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Abstract. This paper introduces the first author’s PhD project which
has just got out of its initial stage. Biological sequence data is, on the
one hand, highly structured. On the other hand there are large amounts
of unlabelled data. Thus we combine probabilistic graphical models and
semi-supervised learning. The former to handle structured data and the
latter to deal with unlabelled data. We apply our models to genotype-
phenotype modelling problems. In particular we predict the set of Single
Nucleotide Polymorphisms which underlie a specific phenotypical trait.
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1 Introduction

Biological data is highly structured in many different aspects. First of all there
is an obvious structure in the sequence of DNA bases and amino acids. Different
parts of a sequence, even far away from each other, can interact. These inter-
actions may depend upon time and place. Another example is the regulatory
network of gene expression which is a complex system.

In recent years there has been a push for methods that are able to deal with
this kind of data, because, traditionally, Machine Learning has focused on inde-
pendent and identically-distributed (iid) data [1]. This is why it is important to
extend recent advances in machine learning theory and practice to structured,
interdependent data.

2 Structured Data

As complex structured data becomes the focus of research, probabilistic graphical
models become more and more important. They are well-founded in probabilistic
and graph theory. Consequently a graphical model is a family of probability
distributions that factorise according to an underlying graph [2]. A common
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distinction between probabilistic graphical models is to differentiate between
generative and discriminative models.

A generative model models the full joint probability distribution p(y, z) where
the variables y stand for the attributes of the entities we wish to predict and x
stand for our observed knowledge [2].

In contrast a discriminative model is directly based on the conditional proba-
bility p(y|z) [2-4]. Sutton and McCallum [2] point out that the crucial difference
between a generative and a discriminative model is that the latter does not in-
clude a model for p(z). First of all, for a classification task this model isn’t
needed anyway, secondly it often contains highly dependent features. Thus it is
hard to model. However, if we want to integrate interdependent features in a
generative model, Sutton and McCallum [2] offer two possibilities. On the one
hand, potentially unwarranted independence assumptions can help, on the other
the introduction of additional parameters can solve the problem. The second ap-
proach can only be used in a limited way because the model can easily become
intractable. In contrast there exist well-known examples for the first approach
e.g. Naive Bayes works well in document classification, but the independence
assumption can also hurt performance on average across a range of applica-
tions where its discriminative counterpart logistic regression outperforms Naive
Bayes [5].

We are looking at probabilistic graphical models for sequences. A Hidden
Markov Model (HMM) is a well-known generative model for sequences. Its dis-
criminative counterpart is a Conditional Random Field (CRF). This research
project will focus on this discriminative technique. A CRF can be seen as an
extension of logistic regression to arbitrary graphical structures [2]. Thus, in ad-
dition, CRF's relax the independent and identically-distributed assumptions in
the sequence itself and between sequences. In Bioinformatics they have been suc-
cessfully applied to gene prediction, RNA structural alignment, protein structure
prediction [2] and finding gene and protein mentions in the literature [6].

3 Unlabelled Data

In many areas including Biology there exists a large amount of unlabelled data,
because labelling is often difficult, time-consuming and expensive.

In this context where labelled and unlabelled data exists semi-supervised
learning is a new approach in Machine Learning. It uses a potentially large
amount of unlabelled data together with a usually small amount of labelled data
to build a classifier. Generative models are the oldest semi-supervised learning
technique [7].

Usually we can get p(x) from unlabelled data [7]. For discriminative learning
it is believed that semi-supervised learning cannot help if p(x) and p(y|x) do
not share parameters [7,8]. But, as a lot of approaches show, semi-supervised
learning can outperform supervised learning when it is applied carefully and the
underlying assumptions are correct [7]. Current research tries to adapt discrim-
inative techniques to semi-supervised learning [9, 1].



4 Genotype-Phenotype Modelling

We are investigating biological sequences in particular sequences of single nu-
cleotide polymorphisms (SNPs) where each one is a sequence alternation of a
single nucleotide in a DNA sequence which occurs in at least one percent of the
population.

A fundamental problem in contemporary genetics is the relation between
genotype and phenotype known as genotype-phenotype modelling. Examples in-
clude identifying superior dairy cows that is identifying genes that are responsible
for phenotypical traits which increase economic merit [10].

A lot of SNPs have been identified by high-throughput methods and need
now to be analysed. SNPs can be used as genetics markers but they are also a
reason for phenotype differences even though most SNPs have no effect on the
phenotype. This is why it is important to find the SNPs that are related to a
particular trait. This problem is called tagSNP selection [11]. Lee [11] emphasises
the need for new, probabilistic methods.

As the number of discovered genes that contribute to a specific phenotype
grows, so does the complexity of models describing genotype-phenotype rela-
tions [12]. Rodin [12] suggests the use of probabilistic graphical models to rep-
resent this kind of structured data.

5 Research Synopsis and Project Status

This PhD project aims for advances in genotype-phenotype modelling by the use
of probabilistic graphical models, especially Conditional Random Fields. Due to
the fact that in biological domains there is a vast amount of unlabelled data, the
incorporation of semi-supervised learning methods is an important aspect. The
primary source of data are biological sequences.

From a Machine Learning point of view the underlying hypothesis is that
discriminative techniques should outperform generative ones on a classification
task [9]. This statement is supported by Vapnik [13], who argues that it is bet-
ter to solve the classification problem directly than looking at the more general
problem of modelling the joint probability distribution as an intermediate step.
However the work of Ng and Jordan [14] shows empirical results suggesting that
discriminative learners have a lower asymptotic error but generative models ap-
proach their (higher) asymptotic error faster. Research in this area will also lead
to get some more insights in the differences between generative and discrimina-
tive modelling.

We expect that the adaptation of models to perform semi-supervised learning
should enhance them. However first results also highlight that there is a lack of
appropriate graphical structures for biological problems. This is crucial, because
the graph determines how a family of distributions get factorised. Because the
problems are highly structured, a good representation of the structure is essen-
tial.

This allows two possible ways of optimisation: Using semi-supervised learning



and enhancing the graphical structure. Currently a combination of both seems
to lead to promising results. The next step is to define an exact optimisation
criterion.

We are going to build models using Conditional Random Fields and apply

them to SNP data first. Currently we are setting up an experimental environment
and pre-processing the data so that it can be used to solve the tagSNP problem.
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