

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Local Editing in Lempel-Ziv

Compressed Data

A thesis

submitted in fulfilment

of the requirements for the degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

Daniel Kolver Roodt

2023

ii

Abstract

This thesis explores the problem of editing data while compressed by a variant
of Lempel-Ziv compression. We show that the random-access properties of
the LZ-End compression allow random edits, and present the first algorithm
to achieve this. The thesis goes on to adapt the LZ-End parsing so that
the random access properties become local access, which has tighter memory
bounds. Furthermore, the new parsing allows a much improved algorithm to
edit the compressed data.

iv

Acknowledgements

I would like to thank my supervisors, Dr. Ulrich Speidel and Dr Vimal Kumar,
for their invaluable support and feedback through this project. I would also
like to thank Prof. Ryan Ko for his supervision and contributions to the early
stages of my PhD journey.

Thanks to the University of Waikato School of Graduate Research for the
Waikato Doctoral Scholarship, which supported my studies.

I had incredible insights and ideas stemming from conversations with Bill
Rogers, Ian Witten, Gonzalo Navarro, and Mark Titchener – thank you to each
of you for sharing your insights and experience with me.

Thank you to my friends and lab-mates in CROW, particularly Thye Way,
Chris, Joshua, TK, Harpreet and Samuel. Your friendships and support mean
a lot to me, and I am proud to have worked with and gotten to know each of
you.

Thank you to my family for your love and support through all my endeavours.
You have been my biggest fans, and you have no idea how much your support
means to me. Thank you, Mom and Dad, for laying a strong foundation for
my academic studies through home-schooling.

Finally, thanks be to my Lord Jesus Christ for bringing each person men-
tioned into my life.

vi

Contents

1 Introduction 1
1.1 Notation . 3

1.1.1 Functions . 3
1.1.2 Single variables . 3
1.1.3 Indexed variables . 3
1.1.4 Structured variables . 4
1.1.5 Mathematical notation 4
1.1.6 Complexity analysis . 5

2 Background 7
2.1 Entropy . 7

2.1.1 Empirical entropy . 10
2.2 Defining data compression . 11

2.2.1 Lossy vs. lossless compression 12
2.3 Computing the complexity of a string 12

2.3.1 Kolmogorov complexity 13
2.3.2 Lempel-Ziv complexity 13

2.4 Optimal compression . 14
2.5 Types of compression . 15

2.5.1 Statistical coding . 15
2.5.2 Dictionary-based compression 15

2.6 Using compressed data . 16
2.6.1 Compressed pattern matching 16
2.6.2 Random access codes . 16
2.6.3 Difference between local decoding and random access . . 16
2.6.4 Editing compressed data 18
2.6.5 Compressed text index structures 18

2.7 String attractors . 18
2.8 Conclusion . 19

3 The Lempel-Ziv family of compressors 21
3.1 Computing the LZ complexity 21

viii

3.2 LZ-77 compression algorithm . 23
3.3 LZ-SS . 25
3.4 LZ-78 compression algorithm . 26
3.5 LZW compression algorithm . 28
3.6 Challenges when locally decoding and editing in LZ 28
3.7 Searching in LZ phrases . 29

3.7.1 Searching in LZW . 29
3.7.2 Searching in LZ-77 and 78 29

3.8 Random access in LZ . 30
3.8.1 LZB compression algorithm 30
3.8.2 LZ-End compression algorithm 31
3.8.3 Random access in LZ-78 31

3.9 Size of sliding window and its effect on compression ratio for LZ
parsers . 32

3.10 Summary of LZ parsing . 33

4 The LZ-End parsing 35
4.1 LZ-End parsing format . 35

4.1.1 Example . 35
4.2 Algorithms used by LZ-End . 36

4.2.1 Suffix array . 36
4.2.2 Burrows-Wheeler transform 39
4.2.3 Backward search . 43
4.2.4 Range minimum query 44
4.2.5 Successor and predecessor functions 45
4.2.6 Indexable dictionary . 46

4.3 The LZ-End parsing algorithm 47
4.4 Searching in LZ-End . 50
4.5 Random access in LZ-End . 50

4.5.1 Fast mapping between phrase and symbol indices in LZ-End 51
4.5.2 Linear-time retrieval of symbols from a phrase 52

4.5.2.1 Example . 53
4.5.3 Random access algorithm 53

4.6 Summary of the LZ-End parsing and random access 55

5 Evaluation methodology 57
5.1 Empirically evaluating compression algorithms 57

5.1.1 Compression performance evaluation criteria 57
5.1.2 Compression corpora . 59

5.1.2.1 Calgary corpus 59
5.1.2.2 Canterbury corpus 59

ix

5.1.2.3 Pizza & Chili corpus 59
5.1.2.4 Calibrated entropy strings 60

5.1.3 Compression corpora as a tool for evaluating universal
compressors . 60

5.1.4 Shortfalls of compression corpora when evaluating editing
algorithms . 61

5.2 Evaluation methodology used in this thesis 62
5.2.1 Generating calibrated entropy strings 62
5.2.2 A note on the consistency between calibrated entropy

strings . 64
5.3 Storage format for LZ phrases in this thesis 64
5.4 Conclusion . 66

6 Random edits in LZ-End data 67
6.1 Preliminary notes on editing LZ-End 67

6.1.1 Format of the parsing . 67
6.1.2 Defining the edit operation 68
6.1.3 Challenges of editing LZ-compressed data 69

6.2 Editing in LZ-End . 70
6.2.1 Identifying phrases to edit 70
6.2.2 Edit the target phrases 71
6.2.3 Identifying dependent phrases 72
6.2.4 Mending the parsing of dependent phrases 74
6.2.5 Adjust back-references 79
6.2.6 Replace the dependent phrases 81
6.2.7 Putting it all together 82

6.3 How edits affect the LZ-End parsing 83
6.4 Time and memory requirements 83
6.5 A note on rank and select queries 86
6.6 Conclusion . 86

7 LZ-Local: introducing a sliding window into the LZ-End pars-
ing 87
7.1 LZ-Local parsing . 87

7.1.1 Properties of the LZ-Local parsing 88
7.2 Evaluating the LZ-Local parsing 90

7.2.1 Canterbury corpus . 90
7.2.2 Calibrated entropy strings 100

7.2.2.1 Cause of the variance in compression ratios . . 112
7.3 Editing algorithm for LZ-Local 116

7.3.1 Incremental parsing . 117

x

7.3.2 Identify dependent phrases 118
7.3.3 Identify extended back-references 120
7.3.4 Adjust back-references 121
7.3.5 Formal editing algorithm for LZ-Local 122

7.3.5.1 A consideration of the editing algorithm 125
7.4 Evaluating the editing algorithm 126

7.4.1 Theoretical evaluation 126
7.4.1.1 Cost of LZ-Local edit, ignoring rank/select . 127
7.4.1.2 Cost of the rank and select operations 128
7.4.1.3 Cost of LZ-Local edit 129
7.4.1.4 Comparing compressed editing time to raw edit 130
7.4.1.5 Locality of editing 131

7.4.2 Empirical evaluation . 131
7.4.3 The position of the edit 132
7.4.4 Size of the edit . 133
7.4.5 Incremental edits . 145
7.4.6 Quality assurance for the empirical results 150
7.4.7 Summary of evaluation 150

7.5 Conclusion and future work . 151

8 Conclusion 153
8.1 Summary of contributions . 153
8.2 Final remarks . 154

Appendix: A note on alphabets 165

Chapter 1

Introduction

Wherever data is stored, the problem is considered: how can we store the
data efficiently? The field of information theory enables us to characterise the
source of the data, and then quantify how efficiently that data can be stored.
Importantly, this allows us to develop techniques that approach the limits of
efficient storage: These techniques are called data compression algorithms .

The literature review in this thesis formally describes what data compression
is, some of the techniques used to compress data, and the functions which
can be performed on compressed data. Some compression algorithms facilitate
pattern matching on the compressed data, and others allow random access to
the raw data from its compressed form. However, no currently-used universal
data compression algorithm allows the data to be edited in its compressed form:
editing the compressed data involves decoding the data, performing the edit
on its uncompressed form, and rebuilding the compression.

In this thesis, we distinguish between random access and local access. A
compression format is randomly accessible if it is possible to decompress
arbitrary symbols within a constrained number of steps. A locally accessible
compression format is randomly accessible, with additional constraints on the
memory requirements of performing the access.

This thesis uses these concepts to explore how to edit compressed data
without decompressing and then recompressing. To work towards this aim, we
focus on a class of data compression algorithms called the Lempel-Ziv (LZ)
algorithms. These algorithms are the most widely-used general-purpose data
compression algorithms and have been studied extensively for almost 50 years
[1].

This thesis focuses predominantly on a version of LZ compression developed
by Kreft and Navarro, called LZ-End , which is designed for random access
to the compressed data [2]. This compression algorithm is the starting point
of the research in this thesis, which seeks answers to the following research
questions:

2

1. Is it possible to use the random-access properties of LZ-End to allow
random edits to the compressed data?

2. Is it possible to create an effective LZ compression algorithm that also
supports local access?

3. Can one create a locally editable LZ compression?

This thesis answers these research questions, by providing the following
original contributions:

• The thesis proposes the first algorithm to perform random edits on data
compressed using a Lempel-Ziv compression format, LZ-End, using its
random access properties.
• A modification of the LZ-End compression format to allow local access.
The resulting compression format is referred to as LZ-Local in this thesis.
• An adaptation and extension of the editing algorithm for LZ-End, so that

it applies to the new LZ-Local format.
• Working implementations of the algorithms above.
• A proof that the editing algorithm for LZ-Local has a significantly reduced

time complexity compared to the LZ-End editing algorithm above.
• A further proof that editing LZ-Local compression has much-reduced

space requirements compared to that of editing LZ-End compression.
• A suite of 1300 tests demonstrating that the editing algorithms are correct,

i.e., that following an edit, a compressed string always decompresses to
the expected result.

The outline of the thesis is as follows:

• Chapter 2 introduces the fundamentals of information theory, in abstract
and general terms.
• Chapter 3 introduces the Lempel-Ziv compression algorithms, discussing

the main members of this family of compression formats, and the opera-
tions which it is possible to perform on the compressed data.
• Chapter 4 builds on the previous chapter, by focusing entirely on the
LZ-End compression format. This chapter describes the compression
in depth, including the data structures used to construct the LZ-End
parsing, and how it enables random access.
• Chapter 5 takes a lateral step away from LZ compression, to discuss the
methodology used to evaluate the compression and editing algorithms
in this thesis. As explained in the chapter, this is a necessary diversion,
as the current state-of-the-art evaluation methodologies do not lend
themselves well to evaluating an editing algorithm.
• Chapter 6 presents the first novel contribution of this thesis: an algorithm

to randomly edit LZ-End-compressed data. This answers the first research
question.

3

• Chapter 7 uses insights from the previous chapter to adapt the LZ-End
parsing so as to allow local access. We call this new compression format
LZ-Local. Chapter 7 adapts the editing algorithm from the previous
chapter to apply to LZ-Local compression and evaluates the editing
algorithm. This chapter answers both the second and third research
questions.
• Finally, Chapter 8 reflects on the contributions of this thesis and identifies

the next steps and future work.
We conclude this chapter by defining the notation used throughout this

thesis.

1.1 Notation

The notation used in this thesis falls into the following categories:
• functions,
• single variables,
• indexed variables,
• structured variables,
• mathematical notation, and finally
• complexity analysis and notation.

These are described below.

1.1.1 Functions

Functions are denoted in lowercase, followed by any arguments in parentheses.
For example, to calculate the Burrows-Wheeler transform of a string, we write:
bwt(some string).

1.1.2 Single variables

A single variable is denoted by an italicised, lower-case letter, such as i, x, and
so forth. The meaning of the variables will be declared in context and could
represent an integer or a symbol from an alphabet, for example.

1.1.3 Indexed variables

We refer to indexed variables using a single italicised uppercase letter. Individual
variables within the indexed structure will be referred to by the same letter
in lowercase, with the index value as a subscript. We apply this to notation
to both integer arrays and strings, with the declaration of the array/string
clarifying its contents.

4

Every string consists of symbols drawn from an ordered set called an
alphabet . We use blackboard bold uppercase letters to refer to alphabets. E.g.
A = {a, b, c, d}. The cardinality of the alphabet is represented as |A| = 4.

Arrays and strings are always indexed from 0.
For example, to refer to a string of three symbols, we write S = s0s1s2.
To denote a range of index values, we use comma-separated index values.

For example, t0,n refers to the sequence of n+ 1 variables, starting at t0.
When we explicitly write out a full array of integers, we write the array as

a comma-separated list enclosed in curly braces: e.g. A = {5, 8, 9, 2, 1}.
When we explicitly write out a string, we simply write out the string as it

appears. For example, we would write S = abracadabra rather than writing
the individual characters as a comma-separated list in curly braces. In this
case, the strings will be explicitly declared as such in their context.

Each array will have a property representing the number of elements in
the array: Φ.size represents the number of elements in array Φ, and S.size

represents the number of symbols in string S.
We use the double-pipe characters to represent string or array concatenation.

For example, if we have two strings S and T of length n and m respectively,

S || T = s0s1 . . . sn−1t0t1 . . . tm−1

Finally, we use ∅ or {∅} to refer to a string or array of zero length, respec-
tively.

1.1.4 Structured variables

Sometimes we want to refer to structured variables . This means that we have
a single variable, which has a set number of components, each of which has its
own meaning. We refer to a structured variable using lowercase Greek letters,
and enclose its comma-separated components in angular brackets 〈, , 〉.

For example, we represent a Lempel-Ziv phrase as π and say that this phrase
is of the form 〈b, l, s〉. We use dot notation to refer to individual components
of this phrase: e.g. π.b, π.l and π.s refer to the respective components of π.

We can have an array of structured variables, for example, Π = π0,n−1.
Finally, we use the Greek letter Λ to refer to a binary search tree.

1.1.5 Mathematical notation

We use bxc to refer to the floor of x, i.e., the largest integer less than or equal
to x. Similarly, dxe refers to the ceiling of x, i.e., the smallest integer greater
than or equal to x.

5

We use the superscript -1 to refer to the inverse of a function. For example,
if f(x) is a function, then f−1(y) is its inverse: f−1(f(x)) = x.

We use the Greek letter “rho” to represent the compression ratio of a string:
ρ(S) = 0.5 means that string S was compressed to half its size.

All logarithms in this thesis are base-2. Because of this, we leave the base
implied: that is log x = log2 x.

We use the convention that

0 log 0 = 0

.

1.1.6 Complexity analysis

We use the conventional definitions for the three sets of functions: Θ, O,Ω:

O(g(n)) = {f(n) : ∃ c, n0 > 0, such that 0 ≤ f(n) ≤ c× g(n) ∀ n ≥ n0}

Ω(g(n)) = {f(n) : ∃ c, n0 > 0, such that 0 ≤ c× g(n) ≤ f(n) ∀ n ≥ n0}

Θ(g(n)) = {f(n) : ∃ c1, c2, n0 > 0, such that

0 ≤ c1 × g(n) ≤ f(n) ≤ c2 × g(n) ∀ n ≥ n0}

6

Chapter 2

Background

This chapter introduces the concepts of information theory and data compres-
sion which are relevant to this thesis. The goal of this and the following chapter
is to provide the reader with a sufficient background in data compression in
order to understand the remainder of this thesis.

2.1 Entropy

Claude Shannon is generally recognized as the founder of the field of information
theory; however, he was in part inspired by the work of Ralph Hartley and
Alan Turing. Hartley proposed the first quantitative measure of information
[3]. During World War II, Alan Turing and I. J. Good built on Hartley’s
work while developing their cryptanalytic attack on the Enigma encryption
machines. They developed a unit of measure called the hartley , where one
hartley represents the information gained by correctly guessing one decimal digit
of an enigma encryption key. The design of the Enigma machines meant that
each decimal digit of the key which was correctly guessed brought more order
to the encrypted message, and the cipher text therefore could be decrypted to
an intermediate text which was less random than the cipher text.

During World War II, Turing visited the US Naval cryptanalysts where
Shannon worked. This likely inspired Shannon to develop his theory, which
was completed by the end of the war. When his work was declassified, Shannon
published The Mathematical Theory of Communication [4], which is the seminal
work in the field of information theory.

Before presenting Shannon’s key results, we first need to work through a
few definitions presented by Shannon in [4]:

Definition 2.1. An information source produces a message or sequence of
messages, where the messages share common properties.

8

Definition 2.2. A message may be of various types. For example:
(a) A string of symbols from an alphabet, such as text messaging over SMS,
or
(b) one or more functions of time, such as analogue radio or television
signals, or
(c) several functions of several variables, such as a 3-dimensional virtual
reality environment, which changes over time.

Definition 2.3. A discrete source is a source where both the message and
the signal are a sequence of discrete symbols. E.g. digital computers use
the binary alphabet A = {0, 1}.

Definition 2.4. A continuous source is one in which the message and
signal are both treated as continuous functions, e.g. radio or analogue
television signals.

Definition 2.5. A mixed source is one in which both discrete and continu-
ous variables appear.

Since computers process discrete information (bits), this thesis focuses
on discrete sources of information: specifically, strings of symbols from a
discrete, fixed-length alphabet (the first type of message listed in Definition 2.2).
Throughout this thesis, we use the term string or text to refer to a message of
this type.

The key results for discrete information sources outlined in Shannon’s book
can be summarized as follows:

• The entropy of a discrete source is defined to be

H = −
n∑
i=1

pi log pi

where there are n many possible symbols, and pi represents the probability
of the ith symbol occurring. H may be interpreted as the average number
of bits required at a minimum to uniquely encode each symbol in the
message.

9

• The Fundamental Theorem for a Noiseless Channel:
Let a source have entropy H (bits per symbol) and a channel have a
capacity C (bits per second). Then it is possible to encode the output
of the source in such a way as to transmit at the average rate C

H
− ε

symbols per second over the channel where ε is arbitrarily small. There
is no method of encoding which gives a higher transmission rate than C

H
,

without increasing the error rate ε accordingly.
• The Fundamental Theorem for a Discrete Channel with Noise:

For a discrete channel with capacity C and a discrete source with entropy
H, if H ≤ C there is a coding system such that the output of the source
can be transmitted over the channel with an arbitrarily small frequency
of errors. If H > C, it is possible to encode the source so that the error
is less than H − C + ε, where ε is arbitrarily small. There is no method
of encoding which gives errors less than H − C.

Figure 2.1: The function f(x) = −x log x

The definition of the entropy of a discrete source shows that the minimum
number of bits to encode each symbol depends on the probability of that
symbol occurring. As can be seen in Figure 2.1, the value of −x log x attains a
minimum when x is either close to 0 or close to 1. This means that the entropy
will be minimized when the probabilities of each symbol occurring are either
small (close to zero) or large (close to 1). When we are able to accurately
predict the next symbol, the probability of that symbol will be high (close
to 1), and the probabilities of all other symbols will be low (close to zero).
Predictable patters in the data thus minimise its entropy. This lower entropy
means that we are able to use fewer bits to encode each character, and we can

10

therefore store the data more efficiently. Thus, our ability to predict patterns
in the data determines our ability to compress the data.

2.1.1 Empirical entropy

The above definitions provide interesting insights from a theoretical perspective.
However, they have practical limitations: They assume infinite context and
length of the strings. This is clearly not the case in any real-world examples.

Therefore, we also have definitions for the order of the entropy. The kth-
order entropy Hk measures the entropy of a source when we have k ≥ 0 symbols
of context.

In the base case, H0 measures the entropy of a source with no context.
This is equivalent to counting the frequency with which each symbol in the
alphabet appears in the string, and using these frequencies as the only source
of information to guess the probability of the next symbol in S.

Definition 2.6. Let S be a string of n symbols taken from the alphabet
A = {α0, α1, . . . αh−1}, and let ni denote the number of occurrences of
symbol αi in S. Then the zeroth order entropy is defined [5] as

H0(S) := −
h−1∑
i=0

ni
n

log
(ni
n

)

Now, in practice, we usually use (a finite) context to predict the next symbol
in S:

Definition 2.7. Let S be a string of n symbols taken from the alphabet
A = {α0, α1, . . . αh−1}. Then for any string T (whose symbols are also
taken from A), let nTa denote the number of occurrences in S of the string
T followed by symbol a ∈ A. Let nT :=

∑
i nTai . Then the k-th order

entropy of the string S is defined [5] as:

Hk(S) :=
−1

n

∑
T∈Ak

(
h−1∑
i=0

nTai log
nTai
nT

)

This definition says that the value Hk(S) is the best compression ratio that
can be achieved when a string S is compressed with k symbols of context. No
compression algorithm can do better than this.

The optimal compression algorithm will therefore use − log nTa

nT
bits to

compress symbol a when it appears following the length k context T . This
definition leads to the following theorem [6, 5]:

11

Theorem 2.1. For any string S parsed into w distinct phrases:

w logw < S.size ×Hk(s) + w log

(
S.size

w

)
+ Θ(w)

If the string S is parsed into phrases which are not unique, the above result
does not hold. However, if each phrase appears at most m times, we get [6, 5]:

Theorem 2.2. For any string S parsed into w phrases, where each distinct
phrase is repeated at most m times:

w logw < S.size ×Hk(s) + w log

(
S.size

w

)
+ w logm+ Θ(w)

2.2 Defining data compression

Shannon’s formulae provide us with a target to aim for: if we know the
properties of our source, we know the optimum number of bits which can be
used to encode each discrete symbol. But how do we go about representing
the data in this optimal form? This is the problem which data compression
attempts to solve.

Definition 2.8. Data compression algorithms parse a stream of discrete
symbols from an alphabet A of fixed size, and produce an output which
attempts to represent the input stream using fewer bits.

The parsing must be reversible: This means that the input stream must
be recoverable (possibly with some errors) from the parsed output.

Definition 2.9. Universal data compression algorithms do not make any
assumptions about the properties of the input stream, but can apply to
any source.

Note that Definition 2.8 is more specific than it needs to be: continuous
sequences (such as analog audio) can also be compressed. However, for this
thesis, recall that we are interested only in digital information, where the infor-
mation sources produce streams of symbols from a finite alphabet. Therefore,
this suffices as a definition of data compression, as used in this thesis.

12

2.2.1 Lossy vs. lossless compression

In addition to the distinction between universal and format-specific compression
algorithms, there is another factor distinguishing compression algorithms. This
is the ability of the algorithm to fully recover the original data from the
compressed format of data. Lossless compression algorithms allow the retrieval
of the exact original data from the compressed form.

That is, for any valid input string S,

d(c(S)) = S

where c(S) is the compressed representation of S, and d() is the decompression
function.

A lossless compression algorithm can compress and decompress data any
number of times without producing any corruption in the string. Examples
where this is important include textual data or binary code, where corruption
of the data is not acceptable.

In some applications, however, retrieving the exact string is not important.
An example may be image data, where some corruption can occur without
causing any trouble. In fact, making small changes to an image may allow
significant compression gains. This is exactly what the JPEG discrete cosine
transform does. The design of this algorithm allows loss of data to achieve
maximum compression of the image with minimal noticeable loss of image
quality [7]. Such algorithms are aptly called lossy compression algorithms .

One downside of lossy compression algorithms is that repeatedly decom-
pressing and recompressing the data will result in significant deterioration in
the data. In the JPEG example, doing so will result in an image of lower
quality each time the image is recompressed. However, this is not usually an
issue for images, since the recompression only needs to happen when editing
the data. Since the data often remains unedited, or is only edited once, this is
often not an issue. For this reason, professional photographers often edit the
raw image data before it has been compressed. They then compress the images
only after the edits have been made.

It is important that a lossy compression algorithm has a bound on the
errors which it introduces. We do not discuss this further, as this thesis focuses
on universal, lossless compression of messages from discrete sources.

2.3 Computing the complexity of a string

Shannon’s entropy laws have shown us that the size of the optimal representation
of a string is tied to the string’s entropy. Here, entropy can be thought of as

13

the string’s complexity . It turns out that computing the complexity of a string
can give us insight into computing the compressed representation of a string.

2.3.1 Kolmogorov complexity

Kolmogorov defined the complexity of a string as “the length of the shortest
program which can generate the string” [8]. This is not a computable measure
of string complexity; however, it does allow us to intuitively understand what
the difference is between a “complex” string and a “simple” one.

This measure of complexity also highlights an important point: Increasing
the length of a “simple” string does not affect its complexity. For exam-
ple, the string abcabcabcabc has (almost) identical complexity as the string
abcabcabcabcabcabcabcabcabcabcabcabc. The only difference in complexity
is that we would expect the second string to require more bits to represent the
number of repeated abc’s.

Again, this has not answered our underlying question of "how do we compute
this?". However, it does highlight the utility of Lempel-Ziv complexity, which
is computable.

2.3.2 Lempel-Ziv complexity

Lempel and Ziv developed an algorithm which parses a string and outputs a
deterministic measure of its complexity [1]. This was a monumental achievement,
as it allowed us to compute the complexity of arbitrary strings.

The LZ parsing algorithm takes as input a string S of symbols from an
alphabet A, and produces as output an array of phrases Π. Each phrase
represents one or more symbols of S, and consists of:
• a back-reference pointer b ∈ N,
• a length l ∈ N, and
• an innovation symbol i ∈ A.

The back-reference b points back to a previous symbol, the length l refers to
the length of the string pointed to by the back-reference (possibly of length 0),
and the innovation symbol builds upon the sequence of symbols referred to by
the 〈b, l〉 pair.

Given a string S of n symbols, let’s say that the first i < n symbols have
been parsed into j ≤ i phrases π0π1 . . . πj−1. Then the phrase πj is constructed
by finding the longest prefix of si,n−1 which starts in the previous part of the
string s0,i−1. Say that the longest prefix starts at symbol sk, where k < i,
and that the length of the phrase is m < n − i. In this case, the phrase
πj = 〈i−k,m, si+m〉. We then set i := i+m+1, increment j by 1, and proceed
until i = n. Note that the back-reference component of the phrase, i− k is a

14

relative offset, which counts the symbols in S between the start of the current
phrase being encoded, and the start of the back-referenced substring.

The length component l of the LZ phrase may be 0, in which case no
previous symbols are referenced, and the phrase represents only the symbol
stored in the i component of the phrase. This occurs exactly once for each
distinct symbol in the text. After a distinct symbol has already been processed
by the LZ parsing algorithm, any occurrence of that symbol will have at least
one symbol to back-reference.

For an example of constructing the LZ parsing, see Section 3.1.
The innovation symbols of the LZ phrases allows the parsing to “learn”

previously-unseen symbols of the alphabet. This “learning” is done without
any prior knowledge of the source of the string. This generality makes the
LZ parsing algorithm universally applicable to strings from any source, with
symbols drawn from any alphabet.

This parser matches our definitions of entropy: The 〈b, l〉 pairs point back
to previously-seen “contexts”, while every innovation symbol is a symbol in a
new context.

Lempel and Ziv defined the complexity of a string as the number of phrases
which a string S is parsed into. This is a number ≤ S.size.

Because the LZ parsing of a text provides a measure of the text’s complexity,
it can also be used to generate a text of pseudo-random characters, with
calibrated complexity [1]. chapter 3 discusses how to use this as the basis for
compression.

2.4 Optimal compression

Definition 2.10. A parsing algorithm is coarsely optimal if the compression
ratio ρ(S) differs from the k-th order empirical entropy Hk(S) by a quantity
depending only on the length of the string and this difference approaches
zero as the length increases [2, 5]. More formally:

∀ k ∃ fk, lim
n→∞

fk(n) = 0,

such that for every string S,

ρ(S) ≤ Hk(S) + fk(S.size)

This is an important definition, and an important trait for a compression
algorithm to have. How quickly the function fk(n)→ 0 as n→∞ is important
for practical applications, and will differentiate the performance of two coarsely

15

optimal algorithms. As a general rule of thumb, long strings will compress
better than short ones: This is because the longer the string is, the more likely
the function fk(n) is to approach 0.

2.5 Types of compression

This section introduces two families of compressors: statistical coders and
dictionary-based compressors. Note that the two kinds can be “chained”: for
example, it is common to parse a string with a dictionary-based compressor,
and then represent that compressed output more concisely using a statistical
coder.

2.5.1 Statistical coding

Statistical coding algorithms use properties of the input message to choose
succinct encodings for frequently-occurring symbols. For example, if the source
of our message is English text, we know that the letter ‘e’ will occur much
more frequently than the letter ‘q’. A statistical encoder will therefore use a
concise encoding of the letters ‘e’, and a more verbose encoding to represent
the infrequent occurrences of ‘q’. Examples of statistical encoders include
arithmetic coding [9], Huffman coding [10], prediction by partial matching
(PPM) [11] and asymmetric numeral systems [12].

Statistical coders can be static or adaptive. Static coders use a table which
define the statistical properties of the message source. Adaptive coders may
have some initial properties, but will update this as the message is parsed.
Adaptive coders can therefore be effectively applied as universal compressors.

2.5.2 Dictionary-based compression

Another major class of compression techniques is to replace substrings of your
text with references to a dictionary of strings. These are called dictionary com-
pressors . The dictionary can be static (where the dictionary is pre-populated
with substrings which we expect to frequently occur), or adaptive. In the adap-
tive case, the dictionary gets populated with frequently-occurring substrings as
we process the text we wish to compress.

A large class of dictionary compressors are grammar-based compression
functions. These functions replace the text with a context-free grammar
which generates the text we wish to compress. The goal is that the grammar
is represented by fewer bits than the string itself, in which case we have
compressed the string. Commonly the grammar is then further encoded using,
for example, arithmetic coding. Many universal compression algorithms are

16

grammar-based, such as the Lempel-Ziv family of compressors [1], Sequitur
[13] and Re-Pair [14] compression algorithms, and more.

2.6 Using compressed data

Once the data has been compressed, what can we do with it? That is, what
operations can we carry out on the compressed data, and in what situations do
we need to decompress the data in order to perform the desired operations? In
the cases where we need to decompress the data, how much of the data do we
need to decompress? This section summarises the current literature’s answers
to these questions.

2.6.1 Compressed pattern matching

The first operation we consider is pattern matching. Do we need to decompress
the string in order to search for a substring?

This problem was first solved by Amir and Benson in [15], whose algorithm
applied to run-length encoding (a naïve algorithm not discussed in this the-
sis). Many methods to pattern match in compressed strings quickly emerged,
applying to many different compression algorithms: Lempel-Ziv compressors
[16, 17, 18, 19], Huffman coding [20], and Sequitur [21], to give just a few
examples.

2.6.2 Random access codes

Many compressors require decoding the text sequentially from start to end: This
is because decoding any symbol from the compressed data requires decoding
potentially all symbols which precede it. Codes which allow random access do
not have this constraint.

Definition 2.11. Random access codes allow decoding of an arbitrary
symbol of text with limits on the number of other symbols which need to
be decoded or accessed in order to retrieve the desired symbol.

2.6.3 Difference between local decoding and random ac-

cess

In this thesis, we differentiate between local decoding and random access , where
locally decodable codes are random access codes with the added constraint that
the symbols which need to be decoded in order to decode our target symbol
are within a limited distance (measured in numbers of symbols) of the target

17

symbol. This means that there is a specified maximum amount of memory
needed in order to access the encoded symbol, so that the whole compressed
text does not need to be loaded into memory to perform the decoding (which
may be required in the case of random access codes). The codes defined in
[22, 2, 23, 24] are all random access codes.

In addition, we apply the same distinction between randomly editable codes
and locally editable codes : randomly editable codes are codes that can be edited
in some time bound that is less than reconstructing the entire code. Locally
editable codes are randomly editable codes with the added constraint that any
part of the code which must be edited lies within some fixed distance of the
position in the code which we are editing.

There are many randomly-accessible compressed codes, and Chapter 3
discusses specific examples which are relevant to this thesis.

In addition to specific examples, there are some notable results, summarised
below:

• Jansson et al. developed a model for compressed random-access memory,
called CRAM [25]. This structure uses two code tables to compress
the string, and maintains a data structure over this compressed string
to support efficient random access, as well as facilitating replacement,
insertion, and deletion of symbols.
• Tatwawadi et al. provide a general scheme to convert any universal
compressor so as to allow finite random access in constant time [23].
This work built on that of Mazumdar et al. [26]. While interesting from
a theoretical perspective, the constant access time is fairly large. The
scheme achieves random access by indexing and breaking the input string
into a series of blocks, each of which is compressed (using any universal
compression algorithm) separately of the other blocks.
Breaking up the input text into blocks like this has a negative impact on
the compression, and this negative impact is related to the size of each
block: Recall the formula in Definition 2.10, and how the compression
ratio ρ(S) is related to the entropy of the source plus some function
inversely related to the length of the string we are compressing. Therefore,
to get satisfactory compression, each block must be large. However the
constant term of the access operation cost is related to this block size.
The novel aspect of this paper is therefore the data structure which breaks
up the input message into blocks, and allows constant-time access to the
index values of the symbols contained within each block. This is achieved
using a compressed bit-vector of Buhrman et al. [27].
• Bille et al. showed that any grammar-based compressor can be modified

to allow logarithmic-time random access to the compressed data [28].

18

2.6.4 Editing compressed data

Zhou et al. developed a method using length-prefix compression which allows
efficiently adding to, reading from, or editing arbitrary sequences of a string
independently of the remainder of the string [29]. However, this involves
treating the string as a number of sequences, each of which is compressed
independently of the others. The innovation is in how the sequences are stored
in a neighbour-based scheme which allows efficiently editing one sequence
(possibly increasing its size).

Vatedka and Tchamkerten provide a method which allows local decoding and
updating of compressed data [30, 31]. This is similar to the work of Tatwawadi
et al.’s random access method, and Zhou et al.’s method, in that it is based on
splitting the input string into blocks of fixed length.

2.6.5 Compressed text index structures

A text index is a structure which attempts to store a string, so as to facilitate
fast pattern matching. A compressed text index is one where the structure is
stored in a compressed format. One of the most important compressed indexes
is the FM-index, created by Ferragina and Manzini [32].

The FM-index, which stands for “Full-text index in Minute space”, was the
first text index where the space requirements were a function of the entropy
of the text. The FM-index can store a text T of length n in O(Hk(T)) + o(n)

bits, and support searching for the x occurrences of a pattern P of length m
with a time complexity of O(m+ x logε n) for any fixed ε > 0.

Compressed text indexing is a very rich field [33, 34, 35, 36]. Some index
structures allow edits to be made to the data [37]. However, for this thesis, we
do not discuss it further, since the compressed index structures use methods of
breaking up the text prior to compressing, similar to the work of Vatedka and
Tchamkerten, and Tatwawadi et al. mentioned above.

In this thesis, we are looking at editing data in compressed form, where
the compression function supports the edits, without additional data structures
imposed on top of the compressed representation.

2.7 String attractors

Kempa and Prezza defined a string attractor , which is “a subset of the string’s
positions such that all distinct substrings have an occurrence crossing at least
one of the attractor’s elements” [38]. The authors showed that dictionary-based
compressors approximate the smallest possible attractor of a given string, and
show that string attractors support random access in optimal time.

19

2.8 Conclusion

This chapter has introduced data compression concepts, in the most general
sense. We have discussed functions that can be applied to compressed data,
and the limitations of these functions.

In the next chapter, things get more concrete: we introduce the Lempel-Ziv
family of compression functions, which are based on the notion of LZ-complexity
(Section 2.3.2).

20

Chapter 3

The Lempel-Ziv family of
compressors

This chapter demonstrates how the original Lempel-Ziv parsing introduced
in Section 2.3.2 applies to data compression. We explain the features of the
compression algorithms based on this parsing, and how they relate to the thesis’
goal of locally editing compressed data.

Unlike the previous chapter, which focused on theoretical and general
concepts, this chapter provides concrete examples of algorithms and their
applications.

3.1 Computing the LZ complexity

The previous chapter, introduced LZ complexity as an abstract concept. This
chapter starts by providing an example of how to construct the parsing. This
is important, since the remainder of the thesis depends so heavily on a strong
understanding of LZ parsing.

Example 3.1. Let us compute the complexity of the string S = abracadabra.
Recall that this means representing S as phrases of the form 〈b, l, i〉. We build
each phrase by searching for the longest prefix of the as-yet uncompressed part
of the string, which starts in the so-far compressed part of the string.

For our example string: When we parse the first phrase, we have no symbols
to back-reference. Thus, the back-reference and length components of the first
phrase are both 0, and the innovation symbol component is the first symbol of
our string, a.

At this point, our situation is as such:

S = abracadabra

Π: π0 = 〈0, 0, a〉 ← a

22

We highlight the symbols and their corresponding phrase(s) which have
been processed since we last showed the state of the process.

To compress the next symbol, we are looking for the longest prefix of the
unprocessed part of S which starts in the processed part of S. The start of the
unprocessed part of S is a b, which is a symbol we have not encountered yet:
again, there can be no back-reference. Likewise for the next symbol, r. After
parsing these two symbols, our state is:

S = abracadabra

Π: π0 = 〈0, 0, a〉 ← a

π1 = 〈0, 0, b〉 ← b

π2 = 〈0, 0, r〉 ← r

We highlight the two phrases we have processed since the state of the
process was last printed.

At this point, we have processed s0,2, and the next symbol to parse is s3.
We have seen the symbol a once before, at s0. Therefore, the back-reference
of the next phrase is 3. The length is 1, since only one symbol in s0,2 (the
processed string) matches our prefix of s3,10 (the unprocessed string). Encoding
this phrase yields:

S = abracadabra

Π: π0 = 〈0, 0, a〉 ← a

π1 = 〈0, 0, b〉 ← b

π2 = 〈0, 0, r〉 ← r

π3 = 〈3, 1, c〉 ← ac

To parse the next phrase, we look at symbol s5, which is an a again. We
have now seen this symbol twice, at s0 and s3. Neither of these occurrences are
followed by a d, so either can be used to encode a back-reference of length 1. We
choose by default the closest option, so that we can encode the back-reference
using as few bits as possible.1

S = abracadabra

Π: π0 = 〈0, 0, a〉 ← a

π1 = 〈0, 0, b〉 ← b

π2 = 〈0, 0, r〉 ← r

π3 = 〈3, 1, c〉 ← ac

π4 = 〈2, 1, d〉 ← ad

The remaining symbols to parse are s7,10 = abra. We have seen this sequence
of symbols before, at s0,3. We therefore encode this string as 〈7, 4, ∅〉, where ∅

1 When constructing the LZ parsing of a string, there are often multiple phrases which
could be back-referenced. Although in this thesis we choose the closest phrase, this is a naïve
approach. See [39] for an alternative, more concise, method of encoding back-references when
there are multiple valid options.

23

is a symbol which does not appear in the alphabet, to show that our string ends without an
innovation symbol component. Our final parsing is:

S = abracadabra
Π: π0 = 〈0, 0, a〉 ← a

π1 = 〈0, 0, b〉 ← b
π2 = 〈0, 0, r〉 ← r
π3 = 〈3, 1, c〉 ← ac
π4 = 〈2, 1, d〉 ← ad
π5 = 〈7, 4, ∅〉 ← abra

The parsing consists of 6 phrases, so we can say that the LZ-complexity of the string S
is 6.

Remark 3.1. Note that the back-references used in this example are relative pointers.
That is, phrase π3 = 〈3, 1, c〉 pointed to a symbol, 3 symbols prior to phrase π3. We
could have used absolute pointers, where the back-reference refers to the index in S of
the symbol being referenced. Section 3.2 explains why we used relative back-references.

The remainder of this chapter describes prominent compression algorithms
which are based on LZ parsing. From this point on, we refer to the LZ parsing
as LZ-76, referring to the year that the original paper defining the LZ parsing
was written [1].

3.2 LZ-77 compression algorithm

The LZ-77 compression algorithm is an adaptation of the original LZ-76 parsing.
The characteristic that makes LZ-77 a compression algorithm is that it places
a limit on the size of each phrase, and this limit is related to the entropy of
the string being parsed.

Note that the size of the LZ parsing is affected by the number of phrases,
and the size of each phrase. The size of each phrase is determined by the
number of bits required to store the 〈b, l, i〉 tuples. The number of bits for the
innovation symbol is constant (since the alphabet size for a text is constant).
The size of the back-reference and length, however, are not constant. The
number of bits required for the length of a phrase scales logarithmically with
the number of symbols represented by that phrase; therefore, it is beneficial
to not limit the size of the length component of a phrase. It is beneficial to
limit the size of the back-reference: a longer back-reference will not add to the
efficiency of the encoding compared to a shorter back-reference.

Thus, a compression algorithm built on the LZ-76 parsing will seek to
maximise the efficiency of each bit required to store the back-reference. LZ-77
effectively limits the size of the back-reference component of each phrase, by
restricting the search for a back-reference to a fixed-length sliding window of
symbols which precede the current parsing position [40]. That is, for a window

24

size w ∈ Z, all phrases’ back-reference components must be ≤ w. Recall that
LZ-76, on the other hand, has no restriction as to how far back a back-reference
may point.

The sliding window in LZ-77 essentially means that each symbol of a string
is parsed with w symbols of context, where w is the window size. The sliding
window places a constant limit on the number of bits required to store the
back-reference component of the LZ phrase (dlog(w)e). This adaptation of the
LZ-77 algorithm works well for compression in texts where recent patterns are
likely to be more important than patterns learned further back in the parsing.

Note that for the sliding window to limit the size of the back-references,
we need to use relative back-references. Absolute references would still grow
logarithmically with the size of the input string.

Remark 3.2. Wyner and Ziv showed that the LZ-77 compression ratio
approaches the source entropy as the window size approaches infinity [41].

Example 3.1 applies directly to LZ-77, as long as the window size is greater
than 11. However, that example does not illustrate an important aspect of
the LZ parsing – self-referencing phrases. This refers to the fact that while a
phrase’s back-reference must start in the already-compressed part of the text,
there is no requirement that they end in the already-compressed part of the
text: If the length of the phrase is longer than the back-reference, then the
phrase starts to refer to itself. Consider the example text S = ababababab.
The first two phrases are compressed exactly as the first two symbols in our
previous example:

S = ababababab

Π: π0 = 〈0, 0, a〉 ← a

π1 = 〈0, 0, b〉 ← b

Now to reiterate, the LZ-77 compression looks for the longest prefix of the
uncompressed part of the text, which starts in the compressed part of the text.
In our case above, we are looking to compress the symbols s2,9, and we are
looking for the longest prefix of these symbols which starts in s0,1, but which
may “spill over” into s2,9. In our example, this happens, and we compress the
rest of the text in a single, self-referencing phrase!

S = ababababab

Π: π0 = 〈0, 0, a〉 ← a

π1 = 〈0, 0, b〉 ← b

π2 = 〈2, 8, ∅〉 ← abababab

Each symbol in phrase π2 references the symbol 2 index positions prior.
For the first two symbols of π2, the referenced symbols are encoded in phrases

25

π0 and π1. For the next 6 symbols, the referenced symbols occur in phrase π2

itself. This is allowed, because we are still able to decode the text correctly, as
below.

Example 3.2. Decode the LZ-77 phrases Π:
Π: π0 = 〈0, 0, a〉

π1 = 〈0, 0, b〉
π2 = 〈2, 8, ∅〉

Let D refer to the decoded text. Initially, D is an empty string:
D = ∅

Decoding the first two phrases is simple – since there are no back-references,
we write the symbol component of the phrases out directly, appending these
symbols to D. The most recently decompressed phrases are highlighted:

Π: π0 = 〈0, 0, a〉
π1 = 〈0, 0, b〉
π2 = 〈2, 8, ∅〉

D = ab

At this point, we have symbols d0,1, and we wish to decompress symbol d2.
All of the information required to extract the remainder of the text is in phrase
π2. This phrase tells us that each symbol di ← di−2. This operation is to be
repeated 8 times. Since d0 = a, we get d2 = a. Similarly, we copy the value
of d1 into d3 and get d3 = b. Then, d4 ← d2 = a, which is the first symbol
encoded by our current phrase π2. Continuing this length = 8 times retrieves
the decoded text:

Π: π0 = 〈0, 0, a〉
π1 = 〈0, 0, b〉
π2 = 〈2, 8, ∅〉

D = ababababab

3.3 LZ-SS

Storer and Szymanski optimised the LZ-77 compression algorithm by solving
the problem that short LZ phrases require (sometimes significantly) more bits
than the raw symbols themselves. Their adaptation of LZ-77, called LZ-SS,
encodes each phrase either as a usual LZ-77 phrase or as a “run” of raw symbols
[42]. The parsing uses a flag to distinguish between these two cases. A phrase
consists of the form 〈back -reference, length〉 (note the absence of the innovation
symbol) while a run of raw symbols consists of a length value, followed by the
corresponding number of innovation symbols.

This flag adds an additional bit to the size of each phrase. However, in many
use-cases this is offset by the more efficient encoding of short phrases. What is
more, short phrases which are adjacent to one another can be “merged” into

26

one run of raw symbols, which is an additional efficiency. This is especially true
when compressing the start of a string, where the first symbol will necessarily
be encoded as a single phrase.

This begs the question: how does the LZ-SS parsing decide which format of
phrase to use? The answer is to set a minimum phrase length m – any LZ-77
phrase whose length is less than m gets encoded as a run of innovation symbols.
LZ-SS parses the LZ-77 phrases whose length is ≥ m as 〈back -reference, length〉
tuples.
Example 3.3. Let us again compress the string S = abracadabra, this time
with the LZ-SS parsing, with minimum phrase length m > 2.

S = abracadabra

flag back-reference length symbols raw representation

Π: π0 = 〈0, 7, abracad〉 ← abracad

π1 = 〈1, 7, 4〉 ← abra
We see that the format of the LZ phrases has changed compared to that of

LZ-77 – the LZ-SS phrases change format based on the value of the 〈flag〉. If
the flag is 0, then the next field is a length value l, followed by a string of l
symbols. If the flag was a 1, the next value is a back-reference, followed by a
length l.

A notable contribution of this work is that the LZ-SS algorithm outperforms
LZ-77 compression in many cases. Additionally, the LZ-SS format can be
computed in linear-time (which had not previously existed for LZ-77) [42]. This
is because a hash table can be used to quickly search for phrases which match
the minimum required phrase length; when no match is found (in constant
time), the phrase is encoded as a run of raw symbols.

3.4 LZ-78 compression algorithm

The year after Lempel and Ziv designed their LZ-77 algorithm, they designed
a new version which used a dictionary, instead of a buffer. This algorithm
was called LZ-78 [43]. The LZ-78 phrases are ordered pairs of the form
〈index , innovation symbol〉. The 〈index 〉 represents the index in the dictionary
of the phrase matching the longest prefix of symbols which remain to be encoded.
The 〈innovation symbol〉 represents the symbol which comes after that longest
phrase pointed to by the index.

The differences between LZ-77 and LZ-78 are therefore:
1. LZ-78 uses a dictionary, as opposed to the sliding window of LZ-77. The

two are functionally similar, except for the fact that the dictionary of
LZ-78 consists of codewords, which are therefore compressed. Thus, LZ-78

27

should be able to store the dictionary more efficiently than the window
of LZ-77.

2. The length of a sequence for LZ-77 can grow very quickly, as shown in
Section 3.1. LZ-78, however, can only increase the length of a pattern by
one symbol at a time.

3. LZ-78 phrases cannot self-reference.
Table 3.1 shows the LZ-78 encoding of the string “abracadabra”, which is

the same string which we parse in Example 3.1 using the LZ-76 parsing.

Table 3.1: The LZ-78 encoding of a message

Dictionary Symbols Encoded
index pointer symbol
0 -1 ∅ ∅
1 0 a a
2 0 b b
3 0 r r
4 1 c ac
5 1 d ad
6 1 b ab
7 3 a ra

As can be seen by comparing the above example in Table 3.1 to the encoding
of the same phrase using LZ-77 in Section 3.1, the encoding of LZ-78 has the
inefficiency introduced by only increasing the length of each phrase by one
symbol at a time. There is the additional inefficiency introduced when a
frequently occurring phrase which could be encoded as a single codeword is
split at a boundary of two codewords. This can be seen in Table 3.1, where
the substring “abra” occurs twice, but has still not been recognized as a phrase
by the dictionary. This would not be the case in the LZ-77 algorithm, where
the longest matching phrase in the preceding buffer is used as the codeword.

Another major difference between LZ-77 and LZ-78 is decoding: For LZ-77,
decoding involves a sequence of array lookups. This is therefore significantly
faster than compression. Additionally, decoding LZ-77 can be done in constant
space, equivalent to the size of the sliding window. For LZ-78, however, decoding
is just as involved as compression: both involve building the dictionary of the
entire text from scratch, and the memory requirements are related to the length
of the raw string.

One might ask then, why did LZ-78 become so popular? The answer is
in part because the original LZ-77 paper did not present an efficient means
of constructing the parsing [40]. The methods we use today to efficiently
constructing the parsing, such as using a hash table [42, 44], suffix arrays
[45, 35], longest previous factor array [46], or Burrows-Wheeler transform with

28

backward search [47], either did not exist at the time, or had not yet been
applied to LZ parsing. The LZ-78 parsing, on the other hand, came with a
dictionary that could be stored in a trie, facilitating fast encoding of the next
phrase [43].

3.5 LZW compression algorithm

Six years after the LZ-78 algorithm was published, Terry Welch developed
a similar parsing [48], called LZW. The main similarities between the two
parsings were that both build up phrases incrementally, where each phrase is
always 1 symbol longer than the phrase it references. However, while LZ-78
phrases consist of ordered pairs of the form 〈index , innovation symbol〉, an
LZW phrase is simply an index.

LZW achieves this by starting with a dictionary of phrases which is fully
populated with the alphabet of the source. One is able to infer which symbol
is innovating on the context of a phrase by examining the first symbol encoded
by the following phrase in the parsing.

3.6 Challenges when locally decoding and editing

in LZ

One feature which these four types of LZ parsing (LZ-77, LZ-78, LZ-SS, and
LZW) all share is that they are parsed left-to-right, in a greedy fashion. This
makes local decoding and editing difficult: In the case of LZ-77 and LZ-SS,
decoding a phrase involves reading any phrases which it back-references, of
which there may be a large number. In the worst case, reading a phrase may
involve decoding all phrases which precede it. In the case of LZ-78 and LZW,
decoding a phrase involves reconstructing the dictionary to its state when the
phrase was parsed. This means that decoding a phrase involves essentially
decoding all phrases which precede it.

In all cases, editing a phrase is difficult, since changing a single phrase may
alter the string which any subsequent phrase decodes to.

In the case of LZ-78 and LZW, if we store the dictionary/trie with the
compressed parsing, we will be able to perform random access [49]. This
severely degrades the compression, however, since the trie contains as many
nodes as there are phrases in the LZ-78 parsing.

29

3.7 Searching in LZ phrases

The format of the LZ compressed phrases allows bespoke pattern matching
algorithms to search over the compressed data. This is especially useful when
building a self-index , which is a structured directory of compressed files, where
each file can be decompressed independently of the others. Searching over this
compressed index is very useful, as it allows the decompression of only those
files which contain the desired pattern, rather than having to decompress the
entire file collection.

3.7.1 Searching in LZW

The first compressed pattern matching algorithm for LZ-compressed data was
developed for LZW [50]. This algorithm was the first almost-optimal pattern
matching algorithm for an adaptive compression scheme. Its limitation was
that the algorithm only found the first occurrence of the pattern. However,
the algorithm did facilitate a tunable time-memory trade off [50].

Gasieniec and Rytter later developed an improved method for pattern
matching in LZW-compressed data [17], which identified all occurrences of
the pattern in the text. Tao and Mukherjee further improved this to support
queries for multiple patterns [51].

3.7.2 Searching in LZ-77 and 78

Navarro and Raffinot then developed a general pattern-matching algorithm for
LZ-compressed data [19]. The key feature of this technique is that it applies
to all types of LZ parsing; the authors achieved this by abstracting away the
implementation details of the LZ phrases, and developing an algorithm that
applies to any “block-based” parsing. A block-based parsing is where the raw
string is parsed into a series of blocks, each of which represents one or more
symbols of the input string. Since any type of LZ phrase matches this definition
of a “block”, the pattern matching algorithm applies to all LZ parsings.

When applied to LZ-78, the pattern matching algorithm was twice as fast
as decompressing and performing pattern matching on the raw data [19]. This
is partly due to LZ-78 parsing being more conducive to fast pattern matching
than LZ-77, and partly due to the high cost of decompressing LZ-78 compared
to LZ-77’s linear-time decompression.

Navarro and Tarhio later applied Boyer-Moore pattern matching to LZ-78
[52].

30

3.8 Random access in LZ

This section summarises the few variants of LZ parsing which allow random or
local access.

3.8.1 LZB compression algorithm

The LZB algorithm was developed by Mohammad Banikazemi in 2009 [53]. At
the time, it was the first LZ parsing which allowed local decoding of compressed
data. Note that this is a different algorithm to the LZB algorithm described in
Tim Bell’s PhD thesis [54].

The LZB parsing is based on the LZ-77 parsing; the local access comes
from the insight that each symbol in LZ-77 parsing is either stored in the
innovation symbol component of a phrase, or references (directly or indirectly)
the innovation symbol component of a previous phrase. Any symbol can be
decoded as follows:
• If the symbol occurs in the innovation symbol component of a phrase, it

is trivial to read the symbol directly.
• If the symbol is encoded by the back-reference component of a phrase,

then identify the back-referenced phrase. Recursively decode the symbol
from this back-referenced phrase; it will either be the innovation symbol
of this phrase, or it will be encoded as a back-reference to a previous
phrase.

The problem with this access method is that there is no tight bound on the
number of recursive back-reference steps: The only bound on the number of
steps in this method is the number of symbols which precede the symbol we
wish to decode. For this reason, we cannot claim that the LZ-77 parsing is
randomly accessible.

The LZB parsing solves this problem by maintaining a “sliding gate” over
the compressed data. As LZB parses each symbol, the algorithm tracks the
distance between each symbol which is encoded in the back-reference component
of a phrase and its raw encoding (that is, the phrase whose innovation symbol
encodes the symbol). If this distance is greater than some limit, then the
algorithm finds a different encoding of the phrase. The maximum distance limit
is referred to as the sliding gate of the parsing algorithm. Any encoded symbol
can be decoded by accessing other symbols which are at most the sliding gate
limit from the current symbol. Thus, the LZB random access is in fact locally
decodable, since the number of compressed phrases required to access a symbol
is constant-bounded.

Unfortunately, the LZB parsing does not compress concisely at all [2]. This
means that it is of interest only from a theoretical perspective. Full credit

31

should be given to the author, however, for providing the first LZ parsing which
is locally or randomly accessible, which enabled the work of others in this area.

3.8.2 LZ-End compression algorithm

In 2010, Kreft and Navarro developed LZ-End, another adaptation of LZ-77,
which allows random access to the compressed symbols [2].

The LZ-End parsing is based on LZ-77. In fact, the definitions are identical,
except that the LZ-End parsing applies the additional constraint that any
back-reference ends at the innovation symbol component of a previous phrase
[2]. It is this requirement which allows LZ-End to retrieve arbitrary symbols in
linear time.

Kreft and Navarro used their first version of LZ-End in 2010 [2] to build a
self-index [35]. Later variations of LZ-End allow parsing in linear time [55] and
compressed space [56].

The LZ-End algorithm is foundational to the remainder of this thesis, and
is covered in much greater deal in Chapters 4, 6 and 7.

3.8.3 Random access in LZ-78

In 2013, the LZ-78 algorithm was adapted by Dutta et al. to allow random
access to the compressed symbols [49]. The compression ratio of the data as
compared with the original LZ-78 algorithm was increased by at most a factor
of (1 + ε), and the access time to an arbitrary symbol is O(log n+ 1/ε2), where
n represents the length of the compressed string.

Recall Section 3.6, which pointed out that storing the LZ-78 trie explicitly
allows random access to the compressed symbols. Dutta et al. made use of
this feature, and achieved random access by constructing a sparse Transitive
Closure (TC) spanner on the LZ-78 trie. The sparsity of this transitive closure
is related to the parameter ε in the compression ratio calculation.

The TC spanner allows us to easily infer the relationship between any two
nodes in the trie. Essentially, this builds a smaller trie based on the LZ-78
parsing trie, and this trie is stored with the compressed data. This places a
constant bound on the number of steps from a phrase to the nearest node
which is included in the TC spanner, which can then be used to construct a
short path to any other relevant nodes [49].

Sadakane and Grossi developed a separate approach to locally decodable
LZ-78 compression, in the form of a concise representation of the LZ-78 trie.
Storing this trie allows local decoding of arbitrary symbols [57]. The approach

32

used to concisely represent the LZ-78 trie has been generalised to other data
structures [57].

González and Navarro obtained the same result, using a simpler scheme
[58], and this result was extended in [59] to apply to the Burrows-Wheeler
transform of the string.

3.9 Size of sliding window and its effect on

compression ratio for LZ parsers

For LZ-77, and similar compression functions, the size of the sliding window
must be chosen carefully: A large sliding window allows more possible phrase
matches, and one would therefore expect to find a longer phrase match on
average. However, compressing with a larger sliding window typically comes
with a larger computational cost.

A larger window size also means that the back-reference pointer has a greater
possible maximum value. This means that more bits are required to store the
back-references for larger window sizes. We do not consider the number of
bits for the length of the phrase, as the number of bits scales logarithmically
with the number of symbols compressed by the phrase. Longer phrase lengths

Figure 3.1: The mean compression ratio achieved by LZ-77 on strings with 10
different entropy calibrations, for various window sizes. We see that compression
ratios between 10 and 90% are represented by these 10 entropy calibrations.

33

therefore are not expected to have a negative effect on compression ratio.
Figure 3.1 shows the effect which the size of the sliding window has on the

compression ratio for files of different calibrated entropy. To demonstrate this
effect, we use the set of calibrated entropy strings introduced in Section 5.2.1.

Larger window sizes make an impressive improvement to the compression
of high entropy strings. This is because more combinations of symbols are
occurring in the higher entropy strings, and more symbols need to be viewed
before any recurring patterns appear in the same window. Lower entropy
strings exhibit good compression even for small window sizes, and have rapidly
diminishing returns in compression for subsequent increases in window size.

3.10 Summary of LZ parsing

Many LZ variants have not been covered in this chapter, such as LZMA, and
LZ4, for example. This is because a large amount of very rich research has been
invested into variations of the LZ parsing, and covering them all would take too
much time. Instead, this chapter has focused on the most important variants
of the LZ compressors, as they relate to the contributions of this thesis.

34

Chapter 4

The LZ-End parsing

This chapter describes LZ-End parsing in depth and demonstrates how the
format of this parsing allows random access. The goal is to provide the
reader with a basis to understand the contributions of this thesis presented
in subsequent chapters. The majority of this chapter is a summary of the
original paper by Kreft and Navarro, which first described this LZ compression
format [2].

4.1 LZ-End parsing format

The LZ-End phrases are of the same form as for LZ-77, i.e., back-reference,
length and innovation symbol tuples:

〈b, l, i〉
The only difference is that the back-reference of an LZ-End phrase is a pointer
to a previous phrase, rather than to a previous symbol.

The LZ-End parsing imposes a condition on this phrase format: The back-
reference must end at the innovation symbol of a previous phrase.

Definition 4.1. (adapted from [2]) The LZ-End parsing of a string T =

t0t1 . . . tn−1 is a sequence Π of m ≤ n phrases. If the first q phrases of Π

encode the first i symbols of T , then the phrase πq encodes the longest
prefix of ti,n−1 which is a suffix of the concatenation of phrases π0,j for
some 0 ≤ j < q.

4.1.1 Example

Consider the LZ-End parsing of the text abracadabra:
T = abracadabra

Π: π0 = 〈0, 0, a〉 ← a

π1 = 〈0, 0, b〉 ← b

π2 = 〈0, 0, r〉 ← r

36

π3 = 〈0, 1, c〉 ← ac

π4 = 〈0, 1, d〉 ← ad

π5 = 〈2, 3, a〉 ← abra

In this example, the back-references are absolute phrase pointers; since
the LZ-End parsing does not use a sliding window, absolute phrase references
require the same number of bits to encode as relative references. This is in
contrast to LZ-77, where the sliding window means that only relative back-
references can be concisely encoded (see Section 3.2). Also, note that the
back-reference points to the last phrase referenced – that is, we reference the
sequence of l symbols which end at the innovation symbol of the phrase with
index b. E.g., π5 references the 3 symbols abr ending at phrase π2.

The requirement that the back-reference ends at the innovation symbol of
a previous phrase is important, as it allows fast random access to arbitrary
symbols of a string: With each back-reference, we can directly read a raw symbol
of the compressed text. This property allows decoding an arbitrary phrase of
n symbols in at most n steps (one symbol provided by each back-reference).
Section 4.5 provides the details of how this is done.

4.2 Algorithms used by LZ-End

The LZ-End parsing and its random access function use the following algorithms:
• Backward search [60], which itself uses:

– a suffix array , and
– the Burrows-Wheeler transform.

• a range maximum query on the suffix array.
• a successor function, implemented using a binary search tree.
• an indexable dictionary [61].
The remainder of this section details each of these algorithms. Section 4.3

describes how the construction of the LZ-End parsing uses these algorithms.
Finally, Section 4.5 describes the algorithm for random access to symbols of an
LZ-End-compressed string.

4.2.1 Suffix array

Definition 4.2. The suffix array A of a string S stores the lexicographic
ordering of all suffixes of S. Each element ai stores a pointer in S to the
start of the ith ordered suffix.

Example 4.1. Let S = banana$ be our string, where the $ denotes the end of
the string and is lexicographically the lowest-ordered symbol. Then below is

37

the list of all suffixes of the string, along with the index in S where each suffix
starts:

0← banana$

1← anana$

2← nana$

3← ana$

4← na$

5← a$

6← $

Sorting these suffixes lexicographically yields:

6← $

5← a$

3← ana$

1← anana$

0← banana$

4← na$

2← nana$

The suffix array A consists of the above indices in order:

A = {6, 5, 3, 1, 0, 4, 2}

The suffix array facilitates fast pattern matching because it groups all
recurring substrings together. Consider in the example above both occurrences
of the substring “ana”, which are referenced by the third and fourth entries in
the suffix array. Similarly, both occurrences of the string “na” are referenced
by the last two entries in the suffix array.

The task of finding all occurrences of a pattern therefore consists of identi-
fying the first and last suffixes which start with the search pattern. Each suffix
between these two pointers represents a distinct occurrence of the pattern.

Example 4.2. Find all occurrences of the pattern “ana” in the string S =
hanabanana. The suffix array of the string is A = {10, 9, 3, 7, 1, 5, 4, 0, 8, 2, 6},

38

where the suffixes are:

10← $

9← a$

3← abanana$

7← ana$

1← anabanana$

5← anana$

4← banana$

0← hanabanana$

8← na$

2← nabanana$

6← nana$

Note that the first suffix starting with the pattern “ana” is a3 = 7, and
the last suffix starting with the pattern is a5 = 5. The suffix between these,
a4 = 1, also starts with the pattern. This shows that our string S contains
three occurrences of the pattern “ana”, and these start at s1, s5 and s7.

A binary search over the suffix array can identify both the first and last
suffixes starting with the pattern – thus a suffix array allows very fast pattern
matching, even when the string and/or the pattern are very long.

Constructing the suffix array of a string of length n takes linear space and
time (O(n)) [62].

Now let us generalise our pattern matching algorithm. Consider the case
where we search for a pattern of m symbols P in a string of n > m symbols
S. A naïve pattern matching using suffix arrays will have a time complexity
of O(m log n), since each suffix comparison examines m symbols. However,
this has been improved to O(m+ log n), by using information regarding the
prefixes of successive comparisons [63]. By representing the suffix array as
a binary search tree (called a suffix tree), pattern matching is achievable in
time O(m) [64]. The cost of using a suffix tree is that it is less concise than a
simple array. An enhanced suffix array is a suffix array with an additional table
showing the child information which is built into the suffix tree; every function
allowed by a suffix tree translates perfectly to an enhanced suffix array [65],
meaning that an enhanced suffix array allows pattern matching in time O(m).

39

4.2.2 Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) of a string [66] is very similar to the
suffix array, where instead of sorting suffixes of the string, it sorts the cyclic
permutations of the string. The two main differences between BWT and suffix
arrays are:

• The BWT of a string is itself a string. This is different to the suffix array,
which is an array of index pointers.
• If one appends an “end-of-string” symbol ‘$’ to the input string, the BWT

can be constructed by a reversible function, allowing the retrieval of the
original string from the transformed string. This allows the BWT to be
used in place of the string, as opposed to the suffix array, which must be
used in conjunction with the original string.

Remark 4.1. In this thesis, we use the acronym “BWT” to refer to
the Burrows-Wheeler transformed string, when referring abstractly in a
sentence. When referring to the transformation of a specific string in a
mathematical notation, we use B as the variable to store the transformed
string.

We use B = bwt(S) to refer to the Burrows-Wheeler transform function
applied to a string S. The inverse function is denoted bwt−1(B), so that
S = bwt−1(B).

We explain the BWT (and its inverse) by working through examples of
their construction.

Example 4.3. Let our string be S = banana$. Then the cyclic permutations,
and their start indices in S, are:

0← banana$

1← anana$b

2← nana$ba

3← ana$ban

4← na$bana

5← a$banan

6← $banana

We can represent this information in matrix form:

40

0

1

2

3

4

5

6

b a n a n a $

a n a n a $ b

n a n a $ b a

a n a $ b a n

n a $ b a n a

a $ b a n a n

$ b a n a n a

Sorting these rotations lexicographically yields:

6

5

3

1

0

4

2

$ b a n a n a

a $ b a n a n

a n a $ b a n

a n a n a $ b

b a n a n a $

n a $ b a n a

n a n a $ b a

The Burrows-Wheeler transform, B, is the rightmost column of the above

matrix:
B = annb$aa

Example 4.4. To retrieve the original string from the BWT B=annb$aa, we
reconstruct the matrix of sorted cyclic permutations.

We know that the string B forms the final column of the matrix:

0

1

2

3

4

5

6

? ? ? ? ? ? a

? ? ? ? ? ? n

? ? ? ? ? ? n

? ? ? ? ? ? b

? ? ? ? ? ? $

? ? ? ? ? ? a

? ? ? ? ? ? a

The challenge is to reconstruct the above matrix, where the ‘?’ symbols
represent the unknown letters and indices of the cyclic permutations.

We know that the rows of the matrix appear in sorted order. Sorting the

41

BWT string provides us with the first column:

0

1

2

3

4

5

6

$? ? ? ? ? a

a ? ? ? ? ? n

a ? ? ? ? ? n

a ? ? ? ? ? b

b ? ? ? ? ? $

n ? ? ? ? ? a

n ? ? ? ? ? a

Since we know that the ‘$’ symbol appears only once, at the end of the

string, we know that the row with index 4 represents S. Thus, we only need to
retrieve this row, rather than the entire matrix. However, we retrieve as much
of the matrix as is required to retrieve this row.

From the first row, we see that an ‘a’ is adjacent to the ‘$’. This gives us
an additional symbol in row 4:

0

1

2

3

4

5

6

$? ? ? ? ? a

a ? ? ? ? ? n

a ? ? ? ? ? n

a ? ? ? ? ? b

b ? ? ? ? a $

n ? ? ? ? ? a

n ? ? ? ? ? a

We also know that there is only one ‘b’ in the string, and row 3 indicates

that this is adjacent to an ‘a’. Since our ‘b’ is already adjacent (by cyclic
permutations) to a ‘$’ symbol, there is only one free spot for this ‘a’:

0

1

2

3

4

5

6

$? ? ? ? ? a

a ? ? ? ? ? n

a ? ? ? ? ? n

a ? ? ? ? ? b

b a ? ? ? a $

n ? ? ? ? ? a

n ? ? ? ? ? a

Looking at the BWT string B=annb$aa, we see that there are three distinct

‘a’ symbols in our string S. Looking at our matrix, row 0 shows that one ‘a’
precedes the $ symbol, and the other two ‘a’ symbols both precede an ‘n’. In
row 4, we already have the ‘a’ which precedes the $ sign. So, the other ‘a’ must
precede an ‘n’:

42

0

1

2

3

4

5

6

$? ? ? ? ? a

a ? ? ? ? ? n

a ? ? ? ? ? n

a ? ? ? ? ? b

b a n ? ? a $

n ? ? ? ? ? a

n ? ? ? ? ? a

Rows 1 and 2 show that the two occurrences of ‘n’ both precede an ‘a’.

Filling this in gives:

0

1

2

3

4

5

6

$? ? ? ? ? a

a ? ? ? ? ? n

a ? ? ? ? ? n

a ? ? ? ? ? b

b a n a ? a $

n ? ? ? ? ? a

n ? ? ? ? ? a

There is only one unknown symbol remaining, and this is the symbol which

occurs in our transformed string B which has not yet appeared in row 4 – an
‘n’:

0

1

2

3

4

5

6

$? ? ? ? ? a

a ? ? ? ? ? n

a ? ? ? ? ? n

a ? ? ? ? ? b

b a n a n a $

n ? ? ? ? ? a

n ? ? ? ? ? a

Thus, we have retrieved our original string S=banana$ from the transformed

string B=annb$aa.

Remark 4.2. The previous example used on many properties of the input
string (such as the fact that there was only one b in the string) to reconstruct
the string from its BWT. However, even when such assumptions cannot be
made, the function bwt−1(S) is always computable in O(n) time [67].

Given the similarities between BWT and suffix arrays, it is perhaps unsur-
prising to find that the suffix array A of a string S permits easy construction

43

of the BWT [2]:

bi =

sn−1, ai = 0

sai−1, otherwise
(4.1)

This relationship, along with the suffix array’s linear-time construction (recall
Section 4.2.1), lets us construct the BWT in linear time and space.

4.2.3 Backward search

To demonstrate the utility of the Burrows-Wheeler transform, we use the
backward search algorithm of Ferragina [60].

Let us search a string S of length n for a pattern P of length m < n. Then
the backward search algorithm is given in Algorithm 1. The algorithm uses
two auxiliary functions:

cx ←number of occurrences of symbols in S

lexicographically smaller than x
(4.2)

tally(S, x, i)←number of occurrences of x in s0,i (4.3)

Note that one can precompute and store every possible value of Equation (4.2)
in linear time and space, which is why we represent the formula as an array
(C), rather than a function. The tally formula is represented as a function –
precomputing it would require precomputing and storing a 2-dimensional array
in Θ(n2) time and space.

Algorithm 1 backward search(B, n, P,m)
Require: The BWT B of a string of n symbols

A string P of m symbols
Result: two numbers start and end , denoting the first and last index values

in the suffix array which point to the pattern P .

1: start ← 0
2: end ← n− 1
3: i← 0
4: while i < m do
5: start ← cpi+ tally(B, pi, start − 1) + 1
6: end ← cpi+ tally(B, pi, end)
7: i← i+ 1
8: end while
9: return start , end

44

4.2.4 Range minimum query

Recall Example 4.2: searching for the pattern P = ana in the string S =
hanabanana, using a suffix array. The solution constructed the suffix array A =

{10, 9, 3, 7, 1, 5, 4, 0, 8, 2, 6}, which showed that the pattern ana was referenced
by a3,5. Therefore the pattern P occurred at three locations in S, starting at
s7, s1 and s5.

Note that although this solution identified the locations in the string S of
the pattern P , the suffix array references (a3,5) were not ordered. This is an
important limitation of using suffix arrays for pattern matching: The suffix
array identifies occurrences of patterns, but these occurrences are not ordered.
To find the first occurrence of the pattern, one must identify the smallest value
ai, 3 ≤ i ≤ 5. In this small case, this is very easy. However, when the pattern
occurs many times in the string, or when conducting many such queries, this is
expensive.

The range minimum query (RMQ) is a data structure that can help in
this situation [68]. This data structure is built on an unsorted array, and can
identify the smallest value in any sub-array. Fisher and Heun described an
RMQ structure that answers these queries in constant time [68].

In our pattern matching example from Example 4.2, we are searching for the
smallest value in a3,5 = {7, 1, 5}. In this case, the RMQ structure will identify
a4 = 1 as the minimal value. Therefore, a suffix array used in conjunction with
an RMQ structure can efficiently identify the first occurrence of a pattern P
in a string S.

It may seem surprising that this query is possible in constant time. While
we will not explain the details of Fisher and Heun’s RMQ structure [68] here, we
will briefly introduce its conceptual approach in Example 4.5, which illustrates
how these constant-time queries are possible.

Example 4.5. Task: For the string S = hanabanana, whose suffix array is

A = {10, 9, 3, 7, 1, 5, 4, 0, 8, 2, 6},

construct an RMQ structure over A which answers queries in constant time.

A naïve solution would be to construct a 2-dimensional array, where columns
represent the start-point of each possible sub-array, and rows represent the
end-point. Then each entry in the matrix represents the minimum value
between the start-point corresponding to the entry’s column and the end-point
corresponding to the entry’s row.

45

M =

0 1 2 3 4 5 6 7 8 9 10

0 10 − − − − − − − − − −
1 9 9 − − − − − − − − −
2 3 3 3 − − − − − − − −
3 3 3 3 7 − − − − − − −
4 1 1 1 1 1 − − − − − −
5 1 1 1 1 1 5 − − − − −
6 1 1 1 1 1 4 4 − − − −
7 0 0 0 0 0 0 0 0 − − −
8 0 0 0 0 0 0 0 0 8 − −
9 0 0 0 0 0 0 0 0 2 2 −
10 0 0 0 0 0 0 0 0 2 2 6

In the matrix M , entry m0,6 = 1, because the minimum value in a0,6 is

a6 = 1. However, M0,7 = 0, because the minimum value in a0,7 is a7 = 0.
This matrix supports range-minimum queries in constant time.

In the above example, constructing the matrix M is both time and space
intensive. However, note that there are large blocks of 1’s and 0’s in the matrix
– using these patterns, it is possible to construct a more concise structure to
support constant-time RMQ’s. Fisher and Heun achieve this by breaking the
array into blocks and computing Cartesian trees (in linear time) for each block
(see [68] for details). This implementation requires O(n) time and space to
construct.

Note that one can construct the range maximum query just as easily. This
allows identifying the last occurrence of a pattern identified by the backward
search algorithm.

4.2.5 Successor and predecessor functions

The successor function takes an array A and a variable x, and returns the
smallest element in A which is greater than or equal to x:

successor(A, x) = ai, where: ai ≥ x, and

ai ≤ aj ∀ j where aj ≥ x
(4.4)

A binary search tree answers this query in time O(h), where h is the height
of the binary tree. Therefore, a balanced binary search tree can answer the
successor queries in O(log n) time, where n is the size of the array A. If,
however, the tree is unbalanced, the time complexity of the successor query
will be O(n).

46

Correspondingly, the predecessor function returns the greatest element of A
which is less than or equal to x.

Note that if the array A over which we wish to compute predecessor or
successor queries is static, we can precompute these for each value, and store the
result for constant-time lookups. However, in the context of LZ-End parsing,
the list over which we wish to compute successor queries is dynamic; therefore,
a binary search tree is an effective structure for this application.

4.2.6 Indexable dictionary

An indexable dictionary stores a bit-vector D of length n (in bits), while
supporting two operations in constant time:

• rank(x), which returns the number of 1’s in D which occur in d0,x−1; and
• select(i) which returns the position in D of the i-th 1.

Note the relationship:

∀n ≥ 0, rank(select(n)) = n

The number of bits used to represent D as an indexable dictionary is dependent
on its sparsity and is given below [61]:

size of indexable dictionary = n log
n

x
+O

(
x+ n

log log n

log n

)
(4.5)

where n is the number of bits in the bit-vector, and x is the number of 1’s (or
number of 0’s – whichever has fewer occurrences) in the bit-vector.

This structure is static [61], which means that it cannot be edited. To make
a change to the underlying bit-vector, one must retrieve the original bit-vector
from the dictionary, make the edits to the bit-vector directly, and then rebuild
the dictionary. This approach is computationally expensive, and does not fit
into the goal of this thesis, namely, achieving random edits in compressed data.
As such, we will not store the LZ-End phrases using an indexable dictionary;
we simply present it here as it is important for understanding the current
state-of-the-art, and future directions to build upon the work in this thesis.

Remark 4.3. In this thesis, we define:

rank(x) := 0 and select(x) := −1 ∀ x < 0

47

4.3 The LZ-End parsing algorithm

Recall the definition of the LZ-End parsing of a string (Definition 4.1). An
algorithm to construct this parsing must efficiently identify the longest prefix
of the as-yet unparsed string which is a suffix of one or more successive phrases
which have already been parsed.

There are multiple ways in which this can be done [56, 55, 2]; this section
describes the first parsing algorithm as presented by the inventors of LZ-End,
Kreft and Navarro [2].

If the first i symbols t0,i−1 of the string T = t0t1 . . . tn−1 have been parsed
into x phrases π0,x−1, then at a high level, parsing the phrase πx consists of:

1. Initialising j ← 0.
2. Finding all occurrences of ti,i+j in t0,i−1.
3. Checking whether any occurrences of ti,i+j in t0,i−1 could be a valid

back-reference.
4. Keeping a reference to the first valid back-reference (if one exists).
5. If at least one occurrence of ti,i+j was identified in Step 2, incrementing j

and going to Step 2.
6. When no occurrences are found in Step 5 (or if the end of the string is

reached), encoding the phrase using the most recent back-reference stored
at Step 4.

The searching (Step 2 above) is done using the backward search algorithm
(Section 4.2.3). The drawback to this approach is that backward search finds all
occurrences of the pattern in the entire string; in the context of LZ-End, only
the occurrences of the pattern in t0,i−1 (the already-parsed part of T) are valid.
A RMQ identifies the first occurrence in T of the prefix; if this occurrence
precedes ti, it can potentially be back-referenced to form an LZ-End phrase.

Algorithm 2 formalises these steps and is explained in the following para-
graphs.

The first few steps of the algorithm initialise the variables and data structures
used in later steps. We describe each variable at the point it is used below.

The while loop at Line 4 iterates once per phrase which the algorithm
outputs. Each iteration of the loop updates the following variables once:

• i, which points to the first symbol in T that has not yet been parsed into
a phrase.
• p, which stores the index of the next phrase to encode.

Again, the first few steps of this loop initialise the variables used within.

The next while loop (Line 9) iteratively increases the length of the prefix
of ti,n−1 which is being processed into a phrase. The important variables used
by this loop are:

48

Algorithm 2 LZ-End(T)
Require: A string T of length n symbols.

The suffix array A of the reverse of T .
The inverse suffix array I of the reverse of T .
The Burrows-Wheeler transform B of the reverse of T .
Array C, calculated using Equation (4.2), over B.

Result: An array Π of LZ-End phrases.

1: Λ← [〈−1, n〉]
2: i← 0
3: p← 0
4: while i < n do
5: s← 0
6: e← n− 1
7: j ← 0
8: l← j
9: while i+ j < n do
10: s← cti+j

+ tally(B, ti+j, s− 1) + 1
11: e← cti+j

+ tally(B, ti+j, e)
12: m← range maximum query(A, s, e)
13: if am < n− i then
14: break
15: end if
16: j ← j + 1
17: x, f ← successor(Λ, s)
18: if f ≤ e then
19: l← j
20: q ← x
21: end if
22: end while
23: insert(Λ, 〈p, in−(i+l)〉)
24: append(Π, 〈q, l, ti+l〉)
25: i← i+ l + 1
26: p← p+ 1
27: end while
28: return Π

• j, which stores the zero-indexed length of the prefix being processed.
• l, which stores the longest prefix which ends at the innovation-symbol

component of an earlier phrase. Note that l ≤ j.
• s and e are used (and updated) by the backward search algorithm.
Lines 10 and 11 are the steps of the backward search algorithm (recall

Algorithm 1).
Recall that the range maximum query (RMQ) finds the index in the sub-

array identified by the backward search steps which has the maximal suffix
array value. Note from the function signature that the BWT is constructed
over the reverse of the string T ; therefore, the range maximum query returns

49

the first occurrence of our prefix ti,i+j.

The backward search algorithm identifies all occurrences of a pattern within
the string T ; however, the only relevant occurrences of the pattern are those
which have been processed already (i.e., the occurrences of the pattern ti,i+j
which appear in t0,i−1). Line 13 performs this check, and breaks from the loop
if no valid occurrences of the pattern exist. Note that the suffix array entry
am is compared with n− i (rather than i directly) – this is again because the
suffix array is constructed over the reverse of T .

If the prefix ti,i+j has at least one occurrence prior to ti, the algorithm will
later extend this prefix and search for a longer match. To prepare for this,
increment the prefix length j.

The steps leading up to Line 17 have identified that ti,i+j occurs at least
once in t0,i−1. It remains to be seen whether any of these occurrences could be
used as a valid back-reference, that is, whether any of these occurrences end at
the innovation symbol component of a previous phrase.

A data structure (Λ) maps the phrases which have already been parsed to
values in the inverse suffix array I. The structure Λ can be a binary search
tree, containing ordered pairs

〈phrase index, inverse suffix array value〉
The binary search tree uses the second element of the ordered pair (namely,
the values in the inverse suffix array I) as its ordering – this means that the
successor() function on Line 17 finds the phrase with the smallest value in I
greater than s.

Since the variable f (Line 17) gets a value from the inverse suffix array I,
this can be compared to s and e, which are index pointers into the regular
suffix array A (recall that an index in A maps to a value in the inverse suffix
array I). The phrases identified by the successor function will be occurrences
of the string ti,i+j if and only if the value of f lies between s and e (the suffix
array index pointers identified by the backward search step). By definition of
the successor function, we already know that f ≥ s. Therefore, the algorithm
simply checks if f ≤ e. If this is the case, store the length of this new phrase-
encoding in the variable l, and the index value of the associated phrase in the
variable q (Line 20).

The inner while loop (Line 9) iterates until either the end of the string is
reached (Line 9) or until the pattern ti,i+j does not occur in t0,i−1 (Line 13).

Upon exiting the inner while loop, insert into Λ a reference to the new
phrase which has been constructed – recall that Λ stores the mapping between
index pointers of the phrases which have already been parsed, and their positions
in the suffix array A. Finally, add the newly-constructed phrase to the parsing
Π.

Finally, the algorithm increments the pointer i by the length of the parsed

50

phrase, and increments the phrase counter p.
The process repeats until the whole string T has been parsed.
Decompressing the string works in the same way as for LZ-77, with the

following minor changes to account for:
• the back-references are phrase counters, rather than symbol counters, and
• the back-references are absolute rather than relative index values.
Now that we understand how the LZ-End parsing is constructed, we move

on to random access in LZ-End.

4.4 Searching in LZ-End

Recall Navarro and Raffinot’s pattern matching algorithm for LZ-compressed
data [19], which is summarised in Section 3.7.2. This pattern matching algo-
rithm applies to an “block-based” parsing, which LZ-End clearly is. Therefore,
we consider pattern matching in LZ-End a solved problem and do not consider
it further in this thesis.

4.5 Random access in LZ-End

Random access in LZ-End is easy due to the structure of the parsing. Recall
the following characteristics of LZ-End phrases:
• Each phrase contains one symbol of text (its innovation symbol).
• Each phrase points directly to the innovation symbol of a previous phrase.

These characteristics mean that each phrase provides one symbol of raw text,
and each back-reference directly points to another symbol of raw text. This
leads to the following important point:

Remark 4.4. An arbitrary phrase encoding x symbols can be decoded
with a maximum of x steps. This decoding can be done without decoding
the remainder of the compressed text.

Intuitively, this is because each back-reference necessarily provides one raw
symbol, so a phrase of x symbols can be retrieved by resolving at most x
back-references.

Decoding a symbol ti from the LZ parsing Π entails two tasks: identifying
the phrase πj which encodes ti, and then retrieving the symbol from phrase πj .
For LZ-77, the first task takes time O(j), and the second task has an upper
time bound of O(i).

LZ-End, however, achieves this in time O(l), where l is the length of phrase
πj. This is achieved by mapping the symbols of T to phrases in Π (and vice-

51

versa) in constant time (O(1)) [2], and retrieving the symbols of a phrase πj in
O(l).

This section describes in detail how LZ-End provides this fast random
access. First, we describe how to identify the phrase which encodes a particular
symbol, and then how to quickly retrieve symbols from an arbitrary LZ-End
phrase.

4.5.1 Fast mapping between phrase and symbol indices

in LZ-End

Recall the indexable dictionary introduced in Section 4.2.6, which supports
the constant-time operations rank and select. Kreft and Navarro use these
operations to create the mapping between LZ-End phrases and symbols in the
raw string.

They achieve this by changing the way the LZ-End phrases are stored.
Instead of storing the LZ-End parsing in the form

〈b, l, i〉,
Kreft and Navarro represent the parsing array Π as three separate arrays:
• Back-references B: This array contains the back-reference component of

each LZ phrase.
• Innovation symbols I: This array stores the innovation symbol component

of each LZ phrase.
• Phrase boundaries dictionary D: This is a bit-vector, containing one bit

for each symbol in the raw text. The bit at di is set to 1 if the i-th symbol
of the raw text occurs at the end of a phrase, and is set to 0 otherwise.
Since we expect most lengths to be significantly greater than 1 in com-
pressible input, this is expected to be a sparse vector, the sparsity of
which is related to the entropy of the text.

Kreft and Navarro represented this bit-vector D as an indexable dictionary.
Recall that this dictionary facilitates the rank and select operations:
• rank(i) returns the number of 1’s which occur in d0,i. This means that

phrase πrank(i) encodes symbol ti.
• select(j) returns the position of the j-th 1 in the D array. This means

that the innovation symbol component of phrase πj represents the symbol
tselect(j).

The rank operation allows fast mapping from symbol indices to phrase
indices, while select allows the reverse. The two operations together can be
used to infer the length component of each LZ phrase:

πj.l =

select(j)− select(j − 1)− 1 if j > 0

0 otherwise
(4.6)

52

The length component of a phrase does not include the innovation symbol,
hence the subtraction of 1 for j > 0. Also recall that the first phrase of an
LZ-End parsing is always of length 0.

Recall from Section 4.2.6 (Equation (4.5)) that the compressed structure
representing the phrase boundaries array D can be encoded using n log n

m
+

O(m+ n log logn
logn

) bits, where n is the length of the uncompressed string T , and
m is the number of phrases in the parsing Π. Kreft and Navarro show that this
is sufficient to enable the storage of LZ-End parsing to be coarsely optimal [2]
(recall Definition 2.10, which defines coarse optimality).

Note that the indexable dictionary is not the only way to map between
phrases and symbols. Consider the general form of LZ parsing, where the
parsing Π is represented as an array of phrases of the form 〈b, l, i〉.

In this case (which can apply to LZ-End as well as LZ-77 parsing), the time
complexity of a select(x) operation is O(x). This is because the calculation
sums up the lengths of all phrases from π0 to πx. Similarly, the time complexity
of rank(x) is O(min(x,m)), where m is the number of phrases in Π. This is
because the solution is to add up the lengths of all phrases from π0 onwards
until the sum exceeds x. This operation is O(m) where m is the number of
phrases in Π, which in turn is O(x) as the minimum phrase length is 1.

If we expect to answer rank and select queries frequently, pre-computation
can improve efficiency: Recall that rank and select compute sums over the
lengths of the phrases in Π. Suppose that we precompute and store rank(s ∗ i)
and select(s ∗ i) for some constant step s and 0 ≤ i ≤ m

s
. Then we can use

these precomputed values to cap the number of additions in each invocation of
rank or select to at most s. Precomputing the values is O(n), select queries
are O(s), while rank queries are O(log(m

s
) + s). The precomputed values can

be stored using O(m
s

log(m
s

)) bits.

4.5.2 Linear-time retrieval of symbols from a phrase

Let us consider the simple example where we wish to access the raw symbols
from a phrase. Assume that we have already used a rank query to identify
the phrase containing these symbols. We then retrieve the last symbol of the
phrase – this is simply the phrase’s innovation symbol. We then retrieve the
innovation symbol of the back-referenced phrase, and the innovation symbol of
its back-reference, and continue incrementally working our way backwards.

In this simple case, there is one further matter to consider: a phrase can
back-reference the concatenation of one or more previous phrases. This happens
when the length of the phrase we wish to recover is greater than the length of
the phrase it back-references.

53

4.5.2.1 Example

Recall from Section 4.1.1 that the LZ-End parsing Π of the string T =

abracadabra is:
Π: π0 = 〈0, 0, a〉

π1 = 〈0, 0, b〉
π2 = 〈0, 0, r〉
π3 = 〈0, 1, c〉
π4 = 〈0, 1, d〉
π5 = 〈2, 3, a〉

Say we wish to retrieve the symbols t7,10. The rank function tells us that
these are the symbols of the final phrase, π5.

We reconstruct the retrieved string, R, from back to front, starting with
the innovation symbol of π5:

R =___a

We then process the back-reference of π5. We know that π5 has a length
of 3; however, its back-reference (π2) has a length of 0. This means that we
retrieve one symbol from π2 (its innovation symbol), and the remaining symbols
of π5’s back-reference come from the phrases which precede π2. In our example,
we retrieve one further symbol (“b”) from π1, and the remaining symbol (“a”)
comes from π0 to get our retrieved text:

R = abra

This processing of concatenated phrases lends itself well to a recursive algorithm,
described in the next section.

4.5.3 Random access algorithm

Algorithm 3 represents the recursive random-access algorithm hinted at in the
previous section.

The algorithm’s input is the LZ-End parsing Π of a string T . As before, we
represent Π via three arrays: B (the back-references of the LZ-End phrases), I
(the innovation symbols of the LZ-End phrases) and D, the indexable dictionary
of the bit-vector which identifies the phrase boundaries.

Additional arguments to the algorithm are the index s of the first symbol in
T to retrieve, and the length l of the sequence of symbols to retrieve, starting
at s. For reasons that will become clear in Chapter 7, s can be negative: in
this case, we first assign e (the index in T of the final symbol to retrieve), and
then assign s to zero, if it was negative (Lines 1 and 2).

The algorithm proper only runs if one or more symbols will actually be
retrieved (Line 4).

54

Algorithm 3 random access(Π, s, l)
Require: LZ-End parsing Π of a string T .

Recall that Π is represented as three arrays: B, I and D.
The index s of the first symbol in T which we want to retrieve.
The number of symbols l which we want to retrieve.

Result: A string R = ts,s+l−1

1: e← s+ l − 1
2: s← maximum(s, 0)
3: R← ∅
4: if s ≤ e then
5: p← rank(e)
6: if de = 1 then
7: R← Random access(Π, s, l − 1)
8: R← R || ip
9: else
10: q ← select(p− 1) + 1
11: if s < q then
12: R← Random access(Π, s, q − s)
13: l← e− q + 1
14: s← q
15: end if
16: R← R || Random access(Π, select(bp)− select(p) + s+ 1, l)
17: end if
18: end if
19: return R

Once the number of symbols to retrieve has been confirmed to be greater
than zero, the next step identifies the index p of the phrase which encodes the
symbol at index e.

The symbol at index e is either the final symbol of phrase πp, or it is
encoded by the back-reference component of phrase p. Line 6 distinguishes
between these cases: the dictionary D marks phrase boundaries, so de will have
a value of 1 if and only if the last symbol we wish to decode occurs at a phrase
boundary.

If the symbol te is represented by the innovation symbol of phrase πp (i.e.,
if de = 1), we recursively retrieve the symbols ts,e−1 (Line 7). We then append
the innovation symbol ip of phrase πp to the end of the string in Line 8 and
return the resulting string R in Line 19.

The else block starting at Line 9 handles the case where the final symbol
to retrieve, te, was not the final symbol of a phrase (i.e., if de = 0). In this
case, we need to distinguish whether the symbols we wish to retrieve, ts,e, are
encoded by a single LZ-End phrase, or by the concatenation of multiple phrases.
To answer this question, we calculate q, the index (into the raw string T) of

55

the first symbol encoded by phrase πp (Line 10).
If s < q, it means that the first symbol to retrieve, ts, occurs in a different

phrase to the last symbol to retrieve, te. In this case, recursively use the Random
access() function to retrieve the phrase(s) which precede πp (the phrase
encoding te). Then adjust the variables s and l to refer to the symbols which
will not yet have been recovered following the call to the Random access()

method. These steps are detailed in Lines 12 to 14.
When we reach Line 16, we have retrieved all symbols coming from phrases

which precede πp. We also know that the final symbol to retrieve is not the
innovation symbol of phrase πp. We therefore make a recursive call to the
Random access() function, which retrieves the relevant symbols from the
back-reference component of πp. Recall that bp is the entry at index πp of the
back-reference array B. Therefore the expression

select(bp)− select(p) + s+ 1

yields the index in T of the first symbol pointed to by the back-reference
component of phrase πp.

Kreft and Navarro show that the Random access() algorithm retrieves
the symbols ts,e of an LZ-End compressed string with a time complexity of
O(e− s+ 1) if te occurs at the end of a phrase. This assumes that the phrase
lengths are stored in an indexable dictionary, so that the rank and select

operations are performed in constant time. If, however, we were to store the
phrases in their 〈b, l, i〉 form and use a cache to speed up the rank and select

operations, the time bound to retrieve ts,e increases to O((e−s+1)×(log m
x

+x)),
where there are m phrases in the LZ-End parsing, and the cache stores every
x-th phrase.

Note that Algorithm 3 requires the LZ-End parsing to be represented in
the format described by Kreft and Navarro in [2], i.e., as three arrays B, I and
D. However, with minor changes the algorithm can apply if the parsing is
represented in the general LZ format, i.e., as an array of 〈b, l, i〉 tuples. In this
case, the rank and select queries will not run in constant time.

4.6 Summary of the LZ-End parsing and random

access

This chapter has described a possible method to construct the LZ-End parsing,
and how this parsing allows random access. We have also described in detail
the algorithms and data structures used to do this, and will meet them again
throughout the remainder of the thesis.

56

The next chapter takes a small but necessary detour to explain the evaluation
methodology used in this thesis, which prepares us for discussing the first of
this thesis’ central contributions in Chapter 6: an algorithm to make random
edits to an LZ-End parsing without decompressing the entire string.

Chapter 5

Evaluation methodology

The previous chapter provided an overview of the LZ-End compression algo-
rithm, which we build upon in this thesis. Before building on this compression
algorithm, however, we must first decide how to evaluate the contributions of
this thesis. This chapter reflects on the typical approach of existing research
to empirically evaluate compression algorithms. We discuss the efficacy of
these approaches to evaluating editing algorithms and the challenges that this
presents. The chapter thus continues by describing how we will evaluate the
compression and editing algorithms presented in this thesis.

5.1 Empirically evaluating compression

algorithms

This section discusses existing techniques for the empirical evaluation of com-
pression algorithms. We first discuss which factors are important, and then
discuss how to go about measuring them.

5.1.1 Compression performance evaluation criteria

The main aspects in evaluating the performance of data compression algorithms
are:
• The compression ratio ρ(S): If string S is compressed into a parsing Π,
we define the compression ratio as:

ρ(S) =
number of bits to represent Π

number of bits to represent S

How do we calculate the number of bits required to store the parsing
Π? In the case of LZ-based compression algorithms, there are many
different ways to store the phrases, such as using the indexable dictionary
to store phrase lengths (Section 4.5.1) or bit recycling the back-references

58

[39]. These different formats of storing the LZ phrases will affect the
compressed size of the string, as well as affecting the time to compress,
decode, randomly access, or edit the data. We discuss the method used
in this thesis in Section 5.3.
• Compression time complexity.
The importance of compression speed depends to a large degree on the
use case. If we are compressing data to transmit over a network, then the
time taken to perform compression adds to the latency of communicating
over the network. In this use case, compression speed is quite important.
If, however, one compresses the data immediately before writing it to a
disk for archiving, compression speed may be less important, as there is
no time-critical task waiting to use the data.
Another factor affecting how much emphasis we place on compression
speed is the number of times we expect to have to compress the data
compared to performing other operations. If we expect to be editing the
compressed data frequently, then compression speed will be more impor-
tant. If, however, we do not expect to edit the data after compression,
then we place less emphasis on compression speed.
• Decompression time complexity.

Decompression speed is very important, as we generally decompress the
data immediately before using it. Decompression may often be used more
frequently than compression, e.g., a software package may be compressed
once, and then downloaded from a web repository many times over. For
these two reasons, decompression speed is often viewed as being more
important than compression speed.
• Space complexity of compression and decompression: The compression
techniques can often run using different kinds of data structures, with
associated time-memory trade-offs (TMTO’s).
Consider again the use case where we compress the data immediately
before archival. In this case, the compression may run as a background
process with low priority, since no other process depends on it. We would
like the background process to use as little memory as possible so that
this resource is available to other processes on the system.
Compression and decompression often have different memory require-
ments; this is especially true of the LZ-77 compression function [40], for
example, where compression requires a lot more processing and memory
compared to decompression.

59

5.1.2 Compression corpora

Now that we know the important factors to measure, we need a system to
compare different compression algorithms in a consistent, replicable way.

To this end, various researchers have standardised sets of files, called com-
pression corpora, over the years. These generally consist of a range of files
of different formats and sizes. The goal of a good compression corpus is to
provide an unbiased representation of the performance of the compression
algorithm across a wide range of strings, to determine where the algorithm
works particularly well, and where its weaknesses are. Having an accessible com-
pression corpus allows for the results of one algorithm to be easily understood,
reproduced and compared to other works.

5.1.2.1 Calgary corpus

The Calgary corpus was the first widely used benchmark for evaluating the
performance of compression algorithms. It consists of a collection of 14 files,
ranging in size from 21KB to 770 KB. The corpus contains formatted and
unformatted ASCII English text, a VAX executable, a bitmap image, source
code written in C, Lisp, and Pascal, as well as seismic (numeric) data [69].

5.1.2.2 Canterbury corpus

The size and types of files in the Calgary corpus quickly became obsolete,
as storage became cheaper, file sizes grew, and programming languages and
file formats changed. Thus arose the need for a more modern corpus, which
was filled by the Canterbury corpus [70]. The Canterbury corpus consists of
11 files, ranging in size from 4KB to 1MB. The data includes English and
Shakespearean text, HTML, C, and LISP source code, as well as an Excel
spreadsheet, a SPARC executable and fax images.

Each file in the corpus was chosen from a pool of files of the same format.
The files in each format were compressed using a variety of compression methods.
From this group of files, a single candidate was chosen for inclusion in the
corpus. The chosen file was the one that produced the most consistent results
across the various compression algorithms used, and whose compression was
closest to the regression line best describing the compression of each file in the
given format [70].

5.1.2.3 Pizza & Chili corpus

The Pizza & Chili corpus was developed specifically to test compressed string
indices [71]. The corpus consists of several sub-collections: source code, numeric

60

pitch values, protein sequences, DNA sequences, English text, and XML struc-
tured text. The files themselves are much larger than those of the Calgary and
Canterbury corpora, ranging from 55MB to 2.2GB. The larger amount of data
in the Pizza & Chili corpus allows algorithms to converge further towards their
asymptotic performance in operations such as pattern matching on compressed
files.

5.1.2.4 Calibrated entropy strings

The final method we consider for quantifying the performance of compression
algorithms was developed by Ebeling, Steuer and Titchener [72]. This consists
of using a logistic map with noise insertion and a threshold to generate a
sequence of real numbers xi, which can be converted into a string of bits with
calibrated entropy.

xn+1 = r∞xn(1− xn) + εξn, where ξn ∈ [−1, 1] (5.1)

In the above equation, r∞ ≈ 3.5699 is the Feigenbaum accumulation point, ε is
the noise amplitude, and the random numbers ξi are noise [72].

One then applies a generating partition with partition value c to the logistic
map above to create a sequence S of bits as follows:

sn =

0, if xn ≤ c, and

1, if xn > c
(5.2)

Varying the noise amplitude ε in Equation (5.1) and the partition value
c in Equation (5.2) changes the entropy of the strings produced [72, 73, 74].
Section 5.2 of [72] shows the effect of changing these parameters.

This method allows the generation of arbitrary-length strings of calibrated
entropy (which we do in Section 5.2). When used alongside a well-known
compression corpus such as the Canterbury corpus, the logistic map can be
used to extrapolate the evaluation of compression algorithms to different data
sources whose entropy is known.

5.1.3 Compression corpora as a tool for evaluating uni-

versal compressors

While compression corpora are very valuable tools, their use can lead to
misleading results. The compression ratio is a function of two variables: the
compression algorithm and the input data (which is typically a compression
corpus). We would like to compare two compression algorithms such that the

61

comparison is invariant under a change to the compression corpus (i.e., the
input data).

We use a thought experiment to demonstrate the difficulties of comparing
two algorithms such that the results are independent of the input data: Con-
sider the case where we are comparing the compression ratio achieved by two
compression algorithms, f1 and f2 on all strings up to length l. The results
will fall into one of the following categories:
• The compression ratio achieved by f1 matches that of f2 for all strings.

In this case, the performance of the two functions is identical.
• For each string, the compression ratio achieved by f1 exceeds or at least
matches that of f2 (or vice versa). In this case, it is clear which is the
better algorithm (for strings of length up to l).
• There exist some strings for which f1 achieves a better compression ratio
than f2, and vice versa. This is a common case in practice (see for
example Section 7.2.1).
In this case, it is possible to construct a corpus C of q strings for which
f1 achieves a better compression ratio than f2, and another corpus C ′

of q strings for which f2 achieves a better compression ratio than f1.
Therefore, the comparison between the two algorithms is not invariant
under choice of corpus.

While steps have been taken to avoid bias in the Canterbury corpus [70], it
cannot be ruled out entirely, especially if the comparison results are close.

An objective criterion might be to run f1 and f2 on all strings up to length
l and add up the compressed lengths for all such strings. If f1 compresses the
strings to a total length that is shorter than f2, then f1 outperforms f2 on that
set of strings. If this holds as l goes to infinity, then f1 is a better universal
compressor than f2. Of course, this proof is not computable.

What such a thought experiment demonstrates is that if we have small
differences between f1 and f2 on a corpus, we cannot conclude that either
algorithm is a better universal compressor. Rather, we can only note the per-
formance difference on the specific corpus. Evaluating compression algorithms
on corpora such as those listed above can only lend evidence to support the
superiority of particular algorithms.

5.1.4 Shortfalls of compression corpora when evaluating

editing algorithms

Compression corpora such as the Canterbury corpus were designed for measuring
compression of a string. What about the case where we wish to measure the
performance of an algorithm which edits compressed strings? If we wish to

62

insert a string into one of the files from a corpus, we need to find a candidate
string to insert, which has similar properties to the existing file. For example,
say we wish to insert a string into an English text file: Is it important that the
text file is grammatically correct following the insertion? How do we craft a
string to be inserted into Alice in Wonderland?

A more methodical approach would be to compress a string from a given
source and insert into this string another string from the same source. This
should generally produce results more consistent with the notion of entropy
as being a measure of a source of information, as opposed to inserting into a
static string.

5.2 Evaluation methodology used in this thesis

In this thesis, we assess the time and memory performance of algorithms
theoretically, and empirically measure compression ratio. The reason we do
not empirically measure and report time and memory usage is twofold: First,
theoretical assessments allow us to make adequate comparisons between the
algorithms, and second, empirical measurements of these attributes are heavily
dependent on the implementation, in addition to the characteristics of the
algorithms themselves and the context in which they are run. Due to time
constraints, we have not been able to implement the most time- and space-
efficient versions of all algorithms involved. Compression ratio, on the other
hand, is more easily measured.

To evaluate a compression algorithm empirically, we measure the com-
pressed length of the Canterbury corpus files, in addition to a collection of
calibrated entropy strings. The Canterbury corpus allows comparison with
other researchers who have used this corpus in the past, as well as future
research which may use it. The calibrated entropy strings allow more general
comparisons, as pointed out already in this chapter. To evaluate algorithms that
edit compressed strings, we only use the calibrated entropy strings. Whenever
an edit involves inserting a string into the compressed string, we generate the
inserted string from the same source as the string we are editing.

5.2.1 Generating calibrated entropy strings

Recall that each bit sn of the calibrated string S is generated as follows:

xn+1 = r∞xn(1− xn) + εξn, where ξn ∈ [−1, 1] (5.1)

63

Figure 3.1: The mean compression ratio achieved by LZ-77 on strings with
10 different entropy calibrations, for various window sizes. For each entropy
calibration, there are 30 strings, each of length 5MB. Note that these 10
entropy calibrations represent strings compressing to between 10 and 90% of
their original size.

sn =

0, if xn ≤ c, and

1, if xn > c
(5.2)

Recall also that r∞ ≈ 3.5699 is the Feigenbaum accumulation point, ε is the
noise amplitude, the random numbers ξi are noise, and c is the partition value.

The entropy of this source is affected by the values r, ε and c. We keep
r and c constant (≈ 3.5699 and 0.5, respecively). A cryptographically secure
random number generator supplies the random values ξi. The seed value for
each string is x0 = 1. This means that x1 depends solely on the term εξ1.

When the values r, ξ and c are set as above, then the Shannon entropy
of the resulting sequence xi is related to the value ε [74, 75]. We used the
(somewhat arbitrarily chosen) noise amplitudes:

ε ∈ {0.0001, 0.00025, 0.0005, 0.00075, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025}

This choice of noise amplitudes provided a good range of strings achieving
different compression levels (see Figure 3.1).

Note that from now on, we refer to the strings by their respective noise

64

amplitudes ε (see the legend in Figure 3.1); this is to highlight the fact that
the only differentiator between the strings is the noise amplitude.

For each entropy calibration, we generated 30 ‘compression strings’ of 5MB
each. All experiments for each entropy calibration were conducted on the same
set of 30 strings.

When measuring compression ratios, we report the mean compression ratio
of the 30 strings for each entropy calibration. To evaluate an editing algorithm,
we edit each of these compressed strings, and again report the mean results
for each entropy calibration. In some cases, the edit operation inserts a string
into the compressed string. To facilitate this, we have one additional “insertion
string” for each entropy calibration. This means that all edits come from the
same source as the string that is being edited. Note that this would not be
possible if using a static corpus such as the Canterbury corpus.

5.2.2 A note on the consistency between calibrated en-

tropy strings

The previous section begs the question: How consistent are the results between
logistic map files of different entropy calibrations?

Table 5.1 answers this question, by listing the standard deviation of each data
point in Figure 3.1. We see that the standard deviation is a small percentage
(at most 3%) of the compressed size for any given data point. Therefore, we can
conclude that these strings of calibrated entropy are producing very consistent
results when evaluating the LZ-77 compression function.

5.3 Storage format for LZ phrases in this thesis

In this thesis, we wish to compare the compression ratio achieved by various LZ-
based compression algorithms. This comparison is complicated by differences
between the variants of LZ parsings. LZ-End, for example, supports fast
random access when aided by an indexable dictionary; there is no benefit,
however, to using an indexable dictionary to store LZ77 phrases. This makes a
direct comparison between LZ77 and LZ-End compressed sizes difficult.

In order to make meaningful comparisons between the variants of LZ
parsings, we store all LZ77-based parsings as an array, where each cell of the
array is of equal size, and has the format: 〈b, l, i〉. We do not use indexable
dictionaries or other data structures to aid in the parsing.

65

Ta
bl
e
5.
1:

St
an

da
rd

de
vi
at
io
n
in

LZ
-7
7
co
m
pr
es
si
on

ra
ti
o
fo
r
th
e
ex
pe

ri
m
en
ts

sh
ow

n
in

F
ig
ur
e
3.
1.

E
nt
ro
py

ca
lib

ra
ti
on

W
in
do

w
si
ze

0.
00

01
0

0.
00

02
5

0.
00

05
0

0.
00

07
5

0.
00

10
0

0.
00

25
0

0.
00

50
0

0.
00

75
0

0.
01

00
0

0.
02

50
0

10
24

0.
00

34
0.
00

25
0.
00
47

0.
00

88
0.
00

43
0.
00

01
7

0.
00

96
0.
00

01
2

0.
00

01
2

0.
00

01
8

20
48

0.
00

34
0.
00

23
0.
00
43

0.
00

75
0.
00

46
0.
00

01
5

0.
01

1
0.
00

01
0

0.
00
00

97
0.
00

01
7

40
96

0.
00

32
0.
00

21
0.
00
40

0.
00

74
0.
00

37
0.
00

01
1

0.
00

95
0.
00

00
90

0.
00
00

83
0.
00

01
5

81
92

0.
00

23
0.
00

19
0.
00
37

0.
00

61
0.
00

44
0.
00

01
0

0.
00

47
0.
00

00
90

0.
00

01
0

0.
00

01
4

16
38

4
0.
00

20
0.
00

18
0.
00
34

0.
00

56
0.
00

37
0.
00

00
97

0.
00

66
0.
00

36
0.
00

40
0.
00

01
5

32
76

8
0.
00

13
0.
00

17
0.
00
32

0.
00

50
0.
00

49
0.
00

01
0

0.
00

01
1

0.
00

34
0.
00

00
84

0.
00

01
3

65
53

6
0.
00

12
0.
00

21
0.
00
30

0.
00

33
0.
00

55
0.
00

00
98

0.
00

01
1

0.
00

01
0

0.
00

35
0.
00

01
8

13
10

72
0.
00

11
0.
00

18
0.
00
29

0.
00

31
0.
00

47
0.
00

00
94

0.
00

01
1

0.
00

72
0.
00

34
0.
00

01
4

26
21

44
0.
00

11
0.
00

18
0.
00
27

0.
00

29
0.
00

44
0.
00

00
86

0.
00

01
02

0.
00

81
0.
00

00
91

0.
00

01
3

52
42

88
0.
00

10
0.
00

18
0.
00
26

0.
00

28
0.
00

29
0.
00

00
85

0.
00

01
0

0.
00

69
0.
00

42
0.
00

01
1

10
48

57
6

0.
00

10
0.
00

19
0.
00
25

0.
00

27
0.
00

22
0.
00

00
71

0.
00

00
93

0.
00

56
0.
00

40
0.
00

01
1

66

We calculate the compressed size of the string as:

dlog b̄e+ dlog l̄e+ dlog ae (5.3)

Here, b̄ is the maximum back-reference component of a phrase in the parsing, l̄
is the maximum length component of a phrase, and a is the size of the alphabet.
We then multiply the number of bits required to encode each phrase by the
number of phrases in the parsing.

Although not resulting in the optimal compressed size, or the fastest random
access (in the case of LZ-End), this approach meets the requirements of this
thesis. The primary goal of the empirical evaluation is to measure how editing
the compressed data affects the compression ratio: in this case, we are comparing
a compressed size prior to and after the edit. The simple compressed format
which we use allows us to make these comparisons.

This format has several additional advantages:
• It allows direct and meaningful comparisons between variants of LZ

compression algorithms.
• The arrays facilitate constant-time lookups.
• It is simple and easy to implement, allowing for robust, accurate experi-

ments.
As this thesis represents the first attempt to edit LZ-compressed data, the

simple format will enable future research to evaluate the costs and benefits of
data structures which attempt to improveme on this storage format.

5.4 Conclusion

This chapter summarised the evaluation methodology used by most researchers
who evaluate universal compression algorithms. We discussed the limitations
of this methodology, especially when applied to compressed editing algorithms.
We introduced the methodology which we use in this thesis, whereby we use
strings of calibrated entropy, and demonstrated that these calibrated entropy
strings produce consistent and replicable results. Finally, we described the
consistent storage format for all LZ-based compression algorithms implemented
and compared in this thesis.

Chapter 6

Random edits in LZ-End data

This chapter presents the first novel contribution of this thesis: the first
algorithm to randomly edit LZ-compressed data. This editing algorithm, which
has been briefly described in [76], applies to LZ-End phrases stored in the
general LZ format: 〈b, l, i〉. This is as opposed to the phrases stored in a more
specific format, such as Kreft and Navarro’s version, which uses an indexable
dictionary to store phrase lengths [2]. Editing the general phrase format has
two advantages: 1. the editing algorithm applies to any format derived from
the LZ-End parsing, and 2. the editing algorithm will more readily relate to
other LZ compression formats.

The first section in this chapter, 6.1, defines an edit, discusses the implica-
tions of storing the compressed data explicitly as phrase tuples 〈b, l, i〉, rather
than using supplementary data structures like a phrase dictionary, and finally
summarises the difficulties of editing LZ-compressed data.

Section 6.2 explains the editing algorithm itself. The remaining sections of
the chapter discuss implications for how the edit affects the LZ-End parsing,
analyse the time and memory requirements of the editing algorithm, and discuss
how editing affects random access. This chapter does not empirically evaluate
the editing algorithm; the evaluation appears in Chapter 7.

6.1 Preliminary notes on editing LZ-End

This section lays the groundwork for understanding the editing algorithm
presented in this chapter.

6.1.1 Format of the parsing

In their original paper, Kreft and Navarro stored the LZ-End parsing as three
arrays: B, which stored the back-references, I, which stored the innovation
symbols, and D, which was an indexable dictionary storing phrase boundaries

68

(which allows calculating the phrase lengths) [2]. Recall Section 4.5.1 for the
details of this implementation. Kreft and Navarro chose this representation for
the LZ-End parsing, as it allowed constant-time rank and select queries.

For this chapter, however, we revert back to the original LZ format of
the parsing, where each phrase is stored explicitly as a 〈b, l, i〉 tuple. We
assume that this parsing supports rank and select queries which behave
identically to the same operations in Section 4.5.1, however, we do not make
assumptions about the implementation or run-times of these functions. Rather,
we decouple these functions from the editing algorithm, and discuss this further
in Section 6.5.

6.1.2 Defining the edit operation

We define an edit operation in terms of replacing symbols at specified indices
of a string. Therefore, the edit operation has four parameters: edit(T, i, j, S),
where:

• T is the string being edited,
• i is the index of the first symbol in the raw form of T which is being

removed,
• j ≥ i is the index of the first symbol in T not being removed, and finally
• S is the string being inserted into T before index j.

Therefore, the definition of an edit is:

edit(T, i, j, S) = t0,i−1 || S || tj,n−1 (6.1)

where n was the original length of T (prior to the edit being applied).

Note the following cases:

• If i = j, the edit operation performs an insertion of S between ti−1 and
ti.
• If S = ∅, the edit operation performs a deletion of symbols ti,j−1 from T .
• We do not consider the case where both i = j and S = ∅, as that operation

leaves T unchanged.
• All other cases (where j > i and S 6= ∅) are string replacements , where

symbols ti,j−1 are replaced by the symbols in S.

For the remainder of this thesis, if T represents the raw string prior to an
edit, then T ′ represents the edited raw string. Similarly, if Π represents the
compressed form of T , then Π′ represents the compressed form of T ′.

Note that the syntax of the edit() operation applies both to an uncom-
pressed string and its compressed representation. We distinguish these cases as
follows:

69

• A raw edit is an edit applied to a string T in its uncompressed form. This
is denoted edit(T, i, j, S).
• A compressed edit applies to the compressed representation of a string
T . If Π stores the compressed representation of T , then the compressed
edit is denoted edit(Π, i, j, S). Note that the index values i and j refer
to indices in the raw representation of the string T , and that S is stored
in raw form.

Remark 6.1. Consider the case where we compress T ′ (i.e. the string T
after applying a raw edit). This will produce a compressed representation of
T ′ which we call Π′. This Π′ does not necessarily consist of the same phrases
as the parsing produced by applying the same edit to the compressed form
Π of T .

To distinguish these cases, we refer to the compressed raw edit as Π′,
and the parsing following a compressed edit as Π′e.

Formally,

Π′ = LZ-End(edit(T, i, j, S)) (6.2)

Π′e = edit(Π, i, j, S) (6.3)

Π′ and Π′e will both decode to the same string T ′, but the phrases in each
parsing will not necessarily be the same.

6.1.3 Challenges of editing LZ-compressed data

Recall the LZ-End parsing of the string T = abracadabra:
Π: π0 = 〈0, 0, a〉

π1 = 〈0, 0, b〉
π2 = 〈0, 0, r〉
π3 = 〈0, 1, c〉
π4 = 〈0, 1, d〉
π5 = 〈2, 3, a〉

Let us say we wish to perform the operation edit(T, 1, 2, d), so that T =

abracadabra becomes T ′ = adracadabra.
At first glance, it may appear that all we need to do is locate the phrase

which encodes t1 (i.e., phrase π1), and change its innovation symbol from a ‘b’
to a ‘d’. Doing that, we get:

Π′e: π0 = 〈0, 0, a〉
π1 = 〈0, 0, d〉
π2 = 〈0, 0, r〉
π3 = 〈0, 1, c〉

70

π4 = 〈0, 1, d〉
π5 = 〈2, 3, a〉

However, if we decode this, we get T ′′ = adracadadra – we see that the
symbol t1 has been edited correctly, but t8 has also changed from a ‘b’ to a ‘d’ !
This is because the phrase π5 back-referenced phrases π0,2. Changing any one
of the phrases π0,2 will therefore also affect phrase π5.

This demonstrates the challenge of editing a symbol represented by the
innovation symbol component of a phrase. Another challenge to overcome is:
How to edit a symbol encoded by the back-reference component of a phrase?
The editing algorithm presented in this chapter is the first algorithm to overcome
both of these challenges.

6.2 Editing in LZ-End

This section explains each component of the editing algorithm for LZ-End and
then shows how to tie the components together.

Let us consider the string

T = yzyyzzyyyzzzyyyyzzzzyyyyzzzzz,

and let us apply to it edit(T, 8, 10, zy). That is, we wish to change T to

T ′ = yzyyzzyyzyzzyyyyzzzzyyyyzzzzz

Note that the LZ-End parsing Π of T is:
Π: π0 = 〈0, 0, y〉

π1 = 〈0, 0, z〉
π2 = 〈0, 1, y〉
π3 = 〈1, 1, z〉
π4 = 〈2, 2, y〉
π5 = 〈3, 2, z〉
π6 = 〈4, 3, y〉
π7 = 〈5, 3, z〉
π8 = 〈7, 8, z〉

The following sections apply each step of the editing algorithm to this
example, before tying all steps together for the complete algorithm.

6.2.1 Identifying phrases to edit

The first step of the edit(Π, i, j, S) operation is to identify which phrase(s)
encode the symbols we wish to edit. The rank operation makes this step very

71

easy. We call the phrases which encode the symbols we wish to edit target
phrases:

a← rank(i) (6.4)

b← rank(j) (6.5)

In our example edit operation, a = 4 and b = 5.

Note that because we have i ≤ j, then we must have a ≤ b.

At this stage, we know that the edit operation is changing at least one
symbol in πa, and at least one symbol in πb. We do not yet know if all symbols
encoded by πa and πb are being edited. It is possible that the edit does not
modify the prefix of πa, or the suffix of πb. We refer to these symbols as the
prefix and suffix of the target phrases. The lengths of the prefix and suffix are:

pref _len ← πa.l − (select(a)− i) (6.6)

suf _len ← select(b)− j + 1 (6.7)

Recall that while rank maps the index of a symbol in T to a phrase in Π,
select acts as the inverse: mapping the index of a phrase in Π to the index of
the last symbol in T which is encoded by the phrase.

In our example string, pref _len = 2 and suf _len = 2. These prefix and
suffix lengths will be important in a later step.

6.2.2 Edit the target phrases

We can now edit the target phrases identified in the previous step. This involves
deleting the target phrases, and encoding the inserted string S. Before deleting
the target phrases, we first want to make sure we do not lose the prefix and
suffix identified in the previous step.

In order to keep the symbols of the prefix of our target, we simply decode
(using the Random access function Algorithm 3) the prefix of the first target
phrase πa, and prepend this string to our inserted string S, to be handled
next. We do the same with the suffix, appending the decoded symbols to S.
Formally,

S ← Random access(Π, i− pref _len, pref _len) || S

|| Random access(Π, j, suf _len)

For our example, we decode the first two symbols of π4 and the last two symbols

72

of π5 and prepend or append them to S:

S ← yyzyzz (6.8)

S is still in raw form, and must be parsed. We will show in the next
chapter a method which uses the parsing of T to parse S. However, in this
proof-of-concept algorithm, we parse S independently of T :

Φ← LZ-End(S)

In our example, parsing S = yyzyzz, we get:
Φ: φ0 = 〈0, 0, y〉

φ1 = 〈0, 1, z〉
φ2 = 〈1, 2, z〉

At a future stage, we will delete the target phrases πa and πb and insert Φ

(the parsing of our inserted string S) in their place:

Π← π0,a−1 || Φ || πb+1,m−1

where there were m phrases in the parsing Π prior to the edit operation.
The back-references of the phrases in Φ will be incorrect (if we use absolute

phrase indices as the back-reference) – but this is easily corrected by adding a
to each back-reference in Φ.

In our example, the parsing will then become:
Π: π0 = 〈0, 0, y〉 Φ: φ0 = 〈4, 0, y〉

π1 = 〈0, 0, z〉 φ1 = 〈4, 1, z〉
π2 = 〈0, 1, y〉 φ2 = 〈5, 2, z〉
π3 = 〈1, 1, z〉

(((((((π4 = 〈2, 2, y〉

(((((((π5 = 〈3, 2, z〉
π6 = 〈4, 3, y〉
π7 = 〈5, 3, z〉
π8 = 〈7, 8, z〉

This shows what the parsing will become – that is, we will delete phrases
π4 and π5 and insert Φ in their place. We do not perform this just yet, because
it will be easier to do so at a later stage.

6.2.3 Identifying dependent phrases

We cannot simply replace the target phrases with their new encoding Φ: the
result will generally not decode correctly. This is because some phrases (in

73

our example, phrases π6, π7 and π8) either directly or indirectly reference the
phrases we have edited. We say that such phrases depend on the target phrases.

An important distinction to make is the order of the dependent phrases:
we say that phrases which back-reference our target phrases are first-order
dependents. All other dependent phrases of first-order dependents are called
higher-order dependents. Changing the parsing of a phrase will alter the
decoding of all dependent phrases (first-order and higher-order dependents).
We therefore need to identify these dependent phrases and “decouple” their
back-references from the target phrases. We call this “mending” the parsing.

Remark 6.2. We only need to mend the parsing of the first-order depen-
dent phrases. This is because the higher-order dependents (by definition)
reference the first-order dependents. As long as the first-order dependents
decode correctly, all higher-order dependents will also decode correctly.

In our example, π6 and π7 are first-order dependents and π8 is a second-
order dependent (itself being a first-order dependent of both π6 and π7). Our
example will show how fixing the parsing of π6 and π7 alone is sufficient to fix
the parsing of π8.

Algorithm 4 identifies the first-order dependent phrases. The algorithm
returns the index in Π of all first-order dependent phrases – these are stored in
the array D.

Algorithm 4 identify dependent phrases(Π, a, b, suf _len)
Require: An array Π of LZ-End phrases

An integer a denoting the first target phrase
An integer b denoting the last target phrase
An integer suf _len denoting the number of symbols in b target

phrase which are not part of the target.
Result: an array of phrase pointers, D.

1: D ← ∅
2: X ← {suf _len}
3: ptr ← b+ 1
4: while ptr < Π.size do
5: X ← X || xptr−b−1 + πptr .l + 1
6: if πptr .b < a then
7: continue
8: else if πptr .b < b or xπptr .b−b < πptr .l then
9: D ← D || ptr
10: end if
11: ptr ← ptr + 1
12: end while
13: return D

74

The algorithm examines the back-reference of each phrase which follows b.
If a phrase’s back-reference is less than a, it cannot possibly be a dependent
phrase (Line 6). If the back-reference is between a and b, the phrase is obviously
dependent. This case is covered by the first part of the conditional statement
at Line 8.

There is one more case: when the back-reference is greater than or equal
to b. In this case, the phrase may yet be a dependent. Recall that a phrase
references the l symbols which precede the end of the back-referenced phrase.
For each phrase πptr whose back-reference is greater than b, we use the phrase’s
length, πptr .l, to determine whether the back-reference extends to the target
phrase. Since this calculation will need to be performed for every single phrase
which follows the target, we use a cache to accelerate this step. This cache is
stored in the list X (Line 2).

For each phrase πptr , we compute the distance (in symbols) between that
phrase and the last symbol of the target (Line 5). Using the distance of
our previous phrase, this is a fast computation. The cache is initialised with
x0 = suf _len – this is because a phrase may back-reference the last phrase of
our target without actually being a dependent on the target. Recall that the
last suf _len symbols of πb are not actually part of the target.

We use the cache X to quickly determine the distance (in symbols) of each
phrase’s back-reference from the target, and determine whether the phrase
depends on the target by comparing the phrase length to this distance. The
second part of Line 8 performs this calculation. If a phrase is dependent, we
append its index to the array D which stores the indices of all dependent
phrases.

Once all phrases after πb have been processed, the algorithm returns the
array of dependent phrases, D.

Applying this algorithm to our example identifies π6 and π7 as phrases that
depend on the target phrases, but not π8, as it is a second-order dependent.

6.2.4 Mending the parsing of dependent phrases

Each of the dependent phrases identified thus far in the editing process needs
to be replaced with phrases which decode to the same raw string, but do not
reference the target phrases.

This is achieved by replicating all phrases which are back-referenced (ad-
justing the lengths as necessary), and then writing out the innovation symbol
component of the dependent phrase as its own separate phrase.

Let us demonstrate this with our example parsing, which is repeated below
for reference:

75

Figure 6.1: The possible components of a dependent phrase’s back-reference.
The dependent phrase may reference one or more prefix phrases which precede
the target (labelled ‘prefix’), one or more phrases in the target, and one or
more suffix phrases which follow the target (labelled ‘suffix’).

Π: π0 = 〈0, 0, y〉
π1 = 〈0, 0, z〉
π2 = 〈0, 1, y〉
π3 = 〈1, 1, z〉
π4 = 〈2, 2, y〉
π5 = 〈3, 2, z〉
π6 = 〈4, 3, y〉
π7 = 〈5, 3, z〉
π8 = 〈7, 8, z〉

The dependent phrase π6 references the first target phrase π4. This reference
is exact, in that π6 references all symbols in π4, and no symbols from π3. We
can therefore replace π6 with an exact copy of π4. This does not encode the
innovation symbol of π6, so we need to encode this as a new phrase. Therefore,
π6 would be replaced by two phrases:

µ0 = 〈2, 2, y〉
µ1 = 〈0, 0, y〉

Similarly, the dependent phrase π7 would be replaced by an exact copy of the
referenced target phrase π5 and a single phrase which encodes the innovation
symbol component of π7:

ν0 = 〈3, 2, z〉
ν1 = 〈0, 0, z〉

In these examples, each back-reference mapped to only one phrase. However,
we can generalise the approach to cases where the back-reference points to
multiple phrases. A dependent phrase can have three components to its back-
reference, illustrated in Figure 6.1. The components consist of the phrases which
precede the target (the prefix), the target phrases themselves, and any phrases
which follow the target (the suffix). As our example string demonstrated, the
prefix and suffix may not exist.

Each of these three components must be handled individually:
• the prefix component: If a back-reference points to multiple phrases

76

in this component, they can be amalgamated into a single back-reference.
This is done be setting the replacement phrase to back-reference the
final phrase in the prefix component, and setting the phrase length to
the length of the symbols which make up the prefix component of the
back-reference. The innovation symbol of this new phrase is the first
symbol of the first phrase in the target.
• the target phrases: As we illustrated above, the replacement of the

dependent phrase directly replicates each back-referenced phrase from the
target. If we have a non-null prefix to the back-reference in the previous
bullet point, we have to decrement the length of the first target phrase
by 1 (to account for this symbol being the innovation symbol of the
replacement phrase).
• the suffix component: This is the easiest case – we simply keep the

original dependent phrase, and shorten its length such that it is no longer
pointing at the target. This will now reference all phrases in the suffix,
and handle the dependent phrase’s original innovation symbol.

We formalise this process in Algorithm 5.

The algorithm has three parts, which correspond to the three components
of a dependent phrase’s back-reference: Lines 7–13 handle the prefix, Lines
14–20 handle the target phrases themselves, and Line 22 handles the suffix
component. We will discuss each of these parts of the algorithm below.

Initialisation

The first two steps are initialising variables used in the remainder of the
algorithm.

The first variable to be initialised is the array Φ. This array has one element
for each dependent phrase D. Each element in Φ is itself an array of one or
more phrases which replace the dependent phrase in D.

The variable k points to the index in D of the dependent phrase which is
currently being processed.

For each dependent phrase which this algorithm processes, the variables
a and b store the start and end (respectively) index positions of the string
which is back-referenced by the dependent phrase (Lines 4 and 5). That is, the
current dependent phrase will back-reference the string ta,b.

At any given step of the algorithm, len will store the length of the string
ta,b which has not yet been processed.

77

Algorithm 5 re-parse dependent phrases(Π, i, j,D, t)
Require: An array of LZ-End phrases Π.

An index i of the first symbol being removed.
An index j of the first symbol after i not being removed.
An array, D, referencing phrases in Π which depend on one or more

symbols in the raw string ti,j−1.
The raw symbol t, being the first target symbol of the edit operation.

(i.e., ti, prior to the edit being applied).
Result: An array, Φ, where each element corresponds to an element in D.

Each element is itself an array of phrases which collectively
replace the corresponding element in D.

1: Φ← {{∅}D.size} i.e, an array of D.size (initially empty) arrays of phrases.
2: k ← 0
3: while k < D.size do
4: b← select(πdk .b)
5: a← b− πdk .l + 1
6: len ← πdk .l
7: if a < i then
8: Φk ← {〈rank(i)− 1, i− a, t〉}
9: len ← len − i− a− 1
10: ptr ← rank(i)
11: else
12: ptr ← rank(a)
13: end if
14: while len > 0 and ptr ≤ rank(j) do
15: tmp ← πptr
16: tmp.l← min(len − 1, tmp.l)
17: Φk ← Φk || tmp
18: len ← len − tmp.l − 1
19: ptr ← ptr + 1
20: end while
21: if len > 0 then
22: Φk ← Φk || 〈πdk .b, len, πdk .i〉
23: else
24: Φk ← Φk || 〈0, 0, πdk .i〉
25: end if
26: k ← k + 1
27: end while
28: return Φ

The prefix component

Recall that the prefix component of a dependent phrase does not exist when
a ≥ i. In cases where the prefix does exist (i.e., a < i), we replace its encoding
with that of a single phrase. This replacement phrase points to the last phrase of
the prefix. The innovation symbol of the replacement phrase is therefore the first
symbol of the first target phrase. This symbol is passed as a parameter to the

78

algorithm, and will have been accessed by a previous call to the LZ-End random

access() function (Algorithm 3). This replacement phrase is constructed in
Line 8, and becomes the first in our array of replacement phrases, Φk.

Remark 6.3. We denote an individual element of Φ with a capital letter
(e.g., Φk) – this is because each element of Φ is itself an array.

We then need to decrement len, so that we account for the fact that we
have replaced the encodings of the symbols in the prefix component of the
back-reference.

Finally, we set ptr to point to the first phrase in our target whose encoding
still needs to be replaced. This happens whether there is a prefix component
to replace or not (note the else condition on Line 11).

The target phrases

We replace each target phrase simply by copying its encoding from our target
parsing (see Line 15). There is a possibility that the back-reference of the
dependent phrase may not be as long as the length of the phrase we have just
copied. This can only happen for the first phrase of the target, and only if
there was no prefix. Line 16 accounts for this by correcting the length of the
phrase tmp.

After the length has (potentially) been altered, we append the copied phrase
to the replacements array, Φk (Line 17), and account for the length of the
symbols whose encodings we have replaced (Line 18).

The suffix component

We replace the suffix component of a dependent phrase (if it exists) with a
single replacement phrase. This is simple, because the dependent phrase already
points to this suffix. The only component of this phrase which must be changed
is the length, which must be shortened so that the phrase does not reference
the target phrases (Line 22).

If the suffix did not exist (i.e., len was zero at Line 21), we still need to
replace the innovation symbol of the dependent phrase (Line 24), since this
will not have been included in the direct copying of the target phrases.

Applying this to our example

Applying this to our example, we established above that the dependent phrase
π6 would be replaced by two phrases:

µ0 = 〈2, 2, y〉

79

µ1 = 〈0, 0, y〉
and that the dependent phrase π7 would be replaced by:

ν0 = 〈3, 2, z〉
ν1 = 〈0, 0, z〉

Putting this all together, we have:
Π: π0 = 〈0, 0, y〉 Φ: φ0 = 〈4, 0, y〉

π1 = 〈0, 0, z〉 φ1 = 〈4, 1, z〉
π2 = 〈0, 1, y〉 φ2 = 〈5, 2, z〉
π3 = 〈1, 1, z〉

(((((((π4 = 〈2, 2, y〉 µ: µ0 = 〈2, 2, y〉

(((((((π5 = 〈3, 2, z〉 µ1 = 〈0, 0, y〉

(((((((π6 = 〈4, 3, y〉

(((((((π7 = 〈5, 3, z〉 ν: ν0 = 〈3, 2, z〉
π8 = 〈7, 8, z〉 ν1 = 〈0, 0, z〉

We need to insert the phrases Φ in place of π4,5, µ in place of π6 and ν

in place of π7. Unfortunately, doing so will introduce an error: π8 will not
decode correctly. This is because we have changed the number of phrases in
the parsing, so that the back-references of the original phrases will need to be
updated. The next section addresses this issue.

6.2.5 Adjust back-references

The number of phrases used to encode the target and dependent symbols has
likely changed in the previous step. This may affect the decoding of all phrases
which follow the target, even of those phrases which are not dependents. We
therefore need to correct the back-references of phrases after the target, to
ensure that they back-reference the correct phrases.

The algorithm to make these corrections therefore needs to consider:
• the location and number of target phrases removed,
• the number of phrases (if any) inserted in place of the target,
• the position of each dependent phrase, and
• the number of phrases replacing each dependent phrase.
Algorithm 6 describes a method to fix the back-references. The algorithm

processes each phrase after the final target phrase.
Phrases whose back-references point to phrases before the target do not

need adjusting, hence the condition at Line 2. If the phrase’s back-reference
points to a phrase after the final target phrase, we increment its back-reference
by the difference between the number of phrases in the original target and the
number of phrases inserted in their place (Line 3).

80

Algorithm 6 adjust pointers(Π, a, l, z,D,Φ)

Require: An array Π of LZ-End phrases.
A pointer a to the first phrase whose index may need adjusting.
The number of phrases l which were removed from Π.
The number of phrases z in the encoding of the inserted string S.
An array D of pointers to the dependent phrases.
An array Φ of replacement phrases for each dependent.

Result: The array Π, once its index pointers have been corrected to account
for the modification.

1: while a < Π.size do
2: if πa.b ≥ x then
3: tmp ← πa.b+ z − l
4: x← 0
5: while x < D.size do
6: if πa.b ≥ dx then
7: tmp ← tmp + Φx.size − 1
8: else
9: break
10: end if
11: x← x+ 1
12: end while
13: π.b← tmp
14: end if
15: a← a+ 1
16: end while
17: return Π

Remark 6.4. Note that in Algorithm 6, the parsing Π has not yet been
edited: neither the target phrases, nor the dependent phrases, have been
replaced yet. This is why the algorithm compares each phrase’s back-
reference to the dependents array D.

The algorithm then compares the back-reference against each of the de-
pendents. As long as the back-reference exceeds the index of the dependent
phrase, we need to increment the back-reference by the difference introduced
by replacing the dependent phrase (Line 7). As soon as a dependent phrase has
an index greater than the back-reference, we can stop processing the phrase,
hence the early exit condition (Line 9).

Recall that our parsing (after replacing the target and dependent phrases)
will become:

Π: π0 = 〈0, 0, y〉
π1 = 〈0, 0, z〉
π2 = 〈0, 1, y〉
π3 = 〈1, 1, z〉

81

φ0 = 〈4, 0, y〉
φ1 = 〈4, 1, z〉
φ2 = 〈5, 2, z〉
µ0 = 〈2, 2, y〉
µ1 = 〈0, 0, y〉
ν0 = 〈3, 2, z〉
ν1 = 〈0, 0, z〉
π8 = 〈7, 8, z〉

The only dependent phrase which needs to be edited here is the final phrase
π8, which becomes π8 = 〈10, 8, z〉, pointing at the phrase ν1. The entire parsing
now decodes correctly, reflecting the edit that was made.

Remark 6.5. Note that while Algorithm 6 presents a quadratic-time
method to adjust the pointers, this can be done in linear time. By storing
a mapping between phrase indices in the original parsing Π and their new
index positions in the edited parsing Π′, one can do away with the inner
while loop at Line 5.

6.2.6 Replace the dependent phrases

Algorithm 5 calculated the parsing to replace each dependent phrase, but it did
not actually replace the dependent phrases in Π. Algorithm 7 below performs
the actual replacement of those dependent phrases. Note that this algorithm is
called before the target phrases have been replaced. This allowed us to use the
pointers D in Π to identify each dependent phrase.

The algorithm replaces each dependent phrase, starting with the last de-
pendent phrase, and moving to the first. This prevents previously-replaced

Algorithm 7 replace dependent phrases(Π, D,Φ):
Require: The LZ-End parsing Π consisting of m phrases, which is

being edited.
An array D of pointers to phrases in Π to be edited.
An array Φ, where each element is an array of phrases to replace

the dependent phrase referenced by the corresponding element
of D.

1: ptr ← D.size − 1
2: while ptr ≥ 0 do
3: Π← π0,dptr−1 || Φptr || πdptr+1,m−1

4: m← Π.size
5: ptr ← ptr − 1
6: end while
7: return Π

82

dependent phrases from affecting the pointers to the dependent phrases.

6.2.7 Putting it all together

The complete LZ-End editing algorithm is therefore given in Algorithm 8. The
initial steps calculate the phrases which encode the symbols which are being
removed, as well as the length of the prefix and suffix to not be removed from
these phrases.

Line 6 prepends the prefix of phrase a and appends the suffix of phrase b
to the inserted string S. The algorithm then identifies the dependent phrases
and calculates their replacements (Lines 7 and 8).

Next, we parse the inserted string S. We then set the back-reference
component of each phrase so that it decodes correctly when the parsing is
inserted into Π (between Lines 9 and 12).

Finally, we adjust the pointers of the phrases which follow the target
(Line 13), replace the dependent phrases (Line 14) and insert the parsing of
string S into Π (Line 15).

Algorithm 8 LZ-End edit(Π, i, j, S):
Require: The LZ-End parsing Π consisting of m phrases, which forms

the LZ-End parsing of the string T of length n.
Integers i, j, such that 0 ≤ i ≤ j.
A string of symbols S.

Result: The array Π which has had symbols ti,j−1 removed and S inserted in
their place.

1: a← rank(i)
2: b← rank(j)
3: pref _len ← πa.l − (select(a)− i)
4: suf _len ← select(b)− j + 1
5: t← random access(Π, i, 1)
6: S ← random access(Π, i− pref _len, pref _len) || S

|| random access(Π, j, suf _len) (Algorithm 3)
7: D ← identify dependent phrases(Π, a, b, suf _len) (Algorithm 4)
8: Φ← re-parse dependent phrases(Π, i, j, D, t) (Algorithm 5)
9: Θ← LZ-End(S) (Algorithm 2)

10: for all θ in Θ do
11: θ.b← θ.b+ a
12: end for
13: Π← adjust pointers(Π, b+ 1, b− a+ 1, Θ.size, D,Φ) (Algorithm 6)
14: Π← replace dependents(Π, D,Φ) (Algorithm 7)
15: Π← π0,a−1 || Θ || πb+1,m

16: return Π

83

6.3 How edits affect the LZ-End parsing

Recall that one notable characteristic of the LZ-End parsing is phrase unique-
ness, whereby no two phrases encode identical substrings. This is an important
property which is used in the proof that the LZ-End parsing of a string is
coarsely optimal [2].

The editing algorithm, however, breaks this property. When we replace
a dependent phrase, we explicitly copy prior back-references (Algorithm 5),
and we do this repeatedly for all dependent phrases. In addition, we parse the
inserted string S in isolation from the string T – that is, the symbols of S are
encoded without any back-references to phrases encoding T . In addition, no
phrases in T back-reference the encoding of S.

Therefore, applying a single edit to the LZ-End parsing may result in a
parsing which is not coarsely optimal. This is a theoretical result; in this thesis
we empirically evaluate how an edit affects the parsing in practice. For the
remainder of this chapter, we analyse the theoretical properties of the editing
algorithm and discuss its shortcomings. In the next chapter, we present an
improved and optimised editing algorithm. For conciseness, we empirically
evaluate the algorithm presented in this chapter alongside the improved version
of the next chapter (see Section 7.4.2).

Remark 6.6. The LZ-End edit function has to parse the inserted string S
in isolation from the string T which is being edited: Using the prefix of T
which precedes the edit location to parse the string S is not possible, as
this requires knowledge of the decoded prefix of T . To decode the entire
part of T which precedes the edit location would violate the conditions of
random access/edits, which imposes a limit on the number of symbols to
be accessed/edited (see Definition 2.11).

6.4 Time and memory requirements

This section will analyse the time and memory required to perform an edit. We
analyse each of Algorithms 4 to 6 individually, and then summarise the time
and memory requirements of the editing algorithm (Algorithm 8) as a whole.

Identifying dependent phrases

Each operation performed by Algorithm 4 is a constant-time addition, a
comparison, or assignment. The algorithm iterates once for each phrase which
comes after the final target phrase. The time is therefore bounded by O(Π.size−

84

b), where b is the location of the last target phrase (we use the variable names
of Algorithm 8).

The memory requirements are O(Π.size − b), since the maximum possible
size of the dependents array D is Π.size − b.

Re-parsing the dependent phrases

Algorithm 5 iterates once per dependent phrase. In the worst-case, the cost of
replacing each dependent phrase consists of:

• a rank operation
• a select operation
• b − a iterations of the while loop at Line 14 (where πa and πb are the

first and last target phrases).

Recall that the indexable dictionary used by the original LZ-End parsing is
static. This means that the data structure supporting constant-time rank and
select queries will need to be rebuilt after each edit operation. Alternatively,
a dynamic structure supporting rank/select queries could be used; however,
these dynamic structures may not facilitate constant-time queries. We discuss
this further in Sections 6.5 and 7.4.1.2. For the remainder of this chapter, we
leave the cost of the rank and select queries in the run-time functions in
which they appear, so that it is clear how the choice of different indexable
dictionaries will affect the run-time of the edit function.

The space required to store the replacement phrases for each dependent is
similarly O(b− a).

Adjusting pointers

As we point out in Remark 6.5, Algorithm 6 can be improved by calculating a
one-to-one mapping between original phrase indices in Π, and the new indices
in the edited parsing Π′. This can be done in time Θ(Π.size − b). Once this
precomputation is complete, adjusting each phrase’s back-reference is a single
constant-time operation. Since there are Π.size − b phrases to adjust, the
runtime of this algorithm is Θ(Π.size − b).

Algorithm 6 uses Θ(Π.size − b) space.

85

Total cost of an LZ-End edit operation

The total time complexity of the LZ-End edit() function (Algorithm 8) is
therefore:

O((j − i+ pref _len + suf _len)× (rank + select) + Π.size − b+

(b− a)× (Π.size − b+ rank + select) + F(S.size) + (Π.size − b))

which reduces to:

O((j − i+ l̄)× (rank + select) + (b− a)× (Π.size − b+ rank + select)+

F(S.size) + (Π.size − b))

where F(S.size) is the cost of parsing the inserted string S, and l̄ > pref _len,
suf _len is the maximum length of a phrase in Π, prior to the edit being applied.

Now, j− i ≥ b− a, which means that we can further reduce this formula to:

O((j − i+ l̄)× (rank + select) + (b− a)× (Π.size − b)+

F(S.size) + (Π.size − b))

Finally, the term (b− a)× (Π.size − b) dominates the (Π.size − b) term:

O((j − i+ l̄)× (rank + select) + (b− a)× (Π.size − b) + F(S.size)) (6.9)

This shows that the cost of an edit operation is mainly dependent on:

• the size of the edit (j − i, b− a, and the size of the inserted string S),
• the length of the longest phrase in Π, prior to the edit being applied (l̄),
• the cost of the rank and select queries,
• the size of the parsing (Π.size), and
• the position of the edit (Π.size − b).

In the next chapter, we will show how to adapt the LZ-End parsing so that
the size of the parsing and the position of the edit have no impact on the time
complexity of the edit operation.

An LZ-End edit operation requires O(max(Π.size,Π′.size)) space. This is
the benefit of performing a compressed edit for LZ-End: the space complexity
of the edit is a function of the compressed size of the string, rather than the
raw size of the string being edited.

86

6.5 A note on rank and select queries

The reader will have noticed that we have abstracted away the rank and
select queries, as well as any data structure which supports these queries.
This has been a deliberate decision, one which the editing algorithm has been
deliberately designed to accommodate: Note that Algorithm 8 first changes the
parsing Π at Lines 13 to 15. All rank and select queries are made prior to this
change, which means that we do not require a dynamic structure to support
these queries. Also note that the cost of both the rank and select operations
appears in the cost formula of the LZ-End edit() function (Equation (6.9)).

This means that our method of editing LZ-End compressed data (Algo-
rithm 8) is not dependent on a particular data structure or format of LZ-End
parsing used to answer rank and select queries.

If any data structure is used to answer rank and select queries, this must
be rebuilt after applying the edit algorithm. We do not include this in the cost
of the editing algorithm, since this same method would need to be applied if
we decompressed, edited and recompressed the string: In either case, we need
to reconstruct whatever data structure is used to answer rank and select

queries. This data structure could be the indexable dictionary used by the
original LZ-End parsing ([2, 61]), or the pre-computed table mentioned earlier
in this thesis (Section 4.5.1).

The indexable dictionary by Raman et al. is static, meaning that if we make
any changes to it, we must decode the compressed bit-vector, edit the vector
and re-construct the compressed bit-vector. Dynamic indexable dictionaries
do exist (see for example [77, 78, 79, 80]); the downside is that these have
non-constant run-times for rank and select queries, and the cost of editing the
structure is also non-constant. We leave it as future work to determine whether
or not it is beneficial to use these dynamic structures, or simply reconstruct
the compressed bit-vector of Raman et al. with each edit.

6.6 Conclusion

This chapter presented the first algorithm to edit data in its LZ-compressed
form. The cost of the editing algorithm depends largely on the position of the
edit within the string – this gets particularly costly when editing near the start
of the string. In the next chapter, we present a new LZ-type parsing, and show
how the structure of this parsing supports edits with a much improved cost
function.

Chapter 7

LZ-Local: introducing a sliding
window into the LZ-End parsing

This chapter introduces a sliding window into the LZ-End parsing. The sliding
window limits the number of dependents each phrase can have; this dramatically
improves the performance of the editing algorithm from the previous chapter.

The chapter starts by defining the new parsing, formed by incorporating a
sliding window into LZ-End: We call this parsing LZ-Local . We choose this
name because the sliding window means that all of the random-access and
random-edit properties of the LZ-End parsing become locally accessible/editable
(as we shall see). Refer back to Section 2.6.3 for a distinction between random
access/edits, and local access/edits. We go on to discuss the implications which
the sliding window has on the compression ratio, and how the editing algorithm
is affected by the sliding window. Finally, we empirically evaluate the editing
algorithm against various window sizes.

This chapter is squarely focused on the structure of the LZ-Local parsing,
and the implications of the sliding window on editing. Like the original LZ-77
paper ([40]), we do not present an algorithm to efficiently construct the parsing,
but leave this as future work.

7.1 LZ-Local parsing

The sliding window which we introduce into LZ-End is exactly the same as the
sliding window of the original LZ-77 parsing (see Section 3.2). That is, for a
window size of w > 0, every symbol encoded by an LZ-Local phrase is at most
w symbols away from the symbol it back-references.

Recall that the back-references in the LZ-End parsing refer to absolute
phrase indices. We change this for LZ-Local by using relative phrase indices:
That is, if phrase πj has a back-reference of x, it is pointing to phrase πj−x.
This means that the sliding window places an upper bound on the number of

88

bits required to encode any back-reference (dlogwe).

Definition 7.1. The LZ-Local parsing of a string T = t0t1 . . . tn−1 is a
sequence of m ≤ n phrases Π. If the first q < m phrases of Π encode the
first i < n symbols of T , then the phrase πq encodes the longest prefix
of ti,n−1 which is a suffix of the concatenation of phrases πj,k for some
p ≤ j ≤ k < q, where w > 0 is a constant, p = 0 if i < w, otherwise p is
the index in Π of the phrase encoding symbol ti−w.

Example 7.1. Let us parse the string T = abracadabraracada using the
LZ-End and LZ-Local parsings (i.e., with and without a sliding window). In
the case of LZ-Local, use a window size w = 8.

LZ-End (no window) LZ-Local (window size = 8)
Π: π0 = 〈0, 0, a〉 Φ: φ0 = 〈0, 0, a〉

π1 = 〈0, 0, b〉 φ1 = 〈0, 0, b〉
π2 = 〈0, 0, r〉 φ2 = 〈0, 0, r〉
π3 = 〈0, 1, c〉 φ3 = 〈3, 1, c〉
π4 = 〈0, 1, d〉 φ4 = 〈4, 1, d〉
π5 = 〈2, 3, a〉 φ5 = 〈3, 3, a〉
π6 = 〈4, 5, a〉 φ6 = 〈1, 2, c〉

φ7 = 〈2, 1, d〉
φ8 = 〈0, 0, a〉

Here, the two parsings are identical for phrases π0,5 = φ0,5: The only
differences are the relative versus absolute back-references. The parsings diverge
for the last six symbols, t11,16: The original LZ-End parsing represents these
symbols as a single phrase π6. LZ-Local, however, represents these symbols as
three phrases, φ6,8. This is due to the constraint that no phrase be more than
w = 8 symbols from its back-reference.

7.1.1 Properties of the LZ-Local parsing

This section discusses how the differences between the LZ-End and LZ-Local
parsings affect the relative performance of their compression and random access
algorithms.

Coarse optimality

Recall that the proof of the LZ-End parsing’s coarse optimality relied on each
phrase in the parsing being unique (recall Definition 2.10, Section 6.3 and [2]).
The introduction of a sliding window means that the LZ-Local phrases are not

89

unique; therefore, we have not been able to show that the LZ-Local parsing is
coarsely optimal. Investigating this remains future work: a proof may involve
using the upper bound on the number of bits used to encode the back-reference
component of each LZ-Local phrase, in conjunction with Theorem 2.2.

Random access

The random-access property of LZ-End becomes local access in LZ-Local. Recall
that an arbitrary phrase in the LZ-End can be retrieved in linear time. However,
this requires random access to all phrases which precede the phrase we wish to
decode.

LZ-Local allows the same linear-time decoding of an arbitrary phrase: the
difference is that there is an upper bound on the distance between the phrase
being decoded and the furthest phrase which we may need to access.

Theorem 7.1. LZ-Local allows local access to the symbols of an arbitrary
phrase: that is, symbol ti can be recovered from the parsing Π by reading
only phrases encoding the symbols ti−l×w,i, where l is the length of the
phrase encoding ti and w is the window size used in the LZ-Local parsing.

Proof. Recall that Algorithm 3 (the random access() algorithm which applies
to both LZ-End and LZ-Local) allows decoding a phrase π of length l in at
most l steps [2]. The algorithm achieves this by recursively back-referencing
phrases and reading their innovation symbols. We also know that Algorithm 3
makes a maximum of l recursive calls.

From the definition of the LZ-Local parsing, we know that each recursive
call of Algorithm 3 will read the innovation symbol of a phrase at most w
symbols preceding the previous phrase.

Note that the actual random-access algorithm does not change – that is,
Algorithm 3 applies to LZ-Local parsing, without alteration. However, the
structure of the LZ-Local parsing optimises the “locality” of phrase decoding:
randomly accessing the symbols of an LZ-End phrase πx may require reading
any phrase in π0,x−1. Randomly accessing the symbols of an LZ-Local phrase
πx, however, only requires accessing phrases which encode symbols in ti−l×w,i,
if πx is of length l, and πx encodes symbol ti (Theorem 7.1).

Random editing

The sliding window of LZ-Local places an upper bound on the number of
possible dependent phrases (and therefore phrases which need to be replaced).
Section 7.3 discusses this in detail.

90

7.2 Evaluating the LZ-Local parsing

Before discussing the LZ-Local editing algorithm, it is important to examine
the effect which the sliding window (and altering the size thereof) has on
the compression ratio. We have discussed the theoretical implications already
(namely, the loss of coarse optimality); here, we empirically evaluate the effect
which varying the window size has on compressibility. This section applies the
methodology introduced in Section 5.2, using the files from the Canterbury
corpus [70] and strings of calibrated entropy [72]. This section measures the
effect which varying window sizes have on the LZ-Local compression ratio, how
the compression achieved by a given window size compares to LZ-77, and what
window size is required for LZ-Local to become competitive with LZ-End.

Remark 7.1. Note that if the window size is larger than the string
being compressed, the LZ-Local parsing will match the LZ-End parsing.
Therefore, as the window size increases, we expect the LZ-Local compression
ratio to approach that of LZ-End.

7.2.1 Canterbury corpus

We begin evaluating the LZ-Local algorithm on the Canterbury corpus, and
present the results in Figures 7.1 to 7.18. The LZ-End algorithm has already
been evaluated against the Canterbury corpus in [2]. The astute reader might
notice that our results are close to, but do not match, those reported in [2].
We did manage to closely match the results in [2] by bit-packing the phrase
back-references. However, for this evaluation we do not use bit-packing (recall
Section 5.3).

The general patterns we observe in the Canterbury corpus files are:
• For the repetitive texts aaa.txt (Figure 7.1) and alphabet.txt (Fig-

ure 7.3), LZ-77 achieves very good compression for all window sizes. The
LZ-Local compression rate, on the other hand, is highly dependent on the
window size. For small window sizes, LZ-Local compresses the repetitive
texts rather badly in comparison to LZ-77.
• For most non-repetitive files, changing the window size has a similar effect
on LZ-77 compression as on LZ-Local. LZ-77 overall compresses better
than LZ-Local. This is not surprising, given that the LZ-Local parsing is
based on LZ-77, with added constraints.
• LZ-77 outperforms LZ-Local and LZ-End for most files. The notable

exception to this is kennedy.xls (Figure 7.10).
• LZ-End usually outperforms LZ-Local for small window sizes, but LZ-

Local converges on the LZ-End compression ratio as the window size gets

91

larger.

Remark 7.2. We omit the Canterbury file a.txt, as it is of no interest
for our analysis: All LZ parsers will represent this file as a single phrase.

Remark 7.3. The LZ-End parsing does not have a sliding window. There-
fore, in all graphs plotting compression ratio vs. window size, the LZ-End
compression ratio is constant, and depicted with a horizontal line spanning
all window sizes.

Figure 7.1: For this highly repetitive text, LZ-Local performs quite badly for
small window sizes. As the window size increases, LZ-Local is slow to converge
to the LZ-End compression ratio. The LZ-77 compression rate, on the other
hand, is much less dependent on the window size.

92

Figure 7.2: For the first English text file, the size of the sliding window has
a similar impact on LZ-Local compression as on LZ-77. However, LZ-77 is
superior for all window sizes. Note that LZ-Local’s performance converges on
LZ-End, even for window sizes smaller than the overall text length.

Figure 7.3: We start to see a pattern emerge with highly repetitive texts: Similar
to Figure 7.1, LZ-77 compresses the text very well, even for small window sizes.
LZ-Local, however, is slow to converge on the LZ-End compression rate as the
window size increases.

93

Figure 7.4: This text file is consistent with the general observations that varying
the window size has a similar effect on LZ-Local compression as on LZ-77, with
LZ-77 performing better overall. Again, LZ-Local compression rate converges
on the LZ-End compression rate for window sizes less than the text length.

Figure 7.5: Our previous observation for English text files continue here: the
window size has a similar effect on LZ-Local as on LZ-77, with LZ-77 performing
better overall. The LZ-Local compression rate has converged on that of LZ-End,
even though the file is approximately four times larger than the largest window
size in this graph.

94

Figure 7.6: This file continues the trend we saw on English text files.

Figure 7.7: Note the same results as for previous medium-entropy (text) files.
However, note the jump in compression ratio for both LZ-77 and LZ-Local, with
window sizes between 32,768 and 65,536. This is because, for both parsings,
the increased window size led to a dramatic increase in the size of each phrase,
with minimal reduction in the number of phrases for either parsing.

95

Figure 7.8: This file continues the trend observed for medium-entropy, non-
repetitive files.

Figure 7.9: LZ-Local and LZ-77 have similarly-shaped graphs again; however,
it is difficult to draw meaningful conclusions from such a small file.

96

Figure 7.10: Here is the only example where LZ-Local outperforms LZ-77
for larger window sizes. Notice, however, that LZ-77 still produces the best
compression ratio, when used with the smallest window size of 1024 symbols.

Figure 7.11: This file continues the trend observed for medium-entropy, non-
repetitive files.

97

Figure 7.12: The LZ-Local and LZ-77 compression ratio have a similar relation-
ship to window size for this file. Note that the larger window sizes harm the
compression ratio – this is because the patterns in the file are more localised,
meaning that a larger window size does not provide additional benefits to the
compression.

Figure 7.13: This file continues the trend observed for medium-entropy, non-
repetitive files such as lcet10.txt and pi.txt.

98

Figure 7.14: This file represents an exception, in that, where different window
sizes have different effects on the LZ-Local compression ratio compared to
LZ-77. Why this is so will require future investigation.

Figure 7.15: A random file will not compress; however, the graph shows that
a larger window size does limit the number of LZ-Local phrases, reducing its
compression ratio. This continues until a window size of 32768, after which
larger window sizes increase the phrase size without effectively reducing the
number of phrases into which the string is compressed.

99

Figure 7.16: This file resumes the trend observed for medium-entropy, non-
repetitive files (such as bible.txt and lcet10.txt), where LZ-Local and
LZ-77 exhibit a similar relationship between compression ratio and window
size.

Figure 7.17: Again, LZ-Local and LZ-77 exhibit a similar relationship between
compression ratio and window size.

100

Figure 7.18: Here is another example where LZ-77 has poor performance for a
larger window size. However, this is due to the phrase size of LZ-77 increasing
for the larger window size, but without having a sufficiently long string to
compensate for this loss.

7.2.2 Calibrated entropy strings

Recall Figure 3.1 (repeated for reference), which shows the LZ-77 compression
ratio for each of the 10 entropy calibrations. The equivalent graph for LZ-Local
is given in Figure 7.19. Following the method described in Section 5.2, there
are 30 strings of each entropy calibration, and each string is 5MB (5 × 220

bytes) in length. Figures 3.1 and 7.19 each show the mean compression ratio
of the 30 strings for each entropy calibration.

The LZ-77 mean curves generally have smooth slopes that consistently
flatten as the window size increases. The LZ-Local curves, however, sometimes
have inconsistent “jumps” in compression ratios for successive window sizes.
Consider, for example, the entropy calibration 0.025, which has a “jump” in
compression ratio between window sizes 65536 and 131072 (see the top curve
in Figure 7.19).

The reason the LZ-77 curves are smooth, while the slopes of the LZ-Local
curves are not, is due to the two parsings’ different interpretation of back-
references: Recall that LZ-77 back-references are symbol counters (Section 3.2).
This means that the number of bits required to store each LZ-77 back-reference
is exactly the number of bits required to store the size of the sliding window.

In contrast, the LZ-Local back-references are phrase counters (Section 7.1).

101

Figure 3.1: The mean compression ratio achieved by LZ-77 on the strings with
10 different entropy calibrations, for various window sizes. Note the consistent
relationship between larger window size and improved compression, for all
entropy calibrations.

Figure 7.19: The mean compression ratio achieved by LZ-Local on the strings
with 10 different entropy calibrations, for various window sizes. We include the
LZ-End compression ratio on the right-hand side of the graph. Note that there
is minimal difference in compression between LZ-End and LZ-Local, when the
window size is ≥ 217 ≈ 130,000. Also note that the slopes of the LZ-Local
curves are not as smooth or consistent as for LZ-77 in the figure above. This is
because the LZ-Local phrase sizes are only indirectly tied to the window size,
while LZ-77 phrase sizes are directly tied to the window size.

102

This means that the number of bits required to store the back-reference is
only indirectly affected by the window size: the number of phrases required to
encode w symbols is ≤ w. Therefore, incrementing the number of bits required
to store the window size will not necessarily increment the number of bits
required to store the phrase back-reference.

If we increment the number of bits storing the window size, and this incre-
ments the size of LZ-Local back-references, there will be relatively little change
in compression ratio between the two window sizes. However, if incrementing
the size of the window does not result in an increase in the size of the LZ-Local
back-reference, there will be a larger gain in compression ratio.

Figures 7.20 to 7.29 compare the three parsing algorithms for each entropy
calibration. These graphs show the mean compression ratio for each algorithm,
with bands showing the minimum and maximum compression ratios achieved
for each window size. The LZ-End “curves” are actually each single points,
since LZ-End does not have a sliding window.

In general, the graphs show that the LZ-77 compression comfortably outper-
forms LZ-Local for all window sizes, and outperforms LZ-End for larger window
sizes. This matches our observations from the Canterbury files in the previous
section. The LZ-Local compression rate approaches LZ-End as the window
size increases, and for the largest window size (220 bytes) often outperforms
LZ-End. This is interesting, as the largest window size is one fifth of the raw
size (5× 220 bytes) of each calibrated entropy string. This evidence supports
our hope that LZ-Local compression could in fact be coarsely optimal.

Another important observation from Figures 7.20 to 7.29 relates to the
variance in observed compression ratios. Consider Figure 7.27: For some
window sizes, the minimum and maximum compression ratios for LZ-77 and
LZ-Local are so close together, that the “bands” around the mean value basically
disappear. For some window sizes, on the other hand, the bands return, and
the mean value is close to the bottom of the band.

The reason for this is that the compression ratio is influenced by two
variables: 1) the number of phrases which the compression algorithm parses
the input string into, and 2) the size of each phrase. In the case of all three
compression algorithms, the phrases size has a much larger variance than the
phrase count. This means that the variance in compression ratio is therefore
impacted by the variance in phrase size much more so than by the variance in
phrase count. Section 7.2.2.1 explains this in detail.

103

Figure 7.20: Comparing the LZ-Local compression ratio to that of LZ-End
and LZ-77. This is the lowest entropy calibration. The graph shows the min-
mean-max for the 30 files for each window size. Note that LZ-77 is superior to
LZ-Local for all window sizes, and that LZ-Local approaches LZ-End for larger
window sizes.

104

Figure 7.21: Comparing the LZ-Local compression ratio to that of LZ-End
and LZ-77. This time there is some overlap between the maximum LZ-77
compression ratio and the minimum LZ-Local, for some window sizes. Note
that for the largest window size, LZ-Local outperforms LZ-End. Note also the
jump in LZ-Local compression ratios between window sizes 32768 and 65536,
and see that this same jump is not present in LZ-77. This is a result of the
direct correlation between window size and phrase size for LZ-77, compared to
the indirect correlation for LZ-Local.

105

Figure 7.22: Comparing the LZ-Local compression ratio to that of LZ-End and
LZ-77. LZ-Local outperforms LZ-End for the two largest window sizes.

Figure 7.23: For this entropy calibration, the trend continues: LZ-77 outper-
forms LZ-Local for all window sizes, and LZ-Local converges on LZ-End for
larger window sizes.

106

Figure 7.24: Again, the pattern repeats, where LZ-77 outperforms LZ-Local
and LZ-Local outperforms on LZ-End, for large enough window sizes.

107

Figure 7.25: This entropy calibration continues the trend observed in previous
figures, where LZ-77 outperforms LZ-Local, and the LZ-Local compression
rate (marginally) outperforms that of LZ-End for the largest window size.
Note the extremely consistent results here, where the minimum and maximum
compression ratios for the 30 files are always very close to one another, and the
variance bands observed for the other entropy calibration levels disappear here.
This is because there is no variation in the phrase sizes for each window size.
For the majority of entropy calibrations, the LZ-77 compression ratio crossed
that of LZ-End, when the window size was between 32768 and 65536. Here,
however, LZ-77 is slower to outperform LZ-End, requiring a window size >
131072 to do so.

108

Figure 7.26: Again, LZ-77 outperforms LZ-Local for all window sizes. However,
for the largest window size, LZ-Local outperforms LZ-End. For larger window
sizes, the variance for LZ-Local and LZ-77 reduces. This again corresponds to
a reduced variance in phrase size (Section 7.2.2.1). Note that the variance of
the LZ-77 compression ratio reduces at a much smaller window size (32768)
than for LZ-Local (131072).

109

Figure 7.27: This graph shows similar relative performance between LZ-Local
and LZ-77 as previous entropy calibrations. Note, however, that LZ-Local
outperforms LZ-End for the two largest window sizes.

110

Figure 7.28: Once again, LZ-77 outperforms LZ-Local, and LZ-End for large
enough window sizes. Note that the outlying compression ratios for LZ-Local
and LZ-77 do not correlate. For example, LZ-77 has an outlying poor compres-
sion ratio for one file at window size 16384, while the LZ-Local compression
values for this window size are very consistent. Conversely, LZ-Local’s outlying
value at window size 4096 is not replicated in LZ-77. This is because the
outliers are caused by outliers in the size of each phrase; we do not expect
minor differences in LZ-77 phrase size to correspond to differences in LZ-Local
phrase size (or vice versa).

111

Figure 7.29: For the highest entropy calibration, the variance is in compression
ratios is very small, save for a couple of outliers in LZ-Local. The trend
repeats, with LZ-77 outperforming LZ-Local for all window sizes. Note that
for this entropy calibration along with ε = 0.0025 (Figure 7.25), LZ-77 only
outperforms LZ-End for window sizes > 131072. This is different to the other
entropy calibrations, where LZ-77 outperforms LZ-End for window sizes greater
than 32768 or 65536.

112

7.2.2.1 Cause of the variance in compression ratios

This section demonstrates that the distribution of compression ratios for LZ
compressors is more reliant on the distribution of phrase sizes than on the
distribution of phrase counts. To do this, we focus on the entropy calibration
0.005, compressed by LZ-77 using a window size of 2048 (Figure 7.26, repeated
below).

Figure 7.26: Repeating the figure for reference. This section investigates the
distribution of LZ-77 compression values.

We are interested in the distribution of compression ratios within the min-
max bands. To this end, we plot the LZ-77 compression ratio compared to
window size as a box-and-whisker plot for each window size (Figure 7.30). In a
similar vein, Figures 7.31 and 7.32 show the phrase count and compressed phrase
sizes, as box-and-whisker plots. The phrase count has very little variation for
any window size. There are, however, variations in the size of each phrase, and
this corresponds to the window sizes with most variation in compression ratio.

To prove beyond all doubt the relationship between the variance in phrase
size, phrase count, and compression ratio, we generated 1000 additional strings
with the same entropy calibration (0.005) and size (5× 220 bytes), and com-
pressed these using LZ-77 with a window size of 2048. The phrase counts of
these 1000 strings have a largely unimodal distribution (Figure 7.33). There are
two phrases sizes observed (Figure 7.34). The interesting graph is the distribu-

113

Figure 7.30: Box-and-whisker plots of LZ-77 compression ratio. This isolates
the LZ-77 compression ratio from Figure 7.26.

Figure 7.31: Box-and-whisker plot showing the distribution of phrase counts
compared to window size. The number of phrases has very little variance
compared to the compression ratio from Figure 7.30.

114

Figure 7.32: Box-and-whisker plot showing the number of bits encoding each
LZ-77 phrase. The window sizes 32768 and larger have no variation in phrase
size, and this corresponds to the reduced variance in compression ratio for
larger window sizes (Figure 7.30). The outlying phrase sizes (signified by the
dots at window sizes 1024, 8192 and 16384) correspond to outlying compression
ratios in Figure 7.35.

tion of compression ratio (Figure 7.35), where the distribution of compression
ratio is bi-modal, corresponding to the two phrase sizes! This proves that the
variance in compression ratio is predominantly influenced by variance in the
size of each phrase, rather than by variance in the phrase counts.

115

Figure 7.33: Distribution of LZ-77 phrase counts, when compressing 1000
strings of calibrated entropy. There is nothing particularly interesting about
this graph, except that the distribution only has one peak.

Figure 7.34: There are only two different phrase sizes observed across these
1000 strings, with approximately 60% of phrases stored in 23 bits, and 40%
stored in 24 bits.

116

Figure 7.35: The distribution of compression ratio for the 1000 strings. Even
though the phrase count had only one mode to its distribution, the compression
ratio has two modes! These correspond to the two phrase sizes observed in
Figure 7.34.

7.3 Editing algorithm for LZ-Local

This section adapts the random editing algorithm for LZ-End (Algorithm 8)
for use on the LZ-Local parsing. While we use the LZ-End editing algorithm
as the base for editing LZ-Local parsing, we need to make a number of changes:
1) We can optimise the runtime of the editing algorithm to make use of the
sliding window, and 2) We need to make sure that the edit does not stretch
any phrase’s back-reference beyond the window limit.

The general outline of the editing algorithm for LZ-Local is as follows, where
w is the window size used to construct the LZ-Local compression:

• Identify the phrases to edit.
• Identify dependent phrases. This search can now be restricted to those

symbols within w symbols of the final edited symbol.
• Identify phrases whose back-references would be extended beyond the
window limit w. This step is only necessary if the edit operation inserts
more symbols than it removes.
• Decode the target phrases and the w symbols which precede and follow

them.
• Edit the decoded string.

117

• Using the phrase boundaries in the w symbols preceding the first target
phrase, reconstruct the internal state of the LZ-Local parser, and use this
to parse the edited part of the decoded string.
• For each phrase which follows the target and appears within the decoded

string:
– If the phrase is a dependent or extended back-reference, use the

state of the LZ-Local parser to parse the decoded symbols.
– Else, add the phrase to the state of the LZ-Local parser, and adjust

the phrase’s back-reference to account for the number of phrases we
have replaced.

• For the next w symbols following the decoded string: adjust the back-
references of each phrase, if necessary.

Remark 7.4. Note that LZ-End edit() (Algorithm 8) parses the inserted
string independently of the existing parsing. The editing algorithm for
LZ-Local, however, uses the existing parsing to parse the inserted string.

The sliding window in the LZ-Local parsing enables this by limiting the
cost (both time and memory) of reconstructing the state of the LZ-Local
parser. This state can then be used to parse the inserted string. Doing the
same for LZ-End would be equivalent to decoding and re-parsing the entire
string to the left of the edit location; doing this would not be considered
random editing, as explained in Remark 6.6.

Sections 7.3.1 to 7.3.4 explain individual components of the editing algo-
rithm, and Section 7.3.5 then ties these components together into the complete
editing algorithm.

7.3.1 Incremental parsing

The focus of this thesis is not on how to construct the LZ-Local parsing. We do,
however, have to define the signature of the LZ-Local incremental parse()

function (Algorithm 9): Instead of parsing the entire string, this function
parses only a substring thereof. This enables the editing algorithm to parse the
inserted string using the phrases which occur to the left of the target phrases.

The function takes the following arguments:
• String S: The string which we wish to partially parse.
• LZ-Local parsing Π: The LZ-Local phrases representing the prefix of S
which has been partially parsed.
• Integer w: The size of the sliding window used by the LZ-Local parser.
• Integer f : The first symbol in S which must be parsed. This means that

Π contains the parsing of s0,f−1 (or ∅, if f = 0).

118

• Integer l: The number of symbols in S to parse.
Note that the function definition (Algorithm 9) states that the return value

is the parsing of sf,f+l−1, not the entire parsing. The reason for doing this will
become clear in Section 7.3.5, which uses this function as part of the LZ-Local
editing algorithm.

The first step of the algorithm will reconstruct the internal state of the
LZ-Local parser. How this is done will depend on the implementation of the
LZ-Local parsing algorithm. However, with the raw string S and the phrase
boundaries in Π, it is possible to reconstruct this state. The sliding window of
LZ-Local means that this state can be reconstructed in no more time than is
required to parse a string of length w.

This state must be constructed for the first call to the incremental parse()

function, but can be stored for future calls to the function.

Algorithm 9 LZ-Local incremental parse(S,Π, w, f, l)

Require: String S: A string which we wish to partially parse.
LZ-Local parsing Π: The parsing of the prefix of S.
Integer w: The size of the sliding window.
Integer f : The first symbol in S which has not been parsed into Π.
Integer l: The number of symbols in S to parse.

Result: Array Φ: The LZ-Local phrases representing the symbols sf,f+l−1.

Comment: only the symbols sf−w,f−1 (and the suffix of Π which encodes
these symbols) are required to construct the state of the LZ-Local parser.
This state can be stored and re-used for future calls to the function.

Remark 7.5. The authors have implemented the incremental parse()

function for both the LZ-Local and LZ-End parsing functions. In the case
of LZ-End (Algorithm 2), constructing the internal state of the parser
involves calculating the suffix array, inverse suffix array, and BWT of the
reverse of S, calculating the array C over the BWT, and using the phrase
boundaries of Π to build the structure Λ (which maps the innovation
symbol components of parsed phrases to entries in the inverse suffix array).

7.3.2 Identify dependent phrases

Identifying the dependent phrases of LZ-Local is functionally similar to that
of LZ-End. We provide the details of this in Algorithm 10. The two algo-
rithms (Algorithm 4 for LZ-End and Algorithm 10 for LZ-Local) take the same
parameters, with the exception that the LZ-Local variant has one additional
parameter: the size of the sliding window.

119

Algorithm 10 LZ-Local identify dependent phrases(Π, w, a, b, suf _len)
Require: LZ-Local parsing Π

Integer w, denoting the sliding window size used to construct Π.
Integers a, b, denoting the first and last target phrases.
Integer suf _len, denoting the number of symbols at the end of πb

not considered part of the target phrase.
Result: Array D of pointers to phrases in Π which back-reference one or

more phrases in πa,b.

1: D ← ∅
2: ptr ← b
3: limit ← minimum(Π.size, rank(select(b) + w))
4: while ptr < limit do
5: ref ← ptr − πptr .b
6: if a ≤ ref < b and πptr.l > 0 then
7: D ← D || ptr
8: else if ref ≥ b then
9: len ← πptr.l
10: while len > 0 do
11: if ref = b and len > suf _len then
12: D ← D || ptr
13: break
14: end if
15: len ← len − (πref .l + 1)
16: ref ← ref − 1
17: end while
18: end if
19: ptr ← ptr + 1
20: end while
21: return D

Note that the sliding window in LZ-Local permits the early exit condition
at Lines 3 and 4.

The algorithm presented here is rather naïve: There is no storing of the
distance of a phrase from the target, like we do for the equivalent algorithm in
LZ-End (see Algorithm 4). Incorporating this optimisation is trivial, given the
reference implementation in Algorithm 4. Such an optimisation will reduce the
while loop at Line 10 to a single step.

Assuming this optimisation has been made, the algorithm executes in
time Θ(w), plus the cost of a rank and a select operation. The memory
requirements are O(w), since there are at most w dependent phrases, and
storing the distances of phrases to the target requires an integer array with w
elements.

120

7.3.3 Identify extended back-references

Amajor point of difference between the LZ-Local and LZ-End editing algorithms
relates to the phrases following the target phrases which need to be replaced:
For LZ-End, only the first-order dependent phrases need to be replaced. For
LZ-Local, there is another class of phrases which need to be replaced: these
are the phrases whose back-references are extended beyond the limits allowed
by the sliding window. This can happen when the edit operation inserts more
symbols than it deletes. In this case, there is the risk that the edit results
in some phrases being further from their back-reference than the w symbols
allowed by the sliding window.

Algorithm 11 identifies these phrases. Note that we apply this algorithm
prior to applying the edit. That is, we use the size of the edit operation to
determine the phrases in Π whose back-references will be extended beyond the
window size, once we have applied the edit.

The algorithm first checks whether or not the edit inserts more symbols
than it removes. The algorithm only continues if the edit will increase the size
of the raw string (Line 2). Otherwise, the algorithm simply returns an empty
array.

The variable distance stores the number of symbols whose phrases have
been processed, while p is a pointer to the next phrase whose back-reference

Algorithm 11 LZ-Local identify extended references(Π, w, a, b, d)

Require: LZ-Local parsing Π, prior to applying the edit.
Integer w denoting the sliding window size used to construct Π.
Integers a, b, denoting the range of phrases in Π which have been

edited.
Integer d, denoting the difference between the number of symbols

which will be inserted and deleted by the edit operation.
Result: Array E denoting the indices in Π whose references have been

extended beyond the window size w.

1: E ← ∅
2: if d > 0 then
3: distance ← select(b)− (select(a− 1) + 1)
4: p← b
5: while distance < w and p < Π.size do
6: if p− πp.b < a and (select(p)− select(πp.b) + d) > w then
7: E ← E || p
8: end if
9: p← p+ 1
10: distance ← distance + πp.l + 1
11: end while
12: end if
13: return E

121

must be checked for extension.
A phrase’s back-reference can only be extended by an edit if it references a

symbol prior to the target. Line 6 determines whether or not a phrase references
a phrase preceding the target. If so, it checks whether this would extend the
back-reference beyond the window limits. If both conditions have been met, the
algorithm appends the phrase to the list E, which stores pointers to phrases
with extended references.

The algorithm exits once it reaches a phrase further than w symbols from
the first target phrase πa, or reaches the final phrase of the parsing Π.

This algorithm runs in O(w × select) time and space.

7.3.4 Adjust back-references

The final “helper function” of the LZ-Local editing algorithm adjusts the phrase
back-references to account for the edits made to the parsing. This is done in
Algorithm 12 and is the equivalent to LZ-End’s Algorithm 6.

The function is very similar to its equivalent function for LZ-End. The
primary differences are:
• Algorithm 12 is called once for each phrase whose back-reference needs
updating. This differs from the LZ-End algorithm which adjusts all

Algorithm 12 LZ-Local adjust references(Π, p,D,R, b, e)
Require: LZ-Local parsing Π

Integer p, being the index to the phrase in Π whose back-reference
we adjust in this algorithm.

Integer array D, being pointers to dependent phrases in Π.
Integer array R, being the number of phrases replacing each

dependent phrase.
Integer b, indexing the first phrase in Π following the target.
Integer e, denoting the difference in number of target phrases

after the edit.
Result: The phrase πp, with an altered back-reference.

1: abs ← p− πp.b
2: dep ← D.size − 1
3: while dep ≥ 0 and abs < ddep + rdep do
4: abs ← abs − rdep
5: dep ← dep − 1
6: end while
7: if abs < b then
8: abs ← abs − e
9: end if

10: πp.b← p− abs
11: return πp

122

phrases following the target.
• The LZ-Local back-references are relative (rather than absolute) pointers.
• The LZ-Local algorithm (Algorithm 12) assumes that the target phrases
and dependents have already been replaced. This is different to the
LZ-End equivalent, which adjusts back-references in anticipation of the
edits being applied.

We can in linear time compute an array which will store the adjustment
for each phrase based on its position and back-reference. This will make each
subsequent call to Algorithm 12 run in constant time.

7.3.5 Formal editing algorithm for LZ-Local

Algorithm 13 formalises the editing algorithm for LZ-Local. The parameters
of the function are identical to that of LZ-End’s editing function, with one
additional parameter being the window size used to construct the LZ-Local
parsing.

A major difference between the LZ-Local edit() algorithm and LZ-End

edit() is the point at which each algorithm applies the edits to the parsing.
The LZ-End variant (Algorithm 8) makes all changes to the parsing Π at the
end of the algorithm. This enables Algorithm 5, which re-parses the dependent
phrases, to make use of the rank and select queries without relying on a
dynamic structure to support these. LZ-Local edit() (Algorithm 13), on
the other hand, makes the changes to the parsing as the algorithm progresses.
That is, the LZ-Local edit() algorithm replaces the target phrases and each
dependent phrase as they are identified. This does not affect the implementation
of the rank or select queries, since neither query is required after editing the
first phrase.

Before explaining the algorithm, let us recall the edit operation: If the
parsing Π represents the raw string T of length n compressed with window
size w, then LZ-Local edit(Π, w, i, j, S) replaces symbols ti,j−1 with S, and
updates the parsing Π to reflect this change. After a call to Algorithm 13, Π

will therefore decode to t0,i−1 || S || tj,n−1.

The LZ-Local edit() function starts by identifying the target phrases
which will be edited (Line 1), as well as the prefix and suffix of the first and
last target phrases, respectively (Line 2). Like the LZ-End variant, the prefix
length refers to the number of symbols at the start of πa which are not part of
the target. Similarly, the suffix refers to the number of symbols at the end of
the πb which are not part of the edit.

Lines 3 to 5 identify the phrases which depend on the edited phrases, and
those phrases whose back-references will be extended beyond the window limit.

123

Algorithm 13 LZ-Local edit(Π, w, i, j, S):
Require: The LZ-Local parsing Π consisting of m phrases, which forms

the LZ-End parsing of a string T of length n.
Integer w, denoting the sliding window size used to construct Π.
Integers i, j, such that 0 ≤ i ≤ j.
A string of symbols S.

Result: The array Π which has had symbols ti,j−1 removed and S inserted
in their place.

1: a← rank(i), b← rank(j)
2: pref _len ← πa.l − (select(a)− i), suf _len ← select(b)− j + 1
3: D ← identify dependent phrases(Π, w, a, b, suf _len) (Algorithm 10)
4: E ← identify extended references(Π, w, a, b, S.size + i− j) (Alg. 11)
5: D ← sort(D || E)
6: U ← random access(Π, i− pref _len − w, pref _len + w) || S

|| random access(Π, j, w) (Algorithm 3)
7: a′ ← rank(i− pref _len − w)
8: b′ ← minimum(m− 1, rank(j + w))
9: Φ← incremental parse(U, πa′,a−1, w, w, pref _len + S.size) (Alg. 9)

10: if suf _len > 0 then
11: πb.l← suf _len − 1
12: else
13: b← b+ 1
14: end if
15: Π← π0,a−1 || Φ || πb,Π.size−1

16: c← Φ.size + a, e← b− a+ Φ.size
17: p← pref _len + w + S.size
18: R← {0D.size}
19: dep ← 0, r_total ← 0
20: b′ ← b′ + e
21: while c < b′ and dep < D.size do
22: if ddep + r_total = c then
23: Φ← incremental parse(U, πa′,c−1, w, p, πc.l + 1) (Algorithm 9)
24: p← p+ πc.l + 1
25: Π← π0,c−1 || Φ || πc+1,Π.size−1

26: rdep ← Φ.size − 1, r_total ← r_total + rdep
27: c← c+ rdep , b′ ← b′ + rdep
28: dep ← dep + 1
29: else
30: πc ← LZ-Local adjust references(Π, c,D,R, b, e) (Alg. 12)
31: p← p+ πc.l + 1
32: end if
33: c← c+ 1
34: end while
35: finish ← p+ w
36: while c < Π.size and p < finish do
37: πc ← LZ-Local adjust references(Π, c,D,R, b, e) (Algorithm 12)
38: p← πc.l + 1, c← c+ 1
39: end while
40: return Π

124

These phrases will be treated equivalently in future steps, so the algorithm
merges the two arrays and sorts the result.

Line 6 decodes the prefix and suffix of the target phrases, as well as the w
symbols which precede and follow the target phrases. If i < w, the argument
to the random access function will be negative. This does not cause a problem,
as the first two lines of the random access() function (Algorithm 3) account
for this. Into this decoded string we insert the string S.

Lines 7 and 8 identify the phrase pointers a′ and b′. These pointers refer
to the phrases in Π which parse the first and last decoded symbols of U ,
respectively.

The algorithm then parses the inserted string S, as well as the prefix to the
first target phrase, using the LZ-Local incremental parse() function. The
array Φ stores the parsing of these symbols (Line 9). Note that the LZ-Local
incremental parse() function must reconstruct the internal state of the LZ-
Local parsing, which is possible to do in no more time than is required to parse
the first w symbols of U . The internal state of the parser can be stored for
future calls to LZ-Local incremental parse(), but we do not show that in
this algorithm.

The remainder of the algorithm requires that phrase πb encodes the first
phrase following the edited target. This is done by checking whether or not
suf _len is non-zero. If so, the algorithm shortens the length of phrase πb so
that this phrase only encodes the symbols following the edited target (Line 11).
Otherwise, we increment b, so that πb is the first phrase following the target
(Line 13).

Line 15 inserts the parsing of the updated target (Φ) in place of the target
phrases in Π.

At this point, the parsing of the inserted string S has replaced the target
phrases in Π. Two tasks remain:

1. Replacing the parsing of those phrases identified in the array D. Recall
that these are the dependent phrases, as well as the phrases whose
back-references have been extended beyond the window limit w.

2. Altering the back-reference pointers of phrases following the target, to
account for the change in the number of phrases encoding the target and
the alternate parsing of the phrases referenced by D.

Lines 16 to 20 initialise the variables necessary to perform these tasks. At
each step of the while loop in Line 21:

• c points to the current phrase in Π which is being checked.
• e stores the difference between the number of target phrases and the size

of the parsing of the inserted string S. This number may be positive or
negative.

125

• p points to the first symbol in the decoded string U which is represented
by phrase πc.
• R corresponds to D, where each entry in R will store the difference

between the number of phrases which replace the dependent (or extended)
phrase in D and the size of the original dependent (which was size 1).
• dep stores the pointer to the next (as yet unprocessed) phrase in D.
• r_total > 0 stores the sum of all elements in R.
• b′ gets updated to store the new index in Π of the phrase which encodes

the last symbol in our decoded string U .
The while loop in Line 21 iterates once for each phrase following the last

target phrase (πb). The loop ends when it has processed phrases encoding more
than w symbols.

The conditional in Line 22 asks whether or not the current phrase must
be replaced. If yes, the algorithm re-parses the phrase into parsing Φ, which
consists of possibly more than one replacement phrase. The algorithm inserts
the array Φ in place of the current phrase πc. Note that this call to the LZ-Local
incremental parse() function does not require rebuilding the internal state
of the LZ-Local parser, if we have stored that state from the initial call to this
function at Line 9.

If phrase πc does not need replacing, the algorithm checks whether its
back-reference needs adjusting (Line 29). This uses Algorithm 12. If we are
storing the internal state of the LZ-Local parser for future calls to the LZ-Local
incremental parse() function, we must add the parsing of phrase πc to this
state. Again, the details of this are not included in this thesis.

The loop in Line 21 will terminate either when phrase πc is further than
w symbols from the last target phrase, or when there are no more phrases in
need of replacing.

Replacing the phrases in D is not the end of the editing algorithm: Any
phrase which references a phrase in or near one of the phrases in D may also
need its back-reference adjusted. This is done by the while loop starting in
Line 36. This performs the same function as the else part of the previous
while loop in Line 29. At this point, we no longer need to store the state of
the LZ-Local parser, as the LZ-Local incremental parse() function will not
be called again.

To complete, the algorithm returns the updated parsing Π.

7.3.5.1 A consideration of the editing algorithm

Given that the editing algorithm decodes the Window_Size symbols which
precedes and follows the edit location (Algorithm 13, Line 6), one may consider
simply editing this decoded string, and reparsing the entire string. However,

126

this will not result in a valid LZ-Local parsing: the phrases at the end of
this “re-parsed” section will be back-referenced by the phrases which encode
the following Window_Size symbols. Therefore, the phrases in the re-parsed
section must have phrase boundaries in the same position as the original parsing.
Otherwise, the following phrases will not back-reference the innovation symbol
component of a phrase, which is an essential enabler of random access (and
thereby editing).

7.4 Evaluating the editing algorithm

This section theoretically and empirically evaluates the LZ-Local parsing algo-
rithm.

From a theoretical perspective, we are interested in how the run-time of the
editing algorithm compares to the run-time of decoding, editing, and re-parsing
the string. From an empirical perspective, we are interested in how the size,
position, and type of edit affects the compression, as well as how these factors
are influenced by the entropy of the compressed string we are editing.

All algorithms in this thesis have been implemented and tested rigor-
ously for correctness. We have implemented a naïve version of the LZ-Local
incremental parse() function (Algorithm 9). However, this implementation
has a slower run time than that of LZ-End (Algorithm 2) and the details are
uninteresting from a research perspective.

7.4.1 Theoretical evaluation

This section theoretically measures the run-time cost of an LZ-Local edit()

operation.
The first part of the evaluation reports the cost of an edit operation, ignoring

the cost of updating the rank/select data structure (Section 7.4.1.1). This
demonstrates how future optimisations to dynamic structures supporting rank

and select queries will affect the runtime of the LZ-Local edit() operation.
Then, we discuss one possible implementation of a dynamic structure supporting
rank/select queries (Section 7.4.1.2). Finally, we report the runtime of the
compressed edit operation, inclusive of the cost of updating the proposed
rank/select structure (Section 7.4.1.3).

In all stages of the theoretical evaluation, we have compressed a string T
of length n into LZ-Local parsing Π of length m, using a window size w. If
w ≥ n, there is no difference between the LZ-Local and LZ-End parsings. Since
we have discussed the time complexity of LZ-End edits in Section 6.4, in this
section we only consider the case where w < n.

127

To this string, we wish to perform the operation edit(i, j, S). Recall from
Section 6.1.2 that there are two ways to do this:

1. A raw edit involves decompressing, editing, and recompressing the string.
2. A compressed edit applies the LZ-Local edit() function (Algorithm 13)

to the parsing Π.

7.4.1.1 Cost of LZ-Local edit, ignoring rank/select

Let us apply a compressed edit LZ-Local edit(Π, w, i, j, S) using Algorithm 13.
The runtime cost of this is made up of the following components:

• Identifying the target phrases: 2× rank + 2× select queries.
• Identifying dependent phrases and those with extended back-references:
Algorithms 10 and 11 can be combined into one, in which case they
collectively run in O(w × select + rank) time. By combining these two
algorithms, the resulting array D will not need to be sorted (Algorithm 13,
Line 5)
• Decoding the string U : Θ((2w+pref _len +suf _len)× (rank+select)).

Note that the LZ-Local parsing means that no phrase can have a length
greater than w. Therefore, pref _len and suf _len are both < w, and the
runtime function is Θ(w × (rank + select)).
• Identifying phrases a′ and b′: 2× rank.
• Parsing the string S, the prefix of πa, and any phrases in the array D:

Parsing the string S and the prefix of πa will cost F(S.size + pref _len),
where F(·) is the cost of constructing the LZ-Local parsing of a string. In
order to parse this string, however, the incremental parse() function
must construct the internal state of the LZ-Local parser. This involves
processing the phrases encoding the w symbols preceding the target
phrase. This costs no more than F(w), i.e., parsing a string of length
w. All phrases within w symbols following the target need to either be
re-parsed, or added to the internal state of the parser. This will cost no
more than an additional F(w).
Therefore, the worst case occurs when all phrases within w symbols of
the target are dependent and need to be replaced, which has a cost of
F(pref _len + S.size + 2w).
• Finally, adjusting the references of the phrases encoding 2w symbols
following the target. With a pre-computation costing O(w), we can
adjust each phrase’s back-reference in constant time (Section 7.3.4).

The time complexity of the compressed edit is therefore:

Θ(w(rank + select)) + F(pref _len + 2w + S.size) (7.1)

128

Note that the rank and select operations are all performed prior to making
any changes to the parsing. Therefore, if the data structure supporting these
queries means that the run-time of either operation is dependent on the size of
the parsing Π, then this is related to the parsing size prior to applying the edit.

Recall that Equation (7.1) does not include the cost of updating the data
structure supporting rank/select queries. The next section addresses this
task.

7.4.1.2 Cost of the rank and select operations

We have not yet addressed the cost of the rank and select queries, or the cost
of maintaining the associated data structure which makes these queries possible.
In the LZ-End case, we decoupled the maintenance of the data structure from
the editing algorithm (recall Section 6.5). We accepted that the best solution
may involve rebuilding the data structure from scratch; however, we could
ignore this, since the same cost would apply to the raw edit.

Unfortunately, we cannot do the same in the case of LZ-Local without
consequences: We have developed a method of locally editing the data. If this
edit involves rebuilding a data structure that covers the whole parsing, we will
lose the local bounds of the editing algorithm.

Fortunately, data structures like that developed by Pătraşcu and Thorup
[79] can address this issue: being based on fusion trees, their data structure
can resolve rank and select queries, as well as insert into or delete entries
from the data structure. All of these operations can be completed in O

(
logm
logw

)
time and space [79]. Here, m is the number of integers stored in the structure
(i.e., the size of the parsing Π), and logw is the maximum size of the integers
in the structure. This structure will store phrase lengths, which can not exceed
the window size in LZ-Local parsing.

This brings us to the question: How many times does the rank/select
data structure need to be updated? This depends on:
• The number of phrases which the edit operation removes: b− a.
• The number of phrases which the edit operation inserts: Φ.size.
• The number of dependent phrases, and their replacements:

R.size +
i<R.size∑
i=0

ri

where each variable is taken from Algorithm 13.

129

Remark 7.6. Note that the LZ-Local edit function inserts into a static
array in multiple places (Algorithm 13, Lines 15 and 25). Ordinarily,
the cost of each insertion would be linear with respect to the number of
phrases inserted, and the number of phrases which follow the location of the
insertion. However, we have not counted the cost of editing the static array
of phrases. The cost of editing the LZ-Local parsing will be dependent
whatever structure supports the rank and select queries.

We leave identifying and evaluating this structure as future work.

7.4.1.3 Cost of LZ-Local edit

Theorem 7.2. The cost of the LZ-Local editing algorithm is:

O

(
w log m̄

logw

)
+ F(pref _len + 2w + S.size)

where m̄ = maximum(Π.size,Π′e.size), pref _len < w and F(x) is the cost
function of parsing a string of length x. Recall that Π.size is the size of the
parsing prior to the edit being applied, Π′e.size is the size of the parsing
following the edit.

Proof. Equation (7.1) shows us that the cost function without editing the
rank/select data structure is

O(w(rank + select)) + F(pref _len + 2w + S.size)

We therefore need to calculate:
(a) The cost of the rank and select queries,
(b) the cost of updating the rank/select data structure, and
(c) the number of edits we need to make to the rank/select structure.
We know that the cost of each rank or select query is O

(
log x
logw

)
, where

the structure contains x integers, each no larger than w. Each insertion into or
deletion from the structure also costs the same as a query [79].

We also know that there are w symbols which could depend on the target
phrase: therefore, there are at most w phrases which could depend on the target
phrases, and at most w phrases which could replace the dependent phrases.
Therefore, O(w) edits need to be made to the structure to edit the dependent
phrases.

The only question we now need to answer is: How large is x, the number of
integers in the structure? This is equal to the size of the parsing Π. However,
the size of Π changes as we make edits to it. Therefore, we set a variable

130

m̄ ← maximum(Π.size,Π′e.size), where Π is the parsing prior to a call to the
LZ-Local edit() function, and Π′e is the parsing following the compressed
edit.

Therefore, the cost of the edit becomes

O

(
w

(
log m̄

logw
+

log m̄

logw

))
+ F(pref _len + 2w + S.size) +O

(
w × log m̄

logw

)
which simplifies to the result.

7.4.1.4 Comparing compressed editing time to raw edit

Let us now consider the case where we apply edit(i, j, S) as a raw edit:

• Decompressing the string costs Θ(n) time,
• editing the raw string costs Θ(j − i+ S.size),
• re-compressing will cost some function F(n′), where F() is the cost

function of constructing the LZ-Local parsing, and n′ = n−(j−i)+S.size

is the new length of the edited string, and finally,
• constructing the rank/select data structure will cost some function
G(·). The parameter to this function will depend on the properties of
the data structure: e.g., the indexable dictionary used in the original
LZ-End parsing function [2, 61] was constructed over a bit-vector of equal
length to the raw string (n′). However, other indexable dictionaries may
be constructed over the parsing Π, in which case the argument to this
cost function will be Π′.size, i.e., the size of the new parsing.

In total then, the cost of the raw edit will be:

Θ(n+ j − i+ S.size) + F(n′) + G(·) (7.2)

Recall that by definition, j − i < n.

Note that in this case, the rank/select structure can be static; it need not
be the same dynamic structure required by the compressed edits. Therefore,
we can assume that the rank and select queries are completed in constant
time.

It is not possible to make a direct comparison between this function and
that of the compressed edit (Theorem 7.2). Future work will need to investigate
dynamic data structures which answer rank and select queries, and allow
updates, in time that does is not dependent on the size of the structure. This
will allow us to properly compare the compressed and raw editing functions,
and define the circumstances in which each will be faster than the other.

131

7.4.1.5 Locality of editing

Applying LZ-Local edit(Π, w, i, j, S) will potentially alter the parsing of
phrases which encode symbols Ti,j+w. In addition, the back-references of
phrases which encode symbols Tj+w,j+2w may need to be updated (Algorithm 13,
Line 37). Finally, the phrases which encode symbols Ti−w,i will need to be
decoded (Line 6). Recall that each phrase is at most w symbols from its
back-reference; however, this back-reference is again at most w symbols from
it’s back-reference. Also recall that the length of a phrase is at most w (Defi-
nition 7.1). Therefore, in the worst case, we would need to read the phrases
which encode symbols in the range Ti−w2,i.

This is an improvement on the LZ-End Edit algorithm, which can edit
phrases at any point following the location of the edit.

7.4.2 Empirical evaluation

To empirically evaluate the LZ-Local editing algorithm, we measure the modifi-
cation ratio (MR):

MR =
Π′e.size

Π′.size

where Π′.size is the number of compressed phrases achieved by compressing
the string following a raw edit. Π′e.size is the number of phrases when edit e
has been applied as a compressed edit. A modification ratio of 1 will mean that
the two methods compress to the same number of phrases. Any value larger
than 1 represents the loss of compression introduced by the compressed edit.

Recall that an edit can be of three forms: string insertion, string deletion,
or string replacement. When referring to the MR of a specific type of edit, we
use the terms insertion ratio, deletion ratio, or replacement ratio, respectively.

To keep things simple, we do not evaluate the compressed edit against all
10 entropy calibrations used in Section 7.2. Rather, we assess only against the
three calibrations ε ∈ {0.00025, 0.0025, 0.025}. The compression ratios reported
in Section 7.2 showed consistent results for the different entropy calibrations:
We are therefore confident that the effect of entropy on the different compression
measurements will be highlighted by these three calibrations. Note that these
three entropy calibrations represent compression ratios between 0.2 and 0.9 for
LZ-Local; therefore, the results will cover strings achieving low, medium and
high compression ratios.

We also do not evaluate against all sliding window sizes reported in Sec-
tion 7.2. Rather, we only consider window sizes w ∈ {4096, 16384, 65536}.
This is necessary due to computational restrictions, and the need to limit the
complexity of the resulting graphs.

132

Remark 7.7. There are a number of reasons for choosing to evaluate the
editing algorithm by comparing phrase counts, rather than compression
ratios (which take into account the size of each phrase as well as the phrase
count):
• The size of the phrases might change during an edit:
Changing the back-references of dependent phrases will sometimes
change the number of bits required to encode the back-references.
These changes in phrase size can have a large impact on the compres-
sion ratio, without having an impact on the phrase count. Since the
phrase count was the original measure of LZ-complexity [1], it is a
more meaningful metric than outright compression ratio.
• Any metric reporting the compressed size should include the rank/
select data structure.
The editing algorithm applies regardless of the choice of rank/select
data structure, so the experiments should also generalise to the use
of any data structure supporting rank/select queries.
• The size of the data structure supporting rank/select queries may

be dependent on the phrase count. Therefore, reporting phrase counts
will allow generalising the results to any future data structures or
representations of the LZ-Local parsing. This generalisation would
not possible from the compression ratio alone.
• Section 7.2.2.1 showed that the LZ-77 and LZ-Local phrase counts
are very consistent, while the compression ratio has a much higher
variance, which is predominantly impacted by the phrase size.

The next section examines how the position of the edit affects the resulting
compression, and the following section considers the impact of different size
edits. Finally, we conclude by comparing the impact of many small edits on
the MR.

7.4.3 The position of the edit

This section evaluates the effect which changing the position of the edit has
on the compression ratio. To do this, we make edits of size 100 symbols, in
varying positions within the calibrated strings. This means that the edit is
≈ 2× 10−5 × l, where l = 5× 220 is the length of the string (in bytes) which
we are editing.

We make the edits at positions i×l
10
, where l is the length of the raw string,

and 0 ≤ i ≤ 9. We do not make edits at the end of the string; in that case, the
edited phrases will have no dependents, and the MR will be exactly 1.

133

Figures 7.36 to 7.38 show the effect which changing the position of an edit
has on the MR.

The graphs show that the position of an insertion (Figures 7.36a, 7.37a
and 7.38a) has minimal impact on the MR. This is true for both LZ-End
and the three window sizes for LZ-Local, and for strings of low, medium and
high entropy. In all cases, the MR is very near to 1, and is often less than 1,
regardless of the position of the insertion. The only noticeable effect which
the position of the insertion has on MR is to reduce the variance in observed
MR’s as the insertion is applied closer to the end of the string. This effect is
noticeable in the medium and high entropy strings (Figures 7.37a and 7.38a).

The position of a replacement has a nearly identical impact on MR as for a
deletion. This is because a replacement can be viewed as a deletion and an
insertion applied in concert. Since the insertion has such a minimal impact
on MR, and the deletion has a larger impact (at least for those deletions at
the start of the string), the impact of the deletion dwarfs the impact of the
insertion. The result is that changing the position of the edit has the same
impact on MR for replacements as for deletions.

If the edit is applied to the start of the string, replacements and deletions
both have a much larger detrimental effect on the LZ-End MR than the
equivalent edit has on the LZ-Local MR. The effect of this is larger for lower
entropy strings. This effect rapidly disappears as the edit is applied further
from the start of the string.

For all window sizes of LZ-Local, the position of the replacement or deletion
has little impact on the MR. In all cases, the MR is very close to 1, and the
variance decreases as the edit is applied closer to the end of the string.

7.4.4 Size of the edit

This section answers the question of how the size of an edit affects the LZ-Local
and LZ-End compression.

We make edits of sizes 2i, where 0 ≤ i ≤ 19. Since each string is of size
5× 220 prior to the edit being applied, this represents edits up to 10% of the
raw string size.

Each edit is made at the midpoint of the string:

• Insertions:
edit

(
Π,

raw size
2

,
raw size

2
, string

)
• Deletions:

edit
(

Π,
raw size− edit size

2
,
raw size + edit size

2
, ∅
)

134

(a)
Insertion

(b)
D

eletion
(c)

R
eplacem

ent

F
igure

7.36:
T
he

effect
ofposition

on
M
R

for
the

different
types

ofedits,on
low

entropy
strings.

T
he

position
ofthe

insertion
has

no
noticeable

effect
on

the
M
R

–
the

overalleffect
ofinsertions

in
any

position
is

m
inim

al.
R
eplacem

ents
and

deletions
have

near
identicaleffects:

For
LZ-Local,the

position
has

very
m
inim

aleffect,w
hereas

for
LZ-E

nd,there
is

a
com

paratively
large

im
pact

ifthe
edit

is
applied

at
the

start
ofthe

string.
T
his

effect
quickly

disappears
as

the
edit

is
m
ade

further
into

the
string.

135

(a
)

In
se

rt
io

n
(b

)
D

el
et

io
n

(c
)

R
ep

la
ce

m
en

t

F
ig
ur
e
7.
37

:
T
he

eff
ec
t
of

po
si
ti
on

on
M
R

fo
r
th
e
di
ffe

re
nt

ty
pe

s
of

ed
it
s,

on
m
ed
iu
m

en
tr
op

y
st
ri
ng

s.
T
he
se

gr
ap

hs
sh
ow

th
e
sa
m
e
re
su
lt
s
as

fo
r
th
e
lo
w

en
tr
op

y
st
ri
ng

s,
w
he
re
by

po
si
ti
on

of
th
e
in
se
rt
io
n
ha

s
a
m
in
im

al
im

pa
ct
,a

nd
th
e
po

si
ti
on

of
re
pl
ac
em

en
ts

an
d
de
le
ti
on

s
ha

ve
sm

al
li
m
pa

ct
s
on

th
e
LZ

-L
oc
al

co
m
pr
es
se
d
st
ri
ng

s.
Fo

r
LZ

-E
nd

,t
he

ne
ga

ti
ve

im
pa

ct
of

a
re
pl
ac
em

en
t
or

de
le
ti
on

at
th
e
st
ar
t
of

th
e
st
ri
ng

is
re
du

ce
d
co
m
pa

re
d
to

th
e
lo
w

en
tr
op

y
ca
se
.

Fo
r
al
lp

os
it
io
ns

an
d
pa

rs
in
gs
,t
he

va
ri
an

ce
in

M
R

de
cr
ea
se
s
as

th
e
ed
it

is
m
ad

e
cl
os
er

to
th
e
en
d
of

th
e
st
ri
ng

.

136

(a)
Insertion

(b)
D

eletion
(c)

R
eplacem

ent

F
igure

7.38:
T
he

effect
ofposition

on
M
R

for
the

different
types

ofedits,on
high

entropy
strings.

N
ote

the
continuation

ofthe
previous

trend,in
w
hich

the
position

has
m
inim

aleffect
on

the
insertion

ratio,other
than

that
the

variance
ofthe

insertion
ratio

decreases
as

the
insertion

is
m
ade

closer
to

the
end

ofthe
string.

T
he

replacem
ent

ratio
again

m
irrors

the
deletion

ratio,and
a

deletion
or

replacem
ent

at
the

start
ofthe

string
has

less
ofa

detrim
entalim

pact
on

M
R

for
these

high
entropy

strings
than

for
the

m
edium

and
low

entropy
strings.

137

• Replacements:

edit
(

Π,
raw size− edit size

2
,
raw size + edit size

2
, string

)
Insertion

Figures 7.39 to 7.41 show the effect of different size insertions on the MR. This
is done for LZ-End and LZ-Local, when the insertion is applied to low, medium
and high entropy strings.

For LZ-Local, we observe that:
• The insertion ratio increases with the size of the insertion. However, the

impact of this effect plateaus after the insertion size exceeds the window
size.
• Insertions into low entropy strings have a larger modification ratio than

those into high entropy strings.
For LZ-End, the experimental results are less conclusive: Note that for the

low-entropy insertion (Figure 7.39c), the MR seems unaffected by the insertion
size, except for two outliers, where the MR is hugely influenced by the insertion
size. Compare this to the medium-entropy insertion (Figure 7.40c), which has a
very high variance in MR as the insertion size increases, and to the high-entropy
case (Figure 7.41c), for which the MR is very highly dependent on the insertion
size.

The appendix (Appendix: A note on alphabets) explains these confusing
observations. The key takeaways from this are:
• One must be careful when the source of the compressed string uses a

different alphabet to that used by the LZ parser. In our experiments, the
sources of our strings used a binary alphabet, whereas the LZ parsers
interpreted these strings as bytes.
• The MR for insertions into LZ-End-compressed strings is dependent on
the size of the insertion, if the inserted string comes from the same
source as the string we are inserting into. We cannot quantify this exact
relationship for low and medium entropy strings: future work is required
for this.
• The MR for insertions into LZ-End-compressed strings, when the inserted

string comes from a different source to the string we are inserting into is
likely to be very close to 1. This seems to be true regardless of the size
of the inserted string.

138

(a)
(b)

(c)

F
igure

7.39:
T
he

effect
ofdifferent

sizes
ofinsertions

on
the

m
odification

ratio,w
hen

inserting
into

the
low

est
entropy

calibration.
O
n
the

left,
w
e
show

the
insertion

ratio
of

LZ-E
nd

and
three

types
of

LZ-Local.
T
he

m
iddle

graph
isolates

the
LZ-Local

insertion
ratios.

F
inally,the

rightm
ost

graph
isolates

the
results

for
LZ-E

nd.
For

the
three

w
indow

sizes
ofLZ-Local,the

M
R

increases
w
ith

the
size

ofthe
edit,but

then
plateaus.

T
his

increase
is

greater
for

the
larger

w
indow

sizes.
T
he

M
R

plateaus
w
hen

the
size

ofthe
edit

reaches
and

exceeds
the

w
indow

size.
N
ote

that
the

range
ofLZ-E

nd’s
box-and-w

hisker
plots

rem
ains

only
slightly

larger
than

1.0,except
for

tw
o
outlying

strings
for

w
hich

the
M
R

increases
significantly

w
ith

the
edit

size.
T
his

is
explained

in
A
ppendix:

A
note

on
alphabets.

139

(a
)

(b
)

(c
)

F
ig
ur
e
7.
40

:
T
he

eff
ec
t
of

di
ffe

re
nt

si
ze
s
of

in
se
rt
io
ns

on
th
e
m
od

ifi
ca
ti
on

ra
ti
o,

w
he
n
in
se
rt
in
g
in
to

th
e
m
ed
iu
m

en
tr
op

y
ca
lib

ra
ti
on

st
ri
ng

s.
Fo

r
th
e
th
re
e
LZ

-L
oc
al

w
in
do

w
si
ze
s,

no
te

th
e
sa
m
e
in
cr
ea
se

an
d
pl
at
ea
u
in

th
e
M
R

as
no

te
d
pr
ev
io
us
ly

fo
r
th
e
lo
w
er

en
tr
op

y
ca
lib

ra
ti
on

.
Fo

r
LZ

-E
nd

,m
or
e
st
ri
ng

s
di
sp
la
y
th
e
si
gn

ifi
ca
nt

in
cr
ea
se

in
M
R

th
an

th
e
lo
w
er

en
tr
op

y
ca
lib

ra
ti
on

.

140

(a)
(b)

(c)

F
igure

7.41:
T
he

effect
ofdifferent

sizes
ofinsertions

on
the

m
odification

ratio,w
hen

inserting
into

the
highest

entropy
calibration

strings.
For

the
three

LZ-Localw
indow

sizes,again
note

the
increase

and
plateau

in
the

M
R
.

For
LZ-E

nd,allstrings
display

the
significant

increase
in

M
R
.

141

Deletion and Replacement

Figures 7.42 to 7.44 show the effect of different size deletions and replacements
on the MR, for low, medium and high entropy strings.

For LZ-Local, we continue to see the MR plateau after the size of the edit
has exceeded the window size. For all entropy levels, the MR for LZ-Local is
only very slightly larger than 1; however, the MR does slightly decrease as the
entropy of the strings increases.

For LZ-End, the shape of the replacement ratio curves generally reflects
that of the deletion ratio. There are some differences, however, and these are
correlated to the related insertion ratio. For example, consider the medium
entropy string: the variance in the LZ-End replacement ratio is much higher
for large replacements than the corresponding variance in the deletion ratio
(Figures 7.43a and 7.43c). This is because the variance of the corresponding
insertion ratio is much higher (Figure 7.40c).

As another example, consider the high entropy string: the variance in
the replacement ratio is similar to that of the deletion ratio (Figures 7.44a
and 7.44c). However, the difference is that the replacement ratio is notably
higher for large edits. This agrees with what we have seen in the corresponding
insertion ratio (Figure 7.41c): the insertion ratio for large edits was > 1.02,
but with low variance.

142

(a)
D

eletion:
C

om
paring

LZ-E
nd

w
ith

LZ-Local.
(b)

D
eletion:

Zoom
ing

in
on

the
LZ-Localgraphs.

(c)
R

eplacem
ent:

C
om

paring
LZ-E

nd
w

ith
LZ-Local.

(d)
R

eplacem
ent:

Zoom
ing

in
on

the
LZ-Localgraphs.

F
igure

7.42:
E
ffect

ofdifferent
size

deletions
(top)

and
replacem

ents
(bottom

)
on

the
low

entropy
strings.

T
he

large
edits

have
a
huge

effect
on

LZ-E
nd

M
R
.

For
LZ-Local,how

ever,the
M
R

reaches
a
plateau

after
the

size
ofthe

replacem
ent

exceeds
the

w
indow

size
(see

the
right-hand

figures).

143

(a
)

D
el

et
io

n:
C

om
pa

ri
ng

LZ
-E

nd
w

it
h

LZ
-L

oc
al

.
(b

)
D

el
et

io
n:

Zo
om

in
g

in
on

th
e

LZ
-L

oc
al

gr
ap

hs
.

(c
)

R
ep

la
ce

m
en

t:
C

om
pa

ri
ng

LZ
-E

nd
w

it
h

LZ
-L

oc
al

.
(d

)
R

ep
la

ce
m

en
t:

Zo
om

in
g

in
on

th
e

LZ
-L

oc
al

gr
ap

hs
.

F
ig
ur
e
7.
43

:
E
ffe

ct
of

di
ffe

re
nt

si
ze

de
le
ti
on

s
(t
op

)
an

d
re
pl
ac
em

en
ts

(b
ot
to
m
)
on

th
e
M
R

fo
r
th
e
m
ed
iu
m

en
tr
op

y
st
ri
ng

s.
T
he

re
su
lt

is
th
e
sa
m
e
as

fo
r
th
e
lo
w
er

en
tr
op

y
ca
se
,a

lb
ei
t
w
it
h
lo
w
er

m
ag

ni
tu
de

in
cr
ea
se
s
in

M
R

(f
or

bo
th

LZ
-E

nd
an

d
LZ

-L
oc
al
).

144

(a)
D

eletion:
C

om
paring

LZ-E
nd

w
ith

LZ-Local.
(b)

D
eletion:

Zoom
ing

in
on

the
LZ-Localgraphs.

(c)
R

eplacem
ent:

C
om

paring
LZ-E

nd
w

ith
LZ-Local.

(d)
R

eplacem
ent:

Zoom
ing

in
on

the
LZ-Localgraphs.

F
igure

7.44:
E
ffect

ofdifferent
size

deletions
(top)

and
replacem

ents
(bottom

)
on

the
M
R

for
the

high
entropy

strings.
T
he

result
is
the

sam
e
as

for
the

low
and

m
edium

entropy
strings:

again,the
overalleffect

is
ofa

low
er

m
agnitude

for
these

higher
entropy

strings.
T
he

variance
ofthe

results
has

reduced
significantly

com
pared

to
the

sam
e
operation

on
the

low
er

entropy
strings.

145

7.4.5 Incremental edits

This section considers the impact on MR of making many small edits to the
compressed string. To assess this, we consider two cases:
(a) Measuring the MR after applying a single edit of which affects 1000

symbols. We call this a bulk edit .
(b) Measuring the MR after applying 1000 edits, which each affect a single

symbol. We refer to this as an incremental edit .
We make these edits at the midpoint of each compressed string.

Note that the edited parsings from each of the above cases will decode to
the same raw string. The comparision between bulk and incremental edits, for
strings of low, medium and high entropy, is shown in Figures 7.45 to 7.47.

Before describing the results, let us consider the two ways in which a
compressed edit is different from the true parsing of the edited string:
• The inserted string is not parsed in the same way as it would be in the

true parsing of the edited string.
• The dependent phrases (and in the case of LZ-Local, the phrases with
extended back-references) are replaced. These replacement phrases do
not necessarily match their true parsing in the edited string.

The differences in MR between bulk and incremental edits will be explained by
the differences between how the bulk and incremental edits handle these two
points.

In the case of a deletion, only the final point applies, as there is no inserted
string to parse. In the case of insertions or replacements, both points apply.

The first notable result from the experiments is that LZ-Local deletions
result in identical parsings for bulk and incremental edits; we see this in
Figures 7.45c, 7.46c and 7.47c. This should not be surprising, as the bulk and
incremental deletions will both collectively have the same dependent phrases.
The bulk and incremental edits will replace these dependent phrases in the
same way, since LZ-Local decodes a dependent phrase and re-parses it in its
entirety (see Algorithm 13, line 23).

This begs the question: Why is there a difference between incremental and
bulk deletions for LZ-End? Recall that the LZ-End editing function replaces
dependent phrases by treating the dependent phrase as consisting of three
components (see Figure 6.1, repeated for reference). The first component of
a dependent back-reference is the prefix, which are the phrases preceding the
target. The second component is a like-for-like copy of each dependent phrase.
Finally, the third component is the suffix which are the phrases following the
target phrases. This process is formalised in Algorithm 5.

The bulk and incremental MR’s would ordinarily be identical for the LZ-
End deletions, as they are for LZ-Local. However, the implementation of

146

(a)
(b)

(c)

F
igure

7.45:
T
he

effect
ofone

bulk
versus

m
any

increm
entaledits

on
the

com
pressed

size,w
hen

editing
low

entropy
strings.

LZ-Localdeletions
(7.45c)

result
in

identicalparsings,regardless
ofw

hether
the

deletion
is

applied
in

bulk
or

as
a
series

ofsm
alldeletions.

For
LZ-E

nd,how
ever,a

single
large

deletion
results

in
a
m
ore

concise
parsing

than
than

m
any

sm
alldeletions.

A
single

large
insertion

results
in

a
m
ore

concise
parsing

than
m
any

increm
entalinsertions;this

is
true

for
both

LZ-Localand
LZ-E

nd
(7.45a).

A
large

replacem
ent

is
sim

ilarly
m
ore

concise
than

m
any

sm
allreplacem

ents,for
both

LZ-Localand
LZ-E

nd
(7.45b).

Since
w
e
know

that
the

LZ-Localdeletion
ratio

is
identicalfor

bulk
and

increm
entaledits,w

e
conclude

that
the

negative
im

pact
w
hich

increm
entalreplacem

ents
have

on
the

M
R

is
a
result

ofparsing
the

inserted
string,rather

than
replacing

the
dependent

phrases.

147

(a
)

(b
)

(c
)

F
ig
ur
e
7.
46

:
T
he

eff
ec
t
of

on
e
bu

lk
ve
rs
us

m
an

y
in
cr
em

en
ta
le

di
ts

on
th
e
co
m
pr
es
se
d
si
ze
,w

he
n
ed
it
in
g
m
ed
iu
m

en
tr
op

y
st
ri
ng

s.
W
e
se
e
a
re
pe

at
of

th
e
re
su
lt
s
fr
om

lo
w

en
tr
op

y
st
ri
ng

s:
LZ

-L
oc
al

de
le
ti
on

s
ar
e
id
en
ti
ca
l,
re
ga

rd
le
ss

of
w
he
th
er

th
ey

ar
e
ap

pl
ie
d
in
cr
em

en
ta
lly

or
in

bu
lk
.
In

al
lo

th
er

ca
se
s,

th
e
si
ng

le
bu

lk
ed
it
is

m
or
e
co
nc
is
e
th
an

th
e
sm

al
le
r,
in
cr
em

en
ta
le

di
ts
.

N
ot
e
th
at

fo
r
th
e
m
ed
iu
m

en
tr
op

y
st
ri
ng

s,
th
er
e
is

a
sm

al
le
r
di
ffe

re
nc
e
be

tw
ee
n
th
e
bu

lk
an

d
in
cr
em

en
ta
le

di
ts

th
an

th
er
e
is

fo
r
th
e
lo
w

en
tr
op

y
st
ri
ng

s
in

F
ig
ur
e
7.
45

.

148

(a)
(b)

(c)

F
igure

7.47:
T
he

effect
ofone

bulk
versus

m
any

increm
entaledits

on
the

com
pressed

size,w
hen

editing
high

entropy
strings.

A
gain,w

e
see

a
repeat

ofthe
results

from
the

low
-and

m
edium

entropy
strings:

LZ-Localdeletions
are

identical,regardless
ofw

hether
they

are
applied

increm
entally

or
in

bulk.
In

allother
cases,the

single
bulk

edit
is

m
ore

concise
than

the
sm

aller,increm
entaledits.

N
ote

that
for

these
high

entropy
strings,there

is
again

a
sm

aller
difference

betw
een

the
bulk

and
increm

entaledits
than

there
is

for
the

low
and

m
edium

entropy
strings

in
F
igures

7.45
and

7.46.

149

Figure 6.1: The possible components of a dependent phrase’s back-reference.
The dependent phrase may reference one or more prefix phrases which precede
the target (labelled ‘prefix’), one or more phrases in the target, and one or
more suffix phrases which follow the target (labelled ‘suffix’).

the experiments used an “optimisation” whereby the replacement of the suffix
component is greedy. Recall that the suffix of a dependent phrase is encoded
by the original dependent phrase, with a shortened length component (see
Algorithm 5, line 22). If the target is a single symbol, and this symbol is
the first symbol of the phrase encoding it, the implementation of Algorithm 5
replaces the dependent phrase with two phrases: the first encodes only the
replaced target symbol (and has length 0), and the second is the original phrase,
with a decremented l component.

When incrementally deleting many symbols, this case can be triggered
many times: Consider performing the operation LZ-End edit(Π, i, i+ 2, ∅) as
two incremental deletions: LZ-End edit(Π, i, i+ 1, ∅) followed immediately by
LZ-End edit(Π, i, i+ 1, ∅). When performing the first of the incremental edits,
there may be some set of dependent phrases which will have a suffix component.
Each suffix of the first edit’s dependent phrases will also be a dependent of the
second operation. These will again be replaced by two phrases: a single phrase
〈0, 0, ti〉, and the suffix phrase with a decremented length component.

The bulk operation, which removes both symbols i and i+ 1 in the same
operation, will not have this issue, and the resulting parsing will be more
concise than the two incremental edits. This insight highlights the fact that op-
timisations to the algorithms must be carefully thought through and evaluated.

Another notable result from the experiments is that bulk insertions have
a more concise MR than incremental insertions. This is true for LZ-End
and LZ-Local, for all window sizes and entropy calibrations (Figures 7.45a,
7.46a and 7.47a). This is due to the parsing of the inserted string: When
inserting a single symbol into the LZ-End parsing, that symbol will be parsed
as a single phrase with a zero back-reference and length component. When
inserting a single symbol into the LZ-Local parsing, we decode the phrase
containing the target, insert the symbol into this decoded string, and re-parse
it. Unsurprisingly, both the LZ-End and LZ-Local parsings are less concise

150

when performing incremental insertions than when performing insertions in
bulk.

Finally, replacements are a combination of the factors affecting the insertion
and deletion ratios. In the case of LZ-Local, where the bulk and incremental
deletion ratios are identical, we can conclude that the difference between the
bulk and incremental replacement ratios is due to differences in parsing the
replacement string, rather than differences in replacing dependent phrases.

7.4.6 Quality assurance for the empirical results

Extensive work has gone into ensuring that the experimental results reported
in the empirical evaluation are correct. A comprehensive suite of unit tests
consisting of 1,300 assertion statements verified each component of the edit

functions for both LZ-End and LZ-Local. In addition, tests were built into
every step of the experiments themselves, to confirm that every reported result
is in fact correct:
• The tests applied each edit() operation to the raw string, as well as to
the compressed string. The test then decoded the (edited) compressed
string, and compared the result to the raw (edited) string. In every case,
the two results were identical.
• Following each LZ-Local edit() operation (Algorithm 13), the tests

involved parsing the entire compressed string to ensure that no phrase’s
back-reference extended beyond the limits allowed by the Window_Size.

7.4.7 Summary of evaluation

The key takeaways from the empirical evaluation are:
• The sliding window in LZ-Local effectively curbs the negative
impact which an edit has on the MR.
This is an important point. For LZ-End, the impact of an edit on the MR
is at times significantly larger than the size of the edit itself. Consider for
example the deletion at the start of a low-entropy string (Figure 7.36b).
Deleting 100 bytes from the raw text increased the size of the compressed
data by ≈ 5, 000 bytes! For the sliding window cases, the same deletion
increased the size of the compressed string by < 350 bytes.
For LZ-Local, the MR is related to the size of an edit only while the edit
is smaller than the window size. Once the edit exceeds the size of the
window, there are no additional negative impacts of making a larger edit.
The sliding window is effective at curbing the negative effects of an edit
on MR, because it limits the number of phrases which depend on the
edited phrases. For LZ-End, on the other hand, there is no limit on the

151

number of phrases which can depend on the edited target, other than the
number of phrases which follow the edit location.
• Replacements and deletions at the start of a string have a huge
detrimental impact on the LZ-End compression.
This is the case even if the replacement or deletion is quite small. This
effect rapidly disappears as the edit is made further from the start of the
string. The reason for this is that phrases at the start of the string have
a huge number of dependents, which occur throughout the parsing.
• The position of an edit has minimal effect on the MR for LZ-
Local.
The variance of the MR decreases as the edit is made closer to the end
of the string. However, the mean MR has almost no correlation to the
position of the edit.
• Replacements are the sum of insertions and deletions.
When an insertion had minimal effect on MR compared to a deletion, the
replacement ratio would mirror the deletion. When both insertions and
deletions influenced the MR, we would generally see the combination of
these effects in the replacement ratio.

7.5 Conclusion and future work

This chapter introduced the LZ-Local parsing and editing and began its eval-
uation. There are a number of items of future work in order to extend our
understanding of this parsing and optimise its efficiency, including:
• Identify or design a data structure which supports rank and select

queries, as well as updates, where the run-time complexity of these
functions are not dependent on the size of the structure. This will enable
us to define the situations in which the compressed edit for LZ-Local
parsing outperforms the raw edit.
• Develop an efficient algorithm for constructing the LZ-Local parsing.
In this thesis, we defined the parsing without developing a performant
method of constructing it. We have implemented a naïve variant of this
parsing; however, developing a performant algorithm remains future work.
• Investigate whether the LZ-Local parsing (or a variant of it) could be
proven to be coarsely optimal. If this is possible, can we develop an
editing algorithm that maintains the coarse optimality of the parsing?
• Further empirically evaluate the LZ-Local edit() function. In this

thesis, we only hinted at the case where the inserted string comes from a
different source to the compressed string which we are editing. How does
inserting a string from a different source to the compressed string affect

152

the modification ratio?
The next chapter summarises the contributions of this thesis.

Chapter 8

Conclusion

This thesis explored the challenge of editing data in Lempel-Ziv compressed
form. This chapter summarises the contributions presented in this thesis, then
goes on to discuss future work which can build on the results presented here.

8.1 Summary of contributions

Chapter 1 asked three research questions:
1. Is it possible to use the random-access properties of LZ-End to allow

random edits to the compressed data?
2. Is it possible to create an effective LZ compression algorithm that also

supports local access?
3. Can one create a locally editable LZ compression?
Chapter 6 answered the first research question by presenting a novel algo-

rithm to edit data in LZ-End-compressed form. The time complexity of the
edit is:

O((j − i+ l̄)× (rank + select) + (b− a)× (Π.size − b) + F(S.size)) (6.9)

The cost of editing an LZ-End-compressed string is therefore affected by the
size of the compressed string (Π.size), the position of the edit within the string
(i, j, a, and b), the length of the longest phrase in the parsing Π, prior to the edit
being applied (l̄), the size of the edit (S.size), as well as the complexity of the
rank/select queries. With this formula not even including the cost of updating
the rank/select data structure, there was huge room for improvement.

Chapter 7 answered the second research question by introducing an LZ-77-
style sliding window into the LZ-End parsing. The resulting parsing, referred
to as LZ-Local in this thesis, enables local access to the compressed data. This
is an improvement on LZ-End parsing, which only allows random access to the
compressed data. Furthermore, Chapter 7 went on to answer the final research

154

question, by presenting an algorithm to locally edit LZ-Local-compressed data.
This algorithm has a runtime complexity of

O

(
w log m̄

logw

)
+ F(pref _len + 2w + S.size) (7.2)

This formula includes the cost of updating the data structure to support rank
and select queries. This means that the cost of a compressed edit is now
a function of the window size used in the parsing (w, as well as pref _len,
which is strictly less than w), and the size of the edit (S.size). The size of the
compressed data (m̄ = number of LZ-Local phrases prior to or following the
edit, whichever is greater) also affects the run-time of the edit; however this
is entirely due to the cost of performing the rank and select queries, as well
as updating the supporting data structure. Therefore, an optimised dynamic
indexable dictionary will improve this run-time.

Empirical evaluation showed that LZ-Local’s compression performance
approaches LZ-End’s as the window size increases; however, for a given window
size, LZ-77 generally compresses strings to a smaller size than LZ-Local.

Further evaluation demonstrated the effect of a compressed edit on the
compression ratio. A compressed edit will generally degrade the compression
of a string; however, this effect is greatly reduced in LZ-Local compared to
LZ-End.

8.2 Final remarks

This thesis represents the author’s first attempt at editing LZ-compressed
strings; more work remains to be done. Minimal work has been done here
on the theoretical evaluation of either the compression performance of the
LZ-Local parsing, or of the negative impact an edit can have on compressibility.

Future empirical evaluation of the LZ-Local and LZ-End editing algorithms
could include evaluating the effect of edits where the inserted string comes from
a different source to the original string. Another line of enquiry could involve
empirically analysing the relationship between the compression ratio and the
number of dependent phrases each phrase has. This may provide insights into
how to improve the editing algorithm’s modification ratio.

Future theoretical work relating to the LZ-Local and LZ-End editing algo-
rithms could include:
• Proving (or disproving) the coarse optimality of LZ-Local compression.
• Proving an upper bound on the modification ratio of an edit.

Could we apply a combinatorial technique like Kempa and Prezza used
in [38] to place an upper bound on the number of phrases which could

155

depend on the target phrases of an edit?
• Generalising the random editing function: LZB and LZ-78 allow random
access to the compressed data [53, 49]. Does this mean those parsings
allow random edits?
More generally, investigating applications of Kempa and Prezza’s work on
string attractors to random editing, in the same way which they applied
their work to random access [38].

Finally, future work could investigate improving the LZ-Local parsing. We
have already shown how improved dynamic indexable dictionaries supporting
fast rank and select queries can greatly enhance the run-time performance of
the LZ-Local editing function.

Further work could be done to improve the LZ-Local parsing: This thesis
defined the LZ-Local parsing, but did not present an efficient algorithm to
construct it. The LZ-End construction algorithm involves pre-computing data
structures such as the BWT, suffix array, etc. over the entire string prior to
parsing the first phrase. This does not lend itself to efficient parsing with a
sliding window. Future work should involve developing a fast algorithm to
construct the LZ-Local parsing.

Finally, one could incorporate LZ-SS-style phrases into LZ-Local parsing.
Recall from Section 3.3 that LZ-SS parsing is based on LZ-77, but encodes
short phrases as a run of innovation symbols [42]. This has two benefits: 1)
short phrases are encoded using fewer bits than in LZ-77, and 2) the parsing
algorithm can make use of extremely fast hash-tables to identify the best
back-reference. The LZ-Local parsing could gain these benefits, in addition to
another important benefit: If more symbols are written out explicitly, future
phrases have more options to back-reference. Recall that LZ-End and LZ-Local
parsings support random access by requiring that each back-reference ends at
the innovation-symbol component of a previous phrase. By encoding a short
phrase as a run of innovation symbols, future phrases will have more symbols
which they could back-reference, thereby improving the compression.

156

References

[1] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE Trans.
Inf. Theory, vol. 22, no. 1, pp. 75–81, 1976.

[2] S. Kreft and G. Navarro, “LZ77-like compression with fast random access,”
in Proceedings of the IEEE Data Compression Conference 24-26 March
2010, pp. 239–248, IEEE Computer Society, 2010.

[3] R. V. Hartley, “Transmission of information 1,” Bell System technical
journal, vol. 7, no. 3, pp. 535–563, 1928.

[4] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[5] S. R. Kosaraju and G. Manzini, “Compression of low entropy strings with
Lempel-Ziv algorithms,” SIAM J. Comput., vol. 29, no. 3, pp. 893–911,
1999.

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley,
2001.

[7] G. K. Wallace, “The JPEG still picture compression standard,” Commun.
ACM, vol. 34, no. 4, pp. 30–44, 1991.

[8] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Problems of Information Transmission, vol. 1, no. 1, pp. 1–7,
1965.

[9] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.

[10] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[11] J. G. Cleary and I. H. Witten, “Data compression using adaptive coding
and partial string matching,” IEEE Trans. Commun., vol. 32, no. 4,
pp. 396–402, 1984.

158

[12] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, “The use of asymmetric
numeral systems as an accurate replacement for Huffman coding,” in 2015
Picture Coding Symposium (PCS), May 31 - June 3, 2015, pp. 65–69,
IEEE Computer Society, 2015.

[13] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical structure
in sequences: A linear-time algorithm,” J. Artif. Intell. Res., vol. 7, pp. 67–
82, 1997.

[14] N. J. Larsson and A. Moffat, “Off-line dictionary-based compression,” Proc.
IEEE Computer Society, vol. 88, no. 11, pp. 1722–1732, 2000.

[15] A. Amir and G. Benson, “Efficient two-dimensional compressed matching,”
in Proceedings of the IEEE Data Compression Conference, March 24-27,
1992, pp. 279–288, IEEE Computer Society, 1992.

[16] M. Farach and M. Thorup, “String matching in lempel-ziv compressed
strings,” in Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, 29 May-1 June 1995, pp. 703–712, ACM, 1995.

[17] L. Gasieniec and W. Rytter, “Almost optimal fully lzw-compressed pattern
matching,” in Proceedings of the IEEE Data Compression Conference,
March 29-31, 1999, pp. 316–325, IEEE Computer Society, 1999.

[18] P. Gawrychowski, “Pattern matching in lempel-ziv compressed strings:
Fast, simple, and deterministic,” in 19th Annual European Symposium on
Algorithms, September 5-9, 2011. Proceedings, vol. 6942 of Lecture Notes
in Computer Science, pp. 421–432, Springer, 2011.

[19] G. Navarro and M. Raffinot, “A general practical approach to pattern
matching over Ziv-Lempel compressed text,” in Combinatorial Pattern
Matching, 10th Annual Symposium (CPM), July 22-24, 1999, Proceedings,
vol. 1645 of Lecture Notes in Computer Science, pp. 14–36, Springer, 1999.

[20] E. S. de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates, “Direct
pattern matching on compressed text,” in String Processing and Informa-
tion Retrieval: A South American Symposium, SPIRE, September 9-11,
1998, pp. 90–95, IEEE Computer Society, 1998.

[21] S. Mitarai, M. Hirao, T. Matsumoto, A. Shinohara, M. Takeda, and
S. Arikawa, “Compressed pattern matching for SEQUITUR,” in Data
Compression Conference, March 27-29, 2001, p. 469, IEEE Computer
Society, 2001.

159

[22] R. Grossi, R. Raman, S. R. Satti, and R. Venturini, “Dynamic compressed
strings with random access,” in Automata, Languages, and Programming -
40th International Colloquium, ICALP, July 8-12, 2013, Proceedings, Part
I, vol. 7965 of Lecture Notes in Computer Science, pp. 504–515, Springer,
2013.

[23] K. Tatwawadi, S. S. Bidokhti, and T. Weissman, “On universal compression
with constant random access,” in 2018 IEEE International Symposium
on Information Theory, ISIT 2018, pp. 891–895, IEEE Computer Society,
2018.

[24] R. Vestergaard, D. E. Lucani, and Q. Zhang, “A randomly accessible lossless
compression scheme for time-series data,” in 39th IEEE Conference on
Computer Communications, (INFOCOM), July 6-9, 2020, pp. 2145–2154,
IEEE Computer Society, 2020.

[25] J. Jansson, K. Sadakane, and W. Sung, “CRAM: compressed random access
memory,” in Automata, Languages, and Programming - 39th International
Colloquium (ICALP), July 9-13, 2012, Proceedings, Part I, vol. 7391 of
Lecture Notes in Computer Science, pp. 510–521, Springer, 2012.

[26] A. Mazumdar, V. Chandar, and G. W. Wornell, “Local recovery in data
compression for general sources,” in IEEE International Symposium on
Information Theory (ISIT), June 14-19, 2015, pp. 2984–2988, IEEE Com-
puter Society, 2015.

[27] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh, “Are
bitvectors optimal?,” SIAM J. Comput., vol. 31, no. 6, pp. 1723–1744,
2002.

[28] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and
O. Weimann, “Random access to grammar-compressed strings,” in Proceed-
ings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, January 23-25, 2011, pp. 373–389, SIAM, 2011.

[29] H. Zhou, D. Wang, and G. W. Wornell, “A simple class of efficient com-
pression schemes supporting local access and editing,” in IEEE Interna-
tional Symposium on Information Theory (ISIT), June 29 - July 4, 2014,
pp. 2489–2493, IEEE Computer Society, 2014.

[30] S. Vatedka and A. Tchamkerten, “Local decoding and update of compressed
data,” in IEEE International Symposium on Information Theory (ISIT),
July 7-12, 2019, pp. 572–576, IEEE Computer Society, 2019.

160

[31] S. Vatedka and A. Tchamkerten, “Local decode and update for big data
compression,” IEEE Trans. Inf. Theory, vol. 66, no. 9, pp. 5790–5805,
2020.

[32] P. Ferragina and G. Manzini, “Opportunistic data structures with applica-
tions,” in 41st Annual Symposium on Foundations of Computer Science
(FOCS), 12-14 November 2000, pp. 390–398, IEEE Computer Society,
2000.

[33] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi,
“LZ77-based self-indexing with faster pattern matching,” in Theoretical
Informatics - 11th Latin American Symposium (LATIN), March 31 - April
4, 2014. Proceedings, vol. 8392 of Lecture Notes in Computer Science,
pp. 731–742, Springer, 2014.

[34] W. Hon, T. W. Lam, K. Sadakane, W. Sung, and S. Yiu, “Compressed
index for dynamic text,” in Proceedings of the IEEE Data Compression
Conference 23-25 March 2004, pp. 102–111, IEEE Computer Society, 2004.

[35] S. Kreft and G. Navarro, “Self-indexing based on LZ77,” in Combinatorial
Pattern Matching - 22nd Annual Symposium (CPM), June 27-29, 2011.
Proceedings, vol. 6661 of Lecture Notes in Computer Science, pp. 41–54,
Springer, 2011.

[36] G. Navarro and N. Prezza, “Universal compressed text indexing,” Theor.
Comput. Sci., vol. 762, pp. 41–50, 2019.

[37] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda, “Dynamic
index and LZ factorization in compressed space,” Discret. Appl. Math.,
vol. 274, pp. 116–129, 2020.

[38] D. Kempa and N. Prezza, “At the roots of dictionary compression: string
attractors,” in Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, June 25-29, 2018, pp. 827–840, ACM, 2018.

[39] D. Dubé and V. Beaudoin, “Improving LZ77 bit recycling using all matches,”
in IEEE International Symposium on Information Theory (ISIT), July
6-11, 2008, pp. 985–989, IEEE Computer Society, 2008.

[40] J. Ziv and A. Lempel, “A universal algorithm for sequential data compres-
sion,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343, 1977.

[41] A. D. Wyner and J. Ziv, “The sliding-window Lempel-Ziv algorithm is
asymptotically optimal,” Proc. IEEE Computer Society, vol. 82, no. 6,
pp. 872–877, 1994.

161

[42] J. A. Storer and T. G. Szymanski, “Data compression via textual substitu-
tion,” J. ACM, vol. 29, no. 4, pp. 928–951, 1982.

[43] J. Ziv and A. Lempel, “Compression of individual sequences via variable-
rate coding,” IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 530–536, 1978.

[44] K. Sadakane and H. Imai, “Improving the speed of LZ77 compression
by hashing and suffix sorting,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. 83, no. 12,
pp. 2689–2698, 2000.

[45] J. Kärkkäinen, D. Kempa, and S. J. Puglisi, “Lightweight lempel-ziv pars-
ing,” in Experimental Algorithms, 12th International Symposium (SEA),
June 5-7, 2013. Proceedings, vol. 7933 of Lecture Notes in Computer
Science, pp. 139–150, Springer, 2013.

[46] M. Crochemore and L. Ilie, “Computing longest previous factor in linear
time and applications,” Inf. Process. Lett., vol. 106, no. 2, pp. 75–80, 2008.

[47] D. Belazzougui and S. J. Puglisi, “Range predecessor and Lempel-Ziv pars-
ing,” in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, January 10-12, 2016, pp. 2053–2071, SIAM, 2016.

[48] T. A. Welch, “A technique for high-performance data compression,” Com-
puter, vol. 17, no. 6, pp. 8–19, 1984.

[49] A. Dutta, R. Levi, D. Ron, and R. Rubinfeld, “A simple online competitive
adaptation of Lempel-Ziv compression with efficient random access sup-
port,” in Proceedings of the IEEE Data Compression Conference, March
20-22, 2013, pp. 113–122, IEEE Computer Society, 2013.

[50] A. Amir, G. Benson, and M. Farach, “Let sleeping files lie: Pattern
matching in z-compressed files,” J. Comput. Syst. Sci., vol. 52, no. 2,
pp. 299–307, 1996.

[51] T. Tao and A. Mukherjee, “LZW based compressed pattern matching,” in
Proceedings of the IEEE Data Compression Conference 23-25 March 2004,
p. 568, IEEE Computer Society, 2004.

[52] G. Navarro and J. Tarhio, “Boyer-Moore string matching over Ziv-Lempel
compressed text,” in Combinatorial Pattern Matching, 11th Annual Sym-
posium (CPM), June 21-23, 2000, Proceedings, vol. 1848 of Lecture Notes
in Computer Science, pp. 166–180, Springer, 2000.

162

[53] M. Banikazemi, “LZB: data compression with bounded references,” in
Proceedings of the IEEE Data Compression Conference 16-18 March 2009,
p. 436, IEEE Computer Society, 2009.

[54] T. Bell, A unifying theory and improvements for existing approaches to
text compression. PhD thesis, University of Canterbury, 1986.

[55] D. Kempa and D. Kosolobov, “LZ-End parsing in linear time,” in 25th
Annual European Symposium on Algorithms (ESA), September 4-6, 2017,
vol. 87 of LIPIcs, pp. 53:1–53:14, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

[56] D. Kempa and D. Kosolobov, “LZ-End parsing in compressed space,” in
Proceedings of the IEEE Data Compression Conference, April 4-7, 2017,
pp. 350–359, IEEE Computer Society, 2017.

[57] K. Sadakane and R. Grossi, “Squeezing succinct data structures into
entropy bounds,” in Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 22-26, 2006, pp. 1230–1239,
ACM Press, 2006.

[58] R. González and G. Navarro, “Statistical encoding of succinct data struc-
tures,” in Combinatorial Pattern Matching, 17th Annual Symposium, CPM
2006, Barcelona, Spain, July 5-7, 2006, Proceedings, vol. 4009 of Lecture
Notes in Computer Science, pp. 294–305, Springer, 2006.

[59] P. Ferragina and R. Venturini, “A simple storage scheme for strings achiev-
ing entropy bounds,” Theor. Comput. Sci., vol. 372, no. 1, pp. 115–121,
2007.

[60] P. Ferragina and G. Manzini, “Indexing compressed text,” J. ACM, vol. 52,
no. 4, pp. 552–581, 2005.

[61] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets,” in Proceedings of
the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 6-8, 2002, pp. 233–242, ACM/SIAM, 2002.

[62] G. Nong, S. Zhang, and W. H. Chan, “Linear suffix array construction by
almost pure induced-sorting,” in Proceedings of the IEEE Data Compres-
sion Conference, 16-18 March 2009, pp. 193–202, IEEE Computer Society,
2009.

[63] U. Manber and G. Myers, “Suffix arrays: A new method for on-line string
searches,” in Proceedings of the First Annual ACM-SIAM Symposium

163

on Discrete Algorithms, pp. 319–327, Society for Industrial and Applied
Mathematics, 1990.

[64] D. Gusfield, Algorithms on Strings, Trees, and Sequences – Computer
Science and Computational Biology. Cambridge University Press, 1997.

[65] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees with
enhanced suffix arrays,” J. Discrete Algorithms, vol. 2, no. 1, pp. 53–86,
2004.

[66] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression
algorithm,” in Digital SRC Research Report, Citeseer, 1994.

[67] G. Manzini, “An analysis of the Burrows-Wheeler transform,” J. ACM,
vol. 48, no. 3, pp. 407–430, 2001.

[68] J. Fischer and V. Heun, “A new succinct representation of rmq-information
and improvements in the enhanced suffix array,” in Combinatorics, Algo-
rithms, Probabilistic and Experimental Methodologies, First International
Symposium (ESCAPE), April 7-9, 2007, Revised Selected Papers, vol. 4614
of Lecture Notes in Computer Science, pp. 459–470, Springer, 2007.

[69] T. C. Bell, J. G. Cleary, and I. H. Witten, Text compression. Prentice-Hall,
Inc., 1990.

[70] R. Arnold and T. C. Bell, “A corpus for the evaluation of lossless compres-
sion algorithms,” in Proceedings of the IEEE Data Compression Conference
(DCC), March 25-27, 1997, pp. 201–210, IEEE Computer Society, 1997.

[71] P. Ferragina and G. Navarro, “The Pizza & Chili Corpus,” 2007.

[72] W. Ebeling, R. Steuer, and M. Titchener, “Partition-based entropies of
deterministic and stochastic maps,” Stochastics and Dynamics, vol. 1,
no. 01, pp. 45–61, 2001.

[73] M. R. Titchener, P. M. Fenwick, and M. C. Chen, “Towards a calibrated
corpus for compression testing,” in Proceedings of the IEEE Data Com-
pression Conference (DCC), March 29-31, 1999, p. 554, IEEE Computer
Society, 1999.

[74] U. Speidel, M. Titchener, and J. Yang, “How well do practical information
measures estimate the Shannon entropy?,” in Fifth International Sympo-
sium on Communication Systems, Networks, and Digital Signal Processing
(CSNDSP), 2006.

164

[75] J. P. Crutchfield and N. H. Packard, “Symbolic dynamics of noisy chaos,”
Physica D: Nonlinear Phenomena, vol. 7, no. 1-3, pp. 201–223, 1983.

[76] D. Roodt, U. Speidel, V. Kumar, and R. K. Ko, “On random editing
in LZ-End,” in Proceedings of the IEEE Data Compression Conference
(DCC), March 23-26, 2021, pp. 366–366, IEEE Computer Society, 2021.

[77] P. Ferragina and G. Vinciguerra, “The PGM-index: a fully-dynamic com-
pressed learned index with provable worst-case bounds,” Proc. VLDB
Endow., vol. 13, no. 8, pp. 1162–1175, 2020.

[78] R. González and G. Navarro, “Improved dynamic rank-select entropy-bound
structures,” in Theoretical Informatics, 8th Latin American Symposium
(LATIN), April 7-11, 2008, Proceedings, vol. 4957 of Lecture Notes in
Computer Science, pp. 374–386, Springer, 2008.

[79] M. Patrascu and M. Thorup, “Dynamic integer sets with optimal rank,
select, and predecessor search,” in 55th IEEE Annual Symposium on
Foundations of Computer Science, October 18-21, 2014, pp. 166–175,
IEEE Computer Society, 2014.

[80] S. Dönges, S. J. Puglisi, and R. Raman, “On dynamic bitvector imple-
mentations,” in Proceedings of the IEEE Data Compression Conference,
March 22-25, 2022, pp. 252–261, IEEE Computer Society, 2022.

Appendix: A note on alphabets

Recall the strange observations in the experimental results when making large
insertions into low, medium and high entropy strings (see Figures 7.39 to 7.41,
repeated in Figure A.1): Large insertions into high entropy strings consistently
result in large modification ratios. Large insertions into medium entropy strings,
however, sometimes result in large MRs, but sometimes result in MRs near 1.
Larger insertions into low entropy strings have no effect on the MR, except
for two outlying strings, which seem to have the same correlation between
insertion size and MR as high entropy strings. These observations apply to
strings compressed by LZ-End, and are not present in the strings compressed
using LZ-Local.

The results for medium-entropy insertions (Figure A.1b) were particularly
alarming, because all measurements were on either end of the box-and-whisker
plot. That is, all MRs were either very close to 1.0, or very close to 1.025.
There were no values in between.

These results are an artefact of a different alphabet being used to create
the strings of calibrated entropy compared to the alphabet used by the im-
plementation of the LZ compressors. Recall that calibrated entropy strings
were generated by a binary partition; this means that the string consists of
symbols from the alphabet A = {0, 1}. The LZ compressor, on the other hand,
interpreted this bit-stream as a string of bytes, with an alphabet of size 256:
A′ = {0x00, 0x01, 0x02, ..., 0xFE, 0xFF}.

This is an important difference: consider a source which produces a bit-
stream of alternating 0’s and 1’s:

B = 0101010101 . . .

Imagine that we wish to read this as a sequence of bytes. If we do that, we get

B′ = 0x55 0x55 0x55 . . .

If, however, we read from the same source, but with a 1 in the first position,

166

(a) Insertion: low entropy

(b) Insertion: medium entropy

(c) Insertion: high entropy

Figure A.1

167

we get a very different byte stream:

B′′ = 0xAA 0xAA 0xAA . . .

Although byte streams B′ and B′′ came from the same source, a LZ parser will
not use any phrases from B′ to compress the bytes in B′′.

The low entropy strings consist of an uneven distribution of bytes, while the
high entropy strings have a closer to uniform distribution of bytes. This means
that two byte strings drawn from a high-entropy source of bits will have many
symbols in common. Conversely, two byte strings drawn from the same low-
entropy source of bits will have a low chance that the most frequently-occurring
byte in each string is the same.

Consider two byte strings S and S ′, taken from the same binary source.
They will by definition have the same distribution of symbols. However, the
"labelling" of these distributions may not be the same: That is, the most
commonly-occurring symbol in S will occur with the same frequency as the
most commonly-occurring symbol in S ′. However, these two symbols may not
be the same. This is an artefact of the conversion of a binary stream to a byte
string.

There are therefore two possible scenarios:

1. The commonly-occurring symbols of S and S ′ have a high overlap. That
is, a symbol that occurs frequently in S also appears frequently in S ′,
and one that occurs infrequently in S also appears infrequently in S ′.

2. The commonly-occurring symbols of S and S ′ have little overlap. That
is, commonly-occurring symbols in S infrequently appear in S ′ and vice
versa.

We wish to insert the string S ′ into S, and make a comparison between
performing a compressed edit and a raw edit.

In the first scenario, where the symbols of S and S ′ have high overlap, the
raw edit will be result in a more effective compression than the compressed edit.
This is because the raw edit will allow the part of S following the insertion
location to be better compressed due to the insertion. On the other hand, the
compressed edit will mean that the compression of S does not benefit from the
compression of S ′. This means that the modification ratio µ = Π′

e.size
Π′.size

will be
larger than 1. Recall that Π′e is the parsing of the compressed edit, while Π′ is
the parsing of the raw edit.

In the second scenario, where the symbols of S and S ′ have little overlap,
the string S ′ does not provide many phrases to aid in the LZ-compression of S.
Therefore, applying the raw edit, and compressing the result, does not benefit
us in any way: Although the LZ phrases provided by the compression of S ′ are

168

available for use by the remaining part of S, these phrases are not relevant,
and go largely unused. In this case, we expect the modification ratio to be
close to 1.

A high entropy source of S and S ′ will result in a reasonably flat distribution
of symbols. Therefore, the first case will apply. A low entropy source of S and
S ′ will have a very uneven distribution of symbols. There is a small chance
(depending on the size of the alphabet and the shape of the distributions) that
these overlap. If they do overlap, then the first case will apply. However, if the
distributions do not overlap, the second case will apply.

This is what we are seeing in our experiments (Figures 7.39 to 7.41): In
the high-entropy case, we see the high overlap of symbol distributions for all
strings. In the low-entropy case, we get no overlap in distributions for most
strings. However, we get two (out of the 30 strings) with highly overlapping
distributions. These two strings show a correlation between insertion size and
MR that is similar to the low entropy case. In the medium entropy case, we
get mixed results, whereby more files resemble the high-entropy relationship
between insertion size and MR than for the low-entropy case.

To prove this point, let us consider the low-entropy strings. Each of these
30 strings has only 3 bytes which have more than one occurrence in the string.
In the case of the first low-entropy string, the only bytes that occur more
than once are 0x5D, 0xD5, and 0xDD. However, the string that we insert has
a different set of three bytes: 0xAD, 0xAE, and 0xEA. The two low-entropy
strings which result in the extremely outlying MRs are the only two strings for
which the three bytes are 0xAD, 0xAE, and 0xEA.

Correct interpretation of the experiments

This now raises the question: How should we interpret the experiments?
The high-entropy case (Figure A.1c) can be taken at face value. The size of

the insertion is strongly correlated to the size of the MR.
The medium and low-entropy strings are less useful. We do, however, gain

an interesting observation we had not bargained for: the case where the inserted
string does not come from the same source as the existing string. This may
happen, for example, when inserting an image into a compressed archive which
previously only contained text files. In this case, we see that the MR is likely
to remain close to 1.

On the other hand, we would expect that for LZ-End, the size of the
insertion into a string of any entropy will determine the modification ratio.
However, we cannot currently quantify this relationship, as the two data-points
we have in the low-entropy case are not enough to draw any conclusions.

169

Why LZ-Local did not have such outliers

Another question that may be raised is: Why did LZ-Local not have such
outliers? There are two reasons for this:

1. The size of the edit dwarfed the size of the window, so that, regardless
of whether S and S ′ come from the same source, the LZ phrases of S ′

will only affect the compression of a small portion of S. The largest
window size we used was 65,536 bytes, while the largest edit we made
was 524,288 bytes. Therefore, any potential gain in compressing S as a
result of inserting S ′ was very minor; hence the consistent results across
all entropy levels for insertions into LZ-Local-compressed strings.

2. LZ-Local edit algorithm uses the compressed form of S to aid in com-
pressing the inserted string S ′.

On the use of calibrated entropy strings

This highlights a limitation of using a binary partition to the logistic map.
Future work should include developing a source of calibrated entropy strings that
generate the same alphabet used by the LZ parser (or any other compression
algorithm). This could be resolved by adapting the implementations of the
LZ compressors that we use: if the compressor reads as a binary alphabet,
this problem would easily be resolved. However, this would add significant
overheads to the runtime and memory of the experiments, which would make
the current set of experiments infeasible.

Conclusion and learnings

The key lessons from this investigation are:
• One must be careful when the source of one’s string uses a different

alphabet to that used by the LZ parser. In our experiments, the sources
of our strings used a binary alphabet, whereas the LZ parsers interpreted
these strings as bytes.
• The MR for insertions into LZ-End-compressed strings is dependent on
the size of the insertion, if the inserted string comes from the same
source as the string we are inserting into. We cannot quantify this exact
relationship for low and medium entropy strings though.
• The MR for insertions into LZ-End-compressed strings, when the inserted

string comes from a different source to the string we are inserting into is
likely to be very close to 1. This is regardless of the size of the inserted
string.

170

Index

access
local, 16
random, 16

alphabet, 4
array, 3

suffix, 36

backward search, 43, 47
Burrows-Wheeler transform, 36, 39

coarse optimality, 14
code

local access, 89
random access, 16, 89

complexity, 13
Kolmogorov, 13
Lempel-Ziv, 13, 14

compression
discrete cosine transform, 12
length-prefix, 18
lossless, 12
lossy, 12

compression corpora, 59
Calgary corpus, 59
Canterbury corpus, 59, 90
Pizza & Chili corpus, 59

compression ratio, 57
concatenate, 4

data compression, 1
data compression algorithms, 11

universal, 11
data structure

dynamic, 86
static, 86

dependent phrase, 73
first-order, 73
higher-order, 73

dictionary
indexable, 36

dictionary compression, 15
discrete cosine transform, 12

edit
bulk, 145
compressed, 69, 127
delete, 68
incremental, 145
insert, 68
raw, 69, 127
replace, 68

editable code
locally, 17
randomly, 17

entropy, 8, 9
kth-order, 10
zeroth order, 10

functions, 3

grammar compression, 15

hartley, 7

indexable dictionary, 46
fully indexable dictionary, 46

information source, 7

172

Lempel-Ziv, 13, 21
LZ-77, 23
LZ-78, 26
LZ-End, 1, 31
LZ-Local, 2, 87
LZ-SS, 25
LZB, 30
LZW, 28

locally accessible code, 16

message, 8
modification ratio, 131

parse, 13
pattern matching

backward search, 43
suffix array, 37

phrase, 13
predecessor function, 45, 46

random access code, 16
range maximum query, 36, 44, 45
range minimum query, 36, 44
ratio

compression, 57
modification, 131

search
backward, 36

self-index, 29

sliding window, 32
source

continuous, 8
discrete, 8
mixed, 8

statistical coding, 15
arithmetic coding, 15
asymmetric numeral systems,

15
Huffman coding, 15
prediction by partial matching,

15
string, 3
string attractor, 18
successor, 36
successor function, 45
suffix array, 36

enhanced suffix array, 38
suffix tree, 38
symbol, 4

time-memory trade-off, 58
tree

binary search, 4, 36

variable
indexed, 3
single, 3
structured, 4

	Introduction
	Notation
	Functions
	Single variables
	Indexed variables
	Structured variables
	Mathematical notation
	Complexity analysis

	Background
	Entropy
	Empirical entropy

	Defining data compression
	Lossy vs. lossless compression

	Computing the complexity of a string
	Kolmogorov complexity
	Lempel-Ziv complexity

	Optimal compression
	Types of compression
	Statistical coding
	Dictionary-based compression

	Using compressed data
	Compressed pattern matching
	Random access codes
	Difference between local decoding and random access
	Editing compressed data
	Compressed text index structures

	String attractors
	Conclusion

	The Lempel-Ziv family of compressors
	Computing the LZ complexity
	LZ-77 compression algorithm
	LZ-SS
	LZ-78 compression algorithm
	LZW compression algorithm
	Challenges when locally decoding and editing in LZ
	Searching in LZ phrases
	Searching in LZW
	Searching in LZ-77 and 78

	Random access in LZ
	LZB compression algorithm
	LZ-End compression algorithm
	Random access in LZ-78

	Size of sliding window and its effect on compression ratio for LZ parsers
	Summary of LZ parsing

	The LZ-End parsing
	LZ-End parsing format
	Example

	Algorithms used by LZ-End
	Suffix array
	Burrows-Wheeler transform
	Backward search
	Range minimum query
	Successor and predecessor functions
	Indexable dictionary

	The LZ-End parsing algorithm
	Searching in LZ-End
	Random access in LZ-End
	Fast mapping between phrase and symbol indices in LZ-End
	Linear-time retrieval of symbols from a phrase
	Example

	Random access algorithm

	Summary of the LZ-End parsing and random access

	Evaluation methodology
	Empirically evaluating compression algorithms
	Compression performance evaluation criteria
	Compression corpora
	Calgary corpus
	Canterbury corpus
	Pizza & Chili corpus
	Calibrated entropy strings

	Compression corpora as a tool for evaluating universal compressors
	Shortfalls of compression corpora when evaluating editing algorithms

	Evaluation methodology used in this thesis
	Generating calibrated entropy strings
	A note on the consistency between calibrated entropy strings

	Storage format for LZ phrases in this thesis
	Conclusion

	Random edits in LZ-End data
	Preliminary notes on editing LZ-End
	Format of the parsing
	Defining the edit operation
	Challenges of editing LZ-compressed data

	Editing in LZ-End
	Identifying phrases to edit
	Edit the target phrases
	Identifying dependent phrases
	Mending the parsing of dependent phrases
	Adjust back-references
	Replace the dependent phrases
	Putting it all together

	How edits affect the LZ-End parsing
	Time and memory requirements
	A note on rank and select queries
	Conclusion

	LZ-Local: introducing a sliding window into the LZ-End parsing
	LZ-Local parsing
	Properties of the LZ-Local parsing

	Evaluating the LZ-Local parsing
	Canterbury corpus
	Calibrated entropy strings
	Cause of the variance in compression ratios

	Editing algorithm for LZ-Local
	Incremental parsing
	Identify dependent phrases
	Identify extended back-references
	Adjust back-references
	Formal editing algorithm for LZ-Local
	A consideration of the editing algorithm

	Evaluating the editing algorithm
	Theoretical evaluation
	Cost of LZ-Local edit, ignoring rank/select
	Cost of the rank and select operations
	Cost of LZ-Local edit
	Comparing compressed editing time to raw edit
	Locality of editing

	Empirical evaluation
	The position of the edit
	Size of the edit
	Incremental edits
	Quality assurance for the empirical results
	Summary of evaluation

	Conclusion and future work

	Conclusion
	Summary of contributions
	Final remarks

	Appendix: A note on alphabets

