Working Paper Series
ISSN 1170-487X

UNIFYING STATE AND PROCESS
DETERMINISM

Steve Reeves and David Streader

Working Paper: 02/2004
February 2004

© 2004 Steve Reeves and David Streader
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Unifying state and process determinism

Steve Reeves and David Streader
Department of Computer Science
University of Waikato
Hamilton, New Zealand
{dstr,stever }Qcs.waikato.ac.nz

Abstract

If a coin is given to a deterministic robot that in-
teracts with a deterministic vending machine then is
the drink that the robot is delivered determined? Us-
ing process definitions of determinism from CSP, CCS
or ACP the answer is “no”, whereas state-based defi-
nitions of determinism can reasonably be construed as
giving the answer “yes”.

In order to unify what we see as discrepancies in
state- and action-based notions of determinism we will
consider process algebras over two sets of actions: the
active or causal actions of the robot and the passive
or reactive actions of the vending machine. In addi-
tion we will add priority to the actions and when two T
actions are possible then the T action with the highest
priority will be executed.

Keywords: process algebra, determinism, abstrac-
tion, hiding state

1 Introduction

Although it would be nice to believe that the for-
mal definitions of real-world concepts are a complete
and faithful rendering of our intuitions, it is likely that
they are a compromise between these intuitions and the
restrictions of the formalism within which they are set.
When, further, we seek to mix two formalisms to syn-
thesise something new, as is increasingly being donce
with state-based and action-based formalisms, there
is a danger that the different compromises result in
a single idea having two formal definitions with dis-
tinct properties. We believe such compromises have
happened with determinism when modelled with state-
based and action-based formalisms, so care is required.

Since we are interested in synthesising new for-
malisms from existing ones in the state-plus-action
field, we want to consider ways of unifying the notion
of determinism as understood from the state world and

from the process world while avoiding any possible pit-
falls that might arise from this synthesis.

As a running example we will consider vending ma-
chines and robots. By a robot we mean, as usual, a
machine that has no external agent controlling it, but
which is able to control a vending machine. Before we
discuss any formalism we consider the world we want
to model, so we pose a simple question about a real
deterministic vending machine and a real deterministic
robot. If a coin is given to the robot and it interacts
with the vending machine then is the drink that the
robot is delivered determined? Tt is our opinion that
the answer has to be “yes, the drink is determined”.
Further, if we have an operation representing how to
build an implementation by the composition of com-
ponent implementations then we expect it to build a
deterministic implementation.

Hoare’s description of non-determinism of selection
[12, p101] is “There is nothing mysterious about this
kind of non-determinism: it arises from a deliberate
decision to ignore the factors that influence the selec-
tion”. As real, physical things (like implementations)
are unable to “ignore the factors that influence” them,
we regard them (and so we regard implementations)
as deterministic; specifications are not physical things,
so only they (not implementations) might possibly be
non-deterministic.

We will illustrate a subtle difference between non-
determinism defined, as we see it, in state-based lan-
guages like Z and non-determinism as defined in pro-
cess algebras like CSP [12, 18], Algebraic Theory of
Processes [11] , CCS [15], ACP [1], CFFD |[?] and
NDFD [13]. (We will use the terms p-non-determinism
and p-determinism for the process-based notions in the
sequel when we want to carefully distinguish the two
views and where the context does not make this distinc-
tion clear.) Because process algebras do not formally
distinguish implementation from specification, the fact
that, for them, parallel composition does not preserve

p-determinism cannot be seen as a fault or shortcom-
ing. Nonetheless, as we take the process algebra notion
of parallel composition as accurately reflecting how to
build real processes! from components, we believe the
fact that it fails to preserve p-determinism may seem
counter-intuitive and surprising to people more famil-
iar with formalisms other than process algebras, and
in particular to people from the state-based world.

2 DModelling Determinism

From the dictionary [7] we find:

Definition 1 Deterministic Having the property
that everything that happens is fixed by a necessary
chain of causation

which we might, in our context, paraphrase as “having
the property that every response is fixed by a cause”.
By common acceptance:

Real World Assumption 1 The world is determin-
1stic.

By “world” here we can restrict ourselves to mean-
ing the world of implementations of “computational
systems” and the systems they control, especially if it
is necessary to defuse arguments about reality in gen-
eral.

We are interested in using refinement to formalise
the steps from specification to implementation and so
to know when to stop applying refinement we need to
distinguish implementations from specifications. We
assume our formalism can capture sufficient detail of
processes so that non-determinism will be restricted
to abstract specifications or descriptions and will not
appear in any definition of an implementation.

Without going into details we assume that in our
formalism all deterministic specifications are imple-
mentable. We could do this by restricting the “func-
tional” component of a transition but in this paper we
restrict ourselves to finite state processes.

Assumption 1 Any deterministic process can be im-
plemented.

From Real World Assumption 1 and Assumption 1 we
can conclude that processes are implementable iff they
are deterministic (remember: the world includes im-
plementations).

We are not trying to fix the level of abstraction at which
processes are represented. We are suggesting that at any level
of abstraction wc have a notion of implementability that is pre-
served by our operators. Elsewhere we formalise how to change
levels of abstraction.

We assume that formalisms possess operators Op
that model the composition of real (implemented) pro-
cesses. That is to say if A and B represent implemen-
tations then, where op € Op, so too does AopB. As an
immediate consequence of this, Real World Assump-
tion 1 and Assumption 1 we have:

Property 1 If X (ADT) and context [_|p (program)
are deterministic and [X]|p models their actual inter-
action then it must be deterministic.

In a world of vending machines and robots this prop-
erty would lead us to expect that: if a coin is given to
a deterministic robot that interacts with a determin-
istic vending machine then the drink that the robot is
delivered is determined.

2.1 State-based determinism

The standard definition of determinism we take as:

Definition 2 An operation is deterministic when its
response is determined by its cause. For “stateful” op-
erations interpret cause as both initial stote and any
value input and interpret response as both final state
and any value output.

An ADT X is deterministic iff it is composed from
a set of deterministic operations.

This definition of ADT determinism satisfies Prop-
erty 1. Consequently it is our interpretation of state-
based systems that the composition of two determinis-
tic components must itself be deterministic. Hence the
drink that the robot is delivered is determined.

2.2 Action-based determinism

Processes generalise ADTs in that:

1. processes can interact with contexts that are not
sequences of operations but have a branching
structure, e.g. if a stack was a process it would
be able to interact with a “program” that offered
it the ability to choose from a set of next actions;

)

2. processes may have “agency” or a thread of con-
trol independent of their context. Whereas ADTs
are totally passive, only programs have a thread
of control. Hence implicitly in a world of ADTs
and programs we have a distinction between pas-
sive actions (those of an ADT) and active actions
(those of a program).

We could treat active actions in the same way as
passive actions and simply lift the definition of deter-
minism from ADTs to processes, i.e. deterministic if

composed of a set of deterministic operations. But such
a definition would not satisfy Property 1 and conse-
quently we believe this not to give a satisfactory model
of determinism. By a simple modification we have a
definition that does satisfy Property 1.

Definition 3 A process X is deterministic if both:

1. it s composed from elements of Act, a set of de-
terministic operations;

2. mo more than one active action can ever be en-
abled.

The second clause in this definition is always satisfied
by ADTs as they have no active actions and by pro-
grams because they only ever have one action enabled.

2.2.1 Time and determinism

Real World Assumption 1 implies that all real ma-
chines are deterministic, even concurrent ones. Al-
though this may be reasonable for timed models, when
time is abstracted away concurrency can introduce
non-determinism (and this is what we would expect
from Hoare’s statement quoted in section 1). In our
work, although we abstract away (global) time, we have
(as we shall see) a notion of global priority that can be
used to resolve any non-determinism in place of time.
An interesting alternative, which we do not explore
here, is to restrict non-determinism to being between
actions from different parallel processes.

2.2.2 Process algebras do mnot distinguish
causal and response actions

Process algebras abstract away from notions of cause
and response in as much as they do not treat the causal
action [push button one differently to the response of
a passive process, such as a vending machine, button
one is pushed.

This cause/response distinction we believe to be nat-
ural in the state-based world in as much as a program
can call an action of a data type whereas the data type
normally cannot ceuse the program to call it. This
difference is formalised in [6] where the actions of the
programs must be sequential whereas the actions of the
ADT can be branching.

The cause/response distinction can also be found in
the world of abstract state machines: see the “push-
ing and pulling of information” [3, section 5] and the
definition of “active agents” in [10, section 6.3.1].

In the world of broadcast communication a causal
action is an output action to which a listener can re-
spond by hearing or taking as input the message broad-
cast. Clearly listening cannot cause something to be

broadcast, and this is formalised in IOA [14] where out-
put actions (not input actions) are “enabled”.

Not distinguishing causal and response actions
makes VM and Rob essentially identical process algebra,
expressions in Figure 1.

VM is easy to understand as a machine that accepts
a coin and then reacts to either button one (b1) or but-
ton two (b2) being pushed and subsequently dispensing
drink d1 or d2. It is hopefully easy to see, and we as-
sume anyone would agree, that VM can be implemented
and is deterministic. The robot Rob first inserts a coin

O—d1—>0

7

1 bl

0—{1—0C
§—coin—=>0 VM

N

0—d2—>C

S—coin—>0! Rob

N

O—(j—>0

Figure 1. Vending machine and Robot.

in the vending machine then is prepared to push ci-
ther button one or button two and subsequently take
a drink.

Informally speaking all the actions of the robot cause
the corresponding actions of the vending to occur, but
coin is an output action and the di are input actions.
So we can see that for processes the cause/response
does not coincide with the input/output distinction.
This is to be expected given the state-based notion
of programs calling operations of a data type and the
abstract state machine notion of “pushing and pulling
of information”.

2.2.3 Process algebras do not distinguish ob-
serving and choosing

The process algebra world is based on a set of actions
that can both be observed and chosen/refused and a
action that can neither be observed nor chosen. Sepa-
rating observable from choosable is normal in the liter-
ature on the control of discrete event systems: see for
example the events in [16] that are both “controllable”
and “uncbservable”.

If the actions of a robot (recall by robot we mean a
process, uncontrolled by any external agent, that con-
trols the vending machine) cause the actions of a vend-
ing machine to occur, then simply observing the inter-
action will not affect the outcome of that interaction.
For example: if a deterministic robot goes to a de-
terministic vending machine and fetches a drink then
whether you “observe” the button the robot pushes, or
not, you cannot influence the drink that is returned. In
the usual process algebra formalisms it is not possible

to model being able to “observe” which button is be-
ing pushed without also being able to “choose” which
button is being pushed.

2.2.4 Process algebras’ interpretation of Rob

From the process algebraic point of view Rob in Fig 1
requires another process to choose the button it pushes
on VM. If a process can perform one of two actions,
there is no process algebra term that can say which of
the two it will choose in a context that allows both to
be performed.

We will write VM ||s Rob for parallel composition
where actions in S must synchronise (in ACP terminol-
ogy VM ||s Rob is (VM || Rob)d 5 where y(a,a) =2
is assumed) and for the hiding of actions we use ACPs
_7g (which is _\S in CSP).

A consequence of the identification of observing and
choosing is that abstraction _7(p; sy introduces p-non-
determinism because it prevents any other process from
choosing between the abstracted actions bl and b2
(again recall the quote from Hoare in Section 1).

2.2.5 Our interpretation of Rob

It is hard to see how we could interpret Rob as an
implementation. What does it mean for a robot, that is
not to be controlled by another process, to be prepared
to push either button one or button two? We see no
way to implement Rob so that VM [|{p1,523 Rob is non-
deterministic 2.

We interpret Rob as satisfying the partial specifica-
tion:

VML || Rob to return d1 VM1 %' coin; b1; d1,

VM2 || Rob to return d2 VM2 = coin; b2; d2,

VM || Rob to be specified,
We want to be able to refine Rob by specifying what
drink is to be returned from VM. Undoubtedly this
could be done within process algebra, but only by
redefining both the vending machine and the robot at
a more detailed level of abstraction. However, VM
is (as agreed) a perfectly good implementation of a
vending machine, so we wish to keep the definition of
the vending machine as it is.

2.2.6 Process algebra determinism

A CSP process is defined to be deterministic where it
is always true that the next action to be executed can

20ccam can be thought of as an implementation of a part
of CSP and using Occam Rob can easily be coded and hence
implemented. But, Occam’s implementation of || has a hidden
arbiter that decides what button is pushed in Rob || VM. This
arbiter is not “truly non-deterministic” and as such Occam’s ||
is not CSP’s ||.

be determined by a choice made in its context. Recall
that we call this p-determinism to distinguish it from
the notion of determinism in Definition 3 and more
formally, later, in Definition 5. Both VM and Rob are
p-deterministic; so too is CSP’s VM || Rob.

Because we wish the robot to be able to push a but-
ton without the help or hindrance of any outside agent
(context) the actions bl and b2 must be hidden in CSP
asin (VM || Rob)\{b1,b2}. It is because _\{b1, b2} pre-
vents the ability to choose a that p-non-determinism is
introduced, not because _\{bl, b2} prevents the ability
to see a.

2.2.7 Our determinism

We write 3 for the composition of an active action 3 and
a passive action a (in ACP terminology v(a,a) = a but
in CSP all three actions would be a) (see Fig. 2).

Our passive actions (VM actRob) o gim0
need to be controlled and 1?1/
our active actions should S—on—o
control them: neither can \gz

be executed without the
other. Hiding passive
or active actions changes Figure 2. VM with
this interpretation of ac- Rob

tions so that they may be

executed independently of any other action. Synchro-
nised actions represent the joint execution of a pair
of actions and do not need the cooperation of any
other action in order to be performed. Hence hiding
a synchronised action only changes its ability to be ob-
served.

We are not the first e
to see the special rela- e
tionship between hiding P
and synchronised pairs .
of actions; in CCS’s dei-

0—&‘2—>0

(VM| 4c¢Rob)T o—gi—o

o—{gp—=0
inition of parallel com-
position [15][p.46] syn- Figure 3. Hidden
chronised pairs of ac- buttons

tions are modelled by 7
actions. For us both Rob and VM || 4.+ Rob are non-
deterministic. The hiding of actions cannot introduce
non-determinism as for us hiding limits what you can
see, not what you can choose. Only the action with the
highest priority, from a set of actions, can be chosen or
executed. Thus our model reflects the fact that simply
seeing what button a real robot pushes cannot affect
whether or not the choice was deterministic.

Because we wish the robot to be able to push a
button without the help or hindrance of any outside
agent (context) we do not allow X to synchronise with

any other action. To model the actions bl and b2
as unobservable we hide them, for which we write
(VM || et Rob)r{ﬁ&} (see Fig 3).

Here (_ ||s —)7 is being used to model the inter-
action between implementations, i.e. to build larger
implementations from smaller implementations. Con-
sequently it preserves determinism of finite state pro-
cesses.

3 Causal Process algebra

Because we believe it natural to view Rob as non-
deterministic but VM as deterministic we need to dis-
tinguish these, and similar, processes. This we do by
separating actions into two classes: active actions rep-
resented by an over-lined name and passive actions
with no over-line. In order that we can refine Rob into
a deterministic process we introduce priority between
actions.

We will define process operations that, when applied
to deterministic processes, will always result in deter-
ministic processes

3.1 Cause and effect actions

Most real world events can be described as the syn-
chronisation of a passive action and an active ac-
tion, e.g. the event “button 1 on a vending machine
is pushed” is the synchronisation of the active action
“I push button 1” and the passive action of the vending
machine “button 1 is pushed”.

We contend that it is easy to implement VM because
it offers the choice between passive actions. More prob-
lematic is the choice between the “active” actions of the
robot Rob.

The choice between bl and b2 is to be made by the
context in which VM finds itself. But the actions bl
and b2 are quite different as their attempted execu-
tion, like the methods called by a program, are under
local control. Hence Rob should not be seen as an im-
plementation. Note the essentially sequential nature of
causal actions of programs has been used in [5] where
singleton failure semantics was introduced. What we
are doing that is different is that we do not split pro-
cesses into ADTs with only passive actions and pro-
grams/contexts with only active actions. We will illus-
trate this in Section 3.3.

3.2 Priority

We are going to extend our model of actions to in-
clude priority. We then define a process as determinis-
tic if it is both p-deterministic and all its actions must

be passive or have a unique priority. Our operational
semantics is such that out of two 7 actions the one with
the highest priority will always be taken.

Robp 0—g1—>0

/ﬁl S\coi
N, AW

b2 O0— 7 2—-0—(2—>0

VMu || {p1,623 Robp

S—coin—0.

O—(go—>=0

Figure 4. (¢f. Fig 1) Rob C Robp

In any implementation of our robot it must first put
a coin in the vending machine then, after finding out
what buttons are on offer, it must choose either button
one or button two. Our allocation of priority to the ac-
tions “push button one” and “push button two” could
be used as an abstract representation of what button
it tries to push first.

Adding priority (which we do via superscripting)
to the active actions of our robot (see Fig 4) results
in a simpler observational semantics, and abstraction,
the removal of 7 actions, does not introduce non-
determinism.

What we are doing with priority is different to what
is done in the process literature where active and pas-
sive actions are not distinguished. Normally priority is
used to model the idea of treating one set of actions
(such as interrupts) as having priority over another set
of actions. For us it makes sense for refinement to
change the priority of an action, whereas it does not
when using priority to model high priority interrupts
and low priority actions.

3.3 Choice between active and passive

If we add to our vending machine the action push,
the ability to push the robot, and add to the robot the
action push, a tilt detection, we get Fig 5 (where u and
v are arbitrary priority levels).

PV O—d1—0 PR

e

1 pt

O—(d1—>0

v

S—coin—O! S—coin=>¢

push

AN

g—b2—>0—d2—>0 —p—>0—(2—>0

Figure 5. PV and PR

Our specifications PV and PR can be seen to be
quite abstract by considering what must happen after
the robot puts a coin in the vending machine. At this
point both processes are going to attempt to perform

an active action but must jointly agree which action
is actually going to be performed. How such a joint
decision is reached is completely hidden.

We do not wish to formalise a particular mechanism
for joint decision making; all we wish to do is record
the decision.

Again both PV and PR are p-deterministic but
(PV || act PR)T¢b1,p2,push} i8 p-non-deterministic. The
problem again stems from composing processes that do
not decide which of two actions are to be performed,
each preventing the other process from making the
choice. The choice cannot be made by either process
on its own, so the choice is in some sense an inter-
process phenomenon. (‘Time’ is another example of
such an inter-process phenomenon.)

Here we want PV and PR to be non-deterministic
and we want to be able to refine them to determinis-
tic processes so that the composition of deterministic
processes is deterministic.

To do this where a de-
cision must be made jointly
we need to make refinement
of a process sensitive to the
other processes with which

PV|| act PRT{61,b2,push} 0—d1—~0

i

S—coin—=>0

*—T—)O—d 2—0

it can interact. Taking ac-
count of priorities, (PV ||act Figure 6. PV
PR)T{bl,bz,push} is determinis- with PR

tic only if v # w, but this can-
not be known by considering
one of PV or PR on its own.

Because action synchronisation is an inter-process
phenomenon it is usual [1] to define a global syn-
chronisation function <. Here, to model inter-
process choice, we will define a global priority re-
lation Actpy; C Act x Pri. Our definition of determin-
ism of P will consider the priorities of actions that are
either in P or can synchronise with actions of P.

3.4 Causal Process Algebra

We assume a universe containing: passive actions
. . —— def
Act, active actions Act = {3 | a € Act} and

synchronised actions Act % {3 | a € Act}, on

which we define Obs % (Aet U Act U Act) and

At & ObsuUT.

In addition our universe contains: a set of priorities
Pri with an irreflexive priority relation £ C Pri x Pri
and a static priority function Actp,; : Obs — Pri such
that Actpr(a) = Actp(3) = Actpi(d).

It would be more usual to define the priority relation
/ C Prix Pri as a total order or a preorder, but we will

need more flexibility when defining our weak semantics.

We use Actpy; to model the inter process decision
making discussed in Section 3.3 and use it to define

both determinism and refinement. et
€

Eté’,s,... € Act, o, B,... € Actx Priand Act, =
ActUr
Definition 4 Priorily labelled transition systems

(PLTS). Given a finite set of mnodes Na and
sa € NAaeA C NA; TA g {(n7 (Xap)?m) | n,m S NA A
(x,p) € Actpr Ax € Obs}U {(n,(7,p),m) | p € Pri}

then A % (Na, Ta, sa,€a) is a PLTS .

We write n——sm iff (n,(3,p),m) € Ta and n->

iff 3m.n—"sm. We then deﬁne the ready set of node

n as w(n) {zr} —=5 1} and w(A) e m(sa),

def ,) def
my(n) S (p 10 =2 and () (sn).
We define the alphabet of process A as A = {z |
(o, (z,-),-) € Ta} and the priorities in A as Pri(A) =

{p | (—7 (—7p)7—) € TA}

We lift Z: n ﬂ_én ﬂ_ S plyp'. .

A is p-deterministic if there is only one transition
leaving any given node with a given name, whereas
here A is deterministic if all actions leaving any given
node are passive or have a unique priority

def {x | n

Definition 5 A is deterministic iff vV

:rg) Az u>1/:>z—1//\a—b .

z,p, aEActUActU{T}

Definition 6 We define <: Actp,; X Actpy; by (x,p) <
sy def f

(v,p') = pip'.
Define refinement of the priority relation C,C Actpp; X
Actpr; by Actpry ©p Actpra ©<1C=0.

Clearly T, will induce a relation between processes,
which we call T, too

Refinement Ty, is the transitive closure of T, U C;
where C; is taken from one of the many definition of
refinement on labelled transition systems (see [17] for
examples). .

Note from definition of PLTS that changing Actpy
induces a change of the priority on a PLTS. This change
must be applied globally to all processes. Priority re-
finement decreases the number of actions with the same
priority.

Definition 7 +, ; 75 ds and ||s on PLTS A and B
nCBaLad S

(3,p)
Voene (mﬂ?)—MusB(lafﬂ)

NpjjsB = Na x N,
€AllsB = €A X €,

alse = (34 55) and mEk 5 ¢ 5
Tajsp defined by: ol
Ve, (2, m)==a58(2, k)

nC8 0 mEekae s B8l mEanse s

(n, m)MA||SB(l7k) (nam)%A||sB(l7k)

Further we have:

Nars = Na, sars = Sa,€ars = ea, Tar, defined by:

nCP 1sgs 08P, 1ses
(3,p) (,p)
N ——Arg l n ——Arg l

Nase = Na, Sass = Sa, €ass = ea, Tass defined by:

n-GP, 15¢8
(3,p) I

n ——Adg
A+B déf (NAUNB—{SB},SA, eaUeg, TaU TB{SB/SA})
AB def (NAUNB,SA, eg, TaU TBU{GL)H | ee€en
sg—n}) .

Definition 8 If (1-— V 179) A ¢Zp then 1——y is
priority unreachable (i.e. it can never be executed)

written Un(a:a—l>y) .

Prune(A) def (NA,{xi)y | xa—l>y € Ta A

59
= Un(z->y)}, sa, €a)
Lemma 1 If C; is monotonic then Ty, is monotonic.

Proof Monotonicity of T, follows from assumption
and monotonicity of C,. Monotonicity of C, is a direct
consequence of definition. .

4 TImplementations

The operators X from Section 3.4 can be used to
build, potentially non-deterministic, specifications. We
define a set of process operators I, that are restrictions
of ¥, that can be use to build process implementations
Tg (i.e. terms over X). All such implementations will

be deterministic and all contexts built from & will pre-
serve determinism, i.e. P and [_], deterministic implies

o~

[P]y deterministic.

We can view S as defining an abstract program-
ming language or as operators that describe how real
processes might be combined.

Definition 9 5 & {GAB,’;\,?A,(SA,HE,Act U Act}.

Implementations are Tg and contexts [are imple-

mentations with a slot for a process.
AllsB % A|ls B defined only if Pri(A)NPri(B) = .
ABB ' A+ B defined only if 7 (A) N7, (B) = 2.

ATB def AB defined only if U ¢, Tp(e)N7,(B) = 2.

PTs X pry defined only if A C Act .

In ACP [1] dg may introduce unreachable actions
and 7g may introduce p-non-determinism, whereas
here both ds and T¢ may introduce priority un-
reachable actions and neither may introduce non-
determinism.

Lemma 2 Let 0p € {3, ’;\,?5,55,@}.
1. Implementations T are deterministic

2. If P is deterministic then [AP]X is deterministic

Proof 1. By structural induction on terms.

A®B: The only node that changes in the construc-
tion of A@B is the root node. From 7,(A) N7, (B) = @
and the determinism of A and B we can see that

(é,p) (b,p) _ b e
Ve, pr —3z2Az —3y=>z=yAb=a2a.
Al|sB: From Pri(A) N Pri(B) = @ and the deter-

minism of A and B we can see that A||sB must be
deterministic.

ATs and Ads: A is deterministic if from each node
there is only one transition leaving it with any given
priority. Renaming one of the transitions does not
change this.

2. From 1. .

4.0.1 Pragmatics

Our language for building implementations is defined
by restricting the operators of Section 3.4, but these re-
strictions are based on priority. In most circumstances
the following simplification may suffice: build the func-
tion between actions and priority Actp,; : Act — Pri
that is an injection. Subsequently processes are deter-
ministic if and only if they are p-deterministic. The

restrictions on implementations are more familiar:

A|/|;B " A||s B defined only if a(A) N a(B) = @
ABB % A@ B defined only if 7(A) N7 (B) = @

ATB % AB defined only if V,_ . .(n(e) N7 (B) = @)

ecep
5 Observational semantics

Weak semantics with a fixed set of priorities is diffi-
cult to define. Consider process A in Fig 7 placed in a
context where both b' and eP are enabled after s, then
b' will never be executed. But b' can be executed if b'
and cP are enabled after s. The problem is that neither
bP nor b' is acceptable for b’.

A solution to this problem that keeps the fixed set
of priorities can be found in [2]. But because we are
working in a more relaxed situation where the set of
priorities may be expanded it is possible to construct
(what we believe to be) a simpler observational seman-
tics.

e
Sﬁ"%bgl—b'

Figure 7. Actions following 7

By allowing priorities p,! and states n,m,k to be
joined in a sequence and extending Z to these se-
quences so that e.g. p.m.ldp.m.p but pXp.m.l and
p.m.IXp.k.p, we can give the actions of Abs(A) the
priorities we would expect from an operational under-
standing of A in Fig 7. The states as well ag priorities
were used in the sequence to cope with examples such
as B in Fig 8.

Definition 10 The abstraction of T actions from
PLTS A is written Abs(A):

def
Abs(A) = (Na, Tapsa), a, ea) where
def QPLM2P2 - PnUP™L AL -,
Tapsry = Am sz
\Vli<n n; 75 ny—1 A Vj<m my 75 my_1 A
Tl’l 7—1’2 Tl’n, aP
T —>N9, e ——>N3 ... Ny —2Y A y—rmy A

P F Y

M—— My, ... My —2}

In the above definition the clause V, _, n; # n;—1 A
V.cm M # mj_1 results in 7 loops being ignored. This
is similar to the treatment in CCS and ACP but con-
flicts with the chaotic interpretation of divergence in
CSP. An operational approach where 7 abstraction
splits states that may diverge into states that must
diverge and states that cannot diverge can be seen in
[19]. Here we avoid further discussion of divergence and
restrict ourselves to the CCS and ACP interpretation
of divergence.

Cp.Z.y

A O1—rP—03—cy—> AbS(A)Ol/ OZ—CE
e 7

/SP /Sp sP-LP pl-4x
§——P—=>03—1 =04 —p*—> S/—s”—>°3 04—bx
p.3.1
Abs(B O —¢Y
B O] —¢y—> s(B) 17
gP-2-P cP-1y
P /
S__—SP%O2 03 BX - ?
§—gP—>097 ... gl Oge . 7
e gpa2id EINERE

Figure 8. Actions preceding

Definition 11 Let P and Q) be sequences of priorities
and let p : P be a sequence with head p and tail P and
let {) be the emply sequence. We define Z on sequences
of priorities:

def
p:PLg:Q = plqV(p=qAPLQ),
n.p:PsLnqg:Q def pZgV (p=qAPLQ),

Definition 12 The abstraction of $i>y from PLTS
A:

Abs(zToy A) K (N, T

, SA, €a) where
TP
=y, Th—z—Y
it .
z#y, TaU{wioy|w-=z}U
alue

7,
Abs(A)

Abstraction of set of 7 actions can be computed by
the abstraction of the 7 actions one at a time.

Lemma 3 Let {xlgylzngyn} be the set of T
actions in PLTS A. " -
Abs(A) = Abs(t1 >y, ... Abs(z,——yn,A) ..)

Proof Define an order: the maximum length of 7

chains within which order by the number of 7 chains

of maximum length. Then by induction on this order.
Base case i = (1, 1) result obvious.

Pa
Assume true for ¢ < n then: Let an—>yn beinarT
chains of maximum length.
TI’n,

Let PLTS B be of order n, hence Abs(z,—y,,B)
is of order less than n. .
By inductive hypothesis Abs(Abs(z,~—yy,B)) =

We need to show that .
Abs(B) = Abs(Abs(z, " yn, B))

The difference between B and Abs(mnﬂyn,B) is
restricted to transition using nodes z,, and y,. Each
action added is dependent on the existence of a single
action connected to z, or y,. We need to prove that

for each action in Abs(a:nﬂ)yn,B) but not in B the

actions added by applying Abs(_) to Abs(xnﬂ)yn, B)
will also be added by applying Abs(_) to B. By case
analysis on actions connected to z, or y,:

Case 1 z, = y, add nothing

Case 2. z, # ¥y, and action connected to only one
of z,, or y,:

2.a zi>yn add nothing
2.b xna—lm add nothing

« 4 o PESIN I
2.c ,—x, add z, — y,, and clearly whenever

this action is used in the construction of Abs(_) exactly
the same effect could have been achieved using the two

Pn

. af T
component actions z, —x, and T, —>y,.

a’[a’ﬂ’n,ﬁn,
2.d z—z,, add 2 — ¥y,
a”’n,ﬁn,’l a’l afrul’n,’l

p
2.6 Yn—y, add 2,"— yn, Yyn— 2, add z,"— z
Case 3. z, # y, and action connected to both z,

and y,:

3a. xni>yn add nothing

af abvi abverp 0
3b. Yn—Tn, add Tn——Tp, Tn — Un, Yn Yn,
PR ?

Yn > T .

Lemma 4 If PLTS A is deterministic then Abs(A) is
deterministic.

Proof We will show that if A is deterministic then
Abs(z—"+y, A) is deterministic. The result then follows
by induction and Lemma 3.

If A is deterministic then Abs(z—y,A) is deter-
ministic follows directly from the construction. .

5.1 Pragmatics

A common mathematical methodology is to use syn-
tax to represent things of interest and use semantics to
justify only syntactic rules. An alternative method-
ology is to use the strong semantics in place of the
“syntax” and the observational semantics in place of
the “semantics”.

It is possible to view the construction of an obscrva-
tional semantics as a change in the level of abstraction
i.e. the construction of a more abstract level. But this
can lead to unnecessarily complex operational seman-
tics. With “annotated” transition systems such as here
and [9] the observational semantics require more com-
plex transition systems than are needed to represent
the strong semantics. To avoid such complexity there
is a common methodology:

1. build the strong operational semantics;

2. use the more abstract observational operational se-
mantics to justify simplification rules that can be
applied to the simpler strong operational seman-
tics, such as identifying observationally bisimular
nodes.

Our definition of priority on the strong semantics may
be a total order while the priority relation of observa-
tional semantics cannot be transitive. By this method-
ology the non-transitive priority relation is no more
than a computational step in the simplification of the
strong semantics with its totally ordered priority rela-
tion.

6 Conclusion

The standard process algebras are very elegant and
are a simple means of representing process that have
proven to be very useful. An unfortunate conse-
quence of process algebras’ simplicity is that the in-
teraction between two p-deterministic processes is not
p-deterministic.

This is inconsistent with the way determinism for
state-based systems works. The inconsistency will
clearly make any synthesis between action-based and
state-based formalisms problematic. The work here
seeks to dissolve this inconsistency.

With our representation of processes we take as
primitive the distinction between causal actions and
response actions. For each causal action 2 (response
action a) there is a matching response action a (causal
action 3). A process can perform only one of these ac-
tions when placed in a context that is prepared to per-
form the matching action. Where a context is prepared
to perform more than one of the actions the action with
the highest priority is performed.

With our representation of processes the ability to
observe is distinct from the ability to choose. Conse-
quently we can model the ability to observe what a
robot does while being unable to change the behaviour
of the robot.

We define a finite state process to be implementable
if and only if it is deterministic, and our process opera-
tors construct an implementation from two component
implementations.

In [4] they consider coupling the approaches from
process algebras and abstract state machines by ex-
tending abstract state machines with process algebraic
ideas. We make one very small step the other way
by extending process algebra with the notion from ab-
stract state machines of one action causing another.

Priority between process actions has been well re-
searched [8, 9] and our approach is limited to what is
called global priority in [9]. Our work adds priorities to
a semantics with causal and response actions. We can
find no prior work to do this.

Although the reduction of non-determinism is an
important method of refinement, the change of level
of abstraction is also very important and needs to be
integrated with our approach.

Finally, during the analysis of large systems, infor-
mation hiding will now not introduce non-determinism,
thus only the trace semantics will be needed which will
make the analysis simpler. Using our model it may
be possible to apply the language- (trace-) based an-
alytic methods of discrete event systems [16] to situa-
tions where not all the events are observable.

Acknowledgements

Thanks to Eerke Boiten, Moshe Deutsch, Doug Gold-

son,

Robi Malik, Greg Reeve and Mark Utting for many

helpful discussions. Thanks to New Zealand Govern-
ment’s Foundation for Research, Science and Technol-
ogy for funding to make this research possible.

References

(1]

2]
(3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

J. C. M. Baeten and W. P. Weijland. Process Alge-
bra. Cambridge Tracts in Theoretical Computer Sci-
ence 18, 1990.

J. Bergstra, A. Ponse, and S. Smolka. Handbook of
Process Algebra. Elsevier, 2001.

A. Blass and Y. Gurevich. Abstract state machines
capture parallel algorithms. ACM Trans. Comput.
Logic, 4(4):578-651, 2003.

T. Bolognesi and E. Borger. Abstract State Pro-
cesses. In E. Borger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines, Advances in The-
ory and Practice, 10th International Workshop, ASM
2003, Taormina, Italy, March 3-7, Proceedings, vol-
ume 2589 of Lecture Notes in Computer Science, pages
218-228, 2003.

C. Bolton and J. Davies. A singleton failures semantics
for Communicating Sequential Processes. Research
Report PRG-RR-01-11, Oxford University Computing
Laboratory, 2001.

C. Bolton and J. Davies. A comparison of refinement
orderings and their associated simulation rules. In
J. Derrick, E. Boiten, J. Woodcock, and J. von Wright,
editors, Electronic Notes in Theoretical Computer Sci-
ence, volume 70. Elsevier, 2002.

L. Brown, editor. The New Shorter Ozford English
Dictionary. Oxford University Press, 1993.

R. Cleaveland, G. Luttgen, and V. Natarajan. A pro-
cess algebra with distributed prioritics. In Interna-
tional Conference on Concurrency Theory, pages 34—
49, 1996.

R. Cleaveland, G. Luttgen, and V. Natarajan. Pri-
ority in Process Algebra. In J. Bergstra, A. Ponse,
and S. Smolka, editors, Handbook of Process Algebra.
Elsevier Science, Amsterdam, The Netherlands, 2001.
Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In
E. Borger, editor, Specification and Validation Meth-
ods, pages 9-36. Oxford University Press, 1995.

M. Hennessy. Algebraic Theory of Processes. The MIT
Press, 1988.

C. Hoare. Communicating Sequential Processes. Pren-
tice Hall International Series in Computer Science,
1985.

R. Kaivola and A. Valmari. The Weakest Composi-
tional Semantic Equivalence Preserving Nexttime-less
Linear temporal logic. In International Conference on
Concurrency Theory LNCS 650, pages 207221, 1992.

10

[14]

[15]

[16]

[17]

18]

[19]

(20]

An introduction to
CWI-Quarterly, pages

N. Lynch and M. Tuttle.
input/output automata.
2(3):219-246, 1989.

R. Milner. Communication and Concurrency.
Prentice-Hall International, 1989.

P. Ramadge and W. Wonham. The control of discrete
event systems. Proceedings of IEEE, 77(1):81-98, Jan-
uary 1989.

S. Reeves and D. Streader. Comparison of Data and
Process Refinement. In J. S. Dong and J. C. P. Wood-
cock, editors, ICFEM 2003, LNCS 2885, pages 266—
285. Springer-Verlag, 2003.

A. Roscoe. The Theory and Practice of Concurrency.
Prentice Hall International Series in Computer Sci-
ence, 1997.

S.Reeves and D.Streader. Atomic Components. Tech-
nical report, Universty of Waikato, 2004. Com-
puter Science Technical Report 01/04 (submitted),
http://www.cs.waikato.ac.nz/~dstr.

A, Valmari and M. Tienari. An improved failure equiv-
alence for finite-state systems with a reduction algo-
rithm. In Protocol Specification, Testing and Verifica-
tion, IFIP XI. North-Holland, 1991.

