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The dynamical system or flow ż = f(z), where f is holomorphic on C, is
considered. The behaviour of the flow at critical points coincides with the
behaviour of the linearization when the critical points are non-degenerate:
there is no center-focus dichotomy. Periodic orbits about a center have the
same period and form an open subset. The flow has no limit cycles in simply
connected regions. The advance mapping is holomorphic where the flow is
complete. The structure of the separatrices bounding the orbits surrounding
a center is determined. Some examples are given including the following: if a
quartic polynomial system has 4 distinct centers, then they are collinear.
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1. INTRODUCTION

There have been a number of studies of dynamical systems ż = f(z) or
ż = f(z, t)where f is holomorphic in z and z ∈ Cn or some subset. These
are called holomorphic or conformal flows [1, 6, 7]. Some closely related
work has been done on Newton flows, that is dynamical systems of the
form

ż = − f(z)
f ′(z)

.

See [2, 3, 4, 5]. For example this type of flow is used by Benzinger in [2]
to prove that holomorphic flows with rational function right hand sides do
not have limit cycles.

In this article the primary interest is to explore holomorphic flows on C
(i.e. n = 1) to better understand complex, even entire, functions. Appli-
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2 BROUGHAN

cations to functions such as the Riemann Ξ function will be developed in
a later article.

First it is shown that the flow characterizes the function. Section 2 is
a compilation of local properties. These are straight forward and can be
found in the literature, for example [8]. They are included here for ease of
reference. Section 3 is the main part of this paper. There it is proved that,
under suitable restrictions, the advance mapping is holomorphic. This is
then used to prove that holomorphic flows have no limit cycle. In addition
a description of the global neighbourhood of a center for every entire flow
it derived.

Section 4 contains some examples, again indicating the restricted be-
haviour of holomorphic flows. We are especially interested in flows for
entire functions which have only centers in the finite plane. It is shown
that if the flow is polynomial of degree less than 5, with centers only, then
the centers must be on a line.

Theorem 1.1. If the complex functions f and g are holomorphic on an
open connected subset Ω ⊂ C and not identically zero, and ż = f(z) and
ż = g(z), have the same critical points and the same integral paths, then
there exists an α ∈ R with α 6= 0 such that, for all z ∈ Ω, f(z) = αg(z).

Proof. Let Z be the (isolated) set of critical points. If z is not a critical
point, then f(z) = α(z) · g(z) where α(z) ∈ R is non-zero. But then
α(z) = f(z)/g(z), so α(z) is real and holomorphic and hence constant on
Ωr Z, therefore on Ω.

It follows that the integral paths of ż = f(z), for holomorphic f , deter-
mine f up to multiplication by a real constant.

Example 1.1. Let

f(z) = (1 +
z

3i
)(1− z

3i
)3.

The phase portrait of f it plotted below. It is a quartic polynomial with
one simple zero, which is a centre, and one zero of order 3.

2. LOCAL PROPERTIES

Theorem 2.1. Let f be a meromorphic function on Ω ⊂ C and let a ∈ Ω
be such that f(a) = 0 and f ′(a) 6= 0. Let ż = f(z) be the corresponding
flow. Then
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FIG. 1. Holomorphic flow for f(z) a polynomial of degree 4.

(a) the critical point z = a is non-degenerate,
(b) λ± = ux ± ivx = {f ′(a), f ′(a)},
(c) λ± is real if and only if λ1 = λ2 = <f ′(a),
(d) at the critical point the linearization of f has either a center, focus

or node.

Proof.
(a) If f(z) = u + iv then the characteristic polynomial

p(λ) = λ2 − 2uxλ + |f ′(a)|2,

so therefore λ± = ux± ivx and the critical point is non-degenerate since
f ′(a) 6= 0.

(b) Follows since if λ± is real then vx = 0 and so λ+ = λ− = <f ′(a).
(c) Since λ+ = λ− when the eigenvalues are real, saddles do not exist.
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Theorem 2.2. If ż = f(z) has a simple pole at z = a then, for some
ε > 0, the flow has the same orbits as a saddle on B(a, ε)r {a}

Proof. The flow has integral curves which coincide with those of

ż =
f(z)
|f(z)|2

provided f(z) 6= 0. Assume, without loss of generality, the simple pole is
at z = 0. Near z = 0,

f(z) =
c−1

z
+ c0 + c1z + · · ·

where c−1 6= 0. Therefore

f(z)
|f(z)|2 =

z̄

c−1

1
1 + c0z

c−1
+ · · ·

so the linearization near z = 0 is of the form

ẋ + iẏ = (a + ib)(x− iy)

where a and b are real with a2 + b2 6= 0. It follows that the characteristic
polynomial is λ2 − (a2 + b2), so the singular point behaves as a saddle.

Theorem 2.3. Let ż = f(z) be a holomorphic flow on Ω with a center
at zo. Then all closed orbits in Ω with interior in Ω and zo in the interior,
have the same period, namely 2πi/f ′(zo).

Proof. Let Γ be a closed orbit. Then, because there are no saddle
points, Γ has one zero of f in its interior, say zo, and that zero is simple.
If T is the period:

T =
∫

Γ

dz

f(z)
=

2πi

f ′(zo)
.

Theorem 2.4. Let ż = f(z) have a critical point at z = zo. Then the
order m of the zero at zo is the index of the critical point at zo.

Proof. Let Γ be a simple closed curve with interior containing zo and
no other zero of f . Then if I is the index of zo:

I =
∆arg f(z)

2π
=

1
2πi

∫

Γ

f ′(z)
f(z)

dz = m.
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Theorem 2.5. If ż = f(z) is a holomorphic flow and zo a zero of f
of order m ≥ 2, f(z) = (z − zo)mg(z), where g(zo) 6= 0, then there are
2(m− 1) sectors for the flow at zo and all sectors are elliptic.

Proof. Assume, without loss of generality, that zo = 0 and that, in a
neighbourhood of 0, f has the representation f(z) = azm(1+ zφ(z)) where
φ is holomorphic on the neighbourhood.

Let a = Reiβ and z = reiθ. Then since the index m ≥ 2, the critical
point 0 is not a focus or a center. Hence, ([9], Theorem 1.10.2), there are
explicit directions θ at which the flow approaches or leaves 0. Each of these
directions satisfies

tan(θ) =
ẏ

ẋ
=

sin(β + mθ)
cos(β + mθ)

.

Therefore

θ =
nπ

m− 1
+

β

m− 1
, n ∈ Z

leading to 2(m− 1) distinct directions.
But the index I = 1 + e−h

2 , where e is the number of elliptic sectors
and h the number of hyperbolic sectors, so e − h = 2(m − 1). Therefore
e = 2(m − 1), since that is the total number of sectors, and therefore
h = 0.

Theorem 2.6. If ż = f(z) is a holomorphic flow and zo a pole of f
of order m ≥ 2, f(z) = (z − zo)−mg(z), where g(zo) 6= 0, then there are
2(m + 1) sectors for the flow at zo and all sectors are hyperbolic.

Proof. The proof is similar to that of the previous theorem, replacing m

by −m.

Theorem 2.7. Let ż = f(z) = u + iv = (α + iβ)zm where m ≥ 2
and α, β ∈ R with α2 + β2 6= 0 are such that u(x, y) = u(−x, y) and
v(x, y) = −v(−x, y). Then if m is even β = 0 and if m is odd α = 0.

Proof. If m is even, (x + iy)m = A(x, y) + iB(x, y) where A(x, y) =
A(−x, y) and B(x, y) = −B(−x, y). Hence

u + iv = f(z) = (α + iβ)(A + iB)
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implies u(x, y) = αA(x, y)−βB(x, y) and so αA(x, y)−βB(x, y) = αA(−x, y)−
βB(−x, y) and therefore 2βB(x, y) = 0, so β = 0.

The proof for m odd is similar.

Theorem 2.8. Let f be homomorphic on C, ż = f(z), and f(z) =
f(z) = f(−z). Then the integral paths are symmetric with respect to re-
flection in the x and y axes. If any point on an axis is a center for the
linearized system, then it is a center for the original system ż = f(z).

Proof. If f(z) = u + iv then for all x, y (1) u(−x, y) = u(x, y), (2)
v(−x, y) = −v(x, y), (3) u(x,−y) = u(x, y), and (4) v(x,−y) = −v(x, y).

The result then follows directly from ([9], Theorem 2.10.6).

A key issue for any dynamical system is whether a distinction can be
made between the behaviour of the linearization of a flow near a critical
flow and that of the original flow. Recall the definitions: A point is called
a stable node if each trajectory starting sufficiently close to the point ap-
proaches the point along a well defined tangent. It is called a stable focus
if each trajectory starting sufficiently close spirals towards the point. For
holomorphic flows we have the following local-global principle at each sim-
ple zero:

Theorem 2.9. Let ż = f(z) = (z − zo)g(z) where f is holomorphic on
a neighbourhood of zo and g(zo) = a = α + iβ 6= 0 (so zo is a simple zero
of f). Then the flow has at zo:

(a) a focus if α 6= 0 and β 6= 0,
(b) a node if β = 0,
(c) a center if α = 0,
that is to say the critical point zo has the same type as its linearization

f(z) = (z − zo)g(zo).

Proof. In cases (a) and (b), α 6= 0, so the critical point is hyperbolic.
Since the flow is holomorpic it is twice continously differentiable on a neig-
bourhood of the point so we can apply ([9], Theorem 2.10.4). Case (c) is the
theorem of Benzinger [2].

Theorem 2.10. If f(z) 6= 0, the curvature of the orbit passing through
z is given by

κ =
|vx|
|f(z)| .
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Proof. Let ż = f(z) = u + iv. If r = (x(t), y(t)) is an integral path, the
curvature

κ =
|ṙ× r̈|
|ṙ|3

where ẋ = u, ẏ = v, ẍ = uux+vuy, and ÿ = uvx+vvy. The given expression
for κ follows after substituting and simplifying.

Corollary 2.1. κ = 0 at z = a if and only if =f ′(a) = 0.

Corollary 2.2. If f(a) = 0 and =f ′(a) 6= 0 then κ is unbounded in a
neighbourhood of a. If f(a) 6= 0 then κ is bounded in a neighbourhood of a.
Hence the curvature is unbounded in the neighbourhood of a center or focus.
At a node it is zero. This follows directly from the previous corollary.

Note: If f is holomorphic, every periodic orbit has at most a finite
number of points of zero curvature. More generally, if γ(zo, t) describes
an orbit then the map t → κ(γ(zo, t)) is analytic, so has at most a finite
number of zeros on any bounded interval in its domain.

3. NO LIMIT CYCLES FOR HOLOMORPHIC FLOWS

The following theorem may be well known. It is used in the proof of
Theorem 3.2 below

Theorem 3.1. Let ż = f(z) where f is holomorphic on the open region
Ω ⊂ C on which the vector field is complete. Then the solution γ(z, t)
satisfying γ(z, 0) = z for all z ∈ Ω and

dγ(z, t)
dt

= f(γ(z, t)

for all t ∈ R is holomorphic on Ω in that, for fixed T the mapping z →
γ(z, T ) is holomorphic.

Proof. Fix T ∈ R. Then

(1) γ(z, T ) = z +
∫ T

0

f(γ(z, s))ds.

Let f(z) = u(x, y) + iv(x, y) and γ(z, t) = A(x, y, t) + iB(x, y, t). Then,
A and B are real analytic in (x, y). Partially differentiate (1) with respect
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to x and y, use the Cauchy-Riemann equations, then equate the real and
imaginary parts to obtain

(2)
∂A

∂x
− ∂B

∂y
=

∫ T

0

[ux(
∂A

∂x
− ∂B

∂y
) + uy(

∂A

∂y
+

∂B

∂x
)]ds

(3)
∂A

∂y
+

∂B

∂x
=

∫ T

0

[−uy(
∂A

∂x
− ∂B

∂y
) + ux(

∂A

∂y
+

∂B

∂x
)]ds

and so

C(x, y, T ) =
∫ T

0

(
ux uy

−uy ux

)
C(x, y, s)ds

where

C(x, y, s) =

(
∂A
∂x − ∂B

∂y
∂A
∂y + ∂B

∂x

)

and where the elements of the 2 × 2 matrix appearing in the integral are
evaluated at (A(x, y, s), B(x, y, s)).

Differentiate the integral equation with respect to T to obtain the system
of two ODE’s

Ċ(x, y, t) =
(

ux uy

−uy ux

)
C(x, y, t).

Since γ(z, 0) = z = A(x, y, 0) + iB(x, y, 0) it follows immediately that
C(x, y, 0) = 0. By existence and uniqueness of solutions of the system,
the map z → γ(z, T ) satisfies the Cauchy-Riemann equations for each
T and all z. Hence, for each T , it represents a holomorphic function.

Lemma 3.1. Let Γ be a periodic solution to ż = f(z), where f is holo-
morphic on the simply connected open subset Ω of C. Then there is an
open set G containing all points in the interior of Γ and on the graph of Γ
on which the flow is complete.

Proof. At each point zo in the interior of Γ the orbit starting at that
point is bounded, hence ([9],Corollary 2.4.2) γ(zo, t) exists for all t ∈ R.
The same is true for each point on Γ and therefore ([9], Theorem 2.4.4) on
a neighbourhood of each point. Finally the union of these neighbourhoods
and the interior of Γ is an open subset of C on which the flow is complete.

Theorem 3.2. Let Ω ⊂ C be a simply connected region and let f be
holomorphic on Ω. Then the flow ż = f(z) has no limit cycles in Ω.
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Proof. Assume there is at least one limit cycle. By the theorem of
Poincaré, the flow has at most a finite number of limit cycles in any bounded
subregion of Ω. Therefore there exists a limit cycle Γ with no other limit
cycles in its interior. Inside this cycle there must be a single simple zero
zo, since there are no saddles.

(a) The point zo cannot be a center, since in that case B would be filled
entirely with periodic orbits, each of which has the same period by Theorem
2.3 below, leading to a return map for Γ which is the identity, contradicting
Γ being a limit cycle. If it were not filled with periodic orbits than, by the
Poincare-Bendixson Theorem, there would be a limit cycle interior to Γ,
which is impossible.

(b) Let zo be a focus or node (stable or unstable): Let z → γ(z, t) be
the mapping describing the flow. Then, by Lemma 3.1, the mapping is
holomorphic on Ω, the interior region of Γ, for each fixed t ∈ R.

Let 0 < δ < T where T is the period of the flow on Γ and let g(z) =
γ(z,−δ) if zo is stable and let g(z) = γ(z, δ) if zo is unstable.

Then g is holomorphic on Ω. Let U = {z : |z| < 1} be the open unit
disk. Then by the Riemann Mapping Theorem, there is a conformal map
θ : Ω → U , which is injective and surjective.

Let h(z) = θ◦g◦θ−1(z). Then h : U → U , h(0) = 0 and h is holomorphic
on U . It follows from the Schwarz Lemma that h is either a rotation or
satisfies |h(z)| < |z| for all z ∈ U .

If h is a rotation, h(z) = eiαz for some α with 0 ≤ α ≤ 2π. Let
z1 = 1

2 . Then there exists a subsequence of N and point z2 ∈ U such that
hnj (z1) → z2. If z1 = θ(z3) with z3 ∈ Ω \ {zo}, then

gnjk (z3) → θ−1(z2) ∈ Ω \ {zo}.

But gnjk (z3) converges to a point on Γ. This contradiction shows that
zo is not a focus if h is a rotation.

If |h(z)| < |z| for all z ∈ U , hn(z1) → 0 ∈ U . Hence gn(z3) → zo. But
gnj (z3) converges to point on Γ. This contradiction completes the proof
that zo cannot be a focus or a node, so therefore the limit cycle Γ does not

exist.

Theorem 3.3. Let ż = f(z) be an entire flow with center at xo. Let P
be the set consisting of xo together with the union of all of the closed orbits
of the flow which contain xo in their interior. Then P is an open subset of
C and ∂P consists of the at most countable union of a set of separatrices
{γ(xλ, t) : λ ∈ Λ, t ∈ Dλ}, Dλ being the maximum interval of existence of
the flow through xλ, where each γ(xλ, t) has an unbounded graph.
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Proof. 1. Let xo be a center. Let

P = {y | y is on a periodic orbit about xo} ∪ {xo}.

Then, since ż = f(z) has no limit cycle (Theorem 3.2), P is connected.
If y ∈ P and y 6= xo, then by the continuous dependence of solutions on
initial conditions, any trajectory starting sufficiently close to y will circle
xo, so must be a periodic orbit, since there are no limit cycles. Hence P is
open.

2. ∂P = B is closed in C. Then if B = ∅ the proof is complete. Otherwise
proceed as follows:

3. Let Dλ = (α, β) be the maximal interval of existence of γ(xλ, t).
Consider t → β−. The argument for t → α+ is similar. If the image of
[0, β) is bounded in C then necessarily β = ∞ and, since the flow has no
limit cycle, ω(γ) = x1 which would be a critical point whith a hyperbolic
sector, impossible for a holomorphic flow. Therefore

Bλ = {γ(xλ, t) | t ∈ Dλ}

is unbounded.
4. Let

Cλ = {t ∈ R | for all s with 0 ≤ s ≤ t or t ≤ s ≤ 0, γ(xλ, s) ∈ B}.

Then Cλ = (r, s) where α ≤ r ≤ s ≤ β. Claim: s = β. (The proof that r =
α is similar.) If s < β, continuous dependence in initial conditions applied
to a neigbourhood of the point x1 = γ(xλ, s) implies both that x1 ∈ B and
that there are points on the orbit through xλ with t in (s− ε, s + ε) also in
B, contradicting the definition of s. It follows that Bλ ⊂ B.

5. By 4. we can write

B = tλ∈Λ{γ(xλ, t) | t ∈ Dλ} = tλ∈ΛBλ

where the index set Λ is non-empty and the union disjoint.
6. Each Bλ is closed: If not there is an x ∈ ω(Bλ) or x ∈ α(Bλ). Since

the flow has no limit cycle, x must be a critical point, so must be center,
focus, node or point with only elliptic sectors. Since B is closed, x ∈ B, so
it must have at least one hyperbolic sector, which is a contradiction.

7. |Λ| ≤ ℵo: By 6. each Bλ divides C into three non-empty subsets: C =
Qλ∪Bλ∪Pλ where Pλ and Qλ are open and P ⊂ Pλ. Then for α 6= β, Qα∩
Qβ = ∅ so |Λ| ≤ ℵo, since C is separable.

An example with B = ∅ is ż = iz. The flow ż = iz(zn − 1) with center
xo = 0 has |Λ| = n. Constructing an example with |Λ| = ℵo is an unsolved
problem.
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The above theorem and the theorem of Benzinger [2], showing that ra-
tional function flows on C do not have limit cycles, lead to the following
natural conjecture.

Conjecture: Let f : Ω → C be meromorphic, where Ω is an open. Then
the flow ż = f(z) does not have a limit cycle.

4. EXAMPLES

Example 4.1. If {zj : 1 ≤ j ≤ n} are distinct points on a line L in C
then there is a θ such that

f(z) = eiθ
n∏

j=1

(z − zj)

has a center for ż = f(z) at each zj : If L cuts the real axis at x = η and
at an angle β set w = eiβ(z − η) so each wj = eiβ(zj − η) is real and thus
ẇ = i

∏n
j=1(w − wj) has a center at each wj . Changing variables

ż = ieinβ
n∏

j=1

(z − zj)

gives θ = π
2 + nβ. If L is parallel to OX and cuts OY at γ, set w = z − iγ

and derive θ = π
2 .

Theorem 4.1. Let ż = f(z) = α(z − z1) · · · (z − zn) be a flow where
α ∈ C r {0}, the zi are distinct, and each is a center (for the linearized
flow). If n ≤ 4 then the zi are collinear.

Proof. If n = 1 or 2 there is nothing to prove. If n = 3 linearize about
each of the points zi to obtain the equations:

α(z1 − z2)(z1 − z3) = iα1

α(z2 − z1)(z2 − z3) = iα2

α(z3 − z1)(z3 − z2) = iα3

where the αi are non-zero real numbers. Dividing the first two of these
equations leads to

z1 − z3

z2 − z3
= β ∈ Rr {0}
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so z1 = z3 + β(z2 − z3) and therefore {z1, z2, z3} are collinear.
If n = 4 proceed as above and derive the equations:

(1) α(z1 − z2)(z1 − z3)(z1 − z4) = iα1

(2) α(z2 − z1)(z2 − z3)(z2 − z4) = iα2

(3) α(z3 − z1)(z3 − z2)(z3 − z4) = iα3

(4) α(z4 − z1)(z4 − z2)(z4 − z3) = iα4

Divide (1) by (2), (3) by (4) and (2) by (3) to obtain:

(5)
(z1 − z3)(z1 − z4)
(z2 − z3)(z2 − z4)

= −α1

α2

(6)
(z3 − z1)(z3 − z2)
(z4 − z1)(z4 − z2)

= −α3

α4

(7)
(z2 − z1)(z2 − z4)
(z3 − z1)(z3 − z4)

= −α2

α3

Multiplying (5) and (6):

(z1 − z3

z4 − z2

)2 =
α1α3

α2α4
∈ Rr {0}

Also, by symmetry,

(z1 − z2

z3 − z4

)2 =∈ Rr {0} and
(z1 − z4

z3 − z2

)2 =∈ Rr {0}.

If (Case I) (z1− z3)/(z4− z2) ∈ R then z1− z3 ‖ z4− z2. By (5), (6) and
(7), z1−z4 ‖ z2−z3 and z2−z1 ‖ z3−z4. The only configuration of distinct
points for which this is possible is when {z1, z2, z3, z4} are collinear.

If (Case II) (z1 − z3)/(z4 − z2) = iβ1 for some non-zero real number
β1, then by symmetry, we may assume also that (z1 − z2)/(z3 − z4) =
iβ2 and (z1 − z4)/(z3 − z2) = iβ3 for non-zero βi, else the result would
follow as in Case I. But then z1 − z3 ⊥ z4 − z2, z1 − z2 ⊥ z3 − z4 and
z1 − z4 ⊥ z3 − z2, an impossible configuration for four distinct points in
R2.

Note that the same type of proof would enable the conditions to be
relaxed so that (n − 1 of) the f ′(zj) are parallel and lead to conclusions
such as if f(z) is a cubic with two nodes or two centers then the zeros
are collinear. The same conclusion applies to a quartic with three nodes
or three centers. The next example shows that the theorem cannot be
extended to quintics.
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Example 4.2. Define a polynomial flow of degree n = 5 by

ż = f(z) = iz(z − 1)(z + 1)(z − i)(z + i).

Then the flow has centers at {0,±1,±i} and, more generally, if {r1, · · · , rN}
are distinct strictly positive real numbers, then

ż = f(z) = iz

N∏

j=1

(z4 − r4
j )

has centers at {±rj ,±irj : 1 ≤ j ≤ N} ∪ {0}.
Again, for all n ∈ N let

ż = f(z) = iz(zn − 1)

has centers at 0 and each of the n’th roots of unity. To see this note that
at each such root of unity, f ′(zo) = i((n + 1)zn

o − 1) = in.

Example 4.3. Phase portrait for ż = f(z) = iz(z−1)(z+1)(z−i)(z+i).

Theorem 4.2. Let f(z) be a polynomial of degree n ≥ 2 with simple
zeros {z1, · · · , zn}. Then

n∑

j=1

1
f ′(zj)

= 0.

Proof. Integrate 1/f(z) over a circle of radius R sufficiently large to con-
tain all of the zeros of f , and let R →∞.

Corollary 4.1. With respect to the flow ż = f(z):
(a) If z1, · · · , zn−1 are nodes, so is zn.
(b) If z1, · · · , zn−1 are centers, so is zn.
(c) If z1 is a focus, then the remaining zeros cannot be all nodes or all

centers.
(d) If there exists only centers and nodes then there is more than one

center and more than one node.
(e) No cubic system has only centers and nodes.
(f) Each cubic system has at least one focus.
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FIG. 2. Flow with five centers.

Conjecture: Let ż = f(z) be a polynomial system with five simple
zeros, each of which is a node. Assume that the system is normalized so
that f(0) = f(1) = 0 and f ′(0) = −1. Then

f(z) = z(z − 1)(z + 1)(z − i)(z + i) = z(z4 − 1).
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p1(t)zN−1 + · · ·+ pN (t), Proc. Lond. Math. Soc (3) 27 (1973), 667-700.

7. Lloyd, N. G. An analytic differential equations, Proc. Lond. Math. Soc (3) 30 (1975),
430-444.

8. Needham, T. Visual Complex Analysis, Oxford, 1997.

9. Perko, L. Differential Equations and Dynamical Systems, Second Edition, Springer,
1996.


