
Creating Formal Models from Informal Design Artefacts

Judy Bowena, Benjamin Weyersb and Bowen Liua

aUniversity of Waikato, New Zealand; bUniversity of Trier, Germany

ARTICLE HISTORY

Compiled January 12, 2024

ABSTRACT
The use of robust software engineering processes is essential in the design and devel-
opment of interactive systems. This ensures that software is both functionally correct
and also usable in the required context. There are a variety of software engineering
techniques that can be used to consider different aspects of a system under construc-
tion, and at different stages in the development process. There is, however, a natural
tension between formal approaches (typically used in the domain of safety-critical
systems to consider functional correctness) and informal design approaches, which
focus on users and user requirements in a manner which is accessible by stakehold-
ers. In this paper we present two new approaches which enable a tighter coupling
of informal design requirements with formal models. We present examples of these
two approaches and discuss the benefits that transformations between the informal
and formal provide. We also discuss the current limitations of such work along with
recommendations about how these might be addressed.

KEYWORDS
Interactive system design; model transformations; Formal methods; informal
design; Petri nets; BPMN; behaviour-driven design; Gherkin; Cucumber

1. Introduction

Interactive computer systems and software support real-time interactions between hu-
mans and computers. Such systems require human interactions for input and control
and provide information to the human users in return. These interactions are facili-
tated by user interfaces which may consist of a wide range of input/output mechanisms
(WIMP-based1, touchscreen, speech, haptic etc.) (Preece et al., 1994). Interactive sys-
tems are now ubiquitous and appear in all parts of our daily life (mobile phones, ATM
machines, smart-home devices, travel ticket kiosks) and as such, failures or errors with
interactive systems likewise have the ability to impact all parts of our lives (Weyers,
Burkolter, Luther, & Kluge, 2012a). When we build interactive systems, therefore,
we should employ suitable software engineering techniques and principles to avoid
such errors (Ameur, Bowen, Campos, Palanque, & Weyers, 2021). What we mean by
‘suitable’ may depend on the domain of the software being developed and its context
of use. For a mobile-app which is primarily for entertainment the focus may be on
data security, user satisfaction and engagement. As such, the engineering methods we
employ will be those that best support these properties (testing, user-centred design

CONTACT J. Bowen. Email: jbowen@waikato.ac.nz
1Windows, Icons, Menus, Pointers

etc). If, however, we are building software to manage a nuclear power plant, which
is a safety-critical system, then we have much stronger criteria and a wider range of
consideration (Weyers et al., 2012a). As such we employ techniques such as formal
specification and modelling, verification and validation, model-based testing etc. so
that we can investigate safety properties using model-checking and formal proofs prior
to implementation (Bolton, Bass, & Siminiceanu, 2012; J. Bowen & Reeves, 2013;
Campos & Harrison, 2009). Irrespective of the methods we use, there is a natural di-
vision between the front-end (user, user interface, interactivity) of the system and the
back-end (functionality), and we will typically also use different methods to consider
these parts.

There is, therefore, a need for using formal models in interactive system engineering
(particularly in safety-critical contexts) but formal models and notations are known
to be complex and mainly only applicable by experts (J. P. Bowen & Stavridou,
1993a). For safety critical systems it is more likely that formal methods and robust
engineering techniques will be followed (Fayollas et al., 2013; Harrison et al., 2019)
and indeed these are mandated in some domains (Masci et al., 2013). However, it is
often the case that the functional behaviour of the system is the target of these formal
techniques and the user interface and interactive components do not receive the same
attention. Further challenges arise from the fact that many interactive systems are also
safety-critical and properties of the interface and interaction must also be investigated
formally (J. Bowen & Reeves, 2013). When we develop safety-critical systems, it is
possible that the business stakeholder who gives requirements knows very little about
software development, therefore it is important to have a clear set of unambiguous
requirements that both the stakeholders and software developers can understand. On
the other hand, requirements can be very domain-specific which leads to a different set
of problems. For example, the system developer might not understand how a medical
infusion pump works or the context of the medical domain in which it is used. Thus the
possibility of having miscommunication between business stakeholders and professional
software developers is too high to ignore. In addition to the communication problem,
consistency needs to be maintained throughout the whole implementation process,
the developer needs to carefully follow the original requirements as the system grows
bigger and more complicated.

User-centred design (UCD) methods aim to ensure that interactive systems are us-
able by their target users by involving users throughout the design process (Norman
& Draper, 1986). There are many different methods that come under the umbrella
of UCD (these are defined under ISO standard 9241-210:2019 2) and each involves a
different amount of user involvement at different points in time within the process.
The most inclusive is co-design (Bødker, Ehn, Sjögren, & Sundblad, 2000), where users
directly contribute to design throughout, but UCD can also be much more lightweight
and perhaps involve stakeholders and end-users at the requirements gathering stage
only. As such, UCD ensures that we integrate the user and user requirements into
the development processes and enables them to give feedback early on. This, however,
raises further challenges, as users are usually not experts in applying, or understanding
formal modelling methods. Thus, our focus in this paper is on taking informal user-
centred design processes, particularly those that relate to the gathering and expressing
of user requirements, and using them as the basis for more formal models. This allows
us to take advantage of the benefits and strengths of the informal processes, which are
tailored to capture the needs of users in a way that is easily understood by all stake-

2https://www.iso.org/standard/77520.html

2

holders (such as qualitative methods in UCD (Lack, 2007)). We can then use these
well-constructed descriptions to support the generation of formal models, which are
more suited to robust software engineering processes. In this way we seek to integrate
the informal approaches with the formal in order to receive the benefits that both can
provide. Our work contributes to the body of knowledge in the domain of engineering
interactive systems, specifically we propose two new methods that can be adopted
within this context to support the development of robust and safe interactive systems.
Our approaches seek to capture the richness that exists in UCD approaches and design
artefacts (which can be any artefact created and used in the design process, e.g. pro-
totypes, use-cases, scenarios etc.) and use transformation approaches to enable their
incorporation into more formal approaches, such as specification and model-checking.

Therefore we started with the following high-level research question in this work:

• What methods can we use to integrate informal software design methods with
more formal processes?

Our focus on specific parts of the design process then led to two more specific questions:

• How do we support end-users in providing requirements in a structured manner
such that they can be integrated into a formal development process using Petri-
nets?

• How can we ensure that user-centred requirements expressed in behavioural
specifications are consistent with formal specifications?

To address these, this paper describes two new approaches which make use of informal
descriptions and specifications by transforming them into formal notations. Figure 1
provides an overview of the processes we describe. The thin arrows indicate existing
standard methods: stakeholders provide information (which may include user inter-
views) which enables the development of requirements; requirements are used as the
basis for formal models and behavioural specifications. Thick arrows indicate our two
new methods: 1. a subset of the stakeholders (end-users) are interviewed with the
data transformed to BPMN models; 1. the BPMN models can be transformed to for-
mal models (Petri nets), which can then be validated and verified as well as used
for implementation of the interactive system; 2. behavioural specifications are used to
derive FOL predicates. 2. FOL predicates can be combined with existing formal mod-
els and used for model-checking and refinement. The dotted arrow suggests potential
future work, where the BPMN model might be used to support the development of
requirements.

In the next section we give a wider background to the domain of formal modelling
and interactive systems more generally, and then discuss work related to requirements,
model transformations and integrated modelling approaches. We then describe the first
of our new methods, which addresses the problem of gathering informal requirements
from users, via interviews, and giving these some formal structure. This method enables
a transformation into Petri nets which provides the basis for formal reasoning and use
in implementations. This is followed by section 4 where we describe our second method
which looks at a transformation from behavioural specifications into predicate logic by
way of pre and post conditions. We demonstrate several ways in which these formal
representations can be used in conjunction with Z specifications. We next present a
discussion of the outcomes of these two methods and then outline some limitations
and discuss future work.

3

Figure 1. Process

2. Background and Related Work

2.1. Model-Driven Development

Software development is an increasingly complex task. The similarly increasing ubiq-
uity of software has broadened the variety of end-users (who can no longer be assumed
to be expert users) as well as extended the contexts of use. We do, of course, want all
software that we build to be correct, robust and safe under all circumstances, but in
the case of safety-critical software we also want to be able to formally reason about
these properties. Formal methods are increasingly being used in such cases (Basile et
al., 2018; Bonfanti, Gargantini, & Mashkoor, 2018) where the perceived overheads of
the use of formal techniques is mitigated by the potential for deadly errors (Hatcliff
et al., 2019). While testing can provide some reassurance that the systems being de-
veloped are error-free, it is limited by the skills and expertise of the testers and the
testing approach used. It is also well-known that testing cannot be guaranteed to find
all errors,

“Program testing can be used to show the presence of bugs, but never to show their
absence!” (Dijkstra, 1976)

. We therefore expect to use a combination of approaches and software engineering
techniques, to ensure that we capture as many potential errors as possible. While
our focus in this paper is on the use of formal methods, we assume that these are
used alongside testing approaches and in some cases, such as model-driven testing,
integrated with them (Utting & Legeard, 2006)).

The use of formal methods and robust software engineering processes gives us some
assurance about correctness and robustness (J. P. Bowen & Stavridou, 1993b), but
such rigorous design methods can exclude certain parts of the design and development
process (particularly those relating to users, user interfaces and interactions). This may
lead to problems further down the track. Safety-critical interactive systems are just as

4

likely to cause harm if users cannot understand how to use or interact correctly with
them (Thimbleby, 2015) or if there are mismatches between the front-end and back-end
functionalities (Turner, Bowen, & Reeves, 2020). The development of robust software
must also consider that a user can successfully interact with, and use, the software and
that it has been designed to meet their needs. However, such considerations are more
usually (and more usefully) considered in informal user-centred design processes.

The need for robust engineering techniques and formal methods for safety-critical in-
teractive systems is well understood (Weyers, Bowen, Dix, & Palanque, 2017). While
we may wish to ensure the correctness of all interactive systems, we are pragmatic
about the time and effort required to produce the formal artefacts needed to under-
take tasks, such as model-checking or specification and refinement. As such, methods
that enable the use of more lightweight user-centred approaches in conjunction with
formal methods, for example as seen in work such as (J. Bowen & Reeves, 2008,
2009; Sousa, Campos, Alves, & Harrison, 2014), and via the types of transformations
we suggest in this paper, provides benefits beyond just safety-critical systems. Formal
methods do not always fit naturally with user-centred design principles and techniques,
although these are equally crucial for developing usable systems that meet the users’
expectations.

Providing transformations between informal and formal models enables us to have
two very different views of the same system. Creating models of systems can high-
light or uncover unexpected properties, as we view the same problem from different
perspectives and at different levels of abstraction. So, having several models increases
the benefit without increasing the workload correspondingly, as transformations can
be (at least partially) automated. In addition, the benefits of having several different
models of the same system which can target different parts and/or be combined at
different stages in the development process have also been highlighted (J. Bowen &
Reeves, 2017a).

The ‘gap’ that exists between informal development artefacts such as stakeholder
and user-requirements, design prototypes etc. and formal software development pro-
cesses is a problem that has been addressed in many different ways, particularly in
the domain of interactive systems (J. Bowen & Reeves, 2008; Dix, 1991; Weyers et
al., 2017). In our work here we particularly focus on the problem of the use of natural
language in informal design processes (such as those seen in requirements documents
or user-based processes such as interview techniques) and consider how the ambiguity
and free-form of such a natural language process might be captured within a formal
model. The benefit of this is that it allows us to retain the richness and user-centred
focus of the original method and at the same time incorporate the information gath-
ered in this way into formal software engineering processes that rely on syntactically
correct (and constrained) modelling notations.

Finding ways to translate, or re-express, informal design artefacts as formal models
is not done with the intention of replacing the informal. Rather it gives us the ad-
ditional benefits that a formal model can provide, whilst at the same time retaining
the original artefacts which are typically useful in other parts of the design process,
communicating with stakeholders for example. The work we describe here adds to the
existing body of work in the domain of engineering interactive systems, particularly
where integration with formal methods is considered, for example (J. Bowen & Reeves,
2017b; Harrison, Masci, & Campos, 2018; Prates, Palanque, Weyers, Bowen, & Dix,
2017; Weyers, Burkolter, Luther, & Kluge, 2012b). While we aim at relating user-
centred approaches and artefacts to formalisms seen in other work, primarily that on
Petri nets (Jaidka, Reeves, & Bowen, 2019; Navarre, Palanque, Coppers, Luyten, &

5

Vanacken, 2019; Stückrath & Weyers, 2014) and Z (J. Bowen & Reeves, 2008; Turner
et al., 2020) we specifically focus here on behavioural specifications and deriving mod-
els from users interviews. Our contribution, therefore, is to extend the breadth of the
existing body of work and provide additional entry points.

2.2. Behaviour-Driven Development

In 2003, Agiledox, which some consider the predecessor of behaviour-driven languages
and frameworks such as Gherkin and Cucumber (discussed later) was created by
Stevenson (Stevenson, n.d.). Agiledox is a tool that automatically generates simple
documentation from the method names in JUnit test cases, providing a way of tying
together different parts of the development process (in this case using the testing pro-
cedures to assist with user documentation). Later, North introduced Behaviour Driven
Development (BDD) (North, 2006), an agile software development process that built
on the ideas of Test Driven Development (Beck, 2002). BDD combines the practices,
techniques and principles of Test Driven Development, Acceptance Test Driven De-
velopment (Acceptance Test Driven Development (ATDD), n.d.) and Domain-Driven
Design (What is Domain-driven design, 2007). The key concept of BDD is that it sup-
ports “...implementing an application by describing its behaviour from the perspective
of its stakeholders” (North, 2009).

Cucumber (Rose, Wynne, & Hellesoy, 2015) is a software testing framework that can
create and run automated acceptance tests written in a BDD style. Cucumber uses its
own language, Gherkin, which describes expected software behaviours using natural
language. Business stakeholders can, therefore, easily understand the BDD specifica-
tion and can work with developers to ensure the software that is delivered meets the
user requirements. The connection between stakeholders, designers and developers is
enhanced through the combination of easily-understood scenarios and software test
generation. When developers apply BDD, they are still writing tests, but these “tests”
are explained as behaviours of applications, which is more user-focused. Because the
behaviour specifications are written in descriptive plain language3, BDD utilises lan-
guage that non-technical stakeholders can understand (what behaviour they expect
from the application). BDD aims at strengthening the understanding of user require-
ments by describing the expected behaviours of the system, and so can be used to
help developers better understand these requirements. This focus on behaviours from
the user’s perspective is, of course, common in user-centred design methods, however
in BDD this is tied directly to software outcomes via the ability to generate tests
from the behaviour specifications. As such, it already provides one way of generating
something more formal (in this case tests) from something informal (natural-language
descriptions of user requirements). The structure of the behavioural specification and
the defined syntax means that it acts as an intermediary between the natural language
of the requirements and the formal specifications. Our goal is to extend this to support
the generation and validation of formal specifications.

Carter and Gardner introduced a development approach called BHive (Carter &
Gardner, 2018), which combines BDD with the B-method (a tool-supported formal
method (Abrial, 1988)). The authors outline three classes of failure that occur in
the development of complex software systems: failure to deliver; catastrophic failure
and failure to maintain. They propose that the combination of Agile and Formal
methods they propose will help to avoid delivery risks while maintaining high standards

3which in our examples is English but many different languages can be used

6

of correctness, particularly relevant for safety-critical systems. BHive generates a B-
machine based on Cucumber features by translating the specified scenarios. The B-
machine captures the expected behaviour of the system under development for the
developer team, thus this model can be verified and used to build new tests. Although
this approach was prototyped using Python’s “Behave” module (Rice, Jones, Bittner,
& Engel, 2014), BHive is generalisable to any BDD tool.

While it is typical to use structured natural-language for BDD specifications, for
example the Gherkin syntax4, Lübke and Lessen described an approach where they
used Business Process Model and Notation (BPMN) as the specification model (Lubke
& van Lessen, 2016). These models were then fed into a generator along with content
mappings and assertion mappings. The generator creates executable test suites auto-
matically based on these BDD artefacts in a similar manner to the Cucumber tool.
This is an example of how the BDD process can be made more flexible through the use
of different ‘front-end’ models. While our end-point is a formal notation rather than
tests, the use of BPMN in this manner might enable us to tie together our two different
formal approaches and provides another layer of transformations between models.

Other research seeks to enhance the Cucumber scenarios through a conversion ap-
proach more similar to our own, where the target is a more formal set of models. For
example Colombo et al. introduced an approach to combine related scenarios into mod-
els which can be consumed by Model-Based Testing tools (Colombo, Micallef, & Scerri,
2014). While this research was restricted to web-applications, the approach adopts spe-
cific conventions when writing Cucumber Scenarios which then allows a QuickCheck
model (Claessen & Hughes, 2000) to be constructed. This use of conventions for writ-
ing and structuring the specification is something we adopt in our approach. A more
general approach aimed more closely at formal modelling and validation is presented
by Snook et al. (Snook et al., 2018). Starting with a (proven) consistent model based
on manually written scenarios they then use Event-B/iUMLB (Event-B is a formal
method for system-level modelling and analysis; iUMLB is a Graphical front-end to a
collection of diagrammatic editors for Event-B) to verify it against manually written
Cucumber scenarios. The scenarios generated are also used for acceptance testing of
the verified model and illustrated by Cucumber for the Event-B/iUML-B tool. This
enables Gherkin scenarios to be executed directly in Event-B and provides a Gherkin
syntax to validate iUML-B class diagrams.

Khanal and Bowen proposed an approach that combines interactive system mod-
els and behavioural specifications to automatically generate test stubs (J. Bowen &
Khanal, 2018). Given that Cucumber scenarios can be automatically converted into
test stubs, the authors developed an automatic process that transforms Presentation
Models created by the PIMed tool (J. Bowen & Gyde, 2015) into Cucumber scenarios
by applying transformation conventions. Although the transformed language of the
scenarios is more abstract, the initial meaning of the models is proven to be preserved.
Furthermore, Khanal extended the PIMed tool so it can automatically generate limited
Presentation Models from Cucumber Scenarios. While this transformation requires re-
strictions on the syntax, it does, however, demonstrate the practicality of converting
between more formal models and behavioural specifications.

4https://cucumber.io/docs/gherkin/reference/

7

2.3. Integrated Design Processes

From existing research we can recognise the benefits of integrating informal design
methods with more formal processes. Rather than seeking to replace either of these
processes, we rather propose two new methods which enable such an integration. As
we have shown in figure 1 our methods fit into existing user centred practice in order
to increase options to work with different types of models/notations within different
parts of the design and development process. We now describe our two approaches in
detail and outline their uses.

3. From User Interviews to Petri nets

As described above, a major challenge in the creation of interactive systems is the
active involvement of users (Abras, Maloney-Krichmar, Preece, et al., 2004; Fischer,
Peine, & Östlund, 2020). Various approaches may by suitable: Starting with inter-
views (Preece et al., 1994), the development of personas (Preece et al., 1994) or
methods like crowd-sourcing (Alonso & Baeza-Yates, 2011; Zuccon et al., 2013) to
gather information directly or indirectly from the target audience. A special class of
information represents processes in everyday working situations, such as in an office
environment (Langel, Law, Wehrt, & Weyers, 2018; Zielasko et al., 2017) or in produc-
tion (Borisov, Weyers, & Kluge, 2018). The first approach we describe here is based
on user interviews as one standard technique in UCD, specifically in earlier stages of
the design.

For a subsequent formalisation of described interaction processes and functionality
in interviews e.g. to create functional elements such as interaction logic as defined in
(Weyers et al., 2012a), various types of domain specific modelling approaches exists,
which offer more or less formal structures and vary in their complexity and associated
learning curve (Weyers et al., 2017). For instance, Petri nets (Reisig, 2012) are
formally specified and can be used for system simulation (Kummer et al., 2000) and
therefore to describe executable components of an interactive system. Additionally, a
significant variety of tools exist for the validation of Petri net-based models due to
certain requirements or characteristics (e.g., (Van der Aalst, 1997)). Nevertheless, the
creation of Petri net-based models is a critical process as it puts high demands on
the necessary pre-knowledge of the developer and user involved in the process, which
contradicts with our assumption that users do not have expert knowledge.

Thus, direct use of Petri nets (which also offer a visual model ‘front-end’ language)
in UCD may be not applicable. This leads to the need to find or develop alternative
description formats, which on the one hand are able to ‘extract’ the specific information
from the user as needed for the design process and on the other are still structured
enough such that an engineering process can direclty profit from this information.

In a current research project, we are focusing on the development of a persua-
sive interactive system that supports a user to change unwanted habits in everyday
working context (Langel et al., 2018; Law, Wehrt, Sonnentag, & Weyers, 2017). In
this project, we use an interview-based approach supported by BPMN as a visual
modelling language to keep the gap between the gathered qualitative data and the
model-based description small (Law et al., 2017; Law, Wehrt, Sonnentag, & Weyers,
2022). In a second step, the gathered BPMN models can be used to generate Petri
net-based models algorithmically (Law et al., 2017), such that the generated model
can directly be used in the system’s implementation (Langel et al., 2018) or for further

8

validation or verification. In order to extend the advantages provided by this algorith-
mic transformation of BPMN models into Petri net-based descriptions we show here
how we can use BPMN as a visual modeling support in (informal) nearly unstruc-
tured user interviews. This provides a two-step transformation of informal interviews
to BPMN models, and then to Petri nets (which is implemented algorithmically). We
present here an overview and first insights into this endeavour based on a previously
developed example (Langel et al., 2018; Law et al., 2017) and discuss future research
directions based on identified limitations.

In the following subsections we first present a more detailed discussion of the overall
system design of a persuasive system using Petri net-based descriptions of habits
(based on the example from (Langel et al., 2018)) in Section 3.1. In Section 3.2,
we will discuss the informal gathering of BPMN models (which is further supported
by a structured transformation method as presented in Law et al. (2022)) followed
by an overview of the algorithmic transformation and processing of BPMN models to
finally generating a Petri net (using the algorithmic approach from Law et al. (2017)).
Each subsection is concluded by a discussion of limitations this approach shows, which
includes potential next steps which are then discussed further in Section 5.

3.1. Petri net-based models for persuasive systems

In (Langel et al., 2018), we presented a first prototype of a persuasive system support-
ing the change of unwanted habits in a work context. In this prototype, we used virtual
reality to create a virtual office environment in which a person is able to execute basic
office tasks, such as sorting, editing and printing documents. Considering given work
processes and information about the user such as head direction, we triggered the user
via a virtual smartphone supporting him/her to show a wanted behaviour and thus to
prevent the unwanted habit.

For the use of Petri nets in the implementation of persuasive systems, we designed
the system architecture as shown in Figure 2 on the left. Renew (Kummer et al.,
2000) is a simulator for reference nets, a specific type of Petri net. The main feature
of this specific variety of Petri nets is that transitions can be synchronously bound to
the execution of methods in Java code. For more details on reference nets, we would
like to refer the reader to (Kummer, 2001).

Renew is encapsulated into a server such that various clients can communicate with
the Petri net as control instance in the architecture. Clients may be sensors and any
kind of digital system, which is capable of communicating with the user.

As mentioned above, we used a virtual environment as shown in the right of Figure
2 to implement a first prototype of this architecture. This system enabled us not only
to simulate a working environment and related working tasks but also sensors e.g. to
detect where the user is looking at or what she/he is currently working on. Considering
such a setup in a physical environment would render a very high complexity in sensor
technology as well as data processing, which we wanted to keep for a later stage of
this research endeavour.

This prototype showed that it is possible to make use of Petri nets in such a context,
but also identified various challenges. On the one hand, the implementation of virtual
environments, which enable realistic work processes is highly challenging and restricts
the potential variety of processes to those that are controllable through interaction
concepts currently available for virtual reality systems. On the other hand, data simply
accessible in VR, such as viewing direction, is extremely complex to gather in real

9

contexts, not only because of limitations in hardware and computational power but
also in terms of intrusiveness as well as data protection.

Petri
Net

Figure 2. System design of the prototype. On the left, the architecture is shown, which includes the simulator
Renew. On the right, the virtual office environment is shown.

3.2. Modeling and Transformation

For the use of Petri nets in the implementation of persuasive systems, the nets have
to be created in the first place. With the requirement to generate user-specific mod-
els to consider the individuality of work habits (Sonnentag, Wehrt, Weyers, & Law,
2022) and that replicate the user’s thinking (in this project the individual habit)
(Oinas-Kukkonen & Harjumaa, 2008) as precisely as possible, we developed a mod-
elling strategy which includes the user. Thus, in a first step (as presented in Figure 3)
the goal is to gather a BPMN model in the context of an informal interview, where
the actual modelling of the BPMN model is supported by the interviewer in terms of
help and supervision to generate a syntactically correct BPMN model.

BPMN Petri NetUser

Algorithmic
Transformation

Interview
Supported
Modeling

Figure 3. Generation process of formal Petri nets from informally (interview-based) gathered BPMN de-

scriptions of work habits.

This approach has been tested in an informal pilot study with office workers as
participants, which has been previously described in (Law et al., 2017). Therefore,
we first pre-tested the use of BPMN as a modeling language for non-experts, here
in the sense of persons without pre-knowledge of modeling in the context of software
development or business processes. The major observation for the BPMN modelling
was that using the full set of BPMN elements would overwhelm and disturb the users
unnecessarily. Thus, we ended up with a reduced number of BPMN nodes as follows:
task, event (used as interrupting and non-interrupting event), as well as the two gate-
way (and/xor) nodes for splitting and merging processes (Law et al., 2017). Further
(structuring) elements, such as swim lanes were omitted completely. More information
on the semantics of BPMN can be found here (Dijkman, Dumas, & Ouyang, 2008;
White, 2004).

10

In the pilot study, we asked office workers to identify unwanted habits in a first step
followed by a description of an alternative wanted habit. For description purpose, we
offered a magnetic whiteboard on which the study participants were able to model a
BPMN description of their habits with support by the interviewer. The participants
were provided with magnetic markers representing the previously mentioned sub-set
of BPMN nodes. Additionally, participants were able to add written notes to their
models using whiteboard markers. After a short introduction to the modeling approach
using BPMN including examples, the interviewers asked the participants to image a
specific situation in their everyday work life in which they showed an unwanted or
dysfunctional habit. After modeling it using the previously described material, they
were asked to imagine a wanted alternative behaviour and also describe this in the
same way. In a second part, participants were asked to repeat these habits aurally, thus
in a classic interview style. The sequence of BPMN modeling and aural interviews has
been randomized between participants. The interviews took between 20 and 60 minutes
each.

We were able to gather models from these interviews but still made the observation
that without the help from the interviewers no syntactically correct models would have
been created despite the reduced number of BPMN nodes.

Another approach to gather BPMN models from interviews has been presented by
Law et al. (2022). In this method, BPMN models are not created by the actual users
under the supervision of a modeling expert but via a structured three-step process in
which interviews are first segmented then the generated segments get classified and
finally transformed into BPMN (sub-)nets in a third step.

Based on the BPMN models developed from this user-centric input, we can then
apply an algorithmic transformation from BPMN to Petri nets (previously described
in (Law et al., 2017)). In this approach, we defined certain Petri net “patterns” for
each type of node. The algorithm generates a full net out of a given BPMN model
in a two step approach. In the first step, for each node the corresponding pattern is
generated and parameterized due to the information given in the BPMN model (e.g.
considering a task’s name). In the second step, the various sub-nets are connected
via transitions and according edges forming the final Petri net. Figure 4 presents a
transformation example, where at the top a BPMN example is visible and at the
bottom the corresponding Petri net. By colored boxes, the corresponding sub-nets
generated out of the BPMN model is indicated.

3.3. Summary

Thus, we have shown that it is possible to generate formal models (the Petri nets) from
an informal (interview-based) design process. We presented a scenario for the use of a
persuasive system in an office-like work environment using virtual reality. By means
of this scenario, we presented an approach in a second step in which we first gather
BPMN models as a semi-formal description of work-related habits. This gathering
process happened in an interview in which the interviewer guided the interviewee to
create an actual BPMN model describing a previously identified habit. In a second
step, we showed how such a BPMN model can be transformed into Petri net-based
models algorithmically.

The major benefit gained from this transformation is that the generated Petri net
used later in an implementation is very close to the initial habit described by the user
(see also next paragraph). Of course, the applied interview method including BPMN

11

Figure 4. Transformation example of a BPMN model (top) into a Petri net (bottom). As an example, a
BPMN node (task node) is highlighted together with its corresponding sub-net in the Petri net.

as a modeling language runs the risk to omit certain details of the user’s mental model
of the habit. However, this may be addressed by the approach described by Law et al.
(2022) and shortly described above. Additionally, Petri net tools offer a broad variety
of validation methods. This might render less relevant in this specific work focusing
on the formal modeling of user’s habits but gain relevance in case the habit related
net gets integrated into a larger control structured (such as in case of Langel et al.
(2018)). This may be also of high interest in case of safety critical systems which may
be personalised using the presented approach presented by Weyers et al. (2012a). This
uses formal rewriting approaches and showed a positive impact of personalisation of
a user interface on the measured number of errors that occurred in a safety critical
scenario (control of a nuclear power plant). Finally, Petri net as a formalism is quite
close to the original modelling approach (BPMN) and still easy to read using its visual
representation as node link diagram if needed.

In summary, the benefits gained from the use of Petri nets are

(1) direct use as part of the final implementation of a specified system or system
part (here the habit as control element)

(2) validation and verification using a large number of tools focusing on Petri nets,
and

(3) the opportunity to use the Petri net as (visually presented) model in classic
model driven software development.

There are still some challenges to be addressed to enable this method to be used in
an integrated model-driven approach, we discuss these further in section 5.

4. From Behavioural Specifications to Formal Models

While the first approach we have described above produces formal models (Petri nets)
in full from the BPMN, our second approach takes a more modular perspective. We

12

describe how we can extract logical predicates from behavioural specifications, and use
these in several ways in conjunction with formal specifications to demonstrate consis-
tency between design artefacts (where here we consider the behavioural specification
as the design artefact). This combines the flexibility and user-centred approaches em-
bedded within behaviour-driven development with traditional formal methods.

Ensuring that the systems we build meet the expectations of our intended users
requires a number of steps during the design and development process. We must gather,
and fully understand, the requirements, which means including the users of the system
in our design process as early as possible (as is typical in any user-centred design
approach). We must also use design methods that ensure users and other stakeholders
are kept in the loop. This means creating design artefacts that can be easily understood
by non-technical people. Design methodologies such as the Agile approach (Beck et
al., n.d.) use this as their central focus by setting short design iterations based around
scenarios of use. Other design approaches may rely more heavily on prototyping and
user evaluation. In this process our focus is on behaviour-driven development and
formal methods.

4.1. Description of the approach

In this section we focus on the parts of the process depicted on the right-hand side of
Figure 1. We assume that the business stakeholders and users provide the requirements
which form the basis of the behaviour specification, written using the Gherkin syntax.
As is typical in a user-centred approach this is done iteratively allowing for reflection
and refining until a full set of features have been defined. The feature files are then
used as the input to a parsing tool we have developed which converts the features into
a set of first-order logic predicates which can be used:

(1) as the basis for the development of a formal specification,
(2) as a set of model-checking conditions which can be used with a formal model of

the system
(3) as a subset (refinement) of a formal specification to ensure consistency

Each of these contributes to creating a closer relation between the user requirements
and ‘lightweight’ user-centred specification of system behaviour with a formal specifi-
cation that enables a more robust software engineering process required for safety and
security.

4.2. Example Illustration

We next present a small example to illustrate the steps of the process and demonstrate
each of the uses described above. The example is based around a simplified online
banking system. For the purposes of demonstration we only present the parts of the
system example which are needed, but these are a subset of what you would expect
from a fully functional online banking system (including all of the necessary security
and log in functions that are omitted here). Our simplified system allows users to do
the following:

• set the type of a new account from ‘new’ to ‘cheque’ or ‘savings’
• deposit money
• withdraw money

13

For security purposes the bank sets a limit on the maximum amounts that may be
deposited or withdrawn in one transaction and also limits the number of transactions
that may take place on any given day. Accounts may not be overdrawn, so withdrawals
can not be made that are larger than the amount in the account.

A set of scenarios were created describing the user and business requirements. In
a typical BDD approach the scenarios are developed during meetings between the
developers and stakeholders. Starting with the requirements, the various stakeholders
develop user stories and iteratively refine these into the specification. For our small
example used here the scenarios were created by a researcher with reference to a set
of business requirements based on a real-world online banking facility.

Scenarios are stored in Feature files, each Feature file is purely textual and consists
of a high-level description of one expected function of the system (the feature), and
scenarios which are concrete examples that describes situations of use. Scenarios
illustrate the function with some user interactions and shows the results of these
interactions. They use the Gherkin syntax which relies on keywords: “Given”,
“When”, “Then”, “And”, or “But”, where “Given” describes the initial context,
“When” describes the event/interaction and “Then” describes the expected outcome.
“And” or “But” are optional and are used to replace “Given”, “When”, “Then” as
required for conjunction. The rest of the text in the scenarios is natural language and
comments can be included which appear preceded by a ′#′ character. Below we give
some examples of scenarios for our banking example (the full behaviour specification
can be found in (Liu, 2019)).

Feature: Depositing Money Into The Account

Banking operations of depositing money

into different kinds of accounts.

#Maximum deposit amount is 6

#Should make relevant change to the account

#balance when operations today don't exceed 5

Scenario: Successfully deposit some money into

any account

#Attempt to deposit money when operations today

#is smaller than 6

Given OperationToday is 4

And The current bank credit is 12

#amount < 6

#after operation, credit + amount = 16 < 21

When The amount deposited is 4

Then add amount to credit

And add 1 to OperationToday

#The credit should change

Then The credit should be 16

And OperationToday should be 5

The scenario above is just one example for the feature file, which would include other
scenarios (such as depositing money into different types of accounts). Scenarios can
define success (as above) and also be used to define failures, e.g., cases where deposits
should be unsuccessful, as in the following:

Scenario: Unsuccessfully try to deposit some money

14

into any account

#Attempt to deposit money when credit is too large

#and exceeds maximum

Given OperationToday is 4

And The current bank credit is 12

#amount > 6

When The amount deposited is 10

#after operation, credit should not change

Then The credit should be 12

#if operation fails do not count it

And OperationToday should be 4

The scenario describes an unsuccessful deposit because one of the constraints (the
maximum amount that can be credited in one action) is violated. This use of negative
scenarios is common when writing scenarios for use with Cucumber, although not seen
in original descriptions of how to write behavioural specifications.

The scenarios combined in a feature file can be interpreted by the Cucumber tool
which generates test stubs from the scenarios (using regular expressions to replace
constants). As part of the parsing process, Cucumber ignores any comments in the file
and also strips out the keywords “Given, Then, When” etc. and logically conjoins the
expressions. So, the first example above would initially be parsed by Cucumber into
something that resembles:

OperationToday is 4 ∧ The current bank credit is 12 ∧
The amount deposited is 4 ∧ add amount to credit ∧
add 1 to OperationToday ∧
The credit should be 16 ∧ OperationToday should be 5

Effectively it treats the components of the scenario as a predicate, which is, of course,
exactly what we want to do. We do have some restrictions on our process however, as
in order to construct correctly formed first-order logic predicates we cannot deal with
the full expressiveness of any natural language that may be used descriptively within
the feature files. To deal with this we define some restrictions that the scenarios must
follow in order to be used successfully within our process. Firstly we categorise the
steps that a scenario contains as one of the following:

(1) Declaration
(2) Calculation
(3) Action

For each category we then define rules of how they should be constructed:
(i) Declaration - when a variable is declared as belonging to, being equal to, or in the
state of some other value or variable, the step should be written in the form of “A
is/are/should be B”
For example:

Given The current bank credit is 15

(ii) Calculation - only simple algebra calculation is allowed in the steps. The calcula-
tion can be addition, in the form of “add A to B” or “A is added to B”, or subtraction,
in the form of “subtract A from B” or “A is subtracted from B”. For example:

And add amount to credit

15

Table 1. Converting keywords.
Keyword Logical Symbol Text

Given ∃ E
When ∧ A
Then ⇒ Imp

And, But ∧ A

(iii) Action - to describe that an action is performed on a subject, the step should be
written in the form of “A makes/make/do/does on/to/from/by/with B”, depending on
whether A is plural or singular, and what the action is. There can only be one object
and one subject and these must consist of single words (so if you have an object that
is called ‘account type’ this becomes ‘accountType’). For example:

When Paul does switch accountType to cheque

In addition, when writing steps, each should only have one statement (where they
are multiple steps they can simply be split into separate statements). Following these
syntax rules creates scenarios that are more tightly structured (and therefore easier to
parse) but does not remove expressivity, as any scenario can be reformatted to follow
these rules whilst preserving the original meaning.

4.3. Converting the Feature Files

We developed a text parser (which we refer to as the ‘converter’) that reads a feature
file and processes it by transforming each step of a scenario into a predicate in first
order logic. Each scenario, therefore, produces a group of (related) predicates. The first
step is to convert the keywords (Given, When, Then, And, But) into text descriptors
for logical operands and operators as shown in table 1.

We then separate declarations from calculations using the text required by our syn-
tax rules, so steps containing “add”, “is added”, “subtract” or “is subtracted” are
calculations, whereas those containing “is”, “are” or “should” are declarations. Decla-
rations are then constructed using the assignment operator “=” and calculations using
a predicate convention of “add(A,B)” or “subtract(A,B)”. We follow the same conven-
tion for actions, where we take the name of the action as the predicate and apply it
to the subject and object, so “A does someAction to B” becomes “someAction(A,B)”.
Finally we consider start and end states and use the convention of priming names
to indicate the end state. So, in terms of equality for example, “A does not change”
becomes “A = A′” and for inequality we simply use “A′ != B”.

Consider the following feature file:

Feature: Operation on the account

Banking operations such as depositing (adding)

or withdrawing (taking) money from an account.

Or switching account types such as from new

to cheque.

Scenario: Unsuccessfully withdraw some money

from account with insufficient credit

Given Operationtoday is 4

And current bank credit is 4

When The amount withdrawn is 5

Then The credit is not changed

16

And credit should be 4

And Operationtoday should be 4

Scenario: Successfully switch Accounttype from

new to cheque

Given Accounttype is new

And Operationtoday is 0

When Paul does switch AccountType to cheque

Then add 1 to Operationtoday

Then Accounttype should be cheque

And Operationtoday should be 1

Each scenario is parsed into text with a corresponding logical representation as
follows:

Scenario: Unsuccessfully withdraw some money from

account with insufficient credit

E Operationtoday = 4

A credit = 4

A amount = 5

Imp credit' = credit

A Operationtoday = 5

which equates to

Scenario : Unsuccessfully withdraw some money from
account with insufficient credit
∃Operationtoday = 4 ∧ credit = 4
∧ amount = 5
⇒ credit ′ = credit ∧ Operationtoday = 5

Scenario: Successfully switch Accounttype from

new to cheque

E Accounttype = new

A Operationtoday = 0

A switchAccountType(Paul, cheque)

Imp Add(1,Operationtoday)

A Operationtoday' = 1

which is

Scenario : Successfully switch Accounttype from
new to cheque
∃Accounttype = new ∧ Operationtoday = 0
∧ switchAccountType(Paul , cheque)
⇒ Add(1,Operationtoday) ∧ Operationtoday ′ = 1

Note that because “current bank credit” consists of three separate words, this gets
parsed to just “credit” (the first words are discarded), we can prevent this if we
need to by using the rule that requires multi-word subjects to be combined, as in
“currentBankCredit”.

We used our parser to convert the full set of feature files for the banking exam-

17

ple (after first editing them to match the new grammar rules described above) and
successfully generated a complete set of predicates for the example. As a ‘proof-of-
concept’ test for the parser, we also downloaded ten arbitrary Cucumber feature files
from (Cucumber and Scenario Outline, n.d.; Cucumber Scenario Outline, n.d.; Writ-
ing scenarios with Gherkin syntax , n.d.) and followed the same two step process: first
converting the text in the files to meet our grammar rules and then running the edited
files through the parser. We compared the resulting predicate sets to the original speci-
fications and were satisfied that there was no information lost or converted incorrectly
during the process. While this does not constitute ‘proof’ that any arbitrary set of
feature files can be successfully converted it gives us some confidence that our process
will be generalisable, we discuss this further in Section 4.5.

4.4. Using the Predicates

As we have described, we can use the predicates in three different ways: as the basis for
developing a formal specification; to support model-checking of a formal specification;
as a form of refinement to ensure consistency between user requirements and a formal
specification. We demonstrate each of these next.

4.4.1. Forming the Basis of a Formal Specification

Writing formal specifications is not a trivial task. Once we have learned the formal
notation (or notations) that we wish to use and gained experience in abstracting the
state and behaviours of a system in a suitable manner, we still face the challenge of
ensuring that our specification fully describes all of the requirements correctly. One
way of achieving this is by using the features from the behavioural specification as
the basis for the formal specification. Having produced a set of predicates in the
manner described above, we can now use these to guide the construction of a partial
specification (the specification produced in this way will always be partial as it only
addresses the user specified features rather than the full requirements, we discuss this
further later). We do not suggest that this is a process that can be automated by
further transforming the predicates into a specification, but rather they can be used
as the ‘building blocks’ of a specification.

In our examples we use the Z specification language, but the same approach can
be used with any similar declarative specification languages. A typical Z specification
consists of declarations and definitions of required types, a description of the system
being modelled in terms of its observable components (the observations) and descrip-
tions of operations that can be performed on the system. Z uses a notation consisting
of schemas which can be visually constructed into schema boxes which are collections
of state observations and values. The system is described in a state schema as follows:

StateSchema
Observations

Invariants

Behaviours are then described using operation schemas:

18

OperationName
∆StateSchema
Inputs?
Outputs!

Predicates

The top part of the operation schema describes the observations that may be altered by
the operation, the ∆ symbol denoting all of the observations of the named StateSchema
in their initial state as well as their after state (where the ′ symbol is used to decorate
after state names for clarity). If there are any inputs to, or outputs from the operation
these are listed using the ? and ! decorations as a suffix to their name. The predicates
define the pre-conditions for the operation as well as the post-conditions.

Assume we are starting with no specification at all, we will show how we can use
the predicates generated from the feature files to form the basis of such a specifica-
tion. Each feature file contains scenarios relating to a behaviour (for example a set of
scenarios for the DepositMoney feature will include both positive/successful scenarios
as well as negative/failure scenarios). The predicates derived, therefore, describe both
the variables and values of interest (which will become the observations and inform
their types) as well as the conditions (which will become the pre- and post-conditions).
Although this process could be partially automated, that is not the intention here. The
aim is to use the predicates as a guide in order to assist with the creation of the spec-
ification, which will in turn increase the confidence of those writing the specifications.

Consider again the following two scenarios from the Deposit Money feature file.

Feature: Deposit Money Into The Account

#Should make relevant change to the account

#balance

#When operations today don't exceed 5

#when amount to deposit doesn't exceed 6

Scenario: Successfully deposit some money into

any account

#Attempt to deposit money when operations today

#is smaller than 6

Given OperationToday is 4

And The current bank credit is 12

#amount < 6

#after operation, credit + amount = 16 < 21

When The amount is 4

Then add amount to credit

And add 1 to OperationToday

#The credit should change

Then The credit should be 16

And OperationToday should be 5

Scenario: Unsuccessfully try to deposit some money

into any account

#Attempt to deposit money when credit is too large

#and exceeds maximum

19

Given OperationToday is 4

And The current bank credit is 12

#amount > 6

When The amount is 10

#after operation, credit should not change

Then The credit does not change

#if operation fails do not count it

And OperationToday does not change

These are transformed into the following sets of predicates:

∃ operationToday = 4 ∧ credit = 12
∧ amount = 4
⇒ credit ′ = amount + credit
∧ operationToday ′ = 1 + operationToday
∧ credit ′ = 16

∃ operationToday = 4 ∧ credit = 12 ∧ amount = 10
⇒ credit ′ = credit
∧ operationToday ′ = operationToday

The first step in building the Z specification is to look at all of the variables and values
from the predicates to determine their types. So for this example we have:

operationToday = 4
credit = 12
amount = 4
credit ′ = amount + credit
operationToday ′ = 1 + operationToday
credit ′ = 16
amount = 10

As these are all numeric, we can trivially assign them Z’s inbuilt number type, which
we used to declare the observations and their types as follows:

operationToday : N
credit : N
amount : N
operationToday ′ : N
credit ′ : N

If we have values that are not numeric we will define a free type, which is declared
and enumerated in Z using:

NEWTYPE ::= value1 | value2

So the a free type for account types would be declared as follows:

ACCOUNTYPE ::= New | Cheque | Deposit

20

Next we consider those variables that appear in both a primed and unprimed state
(e.g. credit and operationToday) as these are observations of state that are acted upon
by an operation (described by the feature file) so we can add these to a default system
schema

BankSystem
credit : N
operationToday : N

Any remaining variables will be considered as inputs or outputs to the operations. Now
we can start to define the operation schemas, the feature file contains both positive
and negative scenarios (in our example above only one of each, but typically there
may be more). We will use any comments from the feature file which define conditions
that determine the positive and negative conditions, which here are:
#Should make relevant change to the account balance
#When operations today don’t exceed 5
#when amount to deposit doesn’t exceed 6
These can be used as the pre-conditions for the two operation schemas (successful
deposit and unsuccessful deposit) and the rest of the predicates can be used for the
post-conditions:

SuccessfulDeposit
∆BankSystem
amount? : N

operationToday ≤ 5
amount? ≤ 6
credit ′ = credit + amount
operationToday ′ = operationToday + 1

UnsuccessfulDeposit
∆BankSystem
amount? : N

amount? > 6 ∨ operationToday > 5
credit ′ = credit
operationToday ‘ = operationToday

We then create a total operation for DepositMoney

DepositMoney =̂ SuccessfulDeposit ∨ UnsuccessfulDeposit

As we continue to build up operation schemas from the various feature files, we may
begin to see repetitions of pre-conditions, for example

operationToday <= 5

will appear in all of the operations. These conditions can then be lifted out of the

21

operations to become invariants of the system state schema, as they are always required
to be true:

BankSystem
credit : N
operationToday : N

operationToday <= 5

Once we have completed all of the operations from the predicates of each of the feature
files, we will have a partial specification which can then be used as the basis for further
development. In this way, if we do not have experience in writing such specifications
we are supported by the transformed behavioural specification. This also gives us more
confidence that the formal specification meets the requirements.

4.4.2. Model Checking

The second approach we present for making use of the generated predicates is to
support model-checking. Model-checking is an automated process whereby a given
model (typically as a finite-state automata) is checked for desirable (or undesirable)
properties by examination of its state-space. There are many different modelling no-
tations and tools that can be used for this purpose, typically they differ in the types
of models they can describe and/or the nature of the properties that can be checked.
For example, checking for temporal properties requires a different approach from static
invariant-checking. Once a notation has been chosen and a model has been successfully
built and validated, we still have the challenge of coming up with suitable conditions
to check. For safety-critical systems we may rely on safety properties (in the manner of
(J. Bowen & Reeves, 2013)), but we show here how we can explicitly take properties
defined as part of the user requirements in feature files and use the generated pred-
icates as the model-checking conditions. Again we use the Z specification language,
along with the ProB model-checker (which has a plug-in for Z). Again, any other suit-
able language/model-checker could equally be used. We assume that a Z specification
has already been created (rather than using the predicates to guide its development
as above). In order to ensure that our model meets all of the user requirements (de-
fined in the feature files) we can use the predicates that have been created. Figure 5
shows an example specification loaded into the ProB model-checker. Based on our set
of predicates (assuming we have a full set generated from all of the feature files) we
can identify common patterns. For example

operationToday > 6 ∧
operationToday ′ = operationToday

This suggests that a property we should check of the model is that this condition holds
true in all states. Depending on the choice of model and model-checker this might be
done in a variety of ways. In Z (using ProB) we can either create an invariant on the
model, and then model-check to ensure it holds. Figure 6 includes an invariant schema
(left hand side) which gives a condition on the system that:

OperationToday ≤ OperationLimit

22

Figure 5. ProB Model Checker with Bank Example Specification Loaded

and this will be checked against every state in the model when the “Find Invariant
Violations” checkbox (right hand side of Figure 6 is checked. We could also use the
inbuilt temporal logic checker and directly convert the predicate into LTL (linear
temporal logic). Figure 6 shows the Invariant checker after we have added an invariant
to the specification which constrains the maximum value of operationToday in all
states. In Figure 7 we have created a linear temporal logic formula which requires
the DepositMoney operation not to be enabled if the value of operationToday exceeds
the maximum allowed (OperationLimit) (we could perform similar checks for all other
operations to ensure they are similarly not enabled under this condition). Other

Figure 6. Invariant Checking

conditions may be identified from the predicate set in a similar manner and checked
accordingly, for example the balance of an account must always be greater than 0,
which is something we can check for in the model.

Again, the intention here is not to develop a fully comprehensive model-checking
strategy from the predicates, but rather use them to assist the process by linking
the user-requirements from the scenarios to the formal process of specification and

23

Figure 7. Using LTL to Model Check

model-checking. This ultimately contributes to our larger goal of enabling the user-
centred design artefacts and formal specifications to be used together within the design
process.

4.4.3. Refinement

The final example we give of using the predicates is as a form of refinement. The goal
here is to demonstrate formally that the two specifications (behavioural and Z) are
consistent. Refinement and refinement algebra are used to transform formal specifi-
cations (which are typically abstract) into more concrete representations (Derrick &
Boiten, 2001). While the ultimate goal may be an implemented system, refinement is
equally well-used in considering specifications of the system at different levels of ab-
straction. In this way it enables us to understand whether or not two representations
of the same system can be considered equivalent (or consistent).

We want to show that the predicates derived from the specification are a subset (or
partial refinement) of our larger specification. This then guarantees that the properties
from the user features are satisfied in the specification - i.e. they are consistent. We
may need to deal with inconsistencies in naming (as the predicates are derived from
the scenarios and produced by different parts of the development team, and as such
there is no guarantee they will use the same terminology). If we are going to perform
a formal proof of refinement we might do this by creating a retrieve relation similar to
those used in data refinement (Derrick & Boiten, 2001) where we take two state spaces
- usually an abstract and a concrete space but in this example the state space from the
predicates and that of the Z specification - and then relate the observations. However,
in a less formal process we might just rename the observations of the predicates to
match those of the formal specification. For each of the predicates we then show that
they are implied by the specification. This is similar to the model-checking process
above, but rather than identifying specific properties from the predicates as we did
with the model-check process, here we must ensure that the full set of predicates are
implied by the specification to guarantee consistency.

4.5. Summary

In this section we have demonstrated an approach that converts feature files into first-
order logic predicates and shown several ways that these can be used. This demon-
strates the applicability of using model transformations designed to provide a tighter

24

coupling between informal and user-centred processes with more formal software engi-
neering processes. The process provides both a way of supporting non-experts in cre-
ating formal specifications (by deriving what we might call specification snippets from
the automatically created predicates) and a way of using behavioural specifications
and formal specifications together for model-checking or refinement. The first part of
the process, whereby the predicates are generated from the behavioural specification,
can be automated as long as the behavioural specification is structured according the
the given rules. The remainder of the process is currently manual, as it requires that
the language and naming conventions of the formal specification match those of the
predicates, we discuss this further in section 5.

5. Discussion

In this work we have presented two new methods which answer the research question
- What methods can we use to integrate informal software design methods with more
formal processes? Our first new method also addresses the first sub-question - How
do we support end-users in providing requirements in a structured manner such that
they can be integrated into a formal development process using Petri-nets? While
our second new method address sub-question two - How can we ensure that user-
centred requirements expressed in behavioural specifications are consistent with formal
specifications? The examples we have used to demonstrate the new methods show both
the applicability and the benefits of these approaches. However, despite these benefits,
there are also challenges that still need to be addressed, these relate to each of the
methods individually, as well as to the overall concept of increasing the types of models
and methods used within an integrated software development approach.

In our first method, we identified that the full set of BPMN nodes is too complex,
and thus the resulting restriction of nodes is necessary, which also results in a re-
striction in the expressiveness of the language itself. Together with the limited ability
to abstract from specific context and process (such as work habits) to model-based
descriptions, it is not clear how accurate the generated models actually are. Thus, we
are currently investigating this in ongoing work in which we compare thinking-aloud
protocols to BPMN models. A further challenge is the automatic mapping of informal
node inscriptions into the Petri net. Here, manual intervention by the system designer
is needed such that events triggered in the physical context, or by the user, are mapped
on the generated transitions in the Petri net. This problem may be addressed in future
work by using knowledge bases or other types of models (e.g. using machine learning-
based processing of natural language) to map inscriptions in the BPMN model to
process-related information as used in the persuasive system.

Both of our methods involve the use of model transformations and one of the things
we need to be mindful of when performing transformations between models is loss of
information. This is particularly true when dealing with models and artefacts that
focus on differing aspects of a system or present information from differing perspec-
tives. For example, in our second method, the behavioural models are described from
the perspective of users and use and as such there will typically be information that
we do not include in the formal models. We must be clear about what is excluded,
and ensure that we retain all of the original models to be used in their own parts of
the development process. In this way, our methods should be seen as adding to the
development process(by adding new models) rather than reducing or removing steps
(by combining existing information).

25

While it is easy to argue that the types of methods we propose, which enable inte-
gration of informal user-centred work with formal specifications and formal methods
provide benefits, we are mindful of the difficulty faced in gaining acceptance of new
methods by software developers. This can be particularly true when proposing the
inclusion of more formal methods which can be seen as adding unnecessary time and
cost (J. P. Bowen & Stavridou, n.d.). Even though our methods are intended to re-
duce the overhead of producing formal models directly, by using informal user-centred
design approaches as the basis for their development, the full benefits are achieved
when this is integrated into formal approaches more generally (see the bottom section
of figure 1). For safety-critical interactive systems (medical devices, avionics etc.) it
is more accepted that formal methods are needed (Fayollas et al., 2013; Masci et al.,
2013), we intend that our work here guides their use more generally in interactive
system design and development.

Formal methods and specification-based testing rely on having models that correctly
describe requirements, and this is often considered the most crucial aspect in software
engineering processes. Because the requirements are not formal, the ‘gap’ that exists
between these and the formal models is a common source of errors (Stocks & Carring-
ton, 1996). Our motivation in developing processes that brings these closer together
is to continue to add new methods to the software engineering tools that can be used
to minimise this.

Our two new processes have different entry points within the software development
process. The first starts at the requirements stage and uses firstly a structured method
to gather user information from interviews to construct BMPN models. These can
then be automatically transformed to Petri Nets, which in turn can be be used within
simulation approaches and bound to Java code execution. There is, therefore, more
automation currently in this process which is beneficial in encouraging uptake and use
(as it does not increase workload). In addition, the Petri nets that are produced can be
used within standard formal methods processes (e.g. verification and validation) and in
this respect both of our processes have the same end-point as they contribute to the set
of formal models that can be used within such formal processes. Our second approach
is more manual. While the creation of the predicates from the behaviour specification
is automated, the use of the predicates in the three ways described requires manual
intervention, as it requires human interpretation to map the language of the predicates
to that of the formal specification. We consider this again under future work.

5.1. Future Work

Considering the previous discussion and the presentation of the two methods, we now
outline aspects for future work.

First, considering the BPMN to Petri net approach, the first aspect to be addressed
might be a closer look into the actual quality of the created models. This will face the
issue that it will be hard to identify a ground truth, thus, answering the question what
is the “correct” habit model. However, this could be compensated by implementing a
study design in which participants are asked to model a given habit (not their own). A
second aspect could consider to extend the actual approach with further data sources,
such as the previously mentioned aural interview data. Finally, the method should
be investigated in terms of its applicability in other domains than the design and
implementation of persuasive systems. This might be of specific interest in terms of
the design and implementation of safety critical systems considering the Petri net’s

26

potential for being used for formal verification.
The use of the predicates created from the behavioural specifications is mostly

a manual process. While this is largely necessitated by the use of natural language
in the specification and the likelihood that naming conventions and terminology in
the formal specification will be different, there are opportunities to explore further
automation. In (Silva, Hak, & Winckler, 2017), for example, Silva et al. use ontologies
to map actions from behavioural specifications to widgets in user interface descriptions.
While their work focusses on sets of widgets which are more constrained than the
text we encounter in our process, this is still an area that might be considered in
future work. Additionally, while we have described a mechanism for using relations
between the predicates and formal specification to support refinement, there are many
possibilities for extending this. For example, creating retrieve relations between the
two specification that are then used throughout the development process to ensure
consistency is maintained would be a valuable addition to the process.

Finally, while in this work we may have particular reasons for wanting to derive
formal models from the informal, going the other way (from the formal to the informal)
may be equally important in other situations. We have not discussed this here but it
remains an open topic for future work.

6. Conclusion

The work presented in this paper demonstrates different ways of bringing together in-
formal design and user artefacts and more formal engineering representations, through
a process of transformation. These approaches enable us to create a tighter coupling
between different parts of the software design and development processes, recognising
that the different methods used in each of these have their own intrinsic value and
are worth preserving. In addition to the benefits we have shown that the tighter cou-
pling of informal and formal methods can provide, it has also been shown previously
J. Bowen and Reeves (2017b) that having different views of the same system (by way
of different models) can elicit problems or hidden aspects that otherwise may not be
obvious in one single model. As such, the type of work we present here supports a
variety of important use cases, and the examples presented here are by no means ex-
haustive, rather they serve as motivation for what can be achieved through the use of
such transformations.

The two processes we present can be used to enhance formal software development
processes by providing a way of integrating less formal (but equally important) design
artefacts. As such, they contribute to the body of knowledge for software engineering
and equip software engineers with practical methods for interactive system design.

7. Acknowledgments

We would like to thank Sabine Sonnentag, Wilken Wehrt, & Yuen C. Law for their
contribution and work within our collaborative research project, their valuable advice,
comments and support. Additionally, we would like to thank Florian Langel for sup-
porting the implementation of the VR scenario used for showing the applicability of
Petri nets in the implementation of persuasive systems. This work is supported by the
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under Grant
No.: 318151256.

27

References

Abras, C., Maloney-Krichmar, D., Preece, J., et al. (2004). User-centered design. Bain-
bridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publica-
tions, 37 (4), 445–456.

Abrial, J. (1988). The B tool (abstract). In R. E. Bloomfield, L. S. Marshall, & R. B. Jones
(Eds.), VDM ’88, VDM - the way ahead, 2nd vdm-europe symposium, dublin, ireland,
september 11-16, 1988, proceedings (Vol. 328, pp. 86–87). Springer.

Acceptance test driven development (atdd). (n.d.). (https://www.agilealliance.org/glossary/atdd/
Last accessed 17 March 2019)

Alonso, O., & Baeza-Yates, R. (2011). Design and implementation of relevance assessments
using crowdsourcing. In European conference on information retrieval (pp. 153–164).

Ameur, Y. A., Bowen, J., Campos, J. C., Palanque, P. A., & Weyers, B. (2021). Heterogeneous
models and modelling approaches for engineering of interactive systems. Interact. Comput.,
33 (1), 1–2.

Basile, D., ter Beek, M. H., Fantechi, A., Gnesi, S., Mazzanti, F., Piattino, A., . . . Ferrari, A.
(2018). On the industrial uptake of formal methods in the railway domain. In C. A. Furia
& K. Winter (Eds.), Integrated formal methods (pp. 20–29). Cham: Springer International
Publishing.

Beck, K. (2002). Test driven development: By example. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

Beck, K., Beedle, M., Van Bennekum, A., A.and Cockburn, Cunningham, W., Fowler, M., &
Grenning, J. (n.d.). Agile manifesto, 2001. (from http://www.agilemanifesto.org,
Last accessed September 2019)

Bødker, S., Ehn, P., Sjögren, D., & Sundblad, Y. (2000). Cooperative design perspectives on 20
years with ”the scandinavian it design model”. In Proceedings of the first nordic conference
on human-computer interaction. United States: Association for Computing Machinery.
(Invited Keynote; null ; Conference date: 23-10-2000 Through 25-10-2000)

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2012, nov). Generating phenotypical erroneous
human behavior to evaluate human-automation interaction using model checking. Int. J.
Hum.-Comput. Stud., 70 (11), 888–906.

Bonfanti, S., Gargantini, A., & Mashkoor, A. (2018). A systematic literature review of the
use of formal methods in medical software systems. Journal of Software: Evolution and
Process, 30 (5), e1943.

Borisov, N., Weyers, B., & Kluge, A. (2018). Designing a human machine interface for
quality assurance in car manufacturing: An attempt to address the “functionality versus user
experience contradiction” in professional production environments. Advances in Human-
Computer Interaction.

Bowen, J., & Gyde, S. (2015). PIMed. (An editor for presentation models and presentation
interaction models, https://sourceforge.net/projects/pims1/,
Last accessed 05 April 2021)

Bowen, J., & Khanal, S. (2018). Test stub generation from interaction and behavioural mod-
els. In Proceedings of the ACM SIGCHI symposium on engineering interactive computing
systems, EICS 2018, paris, france, june 19-22, 2018 (pp. 7:1–7:6). ACM.

Bowen, J., & Reeves, S. (2008). Formal models for user interface design artefacts. Innovations
in Systems and Software Engineering , 4 (2), 125-141.

Bowen, J., & Reeves, S. (2009). Ui-design driven model-based testing. ECEASST , 22 .
Bowen, J., & Reeves, S. (2013). Modelling safety properties of interactive medical systems. In

ACM SIGCHI symposium on engineering interactive computing systems, eics’13, london,
united kingdom - june 24 - 27, 2013 (pp. 91–100).

Bowen, J., & Reeves, S. (2017a). Combining models for interactive system modelling. In
B. Weyers, J. Bowen, A. J. Dix, & P. A. Palanque (Eds.), The handbook of formal methods
in human-computer interaction (pp. 161–182). Springer International Publishing.

Bowen, J., & Reeves, S. (2017b). Combining models for interactive system modelling. In

28

B. Weyers, J. Bowen, A. J. Dix, & P. A. Palanque (Eds.), The handbook of formal methods
in human-computer interaction (pp. 161–182). Springer International Publishing.

Bowen, J. P., & Stavridou, V. (n.d.). Safety-critical systems, formal methods and standards.
Softw. Eng. J., 8 , 189-209.

Bowen, J. P., & Stavridou, V. (1993a). The industrial take-up of formal methods in safety-
critical and other areas: A perspective. In J. Woodcock & P. G. Larsen (Eds.), FME ’93:
Industrial-strength formal methods, first international symposium of formal methods europe,
odense, denmark, april 19-23, 1993, proceedings (Vol. 670, pp. 183–195). Springer.

Bowen, J. P., & Stavridou, V. (1993b). Safety-critical systems, formal methods and standards.
Softw. Eng. J., 8 (4), 189–209.

Campos, J. C., & Harrison, M. D. (2009). Interaction engineering using the ivy tool. In
Proceedings of the 1st acm sigchi symposium on engineering interactive computing systems
(p. 35–44). New York, NY, USA: Association for Computing Machinery.

Carter, J. D., & Gardner, W. B. (2018). Bhive: Behavior-driven development meets b-method.
In S. H. Rubin & T. Bouabana-Tebibel (Eds.), Quality software through reuse and integra-
tion (pp. 232–255). Cham: Springer International Publishing.

Claessen, K., & Hughes, J. (2000). Quickcheck: a lightweight tool for random testing of haskell
programs. In M. Odersky & P. Wadler (Eds.), Proceedings of the fifth ACM SIGPLAN in-
ternational conference on functional programming (ICFP ’00), montreal, canada, september
18-21, 2000. (pp. 268–279). ACM.

Colombo, C., Micallef, M., & Scerri, M. (2014). Verifying web applications: From business
level specifications to automated model-based testing. In H. Schlingloff & A. K. Petrenko
(Eds.), Proceedings ninth workshop on model-based testing, MBT 2014, grenoble, france, 6
april 2014. (Vol. 141, pp. 14–28).

Cucumber and scenario outline. (n.d.). (https://www.baeldung.com/cucumber-scenario-
outline,
Last accessed 18 June 2019)

Cucumber scenario outline. (n.d.). (https://www.tutorialspoint.com/cucumber/
cucumber scenario outline.html,
Last accessed 18 June 2019)

Derrick, J., & Boiten, E. (2001). Refinement in z and object-z: Foundations and advanced
applications. Springer.

Dijkman, R. M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process
models in bpmn. Information and Software Technology , 50 , 1281-1294.

Dijkstra, E. (1976). Report on a conference sponsored by the nato science committee, rome,
italy (J. N. Buxton & B. Randell, Eds.). Petrochelli Charter.

Dix, A. (1991). Formal methods for interactive systems. Academic Press.
Fayollas, C., Fabre, J., Palanque, P. A., Barboni, E., Navarre, D., & Deleris, Y. (2013).

Interactive cockpits as critical applications: a model-based and a fault-tolerant approach.
Int. J. Crit. Comput. Based Syst., 4 (3), 202–226.

Fischer, B., Peine, A., & Östlund, B. (2020). The importance of user involvement: a systematic
review of involving older users in technology design. The Gerontologist , 60 (7), e513–e523.

Harrison, M. D., Freitas, L., Drinnan, M., Campos, J. C., Masci, P., di Maria, C., & Whitaker,
M. (2019). Formal techniques in the safety analysis of software components of a new dialysis
machine. Sci. Comput. Program., 175 , 17–34.

Harrison, M. D., Masci, P., & Campos, J. C. (2018). Formal modelling as a component of
user centred design. In M. Mazzara, I. Ober, & G. Salaün (Eds.), Software technologies:
Applications and foundations - STAF 2018 collocated workshops, toulouse, france, june 25-
29, 2018, revised selected papers (Vol. 11176, pp. 274–289). Springer.

Hatcliff, J., Larson, B., Carpenter, T., Jones, P., Zhang, Y., & Jorgens, J. (2019, aug). The
open pca pump project: An exemplar open source medical device as a community resource.
SIGBED Rev., 16 (2), 8–13.

Jaidka, S., Reeves, S., & Bowen, J. (2019). A coloured petri net approach to model and ana-
lyze safety-critical interactive systems. In 26th asia-pacific software engineering conference,

29

APSEC 2019, putrajaya, malaysia, december 2-5, 2019 (pp. 347–354). IEEE.
Kummer, O. (2001). Introduction to petri nets and reference nets..
Kummer, O., Wienberg, F., Duvigneau, M., Köhler, M., Moldt, D., & Rölke, H. (2000).

Renew–the reference net workshop. In Tool demonstrations, 21st international conference
on application and theory of petri nets, computer science department, aarhus university,
aarhus, denmark (pp. 87–89).

Lack, R. (2007). The importance of user-centered design: Exploring findings and methods.
Journal of Archival Organization, 4 (1-2), 69–86.

Langel, F., Law, Y. C., Wehrt, W., & Weyers, B. (2018). A virtual reality framework to
validate persuasive interactive systems to change work habits. Mensch und Computer 2018-
Workshopband .

Law, Y. C., Wehrt, W., Sonnentag, S., & Weyers, B. (2017). Generation of information systems
from process models to support intentional forgetting of work habits. In Proceedings of the
acm sigchi symposium on engineering interactive computing systems (pp. 27–32).

Law, Y. C., Wehrt, W., Sonnentag, S., & Weyers, B. (2022). Obtaining semi-formal mod-
els from qualitative data: From interviews into bpmn models in user-centered design pro-
cesses. International Journal of Human–Computer Interaction, 0 (0), 1-18. Retrieved from
https://doi.org/10.1080/10447318.2022.2041899

Liu, B. (2019). Using behavioural specifications to support model-checking (Unpublished mas-
ter’s thesis). The University of Waikato, Available at https://hdl.handle.net/10289/13028.

Lubke, D., & van Lessen, T. (2016, sep). Modeling test cases in bpmn for behavior-driven
development. IEEE Software, 33 (05), 15-21.

Masci, P., Ayoub, A., Curzon, P., Harrison, M. D., Lee, I., & Thimbleby, H. W. (2013).
Verification of interactive software for medical devices: PCA infusion pumps and FDA
regulation as an example. In P. Forbrig, P. Dewan, M. Harrison, & K. Luyten (Eds.), ACM
SIGCHI symposium on engineering interactive computing systems, eics’13, london, united
kingdom - june 24 - 27, 2013 (pp. 81–90). ACM.

Navarre, D., Palanque, P. A., Coppers, S., Luyten, K., & Vanacken, D. (2019). Fortune nets for
fortunettes: Formal, petri nets-based, engineering of feedforward for GUI widgets. In E. Sek-
erinski et al. (Eds.), Formal methods. FM 2019 international workshops - porto, portugal,
october 7-11, 2019, revised selected papers, part I (Vol. 12232, pp. 503–519). Springer.

Norman, D. A., & Draper, S. W. (1986). User centered system design: new perspectives on
human-computer interaction. Lawrence Erlbaum Associates, Hillsdale.

North, D. (2006). Introducing bdd. (https://dannorth.net/introducing-bdd/,
Last accessed 18 March 2019)

North, D. (2009). How to sell bdd to the business. (https://skillsmatter.com/skillscasts/923-
how-to-sell-bdd-to-the-business#showModal?modal-signup-complete/,
Last accessed 18 March 2019)

Oinas-Kukkonen, H., & Harjumaa, M. (2008). A systematic framework for designing and
evaluating persuasive systems. In International conference on persuasive technology (pp.
164–176).

Prates, R. O., Palanque, P. A., Weyers, B., Bowen, J., & Dix, A. J. (2017). State of the
art on formal methods for interactive systems. In B. Weyers, J. Bowen, A. J. Dix, &
P. A. Palanque (Eds.), The handbook of formal methods in human-computer interaction
(pp. 3–55). Springer International Publishing.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., & Carey, T. (1994). Human-
computer interaction. Addison-Wesley Longman Ltd.

Reisig, W. (2012). Petri nets: an introduction (Vol. 4). Springer Science & Business Media.
Rice, B., Jones, R., Bittner, P., & Engel, J. (2014). Welcome to behave!

(https://behave.readthedocs.io/en/latest/ Last accessed 13 April 2022)
Rose, S., Wynne, M., & Hellesoy, A. (2015). The cucumber for java book: Behaviour-driven

development for testers and developers. Pragmatic Bookshelf.
Silva, T. R., Hak, J., & Winckler, M. (2017). A formal ontology for describing interactive

behaviors and supporting automated testing on user interfaces. Int. J. Semantic Comput.,

30

11 (4), 513–540.
Snook, C. F., Hoang, T. S., Dghaym, D., Butler, M. J., Fischer, T., Schlick, R., & Wang, K.

(2018). Behaviour-driven formal model development. In J. Sun & M. Sun (Eds.), Formal
methods and software engineering - 20th international conference on formal engineering
methods, ICFEM 2018, gold coast, qld, australia, november 12-16, 2018, proceedings (Vol.
11232, pp. 21–36). Springer.

Sonnentag, S., Wehrt, W., Weyers, B., & Law, Y. C. (2022). Conquering unwanted habits at
the workplace: Day-level processes and longer term change in habit strength. Journal of
Applied Psychology , 107 (5), 831.

Sousa, M., Campos, J. C., Alves, M. C. B., & Harrison, M. D. (2014). Formal verification of
safety-critical user interfaces: a space system case study. In 2014 AAAI spring symposia,
stanford university, palo alto, california, usa, march 24-26, 2014. AAAI Press.

Stevenson, C. (n.d.). Testdox. (http://agiledox.sourceforge.net/index.html,
Last accessed 17 April 2019)

Stocks, P., & Carrington, D. A. (1996). A framework for specification-based testing. IEEE
Trans. Software Eng., 22 (11), 777–793.

Stückrath, J., & Weyers, B. (2014). Lattice-extended coloured petri net rewriting for adaptable
user interface models. Electron. Commun. Eur. Assoc. Softw. Sci. Technol., 67 .

Thimbleby, H. (2015). Safer user interfaces: A case study in improving number entry. IEEE
Trans. Software Eng., 41 (7), 711–729.

Turner, J., Bowen, J., & Reeves, S. (2020). Seqcheck: a model checking tool for interactive
systems. In J. Bowen, J. Vanderdonckt, & M. Winckler (Eds.), EICS ’20: ACM SIGCHI
symposium on engineering interactive computing systems, sophia antipolis, france, june 23-
26, 2020 (pp. 7:1–7:6). ACM.

Utting, M., & Legeard, B. (2006). Practical model-based testing - a tools approach. Morgan
and Kaufmann.

Van der Aalst, W. M. (1997). Verification of workflow nets. In International conference on
application and theory of petri nets (pp. 407–426).

Weyers, B., Bowen, J., Dix, A., & Palanque, P. A. (Eds.). (2017). The handbook of formal
methods in human-computer interaction. Springer International Publishing.

Weyers, B., Burkolter, D., Luther, W., & Kluge, A. (2012a). Formal modeling and recon-
figuration of user interfaces for reduction of errors in failure handling of complex systems.
International Journal of Human-Computer Interaction, 28 (10), 646–665.

Weyers, B., Burkolter, D., Luther, W., & Kluge, A. (2012b). Formal modeling and reconfigu-
ration of user interfaces for reduction of errors in failure handling of complex systems. Int.
J. Hum. Comput. Interact., 28 (10), 646–665.

What is domain-driven design. (2007). (http://dddcommunity.org/learning-
ddd/what is ddd/,
Last accessed 17 March 2019)

White, S. A. (2004). Introduction to BPMN..
Writing scenarios with gherkin syntax. (n.d.). (https://hiptest.com/docs/writing-scenarios-

with-gherkin-syntax/,
Last accessed 10 June 2019)

Zielasko, D., Weyers, B., Bellgardt, M., Pick, S., Meibner, A., Vierjahn, T., & Kuhlen, T. W.
(2017). Remain seated: towards fully-immersive desktop vr. In 2017 ieee 3rd workshop on
everyday virtual reality (wevr) (pp. 1–6).

Zuccon, G., Leelanupab, T., Whiting, S., Yilmaz, E., Jose, J. M., & Azzopardi, L. (2013).
Crowdsourcing interactions: using crowdsourcing for evaluating interactive information re-
trieval systems. Information retrieval , 16 (2), 267–305.

31

