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Chapter 6

Superantigen Architecture: Functional Decoration

on a Conserved Scaffold

Vickery L. Arcus and Edward N. Baker

INTRODUCTION

A defining and consistent feature of the bacterial superantigens from Staphylococcus aureus

and Streptococcus pyogenes is their strongly conserved three-dimensional structure. Struc

tural studies to date show that the array of more than 280 amino acid sequences known for

superantigens SAgs and staphylococcal superantigen-like SSL proteins all have the

same fold-a structure in which the same three-dimensional arrangement of a-helices and

f3-sheets is traced by each amino acid sequence, with the same topology for recent reviews,

see references 29 and 43. A typical SAg structure comprises two domains-an N-terminal

13-barrel domain called an OB-fold 4, 25 and a C-terminal 3-grasp domain in which a long

ct-helix packs on to a mixed parallel and antiparallel 13-sheet. These two domains are tra

versed by an ct-helix that lies at the N terminus of the protein and packs against the 13-grasp

domain, thus linking the N- and C-terminal domains,

In striking juxtaposition with the conserved architecture among SAgs is the myriad of

functions that have been grafted on to the SAg fold. For example, SAgs bind to major his

tocompatibility class II molecules MHC-II, in some cases via an N-terminal binding face

17, 18, and in other cases via a C-terminal binding face 24, 30. In the case of staphylo

coccal enterotoxin A SEA, both binding faces are utilized, resulting in simultaneous

binding and cross-linking of MHC-II molecules at the antigen-presenting-cell surface 2,

16, 44. Some SAgs mediate their binding to MHC-II via a zinc ion and some use their N-

terminal binding faces for oligomerization 38. SAgs also bind to T-cell receptors TCR5,

and although the TCR binding surface is consistent in its location on the SAg fold among

different members of the SAg family, variation in sequence allows selectivity in binding to

differing cohorts of TCRs.
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Further variation has recently been seen for the staphylococcal superantigen-like pro

teins SSLs from the pathogenicity island SalnP2 19. 47, which do not form complexes

with the TCR and MHC-l1 molecules but instead interact with other components of the hu

man immune system. apparently to dilute its ability to fight infection. Recently. members of

this family have been shown to bind to immunoglobulin A IgA and complement C5 20.

Again, the conserved SAg fold has served as a scaffold for a diverse range of functions.

A logical extension of this theme is provided by the recently reported structures of the

C5a receptor blocking domain 14 and the EAP domains 13, which are secreted staphy

lococcal virulence factors whose architecture comprises a single 13-grasp domain. These

proteins interact with the C5a receptor and extracellular host proteins, respectively. In a

similar vein, the N-terminal SAg domain, the OB-fold, is well known as a "binding" do

main capable of supporting an array of functions from binding to DNA, RNA, oligosac

charides, and proteins 4, 25.

An evolutionary story thus emerges for the SAg fold which suggests that this fold has

arisen from the co-option of two versatile "binding" domains: the OB-fold and the 13-grasp

domain. These domains may then, through sequence variation, have adopted a wide range

of hiading modes to MHC-II molecules, the TCRs, and, in the case of the SSL proteins, a

range of other components of the immune system. This is an evolutionary game of cat and

mouse, as the toxicity of the SAgs would see them under heavy selection pressure to be

eliminated by the immune system and, in return, the reciprocal pressure on SAgs is to vary

widely and thus avoid the immune armory.

This chapter will first outline the details of the core three-dimensional structure of the

SAgs and discuss precisely what is conserved among the family along with the evolution

ary reasons for conservation. We will then discuss the variation that has been grafted onto

the conserved structure, allowing different members of the family to bind to MHC-II and

the ICR in many different configurations, with different affinities and, in the case of TCR

binding, different specificities.

THE SUPERANTIGEN FOLD: A CONSERVED SCAFFOLD

The classic SAg fold is shown in Color Plate 3A using the structure of the streptococcal su

perantigen SMEZ-2 as an example 6. An N-terminal helix at the top of the figure packs

into a groove between two structural domains. Following the N-terminal helix is the N-

terminal domain, which is a five-stranded mixed 13-barrel with Greek-key topology 48

and is called an OB-fold 25. This is connected to the C-terminal 3-grasp domain by a

large loop. The 13grasp domain is a mixed five-stranded 13-sheet that packs onto a long a-

helix. Each domain has a hydrophobic core at its center, and a smaller hydrophobic core is

formed by packing the N-terminal helix onto one face of the 13-grasp domain. In this sense,

the folding of the SAg polypeptide chain for each domain, and for the protein as a whole,

fits the classic paradigm for proteins, with a hydrophobic interior and a hydrophilic exte

rior. This also highlights and explains the conservation of residues along the central helix

of the 13-grasp domain, which constitutes the most highly conserved SAg sequence motif

and defines this protein family Color Plate 3, B and C. Most of these conserved residues

are hydrophilic but are buried among hydrophobic residues as a result of the packing of the

three major structural elements-the N-tenmnal hehx, the OB-fold, and the 13-grasp do

main. Hydrophilic residues that form polar interactions hydrogen bonding or charge-
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charge pairing in a buried hydrophobic environment are subject to tight evolutionary con
straints. This is due to the large free-energy penalty that is paid should one residue of the
pair be mutated in the course of evolution, If one residue of a pair that forms a buried polar
interaction is lost, this leaves an unpaired charge or polar group in a hydrophobic environ
ment and is energetically costly for the structure as a whole. This is in contrast to buried
hydrophobic residues that, in most cases, can tolerate mutation to other hydrophobic
residues with little energetic cost. Thus, the majority of residues that are highly conserved
across the SAg family are buried poiar or charged residues and their conservation reflects
structural and not functional constraints.

The SAg N-terminal domain forms a 13-barrel with the OB-fold topology, a fold that is
ubiquitous in nature; OB-fold domains are found in archaea, bacteria, and eukaryotes and
are one of the most prevalent structural architectures 35. The OR-fold was first named by
Murzin as an "oligosaccharide/oligonucleotide binding" fold when he noted that different
examples of this fold could bind different ligands on the same face of the protein 25. This
led to the suggestion that the OB-fold architecture can support a binding face that is easily
adapted to the binding of a range of different ligands. This original observation, based on

just four structures, has been borne out by the more than 90 OB-fold structures that have

been deposited in the Protein Data Bank PDB. Among these structures are OB-fold do

mains that use their binding face to bind RNA the anticodon binding domains of the Asp-

and Lys-tRNA synthetases, single-stranded DNA the telomere-end-binding proteins of

eukaryotes and phage-derived gene V proteins, double-stranded DNA cold-shock pro

teins, and oligosaccharides bacterial AB5 toxins. The OB-fold-binding face has even

been adapted for catalysis in the inorganic pyrophosphatases 4.

The SAgs and SAg-like proteins use the binding face of their OB-fold domain as a pro

tein-protein interaction domain. Even for this protein family, there is wide functional vari

ation. A group of SAgs including SEB, SEC 1-3, SSA, and SPE-A use the OB-fold binding

face to bind to the a-chain of MHC-II 17, 28, 40. TSST-l and TSST-2 use the same face

to bind to the a-chain of MHC-II, but in a different orientation 18. In contrast, SPE-C

uses this OB-fold binding face to oligomerize and form dimers 38. The OB-fold is suffi

ciently tolerant to mutation that there are just two short sequence motifs which define the

SAg N-terminal OB-fold domain. These residues are buried at the interface between the

two SAg domains and are conserved for structural rather than functional reasons.

The superantigen C-terminal 13-grasp domain also presents a binding face at the surface

of its mixed 13-sheet. This binding face is used by, for example, SEA, SPE-C, SMEZ-2,

SPE-G, SPE-J, and SEH to bind to the 13-chain of MHC-II molecules 24, 26, 30, 33. The

binding is zinc dependent; a zinc ion is ligated by two histidine side chains and an aspartic

acid at this face. The recent three-dimensional structure of SPE-C in complex with MHC

11 shows this interaction in detail 24. Upon complex formation, tetrahedral coordination

of the Zn2 ion is completed by His-8 1 from the 13-chain of MHC-II.

The 13-grasp domain is also very well represented in nature. Many examples of this ar

chitecture are intriguing in the light of SAg structure and activity. The 13-grasp domains

from streptococcal immunoglobulin-binding protein interact with IgG antibodies to sub

vert the immune response 10. The thrombolytic agents staphylokinase and streptokinase

are also 13-grasp protein-protein binding domains 36, 46. More recently, two other viru

lence factors from Streptococcus and Staphylococcus have been found to contain 13-grasp

domains with structural homology to the SAg C-terminal domain. The first of these is the
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extracellular adherence protein EAP domain from S. aureus 13. EAP is secreted by the

bacteria and is thought to aid pathogenicity by interacting with host proteins such as fib

rinogen, flbronectin, and vitronectin, which, in turn, leads to agglutination. The full-length

protein is between 50 and 70 kDa and contains, in different bacterial strains, either four or

six f3-grasp domains. Notably, the EAP 3-grasp domains have no recognizable sequence

homology with SAg C-terminal domains 13.

The C5a receptor blocking domain of the chemotaxis inhibitory protein from S. aureus

is also a pathogenicity factor and also a f3-grasp domain 14. In this case, the secreted pro

tein binds to the C5a receptor through its n-grasp domain and interferes with phagocyte re

sponses.

The affinity for a range of ligands shown by these other 3-grasp domains is consistent

with our paradigm for SAgs, whereby adaptable binding scaffolds are utilized by secreted

proteins in Staphylococcus and Streptococcus pathogenesis.

ALLELIC VARIATIONS IN SEQUENCE DECORATE

THE SUPERANTIGEN FOLD

The variation among SAg sequences is a continuum from allelic variation where sequences

from different strains differ by just a few amino acids >98% identity, to pairwise se

quence identities of less than 10%. In the case of allelic variation, the differences are al

most universally found at the surface of the proteins and suggest that these are occurring

under selection to vary epitopes that are targeted by the immune system. For example, the

extraordinarily potent streptococcal superantigen, SMEZ, has 21 alleles that segregate

with different Miemm types 34. Of the 31 amino acid positions that vary across the

SMEZ sequence, 26 of these amino acids are surface exposed. Color Plate 3D maps these

positions onto the structure of SMEZ-2. Similarly, five alleles of the SEC superantigen

have been reported, including one from a strain of S. aureus isolated from a bovine infec

tion. Once again, with just one exception, the variations are seen at the protein surface.

A similar phenomenon is seen for the SSL family of proteins, which share the SAg fold

but bind other components of the immune response, and which are encoded on a patho

genicity island of S. aureus 19, 47, These 11 genes lie adjacent to one another and up

stream from a putative transposase gene, suggesting a capacity for this island to be hori

zontally transferred. A survey of different S. aureus strains showed that all strains carry the

pathogenicity island and that a subset of strains carries all 11 genes on the island; in other

strains, up to four SSL genes have been deleted from the pathogenicity island 12. Allelic

variation is seen for each of the SSL proteins 85 to 100% identity and can be mapped on

to the three-dimensional structures of the two SSLs for which structures are available,

SSL-5 and SSL-7 5, 20 M. Chung, personal communication. The same theme of sur

face variation is continued for this family of immune interactors, such that in the case of

SSL-5, 32 of the 37 positions that vary between alleles lie at the surface of the protein and

the remaining 5 variants are buried hydrophobic residues 5.

The mosaic nature of the allelic variants for both SMEZ and SSL-5 has been cited as ev

idence that these alleles arise principally from recombination and not from point mutation

34. However, it is likely that a combination of both effects applies. Although the origins

of this variation remain equivocal, the outcome is compelling-wide allelic variation at the

surface of many SAgs and SSLs is most probably driven by the constant evolutionary pres

sure to escape host immune detection.
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VARIATIONS ON SUPERANTIGEN BINDING TO MHC-II AND TCR

At one end of the spectrum of SAg variability lie the allelic variants discussed above,

which presumably retain the same functional determinants within a particular molecule. At

the other end of the spectrum are SAgs that have not only disparate sequences but also al

tered functional modes of action, At the extreme end of this spectrum lie the SSLs, EAP,

C5a, and IgG-binding proteins, all of which share clear structural relationships with the

SAgs but target other protein components of the immune response.

The interactions between SAgs and their target MHC-II molecules and TCRs cover vir

tually all permutations of the following binding modes: MHC-II i-chain binding; MHC-II

13-chain binding; TCR Va binding and restriction; TCR V13 binding and restriction; SAg

oligomerization; MHC-II cross-linking. For the purposes of discussion we can loosely di

vide these variations into MHC-II ct-chain binding and its associated TCR interactions,

MI-IC-TI 13-chain binding and its associated TCR interactions, and SAg oligomerization

and MHC-II cross-linking.

MI-IC-Il ct-Chain Binding

SAgs that bind to the ct-chain of MHC-TI molecules generally do so with low affinity in

the range 0.1 to 1.0 1iM 37. There are several three-dimensional structures of

SAg/MHC-II complexes that show this interaction in molecular detail, epitomized by the

SEB/MHC-II complex structure see Color Plate 4A 17. Loops that lie above and below

the binding face of the OB-fold domain of SEB form both polar and hydrophobic interac

tions with residues from the MHC-II ct-chain helix that flanks the peptide-binding groove.

In addition, interactions are made between SEB and loops at the end of the 13-sheet that

forms the floor of the MHC-II peptide-binding groove. The small surface area that is

buried on complex formation between SEB and MHC 660 A2 accounts in part for the low

affinity of this interaction.

This SAgIMHC-II binding interface is conserved when the structures of the MHC-Il

complexes with SEB and SEC3 are compared 17, 42. Just two conservative mutations are

at the MHC-II-binding interface when SEB is compared with SEC3, despite an overall se

quence identity of 66% between the two SAgs. Other SAgs from both S. aureus and S. pyo

genes that interact with MHC-1I in this manner are SEC 1, SEC2, SEG, SSA, and SPE-A.

The binding of this group of SAgs to the TCR has also been well defined by the experi

mentally determined structures of SEB, SEC2, SEC3, and SPE-A, each in complex with

mouse TCR V138.2 11, 22, 41. Residues on the SAgs that are involved in binding lie on the

face between the two domains and at the surface of the N-terminal ct-helix. The regions in

volved on the TCR are primarily located on the CDR2 and HV4 loops and the adjacent FR3

regions see Color Plate 5. From Color Plate 5A, it is evident that this is a weak protein-

protein interaction with just three long hydrogen bonds between side chains of SEB and

main-chain atoms of the TCR. Additionally, the buried interface is relatively small at 540 A-.

The inferred functional complex for MHC-II/SEB/TCR can be constructed from the

experimentally determined MHC-II/SEB and SPE-A/TCR binary complexes. This pre

sents a picture of a circular, ternary complex where each of the components interacts with

the other Color Plate 6. Here, the SAg interferes with the normal MHC-IIITCR interac

tion by inserting the N-terminal OB-fold domain between the MHC-II ct-chain and the

TCR 13-chain. The TCR now binds to both the SAg and the 13-chain of MHC-I1. It has

been speculated that the cooperative set of interactions that form between TCR, MHC-II,
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and SAg in the complete complex may compensate for the low affinities that are seen in

complexes between the pairs of protagonists 3, 37.

TSST is an enigma among MHC-II a-chain-binding SAgs. TSST binds to MHC-II in a

different orientation when compared with SEB/MHC-1I binding, lying across the a-helix

that flanks the peptide-binding groove and making contacts with the displayed peptide 18,

45. It is not known what implications this alternative SAg/MHC-II interaction would have

on the TSST/MHC-IIITCR complex, and no direct structural information is available on

the mode of TSST/TCR interaction.

MHC4I 13-Chain Binding

A second group of SAgs bind to the 13-chain of MHC-II. The SAgs in this group SPE-C,

SPE-J, SMEZ, SED, SEH, and SEJ are illustrated by SPE-C and SEH, for which the

structures of SAg/MHC-II complexes have recently been reported 24, 30. At the center of

the binding interface is a zinc ion that is tetrahedrally coordinated by three ligands from the

SAg and a single histidine from MHC 13-chain His 81, see Color Plate 48. The

SAg/MHC-lI binding has been shown to be zinc dependent in vivo, such that addition of

the zinc-chelating agent EDTA abolishes T-cell activation 23, 33. The SAg interface cov

ers residues on the MHC-1I 3-chain helix along with residues of the displayed peptide. In

contrast to the binding between SEB and the a-chain of MHC-II, the affinity of the inter

action between the SPE-C group SAgs and the 13-chain of MHC is some three orders of

magnitude greater 0.1 to 100 nM 23, 26, 33. A comparison of the surface area buried by

SEB binding to the a-chain of MHC-II with that buried by SPE-C binding to the 13-chain

of MHC-tI shows that the surface areas are similar, and by implication, the binding affini

ties should also be comparable. However, the bonding that results from the involvement of

a transition metal zinc bound with optimal tetrahedral geometry at the interface confers

tighter binding on the SPE-C/MHC-II 13-chain interaction.

This orientation of SPE-C in binding to the 13-chain of MHC-II dictates that the TCR

now binds to SPE-C at a distance from MHC-II, producing a more linear MHC

IJ/SAgJTCR complex Color Plates 5B and 7A 41. Although the TCR binding site on

SPE-C is in the same region as that on SEB, some important differences exist in the detail

of the SAgJTCR interactions. SPE-C has more extensive interactions with the TCR includ

ing the CDRI, CDR2, and CDR3 loops of the 13-chain of the TCR, along with the

HV4IFR3 components 41. The SPE-C/TCR interface also includes 9 hydrogen bonds

that are in some cases mediated by side chains from both the SAg and TCR. Whereas the

SEB interactions primarily involve hydrogen bonds with main-chain atoms of the TCR

loops, and thus primarily discriminate between TCRs on the basis of the backbone confor

mations of these loops 22, the SPE-C interaction is highly specific. This is due to the

more extensive range of interactions between SAg and TCR, and to the unique conforma

tions of CDR loops of human Vj32.1 due to amino acid insertions on CDRI and CDR2

loops and an extended CDR3 loop see Color Plate 5B. The affinity of the SPE-C/TCR in

teraction is also greater than that seen between SEB and TCR 21 and this is reflected in a

significantly greater burial of surface area on complexation 810 A2.
The increased affinity of both the SPE-C/MHC-II and the SPE-C/TCR interactions may

be required due to the linear configuration of the ternary complex, which precludes coop

erativity of binding between the three components. The hypothesis is that stimulation of
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the T cells requires long residence times for the SAg to cross-connect ICR and MHC-II,
and this can be achieved either by independent binding interactions of nanomolar affinity,
in the case of the linear MHC-IIISPE-C/TCR complex, or by triangular, cooperative, bind
ing to achieve nanomolar affinity in the circular MHC-II/SEB/TCR complex.

In the case of SEH, there is evidence for TCR Va chain selectivity, although it is not
clear how this is effected. It has been reported that there is upregulation of human TCR
ValO T cells after SEH stimulation 31, SEH bridges the linear MHC-IIJSAg/TCR com
plex and it is possible that the SEHITCR interaction may include binding to the TCR Va
region 31. In addition a single report has demonstrated a role for TCR Va interactions
with SEA and SEE in the T-cell response to SAgs 9.

Cross-Linking MHC-ll

Two SAgs have been demonstrated to cross-link MHC-II molecules at the antigen-present

ing cell APC surface. SEA achieves this by simultaneously binding to the a-chain of

MHC-II in an SEB-like manner using the OB-fold binding face, and to the 13-chain of
MHC-II in a SPE-C-like manner using the 13-grasp binding face at the opposite end of the
molecule 1, 16, 32. The resulting complex at the APC/T-cell interface has a stoichiome

try of MHC2/SEA/TCR. Note that an MHC-IJISEA2 complex could not bind to the TCR,

as simultaneous binding of two SEA molecules to a single MHC at both a- and 13-chains
would occlude TCR binding in a triangular MHC-IIJSEA/TCR complex 32. It has been

proposed that rafting of MHC-II molecules at the cell surface facilitates the release of cy

tokines from the APC and that cross-linking by SEA may contribute to the overproduction

of cytokines that is characteristic of toxic shock 16. By sequence homology, it is pro

posed that SED and SEE also cross-link MHC-II in a similar fashion.

A second variation is the cross-linking of MHC-II that can be effected by SAg dimers,

Thus, SPE-C has been shown to form dimers through its OB-fold domain 23, 38, leaving

the C-terminal 13-grasp domain on each SPE-C monomer free to make its Zn-mediated in

teraction with MHC-II 24. This results in a proposed complex of the type MHC/SPE

C/ICR2 Color Plate 7B. SPE-C is a dimer both in solution and in the crystal structure,

and the importance of the dimer for I-cell stimulation has been demonstrated, although

this remains controversial. A second form of dimerization is shown by the streptococcal

SAg SPE-J 7. In this case, the dimerization surface overlaps the TCR binding surface,

implying that dimerization and TCR binding are mutually exclusive, but that SPE-J dimers

could still function in MHC-II cross-linking.

SAg Oligomerization

The question of SAg oligomerization is controversial. Most SAgs appear to act as

monomers, but some, such as SPE-C and SPE-J discussed above, can form dimers, albeit

at relatively high concentrations. Crystal structures of other SAgs, such as TSST-1 27 and

SPE-A 8, have also suggested oligomeric associations whose significance is unclear;

given that these associations must be weak, their relevance in vivo will depend on local en

vironments and local concentrations. An instructive example is provided by the SAg-like

protein SSL-5 formerly known as SET3. The dimer found in crystals of SSL-5 buries

only a small surface and is not detected in solution 5. It may still be biologically relevant,

however, where its binding partners provide added stabilization, a suggestion given
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weight by the observation that a similar mode of dimerization is found for SSL-1 1 H.

Baker and M. Chung, manuscript in preparation.

CONCLUDING REMARKS

As secreted proteins from two highly adapted human pathogens, S. aureus and S. pyo

genes, SAgs and the related SSLs must be subject to severe immune pressure due to their

potent effects. This serves as an explanation for their defining structural characteristic-

extensive surface sequence variability superimposed onto a highly conserved fold that is

built from two promiscuous binding modules the OB-fold and 3-grasp domains. The re

suit is a diversity of binding properties, in which many protein-protein interactions are

weak. The challenge is to understand which interactions are of real physiological signifi

cance and which are not; only when cooperativity of binding occurs or specific features

arise, such as the zinc site on the f3-grasp domain, are high-affinity complexes formed, but

other, more transient, associations may still be relevant in vivo. The implications for infec

tion and disease are similar. Despite their notoriety, it is likely that, for the most part, the

effects of SAg and SSL secretion are relatively benign, and that only when local concen

trations rise, or synergistic relationships with other factors apply, do they trigger the severe

invasive disease with which they are associated.
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