
ARTICLE TEMPLATE

On Approximating the Shape of One-Dimensional Posterior

Marginals using the Low Discrepancy Points

Chaitanya Joshia and Paul T. Brown a and Stephen Joe a

aDept. of Mathematics, University of Waikato, Hamilton, New Zealand 3240.

ARTICLE HISTORY

Compiled November 18, 2021

ABSTRACT
A method to approximate Bayesian posterior by evaluating it on a low discrepancy
sequence (LDS) point set has recently been proposed. However, this method does
not focus on finding the posterior marginals. Finding posterior marginals when the
posterior approximation is obtained using LDS is not straightforward, and as yet,
there is no method to approximate one dimensional marginals using an LDS. We
propose an approximation method for this problem. This method is based on an
s-dimensional integration rule together with fitting a polynomial smoothing func-
tion. We state and prove results showing conditions under which this polynomial
smoothing function will converge to the true one-dimensional function. We also
demonstrate the computational efficiency of the new approach compared to a grid
based approach.

KEYWORDS
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1. Introduction

1.1. Motivation

This work is motivated by an application in Bayesian statistical inference where there
is an interest in the one-dimensional posterior distributions. While, Monte Carlo
based methods such as the Markov Chain Monte Carlo or the Approximate Bayesian
Computation are more widely used to approximate posterior distributions, these
can be computationally expensive. Methods such as the Integrated Nested Laplace
Approximation (INLA) (Rue, Martino, and Chopin 2009) that instead explore
the posterior distribution using a deterministic set of grid points or using other
deterministic set of points, such as central composite design (CCD) points (Martins
et al. 2013) — have been proposed as computationally efficient alternatives. However,
since the number of grid points increases exponentially with s, grid based methods
can only be used when the (hyper) parameter space has very few dimensions (Rue,
Martino, and Chopin 2009). Using CCD points is more efficient however, finding one
dimensional distributions is then not straightforward. Existing numerical integration
free methods can only approximate uni-modal distributions (Martins et al. 2013).
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Therefore, there is potential to explore the use of LDS to approximate the posterior
distributions instead since such approximations could be more computationally
efficient as well as accurate compared to those obtained using grid points or CCD
points. Recently, a new approach to implement INLA using LDS (Brown et al. 2021)
was indeed proposed. However, this approach does not focus on finding the posterior
marginals. Finding posterior marginals when the posterior approximation is obtained
using LDS is not straightforward, and as yet, there is no method to approximate one
dimensional marginals using an LDS.

In this paper we develop a method to approximate the shape of the one-dimensional
functions when an s-dimensional function is evaluated using N LDS points. However,
the focus of this paper is purely mathematical. It is not expected that the method
developed here can be used to approximate Bayesian posterior distributions in its
existing form. We expand more on this point in Section 5. In this paper we simply
develop a method and prove the convergence theorems for the approximations.

1.2. Integration Rules and Low Discrepancy Sequences

Suppose we have an integrable function g : [a, b] → R, where a = (a1, . . . , as) and
b = (b1, . . . , bs) with aj < bj for 1 ≤ j ≤ s. Without loss of generality, we may take
the region of interest to be the unit hypercube [0, 1]s since a linear transformation
may be used to map a function g defined over [a, b] to a function f defined over
[0, 1]s.

Now consider the s-dimensional integral

I =

∫
[0,1]s

f(x) dx.

The standard approach taken to find an approximation to I is typically to make use
of an integration rule. These integration rules are of the form

ÎN =
1

N

N∑
i=1

f(xi), (1.1)

where the points x1, . . . ,xN are sampled from the unit hypercube [0, 1]s. There are a
number of choices for the integration rules. One can use Monte Carlo (MC) rules in
which the points are chosen randomly. However, such points do suffer from large gaps
and clusters and this can affect the accuracy of the estimate for a given set of points
Lemieux (2009). If the point set was taken to be the regular n-point grid for which the
point set consists of the points ((i1− 1)/(n− 1), (i2− 1)/(n− 1), . . . , (is− 1)/(n− 1)),
where 1 ≤ iℓ ≤ n for 1 ≤ ℓ ≤ s, then the total number of points is N = ns. If s is
large, then the number of points increases rapidly as n increases.

A large class of integration rules is the class of quasi-Monte Carlo (QMC) rules.
These are equal weight integration rules of the form (1.1) that use deterministic point
sets, specifically, the low discrepancy sequences (LDS). These point sets have low
discrepancy with respect to the Lebesgue measure on a unit hypercube. One of the
most commonly used discrepancy measure is called the star discrepancy. Let PN be
an N element point set in [0, 1]s. For a ∈ (0, 1]s, the star discrepancy D∗

N of this point
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set is defined as

D∗
N = sup

a∈[0,1]s

∣∣∣∣∣∣α([0,a),PN , N)

N
−

s∏
j=1

aj

∣∣∣∣∣∣ ,
where, α([0,a),PN , N) = # {n ∈ N : 1 ≤ n ≤ N,xn ∈ [0,a)}. For an infinite sequence
P, the star discrepancy D∗

N is the discrepancy of the first N elements of P. A sequence
of points is said to be low discrepancy if D∗

N ∈ O(N−1 log(N)s). The widely stated
Koksma-Hlawka theorem states that if the function f has a variation V (f) in the

sense of Hardy and Krause that is finite, then we have that |I − ÎN | ≤ V (f)D∗
N . For

a general introduction to LDS, QMC rules and their applications, refer to Leobacher
and Pillichshammer (2014), Dick and Pillichshammer (2010) or Lemieux (2009). In
this paper, the main QMC rules used in the numerical experiments are rank-1 lattice
rules. These are rules in which

xi =

{
iz

N

}
, 1 ≤ i ≤ N. (1.2)

Here the s components of z are integers in {1, 2, . . . , N−1} and {x} = x−⌊x⌋ denotes
the fractional part of x ∈ R which is applied component-wise for vectors. Although
these are finite point sets and not sequences, the convergence rate of O(N−1 log(N)s)
is still guaranteed (Leobacher and Pillichshammer 2014) . More information about
lattice rules is also available in Niederreiter (1992) or Sloan and Joe (1994).

The three types of point sets that we discuss in this paper (grids, random points,
LDS) can all be described using a common general description that we give below.

The point set PN :
In (1.1), let the components of each xi be denoted by xi,j for 1 ≤ j ≤ s. Let us now
assume that for a fixed j and ∀i = 1, . . . , N, there are n distinct values of xi,j which
we denote by zk for 1 ≤ k ≤ n. Here, for simplicity of notation, we have not included
a j subscript. Further, let us assume that there are exactly m points that have the
value zk for their jth subscript, for each k, 1 ≤ k ≤ n. So the total number of points
N satisfies N = nm. Note that this description of point sets, which, from now on, we
refer to as PN , in fact, covers a number of point sets including random points used
for the MC integration rule. In particular, it includes an n-point grid and the rank-1
lattice rule shown in Figure 1. As seen in Figure 1 [a], in an n− point regular grid,
the points are aligned in rows and columns, each containing n points. As a result,
there are n distinct zk’s along each axis and m = n. On the other hand as illustrated
in Figure 1 [b], in a rank-1 lattice, none of the points are aligned resulting in n = N
distinct zk’s along each axis and m = 1.
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Figure 1. [a] 5−point grid (m = 5) and [b] 32−point rank-1 lattice (m = 1).

1.3. Approximation to the one-dimensional functions using
deterministic point sets

Suppose that we are interested in approximating the functions

fj(x) =

∫
[0,1]s−1

f(x1, . . . , xj−1, x, xj+1, . . . , xs) dx−j , x ∈ [0, 1],

where, for a vector u = (u1, . . . , us), u−j denotes (u1, . . . , uj−1, uj+1, . . . , us), for
1 ≤ j ≤ s. So fj is the function obtained by integrating out all the variables of f
except the j-th one. The set of points {xi, 1 ≤ i ≤ N} could be obtained either
by sampling randomly (MC approach) or using a n-point regular grid or using a
QMC approach. An integration rule of the form (1.1) can be used to approximate the
one dimensiona functions. However, note that this approach does not approximate
the shape of the one dimensional function. By shape we mean the graph of the one
dimensional function (see Figure 2, columns 2,3, (a),(c)).

Example 1.1. As mentioned previously, the regular n-point grid consists of the points
((i1−1)/(n−1), (i2−1)/(n−1), . . . , (is−1)/(n−1)), where 1 ≤ iℓ ≤ n for 1 ≤ ℓ ≤ s. For
the j-th coordinate of theseN = ns points, we have the n distinct values (ij−1)/(n−1),
1 ≤ ij ≤ n. As N = ns = nm, it follows that m = ns−1.

Example 1.2. As mentioned previously, the points of an ℓ-point rank-1 lattice rule
are given by {iz/ℓ}, where z ∈ {1, 2, . . . ℓ− 1}s. Now let r be relatively prime with ℓ.
Then one can obtain the lattice rule with point set given by{

iz

ℓ
+

(k1, k2, . . . , ks)

r

}
, 1 ≤ i ≤ ℓ, 0 ≤ k1, k2, . . . , ks ≤ r − 1.

Such a lattice rule has N = ℓrs points and is an example of a maximal rank lattice
rule (for example, see Sloan and Joe (1994)). Assuming that all the components of z
are relatively prime with ℓ, then it may be shown that the j-th coordinate of these
N points consists of the n = ℓr distinct values (i − 1)/(ℓr) for 1 ≤ i ≤ ℓr with each
value repeated m = rs−1 times. We note that in the r = 1 case, the lattice rule is just
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Figure 2. First column: Bi-variate Beta distribution contours along with the points used to approximate

the one-dimensional functions: (a),(b) 5−point grid (m = 5) and (c) 32−point rank-1 lattice (m = 1). Second
and third columns: the true-one dimensional functions along with the unique orthogonal projections of the

bi-variate Beta distribution for a 5−point grid (m = 5) in Row (a) and a 32−point rank-1 lattice (m = 1)

in Row (c). Row (b) shows an interpolant fit through the point-wise means (squares) for the 5−point grid.
Because some of the function projections are the same, the number of points in the function projections are

fewer than the total number of points shown in the first column on which the bi-variate function is evaluated.

a rank-1 lattice rule having a total of ℓ = N points. Moreover, the j-th coordinate of
these points has the N distinct values zk = (k − 1)/N for 1 ≤ k ≤ N with each value
occurring just once (so that N = nm with n = N and m = 1). In the terminology of
lattice rules, the lattice rule is said to be fully projection regular (see Lemieux (2009),
Sloan and Joe (1994)). This property is also clearly illustrated in Figure 1.

We have that

fj(zk) =

∫
[0,1]s−1

f(x1, . . . , xj−1, zk, xj+1, . . . , xs) dx−j

can be approximated using numerical integration by

f̂j(zk) =
1

m

∑
xi:xi,j=zk

f(xi). (1.3)

So f̂j(zk) is the point-wise mean obtained by averaging out over the m points,
for each of whom, xi,j = zk. With these approximations to fj(zk) for 1 ≤ k ≤ n,
one can then approximate the shape of fj by fitting an interpolant through these

n approximations. Note that, f̂j(zk) can be considered as the pointwise mean of
the orthogonal projections of f(·) on the jth axis. This is illustrated in Figure
2. An interpolant through the point-wise means of the orthogonal projections of
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the bi-variate Beta distribution can approximate the shape of the one dimensional
functions reasonably accurately for the 5−point grid (m = 5) (Figure 2 (b)). But
the rank-1 lattice is fully projection regular, i.e., m = 1. Although such a property
is advantageous for the numerical integration of integrands over [0, 1]s, it is not so
advantageous when trying to approximate the shape of the one dimensional functions.
We would not expect the approximation to the shape of fj obtained by fitting an
interpolant through the point-wise means (1.3) to be an accurate one when m = 1.
For the 32−point rank-1 lattice, the point-wise means of the orthogonal projections
of the bi-variate Beta distribution are the projections themselves (Figure 2 (c)) and
one can see that an interpolant that passes through each one of them would not
approximate the shape of the one dimensional function very accurately at all.

1.4. Structure of This Paper

In Section 2, we propose a new method that involves use of an integration rule as
well as fitting of a polynomial smoothing function to approximate the shape of the
one dimensional function. The theoretical results will be presented in Section 3. In
Section 4, we provide some numerical results illustrating the efficiency and accuracy
of the approximations produced by our new method as compared to those produced
by a grid based method. Finally, we close in Section 5 giving a summary of the work
and discuss further challenges.

2. New Method

Here we propose a method for approximating the shape of the one-dimensional func-
tions

fj(x) =

∫
[0,1]s−1

f(x1, . . . , xj−1, x, xj+1, . . . , xs) dx−j x ∈ [0, 1],

when, an s-dimensional function f(x) has been evaluated at N distinct points
x = x1, . . . ,xN given by a point set PN . As discussed in Section 1.3, an interpolant
through the point-wise means may not provide an accurate approximation when using
the QMC integration rules. However, a smoothing function such as a least square
polynomial fitted to the projected points may be a better option. Thus, the basic
algorithm we propose is as follows:

Algorithm I (m > 1)

(1) Evaluate the function f at N points xi.
(2) For j = 1, . . . , s, do:

(a) Project the function evaluations f(xi) on the jth axis.
(b) Fit a polynomial of degree (n− 1) to the projections.

(3) Repeat for each j.

As in Section 1.3, let the components of each xi be denoted by xi,j for 1 ≤ j ≤ s, 1 ≤
i ≤ N . These components together with the function evaluations may be conveniently

6



represented in a matrix form as

ΨN×(s+1) =


x1,1 x1,2 · · · x1,s f(x1)
x2,1 x2,2 · · · x2,s f(x2)
...

...
. . .

...
...

xN,1 xN,2 · · · xN,s f(xN )

 .
To approximate the shape of the jth one-dimensional fj(x), we first orthogonally
project f(xi) on the jth axis to obtain

ψj =


x1,j f(x1)
x2,j f(x2)
...

...
xN,j f(xN )

 ,
More formally, we can write ψj = ΨPj , where Pj is the (s+ 1)× 2 matrix with zeros
everywhere except for ones in the j-th position of the first column and the last position
of the second column.

Example 2.1. When j = 2, we have

P2 =

[
0 1 0 · · · 0 0
0 0 0 · · · 0 1

]T
.

Since the spread of the projected function points is not constant (as illustrated by
Figure 2), a weighted least square polynomial may be required where the weights are
proportional to the variances. However, we prove that in this case, a weighted least
square polynomial of degree (n − 1) is equal to the ordinary least square polynomial
of the same degree.

Let M be the design matrix when fitting a least squares polynomial of degree (n− 1)
through the orthogonal projections of f(x) on xj . Such a projection has n unique
abscissa points zk, k = 1, . . . , n, as described in Section 1.3. Then M is of size N × n,
and has a block structure,

M =


1 t1 t21 . . . tn−1

1

1 t2 t22 . . . tn−1
2

...
...

...
. . .

...
1 tn t2n . . . tn−1

n

 ,
where each element block tpk ∈ M, (p = 0, . . . , n − 1) is an m × 1 column vector
containing only the element zpk. We can also express M as a Kronecker product of the
Vandermonde matrix M and the m× 1 column vector of 1′s,

M =M ⊗ 1(m×1),

where, M is a square Vandermonde matrix of size n, which is of full rank and is
invertible since all elements zk are unique.
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For weighted least squares, we assign a weight wk to all projections corresponding to
a unique abscissa point zk. We define the weights matrix W of size N × n by

W =


w1Im 0Im · · · 0Im
0Im w2Im · · · 0Im
...

...
. . .

...
0Im 0Im · · · wnIm

 ,

where, Im is the identity matrix with size m × m. W can also be expressed as a
Kronecker product

W =W ⊗ Im,

where W is the n× n diagonal matrix of weights

W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

 .

In what follows, we will make use of the following well known properties (Gentle 2007)
of the Kronecker product.

(1) Scalar property: For matrices A and B, and scalar k

(kA)⊗B = A⊗ (kB) = k(A⊗B).

(2) Mixed product property: For matrices A,B,C, and D, such that AC and
BD exist, then

(A⊗B)(C ⊗D) = AC ⊗BD.

(3) Inverse property: If matrices A and B are invertible, then (A ⊗ B)−1 exists,
and can be expressed as

(A⊗B)−1 = A−1 ⊗B−1.

(4) Transposition: For matrices A and B

(A⊗B)T = AT ⊗BT .

Let f̂WLS
j be the weighted least square polynomial approximation of degree (n −

1) to the jth one-dimensional function fj and f̂LSj be the least square polynomial

approximation of the same degree. Further, let f̂LSj be the values taken by f̂LSj for the

elements in the design matrix M . Similarly, f̂WLS
j .

Theorem 2.1. For any j ∈ {1, . . . , s}, f̂WLS
j = f̂LSj .
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Proof. We have

f̂LSj = M(MTM)−1MTf

= (M ⊗ 1)
[
(M ⊗ 1)T (M ⊗ 1)

]−1
(M ⊗ 1)Tf

= (M(MTM)−1MT )⊗ (1(1T1)−11T )f .

Since M is a square Vandermonde matrix and invertible, and 1T1 = m, we have

f̂LSj = (MM−1(MT )−1MT )⊗ (
1

m
11T )f

=
1

m
In ⊗ (11T )f .

(2.1)

We have

f̂WLS
j = M(MTWM)−1MTWf

= (M ⊗ 1)
(
(M ⊗ 1)T (W ⊗ Im)(M ⊗ 1)

)−1
(M ⊗ 1)T (W ⊗ Im)f

= (M(MTWM)−1MTW )⊗ (1(1T Im1)−11T Im)f .

Since W is also square and invertible (W is a diagonal matrix, with wi,i > 0), and
(1T Im1) = m, we have

f̂WLS
j = (MM−1W−1(MT )−1MTW )⊗ (

1

m
11T Im)f

= (InW
−1InW )⊗ (

1

m
11T Im)f

=
1

m
In ⊗ (11T )f = f̂LSj (zk).

We can further show that f̂LSj will pass through f̂j(zk) for each k.

Theorem 2.2. For any j ∈ {1, . . . , s}, f̂LSj will pass through f̂j(zk) for 1 ≤ k ≤ n.

Proof. Using Equation (2.1) we have that

f̂LSj =
1

m
(In ⊗ 11T )f

=
1

m


Jm 0m . . . 0m
0m Jm . . . 0m
...

...
. . .

...
0m 0m . . . Jm



f1

f2
...
fn

 =


f̃j,1
f̃j,2
...

f̃j,n

 ,
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where each element Jm or 0m is a square matrix of size m ×m that contains all 1’s
or all 0’s respectively and fk, k = 1, . . . , n is the m× 1 vector of function evaluations
f(x) corresponding to zk.

For fully projection regular point sets such as many of the LDS, including the
rank-1 lattice rules, m = 1 and using Algorithm I in such cases will imply fitting a
polynomial of degree (N − 1) passing through all of the N function projections. Such
a polynomial will not approximate the desired shape accurately. Here, we propose a
partitioning approach to overcome this problem. Suppose we partition [0, 1] into n
partitions, with breakpoints given by 0 = z0 < z1 < z2 < . . . < zn−1 < zn = 1. As
above, we assume that the total number of points N factorises as N = nm. Further,
we assume the points are such that there are exactly m points whose j-th component
belongs to [zk, zk+1) for 0 ≤ k ≤ n− 1. Note that these assumptions are not necessary
for the validity of the theory, instead, they have been made only to simplify the
notation. We provide below the modified algorithm with a partitioning step.

Algorithm II (m = 1)

(1) Evaluate the function f at N points xi.
(2) For j = 1, . . . , s, do:

(a) Project the function evaluations f(xi) on the jth axis.
(b) Partition [0, 1] into n partitions, with breakpoints given by 0 = z0 < z1 <

z2 < . . . < zn−1 < zn = 1.
(c) Fit a polynomial of degree (n− 1) to the projections.

(3) Repeat for each j.

Similar to (1.3), one can calculate

f̃j,k(zk) =
1

m

∑
xi:xi,j∈[zk,zk+1)

f(xi). (2.2)

Let f̃LSj be the least square polynomial of degree (n−1). Then, we can show that f̃LSj

will pass through f̃j,k(zk) for each k.

Theorem 2.3. For any j ∈ {1, . . . , s}, f̃LSj will pass through f̃j,k for 0 ≤ k ≤ n− 1.

Proof. The proof is similar to that of Theorems 2.1 and 2.2.

MC integration rules generate points that are fully projection regular w.p. (with prob-
ability) 1. Therefore Algorithm II, approximation (2.2) and Theorem 2.3 are also
applicable when the function has been evaluated using a random point set.

3. Convergence theorems

3.1. For point sets where m > 1

The new approach described in the previous section essentially involves evaluating f
on a set of N points in [0, 1]s and then approximating the one-dimensional function fj
by fitting a least square polynomial through the orthogonal projections f(xi) of f(·)
on the jth axis. Theorem 2.2 proves that f̂LSj passes through the n point-wise means
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f̂j(zk). This implies that this approach is equivalent to the interpolating polynomial
approach where a polynomial of degree (n − 1) is fitted to n function evaluations.
Therefore the convergence properties can be studied using the relevant literature in
numerical analysis. We assumed that there were N = n×m points in [0, 1]s such that
fj is approximated at n distinct points zk, 1 ≤ k ≤ n, and that for each unique value
of zk, there is a subset of m points whose k-th co-ordinate is equal to zk.

The choice of the points zk is crucial and determines the convergence properties and
the computational efficiency as discussed below. The next theorem gives the conver-
gence result when the zk are equidistant points (in a grid).

Theorem 3.1. Suppose that fj is infinitely differentiable such that

max
ξ∈[0,1]

|f (n)j (ξ)| ≤ C, ∀n,

for some C < ∞ such that C
(n−1)n ≪ 1, ∀n. If the zk are equidistant points, then

f̂LSj → fj as m→ ∞ and n→ ∞.

Proof. As m→ ∞,

f̂j(zk) =
1

m

∑
xi:xi,j=zk

f(xi) → fj(zk). (3.1)

Equation (3.1) holds due to the Koksma-Hlawaka inequality (Niederreiter (1992)) if
the xi are sampled using a grid.
For the interpolating polynomial of degree n− 1, it follows from a standard result in
approximation theory (see for example, Cheney and Kincaid (1999), Kress (1998)),
that

max
z∈[0,1]

|fj(z)− f̂LSj (z)| ≤ max
ξ∈[0,1]

|f (n)j (ξ)|
n!

max
z∈[0,1]

n∏
k=1

|z − zk|.

This implies that

max
z∈[0,1]

|fj(z)− f̂LSj (z)| ≤ C

n!
max
z∈[0,1]

n∏
k=1

|z − zk|. (3.2)

It is known that (see for example, Cheney and Kincaid (1999)) that if the n points
zk are equidistant on [0, 1], then

max
z∈[0,1]

n∏
k=1

|z − zk| ≤
(n− 1)!

4

(
1

n− 1

)n

.

From (3.2), we then have

max
z∈[0,1]

|fj(z)− f̂LSj (z)| ≤ C

4n(n− 1)n
.
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The assumption that C
(n−1)n ≪ 1 for all n then implies that as m → ∞ and n → ∞,

f̂LSj → fj .

If the function fj is n times differentiable then the result in Theorem 3.1 indicate

that the approximation obtained using f̂LSj will still be good as long as the derivatives
are sufficiently bounded.

3.2. For fully projection regular point sets where m = 1

Theorem 3.1 provides the conditions under which f̂LSj → fj for grids constructed using
equidistant points. Now, we show that the polynomial approximation will converge to
the shape of the true one dimensional function if the function was explored using LDS
instead of a grid.

Theorem 3.2. Let hk = zk+1 − zk using the partitions defined in Algorithm II, and
points xi sampled using a QMC integration rule. If f̃j,k is as given in (2.2), then

f̃j,k → fj(zk) as m→ ∞ and hk → 0.

Proof. One may consider f̃j,k as an approximation to the integral

1

hk

∫
[0,1]s−1

∫ zk+1

zk

f(x) dxj dx−j . (3.3)

As m → ∞, f̃j,k converges to this integral due to the Koksma-Hlawaka inequality
(Niederreiter (1992)). For the integral in (3.3), we can swap the order of integration
by Fubini’s theorem since f is integrable and Lebesgue measure is a σ-finite measure.
So the integral becomes

1

hk

∫ zk+1

zk

∫
[0,1]s−1

f(x) dx−j dxj =
1

hk

∫ zk+1

zk

fj(xj) dxj .

Letting hk → 0, it follows from the definition of derivative that this integral converges
to fj(zk).

Theorem 3.3. Suppose that fj is infinitely differentiable such that

max
ξ∈[0,1]

|f (n)j (ξ)| ≤ C, ∀n,

for some C <∞ such that C
(n−1)n ≪ 1, ∀n. If the zk are equidistant points and points

x sampled using a QMC integration rule, then f̃LSj → fj as m→ ∞ and n→ ∞.

Proof. The result follows from Theorems 3.1, 2.3 and 3.2.

Note that if the function fj is n times differentiable then the results in Theorem 3.3

indicate that the approximation obtained using f̃LSj will still be good as long as the
derivatives are sufficiently bounded.
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3.3. For random point sets

As pointed out in Section 2, Algorithm II, approximation (2.2) and Theorem 2.3 are
also applicable when the function has been evaluated using a random point set. We
provide the corresponding result for this case.

Theorem 3.4. Let hk = zk+1 − zk using the partitions defined in Algorithm II, and
points x sampled using a MC integration rule. If f̃j,k is as given in (2.2), then f̃j,k →
fj(zk)w.p. 1 as m→ ∞, and hk → 0.

Proof. Proof is similar to Theorem 3.2 except that as m → ∞, f̃j,k converges to
the integral (3.3) w.p. 1 because of the law of large numbers. The rest of the proof is
exactly the same.

Theorem 3.5. Suppose that fj is infinitely differentiable such that

max
ξ∈[0,1]

|f (n)j (ξ)| ≤ C, ∀n,

for some C <∞ such that C
(n−1)n ≪ 1, ∀n. If the zk are equidistant points and points

x sampled using a MC integration rule, then f̃LSj → fj as m→ ∞ and n→ ∞.

Proof. The result follows from Theorems 3.1, 2.3 and 3.4.

Note that if the function fj is n times differentiable then the results in Theorem 3.5

indicate that the approximation obtained using f̃LSj will still be good as long as the
derivatives are sufficiently bounded.

4. Numerical Examples

The algorithms proposed in Section 2 can be used when a function is explored using
a grid, MC or QMC integration rules. However, because this work was motivated by
the need to develop a method for QMC integration rules (and no other method exists,
to our best knowledge), we focus on QMC integration rules in the examples below.
Wherever possible, we also compare the results against those obtained using a grid.
Since this problem was motivated by a possible application in the Bayesian statistical
inference, we illustrate using a few standard probability distributions.

The integration rules used are known as Korobov lattice rules. These are rank-1
lattice rules in which the generating vector z in (1.2) is of the form

z = (1, α, α2, . . . , αs−1),

where α is an integer in {1, 2, . . . , N − 1}. Appropriate choices of α may be found by
using the Lattice Builder software (see L’Ecuyer and Munger (to appear)).

4.1. Exponential distribution

Most statistical distributions are smooth with bounded derivatives and therefore sat-
isfy the smoothness requirements of Theorems 3.1, 3.3 and 3.4. Here, we illustrate
how the exponential distribution, for example, satisfies these smoothness conditions.
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The Exponential distribution is slightly different since the derivative does not exist at
zero. However, here we show that it still satisfies the smoothness conditions imposed
by Theorems 3.1, 3.3 and 3.4. Suppose that the j-th one dimensional distribution is
exponential with parameter λ. Then we have that,

fj(x) = λe−λx;

the nth derivative is given by

f
(n)
j (x) = (−1)nλn+1e−λx,

and

sup
x

|f (n)j (x)| = lim
x→0+

|f (n)j (x)| = λn+1.

We assume here that the interval of interest is [0, b) for some b < ∞, b large enough

so that
∫ b
0 fj(x) dx ≈ 1. Note that the convergence results proved in Section 3 are

applicable here since the function can be linearly transformed to be defined over [0, 1].
Then, ∃n′ > 0 and c < 1 such that ∀n > n′ + 1, b

n−1 ≤ 1
nc < 1. Further, for any

λ <∞, ∃n′′ > n′ such that, ∀n > n′′, λn+1
(

1
nc

)n ≪ 1.

Thus, it can be seen that conditions for Theorem 3.3 are satisfied and f̃LSj → fj
as m → ∞ and n → ∞. This is illustrated in Figure 3. Here, the joint distribution is
bi-variate and is a product of two Exponential distributions. We find the least squares
approximations to the marginals using Korobov lattices with different n and m, the
convergence is achieved as they both increase.

4.2. Multi-modal and skewed distributions

Figures 4 and 5 illustrate that a grid is quite inefficient at accurately capturing the
shape of the distribution even in low dimensional problems, especially when it is multi-
modal or heavily skewed. Here, we consider a multi-modal distribution and the Beta
distribution, in four variables, and try to approximate the shape of the marginals using
the grid points (and fitting the interpolant through pointwise means) as well as using
LDS points and our new method of fitting the least squares polynomials of degree
(n− 1) through the orthogonal projections of the joint distribution on the marginals
proposed in this paper.

Figure 4 shows that the marginals approximated using the Korobov lattice with
4096 points are very accurate whereas the approximation using an 8−point grid with
the same number of points (84 = 4096) is not as accurate. Figure 5 illustrates that
the approximations to Beta marginals using a 1024 point Korobov lattice are much
more accurate than the approximations obtained using grids with 64 = 1296 or even
84 = 4096 points. Thus, using LDS enables efficient and more accurate approximation
of the shape of the one-dimensional distributions.

4.3. High-dimensional distributions

To illustrate the real computational benefit of using low discrepancy sequences, we
consider two distributions of dimensions 10 and 12 respectively. These distributions
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Figure 3. Least squares approximation to the Exponential marginals using Korobov lattices as n and m

increase.

have been generated as products of independent Gamma distributions with different
parameters. A 5-point grid will require 510 = 9, 765, 625 points in 10 dimensions and
244, 140, 625 points in 12 dimensions and will likely still yield inaccurate estimates, as
illustrated by an inability of n−point grids to capture various shapes when n is small
in Figures 4 and 5.

Figure 6 shows that for s = 10, very accurate estimates can be obtained using LDS
with as little as 216 points (150 times fewer than a 5-point grid). Although estimates
obtained using 217 points are even more accurate, the difference between the two is very
small suggesting that our estimates have started to converge to the true marginals.
For 12-dimensional Gamma, 216 points give reasonably accurate estimates and the
convergence is achieved by 219(= 524, 288) points as can be seen in Figure 7. However,
this is negligible compared to the 244 million points required for a 5-point grid.

5. Summary and Discussion

This paper proposes a new method to approximate the shape of one dimensional func-
tions fj , where, fj is the function obtained by integrating out all the variables of an
s−dimensional function f except the j-th one and where the function has been ex-
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Figure 4. Approximating marginals of a four-dimensional multi-modal distribution (line) using: Korobov

lattices with 4096 points (dotted) and an 8−point grid with 4096 points (dashed).

plored using a point set. Not only is this method easy and computationally efficient
but also, it can be used when the function is evaluated using the grid, the MC or the
QMC integration rules. To our best knowledge, a formal method to solve this problem
has not been proposed yet, especially for QMC integration rules. The method uses a
least squares polynomial smoother. We propose two algorithms - two versions of the
method - one where the point set used are fully projection regular (or fully projection
regular w.p. 1, in case of MC rules) and the other when this is not the case. We prove
the convergence properties for both these algorithms. We show that implementing our
new method using LDS points only requires O(mn) function evaluations, compared to
the traditional grid based approaches that require O(ns) function evaluations. Typ-
ically, m < n(s−1) and therefore implementing our new method using LDS points is
computationally more efficient than using an n point grid. Further, the examples il-
lustrate that our method also produces more accurate approximation than using the
traditional grid based approach.

In practice, the polynomials could be fitted to an appropriate transformation (for
example, a log transformation) of the distributions. This may improve the computa-
tional stability of the algorithm. However, in this paper, we have considered fitting
the polynomials to an untransformed probability distribution to show that the con-
vergence exists in a more general case where a transformation may not be possible or
desirable.

The need to develop such a method was motivated by a potential application in
Bayesian statistics, specifically, in computational methods that explore the posterior
distribution using a set of deterministic point sets as discussed in Section 1.1.
However, practical challenges will need to be overcome before the method developed
here can be incorporated within the computation Bayesian methods. For instance,
the proposed method provides asymptotic guarantees as the number of points and
the degree of the polynomial go to infinity. However, it cannot specify the number of
points and the degree of the polynomial needed to achive a reasonable approximation
for a given function or indeed for a wide range of functions (class of all continuous
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Figure 5. Approximating marginals of a four-dimensional Beta distribution (line) using: Korobov lattices

with 1024 points (dotted), a 6−point grid with 1296 points (dash-dotted) and a 8−point grid with 4096 points

(dashed).

probability distributions, for example). Thus further work will be required to develop
a method that can potentially improve the computational efficiency of Bayesian
methods using QMC integration rules.

However, to the best of our knowledge, this paper presents the first formal method
developed to approximate the shape of the one-dimensional function obtained by in-
tegrating out all other variables using LDS.
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points (dotted).
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Figure 7. 12-dimensional Gamma using Korobov lattice with i) 216 = 65, 536 (dashed) and ii) 219 = 524, 288

points (dotted).
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