
www.elsevier.com/locate/csr

Author’s Accepted Manuscript

The use of video imagery to analyse groundwater and
shoreline dynamics on a dissipative beach

Christien E. Huisman, Karin R. Bryan, Giovanni
Coco, B.G. Ruessink

PII: S0278-4343(11)00264-0
DOI: doi:10.1016/j.csr.2011.07.013
Reference: CSR2425

To appear in: Continental Shelf Research

Received date: 7 May 2010
Revised date: 30 May 2011
Accepted date: 28 July 2011

Cite this article as: Christien E. Huisman, Karin R. Bryan, Giovanni Coco and B.G.
Ruessink, The use of video imagery to analyse groundwater and shoreline dynamics on a
dissipative beach, Continental Shelf Research, doi:10.1016/j.csr.2011.07.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/csr
http://dx.doi.org/10.1016/j.csr.2011.07.013


1 
 

The use of video imagery to analyse groundwater and shoreline dynamics 
on a dissipative beach 
 
Christien E. Huisman1, Karin R. Bryan2, Giovanni Coco3,4 and B.G. Ruessink1 
 
1 Department of Physical Geography, Faculty of Geosciences, Institute for Marine and 
Atmospheric Research, Utrecht University, The Netherlands 

2 Department of Earth and Ocean Sciences, University of Waikato, Hamilton, New Zealand 
3 National Institute of Water and Atmospheric Research, Hamilton, New Zealand 
4 Now at Environmental Hydraulics Institute, “IH Cantabria”, Universidad de Cantabria, 
Santander, Spain 

 
Corresponding Author: Mrs. Christien E. Huisman, MSc. 
 
 
Keywords: beach groundwater; groundwater seepage; video imagery; remote sensing; 
shoreline detection 



2 
 

Abstract 

Groundwater seepage is known to influence beach erosion and accretion processes. However, 

field measurements of the variation of the groundwater seepage line (GWSL) and the vertical 

elevation difference between the GWSL and the shoreline are limited. We developed a 

methodology to extract the temporal variability of the shoreline and the wet-dry boundary 

using video imagery, with the overarching aim to examine elevation differences between the 

wet-dry boundary and the shoreline position in relation to rainfall and wave characteristics, 

during a tidal cycle. The wet-dry boundary was detected from 10-minute time-averaged 

images collected at Ngaranui Beach, Raglan, New Zealand. An algorithm discriminated 

between the dry and wet cells using a threshold related to the maximum of the red, green and 

blue intensities in Hue-Saturation-Value. Field measurements showed this corresponded to 

the location where the watertable was within 2 cm of the beachface surface. Timestacks, time 

series of pixels extracted from cross-shore transects in the video imagery, were used to 

determine the location of the shoreline by manually digitizing the maximum run-up and 

minimum run-down location for each swash cycle, and averaging the result. In our test data 

set of 14 days covering a range of wave and rainfall conditions, we found 6 days when the 

elevation difference between the wet-dry boundary and the shoreline remained approximately 

constant during the tidal cycle. For these days, the wet-dry boundary corresponded to the 

upper limit of the swash zone. On the other 8 days, the wet-dry boundary and the shoreline 

decoupled with falling tide, leading to elevation differences of up to 2.5 m at low tide. 

Elevation differences between the GWSL and the shoreline at low-tide were particularly large 

when the cumulative rainfall in the preceding month was greater than 200 mm. This research 

shows that the wet-dry boundary (such as often used in video shoreline-finding algorithms) is 

related to groundwater seepage on low-sloped, medium to fine sand beaches such as Ngaranui 
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Beach (mean grain size ~ 0.27 mm, beach slope ~1:70) and may not be a good indicator of the 

position of the shoreline.  
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1  Introduction 

The dynamics of the beach groundwater table in the swash zone are of interest to researchers 

in the field of geomorphology, coastal engineering, sedimentology and groundwater 

hydrology (e.g. Baird and Horn, 1996; Horn, 2002; Horn, 2006; Nielsen, 1990; Turner, 1993). 

The elevation of the beach water table alters erosion and accretion processes in the swash 

zone (e.g. Butt et al., 2001; Eliot and Clarke, 1988; Grant, 1948; Turner, 1993; Coco et al., 

2004). When a high water table causes the beach face to be saturated, erosion is favoured 

because sediment movement is promoted by outflow of water from the water table and 

sediment dilation (e.g. Eliot and Clarke, 1988; Grant, 1948; Horn, 2002; Turner, 1993; 

Turner, 1995). In some cases, artificial lowering of the beach water table, e.g. beach 

dewatering, is carried out to stimulate sedimentation. These beach protection measures have 

had limited success probably because our understanding of the processes controlling the 

influence of beach groundwater on beach erosion is still limited (Baird and Horn, 1996; Horn, 

2002; Turner and Leatherman, 1997).  

 

Wave run-up, tidal variation and rainfall may cause the elevation of the beach water table to 

be above the elevation of the mean sea surface (Turner et al., 1997). Water flows into the 

beach face if the sea surface is higher than the level of the groundwater table and vice versa. 

This process can occur on a number of different time scales. If the mean sea level (including 

set-up and storm-related changes) is higher than the mean water table there will be a mean 

flow landward; if it is lower the mean flow will be seaward.  Superimposed on this mean 

pattern are the tidal variations, where landward flows occur at high tide and seaward flows at 

low tide, and individual swash patterns where swash crests cause landward flows. The rate of 

flow depends on the hydraulic conductivity and the horizontal pressure gradient. If the 

seaward pressure gradient is high and/or the hydraulic conductivity of the beach sediments is 
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low, then a falling water level (such as is caused by the tide) can cause a seepage face on the 

beach face, below the point where the beach watertable intersects the beach face and the 

groundwater exfiltrates (Raubenheimer et al., 1999; Turner, 1993). The groundwater seepage 

line (GWSL) forms at the interface between the unsaturated and saturated beachface (Horn, 

2002; Horn, 2006). It can be identified by its shiny appearance due to water that ’sheets’ on 

top of the beach (Cartwright et al., 2006; Horn, 2002), and is most likely to form on fine-

grained, low-sloping beaches with large tidal ranges (Jackson et al., 1999; Turner et al., 

1997). 

 

The movement of the GWSL and the (de-)coupling of this wet-dry boundary from the tide 

have been extensively modelled (Baird et al., 1998; Cartwright et al., 2006; Li and Barry, 

2000; Li et al., 2002; Li et al., 2000; Turner, 1993; Turner, 1995). However, as pointed out by 

Baird and Horn (1996), improvements in field monitoring and modelling beach groundwater 

dynamics are needed to incorporate the influence of groundwater dynamics on swash 

sediment dynamics. For example, simple models include only tidal variation and sediment 

characteristics, and not the variation of the inland water table in their formulation (Turner, 

1995). Yet, presumably large precipitation events that elevate the water table will favour 

conditions for decoupling.  Baird et al. (1998), Cartwright et al. ( 2006), Li and Barry (2000), 

Li et al. (2002), Li et al. (2000), Turner (1993) and Turner (1995) specifically suggest the use 

of video imagery to monitor groundwater seepage to provide better insight in the width of the 

seepage face and swash dynamics. Over the last decade, video-based remote sensing 

techniques are increasingly-used to study beach evolution, because they provide continuous 

and automated data collection (Aarninkhof et al., 2003; Madsen and Plant, 2001; Plant et al., 

2007; Plant and Holman, 1997). However, their application to measuring groundwater 

seepage has not been pursued yet.  
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The objective of this paper is two-fold. Firstly, we present and test a video-based method to 

extract wet-dry boundary and shoreline locations simultaneously, with a high spatial (cross-

shore) and temporal resolution from video images collected at Ngaranui Beach, New Zealand 

(Section 2). This method is different from previous methods in that it does not assume that the 

shoreline and wet-dry boundary are at the same location. Secondly, we use this technique to 

extract GWSL observations from video over a range of conditions to determine to what 

degree the GWSL variation follows the shoreline and to what degree it depends on other 

factors such as the wave conditions and cumulative rainfall (Section 3). This demonstrates 

under what conditions our method is relevant. In Section 4 and 5, we discuss and summarize 

our main findings.  

 

2  Site description 

Ngaranui beach, located near Raglan on the North Island of New Zealand, is a dissipative 

beach of approximately 1800 m length and faces northwest toward the Tasman Sea (Figure 

1). The beach is constrained by a steep (~1:5) dune ridge and by headlands at the south and 

east side. At the north side, the beach curves into Raglan Estuary, a drowned ancient river 

valley (Morris et al., 2007). The beach contains black volcanic sediments with a median grain 

size of 0.31 mm (Laurent, 2000). The beach slope is roughly 0.8 degrees (~1:70). Monthly 

surveys along four cross-shore transects performed in 2009 by Wood (2009) showed limited 

spatial or temporal variation, with beach volumes changing by ~ ±10% between winter and 

summer. The tidal range is between 2�3 m (spring tide) and 1.5�1.8 m (neap tide) (Walters et 

al., 2001). Wave hindcasts (Gorman et al., 2003), for a position at intermediate depth off-

shore from Ngaranui beach (depth=11 m, position: LAT �37.813553; LON 174.802104), 

show the annual mean significant wave height to be 1.8 m and the mean wave period 8 s. The 
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mean daily precipitation, based on daily observations in Raglan Harbour 

(http://cliflo.niwa.co.nz/), is 3 mm. Most rain falls in the southern hemisphere winter, between 

June and October. Rainfall in excess of 90 mm per day sometimes occurs in autumn and 

spring. After a day of intense rain, water drains from the headlands onto the beach (Figure 2).  

 

3  Methods 

3.1 Data acquisition 

Ngaranui Beach has been monitored since August 2007 by a Cam-Era video system (e.g. 

Almar et al., 2008; Gallop et al., 2011). The video unit comprises a Lumenera LE 375 7.7-mm 

color CCD video camera with a 25.5-mm fixed-focal-length lens. The video camera is 

situated on the headland south of the beach at 94 m above mean sea level. The video system 

covers an area of 1.5 km alongshore and 150-800 m cross-shore, with the pixel footprint 

ranging from 0.11 m × 0.56 m at the south end of the beach and 0.59 m × 5.96 m at the 

northern end which was further away from the camera. Every half hour during daylight 

conditions, an on-site computer collects a snapshot image, three timestack images and an 

averaged image. Averages and timestacks were collected over 10 minutes of video footage 

collected at 2 Hz, and timestacks are time series of pixels collected along a cross-shore 

transect from each frame (e.g. Aagaard and Holm, 1989; Salmon et al., 2007; Stockdon et al., 

2006). Here, we focus on data gathered from the timestacks and the time-averaged images. 

The timestacks stack locations are 1300 m (timestack 1), 800 m (timestack 2), 600 m 

(timestack 3) from the camera. The cross-shore resolution of the time-stacks ranged from 0.3-

0.4 m at timestack 1 to 0.07-0.15 m at timestack 3. Each timestack covered part of the sea and 

the beach and thus contains the motion of the incident waves as they run up and down the 

beach as swash and backwash. An example timestack with run-up oscillations is provided in 

Figure 3. The alongshore resolution of the time-averaged images is approximately 3 m at 
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1300 m (timestack 1) from the camera, decreasing to 0.2 m in the vicinity of timestack 3. An 

example time-averaged image is provided in Figure 4A.  

 

We define the shoreline as the average of the swash timeseries, which is consistent with the 

definition of mean shoreline (including setup) used in other video studies (e.g Holland and 

Holman 1993; Stockdon et al., 2006). Note that this could be different than the definition of 

shoreline as the location where the mean water surface intersects the beach face (such as 

might be measured with an array of stilling wells). Bryan et al. (2008) demonstrated the 

existence of a slight horizontal difference of order 1.5 m on an intermediate, medium sand 

beach.  Since automated detection of the shoreline on this black sand beach defied existing 

methodologies (e.g. Aarninkhof et al., 2003; Boak and Turner, 2005), run-up minima (lower 

backwash limit) and maxima (upper up-rush limit) were digitized manually from each 

timestack (Figure 3), after Aagaard and Holm (1989). The lower backwash limit was 

identified as the intersection of the backwash and the uprush of the next wave. The shoreline 

position was defined as the mean of all maxima and minima.  Figure 4A (white circles) shows 

an example of the detected shoreline positions along the cross-shore timestacks.  

 

To extract the wet-dry boundary, the Red-Green-Blue (RGB) time-averaged images were 

transformed into Hue-Saturation-Value-space (HSV-space) using the Matlab® ‘rgb2hsv’ 

function. Although there are a number of different models for calculating the Saturation from 

RGB values (Russ, 2006), the Matlab® algorithm simply calculates the Value (V) as the 

maximum of the red, green and blue intensities at each pixel (following the method of Smith, 

1978).   HSV-space corresponds more to human perception than RGB-space, and treats colour 

(hue, saturation) and luminance (brightness or value) information separately (Russ, 2006). 

The wet-dry boundary was detected using a thresholding algorithm that discriminates between 
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the dry and wet beach based on the Value (V), because V was found to be the only measure 

that consistently detected the wet-dry boundary in all tested weather conditions (see validation 

section below). For each of the selected time-averaged images, the algorithm requires a 

subjective definition of an alongshore line over the dry beach, and an alongshore line over the 

sea. These lines limit the region over which the processing software searches, thus limiting 

irregularities in the Value caused by the areas that rarely get inundated (e.g. dune grasses, and 

upper beach driftwood).  In between these lines, the algorithm extracts the Value (V) from 

each row in the oblique image, and smoothes the resulting V using a moving-average 

smoothing algorithm with a grid size of 10 pixels (Figure 4B). Given an approximate cross-

shore resolution of 0.11 m at time stack 3 and 0.35 m at timestack 1, this averaging smoothes 

features in the image of 1 - 3.5 m size, roughly corresponding to removing the effect of 

people sitting on the beach, or large pieces of driftwood.  In test cases of 10 randomly-chosen 

images, changing this averaging range from 5 to 15 pixels changed the detection of the 

seepage line by <3 pixels.The seepage-line detection algorithms then finds the pixel where the 

Value (V) is smaller than a threshold value, here taken as the V composed of the 25% of V at 

the dry beach and 75% of V at the sea. Figure 4B provides an example for a single row of 

pixels from the image, and the entire alongshore line of the detected wet-dry boundary 

(Figure 4A). 

 

Information extracted from the images was rectified to real world coordinates. Rectification 

was done after detection (rather than rectifying the whole image and using this for detection) 

because rectifying the whole image was computationally intensive, added inaccuracy due to 

interpolation methods used and finally does not easily allow the image to be rectified to 

multiple vertical levels (the shoreline and seepage line are generally at different levels). 

Rectifying pixel coordinates of the seepage line allows different vertical levels to be used for 
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different areas of the image. The 2D pixel coordinates were corrected for distortions related to 

the camera lens using the standard photogrammetric techniques outlined by Heikkilä and 

Silven (1997). The corrected 2D oblique pixel coordinates (u,v) were converted to ground 

coordinates (x,y,z) using the colinearity equations and a known elevation. For the rectification 

of shoreline positions, the elevation is assumed to be the level of the tide plus the influence of 

atmospheric pressure. Wave set-up was not included.  

 

The main problem with rectifying the wet-dry boundary is that there is no a priori knowledge 

of the elevation of the pixels that mark the location of this boundary, since this boundary can 

be much higher than the shoreline (which is normally used for rectification). However, wet-

dry pixels can be rectified by using surveyed information of the beach face topography. 

Unfortunately, full 2D surveys are rarely collected, and requiring such information to extract 

the wet-dry boundary would severely limit the usefulness of the technique (if such a survey 

was available, then it would be much easier to simply survey the wet-dry boundary rather than 

try to measure it from video). The main premise of using the video is to obtain high spatial 

and temporal coverage without labour-intensive and expensive field measurements. Rather 

than surveying the beach, it is also possible to use the tidal variations of the shoreline to map 

the intertidal topography (Aarninkhof et al., 2003; Plant and Holman, 1997). Normally, such a 

shoreline is extracted from the averaged images, and so a 2-D map of the interidal beachface 

is provided. However, due to the black sand characteristics of Ngaranui Beach, we have been 

unable to extract the shoreline from the averaged images using either published (e.g. Boak 

and Turner, 2005) or unpublished techniques. Therefore we could only extract the shoreline 

along the time stacks, where we could extract the shoreline using the variation of the swash as 

the tide moves up and down the beach face (described above). Therefore, we had 3 estimates 
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of the beach profile at each time-stack location, to use in rectifying the groundwater seepage 

line measurements along the 3 time-stack locations.  

 

The profile information and the colinearity equations can be combined to perform the 

rectification in one computational step (e.g. Salmon et al., 2007; Bryan et al. 2008). For 

example if the profile can be described by function f1(z) = f1 (x,y), and the transformation 

associated with rectification described as f2(x,y)=f2(u,v,z), where (u,v) are the oblique pixel 

coordinates and (x,y,z) the ground coordinates, then these two equations can be combined to 

find x and y without knowledge of z (or to find z from a known u and v). We approximated the 

profile using two linear fits, one for the upper beach face and one for the lower. These fits 

removed some of the variability caused by finding the shoreline using the average swash 

position, and also was used to average out the difference between the shoreline mapped using 

the incoming tide and that mapped using the outgoing tide. These fits were used to 

characterise the profile function (f1), and provide 3 measurements of the elevation of the wet-

dry boundary along each of the 3 timestacks. 

 

3.2 Validation 

Data from 3 field excursions was used to validate the methodology. On November 8th, 2010, 

an RTK-GPS survey was collected covering all three timestacks, allowing the method for 

extracting profiles from video to be validated on this beach. Madsen and Plant (2001) have 

validated the method in a general sense, but there may be local sensitivity in the method of 

extracting shorelines. On April 14, 2011, we made measurements of grain size, beach profile 

and sediment water content along two cross-shore transects (near timestacks 2 and 3) using an 

RTK-GPS. One transect was sampled at 10:20 am (near timestack 2) and the other transect 

was sampled at 12 pm (near timestack 3). In addition, sediment samples were taken at 5 
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minute intervals at 11:00, 11:05 and 10:10 (during the time which the camera was performing 

the averaging procedure) (near timestack 2). Sediment samples were collected using water-

tight pots of known volume of the surface ~5 cm of sediments. Samples were weighed and 

then dried over 4 days at 80 degrees, and weighed again to determine water content. Grainsize 

was characterised using a Malvern Laser particle size analyser along one transect (near 

timestack 2) and at one site near the low-tide waterline (near timestack 3). After the 

measurements on April 14 indicated only minor differences in the sediment water content 

seaward and landward of the detected wet-dry boundary, another short experiment was 

undertaken on April 29th, 2011, to measure the elevation of the groundwater table relative to 

the beach face. A cross-shore transect of stilling wells (~tubes of 5 cm diameter with mesh at 

the lower end, buried to about 40cm deep) was deployed at 5 m spacing across the detected 

ground water seepage line (following the methodology in Bryan et al., 2009). The beach face 

and wells were surveyed using a Total Station into the same grid as the RTK-GPS 

measurements and the ground control points used to geo-reference the video camera. Water 

level in the wells relative to the top of the wells was measured using an electronic dip-well 

plumb (accuracy ~0.5 cm), and distance between the top of the wells and the beach face was 

measured using a measuring tape (accuracy ~0.5 cm). A rod was used to level the beach face 

around the wells prior to measurement. Four transects were measured, each at different stages 

of the falling tide, and different lighting conditions (due to changing cloud cover).  

3.3  Data set selection 

We selected fourteen days from the database of images for analysis during the period October 

2007-July 2009, for which all (approximately twenty per day) half-an-hour time-averaged 

images and timestacks were analysed. The selection criteria were: 1) spring-tidal conditions, 

2) high-quality images (i.e. no fog, heavy rain or sun glare), 3) ebb-tide occurring during 
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daylight hours and 4) a representative range of offshore wave conditions. Figure 5 shows the 

selected days together with all available wave, water level and rainfall data. Table 1 provides 

the wave, tide and rainfall conditions for the 14 selected days. The mean wave height during 

the whole period was  Hsig,mean = 1.85 m with a standard deviation of �H = 0.91 m. Days with 

Hsig < Hsig,mean – 0.5�H are selected as low-wave events whereas high-wave events are days 

with Hsig >Hsig,mean + 0.5�H . Low-wave events (Hsig < 1.39 m) occurred on day 3 and 12, 

which were during the Southern Hemisphere Summer (Table 1). A high-wave event (Hsig > 

2.30 m) in summer occurred on day 1. In winter, low-wave events occurred on day 4, 7 and 

14, high-wave events occurred on day 6, 8 and 13. On day 2, 5, 9, 10 and 11, wave heights 

were moderate (1.39 < H < 2.30 m). Excess rainfall (P > 75 mm) occurred the day prior to 

day 12 (Figure 5). A high cumulative rainfall, Pcum > 200 mm, occurred in the month 

(calculated over ~27 days) prior to day 8 and 14. Day 1, 2, 3, 4 and 5 were after a relatively 

dry month (Pcum < 60 mm, Table 1).  

 

4  Results 

4.1 Validation 

The relationship (f1) developed from the map of the intertidal region created using the 

variation of the shoreline and the tide compared well to the relationship derived using the 

surveyed beach profiles giving rms errors of 0.09 m, 0.07 m, 0.1 m for stack locations 1, 2 

and 3 respectively (Figure 6). In each case the incoming tide mapped a profile that was below 

the true profile and the outgoing tide mapped a profile that was above the true profile and 

when a line was fit to the measurements, the result caused a bias that was slightly below. In 

addition to this error, we estimate a ~ 4 cm error originating from fitting the profile with two 

lines. This means that our method for evaluating the seepage face elevations resulted in 

elevations that were ~ 10±4 cm below the true seepage face values.    
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The results from the following two field experiments showed that the groundwater seepage 

line detected from video relates more to the level of the water table than to a distinct 

difference in the water content of sediments. The choice of threshold for the Value used to 

detect the seepage line corresponded to the water content of the sediment exceeding 42% 

(Figure 7, Panel F). Although this may depend on the cross-shore variation of grain size 

characteristics (Figure 7, Panel A), the results plotted on Figure 7A and F are from 3 different 

times, and two different locations (near timestacks 2 and 3), suggesting only minor sensitivity. 

The threshold of Value used to detect the wet-dry boundary corresponds to the point at which 

the groundwater table is less than 2±1 cm from the surface of the beach (Figure 7 B-E). 

Average grainsize near timestack 2 was 0.27 mm (medium sand), and the one sediment 

sample collected near timestack 3 was 0.43 mm.  

3.2 Long term variations 

Our analysis of the wet-dry boundary and shoreline elevations indicated 6 days where the 

difference in elevation between the wet-dry boundary and the shoreline, �z, remained 

approximately constant as the tide varied (which we will define as ‘coupled’ ground water 

seepage line (GWSL)). During the other 8 days, the wet-dry boundary and the shoreline 

decoupled, and around low tide, the wet-dry boundary (which we will define as an 

‘uncoupled’ GWSL) was at a much higher elevation than the shoreline. Figure 8 shows 

examples of both cases. In this Figure, the arrow shows that �z at low tide is quite different in 

these two cases. In Figure 8B, the wet-dry boundary is super-elevated above the shoreline at 

low tide (coupled), whereas in Figure 8A, the �z is not much different at low tide and at high 

tide (uncoupled). At high tide, �z ranged between 0.1 and 0.8 m.  
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For days when a coupled GWSL developed (e.g. Figure 8A), we found �z to depend 

positively on run-up height, Hru, and run-up period, Tru (Figure 9, statistically significant at 

the 95% confidence level). Here, Hru was determined as the difference between the mean 

minimum and mean maximum run-up from the timestacks. Tru was determined for each 

studied day from the mean time difference between the manually digitized maximum run-up 

points in each individual timestack (Figure 3). Therefore on these days when a coupled 

GWSL developed, the wet-dry boundary is likely related to the upper swash limit. This would 

suggest that �z was about equal to the difference in elevation of the run-up maxima and the 

shoreline. From our analysis of the maximum run-up in relation to �z on days without 

decoupling, we found that �z was about equal to the difference in elevation of the shoreline 

and the 90% upper limit of the swash maxima. The increase in �z with Hru and Tru reflects the 

increasing importance of infragravity (0.004s�0.05s) waves to the swash, both through a 

larger input of infra-gravity energy from offshore and through wave-wave overtaking in the 

swash (Guza and Thornton, 1982; Ruessink et al., 1998). The wave-wave overtaking was 

clearly visible from the timestacks, as not every individual incident wave resulted in a run-up 

maximum. Outliers of �z in Figure 9A and B may be caused by inadequacies in the 

determination of the elevation of the wet-dry boundary due to, for instance, irregular beach 

morphology. Here, the beach profile was approximated by two straight lines, one for the 

upper beach face and one for the lower beach face, and the validation experiments indicate 

that this could cause a minor error (~4 cm) in the calculation of �z.  

  

During 8 of the studied cases, the wet-dry boundary decoupled from the shoreline (e.g. Figure 

8B), during ebbing tide. An uncoupled GWSL formed and �z at low tide could exceed �z at 

high tide by up to 2 m. Considering all 8 days with decoupling of the GWSL and the 

shoreline, the variance of �z at high tide is 0.03 m2 , which is considerably smaller than the 
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variance of �z, 0.77 m2,at low tide. This suggests that at low tide the variation in �z is related 

to the elevation of the beach groundwater table, rather than to run-up parameters only. The 

photo in Figure 2 suggest that a decoupled seepage face might vary considerably spatially. 

Figure 10A shows a positive relation between �z at low tide and the cumulative rainfall, Pcum, 

at all days (statistically significant at the 95% confidence interval). Figure 11 indicates that a 

summation period for Pcum between 12 and 40 days resulted in the highest correlations R2 

between Pcum and �z at low tide. The lower R2 for summation periods < 12 days suggests that 

an elevated low tide seepage line does not occur directly in response to a single large rain 

event. This might explain why the results for summer day 12 (�z ~ 0.3 m, Pcum ~150 mm) 

appear to be anomalous in Figure 10A, because there was a single rain event 2 days prior to 

day 12 only. The cluster of points in Figure 10 A at  �z ~ 2.5 m  and Pcum ~ 230 mm 

correspond to points that are anomalously high in the Tru and �z relationship shown in Figure 

10B. When Pcum < 200 mm, Tru and �z at low tide are positively related (statistically 

significant at the 95% confidence level). This suggests that Pcum can be quite large (although 

still less than 200 mm), for the �z at low tide to be somewhat influenced by run-up dynamics. 

 

5  Discussion 

The current findings show that video can be used to study the dynamics of the groundwater 

seepage line, as long as a method to deal with the vertical elevation needed for rectification is 

employed. Our results show that earlier techniques that based the detection of the shoreline on 

HSV (e.g. Aarninkhof et al., 2003) may only detect the shoreline in cases where the 

groundwater seepage line is close to the elevation of the shoreline. Otherwise, a HSV 

thresholding algorithm might detect the seepage line rather than the shoreline, which may be 

up to 2.5 m higher in elevation (corresponding in our case to ~ 150 m landward) than the true 

shoreline. Although, Ngaranui beach is a medium sand beach with unusually low slope, and 
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this low slope may account for the development of a seepage face, many other studies have 

shown the existence of a decoupled seepage face (e.g. Emery and Foster, 1948; Duncan, 

1964; Nielsen, 1990; Turner et al., 1997). Other techniques, e.g. the SLIM algorithm (Madsen 

and Plant, 2001; Plant and Holman, 1997), define the shoreline based on the occurrence of a 

bright-band associated with shore break. This bright-band is, however, generally absent on 

dissipative beaches (Aarninkhof et al., 2003; Plant et al., 2007; Wright and Short, 1984). For 

example, the time-averaged image in Figure 4A does not show a bright-band for the swash 

zone at the current field site (the swash zone in Figure 4A is at the location of the white 

circles). Possibly, variance images can be used to track the shoreline, because at the shoreline 

run-up causes a continuous variation of high and low intensities leading to a high variance 

(Holland et al., 1999; Holman and Stanley, 2007; Pearre and Puleo, 2009), and attempts have 

been made to track shoreline using variance images; however, variance images were not 

collected in our study.  

 

Our results show that the video detects two types of groundwater seepage line, one in which 

the shoreline and seepage line are decoupled and one in which they are coupled and so the 

seepage line is influenced by swash. When the groundwater seepage line was within the range 

of run-up (coupled), depending on the run-up amplitude, there was a probability that the run-

up would overtop the seepage line, and cause a local increase in the seepage line. In the 

second case, the groundwater seepage line was higher than the range of maximum run-up, and 

so was unaffected by ground water variations. When the seepage line was coupled with the 

shoreline, examination of the timestacks showed that the seepage line increased in elevation 

each time an anomalously high swash event overtopped the seepage line. When the shoreline 

and GWSL were strongly coupled, this occurred regularly, and as the GWSL and shoreline 

decouple, the probability of this occurring gradually decreases. Figure 9 shows that the 
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influence of swash height and period become increasing less important as the degree of 

coupling increases.  The steepness of the cross-shore profile in Value (Figure 4B) near the 

seepage line depends on the rate of change of the seepage line during the 10 minute stack 

period, which in turn will depend on (1) the swash variations when �z is small and (2) the low 

tide �z value when the seepage line and shoreline are decoupled.  The low tide �z value and 

the tidal range will determine the elevation change of the seepage line between high and low 

tide (and the speed at which the seepage line moves across the beachface). The timestack 

displayed in Figure 3 shows a slowly falling seepage line, unaffected by the swash variations. 

 

Our technique for measuring the groundwater seepage line from video has a number of errors 

which we estimate to be smaller than the �z measurements we made in the majority of cases. 

The validation experiments suggest that the largest source of error is caused by determining 

the beach profile using the shoreline variation across the beach face over a tidal cycle. Figure 

6 shows that although the shorelines detected on the incoming and outgoing tide were lower 

and higher than the actual waterline, fitting a profile line caused an error in elevation of order 

10 cm ± 4cm. The bias in our shorelines may be caused by neglecting the effect of wave set-

up (Aarninkhof et al., 2003 include this). The bias may be caused by the relationship between 

the mean waterline as detected by an array of stilling wells and the water line detected by the 

averaging swash variations.  Bryan et al. (2008) use measurements from an intermediate 

medium sand beach to show that there may be differences of order 1.5m in the horizontal and, 

considering their beach slope of 0.025, ~ 0.04 m in the vertical. Presumably these differences 

would depend on the statistical characteristics of swash which are influenced by wave height 

and period, beach slope (Huntley et al., 1977), tidal variations (Guedes et al., 2011) and 

friction (e.g., Raubenheimer et al., 2004), and could be larger on a dissipative beach. Finally 

our thresholds for detecting seepage line from the Value measurements provide measurements 
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that are within a few centimetres of the elevation of true groundwater seepage line (as 

measured by stilling wells). It is possible that variations to the optical characteristics of the 

sand will also change these thresholds.  Therefore, although our method is universally-

applicable, and the patterns we detect are greater than the possible sources of error, validation 

of both the intertidal mapping algorithms and the thresholds used in image processing should 

be undertaken for research applications at new field sites.  

 

The present results indicate that there is a positive relation between the Pcum of 15-30 days 

prior to the analysed days and �z at low tide (Figure 11). The increase of groundwater level 

with rainfall is consistent with Horn (2002), Horn (2006) and Turner et al. (1997), who stated 

that rainfall increases the elevation of the beach water table and causes therefore a super-

elevation of the GWSL above the shoreline. Turner et al. (1997) related the elevation of the 

GWSL to the significant rainfall over 48 hours (>200 mm), however, they did not analyse the 

relation to Pcum over a longer summation period and this type of results are likely to be driven 

by the local setting. Our data do not show a direct relationship between the elevation of the 

GWSL and the rainfall occurring on the day of sampling. This might be due to the difference 

in morphology of the beach between the present research and the research of Turner et al. 

(1997). The correlation with Pcum was relatively low, either indicating that Pcum was not 

linearly related to the water table elevation, which is not surprising given the complex 

dynamics of water movement through coastal aquifers. We also did not find a correlation with 

the spring tidal range, and correlations with Hru and Tru occurred only when �z was small. A 

shortcoming of this work is that we did not measure the temporal variation of grainsize 

characteristics even though the measurements taken during the validation experiments are 

similar to 0.31 mm reported in Laurent (2000). Simple calculations using the SEEP model 

provided in Turner (1993) indicate that grain size variations of 0.23 m – 0.43 m (the extremes 
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that we measured) would only cause variations to the seepage face height  of < 1cm, so it is 

safe to assume that variations in the hydraulic conductivity would not explain the changes to 

�z that we observed. 

 

In summary, our results (14 cases) show that when there has been a high level of rainfall 

during the previous month (~57% of the cases) the water table becomes elevated relative to 

the mean sea level. In this case the water does not seep rapidly enough through the beach face 

for the seepage line to fall with the tide. We speculate that this is not because the hydraulic 

conductivity of the beach changes between these events, but because there is a higher pressure 

gradient on the beach caused by the elevation difference between mean sea level and the 

water table. In the remaining 43% of cases, the inland water table was likely to be much 

lower, so the horizontal pressure gradient was smaller, and the hydraulic conductivity 

sufficiently high relative to the pressure gradient for the water to drain from the beach face at 

a similar rate than the falling tide. In these cases, swash can occasionally overtop the seepage 

line and cause small increases to the seepage line.  The probability of this occurring is greater 

with larger swash periods and heights. Having only sampled 14 cases, with the main objective 

to test whether it is useful to develop a technique to extract decoupled seepage line variations 

from video, we do not know whether our results represent the natural variation of the seepage 

line characteristics at Ngaranui Beach. The influence of rainfall on beach groundwater 

dynamics is often not taken into account in existing models. Our study suggests that besides 

run-up characteristics, cumulative rainfall may partly cause the super-elevation of the beach 

water table, and we thus cannot ignore the latter process in modelling groundwater seepage.  

 

6  Conclusions 
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The dynamics of the seepage line and the shoreline have been investigated using video-

imagery. A useful method to extract the wet-dry boundary in video imagery is proposed, 

using variations in Value in oblique video images which are rectified using the beach profile 

generated as the videoed shoreline moves across the beachface. The method was tested 

against validation data, and estimates of error are on the order of 0.15 m. This methodology is 

necessary when the seepage line is decoupled from the shoreline, so that the sealevel cannot 

be used for rectification. This occurred often (~50%) in the cases tested on this medium-sand, 

low-sloped beach. The method is expected to be applicable on beaches characterized by low 

slopes, fine grain sizes and large tidal ranges, and will be evident when the separation 

between the swash zone (as detected in timestacks or variance images) and the region of 

rapidly changing Value in the time-averaged images is greater at low tide than at high tide.  

 

When the seepage line is coupled with the shoreline, the seepage line variations during the 

tidal cycle are related to swash dynamics. When the groundwater seepage line decouples from 

the shoreline with falling tide, the super-elevation of the GWSL above the shoreline at low 

tide is related to the cumulative rainfall in the preceding 15�30 days and to a lesser extent to 

the swash variations. The super-elevation is not related to incidental rainfall, but only to a 

high cumulative rainfall. At high tide, the groundwater seepage line was always coupled to 

the shoreline and varied with the influence of swash dynamics only.  

 

The outcomes of this study encourage further use of video imagery to investigate the changes 

in groundwater seepage characteristics over large spatial and temporal scales and the 

influence of these on beachface erosion and accretion patterns. Earlier techniques that identify 

the shoreline as the wet-dry boundary in Hue-Saturation-Value space will only be valid when 
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coupling occurs, otherwise, they will identify the groundwater seepage line and not the 

shoreline.  
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FIGURES 
Figure 1: A map of Ngaranui Beach, Raglan, New Zealand.  
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Figure 2: A snap-shot photo of swash and the groundwater seepage face at Ngaranui Beach, 
Raglan, New Zealand. (photo provided by Dave Roper). Groundwater seepage occupies the 
upper part of the beach and can be seen because of its shiny appearance. The swash zone is 
offshore of the seepage face. Channels draining the beachface can be seen in the upper part 
of the beach.  
 
Figure 3: Example of a timestack. The white curved features in the image represent breaking 
waves and bores propagating onshore with time, ending as swash and backwash (run-up 
oscillations) on the beach. The maximum run-up points are marked with black circles (the 
mean is the bold white line on the right side), the minimum run-up points are marked with 
black stars (the mean is the leftmost white bold white line). Maximum and minima are 
digitized manually. The run-down minimum is at the intersection of the run-down (which is 
outward-moving intensity minimum in the image) with the following run-up. The mean run-
up, swash mean, or shoreline is the black bold line. The grey featureless area to the right of 
the run-up oscillations is the subaerial saturated beach, and the brown area to the far right of 
the image is the unsaturated beach.  
 
Figure 4: A) Example of a time-averaged image. The thick white alongshore line is the 
detected wet-dry boundary. The open white circles are position of the shoreline along the 
cross-shore lines of the individual timestacks. The locations of the timestacks are plotted with 
a long-dashed white lines. The crosses are the positions of the bench marks used for 
surveying (and also used for the beach profiles done in Wood (2009), which are marked with 
short-dashed white lines).  B) An example of the Value from the time-averaged image along 
the second timestack position. The dashed line is the rawdata, and the bold grey line is the 
Value smoothed with a 10-pixel moving average. The threshold used for detecting the wet-dry 
boundary is marked with a horizontal black line and the intersection of the Value and the 
threshold is marked with a black cross.  
 
Figure 5: Tidal water level fluctuation (A), wave height (B), wave period (C) and daily 
precipitation (D) at Ngaranui Beach. Vertical lines are the days selected for analysis.  
 
Figure 6: The beach profile along the 3 time stacks (stack 1: diamonds, stack 2: squares, 
stack 3: circles). The open symbols are the profiles extracted from video and the filled 
symbols are the surveyed beach profiles. The dashed lines are the best fit lines to the surveyed 
profiles, and the solid lines are the best fit lines to the video-derived profiles. Data were 
collected on the 7th (video) and 8th (survey) of November, 2010.  
 
Figure 7: Panel A: Sediment characteristics at the approximate location of timestack 2 
collected on April 14th, 2011. Panels B-E, the cross-shore distribution of Value (thin lines, 
right hand scale) extracted from the image at the approximate location of timestack 2, taken 
on April 29th, 2011. The water table elevation relative to the beach face (thick lines, left hand 
scale). Vertical dotted lines correspond to the Value threshold used for that image.  Panel F: 
Cross-shore distribution of sediment water content taken at 2 different locations on April 14th, 
2011, close to the positions of timestacks 2 and 3 (lines, left scale). The Value data have been 
normalised and standardised. Cross-shore distribution of water content (circles, left scale).  
 
Figure 8: Examples of the elevation of the shoreline (black circles) and of the seepage line 
(white triangles) over a tidal cycle. In case A) the separation of the groundwater seepage and 
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shoreline is the similar at low and high tide and B) the groundwater seepage line and 
shoreline separation is much larger at low tide than high tide.  
  
Figure 9: The elevation difference, �z, versus a) run-up period, Tru and b) run-up height, Hru, 
for the days with a coupled seepage line. The vertical lines represent the distribution of �z  at 
increasing classes of Hru and Tru. The circles represent the median in each class, and the bar 
represents the 90% and 10%   ranges in each class. 
 
Figure 10: The elevation difference �z between the shoreline and the seepage line for all days 
at low tide, �zLT, versus a) the cumulative rainfall prior to the analysed day, Pcum,(calculated 
over 27 days) and b) the period of the wave run-up at the beach, Tru. Black (gray) dots refer 
to winter (summer). The cumulative period for Pcum is taken as 27 days (highest R2 in Figure 
11). However, the results were essentially the same for all Pcum in the range between 12 and 
40 days. Each day is represented by 3 dots, one for each timestack. The dots with �z at low 
tide >~ 0.8 m correspond to situations when a GWSL developed.  
  
Figure 11: Goodness-of-fit, R2, of the correlation between �z  and Pcum , where the range over 
which Pcum is calculated is varied from 1 to 70 days.  
 
TABLES: 
Table 1: Conditions during the 14 days chosen for analysis, where Hsig is the significant wave 
height, Tmean is the mean spectral period, P is the rainfall on the day of sampling, and Pcum is 
the cumulative rainfall. 
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Day Date Hsig 

(m) 
Tmean 
(s) 

Tidal Range 
(m) 

P 
(mm) 

Pcum
1

(mm) 
1 26/10/2007 2.88 7.61 3.43 0 59.9 
2 8/11/2007 1.63 5.75 2.32 0 56.2 
3 9/12/2007 0.77 8.39 2.5 0 43.5 
4 21/03/2008 1.06 8.29 2.85 0 31.1 
5 5/04/2008 1.69 9.35 3.14 0 55 
6 19/04/2008 2.81 7.36 2.52 0 110.5 
7 19/05/2008 0.87 6.62 2.44 0 143.9 
8 1/08/2008 3.14 6.81 3.08 14.4 229.5 
9 15/09/2008 1.46 7.98 2.98 0 107.8 
10 26/11/2008 1.71 8.18 2.29 0 69.5 
11 12/12/2008 1.65 5.78 3.01 0 69.9 
12 26/12/2008 1.06 7.43 2.06 0 151.7 
13 10/03/2009 2.30 6.71 3.06 0 151.3 
14 24/05/2009 1.36 7.59 3.02 2 204.4 

1Cumulative rainfall over the preceding 27 days 
 
 
Table 1: 
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Research highlights 
- New method proposed to extract the wet-dry boundary in video imagery using the 

Value. 
- Wet-dry boundary is related to groundwater seepage on specific kind of sand beaches. 
- Wet-dry boundary may not always be a good indicator of the position of the shoreline.  

 




