some basic concepts of nerve cell biology, and also make more concrete

some of the neurophysiological terms we have already used in the foregoing discussion.

Axon terminal

Somato-
1mv] > dendritic
20ms 2 tree
2°"ﬂ 3
1ms
20m\il s
10ms
Terminal
arborization

Figure 1.6: Schematic view of a prototypical neuron. Neurotransmitters released at the axon terminal
(4) (at top of figure) of a presynaptic neuron (not shown) induce small excitatory (1) or inhibitory (2)
voltage pulses in the dendritic branches of the receiving neuron. These incoming voltage events propagate
to the soma where they are summed. If a threshold voltage is exceeded, a large voltage spike (action
potential) is generated (3a) and propagated down the axon (3b, 3c) towards the terminal arborization
(telodendria), where neurotransmitters are released to stimulate the next neuron. (The diagram repre-
sents a “white-matter” neuron, since its axon is sheathed with myelin, a white fatty insulator, whose
effect is to increase transmission velocity. For “grey-matter” neurons such as the those of the cerebral
cortex, the myelin coating is absent.) [From Hammond (2001, Fig. 1.5)]
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1.4.1 The Cortical Nerve Cell

Our brains and spinal cords contain specialized cells called nerve cells or neurons* which collec-
tively form the central nervous system. The stereotypical neuron (see Fig. 1.6) consists of a cell
body or soma, dendrites, aron, and telodendria. The dendrites form a dense root-like structure
which converge at the soma. The dendrites sample electrical stimulus currents from the local
neural environment, and feed these currents forward to the soma where they are integrated to
produce a change in the internal voltage of the cell.

If the voltage change is small (i.e., subthreshold), then the voltage change propagates slowly
and passively only a short distance along the axon, decaying exponentially as it travels. This
decaying voltage transient is referred to as a local potential.

If the voltage change is sufficient to raise the soma voltage V;, above a threshold level (i.e.,
Vm 2 —60 mV), then an action potential is triggered and actively propagated along the axon,
away from the cell body towards the telodendria or terminal branches of the neuron. The arrival
of an action potential at a terminal branch causes neurotransmitters (messenger chemicals) to
be released from the terminal, and these convey a chemical impulse to the next neuron by
diffusing across the extracellular junction or synapse that separates the sending (presynaptic)
and receiving (postsynaptic) neurons. The impinging neurotransmitters generate currents in
the postsynaptic cell by altering the ion permeability of the postsynaptic membrane, thereby

allowing ions to diffuse across it.

1.4.2 The Resting Neuron

In any measurement of the cellular transmembrane potential difference, it is standard practice
to take the extracellular ionic “sea” in which the neuron is bathed as defining the zero potential
level. Relative to this external reference, the potential of the ionic fluid inside most nerve cells
is found to be approximately —70 mV when the cell is “at rest,” i.e., when the cell is not
receiving stimuli from its dendritic tree. This steady transmembrane electrical tension provides
the source of potential energy required for the propagation of electrical action signals. The cell
resting voltage (usually referred to as the resting membrane potential) arises from an imbalance
in ion concentrations either side of the membrane. The ionic imbalance is actively maintained
by a metabolic process called the sodium-potassium pump that moves three Na*t ions out of the

cell for every two K* ions that enter.

1.4.3 Nernst Potential

Table 1.1 shows the intracellular and extracellular concentrations of the four most important
ionic species which can cross the nerve membrane through ion-specific pores or channels. The
Nernst potential listed in the final column is an ideal equilibrium voltage calculated from classical
membrane theory (see, for example, Sect. 2.6 of Tuckwell (1988a)) for the diffusion of a single
ion across a membrane permeable only to that ion. The Nernst potential Vx for a single ionic
species X, whose respective concentrations outside and inside the cell are [X], and [X];, is given
by:

4Some authors spell neuron as neurone.
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Table 1.1: Typical ion concentrations (in mmol/L) and Nernst potentials (mV) for a resting neuron.

The Nernst potentials were calculated using Eq. (1.1) for a neuron at body temperature (37°C) giving
RT/F =26.7 mV. [From Silbernagl and Despopoulos (1996)]

Concentration

Ion Inside Outside Nernst Potential

Nat 10 140 +70
K+ 140 4 -95
Cl- 4 103 —87
Ca?t <10° 5 >350

RT X]o

Vx = Vi-Vo = == i .
X V. °F log, X, (Nernst potential) (1.1)

or sometimes stated as a Boltzmann factor for the concentration ratio,

(X];
XJo

= exp [-zFVx/RT| = exp[—ze(V; — V,)/kT) (1.2)

where T is the absolute temperature, R = 8.314 JK~! mol~! is the ideal gas constant, z is the
signed valence of the ion (e.g., z = —1 for C17), F = 9.648 x 10* Cmol~! is the Faraday constant,
k =1.381x10723 JK~! is the Boltzmann constant, e = 1.602x 101 C is the elementary charge,
and R/F = k/e.

1.4.4 Reversal Potential

Suppose the transmembrane voltage is initially zero, while the concentration of, say, potassium
(K*) is initially higher inside than outside. Potassium will tend to diffuse down its concentration
gradient to the outside, but every K* ion that leaves will add to a growing charge imbalance
across the membrane, with the inside becoming progressively more negative. Eventually the
inwards electric force on the K% ions will exactly balance the outwards diffusive force, and
the transmembrane K* ion flux stops. For typical nerve cells, the Nernst potential for K* is
approximately —90 mV (cf Table 1.1), i.e., when the inside of the cell membrane is 90 mV
negative with respect to the outside of the cell membrane, the K ion flux is zero.

If the membrane voltage is made more negative, then K* ions will be dragged back into the
cell against the concentration gradient, and the direction of the ion flux will be reversed. For
this reason, the Nernst potential for a given ion is also referred to as the reversal potential since

it is the point of equilibrium about which the ion current changes sign.

1.4.5 Resting Membrane Potential

When the only permeant ions are potassium, sodium, and chloride, the membrane potential can
be predicted using the Goldman-Hodgkin-Katz (GHK) formula,

V = RT log Px[K]o + PNa[Nal, + Poi[Cl);

F ¢ PK[K]; + PNa[Na],' + Pc][Cl]o

(1.3)
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or

RT [[K]o + Pa[Nao + Poy[ClL: (1.4)

V= T %8 | [R], + B Nal: + Py (Cll, |

In the limiting case where the permeability of a single ion domininates, the GHK equation
reduces the Nernst equation (1.1) for that ion. Here, Px is the permeability for ion X (with
units the same as speed), and Px is the (dimensionless) relative permeability of X with respect

to potassium,

PXa = PNa/FPk (1.5a)
P¢ = Poi/Pk. (1.5b)

In the resting state the ratios for the values Pk : PN, : Py are approximately 1: 0.05: 0.25 (i.e.,
the resting cell is 20 times more permeable to potassium than to sodium). Substituting these
relative permeabilities, together with the ionic concentrations from Table 1.1, into Eq. (1.4)

gives a resting membrane voltage of

‘/rest = -70.2 mV,

about 20 mV higher than the reversal potentials for potassium or chloride ions. In contrast, at
the peak of the action potential, the potassium permeability is not substantially changed, but the
sodium permeability increases by a factor of about 500 because of the opening of voltage-gated
sodium channels. Equation (1.4) predicts that the membrane voltage will reach a maximum

value of

Vpeak = +56.9 mV,

about 13 mV below the reversal potential for sodium.

1.5 Hodgkin—Huxley Model Neuron

1.5.1 Neuron Equivalent Circuit

Table 1.1 shows that potassium is in excess inside the nerve cell, while sodium and chloride
are in deficit. The tendency of each ion to diffuse down its concentration gradient can be
represented as an electric battery whose voltage, calculated from the Nernst formula of Eq. (1.1),
conveys the magnitude and direction of the concentration gradient. (For chloride, a negative
ion, conventional current will be an apparent diffusion against the concentration gradient, so
the battery direction is reversed.) The fact that the sodium and potassium batteries point in
opposite directions turns out to be critical for electrical signalling.

The pioneering work by Hodgkin and Huxley (1952) modelled the membrane of the squid
giant axon as a capacitor in parallel with distinct conduction paths for each of the major ionic
species (Nat, K*, Cl7); see Fig. 1.7. They posited that the driving force for a given ion is
proportional to the difference between the membrane potential V' and the Nernst potential for
that ion. Defining the outwards current direction as positive, then the Nat current in Fig. 1.7

can be written:
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Figure 1.7: Electrical circuit used by Hodgkin and Huxley to represent a patch of nerve membrane
at rest. Each ion channel is modelled as a conductance (inverse resistance) driven by battery whose
magnitude and direction is given by the Nernst potential of the ion.

Ina = (V — WNa) 9Na (1.6a)

where the coefficient gn, is the sodium conductance [units: Q7!]. We can write parallel expres-

sions for the potassium and chloride currents

Ix = (V- Vk)gk (1.6b)

Io = (V-Va)gar- (1.6c)

Thus for the resting nerve cell, the conventional current for Na* ions will be in the negative
direction (i.e., directed inwards), while for K* and Cl~ ions the conventional current will be
positive (outwards).

In general, the conductance is not constant: it depends on both the membrane voltage V
and its history. However, defining conductance in this way (with the V' — Vx term factored out;
X is one of Na*, K*, or C17) simplifies the functional form of gx since it does not have to change
sign as V crosses the Nernst potential Vx and the current reverses direction.

For their Fig. 1.7 circuit, Hodgkin and Huxley wrote the total membrane current as the sum

of capacitive and ionic currents,

dVv
I = CE'*’Iion (1'7)

where the ionic current is the sum of the individual channel contributions

giving the total current as
av
I'=C—+(V=Vra)gna+ (V=Vik)gk + (V= Vo) gar - (1.9)

At rest, I = 0 and CdV/dt = 0, and Eq. (1.9) predicts a resting voltage that is the weighted

sum of Nernst potentials,
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gNaVNa + gk VK + gaVal

Ve =
rest gNa + gK + gci

(1.10)

Tuckwell (1988b, pp. 5-6) points out that Eq. (1.10) is linear in the Nernst potentials for
the various ions, while the GHK prediction of Eq. (1.3) is not linear in the individual Nernst
potentials, except when only one kind of ion is involved. This inconsistency arises from the
fact that conductance and permeability are not interchangeable concepts (Koester, 1991, p.90).
Permeability depends on the state of the membrane, while conductance also depends on the
concentration of surrounding ions.®

For the present work we will assume a nominal resting voltage of —70 mV, as calculated

using the GHK formula on p. 12.

1.5.2 Modelling the Action Potential

When a synaptic or other injected current drives the membrane voltage from its —70-mV resting
level to a threshold of approximately —60 mV, a population of voltage-dependent Nat channels,
normally closed at rest, opens abruptly, thereby increasing the sodium conductance gn, and
leading to a rapid influx of Na™ ions, driving the membrane voltage towards the sodium reversal
potential Vy,. Within a fraction of a millisecond, the Na* channels begin to close or “inactivate.”
At the same time, voltage-dependent K* channels sense the voltage upswing on the leading edge
of the action potential, and open to produce a large outward current. The combined effect of
Nat channel inactivation and K* channel activation result in an abrupt downswing to terminate

the action potential.

Outside (0 mV)

—__ IVNal
8 8
C + g cl K

+

|VC|| - [Vl

+

Inside: potental V

Figure 1.8: Hodgkin and Huxley equivalent circuit used to model the formation of an action potential.
The gna and gk rest conductances of Fig. 1.7 are replaced by voltage- and time-dependent functions.
Once the membrane voltage crosses a trigger threshold (about 10 mV above Viest), voltage-gated sodium
channels turn on, increasing sodium conductance and inward sodium current, further depolarizing the
membrane, leading to regenerative increases in sodium conductance and membrane voltage. After a delay,
the voltage-gated potassium channels turn on, eventually restoring the membrane to its resting voltage.
See Fig. 1.9.

Tuckwell (1988b, pp. 44-57) gives a good account of the classic Hodgkin—Huxley model for

the formation of the action potential in a nerve membrane. What follows is a brief summary.

5For example, the membrane could be highly permeable to K*, but if the surrounding K* concentrations are
low, the conductance (ionic current per unit voltage difference) will be low.
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In order to describe their experimental measurements of the action potential in the squid
giant axon, Hodgkin and Huxley found it necessary to replace the constant Na* and K* con-
ductances of Fig. 1.7 with variable conductances as indicated in Fig. 1.8. These variable conduc-
tances were expressed in terms of a sodium activation variable m, a sodium inactivation variable
h, and a potassium activation variable n:

gNa = Gnamh (1.11a)
gk = ggn' (1.11b)
where gy, and gk are the measured maximum conductance values for Na* and K* ions. Each

of the m, h, and n activation or inactivation variables is dimensionless, takes values in the range
[0,1], and obeys an ordinary differential equation of the form

dd—? = amp(l —m) — Bnm (1.12a)
% = ap(l - h) — Bnh (l.l2b)
dn

E = an(l - n) — Bun (112C)

The three a; and B; (j € {m, h,n}) are voltage-dependent coefficients whose voltage dependence
was established by curve fitting to conductance data obtained in a detailed series of voltage-
clamp experiments. Setting total current [ in Eq. (1.9) to zero, we can write the Hodgkin—-Huxley

equation for the action potential as,

dVv
C E = (VNa - V) gNa. m3h + (VK - V) gK n4 + (VCI - V) gcl - (113)

Figure 1.9 shows the numerically evaluated solution of Eqs(1.12-1.13). We observe that the
dynamic range of the action potential (upper graph of Fig. 1.9) is constrained to lie entirely
within the bounds defined by the reversal potentials for Nat (upper bound) and K* (lower
bound). Although the Liley model neuron makes no attempt to follow the dynamics of the
action potential (its focus instead is on the accurate following of synaptic inputs rather than
the axon action “output”), the notion that a pair of reversal potentials place upper and lower

bounds on membrane voltage excursions will be preserved.

1.6 The Tuckwell Neuron

The Hodgkin—-Huxley neuron provides a faithful mathematical model of the action potential.
However, action potentials are never seen in scalp EEG records. This is because action potentials
have very fast rise and fall times which are strongly low-pass filtered by the cerebrospinal fluid,
skull, and scalp tissue that intervene between the brain surface and scalp electrode. In fact,
what is seen at the scalp are the much more slowly varying fluctuations in the spatially- and
temporally-averaged local potentials of the excitatory neurons.

In order to model the EEG signal, we need to be able to calculate the soma voltage which

results from a membrane integration of all the incoming presynaptic activity: the inflowing
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Figure 1.9: Predictions from the Hodgkin-Huxley model for the formation of an action potential (top
figure) via differentially-timed changes in sodium and potassium conductances (bottom figure). Here, V,,
is the membrane voltage, Efye is the firing threshold, Ena and Ex are the sodium and potassium Nernst
potentials. Also plotted in the lower figure is the sodium inactivation parameter h. [From Halsey and
Smith (1970), after Hodgkin and Huxley (1952)]

EPSCs (excitatory postsynaptic currents) minus the outflowing IPSCs (inhibitory postsynaptic
currents). But no matter how high the integrated soma voltage gets, the neuron is not permitted
to fire off action potentials!—otherwise the soma voltage time-series will contain spikes. Instead,
the averaged effect of a train of action potentials on the neural population can be preserved via
a sigmoid (i.e., S-shaped; see Fig. 3.2 on p. 42) mapping from average soma voltage to average
spike-rate, and it is this output spike-rate (not the spikes themselves) which will determine the
presynaptic activity and hence the average postsynaptic voltage.

The Liley neuron (to be described shortly) models the formation of (spike-free) EEG by
interacting excitatory and inhibitory populations of neurons. Because the Liley neuron never
“fires,” it is intuitively helpful to approach it as a generalization of the Tuckwell subthreshold
neuron described in Tuckwell (1988b, p. 9).

The first step is to replace the Fig. 1.7 sodium, chloride, and potassium batteries, and their
associated conductances, with a single battery Vs in series with resting conductance grest. The

resulting circuit is shown in Fig. 1.10. The neuron is maintained in this —70 mV resting state
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by various ion pumps working in the background to keep the ion concentration gradients, and
therefore the ion batteries, fully “charged.”

Outside (0 mV)

g rest

+
_-|— | Vrestl

Inside (at V)

Figure 1.10: Equivalent circuit of the resting neuron. The combined effects of the Nat, Cl~—, and K+
non-gated ion channels of Fig. 1.7 are represented here by a single channel of constant conductance grest
driven by an eternal battery of voltage Viest = —70 mV.

Next, we couple in the synaptic inputs. For simplicity, we will follow Tuckwell in assuming
that there is only one ion species involved in excitation and only one involved in inhibition.
Then their Nernst potentials will be the synaptic reversal potentials, denoted Vg and V;. The
circuit for the Tuckwell neuron appears in Fig. 1.11.
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Figure 1.11: The Tuckwell subthreshold neuron. The membrane capacitor integrates synaptic input
currents to give a graded local potential V'; the population-average local potential is assumed to be
proportional to scalp-measured EEG. This neuron never fires off an action potential.

Total currents sum to zero, giving

dVv
CE = (‘/l'est_v)grest+(VE—V)gE+(VI_V)gI- (114)

Looking ahead a little (see Table 3.1° on p. 40), Liley chooses reversal potentials which
roughly correspond to those of sodium for an excitatory neurotransmitter release, and to potas-

sium for an inhibitory neurotransmitter release:

VE = 445 mV = Wy,,
V[ = -90mV = VK.

5But note the change in nomenclature: Vg — hIV; V; — hi®¥
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However, as already pointed out in Sect. 1.3.1, it is the increase in chloride permeability which
is the source of GABAergic anaesthetic action, suggesting that the appropriate IPSP reversal
potential would be Vg rather than Vk. Examining the reversal potentials listed in Table 1.1
(p. 11) we see that Vi & —90 mV, so it seems reasonable to assume that for the purposes of
modelling anaesthetic action, an ingress of C1~ is equivalent to an egress of K*—either of these

ion fluxes will tend to hyperpolarize the nerve cell.

1.7 The Liley Neuron

Although there are some common elements between the Liley neuron and the Tuckwell sub-
threshold neuron, the Liley model (Liley, 1997; Liley et al., 1999, 2002) is much more ambitious.
The Liley model is an attempt to reproduce the scalp-measured EEG signal generated by a
cortical macrocolumn: an organized assembly of excitatory and inhibitory neurons acting coop-

eratively within a small volume of the cerebral cortex. Figure 1.12 is a schematic representation

~2—3mMm——

Key: Connectivity type

1. Short-range (intracortical) e —e g
2. " " e_” e,l
3. " " i—e P, S—
e kA ) i

- e ongarse e’ Longange o
5. Long-range (cortico-cortical) e —»e afferent) (cortico-cortical
6. " " e i Exogenous input efferent)
7. Exogenous (subcortical) e e (subcortical afferent)
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Figure 1.12: Schematic representation of the connective topology within a cortical macrocolumn. Only
four of the ~100,000 neurons are shown. Triangles are excitatory (pyramidal) cells which receive excita-
tory input via apical dendrites (e.g., connection type 5) and basal dendrites (1, 7); and inhibitory input
directly at the cell body (3). Circles are inhibitory (stellate or basket) cells receiving input from dendritic
connections (2, 4, 6) and at the cell body (8). Excitatory output from the macrocolumn is via trunk-
lines (axons) shown bold. The symbol ¢. ; represents long-range input to the excitatory and inhibitory
populations from distant macrocolumns, and p;x represents input from the subcortex (e.g., thalamus and
brainstem). (For clarity, I have omitted p;. and p;; exogenous inputs corresponding to connection types 9
and 10 respectively.) [Drawn from sketches supplied by J. Sleigh and D. Liley (personal communication)]
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Figure 1.13: Photomicrograph of Golgi-stained pyramidal cells in a neural preparation. The Golgi
method, based on silver reagents used in photography, randomly stains about 1-2% of exposed nerve
cells. The long parallel traces are the dendritic spines which descend to apex of the pyramidal-shaped cell
body. The axon exits from the base of the cell. These are excitatory nerve cells; the parallel alignment

of their dendritic trees provides an efficient dipole radiation pattern when the cells act cooperatively.
[Source of graphic: M. Nelson lecture notes at http://soma.npa.uiuc.edu/courses/bio303]

Figure 1.14: Higher magnification view of pyramidal nerve cells and their parallel dendritic structure.
[Source of graphic: C. L. Williams lecture notes at http://www.duke.edu/web/psy91/williams]



20 Foundations for a Model of Anaesthesia

of such an assembly which can be thought of as occupying a cylindrical volume of diameter
~0.3-1 mm, and containing 40 000-100 000 neurons. The excitatory (pyramidal) cells make up
~85% of the total number of neurons, and the inhibitory (stellate and basket) cells comprise
the balancing 15% (Braitenberg and Schiiz, 1991).

There are actually two Liley “neurons” per macrocolumn. The first “neuron” is a spatial
average representing the population of ezcitatory neurons, and the second represents the pop-
ulation of inhibitory neurons within the macrocolumn. The average membrane voltage of the
excitatory population is given the symbol he, and is assumed to be proportional to the scalp
EEG, while the average voltage of the inhibitory population is written h;, and is assumed to
have negligible direct effect on the EEG. Nevertheless, the inhibitory population plays a crucial
moderating role on the behaviour of the excitatory population, so exerts a powerful indirect
effect on the EEG.

There are two reasons why (direct) h; contributions to EEG are thought to be negligible.
First, excitatory neurons outnumber inhibitory neurons by about 6:1. Second, microscopic ex-
aminations of stained cortical preparations reveal that the dendrites and axons of the excitatory
neurons tend to line up perpendicular to the cortical surface and parallel to each other (see
Figures 1.13 and 1.14), thus their dendritic currents act as a palisade of small, aligned current
dipoles” whose electric fields sum with increasing area. In contrast, the inhibitory neurons are
smaller and have their dendrites oriented at random with nearly spherical symmetry, so their
electric field is mainly limited to the region of dendritic arborization with negligible influence at

the scalp.

1.7.1 Mapping from Tuckwell — Liley

In Fig. 1.15 I have drawn up two Tuckwell-like subthreshold “average neurons.” One “neuron”
represents the population of excitatory neurons in the macrocolumn, and the other represents

the population of inhibitory neurons. The following list gives the symbol remappings I have

"A current dipole is an abstraction that has the dimensions of current times length; the length is usually taken
as infinitesimal. [Source: Wellcome Trust Laboratory for MEG Studies, www.aston.ac.uk/psychology/meg]

(a) Average Excitatory Neuron (b) Average Inhibitory Neuron

Lo % % __—7'— J_I,,m{ i _—4—
? = % =],

T |h revl T Iheresl[ T | revl T |k, restl

EPSC IPSC EPSC IPSC
Synaptic Inputs Synaptic Inputs
to to
Excitatory Population Inhibitory Population

Figure 1.15: Equivalent circuit for the (a) excitatory and (b) inhibitory neural populations comprising
the macrocolumn of Fig. 1.12. This is the Liley generalization of the Tuckwell subthreshold neuron of
Fig. 1.11.
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used to transform from the single Tuckwell neuron of Fig. 1.11 to the Liley population neurons
of Fig. 1.15:

Tuckwell neuron

— Liley “neurons”

V — he,h; membrane voltage

VE — R excitatory reversal potential = +45 mV

Vi — W inhibitory reversal potential = —90 mV
Viest — AL hI™' resting potential = —70 mV

Cc — C.,GC; membrane capacitance

JE — Gee, Jie conductance for excitatory-reversal battery

9I — Gei, Gii conductance for inhibitory-reversal battery
Grest — G-, gi*"  conductance for resting-potential battery

The h.; equations of motion for the Fig. 1.15 circuit are,

dh.

Ce dt = (hzev - he)gee + (hiev - he)gie + (hf‘t - he)gzat (1.15a)
dh rev rev ¢ ¢
Ci— = (W — hi)ges + (A — hi)gis + (™ — hi)gi™". (1.15b)

In the absence of synaptic inputs, we can define a pair of membrane time-constants,

Te = Ce/gzﬁt = C.R. (1163.)
7 = Ci/gi* = CiR; (1.16b)

where R., R; are the excitatory and inhibitory membrane resistances. Provided the time-
averaged synaptic conductances are small (i.e., the synaptic PSPs are brief and infrequent),
then the 7.; time-“constants” give us the decay time for the cell to relax back to its resting
voltage. If synaptic activity is high, the time-averaged synaptic conductances g;; will be no
longer negligible, so the total membrane resistance will be lowered, and the response times will
be faster than the nominal relaxation times defined in Eq. (1.16) (Tuckwell, 1988b, p. 7). In
other words, the effective membrane time-“constant” is actually membrane-voltage dependent.
For the present modelling work, we will follow Liley in taking the membrane time-constant as a
fixed number.

Dividing Eq. (1.15) by g:®t, g*** and rearranging gives,
g &q g i

€

dh g .
Te—= = (R = he) + (he” — he) f:‘- + (R = he) g;t (1.17a)
7 % = (h** — hy) + (B2 — hi)% + (R — hy) % . (1.17b)

These equations of motion are directly comparable with the standard Liley formulation given
below as Eq. (1.20). We see that the conductance ratios of Eq. (1.17) become voltage ratios in
Eq. (1.20):
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ik Vik . .
ngeSt = |hrev _J hrest| ) where 7 k € {ea 'L} . (118)
k 5 k

The denominators of both sides are constants, so there is a direct proportionality between

synaptic conductance g;x and voltage increment Vj; at the Cy capacitor,
Vik < gjk - (1.19)

Note that Vi is not the voltage across the g;; conductance; Vj; is the incremental change in

the hj soma voltage resulting from an incremental change in the g; input conductance.

1.7.2 Local Feedback within the Macrocolumn

Not immediately apparent from Fig. 1.15 is the fact that the two circuits are very strongly
coupled; this fact is hinted at by the double-subscripting on the four synaptic conductances
in Fig. 1.15. For example, g.; implies an e — 1 effect, and is read, “the average conductance
determined at the inhibitory neuron because of synaptic spike-rate input from an excitatory
source.” This excitatory source could be spike-output from the local macrocolumn, or from a
distant macrocolumn somewhere else in the cortex via cortico-cortical connection, or ezogenous
input coming up from the subcortex (e.g., thalamus or brainstem). These various connection
types appear in the macrocolumn schematic of Fig. 1.12 (p. 18).

By definition, a subthreshold neuron never fires off an action potential. To avoid having to

incorporate the detailed and complicated Hodgkin—-Huxley action-potential dynamics, yet still

i
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Figure 1.16: Equivalent circuit for the Liley macrocolumn with local feedbacks explicitly shown. The
excitatory and inhibitory output voltages he ; are coupled back to the four g;x synaptic input conductances
via a pair of nonlinear (sigmoidal) voltage-to-spike-rate converters represented by the S.(h.) (lower) and
8i(hi) (upper) triangles. The four N ﬁk boxes are constant multiplicative scale-factors that represent
the degree of local inter-connectedness between the excitatory and inhibitory populations within the
macrocolumn. All possible local feedbacks are allowed: e — e, e = 4,1 — e, i — 1.
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retain the spatially-averaged effect of neural activity arriving at the synaptic input receptors, the
Liley model adopts an early idea from Wilson and Cowan (1972): that there exists a nonlinear
sigmoidal mapping from soma voltage (input) to average firing rate (output). This spike-rate
output then feeds back to the synaptic inputs to alter the population average soma voltage.

The S¢(he) and 8;(h;) sigmoids used here (listed in Eq. (3.6) and plotted in Fig. 3.2) are
S-shaped functions defined in terms of a preset maximum firing rate (85> = 1000 s71), a
threshold voltage (6. ; = —60 mV), and a threshold “gain”® (g, g; = 0.28, 0.14 (mV)™1).

Figure 1.16 shows how the excitatory and inhibitory soma voltages are coupled back into the
four g;x conductances via the pair of voltage-to-pulse-rate sigmoid functions; all possible local
feedback types (e — e, e — 4, i — e, i — %) are explicitly included. Equations (1.22, 1.23) below
show how the sigmoid functions enter the Liley model.

1.7.3 The Liley Equations

I will now present the Liley macrocolumn equations, and then address the simplifications we
will be applying in order to “solve” the Liley equations in the present context of modelling
anaesthesia.

In their 1999 Neurocomputing paper, Liley, Cadusch, and Wright listed eight PDEs as defin-
ing their one-dimensional mean-field equations for population-average soma voltages. The first
equation pair gives the equation of motion for the excitatory soma voltage he and the inhibitory
soma voltage h;:

dh, ‘/;e(he) Vi (hl)

Te—p = (RE — he) + (R — he)w + (A - he)m (1.20a)
. % — rest _ p . rev _ p. ‘/ei(he) rev 1. V;.(ht)
T; dt - (h1, h/l.) + (he hl) |h£ev _ h;‘est| + (hl h‘z)_| h::_ev — h_:est| . (120b)

The 7., 7; are the excitatory and inhibitory RC (resistance-capacitance) membrane time-
constants. The four V), appearing on the right are the postsynaptic potential (PSP) changes
in soma voltage arising from presynaptic inputs. For example, V;. is inhibitory presynaptic
input invading the excitatory membrane, and V,; is excitatory presynaptic input invading the
inhibitory membrane. The correspondence between Eq. (1.20) and the previously discussed
conductance form of Eq. (1.17) has already been noted.

Tuckwell (1988a, p. 93) observes that experimental measurements of the PSPs shows a rapid-

rise, slow-decay curve which is well approximated by the so-called alpha-function:

Vpsp = vt exp(l —7t) (1.21)

where the time-to-peak is given by ¢ = 1/4. The peak height is unity, and the total area
under the curve is 1/v. Sample alpha-function plots are shown in Fig. 1.17. Because the alpha-
function is a good representation of the PSP, Liley selects a particular form of second-order
differential equation for the Vj; such that the alpha-function serves as the Green’s function

(impulse response) for the DE.

8The two sigmoid gain constants g, g; are not to be confused with the four g;x conductances; despite unfor-
tunately similar nomenclature, the concepts are distinct.
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Figure 1.17: Impulse response for excitatory (light curve), inhibitory (bold), and anesthetic-modified
inhibitory (bold-dashed) postsynaptic membranes. These curves are plots of the alpha function Vpsp =
vtexp(l — ~t) of Eq. (1.21). For application to the Liley model, the heights are scaled by the respective
EPSP and IPSP amplitudes, Ge; = 0.18,0.37 mV. The rate constants, in (ms)~!, for the three curves

are v = 0.30, v; = 0.065, 7; = 0.043. The symbol A is our dimensionless anaesthetic-effect scale factor
giving the lengthening of the IPSP duration: (7;)~! = \/v;.

The equations for the four Vj; PSPs are:

d 2
(a - 7e> Vee(he) = [NE 8e(he) + de(he) + pee] Geree (1.22a)

d 2 5

a + Ye Vei(he) = [Nei Se(he) + ¢i(he) + pei] Ge’yee (122b)
d 2 5
7 +7 ) Vie(hi) = [N 8i(hi) + pic] Givie (1.23a)
d 2 5
E + i ‘/z(hz) = [Nii Sl(hl) + pii] Givie (123b)

The first pair of equations give the time-evolution of an EPSP: the voltage response to an
excitatory neurotransmitter impulse® arriving at the synapse of an excitatory (Eq. (1.22a)) or
inhibitory (Eq. (1.22b)) nerve cell. The time-course of the response is set by the excitatory rate-
constant 7, (see Table 3.1 on p. 40 for values), and the amplitude by G., the EPSP peak. The
second equation pair describes the time-course of IPSP: the voltage response to an inhibitory
impulse!® arriving at the synapse of an excitatory (Eq. (1.23a)) or inhibitory (Eq. (1.23b))
nerve cell. The IPSP amplitude G; and duration v, ! are respectively larger and longer than
the corresponding EPSP values—see Fig. 1.17 and Table3.1.

Note that the general characterizations—

9A §-function-shaped flux of ezcitatory chemical flooding the AMPA or kainate receptor causing momentary
ingress of Na*t ions and consequent depolarizing (positive-going) voltage increment.

107 §-function-shaped flux of inhibitory chemical flooding the GABAA receptor causing momentary egress of
K* or ingress of Cl~ ions and consequent hyperpolarizing (negative-going) voltage increment; the presence of
GABAergic anaesthetic prolongs the duration of the IPSP.
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EPSP = “excitatory event”

IPSP = “inhibitory event”

are not always true. For example, if the soma voltage is more positive than the reversal potential
for Na* ions, then the arrival at the synapse of an “excitatory” chemical flux that opens the
sodium channels will allow an effluz of Na* ions as the electric field forces sodium ions outwards,
against their concentration gradient. Thus for this “over-voltage” case, the effect of the EPSP
is to lower the soma voltage, and the EPSP has become an inhibitory event. This sign reversal
of EPSP effect is automatically included in Eq. (1.20) by way of the (hI®¥ — hy) coefficient
that scales the Vg (k = e,i) PSP term. Similarly, if the soma voltage is more negative than
the reversal potential for K* (or C17) ions (the “under-voltage” case), then the effect of an
IPSP becomes excitatory. This sign reversal of EPSP and IPSP events provides a significant
physiological constraint on soma voltages, yet apart from the Liley model, seems to have been
ignored in all other mean-field models for the cortex.

Three terms contribute on the right of Eq. (1.22): local excitatory feedback from within
the macrocolumn, distant excitatory input from other macrocolumns, and ezogenous input
entering the cortex from the brainstem. Considering the V,; PSP of Eq. (1.22b) for example,
the local feedback term is Nfi Se(he) where Ng is the estimated average number of e — 3
connections synapsing on an inhibitory cell, and 8.(h.) is the nonlinear sigmoidal function of
Eq. (3.6) which maps local soma voltage to locally-generated spike rate. Activity generated by
distant macrocolumns should be represented by ¢ee(he) and ¢e;(he), but this nomenclature is
abbreviated to ¢e(h.) in Eq. (1.22a) and to ¢;(h.) in Eq. (1.22b) because long-range couplings
from distant inhibitory cortical sources are unlikely (so the forms ¢;. and ¢;; never occur in the
equations). The ¢¢(h.) and ¢;(he) cortico-cortical terms are governed by their own second-order
differential equation (1.25) listed below. The p;i ezogenous terms retain a double-subscripting
because the Liley model assumes that the input coming up from the brainstem can be of all four
types. Typically the four exogenous terms will be set equal to a constant value (see Table 3.1),
or will have a small amount of white noise superimposed to provide a weak stochastic driving
force.

The time-course for the IPSP at the excitatory and inhibitory populations is given by
Eq. (1.23). The form of these equations is identical to that for the EPSP pair, apart from
the anticipated absence of cortico-cortical inhibitory-source ¢-terms.

The IPSP rate-constant is ;. In order to model the effect of a GABAergic anaesthetic such
as propofol, we will be assuming that the IPSP rate-“constant” (i.e., inverse time-constant)
scales inversely with anaesthetic effect, and so replace v; in Eq. (1.23) by 7; defined as,

T (1.24)

where ) is a dimensionless scale-factor assumed to be proportional to anaesthetic concentration.
Thus an increase in A reduces the IPSP rate-constant and increases the IPSP duration.

The final pair of equations in the eight-equation Liley set are a form of 1D wave equations for
the long-distance macrocolumn contributions to the population EPSP and IPSP events. These

equations read:



26 Foundations for a Model of Anaesthesia

pee

Subcortical Inputs

Figure 1.18: Lumped equivalent circuit for the full Liley equations. The cerebral cortex is pictured
as a 1D chain of discrete macrocolumns interconnected via their excitatory sigmoid outputs. The Liley
model is the continuum limit of this picture, forming a 1D line (or 2D sheet) of macrocolumn “mass.”
The inter-macrocolumn communication is governed by 1D (or 2D) wave equations to include propagation
delay effects. In addition, the entire macrocolumn mass is buffeted by p;r exogenous inputs coming up
from excitatory and inhibitory sources in the subcortex. All inputs—local, distant, and external—are
combined at the & summing points to determine the g;x synaptic conductances. The resulting synaptic
currents are integrated at the soma capacitor to give a soma voltage hx (k = e,i). To aid clarity, the
“batteries” (reversal and resting) have been omitted. The complete schematic would show independent
pjk subcortical inputs entering every macrocolumn (not just the middle macrocolumn as shown here).
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o 2 52 P

I:(& + v Aee> — 72 8_;1;2 ¢e(he) = UAee N:e (a + ‘f)Aee) Se(he) (1253)
0 _ 2 o2 ] P!

[(5 + Aei) — 72 53 @i(he) = DA NS (& + ﬁAei) Se(he) (1.25b)

Here 9 is the mean conduction speed along cortico-cortical fibres; A.e and A.; are the character-
istic inverse-length scales for e — e and e — ¢ connections (connectivity is assumed to drop off
exponentially with distance); N& and N2 are the estimated total number of e — e and e — %
connections reaching an excitatory or inhibitory cell via cortico-cortical fibres.

Figure 1.18 completes the circuit diagram of Fig. 1.16 by showing the three classes of input
to the macrocolumn conductances—local, long-distance cortical, and subcortical. The macro-
columns are linked to form a continuous 1D line of neural mass; in principle this could be
generalized to a 2D mesh to better represent cortical topology.

This thesis will assume that the cortex is spatially uniform, therefore the 1D Laplacian
appearing in Eq. (1.25) immediately will be set to zero. I will refer to the resulting spatially-
homogeneous set of eight ODEs as the “full Liley equations” since no assumptions have yet been
made about separation of PSP and membrane time-scales. A dramatic simplification is achieved
if we assume that, compared with the membrane time-constant, the processes associated with
the PSP kinetics are very fast, so the PSP inputs to the membrane capacitor can be set equal
to their steady-state values. This is done by setting to zero all of the time-derivatives appearing
in Egs (1.22, 1.23, 1.25)—but not Eq. (1.20). The full Liley equations are thereby collapsed to
a pair of first-order nonlinear ODEs. These define the “adiabatic equations” that will be the

primary focus for the anaesthetics modelling reported here.

1.7.4 A Note on Nomenclature for the PSPs

The four Vji (j,k € {e,i}) PSP input terms have the dimensions of voltage. Despite this, in
Liley et al. (1999) and Liley et al. (2002) the authors write the PSP inputs with symbol L,
giving the unfortunate impression that these are input currents. To remain consistent with these
source papers (and to avoid possible confusion for the reader attempting to compare the present
work with the Liley references) I have (reluctantly) adopted the Liley I;x PSP convention for
the remainder of this thesis.!!

Another point of nomenclature must be flagged. As part of the development to show how
the Liley treatment of reversal potentials for the macrocolumn can be viewed as a generalization
of the Tuckwell formulation for the subthreshold neuron, I demonstrated that the conductance
ratios of Eq. (1.17) become voltage ratios in Eq. (1.20). Thus, for example,
Vei(he)

o
(b2 = ho) e — (B8 = ) ey

rest
1

(1.26)

for the e — 7 synaptic input term. In the standard Liley nomenclature, the parts on the right
involving the reversal potential are combined to define a dimensionless synaptic weighting factor
Vei(hi),

1And may even have referred to these terms as “currents” from time to time—may the author be forgiven!
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hEY — h,

Yei(hi) = Thev —heet] (1.27)

that multiplies the synaptic input voltage. The right-hand side of Eq. (1.26) then becomes,
Vei(he)

rev __ }hrest
‘he hi I

(hzev — h,) = ’l,/)ei(hi) Iei(he) (128)
where I have applied the V}; — I;; change of symbols.
For convenient reference, here are the eight spatially-homogeneous Liley equations written

in “standard” form:

Te dt = (hEeSt - he) + 'l»bee(he) Iee(he) + wie(he) Iie(hi) (1293)
dh; rest
Tigr T (RI%* — Ri) + Yei(hi) Lei(he) + Yii(h:) Li(hi) (1.29b)
d 2
(E + 7&) Iee(he) = [Ni Se(he) + (zse(he) + pee] Ge'yee (130&)
2
(% +'ye> Li(he) = [N58c(he) + ¢i(he) + pei] Gevee (1.30b)
d 2
(a*”ﬁ) Le(hi) = [N28i(hi) + pic] Givie (1.31a)
d 2
(EZ + ’Yi) Li(h) = [fo 8i(h:) + pii) Givie (1.31b)
d v A 2d) he) = DA N2 d vA Se(h 1.32
(a'*"” ee) e(he) = U Aee ee(a'*‘v ee) e(he) (1.32a)
i _A'2¢'h = A, N& i UAe; | Se(h 1.32b
(dt+v et 1,( e)—v ei {Ve; dt+v e1) e( e)~ ( )

1.8 Alternative Mean-Field Models for Neural Action

I conclude this chapter with a brief survey of other mean-field or “mass action” models for
cortical activity.

The first mean-field approach was presented by Beurle (1956). He modelled an exclusively
excitatory population of neurons (i.e., no inhibitory neurons included) joined by fibres whose
connection densities drop off exponentially with neuron separation. He assumed that a neu-
ron becomes active and fires only when its membrane voltage exceeds a threshold value, and
that subsequent to firing, a neuron has a refractory period during which it cannot fire again
(its threshold potential is dependent on its history: after firing, the threshold is initially very
high before decaying to its resting value). Because during the refractory period the neuron
is insensitive to further stimulation, the refractory state provides a crude form of control that

prevents runaway global firing, but this seems insufficient to provide the level of stability that
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a real cortex possesses. Griffith (1963) resolved the stability paradox by introducing inhibitory
synapses that reduce activity by hyperpolarizing the postsynaptic neuron.

The Wilson and Cowan (1972, 1973) model assumed that synaptic events were much slower
than the membrane time-constant (i.e., they took the opposite extreme to the “slow-membrane”
case we consider here), and their PSPs were effectively rectangular functions differing only in
sign for EPSP and IPSP events. Two innovations that have been maintained in later mean-field
models include the use of a nonlinear sigmoid function to map from membrane voltage to firing
rate, and the notion that inhibition acts purely locally.

Freeman (1975) formalized the concept of cortical “mass action” in terms of an interacting
hierarchy of neural sets or aggregates, each set having different interconnection properties. His
modelling work included synaptic and dendritic delays, and he noted that the inclusion of delays
in feedback loops could lead to oscillatory behaviour in populations of excitatory and inhibitory
neurons.

Nunez (1974, 1981) developed an integral wave equation to describe the spatial and temporal
variation of cortical voltage generated by neural masses. His model predicted oscillations whose
character depended on the relative numbers of excitatory and inhibitory connections between
neural aggregates and on the velocity distribution functions for action potential propagation.
For certain choices of boundary conditions, standing waves were predicted, and Nunez suggested
that these could be the source of cortical rhythms such as alpha (8-14 Hz) seen in the EEG.

Jirsa and Haken (1996, 1997) generalized the work of Wilson and Cowan and of Nunez to
derive mean-field equations for the dendritic currents. As with Wilson and Cowan, the Jirsa
and Haken EPSC and IPSC functions only differed in sign (and not amplitude or time-course).
The activity of the inhibitory population was assumed to be a function of the activity of the
excitatory population, rather than being determined by the membrane potential of the inhibitory
population itself.

Wright and Liley (1996) used anatomical data to derive expressions for the number of
synapses between neurons as a function of neuron type and separation. In their mean-field
modelling they used a sigmoid form for the mapping between membrane voltage and spike rate,
and approximated the PSPs as triangular functions.

Robinson, Rennie, and Wright (1997) improved on the Wright and Liley model by replacing
the triangular PSP with a more physiologically realistic function. They investigated steady-
state behaviour, and found that there could be either one or three steady states, and that in
the latter case, the middle state was unstable. In their subsequent paper (Robinson, Rennie,
Wright, and Bourke, 1998), they classified their steady-state solutions in terms of a ratio ¢; /¢,
where ¢; (£.) is the nett postsynaptic response per unit synaptic concentration of inhibitory
(excitatory) neurotransmitter. They found that the three-state case occurred when ¢;/¢, ~ 1,
i.e., when the inhibitory and excitatory responses were of similar magnitude. However, if the
inhibitory response was strongly dominant over excitatory (or vice versa), the system collapsed
to a single steady state. The Robinson ¢; “inhibitory response” concept relates directly to the
product (IPSP peak) x (IPSP duration) of the present Liley model:

&' ~ Gi (7;")_1 = AGi/")’i (133)
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where, in our case, G; (IPSP amplitude) and ~; (IPSP rate-constant) are fixed, but A varies
with anaesthetic concentration. Thus our A is proportional to the Robinson ¢; /¢, ratio: A > 1
corresponds to extreme inhibition leading to “coma,” while at the opposite extreme, A < 1
corresponds to excessive excitation leading to “seizure.”

The work of Liley, Cadusch, and Wright (1999) and of Liley, Cadusch, and Dafilis (2002)
extended these earlier theories by improving the treatment of excitatory and inhibitory neuro-
transmitter kinetics, and by incorporating, apparently for the first time in a mean-field model,
the constraints on depolarization and hyperpolarization voltage extremes enforced by cell re-
versal potentials. It will become apparent later in this thesis that for the purposes of adiabatic
(i.e.,, “slow membrane”) modelling of anaesthesia, the inclusion of excitatory and inhibitory

ion-reversal potentials is essential.



Chapter 2

Elements of Fourier Transform Theory

In this chapter I present selected elements of Fourier transform theory which are pertinent to
the analysis and stochastic simulation of EEG time-series.

2.1 Continuous-Time Representation

EEG signals are not, in principle, time-limited. Like the eternal sinewave, they do not have
finite energy. This means that we cannot use the “standard” form for the Fourier transform
X(f) of a time signal z(t)

X(f) = /_ ” z(t) e 2™t gt (2.1)

More formally, the Fourier transform of an eternal signal does not exist because such a signal

violates the Dirichlet condition, namely, that the signal be absolutely integrable:

/_ Z @) < oo 2.2)

i.e., the total area under the “rectified” version of z(t) must be finite. Although the total energy
is infinite, the power (energy per unit time) is finite, so we can resolve the non-existence of the
Fourier transform by taking a time-limited transform over the time-interval 0 < ¢t < T'. The
mod-square of the result, divided by the interval width T, is the power density (power per unit
spectral width) for the sample.

Following Gardiner (1985), we define the time-limited transform of z(t) as

X(f) = / Ta:(t)e—i?"f‘dt (2.3)

0

then compute the power spectral density via the limiting process!

i L 2
5(f) = Jim = |X(f)l (24)
where —oo < f < oo, and the spectrum is double-sided. If z(t) is measured in volts, then S(f)

carries units of volts?-sec or volts?/Hz. (We imagine the voltage to have been developed across

a 1-Q resistance, allowing volts? to serve as a unit for power.)

'Not apparent from Eq. (2.4) is the fact that, for a stochastic process, the definition of the power spectral
density usually involves an explicit ensemble average. Neglect of some form of averaging leads to spectral estimates
that are highly variable, since the distribution of un-averaged normalized spectral estimates for a Gaussian process
is chi-squared with two degrees of freedom and hence of equal mean and standard deviation (Kay and Marple,
1981; Newland, 1993). I thank Dr Peter Cadusch, one of the external examiners for this thesis, for bringing this
important idea to my attention. The necessity for ensemble averaging is illustrated later in this thesis in Chapter 7
(e.g., see Figs 7.3 and 7.5).
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The Wiener-Khinchin theorem provides an alternative means for computing the power den-

sity spectrum by way of the Fourier transform of the autocorrelation function G(7)

= /00 G(1) e 2 I dr (2.5)

where autocorrelation function G(7) is given by

G(t) = lim T/ (t+7)z(t)dt. (2.6)

T—o0

G(7) is defined for all lags —co < 7 < oo, and, like the power spectrum, is double-sided and
symmetric about the y-axis.
Alternatively, if the spectrum S(f) is known, then its autocorrelation function can be com-

puted from the (inverse) Fourier transform of the spectrum:
S .
G(r) = / S(f) et IT df . (2.7)
—00

2.1.1 Parseval’s Theorem

Parseval’s theorem is a statement of energy conservation: The total energy computed in the
time domain must be identical to the total energy computed in the frequency domain. In order
to apply this theorem to infinite-energy signals such as the EEG, we change the requirement to

one of power conservation, i.e., that the rate of energy delivery be the same in either domain:

Jim = / 2dt = / S(f (2.8)

For z(t) in volts, both sides carry units of volt? (i.e., power per unit resistance).

2.2 Mapping to Discrete Time

In order to compute the autocorrelation function and spectrum for the EEG signal using a com-
puter, the continuous voltage waveform z(t) detected by scalp electrodes must be converted to a
discrete-time representation by sampling z(t) at regular time increments jAt. The result is a se-
quence of voltage samples {x;} which give a discrete approximation to the continuous waveform.
A similar discretization of continuous variables must be performed when we wish to numerically

simulate the differential equations for the time evolution of the cortical macrocolumn.

2.2.1 Nyquist’'s Theorem

Although the fidelity of the sample improves as the sampling rate fs = 1/At is increased,
Nyquist’s theorem tells us that provided the original waveform contains frequency components
no higher than half the sampling rate (i.e., fmax < fs/2), then the original waveform can
be reconstituted without error from the sample. If the Nyquist criterion is violated (i.e., the
sampling rate is too low) then the energy present in high-frequency components will “fold” or
reflect about the Nyquist point fny = fs/2, producing a spurious boost in the lower-frequency
part of the spectrum. These undersampled high-frequency components masquerade as lower-

frequency components. Such spectral-aliasing errors are undesirable. To avoid aliasing, it is
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standard engineering practice to low-pass filter the continuous waveform prior to sampling. For
example, the Aspect-1000 EEG monitor,2 which samples the electrode voltage at f, = 256
samples/s, prefilters the waveforms with a low-pass filter set to 70 Hz, ensuring a good safety
margin between the filtered fmax and the Nyquist upper limit of fny = 128 Hz.

2.2.2 Discrete Fourier Transform

In order to map the continuous-time results of the previous section to the discrete-time domain,
we make the following identifications:

z(t) — z(jAL) = z; (4 is the time index) (2.9a)
X(f) — X(kAf) = X, (k is the frequency index) (2.9b)
T = NAt (2.9¢)

1 1
Af = 7= wg (2.9d)

Here, T' is the length of the data record which consists of N samples taken at regular time
intervals At = 1/fs. Applying these mappings to the time-limited continuous Fourier transform
of Eq. (2.3) leads naturally to a definition for the DFT or discrete Fourier transform operator:

N-1
X(kAf) = > z; exp[—i2n(kAf)(jAtL)] At
Jj=0
N-1 o
= At ije_’2’”k/N, k=0,1,...,N-1
=0
ie.,

Xr = At-DFT{x}x, k=0,1,..., N-1 (2.10)
where x = [zg, x1, ..., £n—1] is the vector of N time samples z; whose discrete Fourier transform
is defined by

DFT{x}; = Y =z, kN, (2.11)
=

This is a vector of N discrete-frequency elements that, when scaled by the time-step At, give
the complex spectral amplitudes Xj. The continuous power spectral density can be estimated
from these discrete spectral samples by discretizing Eq. (2.4), giving
1 2
skan = gl
1

2
At 2
=5 IDFT{x}|", k=0,1,..., N-1. (2.12)

Sometimes it is more convenient to work with rms spectral amplitude X™™s rather than
spectral power, and for this purpose we replace Eq. (2.12) by its square root,
2 Aspect Medical Systems, Inc., Natick, MA, USA
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Xms = \/S(kAS) = \/% ‘DFT{x}k‘. (2.13)

As for the continuous case (Eq. 2.4), the units for the discrete spectrum of an EEG signal
measured in volts will be V2/Hz for the power spectral density (and V/ vHz and for the rms
amplitude spectral density). The presence of the At multiplier in Eq. (2.12) ensures that the
estimate of the energy delivered per second is independent of the rate at which the signal is
sampled. For example, if we reduce the sampling interval At while keeping the number of
samples N fixed (i.e., we sample more finely for a smaller length of time, implying a broader,
coarser spectrum), then the spectral strengths will be scaled down proportionately in order that

the area of the spectral density histogram is conserved.

Window Conditioning

Comparing the continuous Fourier transform of Eq. (2.4) with its N-point Eq. (2.12) discrete
approximation, it becomes apparent that the discrete spectrum can only provide an accurate
sampling of the continuous spectrum if the time-varying function z(t) is periodic on a time
interval T equal to NAt, the duration of the recording. In other words, the discrete Fourier
transform assumes that the original waveform can be recreated by plotting the N time-samples
on a rotating cylinder whose circumference is T' seconds.

For most recordings of real world signals, this perfect periodicity ideal is unrealizable. In-
stead, one would ensure that the total recording time was long enough to provide an adequate
frequency resolution Af = 1/NAt in the discrete spectrum. In addition, it important that the
end of the record can be “joined” smoothly to the beginning of the record: any step or slope dis-
continuity at the join will result in high-frequency artifacts in the transform. To minimize such
artifacts, it is considered good spectral practice to pre-condition the time-series with a shaping
function known as a window. A common choice for preconditioning is the Hanning cosine-bell,

an N-element vector W defined by

1 2n(j +1) .
W] = 5 [1 COS (N—-}-]_>] y ]—0, 1, ey N-1 (214)

and illustrated in Fig. 2.1.

If the time-series has been conditioned with a Hanning or other windowing function, then
one should adjust the resulting spectrum to compensate for windowing losses (Krauss et al.,
1994). Equations (2.12) and (2.13) for spectral power and amplitude are replaced by their

window-compensated counterparts:

S(kAf) = H_\?V% IDFT{xW };|*, k=0,1,...,N-1 (2.15)
and
Xms = ”—@ﬁ |IDFT{xW}|, k=0,1,..., N-1 (2.16)

where xW represents the element-by-element product® of time-series x with window W,

3In MATLAB parlance,

xW =x .x W;
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Figure 2.1: The Eq. (2.14) Hanning window function for an N = 20-point sample.

xW = [zoWp, z; W1, ..., zN-1WnN-1] (2.17)

and ||[W]| is the norm or “rms height” of the W window,

[[W]| = (2.18)

If the Hanning window is replaced by the identity or “boxcar” window (i.e., a vector of
N ones: W = [1,1,...,1]), then ||[W|?> = N, and equations (2.12, 2.13) are recovered from
equations (2.15, 2.16).

2.2.3 Parseval’s Theorem for Discrete Time

Applying Parseval’s power-conservation theorem to discrete time, the integrals over time and
frequency become summations over the discrete time samples t; = jAt and frequency harmonics
fx = kAf. Thus the continuous Eq. (2.8),

1 T 9 (o)
Jim = [P e = [~ star
1 N-1
2
——NAtZ|:Ej| At
3=0

becomes

2|l>

N
Z IDFT{x}|” VA At

giving

2|

>zl = Z DFT{x}x|*. (2.19)
j k

Therefore, like its continuous counterpart, the discrete Fourier transformation is energy
preserving.
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2.3 Discrete Approximation for White Noise

In the transformation of a continuous-time stochastic differential equation to a discrete-time
numerical simulation, a fundamental question is: What is the correct mapping for the random
noise component? The following treatment is an adaptation of the ideas presented by Murthy
(1983).

Let £(t) be a rapidly fluctuating random function of time, modelled as white noise which has

zero mean and is delta-correlated:

€®) =0, (@) =dt-1). (2.20)

This second result implies that white noise has the rather pathological feature of infinite vari-

ance, so cannot be realized exactly by any real signal. Nevertheless, we wish to simulate the

continuous-time £(t) with a discrete random sequence {n,} of mean zero and variance o?:

M) =0,  (Manm) = 0% m (2.21)

where 6, , is the unit impulse response. For a time-step At sufficiently small,

T N
/ E(t)dt ~ Y nnAt  where T =NAt (2.22)
0

n=1

with both sides going to zero as T' — oo since both £(t) and {n,} have zero mean.
For the product £(t)€(t'), the expected value of the integral over all time is

T—o0

< lim [if(t)&(t’)dt> = /_Z (@) E))dt = 1 (2.23)

which must match the corresponding expectation value for the summation of the discrete prod-

ucts {7nnm},

N N
. _ . _ 2
< A}Enm 2:1 M Mm At> = ]Jgnw Zl (M mm) At = o? At (2.24)
n= n=
Equating Eqgs (2.23) and (2.24), we see that the standard deviation for the discrete sequence
must be )
o= —. (2.25)

VAt
For the stochastic simulations presented later in this thesis, we will use MATLAB’s randn function

to generate Gaussian-distributed random numbers {R,} of zero mean, unit variance:

so the randn-generated numbers must be multiplied by 1/v/ At to obtain the correctly scaled

{mn} stochastic sequence required for numerical simulation:
Rn

T = \/E

This result allows us to specify a mapping from continuous-time white noise £(t) to its discrete-

(2.27)

time approximation 7y,

£(t) — {m} = %{mn}, t = nAt. (2.28)
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We see that in the limit At — 0, the variance of the {nn} tends to infinity, and the discrete
sequence better approximates white noise. Thus in any numerical simulation of a white-noise-

driven process, use of the Eq. (2.28) mapping should ensure that the stochastic simulation
becomes more accurate as the time-step is made smaller.

2.4 Lorentzian Spectrum and Correlation Function

The previous section introduced the notion of white noise as a form of extreme fluctuation which
is perfectly uncorrelated from one instant to the next. The spectrum for white noise is perfectly
flat,

S(f) = const.

i.e, the spectrum is a constant function of frequency f. It is named in analogy to white
light which has all colours present in equal proportion (at least over the visible portion of the
spectrum).

With its properties of infinite variance, infinite power, and infinite bandwidth, white noise
cannot exist. Nevertheless, although physically unrealizable, white noise is a useful mathematical
idealization for many processes which do occur in nature. A typical model of a spectrum which
is nearly flat, and which will turn out to be rather significant for the stochastic modelling of the

cortex discussed later in this thesis, is the Lorentzian spectrum

D

Sw) = Tl

(2.29)

where w = 27 f is the angular frequency, D is a diffusion coefficient, and k is a damping constant
or decay rate. Example Lorentzian spectra are plotted in Fig. 2.2.

The Lorentzian spectrum is characteristic of diffusion processes such as the irregular fluctuat-
ing movements of a pollen grain suspended in water which were first observed by Robert Brown

in 1827. The fluctuations arise because the pollen grain is in a state of constant bombardment

(a) (b) (©)

S(w)

e L LD L LD LD DL .
e L

“A

0

Figure 2.2: Double-sided Lorentzian spectrum S(w) and its autocorrelation function G(7). (a) A broad
spectrum has a narrow correlation function (short correlation time); (b,c) a rapidly decreasing spectrum
has an extended correlation time. [Modified from Gardiner (1985, Fig. 1.5)]
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from the surrounding water molecules. The motion of the water molecules is so complicated that
a deterministic treatment of their effect on the pollen grain is out of the question. Instead, a
probabilistic treatment of the exceedingly frequent statistically independent impacts is required
(Gardiner, 1985). The term Brownian motion is now taken to mean the random motion of any
particle in a fluctuating environment.

We can calculate the autocorrelation function for the Brownian-motion spectrum by rewriting
the Fourier-transform relation of Eq. (2.7),

_ / T S(f) e df (2.30)

as an integration over angular frequency via the change of variable w = 27 f, dw = 27 df, giving,

1 * Wt
71@S(w)e dw . (2.31)

Applying this definition to the Eq. (2.29) Lorentzian spectrum,

oo
G(T) = 2 /ook2+w2 " dw
oo
= o /ook2+ 5 cos(wT) dw 27r/ k2 sm(w‘r)dw
1 [ D
= ;T-/o R cos(wT) dw + 0
D
= ﬂe—klf' (2.32)
= %DTe‘lTVT where T=1/k. (2.33)

On line 2 we have expanded the complex exponential via the Euler identity exp(if) = cos 6 +
tsin@. The first integral on line 2 is an even function of w, so f_c_’ooo — 2 f0°°, and the second
integral is an odd function of w, so evaluates to zero. The surviving integral on line 3 is a
standard form (Spiegel, 1968, p.96: Eq. 15.40), provided that both k& and 7 are positive. We
take the decay-rate k to be a positive constant, but the lag 7 can on take any real value, hence the
need for the || operator in the exponent of line 4; this also guarantees that the autocorrelation
function will be an even function of 7.

When 7 = T = 1/k, the autocorrelation function has decayed to 1/e of its zero-lag value.
This decay-time is referred to as the correlation time T of the fluctuations.

Figure 2.2 illustrates the inverse relationship between spectral width and correlation time.
A rapidly-decaying spectrum has a long correlation time (Fig. 2.2c) because most of the spectral
energy is concentrated at low frequencies. As the spectrum becomes flatter, the autocorrelation
graph decays more rapidly (Fig. 2.2b,a). In the ideal white-noise limit of a perfectly flat spec-
trum, the autocorrelation function is a delta function at the origin—this is what is meant by

the phrase “white noise is delta-correlated.”



Chapter 3

Locating the Steady States of the
Macrocolumn

3.1 Cortical Equations of Motion

3.1.1 The Liley Equations
Our starting point is Liley’s set of eight coupled PDEs (Liley et al., 1999) in which we have

assumed complete spatial homogeneity over the region sampled by the EEG electrode. This is
a reasonable approximation, given that a scalp electrode has a contact area of approximately
2 cm?, detecting electrical activity averaged across the underlying 5-10 cm? of cerebral cortex.
Thus the one-dimensional laplacian 3‘9—;7 (which would have appeared on the LHS of the equation
for the long-range potential ¢(z,t), Eq. (3.4) below) is eliminated, and all partial derivatives
with time become total derivatives with time. This gives the following set of eight coupled
ordinary DEs (the symbols are defined in Table 3.1):

Golalnl-Dmti] Lo sl e

() Tt = { [« (6] e [} o

d 2[Le(h)] _ [ [NE] o oy [Pie]\ o

() [z,-,(h,-n ‘{[zvg]&“‘l)*[pﬁ] Gie, (33)
i 7 2 _i =~ a

("j ' fA“)fe( e (d; +ohe) A“NT} Se(he)- (3.4)
d—t-}-vAei) ¢i(he) (az-l-vl\e,‘) AeiNei

Equation (3.1) gives the time evolution of h. and h;, the excitatory and inhibitory soma
voltages (also referred to as membrane potentials) averaged over the assembly of cooperating
neurons. The neural assembly is assumed to be a single resistance-capacitance (RC) compart-
ment or summing point; in effect, we are defining an average neuron for the mass of 105 neurons
in the macrocolumn.

The first two terms on the right of Eq. (3.1) correspond to an exponential return to a resting
voltage h;‘fft = —70 mV. The second pair of terms describe perturbations to the membrane

voltage due to synaptic inputs I (where j,k € {e,i}) to the neural mass. Each of these [k



40 Locating the Steady States of the Macrocolumn

Table 3.1: Symbol definitions and model constants for the Liley equations

Symbol Description Value Unit
e, (as subscript) excitatory, inhibitory cell populations
hei population mean soma voltage mV
Te,i membrane time constant 0.040, 0.040 S
heest cell resting potential —70, —70 mV
hesy cell reversal potential (Nernst potential) 45, —90 mV
Iee ie total e — e,7 — e “current” input to excitatory synapses mV
I total e — i,7 — ¢ “current” input to inhibitory synapses mV
Yik (jke{ei}) Weighting factors for the I;x inputs
Pee,ie exogenous (subcortical) spike input to e population 1100, 1600 s~!
Dei,ii exogenous (subcortical) spike input to i population 1600, 1100 s~!
Pe,i long-range (cortico-cortical) spike input to e, ¢ populations s~!
Aceei characteristic cortico-cortical inverse-length scale 0.40, 0.65 (cm)~?
EPSP, IPSP  excitatory, inhibitory post-synaptic potential mV
VYe,i neurotransmitter rate constant for EPSP, IPSP 300, 65 s™1
Ge,i peak amplitude of EPSP, IPSP 0.18, 0.37 mV
e (e.g., Egs (3.2, 3.3)) base of natural logarithms 2.71828...
i, i total number of local e — e,e — i synaptic connections 3034, 3034
ieii total number of local ¢ — e,% — i synaptic connections 536, 536
Ng i total number of synaptic connections from distant
e-populations 4000, 2000
v mean axonal conduction speed 700 cms™!
8e(he),8:(h;) sigmoid function mapping soma voltage to firing rate s~1
S§yax, M maximum value for sigmoid function 1000, 1000 s7!
Oc,i inflexion-point voltage for sigmoid function —60, —60 mV
Je.i sigmoid slope at inflexion point 0.28,0.14 (mV)~!

inputs is weighted by a dimensionless scale-factor 1;; whose origin and significance is discussed
below.

These equations use a double-indexing scheme to indicate the direction of “flow” or influence.
For example, the I;. appearing on the right of Eq. (3.1) is to be read as I;_.. and can be pictured
as the “current” (actually a voltage) which flows from the (mass-average) inhibitory neuron to
the (mass-average) ezcitatory neuron. And, ;e is the weight factor which modulates this i — e
flow.

Examining the equation of motion for A, (first equation of the (3.1) pair), the resting voltage
hrest is the asymptote to which h. will decay in the absence of any inputs. If any perturbing
inputs are present (the usual case), then the asymptotic voltage target will be displaced in the
positive direction (tending to increase excitability) in the presence of I.. excitatory “self” input,
but displaced in the negative direction (tending to decrease excitability) by the I;. input from
the inhibitory population. Similarly, in the h; equation of motion, excitatory input I,; will tend
to excite the inhibitory population, and I;; inhibitory self-input will inhibit it.

One of the significant and perhaps surprising features of the model which will become ap-
parent later in this chapter is that although hZ5' is the steady-state resting voltage for the
undisturbed neuron, the presence of excitatory and inhibitory inputs will drive the neuron into

hrest

one of two distinct states: either a high-firing depolarized state which is more positive than hZ%",

or a low-firing hyperpolarized state which is more negative that hZ%*. In short, as soon as the
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Figure 3.1: Soma-voltage weighting functions. For the normal range of soma voltages h{*V < h.; <
hetY, the excitatory weighting functions 1ee(he), ¥ei(h;) (upper line) are positive, and the inhibitory
weighting functions ;. (he), ¥ii(h:) (lower line) are negative. If h. ; > hf®¥, the upper line goes negative,
and all four weights have an inhibitory, hyperpolarizing effect. At the other extreme, for k. ; < hi®Y, the
lower line goes positive, and all four weights have an excitatory, depolarizing effect.

feedback terms in the model are enabled, the model neuron can no longer come to rest at its

t _ .
hei' = —70 mV “resting” voltage.

3.1.2 )i Input Weighting Functions

The four I}, “currents” are always positive. Their excitatory or inhibitory effect is determined
by the sign and magnitude of the four ;. weighting functions which are defined below and

plotted in Fig. 3.1.
h(réev — he

Vee(he) = Threv — hrest]’ (3.5a)
Yei(hi) = %, (3.5b)
thelh) = e (350)
Yii(hi) = T (3.5d)

|hl_‘eV _ h;estl'

These ;i coefficients are the model’s representation of two facts: first, that excitation
and inhibition are mediated by different ionic species (hL®Y = +45 mV = Vy,, the sodium
reversal potential; hf®¥ = —90 mV =~ Vk, the potassium reversal potential); and second, that
the magnitude of the postsynaptic currents depends on the active state of the neuron (Tuckwell,
1988Db).
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(a) Firing rate vs Voltage (b) First-derivative
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Figure 3.2: Sigmoidal functions relating firing rate to average soma potential. (a) Sigmoid curves:
excitatory sigmoid S, (light curve); inhibitory sigmoid S; (bold). Both curves have been plotted with a
maximum height of unity; in application, the vertical axis will be scaled by 8'2*, 82X repectively. (b)
First derivative of sigmoid functions: dS./dh. (light curve); dS;/dh; (bold). The points of inflection are
set at f.; = —60 mV; the mid-point “gains” are g.,; = 0.28,0.14 (mV)~! (see Eq. (3.6)).

3.1.3 Sigmoid Transfer Functions

The time evolution of the input terms I, Ii, lie, I;; is governed by Egs (3.2) and (3.3) which
model the variable coupling strength between cells in terms of sigmoid functions S (hke), Si(h:),
Smax

Selhe) = 1+ exp[—ge(he — 6e)]’ (362)

max
81’

1 +exp[—gi(hi — 6:)]

Si(h) = (3.6)
These are nonlinear S-shaped transfer functions representing the output pulse rate (in pulses
per second) of a homogeneous neural mass in response to a mean field of he, h;. 6.; and ge;
are constants: 6, ; is the soma potential at which the function has both maximum gradient and
maximum sensitivity to small changes in soma potential; g, ; determines the “gain” at this point
of inflexion. See Fig. 3.2 and refer to Table 3.1 for values of the contants. For small values of
soma potential, the average firing rate is low; as soma potential increases (becomes less negative),
firing rate increases rapidly, eventually levelling off at a maximum value set by the firing rate
multiplier S ;.max, which in this model is 1000 s~1. At the point of inflexion, the firing rate is
half this maximum value. A high firing rate corresponds to a strong interconnectivity between
neurons; conversely, a low firing rate corresponds to a weak connectivity. Thus the strength of
the interconnection between neurons is determined by the instantaneous value of the mean soma

potential.

3.2 Significance of the Steady States

By setting to zero all time derivatives in Eqs (3.1- 3.4), we are able to compute the steady-state
values of the soma potentials h? and h? as a function of anaesthetic “amount,” A. Contrary to

an initial conjecture by an interested party that this zeroing of time-variations would produce
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a “dead brain,” this procedure actually gives us the long-time-limit, equilibrium values for the
excitatory and inhibitory soma voltages. In this chapter we will show that for an intermedi-
ate range of A (looking ahead a little, this is region II of Fig. 3.4b), the soma voltages can
take on three distinct values, corresponding to three quite different cortical states (two stable,
one unstable) which the macrocolumn can switch between. Outside this intermediate range,
the soma voltages become single-valued and the range of possible cortical behaviours collapses
correspondingly as the brain becomes, in a quantifiable sense, “simpler.”

Once these A-dependent steady states have been located, and their stability status estab-
lished, we can introduce small-amplitude white-noise perturbations to the sub-cortical inputs
in order to generate a fluctuation power spectrum. Of primary interest is how this fluctuation
power varies as anaesthetic concentration is increased, and this will be investigated in Chapter 5.
The purpose of the remainder of the present chapter is to describe how the steady states are
located, then to ponder their physical significance with respect to the state of consciousness of
the cortex.

3.3 Stationary Solutions

The soma stationary solutions will be those (he, h;) values which satisfy the eight coupled dif-
ferential equations (3.1- 3.4) in the long-time limit in which all time variations have vanished.
Setting all d/dt terms to zero, we obtain the following set of simplified equations:

0 = hzeSt - he + wee(he) Iee(he) + ¢ie(h‘e) Iie(hi), (378.)
0 = A} — hi + Yei(hi) Li(he) + ¥ii(hi) Lii(hs), (3.7b)
Lee(he) = [NESe(he) + Belhe) + Pec] Gee/e, (3.80)
Iei(he) = [Ng Se(he) + ¢)i(he) + pei] Gee/7e’ (38b)
Le(hi) = [NESi(h)+pic] Gie/T, (3.92)

Li(hi) = [ij 8i(h:) + p,-i] Gie/7, (3.9b)

be(he) = N2 S8e(he), (3.10a)

¢i(he) = Ngi8e(he). (3.10b)

Note that the anaesthetic modulation of the inhibitory neurotransmitter rate constant has now
been incorporated in Egs (3.9a, 3.9b) by replacing ; with 7; = v/A. Thus as anaesthetic effect
increases, the I.(h;) and I;;(h;) “currents” generated by the inhibitory neurons will increase
linearly with A.

Observe how in Eq. (3.7a) for he, the inhibitory voltage h; occurs only in the I;(h;) current,
indirectly as an 8;(h;) sigmoid term. So we can obtain an equation giving h; as a function of A,
in two steps. First, use Eq. (3.9a) to eliminate I;. from Eq. (3.7a), rearranging to make 8;(h;)
the subject. Effectively this gives an expression for the inhibitory spike rate §; as a function
of the ezcitatory soma voltage, denoted $;(he). Second, use Eq. (3.6) to invert the inhibitory
sigmoid function, thereby extracting the h; which belongs with the given h,.
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Similarly, eliminating I.; from Eq. (3.7b) and solving for 8.(h.) will render a parallel equation
allowing ke to be retrieved for given h;. These manipulations result in a pair of coupled nonlinear

equations for the equilibrium spike-rates,

S — ? rest _ ) B

Sl(he) - - l:Gze ’d}le(_he) [he t he + d)ee(he) Iee(he)] + ple} /Nie’ (3-11&)
S = _ e [prest _p. (Y (B ) a B

Se(hi) - - |:Ge€ "pei(hi) [hz ¢ h1 + d}u(hz) Iu(hl)] +pel:| / <Nei + Nei> : (311b)

Computing the sigmoid-inverses of these spike-rates gives the corresponding membrane voltages,
1 max /Q

hi(he) = 6= n (si /8i(he) — 1) , (3.12a)

. 1 .

he(hi) = 6~ —In (S;“'”‘/Se(hi) - 1) . (3.12b)

3.3.1 Root Searching

These equations suggest the following iterative numerical scheme for solving for the (h2,h?)
equilibrium soma voltages. Select a first-guess value for a presumed equilibrium value for h,;
call this h,. Substitute h,, into the RHS of Eq. (3.11a) to give a spike rate $;,, and, via
Eq. (3.12a), the first-guess equilibrium value fzil for the inhibitory population. Now plug fzil
into the RHS of Eq.(3.11b) and take its sigmoid-inverse via Eq. (3.12b); call the result h.,. If h,,
matches the first-guess h,,, then the coordinate (hel,fzil) is a soma-voltage equilibrium point
on a graph of he vs h;. In the more usual case, h, and he, will be unequal, but their difference
will give an indication of the error in the initial guess.

By keeping track of the sign of the (h., — he,) differences for a range of finely-stepped
he, initial guesses, we can detect when the h? root has been bracketted, and then apply a
bisection technique, such as MATLAB’s fzero function, to zero-in on the root to within a specified
tolerance. This final stage is referred to as root “polishing.”

To illustrate, suppose that he achieves equilibrium at

hY = —71.2377 mV (this is the middle root of Fig. 3.3a). Be, he, (he, — he,)
We can detect the presence of this root by taking a coarse —75.0 —76.5810 +1.5810
sweep of h. values from —75.0 to —68.0 mV, in steps of —74.0 -75.0226  +1.0226

—73.0 —-73.5885  40.5885

1.0 mV (more typically, I would use steps 1000 times finer _79.0 —72.9340  +0.2340

than this to ensure no roots were missed). In the table —-71.0 -70.9318 —0.0682
alongside, the first column is the array of guesses, the sec- —-70.0 —-69.6635  —0.3365

. . Lq . ned —69.0 —68.4148 —0.5852
ond column is the sigmoid-inverse of each guess obtaine 680 —67.1732  —0.8268

after traversing the equation sequence (3.11a — 3.12a —
3.11b — 3.12b), and the third column lists the mismatch error between the guess and its sigmoid-
inverse. The sign-change in the error indicates that the root must lie somewhere in the interval
—72.0 < h < —71.0 mV: the root has now been bracketted and its precise value will emerge
after sufficient polishing.
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3.3.2 Roots as Isocline Intersections

Suppose that we use Eq. (3.11a) in isolation to compute a set of h; values which correspond to
a given set of (presumed stationary) h, values, then plot a graph of k. vs h;. Following Wilson
and Cowan (1972), we refer to the resulting curve as the dh./dt = 0 isocline. Now perform
the corresponding procedure for a set of stationary h; values applied to Eq. (3.11b) to give a
suite of matching h, values, then superimpose this A, vs h; graph (which defines the dh;/dt =0
isocline) on the first graph. The intersections of the two isoclines locate those points for which
dhe/dt = dh;/dt = 0, i.e., those points at which h. and h; are simultaneously stationary. Thus
the isocline intersections define the (h%, h?) equilibrium coordinates. This graphical approach
provides a visual confirmation that the iterative scheme described in the previous section has
correctly located the stationary points.

Figure 3.3 shows a representative sequence of four isocline graphs illustrating the discovery

of multiple roots (first three plots) and a single root (last plot) for anaesthetic effect A set at

(@ A=0.60 (b) A=1.00
-40
— d(he)/dt=0
50 [ eeeee d(hi)/dt=0
-60
2 70
-80
-90 5
%00 80 -60 -40 -40
hi
(©) A=1.40 (d) A=1.80
-40 ; -40
-50 : -50 .
-60 -60
2 .70 2 .70
-90 ' -90
. : p :
%00 -80 -60 -40 Qo0 -80 -60 -40

hi hi
Figure 3.3: Isocline plots for dh./dt = 0 and dh;/dt = 0. Intersection points locate the equilibrium
soma potentials. Multiple intersections (a—c) indicate multiple steady states for a given value of anaes-

thetic effect. For A = 1.8, only one stationary point exists, and this is on the hyperpolarized (low-firing)
branch corresponding to comatose-unconsciousness.



46 Locating the Steady States of the Macrocolumn

0.6, 1.0, 1.4 and 1.8 respectively.

In order to produce a detailed picture showing how the distribution and number of soma-
voltage steady states varies with anaesthetic effect, I applied the numerical root-finding pro-
cedure of Section 3.3.1 for A-values ranging from 0 to 1.80 in steps of 0.05, then verified the
number and location of the roots on isocline-intersection graphs. This approach worked well for
the mid-range 0.30 < A < 1.50 region where three roots were found, but tended to be rather
less successful in the single-root régimes A < 0.3 and A 2 1.5. I will defer until Section 3.3.5 the
technical discussion of the strategies I adopted for hunting down these “difficult” roots.

We now examine how the locations and number of the roots change with anaesthetic amount.

3.3.3 Distribution of Roots as a Function of Anaesthetic Effect

Figure 3.4a shows the locus of steady-state excitatory hQ and inhibitory h? soma voltages as a
(multivalued) function of anaesthetic effect A. The discovered points are marked with circles
(o = hQ) and crosses (x = h?), and are joined with a pair of cubic spline curves to aid the
eye. A vertical traverse through the locus shows that for the mid-range A-values, there are three
distinct (h2, h?) steady-state pairs. I will show in Section 4 that the steady-state values along the
upper and lower branches are stable equilibrium points (i.e., can be pictured as a pair of valleys
on a potential-hill diagram), while the values along the mid-branch are all unstable equilibrium
points (they define the crest of the potential hill which separates the two valleys).

For A 2 1.53, corresponding to strong anaesthetic effect, there is only a single state available,
and this is on the bottom branch with the inhibitory and excitatory soma voltages both close to
—90 mV: both populations are in their low-firing, hyperpolarized state. For A < 0.28, correspond-
ing to strong anti-anaesthetic (i.e., analeptic) effect, again only a single state is available, but
this state is on the top branch where, because the soma voltages exceed the sigmoidal inflexion-
point voltage 6. ; = —60 mV (see Fig. 3.2), both neuronal populations are firing strongly: this
is the depolarized state. For A — 0 (i.e., tending to the limit of zero inhibitory effect), both
curves converge at the top-left corner to values close to +45 mV. At this extremum, both neural
populations are firing at their absolute maximum rates.

In Fig. 3.4b, I have traced out the trajectory of steady-state h. values, and have labelled the

three distinct régimes—

Region I (“coma”) only the low-firing quiescent state is available to the macrocolumn when A
is large; this is the anaesthetized state

Region II the macrocolumn may be in either of two states: “active” (upper branch) or “qui-
escent” (lower branch); the macrocolumn may not rest anywhere on the mid-branch since
this state is unstable with respect to small perturbations

Region III (“seizure”) only the high-firing “active” state is available; for A — 0, firing rate is

maximized.

The fact that the locus of steady states is a multiple-valued function of anaesthetic amount is
of profound significance. It means that the transition into (and emergence from) unconsciousness
cannot proceed continuously—there must be a sudden and discontinuous switching of states at
a certain critical concentration of anaesthetic. I will discuss these ideas in greater depth in the

concluding section of this chapter.
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(a) Stationary States (b) he Soma Trajectory
40 40 Seizure J
g O he === |nduction
20§ x  hj 1 20} s Emergence

he & hj Soma Voltage (mV)
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Figure 3.4: (a) Model predictions for the stationary states for h. (circles) and h; (crosses) as a function
of anaesthetic effect A\. (b) In region II bounded by A; A3Q3Q;, for a given value of A there are three
possible values for h, but only two of these are stable: points lying on the upper (“active”: A; Az) branch,
and points on the lower (“quiescent”: Q1Q3) branch. For A > 1.53 (region I), h. becomes single-valued
and neural firing is strongly suppressed (“coma”); for A <0.3 (region III), h. is again single-valued but
now neural firing is maximized (“seizure”).

3.3.4 Number of Roots

In the foundation paper of Wilson and Cowan (1972) which describes an abstract model of
populations of inhibitory and excitatory neurons containing sigmoid nonlinearities, the authors
demonstrated that for sigmoid functions with n inflexion points, there could be up to 2n + 3
stationary states. The Liley model used in the present work is based on sigmoid functions with
a single point of inflexion (see Fig. 3.2a). Applying the Wilson and Cowan result to the Liley
model suggests we might expect to find up to five stationary states. However, for any given
value of A, I could locate either a single root, or a triple of roots, but never more than three
roots.

I attempted a (non-exhaustive) search for the “missing” roots by investigating the effect of
systematically altering the values of the model constants listed in Table 3.1, but without success.
This finding of (no more than) three roots has been confirmed by other workers: Robinson et al.
(1998) investigated the nature of the steady-state solutions for a similar sigmoid-coupled model
of the cerebral cortex, but, after an extensive parameter-space search, found a maximum of
either three steady states or a single steady state. Recent work by Liley et al. (2002), working
with a model identical to the one used here (lacking only the inclusion of anaesthetic effect),

also reported a maximum of three-roots.



48 Locating the Steady States of the Macrocolumn

3.3.5 The “Pathological” Roots

In Section 3.3.2, I alluded to the fact that for some settings of the A anaesthetic effect, the
(R, h?) steady states were hard to find. I describe these roots as “pathological’—not because
they are ill-behaved, but because they require extra care and numerical effort to locate.
Specifically, for the extreme and diametrically-opposed cases of very large A (deep coma:
macrocolumn is strongly hyperpolarized with very low firing rates) and very small A (seizure:
macrocolumn is strongly depolarized; firing rates are close to maximum), I found that the
standard root-search procedures would fail unless the grid spacing of the h. guesses was made
orders of magnitude smaller than a “reasonable” default value of 0.001 mV. The computer
resources (memory and machine time) required to locate these extreme roots became a limiting
factor, since resource requirements scale directly with the number of points used for the search
grid. '
Examination of the sigmoid-defining Egs (3.6) and plots (Fig. 3.2a) provides the first clue as
to the source of the problem. The sigmoid graph is approximately linear over its mid-range, but,
by design, has a “saturating” characteristic at either end: it tends to zero as h.; — —oo, and
tends to Smax 8s he; — +00. An essential stage of the root search involves inverting the sigmoid
via Eqgs (3.12) to find a pair of soma-voltage estimates which bracket the root. If the root is
located in one of the saturation zones, the maximum allowable size of the bracketting interval
becomes asymmetrically squeezed since there is less and less error “head-room” available: if one
of the argument guesses is less than zero (or greater than 8y,,x), its sigmoid-inverse will involve

taking the logarithm of a negative number, returning a complex (unphysical) soma-voltage.

Inverse-Sigmoid: Trapping out-of-bound argument

Rather than allowing MATLAB to generate and propagate complex numbers, I detected and
marked these unphysical inverse-sigmoid returns as NaN (not-a-number), then crafted a cus-
tomized bisection routine which would iterate Eqs (3.11-3.12) long and hard against the one-
sided NaN case, endeavouring to convert a trial bracket [z, z9] which returned [f(z;), NaN] into
a real bracket [r1,z3] which returned [f(z1), f(z3)] such that f(z;)- f(z3) < 0. This “proper”
bracket could then be passed on to MATLAB’s fzero routine to render a well-polished root.

Asymptotic Limits for hg,i

Even with these enhancements to locate the roots hiding within the sigmoid saturation zones,
it would be reassuring to be able to place upper and lower bounds on the soma-voltage search

space. These bounds can be calculated by letting A take on its two extreme values:

1. For A — oo the IPSP becomes infinitely prolonged, and both the inhibitory and excitatory
sigmoids are at their zero-firing asymptotic limit at which all neural firing has ceased; this
is deep coma;

2. For A — 0, the IPSP becomes compressed into a response function of zero width, so there
is no inhibitory restraint on the macrocolumn; both inhibitory and excitatory sigmoids
are at their S,ax asymptotic limit at which all neurons are firing maximally; this limit

corresponds to epileptic seizure.
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1. Infinite Inhibition: Coma. To obtain the deep-coma limit, set Se(he) = 8i(h;) =0, and
allow A — oo in Egs (3.9a,3.9b). This gives

lie(hi) = ApicGie/v; (3.13a)
Li(hi) = ApiiGie/v; (3.13b)

so the “currents” from the (subcortical) inhibitory sources will tend to infinity with A. Mean-
while, zeroing the sigmoids in Egs (3.8a,3.8b) gives

Ie(he) = Pee Gee/ve (3.14a)
Iei(he) = DPei Ge e/')’e (314b)

showing that the currents from excitatory sources will remain finite. Dividing Eq. (3.7a) by I,

and Eq. (3.7b) by I;;, then allowing A — oo, collapses these equations to
0 = Yuelhe) = (B —he) /|5 = hi= (3.15)
0 = u(h) = (h = hi) /[ |hfe = b1 (3.15b)

from which we conclude that the asymptotic soma voltages for deep-coma must equal the A"
reversal potential, »

peoma — peoma — _g0 mV, (3.16)

2. Zero Inhibition: Seizure. Solving for the zero-inhibition voltages is a little more work.
Setting A — 0 causes the inhibitory inputs I;e and I;; to go to zero. In contrast, the excita-
tory inputs I.. and I.; are maximized because the excitatory sigmoid will be at its saturation

maximum 87?*, thus Eqgs (3.8a,3.8b) become
Le(he) — I = [(N& + NL)SE™ + pe| Gee /e = 11,474 mV (3.17a)
Li(he) — I5® = [(N& + N5)SI™ + pos] Gee/7. = 8,213 mV. (3.17b)

Although cortical 87'®* and subcortical pee (pei) spike inputs are of similar magnitude, the multi-
plication of 87®* by the large number of synaptic connections (see Table 3.1) makes the p.. and
Pe; subcortical spike inputs completely negligible in this high-firing limit in which the intracor-
tical excitatory inputs dominate. As calculated here, the resulting amplitude of the excitatory
seizure amplitudes for I, and I,; are enormous, generating battery-like voltages(!) which are
almost certainly physiologically implausible. Fortunately, the presence of the v weighting func-
tions in the model provide a voltage-clamp action, ensuring that the actual soma voltages do
not “explode” with overexcitation. Substituting these saturation-maxima into Eqgs (3.7a,3.7b)
then solving for h. and h; in turn gives the steady-state soma voltages at the seizure extremum

as

. hrev _ hr%t hrest + hrev Iseiz
hseiz — [ | e S = +43.9mV (3.18a)
) |heev — hg=t| + IZg™”

) |h2ev _ hljestl h:j&st + hrev Iss:iz
K lhgevl_ hrest| 1 I:eiz — = +434 mV. (3.18b)
i ei
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In both cases, the seizure voltages are close to, but a little less than, the Al®Y = +45 mV
reversal potential. This state of extreme depolarization appears at the top-left corner of the

Fig. 3.4a graph of macrocolumn steady-states.

3.4 Stationary Solutions for the v, = 1 System

Although it is standard practice when modelling single neurons to include ionic reversal poten-
tials (e.g., the Hodgkin-Huxley and Tuckwell neurons discussed in Chap. 1), this description
of cell behaviour seems to be omitted in the mean-field or neural aggregate theories. Certainly
none of the mean-field models surveyed in Sect. 1.8—other than the more recent Liley work
(Liley et al., 1999, 2002)—incorporates ion-reversal potentials. This raises the obvious question:
If reversal potentials are important for modelling single neurons, why do they become unimpor-
tant when modelling populations of neurons? And: Is any “damage” done to model integrity
by ignoring reversal potentials?

The Liley model we are using in this thesis ezplicitly includes reversal potentials—these are
the 1 weighting functions that scale the synaptic inputs. In order to synthesize a model that

ignores reversal potentials, we set these weighting functions to plus and minus unity:
wee(he) = 'Qbei(hi) = +1 'Qbie(he) = d}ii(hi) = —1. (319)

Thus the four weighting functions are to become constants, independent of soma voltage. In the

work that follows, I investigate the implications of setting the 3 functions to unity.

3.4.1 Pathological Roots Revisited

I now apply the steady-state analysis presented in Section 3.3.5 to the special-case ¥ = +1
macrocolumn. First, I examine the two extremum cases A — oo (coma) and A — 0 (seizure),

then I investigate how the distribution of steady states varies with anaesthetic effect.

1. Infinite Inhibition: Coma

Setting Yee(he) = Yei(hi) = 1, and ¥ie(he) = %¥ii(hi) = —1 in Egs (3.7a, 3.7b), then solving
for he and h; in the infinite-inhibition, zero-firing limit S.(he) — 0 and 8;(h;) — 0 gives the

following steady-state soma voltages:

e = L
= B + pee Ge€/Ye — ADic Gi€/i
— —00 a5 A-—oo (3.20a)
and
h§om® = Rt 4 Lo — I
= h{*' + pei Gee/ve — Apii Gie/vi
— —00 a8 A— 0o (3.20b)
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showing that, unlike the standard macrocolumn which enforces an asymptotic lower bound of
—90 mV (the h; reversal potential, hi®¥), the unity-1 model has steady-state coma voltages which
are completely unconstrained, going to minus-infinity with the I;, and I;; inhibitory inputs.

2. Zero Inhibition: Seizure

To obtain the seizure limit, we set A = 0, so the inhibitory inputs I;c and I;; must also be zero;
and we set the sigmoids at their maximum firing rates, 8c(h.) — SP** and 8;(h;) — S™*. Then
solving Eqgs (3.7a, 3.7b) for the soma voltages gives the following seizure extremum values:
e = W™+ L — ILe
= R4 [(N& + NE)SE™ + pec Gee /e = 0
= +11,404 mV (3.21a)
and
Rz = prest L I — I
= K=t (NG + NE) ST + pai] Gee/e — 0
+8,143 mV. (3.21b)

Again, in contrast to the standard macrocolumn model which places an upper limit close to
+45 mV (the h. reversal potential, hL®¥), the non-inclusion of the i weighting functions has
cancelled an important moderating influence on the excitatory inputs, resulting in predicted
seizure voltages which are completely implausible.

3. Distribution of Steady States

For the unity-v macrocolumn, how do the number and location of soma steady-state voltages
vary with anaesthetic effect? To answer this question, I applied the same root-searching algo-
rithms described in Sections 3.3.1 and 3.3.5, but found that I needed to vastly extend the A
search domain in order to capture the complete distribution.

The search results are shown in Fig. 3.5, and should be compared with the distribution of
steady states for the standard macrocolumn (see Fig. 3.4). The bottom branch no longer tends
towards an asymptotic value of A} = —90 mV as ) increases; instead, the bottom branch values
decline steeply as A increases, becoming increasingly more hyperpolarized to a limiting value
of about —190 mV. This is a numerical limit arising from the finite precision of the MATLAB
calculations (at these very negative soma voltages, the sigmoid function returns an output which
is within machine epsilon of zero).!

The extended middle branch has positive slope, implying that the macrocolumn becomes
more depolarized (more excited) as anaesthetic concentration increases. This is a completely
unphysical result, so we can expect that, as for the standard macrocolumn, the middle branch
will be a locus of unstable equilibrium points. A linear stability analysis will confirm this
prediction—see Chapter 4.4.

The upper branch is quite truncated, and is only detected for very extreme values of anaes-

thetic effect. The normal range for anaesthetic-induced increase in the duration of the inhibitory

'In MATLAB, eps = 2.22x107 !¢ is the distance between 1.0 and the next largest floating point number.
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Figure 3.5: Steady-state soma voltages for the unity-1 macrocolumn. (a) For the range 0 < A < 5,
only two roots for each of h, and h; could be found. In principle, the bottom branch is expected to
diverge to infinity with A. (b) To view the complete distribution of roots, the range for anaesthetic effect
has to be extended to 0 < A < 420. Note the eventual appearance of a right-hand knee and top branch
for these extreme values of anaesthetic effect. (c) As for (b), but only the h; roots shown for clarity. The
“hook” at the right extreme of h; matches the knee and upper branch of h. shown in (b).

post-synaptic potential is of the order of 1.5 to 4 (Gage and Robertson, 1985; Franks and Lieb,
1994; Jones and Harrison, 1993; Antkowiak and Hentschke, 1997). For the standard macrocol-
umn, the right-hand knee (point A3 on Fig.3.4) occurs at A ~ 1.53; in contrast, for the unity-1
macrocolumn, it occurs at A = 411. In principle, when a high-firing, upper-branch (= conscious)
macrocolumn is pushed beyond this knee, it must collapse to the low-firing (= unconscious) lower
branch, yet, numerically at least, the bottom branch does not exist here!

On the basis of these results, I conclude that, for the purposes of anaesthetic modelling, the
unity-¢» macrocolumn is without merit: the algebraic simplifications which result from setting
the neurokinetics weighting factors to +1 come at the cost of a significant loss of physiological
fidelity.
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3.5 Significance of the Steady States—Revisited

By re-examining the A-dependent locus of steady-state

soma voltages (shown again in Fig. 3.6), we can develop
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insights into how the cerebral cortex is rendered uncon- . ~ Emergence
scious with anaesthetic. The significant observations are E
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Chapter 4). This means that it is impossible for the U:, ool I A3
macrocolumn to traverse from the upper branch to the < [—
lower branch (or the reverse) in a continuous path: there 8o o
must be discontinuous jump transition between states. 100 a2 @3 Coma

0 05 1 15 2

Suppose the neural assembly is initially at location Anaesthetic Effect, A

Aj. As anaesthetic effect ) increases, hg will slide to the Figure 3.6: Stationary states trajec-
right down the upper branch to A3, whereupon a sudden tory for k.

jump to Q3 on the lower branch must occur, since the middle branch is unstable and therefore
disallowed. Further increases in A will then cause h0 to advance along the bottom branch towards
the “coma” limit. If instead, the assembly was initially at Q5 on the lower branch, then increases
in A would lead to a smooth, monotonic decrease in soma voltage towards “coma,” with no jump
discontinuity.

If the cortex is pictured as a superposition of macrocolumns, some active and some quies-
cent, then the model predicts that those macrocolumns which are active will undergo a rapid
and dramatic active—quiescent change of “phase” at a critical anaesthetic concentration. The
signature of this phase change will be a sudden decrease in the soma-average DC voltage as the
active neurons become hyperpolarized.

Is this prediction amenable to experimental verification using electrodes affixed to the scalp?
Attempting to detect changes in the average DC levels of the cortex via scalp electrodes would
seem to be an almost impossibly challenging task. How is one to distinguish the “signal,” i.e.,
the change in cortical polarization, from the “noise”—DC changes arising from gradual changes
in the electrode-to-skin impedence, or generated by slow variations in nearby muscle-generated
voltages, or generated by slow-wave AC from the cortex itself? Prospecting for the change in
the internal DC state via external skin electrodes would seem to be a hopeless proposition.

But, what if the change in the DC polarization state forces a change in the AC characteristics
of the scalp-measured EEG signal? It does not seem implausible that the spectral shape (i.e.,
the distribution of spectral energy) of the EEG generated by high-firing active neurons should
be distinct from that generated by the much lower-firing quiescent neurons. Even if only a small
proportion of macrocolumns are in the activated state, we might expect an anaesthetic-driven
downwards transition across the A3Q3 gap to produce a measurable change in the EEG signal
provided the active macrocolmns are acting synchronously.

In Chapter 5 we drive the model macrocolumn with white noise, and investigate how the
resulting fluctuation spectrum varies with anaesthetic effect. We will find that at transition,

the theory predicts a dramatic rise in total fluctuation power which is contemporaneous with
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a pronounced shift—towards lower frequencies—in its spectral distribution. These results are
consistent with the fluctuation behaviours observed in the first-order phase transitions of classical
thermodynamics. It is very encouraging to be able to report that these qualitative predictions are
precisely what is observed in clinical measurements of the EEG patterns for patients undergoing
general anaesthesia.

But before examining fluctuation spectra, we need to establish the stability properties of the

macrocolumn steady states. This is the business of Chapter 4.



Chapter 4

Stability of the Macrocolumn
Stationary States

We wish to establish which of the soma-voltage equilibrium points plotted on Fig. 3.4a are stable
with respect to small perturbations, and which points are unstable. If the macrocolumn has
settled into a stable configuration, it can be pictured as nestled at the bottom of a potential
well where comfortably it can remain in a state of minimum energy. Conversely, an unstable
configuration would have the macrocolumn sitting at the crest of a potential hill from which,
given the slightest disturbance, it will slide away into a nearby potential valley. Thus the locus of
unstable equilibria demarcate the energy barrier which separates the stable equilibrium valleys
lying on either side.

Reichl (1980, pp. 683-687) describes a standard technique for determining the stability of a
set of coupled first-order ordinary differential equations: one makes a small-perturbation Taylor
expansion about the steady state, keeping only the linear terms, then examines the behaviour
of the eigenvalues for the linearized system.

In order to apply the Reichl technique to the cortical macrocolumn, we must first rewrite
the eight coupled first- and second-order differential equations (DEs) of Eqgs (3.1-3.4) as a set
of coupled first-order DEs: the four second-order DEs for local “currents” I;. become eight
first-order DEs, and the two second-order DEs for long-range spike input ¢ ; from distant
excitatory sources are replaced by four first-order DEs. This gives 12 first-order equations for
the macrocolumn inputs, plus the two equations for the evolution of the soma voltages, giving a
total count of 14 first-order equations. The linear stability analysis would therefore require the
calculation of the eigenvalues of a 14 x 14 system matrix.

However, our primary interest lies with a much simpler version of the Liley equations—the
“adiabatic” equations (described below) which recognize that, compared with the k. and h; soma
voltages, the synaptic inputs evolve on much faster time scales, and can be treated as if they
have already achieved steady state. This simplifying assumption collapses the dimensionality
of the macrocolumn system from eight independent variables to two, he and h;, and the set of
14 first-order DEs required for the full system is replaced a single pair of DEs giving the time
evolution of h, and h;. The stability analysis now only requires finding the eigenvalues of a 2 x 2

system matrix.
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4.1 Adiabatic Model of the Macrocolumn

The “adiabatic” approximation! is a simplification which arises from a recognition that the
input terms (Ijk, ¢ei) vary on time scales that are quite distinct from the time scale of the
soma voltages h, and h;. This becomes apparent when we compare the various relaxation times

computed from the numerical values listed in Table 3.1:

relaxation time for I, I,;, = ('ye)'1 ~ 3.3 ms
relaxation time for I, I;; = ('yi)_l ~ 15.4 ms
relaxation time for ¢, = (i')Aee)‘1 ~ 3.6 ms
relaxation time for ¢; = (EAei)_l ~ 2.2 ms

whereas the 7 ; time-scales for the h.; soma potentials can be as large as 100 ms (Koch et al.,
1996). For our present modelling work we set 7. = 7; = 40 ms, allowing us to make the working
assumption that the six neuronal inputs [lee, lie, Iei, Lii, ¢e, ¢i] equilibrate very much faster than
the soma potentials k. ; themselves, so that on k. ; equilibration time-scales, all time-derivatives
appearing in the input equations (3.2-3.4) can be set to zero, allowing us to write adiabatically
simplified expressions for the six neuronal inputs as functions of h. and h; only. This gives the

following equations of motion for the adiabatic macrocolumn:

dh.

2 = Fi(he,h) = (B = he + Yeelhe) Lee(he) + Wielhe) Le(h)] /rey (412)
T = Balhesh) = (W™ = bt ahe) L) + 0ush) Tah)] /i, (A1)
Lee(he) = |(N& + N2)Se(he) + pee] Cee/, (4.22)

Li(h) = [(N&+NE)Sc(he) +pei] Gee/, (4:2)

Le(h) = A[NE8i(hi) + pic| Gie/x, (4.3a)

Li(h) = A [N{j 8:(h:) + pﬁ-] Gie/. (4.3b)

Note that the ¢, ; long-range spike inputs have been folded into the I.. and I.; equations, and
that anaesthetic effect A is shown explicitly in the I;. and I;; equations. The ;. weighting
functions are repeated here for ease of reference:
hL® — he

= rev __ hrest|’
|hEev — hiest|

R — by

rev __ rest|’
lhe hi

'ﬂbee(he) wei(hi) =
hrev — h,

= rev __ rest|’
|hi he

R — by

lhlrev _ hzr_est| :

Yie(he) Vi (hs) (4.4)

This adiabatic approximation has reduced the dimensionality of the macrocolumn model
from the equivalent of 14 first-order differential equations to a single pair of coupled ODEs.
I now present a summary of Reichl’s description of linearized stability analysis, paraphrased

for application to the two-variable adiabatic macrocolumn equations.

!The notion of macrocolumn simplification via the adiabatic approach described here was first suggested and
developed by M. Steyn-Ross; this philosophy allowed the calculation of the fluctuation spectrum described in our
paper Steyn-Ross, Steyn-Ross, Sleigh, and Liley (1999).
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4.2 Linear Stability Theory

To establish the stability of the adiabatic model, we assume the macrocolumn has achieved

steady state, then allow small perturbations (6h,8h;) in the excitatory and inhibitory voltages
away from their steady-state values (h%, h9):

he(t) = he(t) — RO
Shi(t) = hi(t) — k.

(4.5a)
(4.5b)

If these perturbations tend to decay to zero in time, then the equilibrium is stable with respect
to small disturbances; if the perturbations grow, then the equilibrium is unstable. Taking d/dt
of Eq. 4.5 gives the time-rate change of the perturbations:

d dhe
S (0he) = == = 0= Fi(he,hs) (4.6a)
d dh;
S (0h) = =L —0= Fy(he,h:) (4.6b)

in which the F; and F; rate functions can be expanded as a two-variable Taylor series about
steady state

Fi(heshi) = Fi(hO, hQ) + 6he L +6h oh +O(6h§i) (4.72)
Ok, Oh; '
Fy(he,hs) = Fy(h%, h?) + 6h. Zf? + 6h; ‘31;:2 +0 (6h2)) . (4.7b)

The zero subscripts indicate that the partial derivatives are to be evaluated at the equilibrium
point. For very small values of dhe, dhi, (i.e., for solutions very close to equilibrium) we can

drop the O(<5h2 .) quadratic correction terms to give the linearized approximation

OF, OF,
N . 48
Filheshs) = She gt + b O (4.82)
oF, OF,
. 952 48
Filhe, he) = She ;2 RELE ) (4.8b)

The Fy(hY, h9) and Fy(h?, h) terms have disappeared since they are identically zero at steady

er "1 e’’’

state. Expressing the linear expansion in matrix form (and dropping the |, “at equilibrium”

notation),
d 0Fy OF
3z 0he) oh, o | |
= oF o (4.9)
d 2 2
a(dhl) Oh, B—h, Sh;
or,
d h = Jh (4.10)
dt '
where h = [0h, 0h;]T is the perturbations column vector, and J is the 2 x 2 Jacobian matrix

of partial derivatives evaluated at equilibrium. Provided J is non-singular (i.e., det J # 0), then
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it can be diagonalized (Wiberg, 1971, p.70) by applying a similarity transformation X~!JX
where X is the matrix of the eigenvectors [x;,x2] of J corresponding to eigenvalues A1, Ao. The

eigenvectors are defined,

Jx1 = /\1X1 (4113.)
JX2 = )\QXQ (4.11b)
so that
JX = XA (4.12)
where
Ao (MO (4.13)
0 Ao

is the diagonal matrix of eigenvalues, and

Z11
x - |
z21

112] = [x1] xa (4.14)
T22

is the partitioned matrix whose columns are the eigenvectors of J. The similarity transformation

is equivalent to applying a change of variable

h=Xg, or g = X 'h, (4.15)
so Eq. (4.10) becomes
%(Xg):JXg=XAg (4.16)
where we have made use of the eigenvalue equation (4.12). Left-multiplying both sides by X!
gives,
d -1
Eg=X XAg =Ag (4.17)
or,
d
= A1 O
tfitgl _ 1 g1 ' (4.18)
792 0 X (92

This diagonal system represents a pair of uncoupled differential equations which can be inte-

grated immediately to give the solutions

a@®)| _ |a1(0)eMt| _ [eMt 0 [91(0)
!gg(t)] - [92(0) e/\gt] - !0 e/\gt] LQ(O)] (4.19)
Writing g(t) = X'h(t) and g(0) = X~'h(0), gives

<! [5he(t)] _ [e*l‘ 0} x-1 [5h550§] (4.20)
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which, after a left-multiplication by X, completes the transformation back to h for the time-
course of the soma fluctuations,

Ohe(t) eMt 0 0he(0)
=X X1 e ) 4.21
|:5h,(t)] lO 6’\2t 5h,(0) ( )
Expanding the right-hand side we find

She(t) = c1 €Mt 4 cpet2t (4.22a)
Shi(t) = dy eMt + dy et (4.22b)

where the coefficients ¢y, c2,d;, d2 are constants which depend only on the initial perturbations
6he(0),0h;(0) scaled by the i elements of the X eigenvector matrix. Thus the growth behaviour
of the perturbations depends entirely on the sign of the real parts of the eigenvalues Aj, Ao of
the J Jacobian matrix (Reichl, 1980):

o If both eigenvalues are real and negative, then the perturbations will decay exponentially
to zero, and the stationary point is stable;

o If either eigenvalue is real and positive, then the perturbations will grow exponentially,
and the stationary point is unstable;

o If the eigenvalues are complex, i.e., \; = a+ ¢8 and Ay = a — i3, then the perturbations
will exhibit an oscillatory behaviour whose angular frequency is w = 3; these oscillations
will decay with time exponentially if a < 0 (i.e., stationary state is a stable focus), but

will grow without limit if & > 0 (unstable focus).

4.3 Stability Analysis for the Adiabatic Macrocolumn
4.3.1 Adiabatic Equations

In order to establish the stability characteristics along the Fig. 3.4 S-bend of adiabatic steady

states, we need to compute the eigenvalues of the Jacobian matrix defined in Eq. (4.9),

oF, OF
oh, Oh;

J = . (4.23)
oF, OF,
oh, Oh;

From Egs (4.1-4.3) we compute the matrix elements as:

OF 1

Jn = . = T—e[ 1+ %ﬁ“ Lee + Yee a}:e + %ﬁ’:l ] (4.24a)
Jiz = ?95: = -71: r%eiﬁf] (4.24b)
Jo = gij = T% -d’ez alel] (4.24c¢)
= g—f;? - Tl 14 %’f:’ Li+ %‘fl” L + v gﬂ (4.24d)
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with the four 9;; weighting-function derivatives given by constants,

a"1bee _ -1 6¢ei _ -1
Oh, - |h2ev _ hgestl’ Oh; - [hgev _ h:jestl’ (4'253‘)
Ohie -1 Oii -1
3he - |h§ev _ hgeSt|’ ahi - |hlr_ev _ hgestl’ (4'25b)
and the four I input-current derivatives given by the expressions,
ol G.e 08
ee a 8 e e
S = (Ne+ NE) =2 2 (4:262)
8Iei _ o %] Gee 686
oh, ~ WNa+Na) =3 (4.26b)
I, NB G;e 88,
=\ - .
oh, T (4.26¢)
ol; N8 G;e 85;
oh; /\T o, (4.26d)
The firing-rate sigmoids 8. ; have derivatives
ase —Ye . L he — Ve
Ohe [1+ exp[—ge(he — 6e)]]
93; ; S5 exp[—gi(hi — 6
_9g 8 exp[—gi( ) . (4.27D)

Oh; [1 + exp[—g;(h: — 6:)]]°

The J Jacobian matrix can now be evaluated as a function of GABA anaesthetic effect at

arbitrary points along the trajectory of (he, h;) steady states.

4.3.2 Results

Equations (4.24-4.27) were coded into MATLAB and the eigenvalues of the J matrix determined
using the MATLAB eig function. The retrieved eigenvalue pairs are plotted in Fig. 4.1 as a
function of A\, the GABA anaesthetic effect.

Only the dominant eigenvalue need be inspected in order to determine the stability of a
given stationary point. By “dominant” is meant that member of the eigenvalue pair whose
signed real part is the larger of the two (i.e., for eigenvalues (A1, A2) = (07 + 1wy, 02 +wo), Ay is
dominant if o; > 03). Nevertheless, it is informative to plot the evolution of both eigenvalues as
a function of anaesthetic. Figure 4.1b shows the real part of both eigenvalues. When the real-
part curves coincide (grey dots), the eigenvalues form complex-conjugate pairs whose imaginary
content is displayed in Figure 4.1c. Because all of the complex eigenvalues have large-amplitude
negative real parts, the oscillatory component will be extremely strongly damped. For example,
the complex eigenvalue —4095.8 + 283.5¢ (which belongs to a point on the upper branch at
A = 1.52 just prior to the the A3 turn) suggests an oscillation frequency about steady state
of 283.5 rad/s = 45.1 Hz, but the attentuation factor of e 40% =~ 107!8% ensures that this
oscillation will never be seen.

The more significant feature Fig. 4.1b is the fact that the dominant eigenvalue crosses zero

at the turning points A3 (induction jump) and @; (emergence return), looping into the positive



4.3 Stability Analysis for the Adiabatic Macrocolumn 61

(a) Stationary hg Trajectory

o)
o
T
>
w
1

@
S
2

Excitatory Soma Voltage, he (MmV)
A
o

_100 1 1 1 1
0.5 1 1.5 2
(b) Real [Eig]/ 1000
E\ I I 1 1
]
[oR
©
&
e
‘©
a
)
=
©
>
C
@
ke
u-l 1 1 1 1
0 0.5 1 1.5 2
(c) Imag [Eig] / 1000
g 3 ' '
g
. 2 r }
(@)}
]
E 1°¢F 7
2
® O0r £
a
L U —
©
=
& 27 |
2
w 3 1 1
0 0.5 5 2

Anaesthetlc Effect, LGABA

Figure 4.1: Stability chacteristics for the adiabatic macrocolumn. (a) Steady-state trajectory for h. as
a function of \. The A3 and @, turning points mark the induction and emergence transition jumps. The
unstable midbranch is drawn in grey. (b) Real part of the eigenvalue pairs as a function of A for small
fluctuations away from the steady state trajectory of (a). The dominant eigenvalue trend is drawn bold,
the non-dominant eigenvalue is drawn light. The grey dots mark the two regions of complex eigenvalues.
For these complex conjugate pairs, the real part is always strongly negative, so there is no possibility
of oscillations about steady state. (c) Imaginary part of fluctuation eigenvalues. The grey dots are the
sampled points; these have been joined as a guide to the eye.
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half-plane, indicating that any small perturbation away from the midbranch stationary states
of Fig. 4.1a will grow exponentially. Hence, the midbranch is unstable. Conversely, all points
along the upper and lower branches are stable with respect to small perturbations because, for
these regions, the real part of the dominant eigenvalue is always negative.

These stability results confirm the notion that the macrocolumn can persist in one of two
stable states: either on the “active” upper branch where firing rates are high, or on the “qui-
escent” lower branch where firing rates are very subdued. These two stable regions (potential
energy valleys) are separated by the potential hill defined by the unstable midbranch which joins
the A3 and @ turning points.

4.4 Stability Analysis for the ¥» = 1 Macrocolumn
4.4.1 Unity-y Equations

In Chapter 3.4 I investigated the consequences of setting the 1;; neurokinetics coefficients to
unity:

'ﬁbee = wei = +1, and "l)ie = ";bii = -1 (428)

thus removing their dependence on soma voltage (see Fig. 3.1). Compared with the standard
reverse-S graph of Fig. 3.4, the trajectory of unity-1 steady states of Fig. 3.5 gives the impression
of an S-bend which has suffered multiple traumas: a stretch (by a factor of ~250) along the
A-axis, a truncation of the upper and lower branches, and a rotation about the turning points
of these vestigial branches to near vertical. The dominant feature of the graph is the elongated
midbranch of positive slope, and the claim was made earlier that because this midbranch has
a positive h, versus A slope, these midbranch steady states are unphysical. Here I use linear
stability analysis to verify the claim: the entire midbranch set of unity-¢ equilibrium states is
unstable, and therefore disallowed.

Setting the ¢ weights to Lunity simplifies the terms of the J Jacobian matrix; thus Eqs (4.24a-
4.24d) become:

Jip = ?7‘2 = Tle[—u- %‘i] (4.29a)
Jip = ‘;I;j = %[-‘ZH (4.29Db)
Jog = ‘ij = Tl[gi (4.29¢)
Joy = ‘;I;f = %[—1— gﬂ (4.29d)

where the form of the four I, input-current partial derivatives remain unchanged from those

listed in Eqs (4.26a-4.26d). The eigenvalues for the revised Jacobian matrix are now presented.

4.4.2 Results

Figure 4.2 illustrates the stability chacteristics for the unity-¢ macrocolumn. The top panel (a)

redraws the Fig. 3.5 stretched S-bend of steady-state soma voltages, but now with the midbranch
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Figure 4.2: Stability chacteristics for the unity-1 macrocolumn. (a) Steady-state trajectory for h.
as a function of A\. (Refer to Fig. 3.5 for the corresponding h; trajectory.) The unstable midbranch is
drawn in grey. (b) Dominant eigenvalue graph. Only the small hooks below the turning points at the
left and right extremes of the graph show a stable (i.e., negative) dominant eigenvalue. (c) and (d) give
zoomed-in views in the vicinity of the @; and As turning points respectively.

from turning point Q; to turning point A3 drawn in grey to symbolize its instability. This sta-
bility information comes from Figure 4.2b where we see that apart from the easily-overlooked
reentrant hook regions at either end, the dominant eigenvalue is almost always positive. Fig-
ures 4.2c,d give zoomed in views of the tiny regions of stability: the hyperpolarized bottom
branch near @i, and the depolarized top branch near As.
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It is hard to imagine any physiologically plausible significance to these tiny regions of stability
which are separated by such a vast distance in A space. Accordingly, I conclude that the unity-1
limit for the adiabatic macrocolumn is uninteresting, and no further space will be devoted to its

study in this thesis.



Chapter 5

Fluctuation Spectrum for the
Macrocolumn

In the first part of this chapter I describe how the Liley equations for the homogeneous macro-
column are transformed into stochastic differential equations by incorporating a white-noise
perturbation about the macrocolumn steady state. The response function, expressed in fre-
quency space, defines a theoretical EEG spectrum. By steadily increasing the A anaesthetic
parameter (i.e., by reducing the inhibitory rate constant 7; = 7;/)), we are able to investigate
how the EEG spectrum is expected to vary during the controlled induction of unconsciousness.
Similarly, by reducing A we can predict the EEG spectral changes expected to occur as a patient
emerges from unconsciousness. We will find that the theoretical model makes the following

predictions:

1. There will be a strong surge in the EEG fluctuation power as the transition point into
unconsciousness is approached;

2. There will be a second, distinct EEG power surge for the emergence phase as the cortex
approaches the jump return back to consciousness;

3. These fluctuation maxima will occur at the turning points of the reverse-S equilibrium
curve, implying a hysteresis separation of the induction and emergence trajectories: the
macrocolumn return to its high-firing state (consciousness) will occur at a lower anaes-
thetic concentration than that required for the initial induction of the low-firing state
(unconsciousness);

4. As transition is approached, there will be a change in the distribution of the spectral energy
of the fluctuations, with a strong growth in the lower-frequency components occurring at
the expense of the higher frequencies;

5. The spectrum for the unconscious cortex will have a pronounced 1/f2 characteristic,

whereas the spectrum for the conscious cortex will be comparatively flat.

In the final part of this chapter I will compare these model predictions with clinical measure-
ments of the so-called anaesthetic biphasic effect performed in The Netherlands by Kuizenga
and colleagues in 1998. Kuizenga’s work examined the changes in EEG spectral characteristics
as a function of anaesthetic blood concentration for the widely-used propofol anaesthetic agent.

Numerical simulation of the model equations will provide a second test of the veracity of the
theoretical analysis presented in the present chapter. Description of the simulations will occupy

a later chapter of this thesis.
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5.1 Stochastic Perturbations to the Adiabatic Steady State

There are two fundamental assumptions in the present work. The first is that the cerebral
cortex can be modelled as a (single!) macrocolumn that is never far from one or other of its
stable equilibrium! states as mapped out in Fig. 3.4. The second assumption is that we may
make an adiabatic simplification in which the four I;; input currents to the macrocolumn are
taken as being rapidly-varying quantities which have already settled to their final steady-state
values. The justification for adiabaticity, in terms of characteristic relaxation times, was given
earlier in Chap. 4.1. Adopting Haken’s slaving principle terminology (Haken, 1978), one would
say that the soma voltages are “slow” variables to which the “fast” variables (the input currents)
have become enslaved.

The resulting adiabatic equations of motion for he and h;, the excitatory and inhibitory

voltages, listed in Eq. (4.1), are,

dCZe = Fl(hey hz) = [h;est — he + wee(he) Iee(he) + wie(he) Iie(hi)] /Te, (5]_3)
D = Polherhi) = [ — b hs(he) LsChe) + (b Ta(h9)] /7, (5.1b)

where the four I input currents are as defined in Eqs (4.2-4.3). By setting the left-hand sides
of Eq. (5.1) to zero and solving for (he, h;), we can identify the coordinates of the macrocolumn
steady states. This was done in Chap. 3.

We suppose that it is the small fluctuations in k. about its steady-state value which constitute

the source of the scalp-recorded EEG signal, i.e.,
EEG(t) = 6he(t) = he(t) — hD. (5.2)

But what causes these dh, fluctuations? In our model we assume that there is a continuous wash
of white-noise variability entering the macrocolumn from the exogenous subcortical connections.
Specifically, we say that each of the four p;i subcortical spike rates varies randomly about a
predefined mean value (p;x). Thus we replace the p;; terms which appeared in the I;; currents

—~

of Eqs (4.2-4.3), expressing each as a random variation (:..) about its (...) mean,

Pee — (Pee) + Peel(t) (5.3a)
Pei — (Pei) + Pei(t) (5.3b)
Pie — (Pie) + Die(?t) (5.3c)
pi — (pii) + pi(t) (5.3d)

where the p;i(t) stochastic parts are defined as follows,

Pee(t) = e/ (Pee) 1() (5.4a)
Pei(t) = cei/(pei) 3(t) (5.4b)
Pie(t) = cie/(pic) £2(t) (5.4c)
pii(t) = aii\/@&(t) (5.4d)

!Note that although the cortex is a dissipative, energy-consuming system, and therefore, in the strict sense,
far from equilibrium, we declare “steady-state” and “equilibrium” to be synonyms here. This invocation of a local
equilibrium frame of reference is justified in Chap. 6.
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The &,(t) are four independent Gaussian-distributed white-noise sources defined to have zero
mean,

(€n(t)) = 0 (5.5a)

and delta-function covariances,

(Em(t) €n(t)) = Smn O(t —t'). (5.5b)

Given that f_"’;" 4(t)dt = 1, i.e., the total area under the §(t) Dirac delta-function is a dimen-
sionless unity, it follows that §(t) must carry units of inverse-time, and therefore each £(t) noise
source has units of 1/v/time = s~1/2. (The 6, Kronecker delta is dimensionless.)

The o of Eq. (5.4) are dimensionless scale factors introduced to ensure that the fluctuations
always remain very small: if the fluctuations are allowed to become too large, then there exists
the possibility that the spike rates could momentarily go negative—this must be disallowed since
no physical meaning can be attached to a negative number of spike events per time interval. For

our numerical simulations we set all four scale-factors to a common value,
Qi = 0.1. (56)

How this value was selected will be discussed in Chap. 7. A correct choice for o becomes rather
important when one attempts to use numerical simulations to verify theoretical predictions for
the fluctuation spectrum.

It is reasonable to expect that spike rates with a larger mean will have a larger stochastic
fluctuation about the mean. However, rather than a direct proportionality? of the form 7 o
(p) £(t) (which, because £(t) carries units, would be dimensionally improper), we choose the

power-law relationship p o 1/(p) £(t) which retains dimensional integrity for a spike rate:

7] = [avV@Iew)] = [o] [V@)[e0)] = 1572577 =57 (5.7)

Here, the square brackets [...] are to be thought of as a “dimensions of” operator.

5.2 Stochastic Differential Equations

By incorporating the sub-cortical white-noise sources of Eq. (5.3) into the Ijx equations (4.2-
4.3), we transform the Eq. (5.1) ordinary differential equations into a pair of coupled stochastic
differential equations (SDEs), also known as Langevin equations, for the adiabatic macrocolumn.?
These can be written as the sum of an average or drift part, plus a randomly-fluctuating or

diffusive part:

2In our original paper (Steyn-Ross et al., 1999), we assumed a direct proportionality between mean and
stochastic amplitude: 7 = (p)£(t). I subsequently realized that this stochastic mapping was dimensionally
inconsistent, and M. Steyn-Ross suggested the careful square-root formulation given above. This revised form
was adopted for the Steyn-Ross et al. (2001a) and Steyn-Ross et al. (2001b) follow-up papers.

3This scheme for transforming the Liley cortical equations into a set of stochastic differential equations was
developed by M. Steyn-Ross after discussions with D. Liley and J. Sleigh to confirm that its assumptions are
physiologically plausible.
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d he Fl(heshi) Fe(t)

il = 5.8
dt [hiJ {Fg(he,hi) T lre) (5:8)

—————— e——

drift diffusion

where the F} and F5 drifts define the non-stochastic motion,

Fl(hea hz) = [h;eSt - he + ¢ee(he) Iee(he) + wie(he) Iie(hi)] /Te (593)
Fy(he,hi) = [hi** — hi + Yei(hs) Lei(he) + ¥ii(hs) Li(hs)] /7 . (5.9b)

The I, currents entering the F; and F, drifts are as given by Eqs (4.2-4.3), but with the pj

subcortical spike-rate sources replaced by their time-averaged values (p;i),

Le(he) = [(N&+ NE)S.(he) + (pec)| Gee/ (5.10a)
Iei(he) = [(N;- + Ng) Se(he) + <pei)J Gee/ve (5.10Db)
Le(hi) = X [N{j 8:(h:) + (pie)] Gie/v: (5.11a)
Li(h) = A [ij 8i(h) + (pi,-)] Gie/vi. (5.11b)

The pji(t) white-noise parts have been factored out to define the I';(t) time-dependent diffusion

terms,

Fe(t) = bee §l(t) + bie é?(t) (512&)
Li(t) = bei &3(t) + bii €a(?) (5.12b)

where the b, coefficients depend on GABA anaesthetic effect A and (he, h;) soma voltage coor-

dinate,
bee = wee(he)aee\/ (pee) Gee/7eTe (5133)
bei =  ei(hi) QeiV/ (Dei) Gee/eTi (5.13b)
bie = Atic(he) tie\/ (Pie) Gie/viTe (5.13c¢)
bii = Aii(hi) cis/(pii) Gie/viTi . (5.13d)

Checking these equations for dimensional consistency, we see that in Eq. (5.13), the \/(;%—k) G
product gives the bj; units of mV/,/s (the G; is the post-synaptic amplitude in mV—see Ta-
ble 3.1; the units of the ~;7x product of rate- and time-constants cancel each other; the ;.
and aji are dimensionless), so that the I' diffusion terms of Eq. (5.12) carry units of mV/s,

consistent, as they must be, with the units for the F' drifts.
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5.3 Linearized Langevin Equations

In order to apply the tools of stochastic calculus to the adiabatic macrocolumn, we linearize the
stochastic differential equations (5.8) about steady state. Let the macrocolumn lie exactly on
an equilibrium point (), kY, h?) so that the drift terms are identically zero, i.e.,

Fi(he,hi)|y = Fa(he,hi)|, = 0. (5.14)

Now turn on the pj;(t) subcortical noise sources. This will generate soma voltage perturbations
via the I ;(t) diffusion terms of Eq. (5.12),

She(t) = / Te(t)dt = he(t) — A (5.15a)
Shi(t) = / Ti(t)dt = hy(t) — KO (5.15b)

From Eq. (5.8), the time-derivative of these perturbations can be written as the sum of drift
plus diffusive parts,

d dh,
ZE((She) =3 0 = Fi(he,hi) + Te(t) (5.16a)
d dh;
E(éhi) rri 0 = Fy(he, hi) + Ti(t). (5.16b)

As was done for the linear stability analysis of the adiabatic macrocolumn in Chap. 4.2, we
perform a two-variable Taylor expansion of the Fj, F» drifts about steady state. To first order

in drift (and to zeroth order in diffusion), the linearized Langevin equations read,

d 8F1 BFl
= (5he) el el ][] [reo
d " | om| oR * (5.17)
2 2
= (8h) el am, | ] [m
eq.
or,
(%éh — _ASh + T(t)e (5.18)

where 6h = [6h, 6h;])T is the perturbations column vector, and A is the negative* of the
Jacobian matrix of partial derivatives evaluated at equilibrium. Here I'eq. is the 2 x 1 diffusion
vector also evaluated at equilibrium, so that the bj; diffusion coefficients of Eq. (5.13) become

fluctuation-independent constants,

bee =  Wee(hl) Qe V/ (Pec) Gee/VeTe (5.192)

bi = Yei(h) ceiV/(pes) Gee /e (5.19b)

bie = Aie(hQ) cie/(pie) Gie/viTe (5.19¢)

bii = Aii(hY) aii/(pis) Gie/vir: (5.19d)

4The negative sign has been introduced here for consistency with the usual sign convention adopted for the
prototypical linear Langevin equation which, in one dimension, reads dz/dt = —Az + T'; for A > 0, the system is

stable so relaxes to equilibrium.
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We emphasize that in this linearization scheme, the diffusion terms are evaluated ezactly at
a given (J, hg, h? equilibrium point—by assumption, the four random-noise sources vary only
with time, and do not depend on the fluctuations in soma voltage. In other words, although the
(A, k2, h9) steady-state coordinate determines the amplitude of the noise (via the v functions
acting as scale factors), the soma voltage fluctuations themselves (i.e., the EEG signal) have no

feedback influence on the diffusion noise which is generating the fluctuations.

5.3.1 Diffusion Matrix

Gardiner (1985, pp. 53 & 96) shows that there is a complete equivalence between an Ito SDE
(such as Eq. (5.18)) and a (Fokker—Planck) diffusion process defined by the drift matrix A and
a diffusion matrix D which is calculated from the covariance of the white-noise terms. For the

adiabatic macrocolumn, the 2 x 2 diffusion matrix is given by,

D 6(0) = <l"(t) I‘(t)T> (5.20a)
or, writing out the components in full,
D11 Do _ [{Te®)Te(®)) (Te(t) Ti(t))
[Dm Dzz} °0) = |:<Fi(t) T.(t)) (Tu(t) Fi(t)>:| ' (5:200)

Evaluating each element in turn,

D116(0) = ((bee &1(t) + bie Ea(t ))(beeﬁl(t) + bie £2(t)))
= bze <§1(t) > + b2 <£2 > + 2beebie <£1 )>
= b2,6(0) + b26(0) + 0 (5.21a)

D15 6(0) = D9y 6(0)
= ((bei &3(t) + bii €4(t)) (bee &1(E) + biefz( )

= beibee <§3(t) )> + bezbze <€3 > + bubee <§4 (t)> + biibie <§4(t) EQ(t)>
=0+0+0+0 (5.21b)

Dy2 8(0) = ((bei £3(t) + bii&a(t)) (bei 53( ) + biiéa(t)))
= b2 (€a(t) €3(t)) + b% (€a(t) alt)) + 2beibii (€a(t) Ea(t))
= b%6(0) + b2 46(0) + O (5.21c)

where we have applied the correlation property of Eq. (5.5b) to contract the (£, (t) £x(t)) white-
noise expectations onto delta functions: (£(t)£(t)) = §(0). Finally, substituting the Eq. (5.19)

definitions for the bj) gives the diffusion matrix elements as,

Dy, = {(wee( ¢) Cee Ge e/’Ye) (pee)+/\ (lbze( )aieGe/’yl) (pie)} (5.22a)
Doz = iz{(we’( ) ates Gee/7e) (Pes) + A2 (s (h) i Gie/’n)2<pu>} (5.22b)

D12 = D21 = 0. (5.22C)
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Performing a dimensional check on Eq. (5.22) shows that the D;; and Dy matrix elements
carry units of (mV)2/s, as expected for a voltage diffusion coefficient.
5.3.2 Drift Matrix

The matrix elements of the drift matrix A follow directly from Eq. (4.24) after replacing J by
—A, giving,

An = -2 - :-1+ S . (5.232)
Ap = _gz;: oo ';1; :¢"863L;:Lq (5.23b)
Ay = —gfj . = —Tli :¢eigi}::]eq (5.23¢)
Ay = —‘Zij = —Tli i—1 + %i}:i"lei + aaziulu-l-’lbugf: . (5.23d)

where the 01 /0h; partial derivatives of the input currents are given by the Eq. (4.26) expres-
sions, '

Ol Gee 08,

. = (et Neo) . oh (5.24a)
O _ (g 1 v G 2 5210
?92 - *M%?i—eg% (5.24c)
e - ANﬂTG o (5.24d)

The partial derivatives for the firing-rate sigmoids 8.; and the 1;; neurokinetics weighting
functions were listed earlier in Eqgs (4.27) and (4.25) respectively. It is understood that all soma-
voltage-dependent terms in Egs (5.23-5.24) are to be calculated at a given (A, hQ, hQ) equilibrium

point.

5.4 Linearized Covariance and Linearized Spectrum

By linearizing about steady-state, we have transformed the stochastic equations of motion for

the (he, h;) soma voltages of the adiabatic macrocolumn, as given by Eq. (5.8),

a[i] = [+ [w)] 629

into a pair of linear, constant-matrix equations for (8he, dh;), the small fluctuations about steady-

state,

i) = L] 2 (<o) 52

where D is a diagonal matrix, and



72 Fluctuation Spectrum for the Macrocolumn

V Dll fe(t) = Fe(t) = bee fl (t) + bie gQ(t) (5’273‘)
VD22 &i(t) = Ti(t) = bei E3(t) + bii Ea(t) . (5.27b)

This is a two-variable Ornstein-Uhlenbeck process® whose stationary statistics have been
extensively studied and are well documented (e.g., see Gardiner (1985, pp. 109-112)). The
statistical descriptors of prime interest for the macrocolumn are the covariance matrix o, the

time-correlation matrix G(7), and the spectrum matrix S(w).

5.4.1 Covariance Matrix

Following Gardiner (1985, p.111), the stationary covariance matriz o (sometimes referred to as
the zero-time correlation matrix) for our two-dimensional Ornstein—Uhlenbeck process can be
expressed in terms of its drift matrix A and diffusion matrix D,

Det(A)D + [A — Tr(A)I] D [A — Tr(A)I]T

7= 2Tr(A) Det(A) (5:282)

[011 012] (5.28b)
g1 0922 '

in which I is the 2 x 2 identity matrix; Det and Tr are the determinant and trace operators

respectively. The individual elements of the covariance matrix are defined,

o11 = var{0h.}

= ((6he — (6he))?) = (6h2) — (dhe)® (5.29a)
099 = var{dh;}
= ((6hi — (6h:))?) = (6h]) — (6hs)® (5.20b)

012 = cov{dhe,dh;}
= ((6he — (8he)) (8hi — (8hi))) = (6he 6h;) — (She)(Sh;)
= 091 . (5.29C)

By writing out Eq. (5.28a) in full, we obtain expressions for the o} in terms of the drift and

diffusion elements:

(A11A22 — AjgAg + A%Q) Dy + A%Q Do
2 (A1 + A) (A11Ag — A1pA2)

g11 = (5.30&)

S A% Dy + (A%, + A11A — A1pAg) Doy (5.300)
2 (A1 + A) (A11Age — A1pAs)

1a = O3 = —A11A12D2p — Ag1 Ao D1y (5.300)
2(An1 + A) (A1 Ay — A2Ag) '

5In Chap. 7 we will use the theoretical predictions from a one-variable Ornstein—Uhlenbeck process as a simple
test-case against which the correctness of our numerical simulation procedures for stochastic differential equations
can be checked.
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The rms values of the excitatory and inhibitory voltage fluctuations and co-fluctuations
about their respective steady-states can be extracted directly from the covariance elements,

h;ms vV var{dhe} = 4011 (5.313)
hi™ = \/var{éh;} = /022 (5.31b)
het™® = V/|cov{bhe,bhi}| = V/]|o12]. (5.31c)

From its definition in Eq. (5.29c), one observes that the cov{dh,, dh;} cross-covariance can be
negative—this will happen when excitatory and inhibitory fluctuations are anticorrelated, e.g.,
when a depolarizing (positive-going) fluctuation in h, leads to a hyperpolarizing (negative-going)
fluctuation in h;, and vice versa. Hence the need for an absolute value in the Eq. (5.31c) definition
for hg™. However, because it may be useful to distinguish the regions of anticorrelation, I

introduce the notion of a “signed rms” value for the square-root of the covariance:

™ = sgn(o12)V/|owa (5.32)
where sgn is the signum (sign-of) function. With this definition, hfirms will carry the sign of the
012 covariance, thus will be negative when éh, and dh; are anticorrelated, and will be positive

otherwise.

5.4.2 Time-Correlation Matrix
The autocorrelation function G(7) for a time-series z(t) was defined in Eq. (2.6),

T

G(r) = (a(r) 2(0) = Jim % RECGRECLS (5.33)

The autocovariance of z(t) is defined

cov{z(r), z(0)} = (z() z(0)) — (z(7)) {z(0)). (5.34)

The autocovariance will be identical to the autocorrelation if the fluctuations z(t) have zero
mean. Unless stated otherwise, we will assume that all means have been removed (e.g., the
EEG signal, 6he(t) = he(t) — kY, is the ac component of the soma-voltage variation), so that the

autocovariance of a time-series z(t) can be taken as its autocorrelation,
G(1) = cov{z(7), z(0)}. (5.35)

For a two-variable system, the autocorrelation function generalizes to a time-correlation
matriz G(7). Replacing the z(t) above by the soma-voltage fluctuations dh.(t) and h;(t), their
correlation matrix would read,

cov{bhe(T), 6he(0)}  cov{dhe(T), dh;(0)}
G(r) = . (5.36)

cov{dh;(7), 6he(0)}  cov{dh;(T), 6h;(0)}
Gardiner (1985, p. 111) shows that for a two-dimensional Ornstein—Uhlenbeck process, the
stationary correlation matrix can be computed directly from the drift matrix A and covariance

matrix o:
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G(71) = exp[-AT] o, T>0 (5.37a)
and,

o exp [—ATT] , T<0 (5.37b)

with symmetry property (because o = o1),

G(-7) = [G(M)]T . (5.38)

The exp [-A7] term denotes a matriz ezponential (and not the exponential of the matrix

elements) defined by its Taylor expansion,

X = T4+X+X22+X3/6+...+XF/kl+ ... (5.39)

In the control systems literature, exp [—AT7] is known as the transition matriz. To gain in-
sight into the structure of its elements, we will apply an alternative definition® for the matrix

exponential expressed in terms of eigenvalues and eigenvectors,

A 0
X _ € -1
et = V[ 0 eh]v (5.40)
where V is the 2 x 2 matrix of eigenvectors corresponding to the eigenvalues Aj, Ao of the X
matrix. From Wiberg (1971, p. 108), the transition matrix will be

e~MT 0

—AT _
€ =V |: 0 eA2T

] v-1 (5.41)

where A; and A are now the A-matrix eigenvalues. The corresponding eigenvector matrix is

v 1 Ai—A
V = = Az )
[1 UJ [ 1 AecAy (5.42)
12
which follows from the eigenvector definition
A O
AV = VA=YV . .
N s
From Eq. (5.37a), the correlation matrix becomes
G(r) = e Ao
e—-A1T 0 1
-V [ . e_M] Vg, (5.44)

Expanding, then selecting the terms for the G1;(7) element, we obtain the correlation function
for the dh.(t) fluctuations as,

G11(r) = cov{bhe(), 6he(0)} = a1e™™MT + age™T (5.45)

8This definition appears in the MATLAB help documentation for its expm (matrix exponential) function. Also
see Wiberg (1971, p. 101, Eq. 5.17).
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where

0111 Vg — 091 V1 —011 + 0910
ap = , and qp = —MT7AA (5.46)
V1 Vg — 1 V1 V2 — 1

Setting 7 — 0 in Eq. (5.45), we see that, as expected, the autocovariance of &h, collapses to its
variance o1,

G11(0) = cov{dh.(0), 5he(0)}
= a1+ o9
= o1

= var{dh.}. (5.47)

It is evident from Eq. (5.45) that the two-time correlation function for éh, is a linear com-
bination of two ezponential decay processes whose rate constants are the eigenvalues of the drift
matrix. The relative weighting of the exponentials depends on the o1; and o9; entries of the
covariance matrix (usefully thought of as the zero-time correlation matrix), and on the v; and
vy eigenvector elements.

Parallel conclusions apply to the correlation functions for the dh; inhibitory fluctuations and
for the dh.; cross-fluctuations.

5.4.3 Generalized Correlation Time

The correlation time T was defined in Sect. 2.4 as the time required for the autocorrelation
function G(7) to decay to 1/e of its zero-lag value. This definition assumes the autocorrelation

function is a simple, single-exponential decaying function of time of the form,
G(t) = G(0)e ™",  7>0 (5.48)

for which T'=1/k. A (semilog) graph of In G(7) vs 7 will give a straight line
InG(r) = nG(0) — k7 (5.49)

whose slope retrieves k, the inverse of the correlation time.

For our two-dimensional OU (Ornstein-Uhlenbeck) process, the Eq. (5.45) autocorrelation
function is the sum of two exponential decays, so a simple 1/e-folding-time (or slope-of-semilog-
graph) rule for extracting the correlation time is no longer appropriate.

Gardiner (1985, p. 78) gives a generalized correlation-time definition which can be applied

to arbitrary processes,

= Jo~ cov{z(r),z(0)} dr _ o G(r)dr

T var{z} - G(0)

(5.50)

and which certainly works for the single-exponential decay process of Eq. (5.48), retrieving the
correlation time

© c(0 —de 00
r = b (G)(g) . =/0 e T dr = % (5.51)
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as required. Applying Eq. (5.50) to the two-dimensional OU process, we are able to derive two
equivalent expressions for the correlation time, the first derivation proceeding via the eigenvec-
tor decomposition of Eq. (5.45), and the second proceeding directly from the matrix form of
Eq. (5.37a).

Correlation Time: Eigenvector Method

The eigenvector decomposition gave a scalar (sum of exponentials) equation (5.45) for G1;(7),

the dh, autocorrelation function. Substituting into Eq. (5.50) gives

1 e ]
T = —Gll(O)‘/O‘ G11(T)dT

1 [ _ _
= — are ™M 4 age27 dr
o1 Jo

1 (o a2>
= — [ —4+ = 5.52
o1 (Al Ag (5.52)

where the a;, ag are defined in Eq. (5.46) in terms of the v;, vy eigenvectors, and oq; is the
Eq. (5.29a) variance of the éh, fluctuations.
Correlation Time: Matrix Method

Working directly with the time-correlation matrix G(7) defined in Eq. (5.37a), we can derive

an alternative expression for the dh, correlation time by integrating the matrix exponential,

/Ooo G(r)dr = /Ooo exp [-AT] o dr
= A_l o. (5.53)

Extracting the 1,1 element, and dividing by the dh, variance o;; gives the alternative expression

for the generalized correlation time for the two-dimensional OU process,

T =1 [a10]

5.54
on 1 (5.54)

These equivalent forms listed in Egs (5.52) and (5.54) for correlation time provide a convenient

numerical cross-check. This concept of generalized correlation time will be revisited in Chap. 8.

5.4.4 Spectrum Matrix

The power spectral density S(w) for a time-series can be calculated from its autocorrelation

function via the Wiener-Khinchin theorem of Eq. (2.5),

1 [ ;
S(w) = o /_Oo G(t)e ™" dr. (5.55)
Replacing the autocorrelation function G(7) in Eq. (5.55) with the correlation matrix G(7) leads

to the spectrum matriz S(w):
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S(w) = % /_oo G(1)e ™7 dr (5.56a)

[Su(w) Sm(‘d)} (5.56b)

Sa1(w)  Saz(w)
For the two-dimensional Ornstein-Uhlenbeck process, Gardiner (1985, p. 111) shows that

the stationary spectrum matrix can be expressed in terms of the drift and diffusion matrices,
1 _ -
S() = 5 (A+iwl) ™' D (AT - iwl) ' (5.57)
Expanding Eq. (5.57), we can write explicit expressions for each of the spectral elements:

Slhe(w)] = S11(w)

= — 5.583
2T (A11Age — AjpAgy — w?)? + (A1) + Ag)?w? ( )
S[hi(w)] = Sa(w)
1 A} Dy + A} D1y + Dyu?
-1 =2 — (5.58b)
27 (A11Ag — AjpAgy — w?)* + (A1 + Ap)*w
Slhe,i(w)] = S12(w)
= 551(0))
_ 1 —A11A12D22 — A21A22D11 + w (A12D22 - A21D11) ) (5.580)

2m (A11A2g — A1pAg1 — w?)? + (Aq1 + Agg)?w?

We observe that the excitatory spectrum S[he(w)] and the inhibitory spectrum S[h;(w)] are
both real, even functions of w, since these are computed from their time-series autocorrelations
which have even symmetry about zero lag. In contrast, the S[he ;(w)] cross-spectrum is complex
since it comes from a Fourier transformation of the (dhe(7),dh;(0)) cross-correlation which,
in general, will be asymmetric about 7 = 0. The two cross-spectra, Sja = S[hei(w)] and
S91 = S[hie(w)], are complex conjugates of each other.

The square-roots of the Eq. (5.58) power spectra [units: (mV)2/Hz] give spectral and co-
spectral rms amplitudes [mV/v/Hz] defined as,

A (w) = /511 (W) (5.59a)
RS (w) = /Spa(w) (5.59b)

R (W) = V]Si2W)l. (5.59¢)

Because the Si9 co-spectrum is complex, it is useful to define its phase angle S.;,

_ o1 ((ImS12(w)]
,Be,'(UJ) = tan 1(%) . (560)

Before presenting the theoretical variances and spectra, we will examine first the predicted

behaviours of the drift and diffusion matrices as a function of GABA anaesthetic effect.
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5.5 Drift and Diffusion Response to GABA Anaesthetic

Using Eqs (5.23 and 4.25-4.27), I computed the drift matrix A for the range of steady-state
versus GABA coordinates illustrated earlier in the reverse-S graph of Fig. 3.4. The results are
displayed in Fig. 5.1.

Each curve in Fig. 5.1 exhibits a re-entrant arc joining the A3 (induction) and Q; (emergence)

turning points: this arc corresponds to the unstable mid-branch of Fig. 3.4. As expected, the

(@) Ay /10° (b) Ayp/10%
20 f ' ' ' R 20t ' ' '
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10
0 L

(o} §

¢ a0t i
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Figure 5.1: Variation of drift matrix A with GABA anaesthetic for the adiabatic macrocolumn. The

four matrix elements occupy the top four panels: (a) Aj;; (b) Ai2; (¢) A21; (d) Age. (e) shows the

sum of the diagonal elements: Tr(A) = A;; + A22 (equivalent to the sum of eigenvalues), and (f) is the

determinant of A (product of eigenvalues): Det(A) = Aj1A22 — A12A42,. These graphs belong to the
steady-state trajectory of Fig. 3.4. For each curve, the A3 @, section identifies the unstable branch.
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curve in (f) showing Det(A) has zeros at its A3 and Q; turning points (the dominant eigenvalue
passes through zero at these points—see Fig. 4.1b).

Re-entrant A3 Q; arcs are also evident in Fig. 5.2 which displays the D;; and D9 elements
of the (diagonal) diffusion matrix. These curves, calculated from Egs (5.22), are always positive,
as verified by (c) and (d) showing a zoomed view in the vicinity of the Q; cusp.

(a) Dyy b) D
15 ' ' .5 ( ) 22
Az
10 ] 10 +
5 5} A3
0f Q1: - ) . 0 "o— . . .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
(c) D41 Bottom Branch (d) D22 Bottom Branch
0.2 . T 0.2 —
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01 i 4 0.1 L
0.05 I / . | -
o 0.05 o
0 " " " o i A i
0 1 2 3 4 0 1 2 3 4
Anaesthetic Effect, Agaga Anaesthetic Effect, Agaga

Figure 5.2: Variation of diffusion matrix D with GABA anaesthetic. The diffusion matrix elements
are shown in the top two panels: (a) D1;; (b) Dao. Panels (c) and (d) give a close-up view of the Q; cusp.
Both excitatory and inhibitory diffusion coefficients are always positive, and exhibit a slowly increasing
trend with A on the bottom (hyperpolarized) branch.

5.6 Adiabatic Fluctuations and Spectra
5.6.1 Fluctuation Amplitude vs GABA

Having established the response of the the drift and diffusion matrices to GABA anaesthetic,
it is a relatively straightforward matter to compute the covariance matrix o from Eq. (5.28),
and hence determine the macrocolumn predictions for the rms amplitude of the excitatory and
inhibitory soma voltage fluctuations about equilibrium. The fluctuation trends are shown in
Fig. 5.3.

At first sight, the dramatic surge in fluctuation power as the macrocolumn approaches in-
duction point Az on the top (“conscious”) branch is astonishing. After all, the prime purpose

of general anaesthetic is to dampen down the firing activity of the cerebral cortex to the extent
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Figure 5.3: Effect of GABA anaesthetic on the fluctuations covariance matrix o. Plotted here are

the standard deviations for the small white-noise-driven fluctuations of soma voltage about equilibrium:
(a) excitatory fluctuations, hT™ = /o17; (b) 0 fluctuations, hi™® = ,/o2;; and (c) signed excitatory—
inhibitory co-fluctuations: hE™ = sgn(o12)+/|012]. Region SAj is the high-firing active branch (top-
branch of Fig. 3.4); region Q,C is the low-firing anaesthetized or quiescent branch (bottom branch of
Fig. 3.4). The unstable A3Q; mid-branch has been suppressed. Note the remarkable surge of fluctuation

power on approach to induction (A3), and again on approach to emergence (Q1).
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that the patient enters the “unconscious” or quiescent state. Yet these graphs show that corti-
cal activity surges to a maximum immediately prior to the induction collapse into quiescence.
Moreover, there is a second power surge for the return journey at the @Q; emergence jump back
to consciousness.

The meaning of these power surges becomes clear when we recall that the macrocolumn
is exhibiting a pair of hysteretically-separated first-order phase transitions. As Reichl (1980)
puts it, the growth in fluctuations as transition is approached is the system’s way of readying
itself for its impending new state. So we can think of the macrocolumn preparing for an im-
pending step change in its (he, h;) dc voltage by becoming exquisitely sensitive to the incoming
white-noise perturbations; although the resulting exaggerated ac excursions are still quite small
(~0.2 mVrms) compared with the size of the step change (~30 mV), they enable the macrocol-
umn to “sample” its dramatically altered potential landscape. (This picture will become clearer
in Chap. 6 when we compute the “hills-and-valleys” potential graphs for the macrocolumn.)

We observe from Fig. 5.3b that the inhibitory fluctuations grow in a similar fashion to those
of the excitatory population, although with a delayed, then more steeply-rising trend as the As
induction point at A = 1.53 is approached. Fig. 5.3c is the “signed rms” measure introduced in

Eq. (5.32) which is positive when §h, and dh; co-vary, and negative when they anti-vary.

5.6.2 Spectral Amplitude vs GABA

Using Egs (5.58) and (5.59), I calculated the spectral amplitudes for the excitatory and inhibitory
fluctuations at three specific point frequencies: 1, 10, and 100 Hz. The results appear in Fig. 5.4.

These single-frequency response pictures are rather similar in character to the total fluctua-
tion graphs of Fig. 5.3: for both sets of graphs there is a strong growth in amplitude as either
the A3 (induction) or the Q; (emergence) phase-transition jumps are approached. However, we
can now glean some information about the spectral composition of the peaks by comparing the
relative amplitudes of the three graphs within a column. While the emergence peak @, contains
little high-frequency energy, the induction power surge at As is relatively broad-band, with little
attenuation at 100 Hz. This contrast will become more apparent in the following section when
we view the complete spectra as three-dimensional “waterfalls.”

The co-spectral graphs appear in Fig. 5.5. Because the co-spectrum is complex, the spectral

rms

information is split into its amplitude magnitude hrms = | / |S12| (left-hand panels) and spectral

el

phase Be; = tan~![Im(S12)/Re(S12)] (right-hand panels).

5.6.3 Spectral Power Waterfalls

In the previous section we evaluated the linearized fluctuation spectrum equations for specified
point frequencies. Now we will allow the frequency to vary in fine steps from dc up to a reasonable
upper limit to reveal the full ezcitatory spectrum for a given value of anaesthetic effect A. (For
the remainder of this chapter we ignore the inhibitory spectrum and the excitatory-inhibitory
cross-spectrum, and focus exclusively on the excitatory spectrum S;;(w) since it is the dhe
variations which are the putative source of the scalp-measured EEG.)

Using Eq. (5.58a), each value of A will generate a distinct fluctuation spectrum. If A is

stepped appropriately, the resulting family of spectra can be displayed in a three-dimensional
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Figure 5.4: Variation of spectral amplitude with GABA anaesthetic at specified point frequencies.
Left-hand panels show excitatory spectral amplitude, hL™S; right-hand panels show inhibitory spectral
amplitude, E;ms. The point frequencies are (a, b) 1 Hz; (c, d) 10 Hz; (e, f) 100 Hz. Spectral amplitudes
carry units of uV/v/Hz.
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Figure 5.5: Variation of co-spectral amplitude and phase with GABA anaesthetic at specified point
frequencies. Left-hand panels show excitatory—inhibitory co-spectral amplitude, h™$; right-hand panels
show the phase angle (.; for the co-spectrum. The point frequencies are (a, b) 1 Hz; (c, d) 10 Hz;
(e, f) 100 Hz. Phase angles are expressed as a fraction of 7 (i.e., an ordinate of unity corresponds to
B = m rads); the vertical scale for phase angle has been reversed to permit the transition arrows at @
and A3 to point downwards, consistent with the amplitude graphs.
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Figure 5.6: Variation of spectral power for anaesthesia-induction path A4;A43Q3C of Fig. 3.4. Note
the substantial slab of biphasic power at A = 1.53 marking the A3 extremum immediately prior to the
A3z — Q3 slump from the active (“conscious”) to the quiescent (“unconscious”) branch.

“waterfall” presentation showing the “flow” of spectral power (z-axis) versus frequency (y-axis)
and versus anaesthetic effect (z-axis).

The 3D waterfall plot for the induction of unconsciousness (path A;A3Q3C in Fig. 3.4)
appears in Fig. 5.6. For A = 1 on the top branch, the spectrum is rather flat over the 0-400-Hz
range plotted here. However, the spectral area and shape change radically on approach to the
point of phase change at A3z: the total fluctuation power grows dramatically as the spectrum
redistributes energy towards zero frequency, tending to take on the low-frequency character
of the post-jump quiescent macrocolumn—albeit at vastly higher power levels (by a factor of
~3000).

The same induction waterfall is pictured in Fig. 5.7(b), but viewed from a different perspec-
tive. Figure 5.7(c) and (d) give two views of the A = 0.28 emergence return to consciousness
for the Fig. 3.4 path CQ1A:1S. The redistribution of fluctuation activity toward zero frequency
becomes even more pronounced along the bottom branch as the macrocolumn approaches its
Q1 jump return to the active branch. These characteristic alterations in spectral shape can

be quantified using the concept of spectral entropy; this notion will be investigated further in
Chap. 8.
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Figure 5.7: Comparative 3D spectral power plots for (a, b) induction and (c, d) emergence. Two views
are shown for each trajectory to allow visual comparison of the relative flatness (“whiteness”) of the
spectral curves before and after transition. Graph (a) is a repeat of Fig. 5.6. All spectra have maximum
power at dc, with the dc-peakiness becoming more pronounced prior to induction at A = 1.53 (a, b), and
even more pronounced just prior to emergence at A = 0.28 (c, d).

5.7 Source and Significance of Fluctuation Surges

5.7.1 Fluctuation Infinities

What is the origin of the Fig. 5.7 surge in fluctuation power as the macrocolumn approaches the

A3z point of induction and the Q; point of emergence? The elements of the o covariance matrix

were listed in Eq. (5.30). The equation for var{dh.} reads,

(Det(A) + A%2) Dy + A%2 Doy
2Tr(A) Det(A) '

We will find that the denominator of the right-hand-side expression goes to zero at the turning

var{&he} = 011 = (561)

points of the steady-states trajectory of Fig. 3.4, thus generating a pair of infinities (poles) in
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the fluctuation variance. To see this, recall from Eq. (5.17) that the drift matrix A was defined

to be the negative of the Jacobian matrix J introduced in Eq. (4.23), thus,

Tr(A) = A1+ A = —Jun —Jp = -Tr(J) (5.62a)

and,
—Ju —Ji2

Det(A) = Det(-J) = = Det(J) . (5.62b)

—Jo1 —Jpo

Using the matrix property that the trace of a matrix equals the sum of its eigenvalues, and
the determinant of a matrix equals the product of its eigenvalues,” we can write the trace-

determinant product in terms of A; and Asg, the eigenvalues of matrix J:
Tr(A) Det(A) = —Tr(J) Det(J) = —(A1 + A2) - (A1 Ag). (5.63)

The Aj, Ao eigenvalue pairs for Jacobian matrix J were plotted in Fig. 4.1. The A3 and
Q@1 turning points in Fig. 4.1a correspond to the zero-crossing in Fig. 4.1b by the dominant
eigenvalue Aj; the second eigenvalue As is negative. Thus the determinant of the drift matrix
is identically zero at the two turning points (t.p.),

lim Det(A) = lim Det(J) = AjA2 = 0-Ay =0 (5.64)
A—t.p. A—t.p.

and, from Eq. (5.61), the fluctuation variance for dh, will diverge to positive infinity,

hm o1 — A%Q Dy + A%Z Doys
Aotp T T Z2(0+ Ag) (0 A9)

— +o00. (5.65)

An identical conclusion applies to the variance for the inhibitory fluctuations, var(éh;) = o9s.
For the covariance of the cross-fluctuations of Eq. (5.30c),

—A11412D9 — A1 A2 D1y

cov{bhe,0h;} = 012 = 2Tr(A) Det(A)

(5.66)

it seems, at first sight, that there is a possibility of a divergence to negative infinity. Figure 5.2
shows that D;; and Dagg, the diagonal elements of the diffusion matrix, are always positive.
From Fig. 5.1 we see that in the vicinity of A3 the drift-matrix products A1 A2 and A9y Ayy are
negative, so the numerator will be positive, and, because the denominator is also positive, the

012 covariance will behave in fact as indicated in Fig. 5.3c by diverging to positive infinity.

"For a general proof of this property, see Wiberg (1971, p. 88). The demonstration for a 2 x 2 matrix X
proceeds as follows. Write the characteristic polynomial in eigenvalue-factored form,

Det(X —AI) = (A —A1)(A—A2) = A2 — A (A1 + A2) + AiAs.
Now write the polynomial out in full,

—A
Det(X — AI) = | ™" 12| = (21— A)(z22 — A) — 21272
T21 T2 — A
= A% — A(z11 + 22) + 11222 — T12T21
= A? — ATr(X) + Det(X) .
Equating polynomial coefficients between the two expansions gives,

Tr(X) = A1+ A2, and Det(X) = A1A2.
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5.7.2 Spectral Divergence at Low Frequency

Insight into the spectral character of these infinite fluctuations can be gained by examining the

spectrum matrix equations. The excitatory fluctuation spectrum is given by Eq. (5.58a),

Si(w) = 1 A}Dy + A% D1 + Do’
27 [Det(A) — w?® + [Tr(A)?w? |

(5.67)

At the phase-change turning points we have Det(A) = 0 and Tr(A) = —Ay (where Aj is the
non-zero eigenvalue of the Jacobian matrix), so the spectrum becomes

i A%2D22 + A%2D11 + D11w2

i Su) = 5 SO AR, (569
which will be finite everywhere except at zero frequency:
2 2
lim lim Sy(w) = L ApDo + ApDu | (5.69)

w—0 A—t.p. 27 A% w?

Thus S;;(w) diverges to infinity as 1/w? at the turning points. This means that as the
macrocolumn approaches an emergence or induction jump, very low-frequency fluctuations will
grow without limit, with the fluctuations becoming infinitely slow at the jump. This is the so-
called critical slowing down phenomenon which is characteristic of phase transitions. Another
way of tracing the progress of a phase change is to measure the lengthening correlation times:
the correlation time becomes infinite as the fluctuations slow down to dc. This aspect will be
treated in detail in the latter part of Chap. 8.

5.7.3 Lorentzian Limit at High Frequency

It is also of interest to examine the high-frequency spectral limit of Eq. (5.67),

. 1 Dy
lim Sll(w) = — 5
w—00 2m w2 — 2Det(A) + [Tr(A)]
1 Dy
= — — 5.70
2 w? + k2 (5.70)
in which
K = A} +2A1An + A3, (5.71)

We recognize the form of Eq. (5.70) as a Lorentzian spectrum (cf Eq. (2.29)) whose —3-dB
frequency is k and whose correlation time is 7. = 1/k. At the phase-change points, Eq. (5.70)

simplifies to

1 D
lim lim Sy (w) 11

_ 1 _ 5.72
A—t.p. W—00 2m w2 + A3 (572)

This means that at a fluctuation pole, the correlation time for the the high-frequency components

is determined by the value of the non-zero eigenvalue: 7. = |Ag|~!.
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5.8 Recapitulation: Predictions for Spectral Response

A list of predictions for the anaesthetic-induced alterations in EEG behaviour is given on the

opening page of this chapter. To recap, the adiabatic macrocolumn predicts—

e a pronounced growth in fluctuation power as the point of induction into unconsciousness is
approached; a second power surge as the moment of return of consciousness is approached
(Fig. 5.3); these change-of-phase points will be separated by a hysteresis gap (Fig. 3.4)

e a redistribution of spectral energy towards lower frequencies as transition points are ap-
proached (Fig. 5.7)

e a relatively broad spectrum for the top branch; a 1/f2 spectrum on the bottom branch
(Fig. 5.7 and Eq. (5.69)).

In the next section we present clinical results reported by Kuizenga, Kalkman, and Hen-
nis (1998) that seem to give good support to the first of our model predictions: distinct,
hysteretically-separated EEG power surges when the anaesthetized cerebral cortex changes state

into unconsciousness and then recovers.

5.9 The Kuizenga Experiment
5.9.1 The Biphasic Response

It is well-known within the anaesthesiology community than many commonly used general-
anaesthetic agents exhibit what is referred to as a “biphasic” or activation/depression response:
at low (sedative) anaesthetic concentrations there is a significant increase above baseline values
in both the total EEG power and in the frequency at which peak power occurs; as concentration
is further increased to hypnotic (surgical anaesthesia) levels, the total power and median fre-
quency fall away to levels below baseline. This “biphasic” response has been observed on human
volunteers dosed with thiopental (Biihrer et al., 1992), and the widely-used propofol (Kuizenga
et al., 1998). It has also been measured in rats dosed with thiopental (Maclver et al., 1996;
Archer and Roth, 1997). Figure 5.8 shows a typical activation/depression response from one of
the patients in the Kuizenga et al. (1998) study.

5.9.2 Clinical Details

In their clinical study, Kuizenga et al. (1998) examined the biphasic relationship between the
concentration of a general anaesthetic agent (propofol) in arterial blood and EEG effects during
the transition from the awake state to hypnosis and during subsequent emergence. The subjects
were 10 healthy male patients who were scheduled for lower-limb surgery. A scalp electrode pair
was placed at the mastoid (bone behind the ear) and the forehead to monitor the differential EEG
signal developed across the hemisphere. Each patient received a 10-min infusion of propofol.
The EEG was recorded continuously from 5 min before the start of propofol infusion until
the patient regained consciousness (approximately 15 min after conclusion of infusion), and
thereafter intermittently for 5-min periods, coinciding with blood sampling, until 190 min after
start of infusion. Blood samples were drawn from a femoral artery at 2-min intervals during the

first 22 min, then at more widely spaced intervals thereafter.
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5.9.3 EEG Processing

The EEG signal was processed, over 15-s epochs, into one of six frequency bands (0-5, 6-10,
11-15, 16-20, 21-25, and 26-30 Hz) using “aperiodic analysis.” This technique measures the
vertical distance between consecutive peaks and valleys in the voltage trace and computes an
effective instantaneous frequency from (half the reciprocal of) the time interval for the peak-
to-trough excursion. These voltage excursions are then accumulated, unsigned, into one of the
six frequency bins to give a total voltage deviation in each frequency band for the 15-s epoch.
Dividing each band total by 15 s then gives a measure of the average amplitude “slew-rate,” in
wV /s, which Kuizenga refers to as “EEG amplitude.”

5.9.4 Relationship between Aperiodic and Fourier Analysis

Before we can compare the theoretical spectra against the Kuizenga results, we need to establish
the relationship between Fourier analysis (which assumes that the EEG fluctuations can be
resolved into sinewave vibrations) and aperiodic analysis. Paraphrasing Gregory and Pettus
(1986), I offer the following brief definition:

Aperiodic Analysis: A method that analyzes the EEG signal in the time-
domain by measuring the rate at which the signal slews between consecutive peaks
and troughs.

This algorithm, which pre-dates modern wavelet analysis, was patented in the 1980s for use
in the Neurometrics Lifescan EEG monitor (Diatek Corporation, San Diego, California). It

seems that this equipment, and its associated analysis software, is a not uncommon choice at
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Figure 5.8: Biphasic effect of propofol anaesthetic on 0-5-Hz and 11-15-Hz EEG signal. During
the 10 min of propofol infusion, anaesthetic concentration increases steadily. At low concentrations, the
EEG signal shows an initial increase in power (activation). EEG power then falls away (inhibition) as
concentration is further increased and the patient becomes deeply unconscious. A second EEG activa-
tion peak is observed as the anaesthetic concentration declines and the patient begins to emerge from

unconsciousness. [Data supplied courtesy of K. Kuizenga, and reported as “Patient 7” in Kuizenga et al.
(1998).]
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anaesthesiology research laboratories around the world. Kuizenga used it to analyze his EEG
datasets (Kuizenga et al., 1998, 2001) for propofol anaesthetic, and Biihrer found that aperiodic
analysis gave a more consistent quantification of the EEG effect of midazolam and thiopental
anaesthetics than did the Fourier analysis measures (such as spectral edge and total power)
(Biihrer et al., 1990, 1992).

To date, no attempt seems to have been made to relate the aperiodic slew-rate measure,
measured in pV/s (but misleadingly referred to as “EEG amplitude” (Kuizenga et al., 1998) or
“EEG voltage” (Biihrer et al., 1990)), to the conventional harmonic measures such as rms voltage
obtained by summing Fourier spectral amplitudes across a given frequency range. I will show
that for the ideal case of a single-frequency sinewave, the aperiodic analysis gives a result equal
to the average absolute slew-rate of the sinewave, and that for more complicated waveforms,
the aperiodic analysis is roughly equivalent to a Fourier analysis of the time-derivative of the

waveform.

Slew-Rate for a Sinewave

Consider the waveform y(t) = Asin(wt), a pure sinusoid of amplitude A [in, say, pV] and
frequency f = w/2n [Hz] pictured in Fig. 5.9. The aperiodic analysis would detect a peak-to-
peak slew of Ay = 2A in a half-period At = 1/2f = 7/w, and would accumulate this activity,
unsigned, to frequency bin f. The slew-rate contribution from this wave-fragment would be

A 2A 2

KZZ = o = ;Aw [units: pV/s|. (5.73)
Effectively the sinewave has been replaced by a triangular wave formed by drawing a straight
line from peak to peak; the calculated slew-rate is the triangle’s rate-change of voltage with
respect to time.

The actual slew-rate of the sinewave is given by
d , .
v(t) = EA sin(wt) = Aw cos(wt) (5.74)

which varies over a half-cycle from zero at the sinewave peaks to a maximum of Aw at the
sinewave zero-crossing. The average absolute slew-rate, given by averaging over a (positive-
slope) half-period of width At = 7/w, is given by,
1 [t/ +1/2w 9
Vay = —/ v(t)dt = u—JAsin(wt) = —Aw, (5.75)
At - /2w ™ —7/2w m
exactly matching the value calculated for the equivalent triangular waveform interpolated by
aperiodic analysis. Therefore, for a single-frequency sinusoid, the aperiodic analysis is detecting

the average speed (unsigned) of the simple harmonic vibration.

Slew-Rate for a Mix of Sinewaves

Figure 5.9b illustrates a more realistic signal obtained by summing different-frequency sinewaves.
The Gregory and Pettus (1986) algorithm analyzes such a signal on two scales: the “fast-wave”
(9-30 Hz) detection looks for local excursions between consecutive extrema, while the “slow-

wave” (0.5-8.5 Hz) detection requires that the extrema bracket a zero-crossing. These two
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searches are done in parallel on two differently pre-filtered copies of the signal: for the fast-wave
detection, the signal has been low-pass filtered to 30 Hz, and for slow-wave detection, it has
been low-pass filtered to 8 Hz. The algorithm will require a specification for the noise threshold
(i.e., a minimum voltage excursion considered to be significant), but Gregory and Pettus make
no mention of this.

It is clear that the precise output of such a time-domain analysis will be dependent on the
implementation details. Nevertheless, it also seems clear that the aperiodic method is performing
a kind of “unsigned velocity” analysis of the EEG signal. Ignoring the complications arising from
the implied absolute value, I will argue that since derivative in the time-domain corresponds
to frequency multiplication in the Fourier domain, a plausible slew-rate power spectrum R(w)

for the macrocolumn can be constructed by scaling the Sy; excitatory fluctuation spectrum of
Eq. (5.58a) by w?:

Rw) = w?S11(w) (5.76)

suggesting an rms slewing “velocity” measure vi™s,

w2
o = \/ / w2 1y (w) dw (5.77)
w1

(a) Single Sinewave
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Figure 5.9: Aperiodic analysis is a form of slew-rate estimation for each distinct wave-fragment in a
signal. (a) For a single-frequency sinewave y(t) = Asin(wt), the fragment shown in bold slews a vertical
distance Ay = 2A in a time interval At = m/w. (b) The aperiodic measure for a more complicated
signal will depend on fine details of the algorithm, e.g., number of time-scales over which each fragment
is analyzed, noise threshold, amount of pre-filtering. In the Gregory and Pettus (1986) algorithm, AB
would be a fast-wave (local) excursion, while AC would be a slow-wave (zero-crossing) excursion.
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(a) RMS Slew-Rate: 0 to 5 Hz (b) RMS Slew-Rate: 11 to 15 Hz
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Figure 5.10: Variation of fluctuation slew-rate with GABA anaesthetic. The ordinate is the rms
slewing velocity vi™® predicted by Eq. (5.77) for two frequency bands: (a) 0-5 Hz, and (b) 11-15 Hz.

[
Compare these theoretical curves with Kuizenga’s clinical results of Fig. 5.11 obtained via aperiodic

analysis of scalp-recorded EEG signals. The peaks are labelled I for induction and F for emergence.

defined so that (vi™%)? equals the area under the slew-rate spectrum over the frequency interval
(w1, w2).

The macrocolumn predictions for rms slewing velocity for the two frequency bands [0-5 Hz]
and [11-15 Hz] are shown in Fig. 5.10. Because of the scaling by w in the Eq. (5.77) definition,
the slew-rate spectrum will have its low-frequency components suppressed, and higher frequency
components enhanced. A comparison of the Fig. 5.10 slew-rate activity against the point-

frequency amplitudes of Fig. 5.4 bears this out.

5.9.5 Measured EEG Activity vs Anaesthetic Concentration

Figure 5.8 showed the time-course of EEG slew-rate activity for the 0-5 and 11-15-Hz bands
for Patient 7 of the Kuizenga et al. study, and Fig. 5.11 shows the same information, but now
plotted as a function of propofol concentration at the femoral artery. Both bands show a pair
of pronounced activation peaks: the first peak occurs during the induction phase as the patient
becomes unconscious; the second peak occurs some time later when the concentration is reduced,
allowing the patient to emerge from unconsciousness. For the 0-5-Hz band, the induction peak

is stronger, while for the 11-15-Hz band the emergence peak is strongly dominant.

Drug—Effect Hysteresis

Comparing the experimental graphs of Fig. 5.11 with the theoretical predictions of Fig. 5.10
shows a very pleasing qualitative agreement in their general shape and character: there are two
distinct surges in slew-rate activity, one during induction of anaesthesia and the second dur-
ing emergence from anaesthesia. These two activity surges are well separated in concentration
space: the patient becomes unconscious at a considerably higher propofol (about 2.5x) concen-

tration than that at which she wakes up. The existence of a hysteresis effect (i.e., an emergence
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Figure 5.11: EEG “amplitude” (actually slew-rate) data from Fig. 5.8 plotted as a function of measured
propofol blood concentration. (a) 0-5 Hz; (b) 11-15 Hz. Each trajectory commences at the lower-left
corner at zero concentration. For the 0-5-Hz band, the activation peak is stronger during the induction
phase (right-hand peak); for the 11-15-Hz band, the activation peak is considerably stronger at emergence
(left-hand peak). [Data supplied courtesy of K. Kuizenga, and reported as “Patient 7” in Kuizenga et al.
(1998).]

trajectory which is distinct from the induction trajectory) is exactly what is expected from the
first-order phase-transition model of the macrocolumn.

Some caution is in order. Many anaesthetics researchers would not be convinced that the
hysteresis separation is anything other than a measurement artifact. In comparing our model
with the Kuizenga et al. results, we are assuming that our A-factor (degree of prolongation of the
inhibitory time constant) corresponds to propofol concentration at the cortex. However, what
was actually measured was the propofol concentration in the femoral artery. The extrapolation
from artery concentration to cerebral cortex concentration is a complicated exercise in pharmaco-
kinetics modelling (requiring several assumptions about multiple-compartment time-constants)
whose intent is to compensate for the fact that the site of anaesthetic action (the cortex) does
not coincide with the site of anaesthetic measurement (in this case, the major artery in the
thigh). In such modelling it is standard practice to adjust the drug-model parameters until the
hysteresis loop closes, so that, in effect, the patient induction and emergence events occur at
that same extrapolated drug concentration.

However, our phase-transition model asserts that even if the concentration were to be mea-
sured at the cortex so that there were no site/effect displacement errors, there should still be a
hysteresis effect with emergence occurring at a lower concentration than induction. If our model
is correct, then the pharmaco-kineticists are over-compensating when they null the hysteresis
loop.

In order to convince the anaesthetics community, one would need an experimental setup that

eliminates site/effect timing errors without recourse to a pharmaco-kinetics model. One way of
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achieving this might be to run a very slow induction/emergence experiment in which the anaes-
thetic concentration is altered so gradually that concentrations at the measurement and effect
sites can reasonably be assumed to be identical. Then no pharmaco-kinetics corrections would
be required, and the underlying true hysteretic separation between induction and emergence

should become apparent.

Biphasic Power

The biphasic power surges predicted in Fig. 5.10 are clearly evident in the clinical record of
Fig. 5.11. The theoretical curves suggest that, for the low-frequency band (0-5-Hz), the slew-
rate activities at the induction and emergence peaks should be rather similar, while for the
high-frequency band (11-15-Hz), the peak at induction should be about four times larger than
the emergence peak. The latter prediction is the reverse of what was actually found in Fig. 5.11b.

Another point of distinction concerns the shapes of the curves: the macrocolumn predicts an
abrupt collapse into unconsciousness, whereas the clinical records show a gradual “crumbling”
of slew-rate activity.

It is likely that these discrepancies arise because the model is predicting the fluctuations in
soma voltage for a single representative macrocolumn in the cortex, while the EEG measurement
is a recording of the superposition of signals from thousands of macrocolumns in the vicinity
of the scalp electrodes, after attenuation and filtering by the intervening cerebro-spinal fluid,
skull and skin. The fact that the activation peaks can be detected at all suggests that, near the

critical points, a significant fraction of the macrocolumns must be behaving coherently.



Chapter 6

Thermodynamics Analogy for the
Conscious-to-Unconscious Transition

A common characteristic of thermodynamic phase transitions is the observation of divergences in
one or more parameters. The fact that EEG power appears to diverge at a critical point during
induction motivates the present chapter’s attempt to understand the nature of this transition
from a statistical mechanics perspective. The approach will be to assert a formal correspondence
between the cortical system (the adiabatic macrocolumn) and a classical system which can
be described using the language and ideas of equilibrium thermodynamics. These ideas were
first presented in our Steyn-Ross et al. (2001a) paper. M. Steyn-Ross provided the theoretical
backbone, J. Sleigh located the clinical evidence in support, and I performed all numerical
calculations.

First we discuss what is meant by “equilibrium” for the (dissipative) cortical system. From
the Langevin equations for the adiabatic macrocolumn we derive a Fokker-Planck equation for
the time evolution of the probability density function (PDF) for the h, and h; soma voltages.
The uncoupled stationary PDFs for h, and h; are generated by treating the stationary state
diagram of Fig. 3.4 as an effective equation of state which allows h; to be expressed as a variable
offset from h.: h; = h, — A. From the stationary PDFs we can extract potential functions
U.,, so-called because when plotted as a function h., we see a hills-and-valleys picture whose
maxima and minima locate the unstable and stable equilibrium points. These potential function
diagrams evolve with anaesthetic in such a way that the zero-gradient points always coincide
with the coordinates defined by the Fig. 3.4 graph of stationary points.

To continue the analogy, we need to choose a quantity for the cortex which behaves like the
physical temperature of a classical thermodynamic phase transition. For guidance, we examine
how the predominant intracellular ion processes in the anaesthetic-damped cortex might be
viewed from a canonical ensemble perspective, then discuss the ferroelectric phase transition
as an example of a true thermodynamic phase transition which has stronger similarities to
the cortical transition than do some of the more familiar phase changes (e.g., liquid — solid,
para- — ferromagnetic). These considerations lead us to argue that anaesthetic effect behaves
like an inverse temperature, but to avoid confusion with physical temperature we christen this
temperature-like entity ezcitability, symbol ©, and claim that excitability and anaesthetic effect
must be, in some functional form, oppositely proportional: © ~ A~1.

Having identified a temperature analogue, we can map from potential function U to effective

Helmholtz free energy V, and from there to cortical entropy and cortical “heat capacity.” But



96 Thermodynamics Analogy for the Conscious-to-Unconscious Transition

then we need to pause to ask, “Do these theoretical cortical constructs have any physical reality?”
While it is not obvious how one might test the model predictions for cortical entropy, there does
appear to be clinical evidence for a “latent heat” effect in the research reported by Stullken
and colleagues (Stullken Jr. et al., 1977). Their investigation looked at the change in metabolic
energy requirements of the cortex as anaesthetic concentration is slowly increased. Rather than a
gradual decline in energy consumption, Stullken et al. found an abrupt decrease which coincided

with changes in the character of the EEG waveform.

6.1 What is “Equilibrium” in an Open Dissipative System?

We need to elucidate what we mean by applying the words “thermodynamics” and “equilibrium”
to the phase transition of a complex biological system such as the cerebral cortex. First, we are
not implying that the phase transition is in any way caused by changes in the thermometer-
measured physical temperature of the cortex. Rather, we are asserting that the anaesthetic acts
in a temperature-like manner to drive the cortex through its “anaestheto-dynamc” phase tran-
sition into unconsciousness, and that once a suitable anaesthetic-effect/analogous-temperature
mapping has been established, we are free to use generalized thermodynamics concepts to de-
scribe the change.

Second, the equilibrium assumption is fundamental to our model: At all times the cortex
never deviates far from the anaesthetic-determined equilibrium points defined by the inverse-S
curve of steady-states shown in Fig. 3.4. The assumption that the cortex can be regarded as being
in an equilibrium state requires justification—after all, the conventional picture of the cortex
would say that it is an open, dissipative biological system which is far from equilibrium because
its steady-state behaviour is maintained by a continuous flux of chemical energy associated
with nutrients and oxygen required for metabolic functioning. We argue that our equilibrium
treatment can be justified on the basis of (1) localization, and (2) scale.

1. Local equilibrium: Glansdorff and Prigogine (1974) explain how it is possible to ascribe
a state of local equilibrium to a small mass element (in our case, the macrocolumn) which is part
of a larger system (i.e., the cerbral cortex) which, as a whole, is out of equilibrium. This can be
done if the local state (i.e., the soma voltage) is completely described by an equation of state
which is independent of the gradients (e.g., of chemical energy). In our case, the equation of
state is represented by Fig. 3.4: the anaesthetic-determined trajectory of soma-voltage steady
states.

This adoption of local equilibrium is analogous to a technique used in engineering mechanics
whereby an accelerated body is treated as if it were in static equilibrium by mapping to an
accelerated frame of reference in which the body is locally at rest. One incorporates into the
equations of motion the inertial forces which arise from the fact that the measurements are now
being performed in the accelerated frame [see, e.g., Tipler (1990, p. 121); Kleppner and Kolenkow
(1978, p. 346); Steyn-Ross and Ivey (1992)].! For the cortex, the “inertial” forces would be the

IThe principle of equivalence asserts that the laws of physics in a uniformly accelerated system are identical
to those in an inertial system provided that one introduces a fictitious force to act on each particle, Fg.. = —ma.
An acceleration a produces an effect which locally is indistinguishable from a gravitational field g = —a; this
equivalence underlies Einstein’s general theory of relativity.
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generalized forces responsible for the flow of energy and matter driving the intracellular processes
which maintain the biological state of the cortex.

2. Scale: Glansdorff and Prigogine emphasize that

“...the local equilibrium assumption implies that dissipative processes are suffi-
ciently dominant to exclude large deviations from statistical equilibrium. .. There

must be sufficient dissipative ‘collisions’ to compensate for the effect of imposed
gradients.”

For the cortex, we picture these dissipative processes as the myriad openings and closings of the
millions of ion channels which service an individual neuron. These collisions occur on timescales
several orders of magnitude faster than timescales of our “mesoscale” soma-voltage model, so
the requirement for plentiful collisions is well satisfied. Further, because we are modelling at the
meso scale of the neural assembly, and not at the microscopic scale of the molecular and ionic
channel processes, it is not unreasonable to replace the fine details of biological maintenance
with steady-state parameters in the model (e.g., the v, weighting functions represent the time-

averaged neurokinetics), then to treat the steady state as if it were a true equilibrium.

6.2 Langevin Equations in the Adiabatic Limit

In Chap. 4.1 we inspected the various time-scales for the h.; soma voltages and the four I
input currents, and showed that it was reasonable to assume that the input currents would equili-
brate much faster than the soma voltages. This justified the so-called “adiabatic” simplification
in which we eliminated the time-variation of the currents (i.e., we set to zero all d/dt terms
appearing in Eqgs (3.2-3.4)), giving the reduced set of adiabatic differential equations listed as
Egs (4.1-4.3). These were transformed in Chap. 5.1 into a pair of stochastic differential equa-
tions by incorporating into each of the I, input currents a white-noise term originating from
the subcortex via fluctuations about a mean value in its pj spike rate. The resulting stochastic

equations are,

d [he] _ [Fi(heshs)] | [Telhe,t)
dt [hi} B [F2(he,hi)] * [Fi(hi,t)] ’ (6.1)
where the drift terms are
Fi(he,hi) = {(hfe“ he) + Yeelhe) [ (NG + NE) Se(he) + (Pec) | Gee/ e
+ Aie(h [Nﬁs pw)] Gie/%} /7, (6.2a)

Faheshe) = { (5= = )+ s [ (V3 N3) el + ()] e

X a(h) [NE:(h) + (o] G /7, (6:2b)

and the corresponding diffusion terms are

Le(he,t) = {d’ee ) CteeV/ (Pee) £1(t) Gee/e
+ A wze aze V pze €2 G e/')’z}/Te ) (633)



98 Thermodynamics Analogy for the Conscious-to-Unconscious Transition

Fi(h’i,t) = {d)et aez\/ pez 63 G e/')’e
+ /\1;[}11 au V pzz 64 t) G; e/")’z}/ﬂ (63b)

Whereas in Chap. 5 we linearized these coupled equations about steady state in order to
compute the fluctuation spectrum for h., here we will use the h.-vs-A and h;-vs-A steady-
state curves to extract the highly nonlinear and A-dependent steady-state voltage difference
(RY — hY). Knowing the voltage offset then allows us to decouple the Langevin equations, and
hence obtain a pair of uncoupled Fokker-Planck equations for the soma voltage probability

distribution functions.

6.3 Fokker—Planck Equation for the Macrocolumn

In order to explore the statistical mechanics nature of the anaestheto-dynamic phase transition,
we need to derive probability distribution functions P, and P; for the excitatory and inhibitory
neuron populations of the macrocolumn. We generate an expression for the time-evolution of the
joint probability distribution P(he, h;) by writing down the Fokker-Planck equation? equivalent

to the coupled Langevin equations of the preceding section, giving,

6P(h’eahi7t) _ 8 ' ‘ o - .
o (hey i) Plhe, his )] = - [Fa(hes ) Plhe, hi )]
1 (92 D 1 82
+ 5gpz [Pualhe) Plhe, his 0] + 5505 [Doa(h) Phe, hist)] - (64)

The D;; and Dy are the diffusion terms defined by the delta-correlation requirement of Eq. (5.20),

<Pe(t) Fe(t,)) = Dll 6(t - tl) (6.58.)
(i) Tu(t')) = Dapd(t—t) (6.5b)
so that
1 2 2 2
Dll(he) = ﬁ { (¢ee(he) Qee Gee/’)'e) <pee) + A (wie(he) Qe Gie/7i) (pie)} (663-)
1 2 2 2
Daalh) = 5{ (Vulho) s Gee/re) (pu) + X2(s(hs) 2 Gue/ )" (pi) | . (6.60)

% Gardiner (1985, p. 119 glves the general Fokker—Planck equatlon s
8 3}
—Za i(z,t)p Zt)+2268 Bjk(z,t) p(z,t)

which can be rewritten in terms of the gradlent 3f the probabzlzty currents Jj

Z—J (z,1)

where the J; are defined
Ji(z,t) = Aj(z 226 Bj(z,t) p(z,t).
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In order to compute equilibrium parameters, such as entropy, using a statistical mechanics
framework, we require the stationary distribution function F(he, h;). This is found by setting

0P/t = 0 in Eq. (6.4), then solving for P, subject to appropriate boundary conditions.

6.3.1 Boundary Conditions

To solve the Fokker-Planck equation (6.4) we need to impose boundary conditions at the ends
of the interval over which the soma voltages are constrained. Soma voltage cannot go more
positive than hg® = +45 mV (sodium reversal potential), and cannot go more negative than
hi® = —90 mV (potassium reversal potential).? Thus the excitatory and inhibitory voltages are
constrained by,

i < hei < hY (6.7a)
ie.,

-90mV < he; < +45 mV (6.7b)

and soma voltages outside these bounds cannot occur in the model. These hard limits constitute
what Gardiner (1985, p. 121) describes as a “reflecting barrier”: there is no net flow of probability
across the boundary, so the probability “particles” must be reflected there.

Because the drifts (Eq. (6.2)) and diffusions (Eq. (6.3)) are time-independent, the macrocol-
umn is a homogeneous system whose steady-state probability currents must settle down to zero
(Gardiner, 1985, pp. 124, 146), so the task of solving the second-order Fokker-Planck equation
(6.4) at steady state is replaced by the task of solving a pair of coupled first-order DEs obtained
by setting the excitatory and inhibitory probability currents to zero. If the system has sufficient
symmetry such that it satisfies the potential conditions (defined below), then the DEs can be
solved to yield a joint potential-energy function V(h., h;). We will find that the macrocolumn
does not satisfy the potential conditions, and this will motivate an alternative approach to deriv-
ing separated potential energy functions V' (h.) and V (h;) by uncoupling the k. and h; Langevin

equations and their associated Fokker-Planck probability currents.

6.3.2 Potential Conditions

The probability currents (see footnote on p. 98) for the excitatory and inhibitory neural popu-

lations of the macrocolumn are given by,

10 19
Q_BE[DII P(heyhi)t)] - Ea_h,, [D12 P(he)hi,t)] (6.8&)

1 0 10
§5Iz_e[D21 P(he, hi, t)] — 20,

Je = Fl(he,hi) P(he,hiat) -

Ji = Fy(he, hi) P(he, hist) — [Dag P(he, hiyt)]  (6.8b)

where the Dj2 and Dsy; off-diagonal elements of the diffusion matrix are actually zero. For steady
state, we set the probability currents to zero and replace P(he,hi,t) by its time-independent
steady value P(h,h;). Expanding the derivatives in Eq. (6.8) and rearranging, we have

3Refer to earlier discussion in Chap. 3.3.5 on the seizure (Acapa — 0) and coma (Agapa — oo0) asymptotic
limits for soma voltage.
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1 0 1 BDH]
e P(he,h;)| = — |2F1(he, h;) — —
P(he, h;) Ohe [P J Dy [ 1 ) Ohe
= Zi(he, hy) (6.9a)
1 0 1 3D22]
= C [Plhe, k)] = o |2Fs(he, hi) — 22
P(he, h;) Oh; [P )] Do [ 2( ) oh;
= Za(he, hi). (6.9b)
The left-hand sides can be written as gradients
% [log, P(he,hi)] = Z1(he,h:) (6.10a)
0 —
% [loge P(heahi)] = Z2(h‘e7hi) . (610b)

Equations (6.10) can be solved analytically if the Z; o are also gradients. A necessary and
sufficient condition for this is that the curl should vanish (Gardiner, 1985, p. 147):

07y 07,
oh;  Oh, (6.11)
in which case the steady-state probability P is obtained by solving the line integral
_ 2 heyhi
P(he,h;) = exp [/ Zydhl, + Zy dh| . (6.12)

The question-sign above the equality in Eq. (6.12) emphasizes that the equation is true only if
the so-called potential conditions of Eq. (6.11) hold.

We will find that the potential conditions do not hold for the macrocolumn model. Inspecting
Eq. (6.6), we see that the D;; diffusion term is a linear function of h. only (via the e, and ;.
weighting functions), and similarly Dy, is a linear function of h; only, so the diffusion terms (and
their derivatives) make zero contribution to the curl. But the F} o drift terms make asymmetric
contributions: evaluating the cross-derivatives of the Z; 2 in Eq. (6.9) for the drifts defined in
Eq. (6.2), we obtain,

0Z, 2 OF
8h;  Di; Oh;
2)\’1,[}ieN-ﬂGie 681
= Zle e TiE 1 6.
Dy1vite  Oh; (6.13a)
and

0Zy; 2 0OF
Ohe Doy Oh,

_ 2(NZ + N2)yeiGee 08,

= Doy, oh, (6.13Db)

It is clear that Egs (6.13a) and (6.13b) cannot be equal: the first depends on anaesthetic effect
A and on the slope of the inhibitory firing-rate sigmoid 98;/0h;, while the second is independent
of anaesthetic and proportional to the slope of the excitatory sigmoid 98./0he.
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6.4 Decoupling the Langevin Equations

We have just observed that the two-variable adiabatic macrocolumn system does not satisfy
the potential conditions of Eq. (6.11), so an analytic expression for the steady-state probability
distribution P(h., h;) is unavailable to us.

However, an approximate solution for P is achievable if we use the equilibrium values of
Fig. 3.4 to decouple the Langevin equations Eq. (6.1) into two independent equations, one for
he alone and a second for h; alone. From the separated Langevin pair will follow a pair of
now independent Fokker-Planck equations whose respective long-time solutions will give us the
desired P(he) and P(h;) stationary probability distribution functions. First, though, we must
explain precisely how the decoupling is to be done, then check the quality of the decoupling
by asking the question: Have the essential features of the anaestheto-dynamic phase transition
" been preserved in the transformation to a single-variable system?

Inspection of Fig. 3.4 shows that the A-dependence of h. and h; is rather similar: the curves
are almost coincident on the bottom branch, become distinct on the middle and upper branches,
then converge again as they approach the top-left seizure corner. So it seems not unreasonable
to express the locus of equilibrium values of h; as an h-dependent offset from the matching
locus of equilibrium values of h,:

R = RO — A(h.) (6.14)

where the offset term A(h,), obtained numerically from the Fig. 3.4 stationary curves, is shown
in Fig. 6.1 plotted as a function of h, and of \. We will assume that the A(h,) offset formula,
which is exact for the locus of equilibrium points, can also be applied to points nearby which

are very close to equilibrium, so generalize Eq. (6.14) to read
hi = he — A(he) . (6.15)

This generalization is equivalent to making a Taylor expansion about equilibrium and requiring
that the first-order term in the expansion, the gradient (8A/ 3he)| o» be small.

Examining Fig. 6.2c, we see that the absolute value of the offset slope is generally less than
~0.2, except along the unstable branch A3Q; (which is of little interest since the macrocolumn
can never remain here) and in the vicinity of the jump points A3 and Q;; and also approaching
seizure point S where the slope has magnitude ~0.35. For these regions, Eq. (6.15) will not be
very accurate, but this is of little consequence for the stationary potential and probability dis-
tribution function curves that are to be derived shortly, since it the locations of the distribution
maxima and minima which are of prime interest, and for these points, Eq. (6.15) is exact. (The
inaccuracies in the distribution curves will manifest as shape errors between the distribution
extrema, and might compromise calculations for first-passage times, but this is not the focus of
our present work.)

Applying the offset relationship decouples the original Langevin equations (6.1) into two
independent, stochastic equations of motion, one for h., and one for h;,

dhe
dt
dh;
dt

= ﬁ;(he) + Fe(t) (6'163')

= Fo(h) + Tu(2) (6.16b)
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Figure 6.1: Offset between excitatory and inhibitory soma voltages for the steady-state trajectory of
Fig. 3.4. The offset, defined A(he) = hQ — h?, tends to zero at the seizure and coma extremes. See also
Fig. 6.2.

where the overtilde variables are defined

1
~—
>
(1)

N
1]

Fi(he, he — A) (6.17a)
FEy(hi + A ;). (6.17b)

3
5
i

6.5 Behaviour of the Uncoupled Pseudocolumns

A truly fundamental feature of the cortical macrocolumn is the strong feedforward and feedback
interconnectedness of the excitatory and inhibitory neural populations. Yet we seem to have
boldly severed these connections by invoking internal knowledge of the soma voltage offsets
which pertain at equilibrium. Effectively, the offset ruse has allowed us to engineer a pair
of new, and apparently independent excitatory and inhibitory systems that I shall refer to as
pseudocolumns to distinguish them from the fully-coupled macrocolumn. It is our hope that
the essential physics arising from the excitatory—-inhibitory coupling has not been lost from
the pseudocolumns, but is now encapsulated within the offset itself. The first test will be to
examine the stability characteristics of the excitatory and inhibitory pseudocolumns defined by
Eq. (6.16).
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Figure 6.2: Relationship between stationary h. and h; expressed as (a) actual values; (b) an offset
A = (he — h;); and (c) the gradient of the offset, dA/dh.. Panel (b) shows the same information
as Fig. 6.1a, but with data-point markers removed and replaced with a spline fit for clarity, and with

horizontal axis restored to conventional presentation (i.e., increasing to the right). Unstable A3Q; branch
is drawn with a thin pen.

6.5.1 Pseudocolumn Rate Equations

The pseudocolumn rate equations are generated by replacing h; by (he — A) in Eq. (4.1a), and
he by (h; + A) in Eq. (4.1b),

E(he) = [hgeSt - he + wee(he) Iee(he) + 'lpie(he) Iie(he - A)] /Te (6183)
Fo(h) = [RIS" — Ry + Yei(hi) Lei(hi + A) + i (he) Liu(hi)] /7. (6.18b)

Following the linear stability analysis of Chap. 4.2, we assess the sensitivity of the pseudocolumn
to soma voltage perturbation by examining the drift gradients dﬁ /dh. and df’; /dh;,
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‘;E = Tle [—1 + ‘Zi“ Lee + Yee d}fe Cf;i’: ie + Ve —dlie(;l;e_ A)] (6.19a)
‘jii; = % [—1 + (Zf;l Toi + thes dlei(z;: A) (?f: L + 1/!1‘1‘%} - (6.19b)

The coupling-term derivatives appearing in these two equations can be rewritten
%}:A) _ dihi Li(h) = ‘ZL Z: _ CZL (1 + %) (6.20b)

The right-hand sides of Eq. (6.19) can now be re-expressed as paired combinations of the elements
of the J Jacobian matrix for the fully-coupled system presented in Eq. (4.24):

dF; dA

dh: = Jin+ <1 — dhe> Jo = K; (621&)
dF, dA

dhj = <1 + . ) Jou+Jes = Ko. (6.21b)

I will now demonstrate that it is the sign of K; and Ky which determines pseudocolumn
stability.

6.5.2 Stability

Let the pseudocolumn pair suffer small independent perturbations he, dh; away from the equi-
librium soma voltages h?, ho

Ohe(t) = he(t) — 2 (6.22a)
Shi(t) = hy(t) — h?. (6.22b)

The time rate-of-change of these perturbations determines the stability of the stationary state:

d dhe —~ —~ dF,

Z0he) = =2 —0=F = Fi|, + ohe dhl (6.23a)
d dh; ~ ~ dF,

= (6h) = —F ~ B +onZ2 (6.23b)
dt dt o dh; |,

where we have neglected quadratic and higher-order terms in the Taylor expansion about steady
|, = B2, = 0, and from Eq. (6.21), (dFy/dh)|, = Ki
and (dj:’vg/dhi)|0 = Ky, so Eq. (6.23) leads to a pair of fractional-change equations for the

state. By the definition of steady state, ,F\I
perturbations,
—(6he) = K dhe (6.24a)

d
dt

d
= (8h) = Ko ohe (6.24b)
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leading to exponential growth or decay depending on the sign of the K coefficients:

She(t) = 6he(0) K1t (6.25a)
Shi(t) = 6h;(0)ef2t, (6.25b)

These perturbations will decay with time if both K; and K coefficients are negative. Thus, the

condition for the stability of a given equilibrium state of the uncoupled excitatory (or inhibitory)
pseudocolumn is simply,

Ky < 0, Ky < 0. (6.26)

Figure 6.3(a) plots the variation of the K; (as defined by Eq. (6.21a)) and K, (from
Eq. (6.21b)) pseudocolumn rate constants for the trajectory of soma voltage steady states
mapped out earlier in Fig. 3.4. The overall shape for the rate-constants graph (a) is very
similar to that shown in Fig. 6.3(b) for the dominant and non-dominant eigenvalue pair of the
two-variable coupled macrocolumn system of Eq. (4.1). In particular, the zero-crossings of Kj 2
at A3 (induction) and @Q; (emergence) exactly match those of the dominant eigenvalue plotted
in (b). Therefore, for both coupled macrcocolumn and uncoupled pseudocolumn systems, the
A3Q; mid-branch of stationary states is unstable.

Since K12 goes to zero at the A3z and Q; turning points, it follows that the amplitude
of the stochastic fluctuations about equilibrium will grow without limit as the pseudocolumn

(a) Pseudocolumn Rate Constants (b) Macrocolumn Eigenvalues

-

Real [Eigs] / 103

0 0.5 1 1.5 2 0 0.5 1 1.5 2
Anaesthetic Effect, Agaga Anaesthetic Effect, Agaga
Figure 6.3: Stability comparision between the decoupled pseudocolumn model (left) and the standard
adiabatic macrocolumn (right). (a) Variation with anaesthetic effect of pseudocolumn rate constants K,
(excitatory: bold line) and K> (inhibitory: thin line). For comparison, (b) shows the real part of the

dominant (bold line) and non-dominant (thin line) eigenvalues for standard macrocolumn. (Panel (b) is
a copy of Fig. 4.1(b) with the imaginary part suppressed).
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approaches the turning point; this will be demonstrated in the following section. Thus the first-
order phase-transition behaviours of the macrocolumn have been preserved in the transformation

to (apparently) independent pseudocolumns.

6.5.3 Ornstein—Uhlenbeck Equations for the Pseudocolumn

By applying the offset relationship of Eq. (6.15), we have uncoupled the drift terms? of the
Langevin equations of Egs (5.8, 6.1)

d he Fl(heahi) Fe(he,t)
— = .27
dt [hiJ [Fg(he,hi)] * [Fi(hi,t) ! (6.27)
to give the independent Langevin pair of Eq. (6.16)
d(ze = Fi(he) + Te(he,t) (6.28a)
dh; ~
e Fy(hi) + Ti(hi, t) . (6.28b)

We are interested in the magnitude and spectral character of the random voltage fluctuations
about pseudocolumn steady state, so, as was done in Sect. 5.3, we linearize about steady state
while retaining the diffusion terms. Thus Egs (6.28) become (cf. Eq. (5.17))

d dF;
Gi0he) = | Ok + Pe(he,t)‘o (6.29a)
d _ dR,
i O) = | e + Fl(hl,t)‘o (6.29b)

which we can rewrite as a pair of independent Ornstein-Uhlenbeck equations (cf. Eq. (5.26) and
Gardiner (1985, p. 106))

%(éhe) = —A16he + /D11&(t) (6.30a)
& (6h) = ~Aabh + VD& (6.30b)

where the D;; were given in Eq. (6.6), and the . ; noises were defined in Eq. (5.27). The A; o

drift factors are the negative of the rate coefficients evaluated at equilibrium:

_ _ _dFR)

A1 = K] = dhe o (6.313.)
_ _ _db)

A2 = K2 = dhi 0. (6.31b)

Following Gardiner (1985, pp. 106-107), we can write down expressions for steady-state
variance, time-correlation, and spectrum for the uncoupled pseudocolumn fluctuations, and

these can be compared with the coupled macrocolumn results of Sect. 5.4.

4Unlike the Fy2 drifts, the diffusion terms (see Eqgs (5.22, 6.6)) have been uncoupled from the outset; i.e.,
D11 = Dhi(he), D2z = Daa(hi).
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Figure 6.4: Fluctuation amplitude for the pseudocolumn model. (a) 6hL™* versus A; (b) 6hi™® versus
A. Comparing these graphs with those in Fig. 5.3 shows that the pseudocolumn fluctuations are about
one-third as large as those for the macrocolumn on approach to induction at Az, and have an overall
shape which is rather similar to the §hL™ cross-fluctuations of Fig. 5.3(c).

Variance of the Fluctuations

The fluctuation variance for the excitatory and inhibitory pseudocolumns at steady state is,

var(6he) = % (6.32a)
1

var(6h;) = %. (6.32b)
2

Contrast these single-dimensional results with the macrocolumn covariance matrix listed in
Eq. (5.28). Fluctuation amplitude will grow without limit as A;2 — 0 on approach to the

turning points; this is shown in Fig. 6.4.

Time-Correlation for Fluctuations

The stationary autocorrelation functions for the pseudocolumns are given by,
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(8he(T), 8he(0)) = QDX exp [~ A; 7] (6.33a)
(8hi(7),6R:(0)) = QDj? exp [~ Aa 7] . (6.33D)

Here the correlations decay with a single time-constant, whereas the macrocolumn autocorrela-
tion functions are the sum of two exponential decays (see Eq. (5.45)).
Fluctuations Spectrum

The steady-state fluctuation spectrum for the pseudocolumn will have a pure Lorentzian profile
(see Eq. (2.29)),

1 D

These spectra will develop a 1/w? power-law characteristic as the pseudocolumn approaches its
induction or emergence turning points with A; 2 — 0. Thus the growth in fluctuation power will
be entirely at the low-frequency end of the spectrum, with the dc spectral component diverging
to infinity at the point of phase-change.

These investigations of the single-dimensional pseudocolumn model demonstrate that, de-
spite the decoupling simplification, the significant features of macrocolumn behaviour (regions
of stability, divergent fluctuations, growth of low-frequency power) have been preserved. This
gives us some confidence that the work which follows, applying a thermodynamics analogy to

the pseudocolumn, has relevance also to the two-variable macrocolumn.

6.6 Steady-State Probability Distribution for the Pseudocolumn

This decoupling of the Langevin equations, as discussed in the preceding section, leads to two

independent Fokker—-Planck equations which are expected to be valid for points close to equilib-

rium:
OP.(he,t) 0 [=,, \ > 1 8 =
= = o (B Pelhed)] + 550 [Du(he)Pe<he,t)] (6.35)
OP (hi,t) 8 =, \m 16 -

The corresponding probability currents J. and J; (see Eq. (6.8)) also become uncoupled:

~ —

Je(he) = Fi(he) Pe(he,t) —

- [Du(he) Pe(he, 1] (6.362)
0
Oh;

—

1
2
~ — 1
Ji(hi) = Fo(h;) P; (hi,t) — > 9h

[Daa(he) B (hs,1)] (6.36b)

These currents go to zero in the steady state. Setting J.=J;=0in Eq. (6.36), and replacing
the time-varying probabilities ,P:(hi, t), }3: (hi, t) with their steady values P.(he), P;(h;), gives
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2Fi(he) Pelhe) = Pelh) g [Dua(ha)] + Do) o [Peth)] (6.37a)
2Fy(h) Pilh) = Pilhs) g5 [Dua(he)] + Daalh) o [Pitho)]. (6.37b)
Rearranging for P,, P; we have,
dP.(h) 1 —
ol = Bty [2F) = 3 Du(ho)] dhe (6.382)
dPi(h) 1 ~ . d
Bh) ~ Dn(h) [QFz(hz) - [D22(hi)]] dh; (6.38b)
which integrates to
—P_e(he) _ he 2E(h;) r_ Dll(he)
o [pitse) = LB % = v 50 o5

(
[ Pi(h:) ] 2B g oy [EML))] (6.39b)

° [Pi(—90) —90 D22(h') i ¢ [ Da2(—90
where the lower bound for both integrations has been set to —90 mV (potassiurh reversal po-
tential), and the upper bound will be +45 mV (sodium reversal potential). Solving Eq. (6.39)
for P,, P; gives

he o (1!
P.(he) = Niexp [ » %((Zf;dh; — log, [Dll(he)]]
= Njexp [—Ue(he)] (6.40a)

h 2 Fy(h))
—g0 Daa(h})

= Naexp [-Ui(hi)] (6.40b)

Pi(hi) = Ny eXP[ — log, [Dzz(hi)]]

where the A7 and Ny are constants which normalize their respective probability distributions
to unit area:

+45 +45
P.(he)dhe = Pi(hi)dh; = 1. (6.41)
-90 —-90

Equations (6.40) constitute the steady-state probability distributions for the decoupled
macrocolumn which shortly we will evaluate numerically. First, though, we wish to focus on the
argument of the exponential terms which define the excitatory and inhibitory potential functions
U, and U;:

he o T (1!
Ud(he) = log, [D11(he)] — . %’j Ig;;dh (6.42a)
Ui(he) = o, (Daa(he)] — [+ 22208 gyt (6.42b)

-90 D22(hi) '
The potential functions serve as statistical mechanics building blocks from which expressions for

macrocolumn free energy, entropy, and “heat capacity” can be derived.
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6.6.1 The U Potential Functions

Equations (6.42) define the pseudocolumn potential functions U, and U;, so named because
their negative gradient can be pictured as a generalized force. Thus we interpret —dU,./dh, as
a force that drives the excitatory neuron voltage, and similarly —dU;/dh; as a force driving the
inhibitory voltage. This abstract notion becomes more concrete when we evaluate Eq. (6.42)
numerically® for several representative values of A, the GABA anaesthetic parameter, then
examine the resulting hills-and-valleys graphs displayed in Fig. 6.5.

Figure 6.5 which shows how the U, ; potential functions vary with soma voltage h.;. The
points on these curves at which the gradient is zero are the “zero-force” or equilibrium coor-
dinates. The stability or otherwise of a given equilibrium point is determined by the sign of
the curvature in the region immediately bracketing the point. Thus if the equilibrium point lies
at the bottom of a potential valley (positive curvature), any small deviations away from the
local minimum will be opposed by a force acting to restore the equilibrium, making it stable.
The converse is true for the equilibrium point at the top of a potential hill (region of negative
curvature): a small perturbation away from the peak will produce a force tending to enhance
the perturbation, so the equilibrium there will be unstable.

Figures 6.5(a-g) show graphs of U, ; as a function of h,; for the seven representative values
of A shown in (h), the last panel of the figure. These seven slices provide a coarse sweep through
regions III (seizure), region II (upper branch), and into region I (coma) of Fig. 3.4.

We observe that the extrema of the U.; potential functions coincide with the equilib-
rium soma voltages highlighted by the vertical lines marked on Fig. 6.5(h).6 For example,
in Fig. 6.5(a), U, exhibits a single valley minimum whose (A, h.) coordinate belongs to the
upper-left “seizure” corner of the equilibrium soma trajectory in (h). This is consistent with
the vertical slice through this coordinate (labelled “a” in Fig. 6.5(h)) cutting the h. trajectory
once only, implying that for A = 0.25 only a single equilibrium state is possible. The potential
function is a minimum here, so this state is stable.

In Fig. 6.5(b) for A = 0.50, three well-defined extrema have developed (two unequal valleys
separated by small hill), corresponding to three distinct steady-state solutions and therefore
three intersections on the (b)-slice of Fig. 6.5(h). Only the two valley-point equilibria (upper
branch at he = —40 mV, and lower branch at h, = —85 mV) are stable, while the mid-branch
equilibrium point defined by the potential-function peak (at he = —73 mV) which separates the
two valleys is unstable. In principle, the macrocolumn could sit delicately balanced at the top
of this hill, but given the slightest nudge, would “slide” off the hill to nestle into one of the
adjacent valleys.

The relative depth of the two valleys changes as A varies, indicating that the probability
of occupation also changes with A\. For A < 1, the upper (high-firing) branch is more likely;

5The fast quadrature algorithm I developed to evaluate the F/D integral is described in Appendix B. As it
turns out, there is an equivalent algorithm, trapz, built into MATLAB, but I only became aware of its existence
much later.

6 Actually, this is not quite true. The extrema of the potential functions can only coincide with the equilibrium
soma voltages in the particular case that the D diffusion terms are constant functions that are independent of the
noise. However, if the diffusion functions are small compared to the F drift functions, as is the case here, then
this shift in the stable states will be small. I am grateful to external examiner Dr Daniel Gillespie for pointing out
this “slight swindle” in my analysis. [The noise dependence of the locations for the steady states of a univariate
Markov process is discussed in Gillespie (1992, Secs. 3.5-3.9).]
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Figure 6.5: Hills-and-valleys potential function diagrams for the decoupled macrocolumn. (a)-(g) U,
potential functions for seven representative values of A. Solid curve: U.; dashed curve: U;. (h) Copy
of Fig. 3.4 showing the seven vertical slices through the stationary-state trajectory which were used to
evaluate the displayed U-functions. Circles: h.; squares: h;. (b)—(f) show two valleys separated by a hill;
the valleys belong to the stable upper (high-firing) and lower (low-firing) branches of the trajectory curve,
while the hill belongs to the unstable mid-branch. Each of the labelled points in (h) maps to a valley
point (local minimum) in the correspondingly labelled figure. Note that for A = 1, the two valleys are
approximately symmetric. The cortical state “rides” the upper-branch valley as the U-curve is distorted
by the anaesthetic, until the cortical state is “tipped out” into unconsciousness in (g).

while for A > 1 the lower (low-firing) branch is favoured. For A ~ 1, both stable-branch values
for h. are equally likely; and if there are perturbations of sufficient magnitude to overcome
the potential hill, then there is the possibility that the macrocolumn could repeatedly switch
between the upper- and lower-branch stable states.
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In statistical thermodynamics, it is the Helmholtz free energy V which is minimized when
the system is in equilibrium. The fact that our U.; potential functions have minima which
correctly locate the stable equilibria leads us to suggest that these potential functions behave
like Helmholtz free energy functions for the macrocolumn. We expand on this idea later in this
chapter. Before doing so, we will examine the Eq. (6.40) stationary probability distributions

obtained from the negative exponential of the U, ; potential functions.

6.6.2 The P Stationary PDFs
From Eq. (6.40) I calculated P, and P;, the stationary probability distributions for the decoupled

excitatory and inhibitory macrocolumn populations. The results appear in Fig. 6.6.

In the hills-and-valleys potential graphs of Fig. 6.5 we could picture the macrocolumn as a
“particle” that would slide to the bottom of valley to minimize its potential energy. The PDF
diagrams flip this orographic notion on its head: now it is the probability peaks that show where,
in soma voltage space, the macrocolumn particle is most likely to be found, with each probability
peak in Fig. 6.6 mapping precisely to a potential trough in Fig. 6.5.

For A = 0.25, the depolarized upper branch at h, &~ —22 mV is strongly favoured; this is
point (a) on Fig. 6.6(h). As X\ increases, this peak migrates to the left and lowers in height
as a new probability peak close to —90 mV on the lower branch begins to emerge, with the
depolarized (upper branch) and hyperpolarized (lower branch) peaks being of approximately
equal height at A = 1.0 (point (c)). By A = 1.5 (f) the hyperpolarized peak is stronger, and by
A = 1.75 (g) the depolarized option has disappeared altogether.

Although the soma voltage bounds for Eq. (6.41) were set by Eq. (6.7) at

—-90mV < he; < +45mV, (6.43)

I chose to truncate the PDF graphs in Fig. 6.6 to an upper bound of k. ; = +20 mV for display
purposes since no interesting probability “events” were apparent in the fully-depolarized A — 0
regime (i.e., top-left corner of Fig. 3.4). The PDF graphs are normalized to unity on the interval
[—90, +45] mV, and are abruptly zero outside this interval.

6.6.3 The V Free-Energy Functions

We wish to construct a statistical mechanics description of the anaesthetic-induced cortical
phase transition. We proceed by deriving a (phenomenological) free energy function V. The
“free energy” concept is very useful in statistical mechanics as its negative rate-change with

temperature, at constant internal energy F, gives entropy:
S =-8V/oT|,. (6.44)

But this step will require us to identify carefully exactly what is meant by the “temperature” of
the cerebral macrocolumn; by macrocolumn “temperature” we do not mean the physical tem-
perature measured with a thermometer. In the next section we present a line of argument, based
on the idea of a canonical ensemble, to enable identification of a plausible cortical temperature

analogue.
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Figure 6.6: (a)-(g) Stationary probability distributions P, ; for the decoupled macrocolumn at the
seven representative values of A shown in (h). Solid curve: P,; dashed curve: P;. These probability
pictures correspond to the potential functions of Fig. 6.5: the highest probability peaks here map to the
deepest (most stable) potential wells. The evolution of twin probability peaks as A increases corresponds
to the appearance of double potential wells, indicating that the macrocolumn can exist in either of two
stable states. The boundaries at —90 mV (left edge) and at +45 mV (not shown) are reflecting, so the
PDF's are zero beyond these bounds.

The construction of our statistical mechanics theory is motivated by the obvious similarities
between the form of the U, ; potential functions of Fig. 6.5 and the potential-well description of
phase transitions common in quantum optics (Gibbs, 1985). For a quantum optics system de-
scribed in terms of a parameter z, Lugiato and Bonifacio (1978) write the stationary probability

distribution P(z) in the form,

Pig(z) = N exp[-V(z)/ko) (Lugiato & Bonifacio) (6.45)
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Table 6.1: A mapping between thermodynamics theory and the macrocolumn model of the cortex.

Thermodynamic Space Cortical Space
Temperature T Excitability ©
Internal energy FE Internal energy of macrocolumn E. ;
Helmholtz free energy V =E-TS Cortical free energy V.;=FE.;—©S,;
Entropy S =—-(0V/0T)|e Cortical entropy Se; = —(0V,,;/09)|E
Heat capacity C =T (8S/9T)|g Cortical “heat” capacity C.; =0 (0S.,;/09)|g
Latent heat T AS Cortical latent “heat” © AS,;

where N is a normalization constant, and k is a constant introduced to ensure dimensional
consistency. The quantity V(z) plays the role of a “generalized free energy” (Lugiato and
Bonifacio, 1978; Graham, 1973). Haken (1978) follows a similar approach in his Fokker-Planck
treatment of an analogous phase transition, but in his exponential term the denominator is the

product of Boltzmann’s constant kg and a parameter he identifies as an equivalent temperature
T,

Py(z) = N exp[-V(z)/kpT) (Haken) (6.46)

which is very suggestive of the Boltzmann distribution. The assertion in Egs (6.45, 6.46) that
V(z) is a free energy is justified phenomenologically on the grounds that the extrema of V locate
the equilibrium states.

We postulate that there exists a formal equivalence between (one or other of) the probability
distribution functions of Eqgs (6.45) or (6.46) and the cortical PDFs of Eq. (6.40), and assume
that the cortical phase transition can be described in a space which is dual to that of statistical
thermodynamics. The proposed dual-space mapping is set out in Table 6.1;7 the various elements
of this table will be discussed at relevant points later in this chapter.

Equating the cortical potential function U from Eq. (6.40) first with the exponential argu-
ment of Eq. (6.46) (Haken form), then with the exponential argument of Eq. (6.45) (Lugiato
and Bonifacio form), we obtain two alternative thermodynamic < cortical mappings for the free

energy of the cortex:

U(z) = V(z)/kpT = Vi(hei) = kp©U(he,) (Haken) (6.47a)
Ulx) = V(z)/k = WVLB(he,i) = koU(he,) (Lugiato & Bonifacio) (6.47b)

From Table 6.1 and Eqgs (6.47, it will be apparent that for the cortical system we have
introduced the symbol ©, which we define to be cortical ezcitability, and which, as we show
using plausibility arguments developed later in the chapter, plays a role in the cortex analogous
to that of temperature 7" in thermodynamic systems. We will show that excitability © is inversely
related to anaesthetic effect A\. This (A, ©) mapping provides the crucial link between the cortical
general-anaesthetic phase transition and the world of thermodynamic phase transitions, and
allows us to apply the language and concepts of thermodynamics (e.g., entropy, heat capacity)

to the cortical transition.

"These correspondences were crafted by M. Steyn-Ross, and first appeared in Steyn-Ross et al. (2001a). I
selected the name “excitability” to convey the notion of an inverse-anaesthetic effect on the cortex, with symbol
© after the nomenclature used in meteorology for the potential temperature of a parcel of air.
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6.6.4 Relating Anaesthetic Effect to Cortical Excitability

In our model, for A 2 1.53 the macrocolumn must reside on the low-firing quiescent branch.
As anaesthetic concentration is increased, the duration of the inhibitory post-synaptic potential
(IPSP) is prolonged, producing greater inhibition and reduced neuronal firing. Increased anaes-
thetic depth X corresponds to reduced cortical excitability ©, so A and © are inversely related.
In the A — oo limiting case of extreme anaesthesia, there can be no activity in the presence of
an infinitely-prolonged IPSP, so © = 0 in this extreme frozen limit. This point is our absolute
zero “temperature” at which all neurons are fully hyperpolarized.

For the emergence trajectory, © will increase as the hyperpolarization ordering diminishes
with reductions in A, and more neurons become depolarized (able to fire). With sufficient
reduction in A, the macrocolumn will eventually reach the seizure extremum (top-left corner
of Fig. 3.4) at which point all neurons are fully depolarized and firing maximally, since A = 0
means that the IPSP has zero duration so there is no inhibitory restraint on macrocolumn firing
activity. At this seizure extremum, cortical excitability will have its maximum value ©p .

From a biological energy resources perspective, it is reasonable to argue that ©,,x will have
a large but finite value, while from a mathematical modelling perspective one might argue that
Omax — 00 as A — 0 and then avoid the finite resources problem by asserting that A =0 is a
model abstraction which will never occur in practice. In either case, we seek a mapping whose
model predictions for entropy change are not unduly sensitive to the finiteness or otherwise of
Omax-

The mathematical equation relating © to X is unknown, but based on the foregoing discussion

a plausible mapping would have all of the following properties:

(i) ©® = 0 as A — oo (deep coma);
(i) © is a monotonic decreasing function of A;

(ili) © — Omax as A — 0 (extreme seizure), where ©,.x may be finite or infinite.

Two of the simplest inverse relationships which satisfy these criteria are

©1 = co/X%, and (6.48a)
O = Omaxexp(—coA?) (6.48b)

where ¢ and c; are positive constants. Both functions decay smoothly to zero as A — oo; for the
A — 0 seizure extreme, ©; — oo while ©;] — Oy, a finite maximum value. For definiteness
and simplicity, we will set co = 1, Opnax = 1, and only the ¢; exponent will be altered. Fig. 6.7
shows sample ©-vs-\ mappings for ¢; = 0.2 (curves 1 and 3), ¢; = 3 (curve 2), and ¢; = 1.0
(curve 4). Curves 1 and 2 correspond to infinite activity at A = 0 (i.e.,, ©-mapping), while
curves 3 and 4 have finite activity © = Onax at A = 0 (i.e., Oy-mapping).

6.6.5 Cortical Entropy

The entropy definition of Eq. (6.6.3) is now rewritten as the cortical excitability gradient of the

free energy,

S =-0V/90. (6.49)



116 Thermodynamics Analogy for the Conscious-to-Unconscious Transition

1.8
1.6
1.4

1.2

0.8

Excitability, ©

0.6
0.4
0.2

0 0.5 1 1.5 2 2.5 3

Anaesthetic Effect, A

Figure 6.7: Plausible excitability © versus anaesthetic effect A mappings. Curves 1 and 2 have
unbounded excitability (“temperature”) as A — 0; curves 3 and 4 have finite excitability at A = 0.

We have two candidate free energy formulations (Haken: Eq. (6.47a), and Lugiato and Bonifacio:
Eq. (6.47b)), and two excitability—effect mappings (Egs (6.48a, 6.48b)), giving a total of four
possible entropy expressions,

S1, Haken = kB (C—);%[—i- - U) (6.50a)
S1I, Haken = kB ()\:0:: -(?9—[/{ -U ) (6.50b)
S1, L&B = ko );10:1 g—(/{ (6.50c)
S11, L&B = ko c()ill%nlm exp [co A°] % (6.50d)

where, for example, Eq. (6.50c) was derived by applying the Maxwell relation S = —9V/90© to
the Lugiato and Bonifacio potential form V = kU and using the chain rule:

ov oUu oU 0\ oU /06

with the ©1-mapping giving the partial-derivative result

—-— = - Atter .

X CoCy / (6 52)
Graphs showing the A-dependence of the Haken and LB entropies appear in Fig. 6.8. All

three graphs assume the type-I “temperature” mapping © = 1/A°! (the type-II mappings give

qualitatively similar results, so are not shown here), with ¢; = 0.2 for graphs (a) and (b), and
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c1 = 3 for graph (c). Note that for the smaller value of c;, the Haken and LB entropy graphs
are very similar, showing a maximum entropy in the top-left corner (seizure), and minimum
entropy in the bottom-right corner (coma). The upper (active) and lower (quiescent) branches
are separated by step discontinuities at A3 (induction point), and at Q; (emergence point).
Inspection of Egs (6.50a-6.50c) shows that the Haken and LB forms will give entropy curves
which become more alike for small ¢;. This is because the potential gradient 8U/8), which is
scaled by 1/c;, will tend to dominate the U-potential term. For large c;, the entropy curves
become dissimilar. However, the presence of the subtractive U term in the Haken form places an
upper bound on the maximum permissible value for c;: we found that for ¢; > 0.4 the Haken
entropy becomes negative on the upper branch when A > 1.4. Since we require entropy to be
always positive (reaching zero only in the limit of perfect order), then the range of permissible

power-law exponents for the ©-vs-A mapping is limited to 0 < ¢; <

~v

0.4 for Haken entropy.

The absence of the U subtraction in the LB form means that in principle there is no upper
bound for the c; exponent in the LB entropy expression. We have selected c; = 3 as a repre-
sentative “large” exponent value since this produces an LB entropy curve (Fig. 6.8(c)) which
has strong qualitative similarity to the theoretical spectral entropy curves presented later in
Chapter 8.

Compared with the small-c; entropy graphs of Figs 6.8(a) and (b), the large-c; graph (c)
shows a significantly different profile: the position of maximum entropy has shifted from the
top-left seizure corner to a position on the upper branch in the vicinity of A = 1. This feature
suggests that the normal conscious state is associated with maximum entropy, and that both
the coma and seizure extremes have reduced entropy (increased order).

While this is an intuitively attractive result, the supporting evidence is sparse at present. The
work of Viertio-Oja and colleagues Viertio-Oja et al. (2000) shows that EEG spectral entropy
diminishes during anaesthetic induction (discussed later in Chapter 8). Spectral entropy also
appears to diminish for the cortical transition into epileptic seizure (Quiroga et al., 2000, Figs
2, 3). These early findings indicate that the large-c; LB entropy graph of Fig. 6.8(c) is at
least plausible, assuming that there exists a direct relationship between thermodynamic entropy
(availability of cortical microstates) and spectral entropy (availability of electrical vibration
modes).

We note that for both Haken and LB forms there is an abrupt and discontinuous negative
change in the macrocolumn entropy at the A3 point of induction. A step change in entropy,
AS, is characteristic of a first-order thermodynamic phase transition, and implies the existence
of an analogous “latent heat,” ©AS, for the cortex. The detection of this latent effect should
provide a direct clinical means by which we can determine the amount of energy which must be
removed from each macrocolumn in order to transform the cortex from a depolarized, disordered,

conscious state to a hyperpolarized, ordered, hypnotic state.

6.6.6 Cortical “Heat Capacity” and “Latent Heat”

For a thermodynamic system consisting of a sample and its environment, the heat capacity of
the sample is the energy required to raise the temperature of the sample by one kelvin. This

is a “heating” experiment in which energy flows inwards, from the environment to the sample.
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Figure 6.8: Theoretical cortical entropy curves for the excitatory and inhibitory neural populations

of the macrocolumn as a function of anaesthetic effect. Assumed excitability (“temperature”) mapping
is © = 1/A°1. (a) Haken form, ¢; = 0.2. (b) Lugiato and Bonifacio form, ¢; = 0.2. (c) Lugiato and

Bonifacio form, ¢; = 3.
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Equivalently, heat capacity can be determined in a “cooling” experiment which measures the
energy required to lower the temperature of the sample by 1 K; in this case the energy flow is
outwards, from the sample to its environment. For the cortex, we seek to design an experiment
which measures the outflow of energy from the cortex as it is “cooled” (its excitability reduced)
under the influence of a general anaesthetic.

The heat capacity depends on the phase or bonding structure of the sample. If the sample
changes phase during the cooling experiment, then we should expect the change of phase to
show up as an anomalous peak in the heat capacity. For a ferromagnetic substance cooled
through its Curie temperature, the transition from the disordered, non-magnetic state to the
ordered, magnetically-aligned state is smooth and continuous, and the transition is classified
as second-order. In contrast, the freezing of water and the cooling of a ferroelectric material
through its Curie point are classified as first-order transitions, since both exhibit an abrupt
and discontinuous change in order, quantifiable as a negative step change AS in entropy as the
sample transforms from its liquid water (c.f. non-polarized ferroelectric) disordered state to its
crystalline (c.f. polarized ferroelectric) ordered state. This discontinuous change in entropy is
detectable as a sudden release of latent energy equal to |T, AS|, where T is the temperature at
transition.

Our model of the cortex predicts that as anaesthetic effect is increased, the soma voltage
he and associated free energy V will change abruptly at a critical value for anaesthetic effect
A. If the unconscious state is the more ordered, then the entropy change for the transition
from the disordered, conscious state to the well-ordered, unconscious state will be negative, and
latent energy should be released at the instant of transition. However, because of the uncertainty
introduced by the presence of subcortical noise, we would not expect all 10° macrocolumns of the
cortex to jump simultaneously (the larger the noise input into a given macrocolumn, the larger
the probability that it will jump “early”). Instead, the downward jumps into unconsciousness
will occur over the noise-broadened range A\; < Ajump < Aa,, Where A; > 1.0 and A4, = 1.53
(see Fig. 3.4). For small subcortical noise, Ay — 1.53 and the transition range will be quite
narrow; for large subcortical noise, the transition range will be comparatively broad.

What are the requirements for the definitive thermodynamics experiment applied to the
anaesthetic-damped cortex? Essentially we need to know how the energy uptake of the cortex
varies as a function of anaesthetic concentration. Ideally there would be simultaneous recordings
of the EEG waveforms in order to correlate cortical electrical activity with cortical energy
consumption as the brain moves into comatose unconsciousness.

Recently J. Sleigh located an historical paper by Stullken Jr. et al. (1977) that investigated
the changes in cerebral metabolic rate induced by general anaesthetic agents. In the next section
we examine the Stullken paper and compare its clinical findings against our macrocolumn model

predictions.

6.7 The Stullken Experiment

The “cortical cooling” experiment we seek was performed over 20 years ago by Stullken Jr.,
Milde, Michenfelder, and Tinker (1977), albeit for purposes quite different from ours. Stullken

and colleagues were investigating the response in dogs of the cerebral metabolic rate for oxygen
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(CMRo,) to increasing concentrations of four different anaesthetic agents: halothane, enflurane,
isoflurane, and thiopental.

Cerebral oxygen consumption was determined by measuring the change in blood oxygen
concentration for blood entering and leaving the cerebral hemispheres, then multiplying this
difference by the cerebral blood flow rate. The shapes of the anaesthetic dose-response curves
for CMRo, were examined by multiple measurements made at small, progressive concentration
increments. For example, the six dogs in the halothane group received increasing concentrations
of halothane such that the measured end-tidal (end-of-breath) concentration increased at a rate
of 0.05 per cent (of atmospheric pressure) every five minutes to 1.1 per cent, and thereafter, at
increments of 0.10 per cent every five minutes. The EEG was continuously recorded and changes
in EEG patterns from “awake” to “anaesthetic” were correlated with changes in anaesthetic
concentration and CMRg,. The points of EEG change for “awake” to transitional “shifting”
patterns, and from “shifting” to “anaesthetic” patterns were determined by inspection of rhythm,
amplitude, and frequency. High-frequency, low-amplitude activity (15 +5 Hz, 50 + 40 pV) was
classified as an “awake” pattern, while onset of persistent lower-frequency and higher-amplitude
activity (10+8 Hz, 300+ 150 pV) was classified as an “anaesthetic” pattern. “Shifting” patterns
showed alternation between “awake” and “anaesthetic” characteristics.

Prior to the Stullken et al. experiment, it had been assumed that there was a linear negative-
slope relationship between cerebral oxygen consumption (CMRo,) and anaesthetic concentra-
tion, but these earlier inferences of linear dose-response had been based on a small number of
isolated measurements. In contrast, Stullken’s careful and detailed study revealed that CMRo,
dose-response curves are nonlinear at anaesthetic concentrations less than 1 MAC (minimum
anaesthetic concentration at which half the subjects are unresponsive to surgical incision; the
MAC is a standard measure of anaesthetic potency). For all four anaesthetic agents studied
(three inhalational, one intravenous), Stullken found that CMRo, decreased precipitously until
a stable “anaesthetic” EEG pattern was observed; thereafter CMRo, decreased only slowly.
These results demonstrate that the change in EEG pattern from “awake” to “anaesthetic” is ac-
companied by an abrupt metabolic depression, and the researchers speculated that these events
coincide with the onset of functional depression (loss of conscious awareness). The Stullken
graph for the variation of metabolic rate with halothane concentration is shown in Fig. 6.9a.

It is pertinent to emphasize an important distinction between a “standard” thermodynam-
ics cooling experiment designed to determine the heat capacity of a closed, thermally-insulated
physical sample, and the biological experiment performed by Stullken and coworkers. In the
latter case, the “sample” is the living and metabolizing cerebral cortex of a dog which is nec-
essarily an energy-dissipative, open system. In order to maintain an equilibrium state of the
cortex, there must be a continuous flux of energy (oxygen plus nutrients) from the arterial blood
to the cortex, and then from the cortex to the venous blood (metabolic waste products). As
discussed earlier in Section 6.1, this molecular metabolic activity is occurring at spatial and
temporal scales several orders of magnitude below that of our model, and serve to maintain the
macrocolumn in its (local) equilibrium state. We picture the biological system as analogous to

a non-ideal “lossy” physical system.
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Figure 6.9: Effect of general anaesthetic (halothane) on the cerebral metabolic rate (CMR via oxygen
consumption) for dog, as reported by Stullken Jr. et al. (1977, Fig. 3) (a) CMR (as per cent of con-
trol) is plotted versus end-of-exhalation halothane concentration (as per cent of atmospheric pressure).
Regression lines for changes in metabolic rate are drawn for each EEG-determined region. (b) Here I
have computed the negative slope of the regression lines of (a) to give the rate of decrease of metabolic
rate with increasing anaesthetic. The abrupt change in metabolic sensitivity to anaesthetic during the
transition stage is very suggestive of a “latent heat” effect signaling a change of phase to the more ordered
state.

6.7.1 Biological “Heat Capacity”

A reasonable working definition for “heat capacity” of a dissipative biological system such as

the cortex might be

“the amount by which the metabolic rate must change in order to change, by one

unit, the state of excitability of the cortex,”

where “excitability” is an inverse measure of anaesthetic effect (see Section 6.6.4). This definition
implies that it is the rate of energy delivery which determines the state of the neuron, whereas
in fact the causality is the other way around: it is the state of the cell, as set by the anaesthetic
concentration, which determines the metabolic requirement and hence the bloodflow. With this

caveat in mind, we will apply this working definition to the Stullken experiment.
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Figure 6.10: Predicted variation in (a) entropy and (b) heat capacity for the excitatory neurons
of a single macrocolumn during induction of anaesthesia. The entropy curve assumes a simple inverse
mapping between excitability (“temperature”) and anaesthetic effect: © = 1/, and follows the Lugiato
and Bonifacio scheme for free energy (see Eqs 6.45, 6.50c). The heat capacity is computed from the
derivative of the entropy curve, C = —A(0S/0X). The negative step-discontinuity in entropy at A = 1.53
produces a positive delta-function in the heat capacity which we approximate as a triangular spike of
area 1.53|AS| and half-width equal to the sampling resolution of A.

The halothane results of the Fig. 6.9a graph show that the overall trend is for metabolic
rate to diminish as anaesthetic depth increases. The gradient of this graph is negative, and
its magnitude gives the percentage reduction in metabolic rate per unit increase in halothane
concentration, or equivalently, per unit decrease in excitability (assuming an inverse relationship
between halothane concentration and cortical excitability). Thus the slope magnitude can be
interpreted as a cortical heat capacity; see Fig. 6.9b.

Unlike the “awake” and “anaesthetic” regions which have similar (gentle) slopes and therefore
similar heat capacities, the intermediate “shifting” region has dramatically steeper slope. This is
the heat capacity anomaly which signals the thermodynamic phase change from the high-firing,
high-metabolic-rate upper branch to the low-firing, low-metabolic-rate quiescent branch. The
area of the anomaly gives the average decrease in the rate of energy consumption (~14%) during
transition. We may also interpret this area as a measure of the rate of latent energy release from

the cortex arising from the loss of entropy (gain in order) as the cortex transits to its unconscious
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state. Thus, during transition, the metabolic requirements of the cortex are offset by the latent
energy which becomes available to the cortex as it “crystallizes” into hyperpolarized order.

In order to compare the Stullken experimental results with the model predictions for a single
macrocolumn, we will focus on the excitatory neuron population (inhibitory results are very
similar), assuming the Lugiato and Bonifacio form for free energy, and taking a “temperature”
mapping © = co/X!, with ¢g = ¢; = 1.0. This gives the LB entropy trajectory for induction
shown in Fig. 6.10a which lies between those shown in Fig. 6.8b (c = 0.2) and Fig. 6.8¢ (c = 3).

Applying the assumed temperature mapping to the definition for cortical “heat capacity”
listed in Table 6.1, we obtain

oS oS

C = @% = - % (6.53)

The resulting single-macrocolumn heat capacity is shown in Fig. 6.10b. As expected, the step
decrease in entropy produces a heat capacity anomaly corresponding the release of latent “heat”
as the model “freezes” into its hyperpolarized state. Only a single latent-heat spike is shown.
This narrow peak would be expected to broaden if the contributions of all 10° macrocolumns
participating in the CMRo, bloodflow experiment could be summed, taking into account the
expected variability for the various biological parameters (threshold voltage, input spike rates,
noise amplitudes, etc). This qualitative agreement between our preliminary theory and clinical

experiment is very encouraging.

6.8 Chapter Summary

The cerebral cortex is an open, dissipative, biological system whose far-from-equilibrium steady
state is maintained by a continuous flux of energy. However, because for the two-variable
adiabatic macrocolumn we have an effective equation of state (Fig. 3.4) linking the population-
average excitatory and inhibitory soma voltages, it is possible to treat each (A, hg,h?) steady
state as if it were a local equilibrium. This effective equation of state, as re-plotted in Figs 6.1
and 6.2, allowed us to decouple the Langevin and Fokker-Planck equations, and to derive hills-
and-valleys potential functions U (Fig. 6.5) and their corresponding stationary PDFs (Fig. 6.6).

In order to derive thermodynamics-like equilibrium statistics such as entropy and heat capac-
ity, we needed to identify an analogous temperature and also a free-energy function V. We argued
that the analogous temperature, named ezcitability, ©, should scale inversely with anaesthetic
effect A, and posited two simple functional forms for © = ©()\) (Eq. (6.48)).

Previous work by Lugiato and Bonifacio (1978) and Haken (1978) suggested that the V'
free-energy function could be obtained from the potential function U either directly (LB form:
Eq. (6.47b)), or after scaling by temperature (Haken form: Eq. (6.47a)). Applying the Maxwell
relation S = —90V/0O gave us four possible entropy expressions (Eq. (6.50)). By allowing
anaesthetic effect to vary along the induction and emergence steady-state trajectories, we ob-
tained graphs of entropy as a function of anaesthetic effect (Fig. 6.8). These graphs showed a
discontinuous step reduction in entropy at induction, and a step increase at emergence. A dis-
continuous change in thermodynamic entropy implies that there will be a “latent heat” anomaly
at phase change: if the quiescent state is the more ordered, then energy will be released from

the macrocolumn at induction.
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This suggestion of latent energy release was able to be tested in a qualitative way by ex-
amining the experiment of Stullken Jr. et al. (1977). The fact that the experiment showed a
sudden reduction in metabolic energy requirement as the EEG waveforms were shifting from
their “awake” to their “anaesthetic” characteristic pattern provides support for the prediction
of a first-order change of phase to a more ordered state.

The Kuizenga experiment of Chapter 5 provided the first test of the adiabatic macrocolumn
predictions, and the presently-described Stullken dog experiments constitute the second. The
third clinical test will use spectral entropy to compare the spectral flatness of the theoretical
fluctuation spectrum against that measured from EEG records for patients undergoing general
anaesthesia. However, before discussing spectral entropy in Chap. 8, in Chap. 7 we will examine
the results of stochastic simulations of the Langevin equations to verify numerically the cor-
rectness of the Chap. 5 predictions for fluctuation growth and spectral change as anaesthetic is

varied.



Chapter 7

Numerical Simulations and Verification
of Adiabatic Predictions

Thus far we have described two clinical experiments that provide qualitative confirmation of the
major predictions of the adiabatic macrocolumn model: the Kuizenga experiment (Sect. 5.9)
showing biphasic fluctuation power growth at induction and at emergence; and the Stullken dog
experiment (Sect. 6.7) illustrating a “heat capacity” anomaly at the conscious-to-unconscious
change of phase. Before proceeding further, it would be prudent to seek quantitative verification
of the adiabatic theory. This is the motivatation for the present chapter’s focus on numerical
simulation of the macrocolumn stochastic differential equations.

As a careful and conservative first step towards numerical validations, I chose to simulate a
simple but non-trivial Langevin equation whose stationary properties are well documented: the
Ornstein—Uhlenbeck process. I refer to this preliminary investigation as a “calibration” experi-
ment since its intention is to provide guidance as to appropriate choices for important numerical
details, such as: quadrature time-increment, random-number scaling, windowing functions for
the time-series, Fourier transform scale factors for spectral amplitude normalization.

The Ornstein—-Uhlenbeck equation is an appropriate choice as a calibration test case since the
linearized macrocolumn of Sect. 5.4 constitutes a two-dimensional Ornstein-Uhlenbeck system
which decouples into a pair of one-dimensional Ornstein—Uhlenbeck processes in the pseudocol-
umn treatment of Sect. 6.5.3.

This conservative approach of running an initial calibration experiment seems not unwise
given some salutory messages in the literature. Gardiner (1985) states that “differential equa-

”

tions which include white noise as a driving term have to be handled with great care.” Craig
and McNeil (1989) show that when simulating a quantum optical system using complex noise,
unexpected “spiking” behaviours can occur which are not numerical artifacts (e.g., poor time
resolution giving degraded stochastic accuracy), but actually are caused by the stochastic phase
fluctuations pushing the sytem into deterministically unstable trajectories.! In his recent text,
Gardiner (Gardiner and Zoller, 2000, pp. 209-210) describes some of the characteristics exhibited
by quantum stochastic simulations which have gone bad.

In constrast to the Craig and Gardiner experiences, we do not anticipate pathological be-
haviours in our macrocolumn simulations. We do not have stochastic phase terms, so our

simulations are modelling what is essentially a classical diffusion problem, and this is expected

!1Spiking misbehaviours in quantum stochastic simulations had been observed a decade earlier by M. Steyn-Ross
(1979) in her MSc thesis investigations of molecular vibrational modes.
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to be quite well-behaved—provided that care is taken to ensure that the noise perturbations

remain small. This aspect will be discussed later in Sect. 7.2.1.

7.1 The Ornstein-Uhlenbeck Calibration Experiment

7.1.1 Historical Context

The Ornstein—Uhlenbeck (OU) process is the oldest example of a stochastic differential equation
(Arnold, 1974, p. 134):
du(t)

— - = —Av(t) + VDE(t). (7.1)

This is the Langevin equation describing the velocity v of a Brownian particle, such as a pollen
grain suspended in water. The positive constant A is a damping or fluid friction coefficient, £(t)
is random forcing function, and D is a diffusion coefficient. The particle is buffeted by ~102!
collisions per second from all sides. Each collision causes a sudden and random velocity change,
but any imposed velocity tends to be damped out by subsequent collisions. Thus the molecules
of the suspension liquid induce two counteracting effects: the myriad random kicks from &(t)
make v spread out over an ever broadening range of values, while the frictional damping — Av
tries to bring v back to zero (van Kampen, 1981, p. 238).

For a spherical particle of mass m, radius a suspended in a fluid of viscosity 7 [units:
kgm~!s~!] and temperature T, the damping and diffusion constants are given by [Arnold (1974,
p. xii); Schuss (1980, p. 91)],

6man

A= — [units: s71] (7.2)
D = 2ki1TA [units: (m/s)?s71] (7.3)

where kp is Boltzmann’s constant. These latter two equations show that there is a monotonic
relation between the fluctuation coefficient v/D and the dissipative drag coefficient A. This is
an expression of the fluctuation—dissipation theorem (Gillespie, 1993).

The damping constant A, carrying units of frequency, is a parameter that describes the
frequency of collisions. Between collisions the constant straight-line motion of the particle is
perfectly correlated. Therefore A is an inverse measure of the correlation between velocities of
a Brownian particle at various times (Schuss, 1980, p. 92).

The random fluctuation £(¢) [units: s~1/2] is a Gaussian-distributed white noise of zero mean,

€@) =0 (7.4)

and zero autocorrelation everywhere except at lag 7 = 0,

(€(r)€(0)) = &(r). (7.5)

Gillespie (1996a) defines the white noise £(t) as the dt — 0 limit of a temporally uncorrelated
normal random variable with mean zero and variance 1/dt.

Equation (7.1) is often written in terms of differentials (Gardiner, 1985, p. 106),



7.1 The Ornstein-Uhlenbeck Calibration Experiment 127

do(t) = —Av(t)dt + VDE(t)dt (7.6a)
= —Av(t)dt + VDdW (t) (7.6b)

where
dW (t) = &(t)dt (7.7)

is a temporally uncorrelated normal random variable with mean 0 and variance dt. The incre-
ment dW (t) is the differential of a random process W (t) given by

W(t) = /0 £(t') dt' (7.8)

If the observations of the Brownian particle are at time intervals much larger than the charac-
teristic settling time 1/A, then W(t) gives a measure of the temporally coarse-grained position
of the particle. Gillespie (1996a; 1996b) refers to W (t) as the driftless Wiener process.
Because of the presence of white noise, the Langevin equation 7.1 is, strictly speaking,
mathematically improper (Gillespie, 1996b). To give the equation meaning, we take the dv

infinitesimal to have an Ito forward-difference interpretation of “pointing towards the future”
du(t) = v(t + dt) — v(t) (7.9)
so that the differential form of Eq. (7.6a) can now be interpreted as an updating formula for v:
v(t+dt) = v(t) — Av(t)dt + VDE(t)dt. (7.10)

Equation (7.10) is the form we will use for the numerical simulations of the Ornstein-Uhlenbeck

process.

7.1.2 Solutions of the Ornstein-Uhlenbeck Process

In the limit of zero diffusion (D = 0), Eq. (7.1) predicts that any initial velocity v(t = 0) will

decay exponentially to rest with characteristic time-constant 1/A,
u(t) = v(0) e~ At (t>0). (7.11)

In the presence of diffusion, it is the time-averaged velocity that follows an exponential decay

trajectory to zero (Gardiner, 1985, p. 106),

(u(t)) = v(0) e~ (7.12a)
with variance
var {v(t)} = % [1- 6_2"“] . (7.12b)

Of primary interest are the ¢t — oo steady-state (ss) characteristics,
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()|, =0 (mean) (7.13a)

var {v(t)} |, = 2% (variance) (7.13b)

G(r) = cov{v(r),v(0)}]|, = :?%e_’m-' (autocorrelation) (7.13c)
Sw)|,, = p% (intensity spectrum). (7.13d)

7.1.3 Quadrature

Following the Murthy (1983) scheme of Sect. 2.3, we approximate the infinite-variance white
noise £(t) with a sequence of (dimensionless) Gaussian-distributed random numbers {R,} scaled
by 1/VAt,

£(t) — \/% R}, t=nAt (7.14)
where R,, is explicitly defined to be the normal random variable with mean 0 and variance 1, and
At is an appropriately chosen time-step. Replacing the infinitesimal dt in Eq. (7.10) with finite
time-step At, and substituting R,/ VAt for ¢ (t) gives an approximate finite-difference updating

rule for vy,

Ung1 = vn — Avy At + VDE(t) At
= uy(1— AAt) + R, VDAL. (7.15)

This Euler one-step quadrature should give accurate results provided the time-step At is much
smaller? than the 1/A relaxation time, i.e., provided |AAt| < 1.

7.1.4 Simulation Results for an OU Process

In order to verify the OU updating formula of Eq. (7.15) against the theoretical predictions of
Sect. 7.1.2, I fixed the diffusion constant at D = 1 m?/s3, and set the drift constant A at one of
three values: [1, 10, 100] s~1, corresponding to relaxation times of [1, 0.1, 0.01] s respectively.
The time-step was set at At = 1073 s, sufficiently fine to give good temporal resolution for the
most rapidly evolving case (A = 100 s~1). A vector of 6000 unit-normal random numbers were
generated (via MATLAB’s randn function) and stored; this stored sequence was re-used for each
run in order to highlight the effect of variations in the A rate constant.

The results are illustrated in Fig. 7.1. For the three panels on the left (a, c, e), the initial
condition was set at vo = 1 m/s, allowing us to view the relaxation to steady-state (v(c0)) = 0.
As expected, the relaxation becomes increasingly rapid as the A rate constant is increased, with

the fluctuations following the Eq. (7.12a) prediction for average velocity.

2 Because the OU process is analytically solvable, it is possible to derive an updating formula which is ezact
for any positive value of At (Gillespie, 1996a):

- | D
Unp1 = vne A 4 R, ﬂ(l—e—“m).

which reduces to Eq. (7.15) when |AAt| <« 1. Thus Eq. (7.15) is a first-order approximation to Gillespie’s exact
updating formula.
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Figure 7.1: Six simulations for the velocity of an OU process computed from the Eq. (7.15) updating
rule. Each run used the identical set of 6000 unit-normal random numbers. The timestep was At = 1073 s,
and the diffusion constant D was set at unity. The drift constant A was varied over three orders of
magnitude (from top to bottom). The initial velocity was set at 1 m/s for the left-hand panels (a, c, e),
and at O for the right-hand panels (b, d, f). For the left panels, the dashed curve shows the Eq. (7.12a)
prediction for average velocity. For the right panels, the dashed curves show the +1 standard deviation
envelope calculated from the Eq. (7.12b) variance. [After Gillespie (1996a, Figs 3-5)]

For the three right-hand panels (b, d, f) of Fig. 7.1, the system was started with initial
condition vg = 0, allowing us to view the fluctuations about steady state. The pair of dashed
curves give the +1 standard-deviation envelope predicted by Eq. (7.12b): the velocity values are
expected to lie inside this envelope approximately two-thirds of the time.

The correlations for the steady-state fluctuations were calculated using the discrete autocor-
relation formula of Eq. (7.17), and plotted in Fig. 7.2; the corresponding Eq. (7.13c) autocorre-

lation predictions are drawn with a dashed line.
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Figure 7.2: Autocorrelation functions for the time-series pictured in Fig. 7.1(b, d, f). The dashed
trends are the theoretical predictions from Eq. (7.13c); the joined lines are calculated from the simulation

time-series using Eq. (7.17).

These simulation runs® confirm that 1/A determines not only the correlation time for fluc-
tuations about steady state (Fig. 7.2 and Eq. (7.13c)), but also sets the relaxation time for a
perturbed OU process to recover its steady state (left panels of Fig. 7.1 and Eq. (7.12a)).

3For completeness, I compared the present results against those obtained using the Gillespie (1996a) exact
updating formula listed in the footnote on p. 128. At the scale of the graphs plotted in Fig. 7.1, the Gillespie
results are indistinguishable from mine. However, this situation changes dramatically if the timestep At is made
larger than the relaxation time 1/A: the Eq. (7.15) first-order Euler approximation becomes numerically unstable,
while the Gillespie exact algorithm remains reliable and accurate.
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The agreement between experiment and theory for these simulation test runs has so far

been entirely satisfactory. All that remains is to verify the steady-state spectrum prediction of
Eq. (7.13d).

7.1.5 OU Simulation Spectrum

The steady-state spectral amplitudes '\7,{’“5 [units: (m/s) Hz=1/2] for the OU velocity simulation
can be estimated either directly from the discrete Fourier transform of the time-series, or indi-
rectly via a discretized version of the Wiener-Khinchin theorem of Eq. (2.5). The direct method
substitutes the time-series vector v into the Eq. (2.13) discrete spectral amplitude expression to
give,

~ At
v =S 'DFT{v}k‘ k=0,1,..., N—1 (7.16)
where v = [vg, vy, ..., un—1] is the N-element vector of random velocity samples generated via

Eq. (7.15), k is the frequency index, and DFT denotes the discrete Fourier transform operator.
The indirect method first computes G, the autocorrela<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>