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Abstract

Archaea are the least understood members of the microbial community in

Antarctic mineral soils. Although their occurrence in Antarctic coastal soils has

been previously documented, little is known about their distribution in soils

across the McMurdo Dry Valleys, Victoria Land. In this study, terminal-restric-

tion fragment length polymorphism (t-RFLP) analysis and 454 pyrosequencing

were coupled with a detailed analysis of soil physicochemical properties to

characterize archaeal diversity and identify environmental factors that might

shape and maintain archaeal communities in soils of the three southern most

McMurdo Dry Valleys (Garwood, Marshall, and Miers Valley). Archaea were

successfully detected in all inland and coastal mineral soils tested, revealing a

low overall richness (mean of six operational taxonomic units [OTUs] per

sample site). However, OTU richness was higher in some soils and this higher

richness was positively correlated with soil water content, indicating water as a

main driver of archaeal community richness. In total, 18 archaeal OTUs were

detected, predominately Thaumarchaeota affiliated with Marine Group 1.1b

(> 80% of all archaeal sequences recovered). Less abundant OTUs (2% of all

archaeal sequences) were loosely related to members of the phylum Eury-

archaeota. This is the first comprehensive study showing a widespread presence

and distribution of Archaea in inland Antarctic soils.

Introduction

The McMurdo Dry Valleys of Antarctica encompass the

largest ice-free area (4500 km2) on the Antarctic continent

(Levy, 2012). These typically U-shaped glacial valleys were

primarily formed by a series of major glacial advances of

ice sheets located between the Polar Plateau and the

western coast of the Ross Sea, Southern Victoria Land

(Denton et al., 2004). Each of these westward flowing ice

fluctuations was successively less extensive than the former

(Brook et al., 1995; Denton et al., 2004) resulting in differ-

ent types of deposits and landforms within each valley, that

is, different types of glacial push moraines, calcareous

sandy eolian and fluvial sediments, and bedrock domi-

nated by granite and metamorphosed rocks (Elberling

et al., 2006). Classified as a hyperarid desert, Dry Valley

soils are thought to be the driest, coldest ecosystem on

Earth (Stonehouse, 2002). Due to the dry atmosphere,

snowfall is typically ablated almost immediately, resulting

in minimal liquid–water input to soils (Wynn-Williams,

1990; Doran et al., 2002; Gooseff et al., 2012; Eveland

et al., 2013). Dry Valley soils are also characterized by

large daily temperature variations during the Austral

summer (�12 to 5 °C) (Doran et al., 2002; Aislabie et al.,

2006), high salinity (Bockheim, 1997; Poage et al.,

2008), and low nutrient availability (Vishniac, 1993). The

effects of such severe physiochemical soil conditions

combine to create one of the harshest environments known

to support life (Bockheim, 2002; Barrett et al., 2007).

Consequently, vascular plants and vertebrates are absent,

while a number of invertebrate species and bacteria are

widely distributed and dominate the entire Dry Valley soil
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food web (Adams et al., 2006). Physicochemical soil

parameters such as availability of water, soil organic car-

bon and nitrogen, salinity, and temperature are the deter-

mining factors of habitat suitability for soil communities

(Freckman & Virginia, 1997; Barrett et al., 2004; Gregorich

et al., 2006).

Bacterial diversity is well documented within Dry Val-

ley soil microbial communities (Wynn-Williams, 1990;

Barrett et al., 2006; Smith et al., 2006; Niederberger et al.,

2008; Pointing et al., 2009; Lee et al., 2012). Although

surprisingly high levels of bacterial diversity have been

reported (Smith et al., 2006; Cary et al., 2010; Lee et al.,

2012), little is known about the presence, diversity, and

community composition of Archaea within Dry Valley

soils (Pointing et al., 2009; Yergeau et al., 2009). Only

coastal soils, adjacent to the Ross Sea, have been reported

to harbor archaeal communities (Ayton et al., 2010). This

is in stark contrast to temperate soils, where molecular

studies have revealed a widespread distribution of both

Thaumarchaeota and Euryarchaeota (Bintrim et al., 1997;

Jurgens et al., 1997; Buckley et al., 1998; Ochsenreiter

et al., 2003; Nicol & Schleper, 2006). Thaumarchaeota

may account for up to 5% of the total temperate soil

prokaryotic community (Buckley et al., 1998; Ochsenreit-

er et al., 2003) but are highly restricted to a few lineages,

namely Marine groups 1.1b and 1.1c (Jurgens et al., 1997;

Ochsenreiter et al., 2003; Nicol et al., 2006). Although a

worldwide distribution has been assumed due to their

detection in diverse soil environments (Ochsenreiter

et al., 2003; Nicol et al., 2005, 2006), molecular studies

failed to detect Archaea in many Antarctic soils, including

soils from the western Antarctic Peninsula (Yergeau et al.,

2009) and from McKelvey Valley in the McMurdo Dry

Valleys (Pointing et al., 2009).

It has been proposed that Dry Valley soil is an example

of an environment where abiotic factors (e.g., moisture,

pH, conductivity) have a stronger influence on the diver-

sity and structure of communities than biotic factors

(e.g., competition, herbivory, predation) (Convey, 1996;

Hogg et al., 2006; Pointing et al., 2009; Zeglin et al.,

2011; Lee et al., 2012). This makes Dry Valley soils a per-

fect model system for investigating the direct effects of

physicochemistry on microbial biodiversity and ecosystem

function, which is one of the main questions being

addressed by the New Zealand Terrestrial Antarctic Bio-

complexity Survey (nzTABS, http://nztabs.ictar.aq). As

part of nzTABS, this study aims to characterize the com-

position and structure of archaeal communities across a

wide range of Antarctic soils and to identify environmen-

tal factors influencing their distribution within three

smaller valleys (Miers, Garwood, and Marshall Valleys) in

the southern part of the McMurdo Dry Valley system.

Materials and methods

Site location, sampling, and physicochemical

analysis

Mineral soil samples were collected from four areas in the

McMurdo Dry Valleys (Fig. 1), located between the Royal

Society Range and the McMurdo Sounds at the lobe of

the Koettlitz Glacier: Miers Valley (78°60S 164°00E), Mar-

shall Valley (78°40S 164°100E), Garwood Valley (78°20S
164°100E), and Shangri-La, an elevated plain west of Mar-

shall Valley. Each valley is characterized by three different

types of glacial push moraines: (i) Moraine 1, located on

ridges up to 550 m high, is characterized by the relatively

old ‘McMurdo Glaciation’ deposits such as red porphy-

ritic rocks and wind-planed granite boulders (Pewe, 1958,

1960); (ii) Moraine 2, located inland on the valley floor

and along the coastal foothills, is characterized by older

glacial deposits (‘Marshall Drift’); and (iii) Moraine 3,

located around the coastal margins, is the result of the

youngest glaciation (‘Ross Sea Drift’) and is composed of

till and stratified sediments made up of clasts of dark,

volcanic rocks derived from the McMurdo Volcanic

Group (Brook et al., 1995; Denton et al., 2004). Samples

were collected along four transects (Fig. 1). A single tran-

sect was laid across each valley floor running from the

coast up to the inland glaciers at the end of each valley

(three total). The fourth transect crossed the granite

ridges of all three valleys (hereinafter ‘ridge transect’,

Fig. 1). Additional alluvial soil samples were taken from

the shores of Lake Miers (Miers Valley), Lake Colleen

(Garwood Valley), Lake Buddha (Shangri-La) and a pond

in the upper Marshall Valley.

A total of 36 samples (400 g each) were collected from

the top 2 cm of soil in 42 oz Whirlpak bags (Nasco, Fort

Atkinson, WI) with a sterile spatula. Large stones and

pebbles (> 2 cm diameter) were removed; the samples

homogenized and then split into two portions. One por-

tion was used immediately for electrical conductivity, pH,

and ATP measurements, and the remainder stored at

�20 °C for later analyses.

Electrical conductivity and pH were measured in the

field using a CyberScan PC 510 Bench Meter (Eutech

Instruments Pte Ltd., Singapore) using the slurry tech-

nique (Edmeades et al., 1985). ATP content was deter-

mined in the field using the 3MTM Clean-TraceTM Beverage

Test Kit (3M Centre, St. Paul, MN) following the manu-

facturer’s recommendations. Moisture content of soils

was measured gravimetrically in the laboratory by drying

40 g of each soil sample at 105 °C until samples reached

a consistent weight (Barrett et al., 2004). To determine

total soil organic carbon and nitrogen, each soil sample
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was air-dried and ground in a ball mill. Dry soil (300 mg)

was analyzed on a Flass EA ElanTech elemental analyzer

in Virginia Tech Ecosystem Analysis Laboratory (Barrett

et al., 2009).

Archaeal t-RFLP

DNA was extracted from the soil (600 mg) using a CTAB/

bead-beating extraction method (Niederberger et al.,

2008). Primers were designed to be as inclusive of Archaea

as possible, but in particular to provide coverage of archa-

eal sequences previously detected in the Antarctic,

although as with all primers as new sequences become

available, their coverage changes and primer bias is always

a potential problem. Archaea-specific PCR of the 16S

rRNA gene was performed in 25 lL reactions containing

200 nM of primer A92F (50–FAM-ACGGCTCAGTAAC

RC–30) (Buckley et al., 1998), 100 nM of primer A836R

(50–GTGCTCCCCCGCCAATTCCT–30) (Stahl & Amann,

1991), 3 mM MgCl2, 19 Platinum Taq PCR buffer, 0.4 U

of Platinum Taq DNA polymerase (Invitrogen Ltd., New

Zealand), 32 lg mL�1 bovine serum albumin, 200 lM of

each dNTP (Roche Diagnostics, New Zealand), 10 ng of

extracted template DNA, and UltraPureTM distilled water

(Invitrogen Ltd.). The master mix, containing all reagents

except the fluorescently labeled forward primer, was

treated with 0.1 lg lL�1 ethidium monoazide bromide

(Biotium Inc., Hayward, CA) by incubation in the dark

Fig. 1. Map of the Ross Sea Region,

Antarctica showing the McMurdo Dry Valleys

(black rectangle) and the study site (yellow

rectangle). 2. Locations of sampling points in

Miers Valley, Marshall Valley, Garwood Valley

(red), and Shangri-La (yellow). Red lines

denote moraine transects for each valley, and

the green line shows the ridge transect across

all three valleys.
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for 1 min followed by exposure to high wattage light for

1 min (Rueckert & Morgan, 2007). Amplification was per-

formed using an initial denaturation step at 94 °C for

2 min followed by 35 cycles of 94 °C, 20 s; 56 °C, 10 s;

72 °C, 40 s; and a final extension step of 72 °C for 5 min.

Triplicate PCRs were pooled together to minimize sto-

chastic PCR bias, purified (UltraCleanTM 15 DNA Purifica-

tion Kit; MO BIO Laboratories Inc., Carlsbad, CA),

resuspended in MilliQ water, and quantified using the

Qubit� fluorometer (Quant-iTTM dsDNA HS Assay Kit;

Invitrogen Ltd.).

Purified amplicons (100 ng) were digested at 37 °C for

3 h in 20 lL reactions containing 10–20 U of MspI, 19

Buffer 4 (Thermo Fisher Scientific Inc.) and UltraPureTM

distilled water followed by heat inactivation at 65 °C for

20 min. All reactions were stored at �20 °C until further

analysis.

Aliquots (2 lL) of the diluted (1 in 10 in UltraPureTM

distilled water) restriction digest were denatured in the

presence of 17.75 lL Hi-DiTM Formamide at 95 °C for

4 min and then chilled to 4 °C. The samples were loaded

onto an ABI 3130 xI sequencer (PE Applied Biosystems,

Foster City) and run under GeneScan mode at 15 kV for

45 min according to the manufacturer’s instruction. Each

sample contained 0.25 lL of the internal GS1200LIZ Zy-

Standard (PE Applied Biosystems) to determine the size

of fluorescently labeled fragments during analysis.

Data analysis

T-RFLP electropherograms were processed using PEAK-

SCANNER
TM v1.0 (PE Applied Biosystems). Peaks were de-

noised and binned using an in-house pipeline modified

from Abdo et al. (2006) written using PYTHON 2.7.1

(Python Software Foundation) and R (http://www.r-project.

org). Abdo’s method was modified to model parameters

for a log-normal distribution. Iteratively, peaks with an

area exceeding the 99.9% cumulative distribution of the

calculated log-normal distribution for noise were accepted

as true peaks. Peaks were binned into t-RFs with

width = 1 nt, and total peak area of each bin was used

to calculate relative abundance of each t-RF in a given

dataset.

The influence of physicochemical variables on the

community structure of the soil samples was assessed

using BEST (Bio-Environment Stepwise) analysis with the

PRIMER 6 software package (PRIMER-E Ltd., UK). The

BEST procedure calculates the value of Spearman’s rank

correlation coefficient (q) using every possible combina-

tion of variables until it finds the ‘best’ fit (i.e., the com-

bination of parameters whose Euclidean distance matrix

gives the highest q). The combination of geochemical

variables yielding the highest q are the most correlated

with archaeal richness. Physicochemical variables (water,

pH, conductivity, and ATP) showing no linear relation-

ship or a heavily skewed distribution were normalized

using square root transformation prior to BEST analysis.

Alpha-diversity (species richness) was analyzed using mul-

tiple regression, Pearson’s product-moment correlation,

and Spearman’s rank correlation implemented in R.

Pyrosequencing and noise removal

Ten PCRs were run for each of the four samples (299-1,

377-1, 77-2, and 567-1, Table 1) following the t-RFLP

amplification protocol described earlier. Individual PCRs

were subsequently pooled together and gel-purified using

the UltraCleanTM 15 DNA Purification Kit. Cleaned

amplicons were used as template (125 ng) in a second

PCR to attach 454-specific sequence tags to the 794-bp

PCR product. Amplification was performed using 454-

specific archaeal primers Ar14A-A92F and ArB-A836R

under conditions described for the t-RFLP PCR. Both

primers contained an adapter sequence at the 50 end, fol-
lowed by a key sequence and a unique tag sequence

(MID).

The final amplicon was gel-extracted using the Ultra-

CleanTM 15 DNA Purification Kit, cleaned using the Agen-

court AMPure XP Bead Cleanup Kit (Beckman Coulter

Inc.) and quantified (Quant-iTTM dsDNA HS Assay Kit).

Sequencing was performed at the University of Waikato

DNA Sequencing Facility (http://sci.waikato.ac.nz/research/

facilities/dna) using the GS Junior Titanium emPCR Kit

(Lib-L), the GS Junior Titanium Sequencing Kit, PicoTit-

erPlate Kit, and GS Junior System sequencer (Roche 454

Life Sciences, Branford, CT) yielding a mean read length

of 324 bp.

AMPLICONNOISE v1.22 (Quince et al., 2011) was used to

process raw flowgrams from each sample separately.

Reads matching sample-specific barcodes exactly were

required to extend for at least 360 cycles before the first

noisy signal (i.e., 0.5–0.7 or no signal in all four nucleo-

tides). Flowgrams were truncated at 360 cycles and pro-

cessed using PYRONOISE and SEQNOISE (Quince et al., 2011).

PCR chimeras were removed using PERSEUS, which is

included within the AMPLICONNOISE package. Sequence pre-

dictions were first required to perfectly match primer

sequences and then both barcode and primer sequences

were removed.

Identification of archaeal phylotypes

To separate archaeal from bacterial sequences, taxonomy

was assigned to each sequence using RDP Classifier

(Wang et al., 2007). All sequences that were classified as

either bacterial or archaeal at a high confidence level
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Table 1. Properties of soil samples analyzed and the number of t-RFLP phylotypes identified

Samples GM* Aspect Height† Slope MC‡ pH EC§ ATP¶ Total Organic C (%) Total N (%) C/N Ratio t-RFLP Phylotypes**

Miers Valley transect

538-8 M3 South 100 5 0.75 8.6 670 13 319 0.0239 0.0028 8.4 3

538-7 M3 South 98 6 0.75 8.6 670 13 319 0.3466 0.0522 6.6 5

507-1 M3 South 216 17 0.52 8.3 5130 36 519 0.0436 0.0068 6.4 13 (2)

504-1 M2 Flat 161 6 1 9.2 130 16 872 0.0391 0.0048 8.1 13 (3)

506-1 M1 North 178 5 0.82 9.7 924 7457 0.0526 0.0055 9.4 8 (2)

491-1 M1 South 393 16 0.99 9.2 140 30 964 0.0825 0.0102 8.0 7 (1)

474-1 Scr South 233 15 0.7 9.4 42 22 617 0.0479 0.0047 10.0 10

481-3 All Flat 164 5 1 9.8 370 99 864 0.2566 0.0223 11.5 9 (2)

Mean 0.82 9.1 1009 30 116 0.1116 0.0136 8.5 8.5

Std 0.16 0.5 1584 27 874 0.1130 0.0156 1.6

Marshall Valley transect

281-1 M3 South 172 9 0.59 7.5 789 53 0.0751 0.0072 10.4 3

287-2 M2 South 237 12 0.99 9.8 336 21 674 0.0455 0.0062 7.3 3

345-1 M2 North 185 8 1.01 8.4 130 41 447 0.5322 0.0768 6.9 8 (1)

299-1†† M1 North 285 9 1.01 8.9 310 75 331 0.1278 0.0161 7.9 7 (2)

377-1†† Gra East 756 23 1 9.3 70 38 739 0.0338 0.0031 10.7 9

378-1 Sch West 782 15 1 9.2 90 28 453 0.0474 0.0050 9.3 6

301-2 All Flat 555 Flat 1 8.3 60 32 991 0.0346 0.0035 9.8 11

Mean 0.94 8.7 255 34 098 0.1280 0.0168 8.9 6.7

Std 0.1 0.7 242 21 119 0.1678 0.0248 1.4

Garwood Valley transect

182-1 M3 North 104 10 0.99 8.6 136 10 817 0.0316 0.0021 15.0 10 (1)

125-2 M3 North 26 7 0.98 7.8 66 5980 0.1297 0.0138 9.3 3

125-1 M3 North 30 8 0.9 8.2 46 17 240 0.0283 0.0028 9.9 7 (1)

100-1 M3 East 8 6 0.99 7.9 868 10 270 0.0486 0.0049 9.9 8

77-2†† M2 North 98 5 1 8.9 57 6665 0.0744 0.0093 7.9 10 (1)

70-4 M2 North 134 4 0.99 9 114 11 123 0.0502 0.0048 10.2 2

65-4 M1 North 114 4 0.99 9.5 90 10 725 0.0724 0.0025 27.9 3

Mean 0.97 8.5 196 10 402 0.0621 0.0057 12.9 4

Std 0 0.6 276 3404 0.0321 0.0040 6.5

Ridge transect

567-1†† Gra East 647 16 1 7.8 90 7735 0.0446 0.0068 6.5 10

545-1 Gne North 374 12 0.45 8.4 29 40 034 0.0986 0.0139 7.0 1

511-2 M2 South 203 6 0.51 9.7 73 5057 0.0209 0.0031 6.6 4

288-1 M1 East 540 7 1.01 9.7 110 38 069 0.0336 0.0031 10.6 15 (2)

155-1 Gra North 910 22 0.99 8.3 33 2466 N/D N/D N/D 9 (1)

143-1 Gra North 866 21 0.97 8.3 29 1155 0.0477 0.0050 9.5 5

86-2 Gra North 462 26 0.99 9 48 3870 0.1142 0.0095 11.9 8

63-1 All Flat 357 2 0.99 8.5 84 3739 0.0540 0.0053 10.1 2

55-1 M1 South 678 36 0.99 9 56 20 209 0.0378 0.0048 7.7 4

Mean 0.87 8.7 61 13 592 0.0564 0.0064 8.7 6.4

Std 0.2 0.6 28 14 603 0.0306 0.0034 1.9

Shangri-La

4004-1 All North 393 3 0.41 9 58 861 0.1671 0.0041 39.9 2 (1)

108-1 Gra North 564 30 0.98 8.6 61 45 384 0.0747 0.0096 7.7 15 (1)

251-1 Gra North 645 13 0.99 9.1 50 39 488 0.0800 0.0095 8.3 9

295-1 Gra East 565 9 0.99 9 101 24 164 0.0487 0.0061 7.9 1

218-1 M1 North 400 6 0.98 8 754 10 286 0.0425 0.0065 6.4 4

Mean 0.87 8.7 205 24 036 0.0826 0.0071 14 6.2

Std 0.2 0.4 275 16 856 0.0446 0.0021 12.9

*Geomorphology: M1, Moraine 1; M2, Moraine 2; M3, Moraine 3; Gra, Granite; Sch, Schist; Scr, Scree; All, Alluvia; Gne, Gneiss.
†As meters above sea level.
‡Total soil moisture content as percentage.
§Soil electrical conductivity in lS cm�1.
¶As relative fluorescent units.

**Total number of phylotypes per sample based on t-RFLP results (unique phylotypes are given in parenthesis).
††These samples were used for 454 pyrosequencing.
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(> 80%) were either removed (Bacteria) or retained

(Archaea) for further analysis. Sequences that were

classified as Archaea and Bacteria at a low confidence

level (< 80%) were matched to genome sequences in

GenBank (http://www.ncbi.nlm.nih.gov/) using BLAST at

default settings. Sequences that were confidently identi-

fied as bacterial (> 99% max identity) were removed,

and sequences that could feasibly have come from

Archaea (> 70% max identity) were retained. All archa-

eal sequences were then manually checked for chimeras

by splitting the sequence in half, and using BLAST to find

best hits within the NCBI genome database. If one half of

the sequence could be confidently identified as bacterial

(> 99% max. identity) and the other half as archaeal,

the sequence was regarded as chimeric and subsequently

removed.

Phylogenetic analysis

Sequence alignment and all phylogenetic analyses were

performed using MEGA 4 (Molecular Evolutionary Genetics

Analysis software version 4.0, Tamura et al. 2007). Archa-

eal sequences and the bacterial isolate Thermoanaerobacter

methranii (outgroup) were aligned using CLUSTALW

(Thompson et al., 1994) and end-trimmed down to an

overlapping region present in all sequences: the final

length (in bases) of the overlapping region was 220 bp. All

positions containing gaps and missing data were elimi-

nated from the dataset (complete deletion option). There

were a total of 177 positions in the final alignment. The

unrooted phylogeny was inferred using the neighbor-join-

ing algorithm (Saitou & Nei, 1987) with Maximum Com-

posite Likelihood Distances (Tamura et al., 2004) and

tested using 1000 bootstraps. The resulting tree was rooted

on T. methranii (outgroup) to define clades. Archaeal

sequences generated in this study are deposited in the

Sequence Read Archive (SRA) under accession numbers

ERX141792-95 (experiments accessions) and ERR165915-

18 (runs accessions). Original pyrosequencing flowgram

files are also available from the SRA database (http://www.

ebi.ac.uk/ena/data/view/ERP001744).

Richness estimation

Pairwise distances between archaeal sequences were cal-

culated using ESPRIT (Sun et al., 2009), and sequences

were clustered into OTUs using mean neighbor cluster-

ing at a distance of 0.03 in MOTHUR (Schloss et al.,

2009). MOTHUR was also used to generate Venn dia-

grams and rarefaction curves based on the number of

observed OTUs and the Chao1 richness estimator

(Chao, 1987).

Results

Soil characteristics

Physicochemical properties of soil samples from four

valleys studied are shown in Table 1. Cluster analysis

based on Euclidean distance and multidimensional scaling

(MDS) ordination revealed no significant differences in

physicochemical properties between and within valleys

(data not shown). All mineral soils were alkaline ranging

from pH 7.5 to 9.8. Mean soil moisture content was low

in all samples, ranging from 0.82% (Miers Valley tran-

sect) to 0.97% (Garwood Valley transect). Electrical con-

ductivity, a representation of salinity, was lowest in the

ridge transect (ranging from 29 to 110 lS cm�1), while

the highest value was recorded in Miers Valley transect

(5130 lS cm�1). ATP content, a proxy for biological

activity, was low in Garwood Valley and ridge transects

(5980–17 240 RFU and 1150–40 034 RFU, respectively),

whereas samples from Miers Valley and Marshall Valley

transects showed a high ATP content (7457–99 864 RFU

and 21 764–75 331 RFU, respectively) with one exception

(53 RFU in Marshall Valley transect). Organic carbon

and total nitrogen contents were very low in all samples

(mean 0.09 � 0.01% and 0.03 � 0.005%, respectively).

Diversity and distribution of soil Archaea

Archaeal signals were detected using t-RFLP analysis in

all 36 soil samples, yielding a total of 21 unique t-RFLP

phylotypes with a mean of six phylotypes in each sample

(Table 1). The total number of phylotypes observed in

each transect was estimated by pooling the phylotypes

from all samples within each transect in silico. Species

richness was highest in the Miers Valley transect (nine

phylotypes per sample), followed by Marshall Valley

(seven phylotypes), Garwood Valley (six phylotypes), and

ridge transects (six phylotypes, Table 1).

The four samples selected for in-depth community

analysis, using 454 pyrosequencing, were chosen based on

(i) high t-RFLP species richness compared to the mean

number of phylotypes per sample (> six phylotypes) and

(ii) their geographical location within each valley, cover-

ing both the ridge transect (Miers Valley ridge and Miers

Marshall Valley ridge) and different types of moraines

(Marshall Valley moraine 1 and Garwood Valley moraine

2; Table 1). Sequencing yielded a total of 33 707 reads,

with a mean of 8427 reads per sample (Table 2). Flow-

gram clustering and denoising was performed, followed

by the removal of low-quality sequencing tags, bacterial

sequences, and chimeras (see Materials and methods),

yielding a total of 20 395 archaeal reads with a mean of
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5099 tags per sample. The total number of unique reads

was low (52, Table 2), and all unique reads were clustered

into 18 distinct OTUs using average neighbor at 3% dis-

tance.

Overall, the number of OTUs per sample was similar

for both pyrosequencing (5–10 OTUs) and t-RFLP (7–10
OTUs, Table 2). Richness estimates (Chao1) based on the

number of species observed using pyrosequencing agreed

well with the number of OTUs detected using t-RFLP

richness estimates (Table 2). The number of sequencing

reads (effort) required to discover a new OTU was calcu-

lated by taking the inverse of the terminal slope of the

rarefaction curves (Supporting information, Fig. S1) over

the last 500 reads (Table 2). On average, 2895 reads

would have been required to find a new OTU in moraine

samples, whereas 1624 reads would have been required in

ridge samples. These estimates suggest that the natural

communities were very well sampled by the sequencing

effort.

Archaeal community composition and

phylogenetic analysis

Of the 18 unique archaeal OTUs obtained from 454 analy-

sis, all but three were represented by sequences closely

affiliated with members of the phylum Thaumarchaeota.

The exceptions were OTUs 16–18, which belonged

to the Euryarchaeota (Table S1). Thaumarchaeota were

present in all soils, whereas Euryarchaeota (OTUs 16–18)
were not detected in ridge samples (Table S1). Among

known Thaumarchaea species, Nitrososphaera gargensis

(accession number GU797786) was the closest relative of

all observed thaumarchaeal sequences (87–98% maximum

identity). All thaumarchaeal sequences showed a high level

of identity to existing environmental sequences in the

database (93–100% identity over the 780 nucleotides

examined). Euryarchaeal sequences exhibited a similar

pattern of similarity, showing a maximum identity of 80–
85% to isolates and 92–98% identity to environmental

sequences.

Thaumarchaeota

Placement of OTUs within the Thaumarchaeota was sup-

ported by phylogenetic analysis (Fig. 2a). All sequences

clustered inside Thaumarchaeota Marine Group 1.1b (also

called Nitrososphaera cluster) (Fig. 2a). OTU 7 was the

most abundant thaumarchaeal OTU, representing 80% of

the recovered archaeal communities. Although this highly

abundant OTU was common to all samples, and 99% of

the ridge communities were comprised of OTU 7, OTU 7

only constituted 38% of moraine communities (Table

S1). The remaining 62% were comprised of OTUs 1–5,
and 8 (0.01–17% of all sequences), which were found

almost exclusively in moraines. The second most abun-

dant OTU (OTU 1) represented 17% of the estimated ar-

chaeal community and was closely related to N. gargensis

(GU797786, 93% maximum identity) (Hatzenpichler

et al., 2008) (Fig. 2a).

Euryarchaeota

Euryarchaeota accounted for 0.005–0.01% of all archaeal

sequences and included three OTUs (OTU 16–18) recov-

ered from inland moraines near the valley floor. OTU

16 contained three sequences found only in Marshall

Valley moraine 1 (Table S1), while OTU 17, represented

by a singleton, and OTU 18, represented by three

sequences, were only present in soil from Garwood

Valley moraine 2 (Table S1). Phylogenetic analysis

confirmed the placement of these OTUs within the

Euryarchaeota (Fig. 2b).

Table 2. Summary of total sequences, total OTUs, and diversity estimates (calculated using mean neighbor at 3% distance) for four archaeal

assemblages examined

Samples

Number of tags

Number of

OTUs
Chao1 Effort

A B C D E F G H I

Garwood Valley moraine 2 7740 5217 (25) 80 4931 22 10 10 10.5 2564

Marshall Valley moraine 1 10 349 7068 (14) 181 6830 15 6 7 6 3226

Miers Marshall Valley ridge 12 423 8496 (25) 44 7012 5 5 9 11 1706

Miers Valley ridge 3195 2108 (8) 64 1622 10 5 10 11 1543

Mean 8427 5722 (18) 92 5099 12.75 6.5 9 9.6 2260

A: Total number of tags matching MID without the preclustering step (see Materials and methods Pyrosequencing and noise removal). B: Total

number of tags passing AMPLICONNOISE (see Materials and methods Pyrosequencing and noise removal). Tags removed as Chimera in parenthesis.

C: Number of unique tags passing AMPLICONNOISE. D: Number of archaeal tags after removal of Bacterial sequences and manually identified chimeras.

E: Number of unique archaeal tags after removal of Bacterial sequences and manually identified chimeras. F: Number of OTUs based on 454 pyro-

sequencing clustered using mean neighbor at the 3% difference level. G: Number of OTUs based on t-RFLP results. H: Estimation of OTU richness in

samples. I: Number of sequencing reads required for discovering a new OTU calculated using terminus of rarefaction curves in reads/OTU.
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Environmental drivers of archaeal diversity

Multiple regression and BEST analyses were used to

investigate the influence of biogeochemical soil properties

(i.e., aspect, elevation, slope, soil moisture content, soil

pH, soil electrical conductivity, total organic carbon, and

total nitrogen) on archaeal community structure. A sig-

nificant correlation between archaeal diversity and water

content was observed (Table 3, P < 0.01), but BEST

analysis did not detect significant correlations between ar-

chaeal community structure and environmental parame-

ters (data not shown).

Discussion

Distribution and diversity of Archaea

We used t-RFLP fingerprinting and 454 pyrosequencing

to characterize archaeal richness in multiple Dry Valley

areas located in the subxerous, coastal climate zone, in

the McMurdo Dry Valleys (Campbell & Claridge, 1987).

In contrast to limited success by earlier attempts

(Pointing et al., 2009; Yergeau et al., 2009; Ayton et al.,

2010), we detected Archaea in all of the Antarctic soils

sampled in this study. Additionally, the extensive t-RFLP

analysis in this study extended the known range from

coastal areas (Ayton et al., 2010) to a variety of inland

landscapes such as meltwater stream deltas, coastal, and

terminal moraines, lake edges, hill slopes, ridges, and

polygons, including soils exceeding electrical conductivity

of 5000 lS cm�1 and pH greater than 9.5 (Table 1).

These highly alkaline and saline soils were previously

thought not to be colonized by Archaea (Ayton et al.,

2010).

Following t-RFLP analysis, four archaeal communities

(Miers Valley ridge, Miers Marshall Valley ridge, Marshall

Valley moraine 1, and Garwood Valley moraine 2) were

analyzed with greater scrutiny by 454 pyrosequencing of

(a) (b)

Fig. 2. Neighbor-joining tree of thaumarchaeal (a) and euryarchaeal (b) OTUs retrieved from Dry Valley soil. Reference sequences of Marine

Group 1 Thaumarchaeota and sequences of isolates representing the main phylogenetic lineages of Euryarchaeota were retrieved from GenBank.

Bootstrap values are calculated from 1000 replicates and are shown next to the branches. The scale bar shown represents a 5% difference in

nucleotide composition.
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16S rRNA gene PCR amplicons. The low number of

archaeal phylotypes from our study (mean of six OTUs

per sample) is comparable to low diversity estimates

reported for soils of the Ross Sea region (Ayton et al.,

2010), McKelvey Dry Valley (Chan et al., 2013) and simi-

lar environments such as the Canadian High Arctic (Steven

et al., 2008).

Small discrepancies between 454 pyrosequencing and

t-RFLP diversity estimates (Table 2) may be due to over-

estimation of the actual community richness by t-RFLP

analysis due to bacterial contamination (Dunbar et al.,

2001). This is supported by the relative high proportion

of bacterial sequences that were identified through

pyrosequencing (Table 2).

Thaumarchaeota marine group 1.1b

More than 99% of sequences retrieved from the Dry

Valley soils belonged to the newly described phylum

Thaumarchaeota (Brochier-Armanet et al., 2008; Spang

et al., 2010). The most abundant thaumarchaeal OTU

(OTU 7) exhibited a close phylogenetic relationship with

other Marine Group 1.1b Thaumarchaeota from moderate

environments (Friedrich et al., 2001; Stein et al., 2002;

Ochsenreiter et al., 2003; Nicol et al., 2006; Valenzuela-

Encinas et al., 2008) (Fig. 2a). Thaumarchaeal species

belonging to group 1.1b are highly abundant and ubiqui-

tous in terrestrial environments, where they can make up

to 5% of prokaryotic 16S rRNA genes (Ochsenreiter

et al., 2003; Bates et al., 2011; Pester et al., 2012; Stahl &

de la Torre, 2012). Recently, members of this lineage have

also been reported for coastal soils of the Ross Sea region:

Scott Base, Marble Point, Granite Harbour, and Victoria

Valley (Ayton et al., 2010) as well as in Antarctic cryoco-

nite holes (Cameron et al., 2012). Pesaro et al. (2003)

reported a higher resistance to freeze-thaw cycles for

members of group 1.1b than for members of group 1.1a

(Nitrosopumilus cluster), which may explain their ability

to successfully colonize Antarctic soils, where daily tem-

perature fluctuations greater than 20 °C can cause multi-

ple freeze-thaw cycles within a single day (Aislabie et al.,

2006).

Thaumarchaeota are key players within the global

nitrogen cycle due to their involvement in nitrification

(Venter et al., 2004; Koenneke et al., 2005; Hatzenpichler

et al., 2008). During the first step of nitrification, auto-

trophic Thaumarchaeota oxidize ammonia to nitrite

(NH3?NH2OH?NO2), mediated by ammonia monoox-

ygenase (amoA). In one study, the abundance of amoA

indicated that ammonia-oxidizing Thaumarchaeota out-

number their bacterial counterparts in soil, particularly at

depth (Leininger et al., 2006). It has been shown that

Thaumarchaeota affiliated with group 1.1b contribute to

oxidation of ammonia across a wide range of habitats

(Treusch et al., 2005; Leininger et al., 2006; Hatzenpichler

et al., 2008). Antarctic soils are characterized by high

levels of salinity (Bockheim, 1997; Barrett et al., 2007),

with ammonia comprising a small fraction of total soil

nitrogen in continental Antarctica (Barrett et al., 2009;

Magalhaes et al., 2012). Interestingly, N. gargensis has

been shown to be inhibited by total ammonium concen-

trations in the lower mM-range (Hatzenpichler et al.,

2008) giving physiological support for a preference of

low substrate concentrations (Leininger et al., 2006).

Based on our findings, we propose that this Antarctic soil

Thaumarchaeota may also be an ammonia oxidizer as it

clustered within the Thaumarchaeota, which included the

16S rRNA gene from a Thaumarchaeota fosmid 54d9

(AJ627422, Fig. 2a), containing amoA (Treusch et al.,

2005). This is supported by the presence of ammonia-oxi-

dizing Archaea in Antarctic soils from coastal areas, which

were shown to be well adapted to cold temperatures

(Jung et al., 2011; Han et al., 2013) as well as the recent

discovery of amoA in soils and lithic environments from

the McKelvey Dry Valley (Chan et al., 2013). However, to

strengthen the phylogenetic observations described in this

study, future investigations are needed to identify the role

of Thaumarchaeota in Antarctic soils and their potential

involvement in ammonia oxidation.

Euryarchaeota

Putative Euryarchaeota were also present in soils from

inland moraines located near the valley floor, although

apparently at very low abundances (< 0.02%). Most of

the euryarchaeal OTUs detected in Dry Valley soils were

very loosely related to Methanosarcinales and environ-

mental sequences retrieved from cold sulfidic springs

(Rudolph et al., 2004) and the former Lake Texcoco,

Table 3. Multiple regression of environmental parameters and

archaeal diversity

Residuals Min 1Q Median 3Q Max

�15.5143 �8.0158 �0.2628 6.9429 15.9906

Coefficients Estimate Std error t-value Pr(> t)

(Intercept) 8.44892 6.96204 1.214 0.23505

Elevation �0.20180 0.23442 �0.861 0.39664

Slope 0.34755 0.24314 1.429 0.16395

Aspect 0.06231 0.17446 0.357 0.72365

Water 0.49287 0.17452 2.824 0.00864**

pH 0.05825 0.18036 0.323 0.74911

Conductivity �0.17474 0.18742 �0.932 0.35913

ATP �0.04114 0.19574 �0.210 0.83504

Data were rank-transformed prior to analysis. Significance codes are

as follows: P < 0.001 (**).
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Mexico (Valenzuela-Encinas et al., 2008). Although spe-

cies belonging to the Methanosarcinales are present in

subglacial Antarctic environments (Stibal et al., 2012), Ant-

arctic lake sediments (Purdy et al., 2003; Karr et al., 2006),

and surface waters (Brambilla et al., 2001; Taton et al.,

2003), Methanosarcinales have not previously been detected

in Dry Valley soils, and further investigations are required to

confidentially place these archaeal phylotypes within the Eur-

yarchaeota and assign them to specific lineages.

Physicochemical drivers of archaeal diversity

Species richness at local sites (alpha-diversity) is most

likely influenced by soil water content (Table 3), although

BEST analysis failed to detect correlations between differ-

ences in archaeal community structure and differences in

environmental parameters (data not shown). Water avail-

ability has been shown to crucially influence the composi-

tion of soil communities (Barrett et al., 2004; Aislabie

et al., 2006) and is considered the primary limiting

resource for microbial life in terrestrial regions of Antarc-

tica (Kennedy, 1993; Gregorich et al., 2006). Water avail-

ability is locally high in elevated areas due to

condensation, snowfalls, presence of snow patches, and

subsequent snowmelt (Schroeter et al., 2010; Green et al.,

2011; Eveland et al., 2013; Van Horn et al., 2013). The

importance of snowmelt as a source of moisture has been

reported for the crustose lichen Buellia frigid in southern

continental Antarctica (Kappen et al., 1998), which can

only be found on slopes higher than 600 m but not in

the valley floor (Kappen et al., 1981; Sancho et al., 2007).

Failure to detect environmental influences using BEST

analysis may be explained by high levels of variation in

physical and chemical soil properties within a single sam-

ple. The severity of the Dry Valley environment and

extreme desiccation has led to highly heterogeneous soils

creating protected environments for microbial coloniza-

tion (Cockell & Stokes, 2004). The most substantial of

these are lithic environments, where well-developed

microbial communities have colonized cracks in rocks

(endolithic communities), the undersides of translucent

rocks (hypolithic communities), and surface rock ‘flakes’

produced by laminar weathering (chasmolithic communi-

ties). These microniches potentially provide physical sta-

bility, desiccation buffering, increased water availability,

and protection from UV fluxes for residing microorg-

nisms (Cary et al., 2010). For example, hypolithic com-

munities were shown to represent local ‘hotspots’ of

microbial diversity (Smith et al., 2000) and productivity

(Pointing & Belnap, 2012) compared to soils. The mean

productivity of these communities is equivalent to those

of lichens and bryophytes (Cockell & Stokes, 2004), possi-

bly exceeding productivity levels in open Dry Valley soils.

Moreover, large regional differences in edaphic soil char-

acteristics such as pH, soil organic carbon, and conduc-

tivity are likely to generate differences in bacterial

communities in Dry Valley soils (Van Horn et al., 2013).

Summary

For the first time, Archaea were successfully detected and

characterized in all inland and coastal mineral soils in the

three southern most McMurdo Dry Valleys. This system-

atic, landscape-scale study revealed an extensive distribu-

tion of archaeal communities in Antarctic mineral soils.

Archaeal communities are not limited to coastal margins

as previously thought and are instead present in inland

glacial push moraines, high elevation ridge areas, slopes,

and inland plains. T-RFLP fingerprinting analysis and 454

high-throughput sequencing revealed low archaeal rich-

ness in all samples analyzed. However, archaeal richness

was higher in some soils, and this higher richness was sig-

nificantly correlated with soil water content revealed by

multiple regressions. Dry Valley soil archaeal communi-

ties examined were dominated by a potential ammonia

oxidizer affiliated with the globally abundant Tha-

umarchaeota Marine Group 1.1b, and a number of poten-

tial Euryarchaeota were found exclusively associated with

inland glacial push moraine. Future studies should focus

on detection and functional characterization of ammonia-

oxidizing Thaumarchaeota and Euryarchaeota to under-

stand their role and potential involvement in the nitrogen

and carbon cycles in Antarctic soils.
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