
confStream: Automated Algorithm Selection and
Configuration of Stream Clustering Algorithms

Matthias Carnein1, Heike Trautmann1, Albert Bifet2, and Bernhard Pfahringer2

1 University of Münster, Münster, Germany
{carnein,trautmann}@wi.uni-muenster.de

2 University of Waikato, Hamilton, New Zealand
{abifet,bernhard}@waikato.ac.nz

Abstract. Machine learning has become one of the most important tools
in data analysis. However, selecting the most appropriate machine learning
algorithm and tuning its hyperparameters to their optimal values remains
a difficult task. This is even more difficult for streaming applications where
automated approaches are often not available to help during algorithm
selection and configuration. This paper proposes the first approach for
automated algorithm selection and configuration of stream clustering
algorithms. We train an ensemble of different stream clustering algorithms
and configurations in parallel and use the best performing configuration
to obtain a clustering solution. By drawing new configurations from better
performing ones, we are able to improve the ensemble performance over
time. In large experiments on real and artificial data we show how our
ensemble approach can improve upon default configurations and can
also compete with a-posteriori algorithm configuration. Our approach
is considerably faster than a-posteriori approaches and applicable in
real-time. In addition, it is not limited to stream clustering and can be
generalised to all streaming applications, including stream classification
and regression.

Keywords: Stream Clustering · Data Streams · Automated Machine
Learning · Algorithm Configuration · Algorithm Selection.

1 Introduction

Over the past decades, machine learning has revolutionised many of its appli-
cation areas. However, due to the abundance of machine learning algorithms
and application scenarios, it is often necessary to select an algorithm which is
most suited for a given problem. In addition, machine learning algorithms tend
to be very sensitive to their configuration and it is important to tune hyper-
parameters to their optimal values, which can be difficult even for experienced
users. A first approach that tries to alleviate the user from this is Automated
Machine Learning [18]. It attempts to make design decisions such as the selection
and configuration of machine learning algorithms automatically. Unfortunately,
many of these automated approaches require multiple passes over the data and

2 M. Carnein et al.

cannot adapt to changes over time. This makes them infeasible for any online or
streaming application. However, many of today’s data sources are data streams
due to the widespread usage of sensors, the internet-of-things and social media.
In this paper, we address the problem of automated algorithm selection and
configuration of stream clustering algorithms which aim to maintain clusters over
time in a stream of observations.

By using an ensemble of different algorithms and configurations, we are able
to adapt the optimal algorithm and its hyperparameter settings over time. Our
approach is not limited to stream clustering but can be applied to all streaming
scenarios, including stream classification and regression. In our experiments, we
use several state-of-the-art stream clustering algorithms. On multiple real and
artificial data streams, we show that our ensemble-approach always performs
better than the default configuration. Even compared to offline and a-posteriori
configuration approaches it produces competitive results, while being much faster
and applicable in real-time.

2 Background

2.1 Stream Clustering

Clustering is a popular tool for pattern recognition and is often used in marketing
or network analysis. However, a major drawback of traditional clustering is that
it requires a fixed data set. Whenever new data becomes available, the entire
analysis needs to be repeated. This is time consuming, undesirable and often
infeasible when working with data streams. An approach to solve this is stream
clustering which is able to cluster a continuous and possibly infinite stream of
observations. In stream clustering, relevant information is usually extracted into
so called micro-clusters before discarding an observation. The micro-clusters are
then “reclustered” into the final macro-clusters upon the user’s request. A survey
of stream clustering algorithms is available in [10].

Unfortunately, (stream) clustering algorithms usually require many hyper-
parameters to be set a-priori [10]. For example, typical implementations of
DenStream [6] have 8 hyperparameters [5] ranging from distance and weight
thresholds to window sizes. In practice, these settings are often difficult and
unintuitive to choose. With streaming data, the hyperparameters also need to be
adapted over time as the data changes. In this paper, we aim to automatically
select the best algorithm and its optimal configuration over time.

2.2 Automated Machine Learning

Automated Machine Learning (AutoML) attempts to make the design decision
in machine learning automatically [18]. For example, it tries tune the hyperpa-
rameters of algorithms automatically or select the most appropriate algorithms.
Popular approaches in AutoML are irace [20], SMAC [16] or ParamILS [17].

irace for example can be used for automated algorithm configuration. It
uses a racing procedure where configurations that perform statistically worse are

confStream: Automated Algorithm Selection and Configuration 3

removed after every race. New parameter configurations are drawn according to
probability distributions and the sampling is biased towards better performing
configurations. Unfortunately, the racing procedure makes it difficult to apply
irace for streaming applications. However, we can draw some inspiration from
the parameter sampling for our streaming case.

First ideas for Automated Algorithm Selection in the streaming scenario
can be found in the stream classification [23,22,24,21], stream regression [25]
and online learning [14,13] literature. First attempts used an ensemble approach
where a meta-classifier periodically predicts the most suitable algorithm based
on the stream’s characteristics [23]. Similarly, the BLAST algorithm [22,24] also
uses an ensemble of algorithms, but simply selects the best algorithm of the last
window as the active classifier. In the following, we use the same idea as an
inspiration to select and configure stream clustering algorithms.

In a first proof-of-concept [11], we already propose an ensemble approach
for automated algorithm configuration of stream clustering algorithms, called
confStream. For this, we use an ensemble of different configurations. Periodically,
the clustering quality for every configuration is evaluated. Based on the observed
performance, a regression model is trained to predict the performance of unknown
configurations. Subsequently, a well performing configuration is sampled from
the ensemble and used to create a new configuration from it. If its predicted
performance is good enough, it replaces one of the configurations in the ensemble.

3 Automated Algorithm Selection and Configuration for
Stream Clustering

Algorithm Config. Prob.

DenStream 0.01
DenStream 0.02

CluStream Euclid.

ClusTree true

Algorithm Config. Prob. silh.

DenStream 0.01 0.8
DenStream 0.02 0.9

CluStream Euclid. 0.3

ClusTree true 0.4

Algorithm Config. Prob.

DenStream 0.018

Algorithm Config. Prob. silh

DenStream 0.018 0.95

Algorithm Config. Prob. silh

DenStream 0.02 0.9

1) Evaluate
last window

2) Sample
parent

3) Create

offspring

4) Test on

next window

5
)

R
ep

la
ce

Fig. 1. First, the performance of all algorithms and configurations in the ensemble is
evaluated. Afterwards, one algorithm is sampled to create an offspring and tested on
the next window. If its performance is high enough, it is used to replace one of the
algorithms in the ensemble. For brevity, only one hyperparameter per algorithm is
shown.

4 M. Carnein et al.

In this section, we extend our ensemble idea for the confStream algorithm.
In our initial proposal, we only optimised one numeric parameter for a given
algorithm. Here, we extend upon this and also include the algorithm selection
problem. In particular, we treat the algorithm selection and algorithm config-
uration problem as one large optimisation task. In addition, we show how to
optimise multiple parameters per algorithm which can be of different types such
as numerical, categorical, integer, binary or ordinal. Finally, we also improve the
selection process of new configurations and extensively test and compare the
algorithm.

Our main idea is summarised in Figure 1. Our algorithm uses a given starting
configuration, i.e. a list of algorithms, their initial configurations and the corre-
sponding parameter ranges. For example, this can be the default configuration of
all available algorithms.

To apply our ensemble strategy, we process the stream in windows of size
h. We use the observations in a window in order to train the algorithms in the
current ensemble. After every window, we evaluate the clustering quality for
every configuration (Step 1). In our experiments, we used the Silhouette Width
as a measure of cluster quality due to its popularity but other quality metrics are
equally applicable. For every observation i in the window, the Silhouette Width
uses the average similarity to its own cluster a(i) and compares it to the average
similarity to its closest cluster b(i):

s(i) =
b(i)− a(i)

max{a(i), b(i)}
. (1)

The Silhouette Width is usually averaged over all observations to obtain a single
index. The algorithm with the highest cluster quality becomes the active clusterer
or incumbent and provides the current solution of confStream.

To obtain new configurations, a configuration is sampled from the ensemble
and serves as a parent (Step 2). The sampling is performed proportionally to the
performance of the algorithms such that better performing configurations have a
higher probability to be selected. In general, this can be implemented using a
simple Roulette Wheel Selection. Note, however, that the Silhouette Width has a
range of [−1, 1]. Since negative values cannot be used in Roulette Wheel Selection,
we shift the values by |minx| −minx, where x are the Silhouette Widths of all
configurations. This would turn a sequence {−0.5, 0.8, 1} into {0.5, 1.8, 2}. Also
note that we do not necessarily choose the best performing algorithm in order to
increase the diversity in the ensemble.

The selected algorithm and configuration is then used as a parent in order to
derive a new configuration from it (Step 3). For this, we use some of the ideas of
irace [20]. Specifically, every parameter of every configuration has an associated
probability distribution. For numerical parameters, every parameter maintains a
truncated normal distribution N (µ, σ) with expectation µ and standard deviation
σ. The expectation of the truncated normal distribution is placed at the position
of the parent to sample a new configuration. Subsequently, the standard deviation
of the child is reduced to increase exploitation of this area (Figure 2a). In our

confStream: Automated Algorithm Selection and Configuration 5

lower
bound

parent offspring upper
bound

D
en

si
ty

A B C D

offspring

p
(x

)

(a) Numerical (b) Categorical

Fig. 2. For numerical parameters, a truncated normal distribution is placed at the
parent to sample a new configuration. For categorical parameters, a new configuration
is drawn according to a list of probabilities. Both approaches increase the probability
for the offspring to favour promising solutions over time.

case, we use an exponential decay of the standard deviation according to a fading
factor λ:

σt+1 = σt · 2−λ (2)

The idea is to reduce the standard deviation in exponentially smaller steps in
order to narrow down a promising parameter region. Initially, the standard
deviation is set to half the parameter range. For integer parameters, the same
sampling strategy can be used, where the result is rounded to the nearest integer.
Similarly, for ordinal parameters (e.g. strong, medium, weak) we can use the
integer sampling strategy, where the resulting integer is used as the index in the
list of possible outcomes.

For categorical parameters, a list of probabilities for every outcome is main-
tained. Starting with equal probabilities, the new configuration is sampled accord-
ing to the list. Subsequently, the probability of the winning category is increased
to facilitate exploitation (Figure 2b). In our case, we increase the probability by
the same amount that we reduce the standard deviation in the numerical case:

pt+1 = pt ·
(
2− 2−λ

)
. (3)

Note that in both cases we use a factor of one as the baseline and either increase
or decrease the factor by 1− 2−λ to decrease the standard deviation or increase
the probability. To obtain probabilities, all values are then scaled to sum to one
again.

Since the streams’ distribution can change over time, it is not necessarily
beneficial to exploit promising regions further. Instead, it is also necessary to
explore new regions of the search space. For this, for a fraction of the ensemble,
we reset the standard deviation or the probability vector to its initial value with
probability p to explore new regions.

Note that adapting parameter values to create the child is not always easy.
While some parameters, such as distance thresholds, can be easily changed “on-
the-fly”, i.e. while the algorithm is running, some parameters are much harder to
change. For example, if the parameter influences a tree-height as in ClusTree [19],

6 M. Carnein et al.

changing the parameter is often not possible due to the implications for the
underlying data structure. For all cases where we cannot change the parameter,
we instead initialise a new algorithm instance based on the new configuration.
However, to keep as much information as possible, we then train the new algorithm
with the micro-clusters of the parent configuration. For this, the centres of the
micro-clusters are used as virtual points to train the child algorithm. While this
will not reproduce the exact same micro-clusters, it passes on some information
about the current clusters.

In our initial proposal [11], we trained a regression model [15] to predict the
performance of the new configurations. However, we noticed that the regres-
sion model often favoured algorithms with many valid configurations (such as
BICO [12]) whereas it disfavoured algorithms where some configurations perform
exceptionally well but many fail. To prevent this, we eliminated the predictor and
introduce a “test ensemble” instead where new configurations are evaluated on
the actual stream before deciding whether to incorporate them into the ensemble
(Step 4). After every window, we fill the test ensemble with a number of new
configurations. The algorithms of the test ensemble are compared to algorithms
in the active ensemble when clustering the next window. If a configuration in the
test-ensemble outperforms a configuration in the active ensemble (on data both
have never seen before), it is considered promising and replaces a configuration
in the active ensemble. The decision to use or discard a new configuration is
therefore lagged by one window.

Again, we sample the configuration that is replaced proportionally to its
fitness, removing less fit solutions with higher probability. However, we never
remove the best configuration of an algorithm and always keep at least one
configuration per algorithm. This prevents that an algorithm is removed entirely
and cannot be used for the generation of new configurations. For larger ensembles,
it can also be beneficial to keep the default configurations in the ensemble as a
fall-back. Note that we use an ensemble of fixed size here and initially fill the
ensemble with new configurations to its maximum capacity.

4 Experiments

4.1 Experimental Setup

To evaluate our algorithm, we implemented it in Java3 as a clustering algorithm
for the MOA framework [4,5]. For our experiments, we aim to select the optimal
algorithm and its configuration among the available stream clustering algorithms
in MOA for a specific stream. For a fair comparison, we restrict ourselves to all
clustering algorithms which expose the micro-clusters. Specifically, we optimise
DenStream [6], CluStree [19], CluStream [2] and BICO [12] which are all state-
of-the-art stream clustering algorithms [10]. For every algorithm, we optimise all
parameters that influence the clustering result in their full value range (Table 1).
Unbounded value ranges are artificially capped using appropriate maximum
values.
3 Implementation available at: https://www.matthias-carnein.de/confStream

https://www.matthias-carnein.de/confStream

confStream: Automated Algorithm Selection and Configuration 7

Table 1. Overview of optimised algorithms and parameters. Parameter names as used
in MOA [5].

Algorithm Configuration Type Range default

DenStream e Numeric [0, 1] 0.02
b Numeric [0, 1] 0.2
m Integer {0 . . . 10000} 1
o Integer {2 . . . 20} 2
l Numeric [0, 1] 0.25

ClusTree H Integer {1 . . . 20} 8
B Boolean {1, 0} 0

CluStream k Integer {2 . . . 20} 5
m Integer {1 . . . 10000} 100
t Integer {1 . . . 10} 2

BICO k Integer {2 . . . 20} 5
n Integer {1 . . . 2000} 1000
p Integer {1 . . . 20} 10

To determine whether confStream is able to improve configurations over time,
we first compare its performance to MOA’s [4,5] default configurations. For this,
we initialise our ensemble with the same default configurations and compare the
results. Afterwards, we use irace [20] and optimise the parameter’s a-posteriori
to find the best overall configuration. We then compare whether confStream’s
adaptive approach is able to compete with the optimal result. For confStream,
we set the ensemble size esize = 20, fading factor λ = 0.05, reset probability
p = 0.01 and evaluate the solutions every h = 1000 observations using the
Silhouette Width. After each window, we create etest = 10 new configurations.

We evaluate our algorithm on four data sets. Specifically, we use a Random

Radial Basis Function (RBF) stream [4], the sensor stream4, the power-

supply stream5 and the covertype data set6. All data sets are popular choices
within the stream clustering and classification literature and for our analysis we
use all numeric parameters of the streams. Note that the covertype data set is a
static data set, which we turn into a data stream by processing observations one
by one. This is a common strategy in stream clustering due to the limited number
of openly available data streams [12,1,7,8]. An overview of all data sets is given in
Table 2. To avoid differences in scale, we standardise the data sets by subtracting
the mean and dividing by the standard deviation per feature. In real world
scenarios, the values for normalisation can often be updated incrementally [9,3].
Our goal was to include data streams with diverse characteristics. For this, we
included both real and artificial data streams which all include different forms of
concept drift, i.e. a shift of the underlying distribution. We also included a static
data set which does not include any temporal changes. In addition, our data
streams have between 2 and 10 dimensions and some have more than 2 million
observations.

4 http://db.csail.mit.edu/labdata/labdata.html
5 http://www.cse.fau.edu/~xqzhu/stream.html
6 http://archive.ics.uci.edu/ml/datasets/Covertype

http://db.csail.mit.edu/labdata/labdata.html
http://www.cse.fau.edu/~xqzhu/stream.html
http://archive.ics.uci.edu/ml/datasets/Covertype

8 M. Carnein et al.

Table 2. Overview of the four data streams used in our experiments. All data streams
are popular in the stream clustering literature [7].

Data set n d Type Drift

Random RBF 2, 000, 000 2 Artificial X
sensor 2, 219, 803 4 Real X
powersupply 29, 928 2 Real X
covertype 581, 012 10 Real −

0 750,000 1,500,000
0

0.5

1

Time

S
il
h
o
u
et
te

0

0.5

1

S
il
h
o
u
et
te

0

0.5

1

S
il
h
o
u
et
te

0

0.5

1

S
il
h
o
u
et
te

(a) Random RBF

(b) sensor (c) powersupply (d) covertype

confStream DenStream ClusTree CluStream BICO

Fig. 3. Development of Silhouette Width for all data streams.

4.2 Results

Comparison to Default Configuration For a start, we compare our conf-

Stream algorithm with MOA’s default algorithm configurations. For this, conf-
Stream is initialised with the same default configurations (Table 1) but optimises
the parameters. Figure 3 shows the Silhouette Width for every window of our
test data streams. The boxplots on the right summarise the distribution of
the Silhouette Width values along the stream. It is obvious that our ensemble
approach produces a considerably better result throughout the entirety of the
stream. For example, for the Random RBF stream, confStream yields a median
Silhouette Width of 0.86 while the other algorithms perform much worse with
median Silhouette Widths between 0.54 and 0.65. Similar results can also be
observed for the remaining data streams. This is particularly visible for the
covertype and powersupply data streams where most algorithms produce much
worse results by default.

To evaluate how confStream optimises the algorithms in the ensemble over
time, we analyse the best configuration for every clustering algorithm within the
ensemble (Figure 4a). We can see that throughout most segments of the stream,
a configuration of ClusTree is the incumbent, i.e. the best configuration. BICO
on the other hand tends to have the worst performance within the ensemble. This
also shows in the ensemble composition (Figure 4b). The ensemble is quickly filled
with more configurations of ClusTree as it shows the best performance. Even
though the other algorithms have less relevance, we can see that their share in

confStream: Automated Algorithm Selection and Configuration 9

0 750,000 1,500,000
0

0.5

1

Time

S
il
h
o
u
et
te

0 750,000 1,500,000

5
10
15
20

Time

E
n
se
m
b
le

(a) Best performance per algorithm

(b) Ensemble composition

DenStream ClusTree CluStream BICO

Fig. 4. Ensemble performance and composition for the Random RBF stream.

0 20,000 40,000 60,000 80,000
0.01

1

100

Time

P
a
ra
m
et
er

(l
o
g
)

DenStream e b l m o
ClusTree H B
CluStream k m t

Fig. 5. Best algorithm and configuration over time for the first 100, 000 observations
of the Random RBF stream. The currently best algorithm with its best configuration is
shown on a logarithmic scale. The parameters are color coded based on the algorithm
and the parameter names of MOA [4,5] are used.

the ensemble increases whenever their performance improves. This is particularly
visible for the periodic peaks of DenStream and also shows for CluStream as it
improves after around 1.5 million observations.

We can also see how confStream quickly adapts the parameter values de-
pending on their performance. Figure 5 shows the current best algorithm and its
parameter values for the first 100, 000 observations of the Random RBF stream on
a logarithmic scale. We can see that the algorithm initially switches between con-
figurations of DenStream and CluStream, before eventually settling on ClusTree

as the incumbent. After about 30.000 observations CluStream briefly becomes
the incumbent and its parameters are improved before the algorithm goes back
to ClusTree.

Evaluation of Combined Algorithm Selection and Hyperparameter
Configuration In our experiments, we treated both algorithm selection and
configuration as one large optimisation problem. This is also known as the
Combined Algorithm Selection and Hyperparameter Configuration (CASH) [18]
problem. In order to evaluate how this affects confStream’s performance, we

10 M. Carnein et al.

0 750,000 1,500,000
0

0.5

1

Time

S
il
h
o
u
et
te

0

0.5

1

S
il
h
o
u
et
te

0

0.5

1

S
il
h
o
u
et
te

0

0.5

1

S
il
h
o
u
et
te

(a) Random RBF

(b) sensor (c) powersupply (d) covertype

CASH DenStream ClusTree CluStream BICO

Fig. 6. Combined Algorithm Selection and Hyperparameter Optimisation (CASH)
compared to only Hyperparameter Optimisation for all data streams.

also compare it to individually configured stream clustering algorithms. For this,
we use the default configuration per algorithm as separate starting configurations
for confStream and optimise the algorithms separately using the same ensemble
size and settings. Figure 6 compares the combined optimisation and individ-
ual optimisation. The results show that confStream’s solution to the CASH
problem is similar to the individual optimisation. This is a surprising result,
given the tremendously increased search space of the combined optimisation
problem. Generally, we would expect the individual optimisation to perform
better. The fact that the CASH problem yields similar results shows that the
algorithm can handle the increased search space. This shows that it is possible to
perform algorithm selection and configuration simultaneously without sacrificing
the clustering quality.

It is also interesting to compare the individual optimisation (Figure 6) to the
algorithms’ performance of the combined optimisation problem (Figure 4a). We
can see, that ClusTree and BICO are almost as well configured in the combined
optimisation as in the individual optimisation. DenStream on the other hand
yields better results when optimised individually. This is likely due to the fact
that the algorithm has many parameters and large parameter ranges which causes
a large search space. Its weak performance, however, leads the ensemble to remove
most instances of DenStream which yields too few instances to explore the large
search space.

Comparison to Offline Optimisation The above results show that conf-

Stream can considerably improve upon the default configurations with little
additional knowledge. However, we should also compare our algorithm to opti-
mised configurations using an a-posteriori scenario, i.e. given the knowledge of
the total stream. In [7], we already used irace [20] to find configurations for some
of the algorithms and data streams by optimising for the optimal adjusted Rand
index and in [8] when optimising for the Sum of Squares (SSQ). In addition, we
now also use irace and optimise for the Silhouette Width directly. This gives us

confStream: Automated Algorithm Selection and Configuration 11

Table 3. Overview of optimal configurations as identified by irace (rounded).

Algorithm Configuration RBF sensor power. cover.

DenStream e 0.08 0.80 0.35 0.55
b 0.32 0.26 0.02 0.61
m 2913.1 9085.1 4027.1 282.4
o 16.49 7.08 7.54 3.37
l 0.10 0.07 0.88 0.11

ClusTree H 8 3 1 1
B false true true false

CluStream k 5 8 5 3
m 100 98 200 4
t 2 2 2 2

BICO k 2 6 14 16
n 36 1880 53 637
p 7 9 3 2

three configurations for most algorithms, which have been optimised a-posteriori.
We initialise irace with the default algorithm configuration and allow up to
150 evaluations for every data stream. Note that this would be equivalent to
running confStream with an ensemble size of 150. In contrast, we only use 20 in
our experiments, which gives irace a clear advantage. The configurations which
produced the highest median Silhouette Width across the entire stream are listed
in Table 3.

Figure 7 compares the performance of confStream (without algorithm selec-
tion) with its default and the three optimised configurations for the covertype

data set. For example, for the ClusTree algorithm (Figure 7b), the default con-
figuration yields the worst quality with a median Silhouette Widh of 0.63. As
expected, all irace configurations perform better and the one optimised for the
Silhouette Width also yields a higher Silhouette of 0.85. However, throughout
the vast majority of the stream, confStream yields even higher quality than the
a-posteriori solutions with a median Silhouette Width of 0.87. This is because
confStream can adapt the configuration over time which allows it to adapt to
changes in the stream. The results for CluStream are overall similar (Figure 7c)
and for DenStream, the default configuration and one of the optimised configu-
rations did not produce a valid solution at all (Figure 7a). confstream on the
other hand produced good solutions throughout most of the stream.

Note that we highlight the results for the covertype data set here because we
have the most complete set of configurations for this scenario. The same analysis
for the other data streams is summarised in Figure 8. For brevity, we only report
the boxplots of the performance. Note that configurations of irace optimised
for the adjusted Rand Index and SSQ are only available for some combinations.
For all cases where they are available, confStream yields considerably better
Silhouette Width. In comparison to irace optimised for the Silhouette Width, the
quality of confStream is often similar. For example, for the powersupply data
stream, the results of confStream is very slightly better than the a-posteriori
approach. Overall this shows, that confStream produces similar results in quality
than a-posteriori optimisation with vastly less computational resources.

12 M. Carnein et al.

0 200,000 400,000
0

0.5

1

Time

S
il
h
o
u
et
te

0 200,000 400,000
0

0.5

1

Time

S
il
h
o
u
et
te

0 200,000 400,000
0

0.5

1

Time

S
il
h
o
u
et
te

confStream irace (Silhouette) irace (cRand)

irace (SSQ) default

(a) DenStream

(b) ClusTree

(c) CluStream

Fig. 7. Comparing performance of confStream, the optimal configuration found by
irace optimised for the adjusted Rand Index (cRand) [7], the SSQ [8] and Silhouette
Width as well as the default configuration for the covertype data stream.

0

0.5

1

0

0.5

1

S
il
h
o
u
et
te

0

0.5

1

DenStream ClusTree CluStream BICO

R
B
F

s
e
n
s
o
r

p
o
w
e
r
.

confStream irace (Silhouette) irace (cRand)

irace (SSQ) default

Fig. 8. Comparing performance of confStream, the optimal configuration found by
irace optimised for the adjusted Rand Index (cRand) [7], the SSQ [8] and the Silhouette
Width as well as the default configuration for the Random RBF, sensor and powersupply

data streams.

confStream: Automated Algorithm Selection and Configuration 13

CASH
DenStream

ClusTree
CluStream

BICO

0

500

1,000

3
.2

0
.5

1
.4

4
.9

5
.0

4
.9

5
7
1
.8

1
6
.4

8
2
.4

R
u
n
ti
m
e
(h
)

CASH
DenStream

ClusTree
CluStream

BICO

0

500

1,000

6
.4

0
.8

1
.1

5
.4

1
0
.5

4
.7

4
5
5
.5

3
7
.2

6
0
.0

R
u
n
ti
m
e
(h
)

CASH
DenStream

ClusTree
CluStream

BICO

0

500

1,000

1
1
.2

0
.4

4
.6

3
2
.7

1
4
.4

1
1
.5 1
7
8
.9

1
0
4
.0 4
2
6
.4

R
u
n
ti
m
e
(m

in
)

CASH
DenStream

ClusTree
CluStream

BICO

0

200

400

3
.8

0
.7

0
.5

3
.9

3
.9

1
.3

2
6
5
.2

2
0
.2

3
7
.1

R
u
n
ti
m
e
(h
)

(a) Random RBF (b) sensor

(c) powersupply (d) covertype

confStream (1 core) irace (10 cores)

Fig. 9. Runtime of confStream and irace in hours or minutes. irace was paralellised
with ten cores while confStream only used a single core. Experiments performed on an
Intel Xeon CPU E5-2630 v4 with 2.20 GHz.

Throughout our experiments, we observed that the (online) confStream

algorithm only requires a fraction of the number of evaluations compared to the
(offline) irace approach. This also shows in the runtime of the algorithms as
highlighted in Figure 9. In our experiments, we parallelised the racing procedure
of irace on ten cores. confStream, on the other hand, was run on a single core.
Despite this considerable disadvantage, confStream is much faster for every single
algorithm and data stream. This particularly shows for the ClusTree algorithm.
For example, on the Random RBF data stream, irace required more than 23 days
to optimise the parameters while confStream finished within less than one and
a half hours. These results would further improve when parallelising the training
of the ensemble for confStream. In addition, confStream is also able to solve
the CASH problem. The runtime of the CASH problem mostly depends on the
ensemble composition. As such, the runtime usually lies between the runtime of
the fastest and slowest approach. In our experiments, the runtime of the CASH
problem was often similar to the fastest algorithm in irace.

5 Conclusion

In this paper we proposed the first approach for automated algorithm selection
and hyperparameter configuration of stream clustering algorithms. Our approach
allows to apply stream clustering without expert knowledge and significantly
facilitates the application of stream clustering in practice. In our approach, we
train an ensemble of different algorithms and configurations in parallel to identify

14 M. Carnein et al.

superior solutions. By drawing new configurations from the ensemble, we are able
to improve solutions along the stream. Over time, sampling is biased towards more
promising solutions. Our experiments on multiple state-of-the art algorithms,
their hyperparameters as well as popular and diverse data streams have shown
consistently good performances. The algorithm was able to quickly improve
upon its initial configuration and to find valid configurations where the default
configurations failed. We also compared the performance to irace, where we
optimised the configurations a-posteriori. Even in this comparison, confStream
found competitive solutions, despite working online and with far fewer iterations.
While training multiple algorithms in parallel is slower, confStream was fast
enough to work in real-time since the algorithms can be trained in parallel.
In particular, it is much faster than a-posteriori approaches which are usually
infeasible for data streams.

In future work we will evaluate our approach on a larger number of data
streams and algorithms. In addition, we plan to apply our approach to other
streaming applications such as stream classification or stream regression. Fur-
thermore, we would like to revisit the idea of predicting the performance of
new configurations. In a-posteriori approaches this has shown to produce good
results [16] and we believe that this is also possible in the streaming scenario.

References

1. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,
C.: Streamkm++: A clustering algorithm for data streams. Journal of Experimental
Algorithmics 17, 2.4:2.1–2.4:2.30 (5 2012)

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB ’03). vol. 29, pp. 81–92 (2003)

3. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of
high dimensional data streams. In: Proceedings of the 30th International Conference
on Very Large Data Bases (VLDB ’04). vol. 30, pp. 852–863 (2004)

4. Bifet, A., Gavalda, R., Holmes, G., Pfahringer, B.: Machine Learning for Data
Streams with Practical Examples in MOA. MIT Press (2018)

5. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis.
Journal of Machine Learning Research 11, 1601–1604 (8 2010)

6. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: Proceedings of the Conference on Data Mining (SIAM
’06). pp. 328–339 (2006)

7. Carnein, M., Assenmacher, D., Trautmann, H.: An empirical comparison of stream
clustering algorithms. In: Proceedings of the ACM International Conference on
Computing Frontiers (CF ’17). pp. 361 – 365. ACM (2017)

8. Carnein, M., Trautmann, H.: evostream — evolutionary stream clustering utilizing
idle times. Big Data Research 14, 101 – 111 (2018)

9. Carnein, M., Trautmann, H.: Customer segmentation based on transactional data
using stream clustering. In: Yang, Q., Zhou, Z.H., Gong, Z., Zhang, M.L., Huang,
S.J. (eds.) Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD ’19). pp. 280–292. Springer International Publishing,
Cham (2019)

confStream: Automated Algorithm Selection and Configuration 15

10. Carnein, M., Trautmann, H.: Optimizing data stream representation: An extensive
survey on stream clustering algorithms. Business & Information Systems Engineering
(BISE) 61, 277–297 (2019)

11. Carnein, M., Trautmann, H., Bifet, A., Pfahringer, B.: Towards automated configu-
ration of stream clustering algorithms. In: Workshop on Automated Data Science
at the European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD ’19). pp. 137–143. Springer
International Publishing (2020). https://doi.org/10.1007/978-3-030-43823-4 12

12. Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn, C., Sohler, C.: BICO:
BIRCH meets coresets for k-means clustering. In: Proceedings of the 21st Annual
European Symposium (ESA ’13). pp. 481–492 (2013)

13. Fitzgerald, T., Malitsky, Y., O’Sullivan, B., Tierney, K.: React: Real-time algorithm
configuration through tournaments. In: Edelkamp, S., Barták, R. (eds.) Proceedings
of the Seventh Annual Symposium on Combinatorial Search (SOCS ’14) (2014)

14. Fitzgerald, T., O’Sullivan, B., Malitsky, Y., Tierney, K.: Online search algorithm
configuration. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence. pp. 3104–3105. AAAI Press (2014)

15. Gomes, H.M., Barddal, J.P., Ferreira, L.E.B., Bifet, A.: Adaptive random forests
for data stream regression. In: Proceedings of the 26th European Symposium on
Artificial Neural Networks (ESANN ’18) (2018)

16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello, C.A.C. (ed.) Proceedings of the Confer-
ence on Learning and Intelligent Optimization (LION 5). pp. 507–523. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (10 2009)

18. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning:
Methods, Systems, Challenges. Springer (2018)

19. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: Self-adaptive anytime stream clustering.
In: Proceedings of the 9th IEEE International Conference on Data Mining (ICDM
’09). pp. 249–258 (12 2009)

20. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43 – 58 (2016)

21. Minku, L.L.: A novel online supervised hyperparameter tuning procedure applied
to cross-company software effort estimation. Empirical Software Engineering 24(5),
3153–3204 (10 2019)

22. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Having a blast: Meta-
learning and heterogeneous ensembles for data streams. In: Proceedings of the 2015
IEEE International Conference on Data Mining (ICDM ’15). pp. 1003–1008 (11
2015)

23. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Algorithm selection on
data streams. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) Discovery
Science. pp. 325–336. Springer International Publishing, Cham (2014)

24. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: The online performance
estimation framework: Heterogeneous ensemble learning for data streams. Machine
Learning 107(1), 149–176 (1 2018)

25. Veloso, B., Gama, J., Malheiro, B.: Self hyper-parameter tuning for data streams.
In: Soldatova, L., Vanschoren, J., Papadopoulos, G., Ceci, M. (eds.) Discovery
Science. pp. 241–255. Springer International Publishing, Cham (2018)

https://doi.org/10.1007/978-3-030-43823-4_12

	confStream: Automated Algorithm Selection and Configuration of Stream Clustering Algorithms

