
Informed Mutation of Wind Farm Layouts to Maximise

Energy Harvest

Michael Mayo, Maisa Daoud

Department of Computer Science
Faculty of Computing, Mathematics and Statistics

University of Waikato
Hamilton, New Zealand

Abstract

Correct placement of turbines in a wind farm is a critical issue in wind farm
design optimisation. While traditional “trial and error”-based approaches
suffice for small layouts, automated approaches are required for larger wind
farms with turbines numbering in the hundreds. In this paper we propose
an evolutionary strategy with a novel mutation operator for identifying wind
farm layouts that minimise expected velocity deficit due to wake effects. The
mutation operator is based on constructing a predictive model of velocity
deficits across a layout so that mutations are inherently biased towards bet-
ter layouts. This makes the operator informed rather than randomised. We
perform a comprehensive evaluation of our approach on five challenging sim-
ulated scenarios using a simulation approach acceptable to industry [1]. We
then compare our algorithm against two baseline approaches including the
Turbine Displacement Algorithm [2]. Our results indicate that our informed
mutation approach works effectively, with our approach identifying layouts
with the lowest aggregate velocity deficits on all five test scenarios.

Keywords: wind farm, layout optimisation, velocity deficit, wake effect,
evolutionary strategy, informed mutation operator, turbine displacement
algorithm

1. Introduction1

Effective optimisation of large wind farms layouts is a significant open2

research problem for two primary reasons.3

Preprint submitted to Renewable Energy November 18, 2015

The first reason is that solving this problem well is relevant to the global4

economy. Worldwide, the wind power industry is rapidly expanding, and the5

Global Wind Energy Council predicts that wind energy production could6

reach as much as 2,000 gigawatts (GW) globally by 2030 [3]. This would7

account for approximately 18% of the world’s energy production [3], and cost8

reductions in the production of this renewable energy are therefore critical.9

As the demand for wind energy increases, so too must the size of the wind10

farms. For example, the London Array [4], commissioned in 2013, generates11

630 megawatts (MW) of power and comprises 175 offshore turbines. This12

generates enough power to service 490,000 households. In the US, the Alta13

Wind Energy Plant [5] consists of 600 turbines generating power equivalent14

to the usage of 257,000 households. Both of these are dwarfed by the Gansu15

project in China [6], which is planned to generate 20GW by 2020, and is being16

constructed from smaller 100-200MW farms with an estimated 36 turbines17

being added to the farm per day. Clearly, even small efficiencies at any of18

the stages in wind farm design have the potential to translate into significant19

gains.20

The particular cost saving avenue we focus on in this paper is that of21

arranging the turbines in a farm to minimise wake effects [7, 8]. Wake effects22

occur when one wind turbine is placed downstream of either another turbine23

or an obstacle such as a building. Wakes are characterised by decreased24

air stream velocity along with higher turbulence and vorticity compared to25

the surrounding unaffected air stream. Wake effects typically are a cause of26

power losses due to the reduced velocity of the wind [8]. They also lead to27

increased maintenance costs due to the increased turbulence, especially so28

when a turbine is partially inside a wake and partially outside [8]. Increased29

noise is also a consequence of the wake effect [8].30

Proper turbine placement inside a wind farm to minimise wake effects,31

therefore, is a pressing problem.32

The second primary reason why the wind farm layout optimisation prob-33

lem is interesting for research is from the perspective of computational intel-34

ligence. The problem itself is challenging because there is usually no means35

of solving layout problems analytically, and the various objective functions36

that are used are highly non-linear, discontinuous due to layout constraints,37

and multimodal. Therefore, the most frequent way of solving this problem38

is to approximate a solution using a metaheuristic search algorithm such as39

a genetic algorithm (e.g. [9]) or local search (e.g. [2]).40

Characteristics of the problem further add to the computational chal-41

2

lenge, and those are the high dimensionality of layouts (for example, a 500-42

turbine layout in which the turbines are homogenous and specified completely43

by a two-dimensional position amounts to a thousand dimensional optimi-44

sation problem), and the time complexity of the evaluation function, which45

is at least quadratic in the number of turbines depending on the particular46

method used. For large layouts, this means that effectively, only a small47

fraction of the search space can be explored in a reasonable amount of time.48

In this paper, we propose and evaluate a new algorithm for solving the49

wind farm layout optimisation problem. The algorithm is inspired by the50

idea of searching using an evolutionary algorithm (EA) that has an informed51

mutation operator [10], in comparison to a typical evolutionary approach52

that uses an uninformed or randomised operator. In theory, informed opera-53

tors have a higher probability of making improvements whereas uninformed54

operators have no such bias. The former should therefore help an EA reach55

a better quality solution more readily than the latter.56

The cost of using an informed operator, however, is that it is more com-57

plex than an uninformed operator, and this typically makes the operator58

problem-specific. In other words, the informed operator can only be used for59

solving the wind farm layout optimisation problem. In this research, we use60

machine learning as a basis for making our mutation operator informed.61

Previously, we have already conducted a preliminary investigation of this62

approach vs. an identical approach that uses an uninformed mutation oper-63

ator [11]. The results were positive when evaluated on a set of benchmark64

problems, and therefore in the current paper we continue our investigation65

by providing (i) a modified version of our algorithm that has been further en-66

hanced and improved, and (ii) a more extensive evaluation of our approach,67

this time comparing to the current state-of-the-art algorithm, namely the68

turbine displacement algorithm (TDA) [2].69

2. Background70

In this section we describe the wind farm layout optimisation problem71

itself. We then discuss the wind farm layout evaluation method used in this72

research, and then the current state-of-the-art layout optimisation algorithm73

from the literature, TDA [2], is described.74

3

2.1. The Wind Farm Layout Optimisation Problem75

A wind farm is defined as a collection of possibly heterogenous wind76

turbines that are located in the same approximate area and are used to77

harvest kinetic energy from the wind. Wind farms may be on-shore or off-78

shore. If on-shore, then they may be located on terrain that is either flat79

or rugged. In the latter case, modelling the wind farm is more difficult,80

and therefore many current approaches make the assumption of near-smooth81

terrain so that turbine positions can be specified solely by two dimensional82

coordinates.83

A wind farm typically constrains the positions of its turbines within its84

layout regions. There are various reasons for this. The two main ones are85

firstly the presence of obstacles (e.g. roads and buildings) on the layout where86

turbines cannot be placed, and secondly the fact that two turbines cannot87

be positioned too closely together due to safety concerns. This minimum88

distance constraint arises because the immediate wake of a wind turbine89

is extremely turbulent, and therefore turbines placed too closely together90

may damage each other. A separation between turbines of eight times the91

turbine’s rotor radius is therefore recommended [1].92

Despite minimum distance constraints, turbines still interact with each93

other (albeit less strongly), and it is this interaction that leads to the optimi-94

sation problem. The primary means by which two or more turbines interact95

is called the wake effect, which was discussed in the Introduction.96

To explain the wake effect, it is easiest to envisage a single turbine placed97

such that its rotor blades are perpendicular to the current wind direction.98

Such a turbine is unhindered in its ability to harvest the kinetic energy of99

the wind. It should be able to harvest 100% of the potential energy that100

it could harvest: we therefore say that its expected velocity deficit is 0.0, or101

conversely, its expected wake free ratio – which amounts to 1.0 minus the102

expected velocity deficit – is 1.0.103

Now imagine a second turbine directly behind the first turbine: the second104

turbine experiences the velocity deficit caused by the first turbine. This105

results in the second turbine being unable to harvest the same amount of106

kinetic energy as the first turbine – in fact, the second turbine will only be107

able to extract some fraction, for example 80%, of the energy that the first108

turbine harvests. This situation corresponds to the second turbine having a109

velocity deficit of 0.2.110

The wake that a turbine generates is a spreading cone of gradually de-111

creasing velocity deficit. The cone’s apex corresponds to the turbine’s po-112

4

(a) Wind blowing north (0◦) (b) Wind blowing west (270◦)

Figure 1: The same four-turbine layout showing turbine positions and turbine wake inter-
ferences for two different wind directions. Wakes are depicted as cones. Darker areas of
the layout indicate regions of increasing velocity deficit; white areas indicate areas of no
velocity deficit.

sition, and the rate of velocity deficit decreases with distance depending on113

several factors including the angle made between the turbine’s rotor blades114

and the wind direction, the diameter of the rotor blades, the wind speed, and115

the terrain roughness [1].116

If a turbine lies in the wake of more than one other turbines, then the117

velocity deficits aggregate [1]. This may result in some turbines having a118

very high velocity deficit compared to others.119

The calculation is also complicated by the fact that turbines will experi-120

ence different expected velocity deficits for each different predominant wind121

direction. Figure 1 illustrates this. In the figure, the same small layout is122

depicted twice, the versions differing only in wind direction. Clearly, when123

wind is blowing north (Figure 1(a)), there are no velocity deficits between124

turbines; but when the wind direction changes (Figure 1(b)), two of the tur-125

bines experience velocity deficits, and one of the turbines lies in the wake of126

not one but two other turbines.127

It is evident, then, that the total power output of a wind farm depends128

heavily on the expected velocity deficits of the individual turbines that make129

up the farm. These in turn are functions of the turbines’ relative and absolute130

positions on the farm along with the predominant wind speeds and directions.131

Therefore different positions for the turbines will lead to different power132

outputs, and the optimisation problem is one of finding the configuration133

that maximises total power output.134

5

2.2. Simulation of Wind Farms135

The wind farm model we utilise in this research is the approach presented136

by Kusiak and Song [1], which was re-used in both Wilson et al. [12, 13] and137

the 2014 and 2015 Wind Farm Layout Optimisation competitions [14].138

The model makes several simplifying assumptions about terrain rough-139

ness (i.e. terrain is assumed relatively smooth), turbine homogeneity (all140

the turbines are identical), wind speed distributions (wind speeds follow a141

Weibull distribution), and the variation of wind speed with height. Despite142

these simplifications, the model has the advantage of being “acceptable for143

industrial application” [1] and is therefore ideal for research purposes as well.144

The time complexity of this model is O(n2d) where n is the number of145

turbines in the layout and d is the number of wind directions considered.146

The n2 term arises because wake effects between every single pair of turbines147

must be calculated individually, which is quadratic in the number of turbines.148

The constant factor d specifies the fidelity of the simulation. For example,149

if wind data is discretised into 15◦ segments, then d = 360◦

15◦
= 24. If a finer150

grained simulation is required (and the corresponding finer grained wind data151

is available) then d may be much higher.152

Once the expected velocity deficits of the individual turbines are calcu-153

lated, the overall sum or average expected velocity deficits across the entire154

farm can be easily computed and used as a measure of the value or fitness of155

the layout. We adopt this recommended approach in this paper.156

2.3. The Turbine Displacement Algorithm157

The current state-of-the-art algorithm in the literature for optimising a158

wind farm layout is the turbine displacement algorithm (TDA) proposed by159

Wagner [2]. In essence, TDA is a very simple local search algorithm that160

moves one random turbine at a time before evaluating the modified layout.161

If the modified layout is at least as good as the original layout, then the162

algorithm keeps the modified layout and discards the original. In this way,163

beneficial modifications accumulate and the layout is gradually optimised.164

The choice of moving one turbine at a time was made chiefly because165

of the O(n2) time complexity of the Kusiak & Song evaluation function [1]166

used in the original TDA publication [2]. The quadratic time complexity167

can be substantially mitigated using a neat algorithmic “speedup” strategy168

if only one turbine moves between evaluations. However, it turns out that169

this constraint is also useful for more than mitigating time complexity: TDA170

6

t

n1

n2

n3

n4

n5

Figure 2: Example of turbine t’s neighbourhood where K = 3. The three closest turbines
to t are n1, n2 and n3 and are included in the neighbourhood. Other turbines that are
further away are excluded.

is also a highly effective algorithm when compared to other approaches, even171

if the algorithmic speedup is not employed.172

In fact, in two recent extensive evaluations, both Wagner [2] and Wilson173

et al. [13] found that TDA outperformed all other approaches including174

genetic algorithms, particle swarm optimisation, and developmental models175

in terms of finding layouts with the highest expected velocity deficit per176

turbine, across several different wind and obstacle scenarios.177

The interestingness of TDA lies in its heuristic for shifting each turbine.178

Because wake effects are reduced with distance, the algorithm makes the179

simplifying assumption that only the K nearest neighbouring turbines to the180

given turbine are important. The K nearest neighbourhood is illustrated in181

Figure 2. A displacement vector is then calculated, which is a vector pointing182

in a direction away from the K nearest neighbouring turbines. The rationale183

for this is that moving the turbine away from its neighbours is more likely to184

decrease its velocity deficit. The displacement vector is then perturbed with185

angular noise (the magnitude of the noise being determined by a parameter186

σdir), optionally flipped in direction with probability p, and then added to187

the current turbine’s position to get its new position. If the turbine’s new188

position is invalid (e.g. outside of the layout, or colliding with an obstacle),189

then the displacement vector is gradually reduced in magnitude until the new190

position becomes valid.191

We note that inverting the displacement vector with probability p actually192

brings the turbine closer to its K nearest neighbours. Wagner’s justification193

7

for this is that sometimes closer groups of turbines actually increase a farm’s194

overall power output [2]. The value of p should typically be set to a small195

value.196

We also note that the TDA algorithm as originally published has the197

potential for a divide-by-zero exception in the displacement vector calculation198

(see lines 7-8 of Algorithm 2 in [2]). In our implementation of TDA we199

therefore assign the displacement vector to a random unit vector if a divide-200

by-zero error occurs.201

Finally, we note that TDA algorithm is not a “random walk” through202

the space of possible layouts. This is because the probability of mutating203

layout A to get layout B is not the same as the probability of mutating B204

to get A. This is because each turbine in the layout, besides its position,205

also has an associated magnitude that determines the initial size of the dis-206

placement vector. If shifting a turbine results in a global improvement to207

the layout, then the turbine’s magnitude increases by a small amount; con-208

versely, it decreases. Thus it is the sequence of accepted previous mutations209

that determine the probability distributions over next states when TDA’s210

mutation operator is applied. The initial value of each turbine’s magnitude211

is determined by the parameter σdist init.212

3. An Evolutionary Strategy with Informed Mutation213

We now describe our new approach to optimising wind farm layouts.214

3.1. Local Neighbourhood Definition215

The approach presented in this research builds on the notion of a turbine’s216

K nearest neighbours being important. We also follow the same basic pattern217

of the TDA approach in that one turbine is moved at a time, and the layout218

is evaluated after every move.219

However, rather than using TDA’s heuristic approach of computing a dis-220

placement vector and adding it to the turbine’s current position, we instead221

use machine learning to construct a predictive model of velocity deficits for222

all the turbine neighbourhoods in a layout. We then attempt to shift the223

current turbine to the best possible location on the layout (i.e. the location224

with lowest predicted velocity deficit), as predicted by our model.225

To explain in more detail, we must further refine the notion of what226

constitutes a neighbourhood of size K. Let us consider as an example a single227

8

turbine t and, supposing K = 3 as in Figure 2, its neighbouring turbines n1,228

n2 and n3. Our definition of t’s neighbourhood is the following:229

• the absolute (x, y) position of t on the layout, and230

• the relative locations of t’s neighbours n1, n2 and n3 with respect to t,231

sorted in ascending order of distance from t.232

Differentiating between absolute and relative location information is impor-233

tant in our view because absolute information (namely t’s position globally on234

the layout) has an impact on velocity deficit. For example, if t is positioned235

on the edge of the layout that is facing the predominant wind direction, then236

it is likely to have a lower velocity deficit than if it were on the opposite side237

of the layout. Similarly, relative information is important because it is the238

relative configuration of neighbouring turbines that produces the majority239

of the velocity deficit that a turbine experiences. We therefore include both240

types of location information in our neighbourhood definition.241

Sorting the neighbours by distance from t is also important because this242

ensures that neighbourhoods can be compared sensibly for similarity or dis-243

similarity. If the sorting step were excluded from the algorithm then it is244

not possible to directly compare neighbourhood configurations because the245

ordering of the neighbouring turbines would be arbitrary, and thus the model246

would be degraded.247

3.2. Predictive Model Building Algorithm248

Once the neighbourhood representation is determined, the next step in249

our proposed approach builds a predictive model of velocity deficits across250

the layout. In essence, this is achieved by first of all evaluating the layout so251

that the velocity deficits for each turbine are available. The velocity deficits252

are then converted into wake free ratios by subtracting the deficit from one,253

and these wake free ratios will be used as regression targets for the predictive254

model. The conversion from velocity deficit to wake free ratio is a convenience255

that converts the optimisation problem from one of minimisation to one of256

maximisation.257

Next we calculate the neighbourhood configurations (i.e. the absolute and258

relative locations discussed above) for each and every turbine in the layout,259

and label each configuration with the central turbine’s wake free ratio. Once260

this is achieved, we can build the predictive model.261

9

Input: turbine positions T = {(x1, y1), (x2, y2), . . . }, wake free ratios
W = {w1, w2, . . . }, neighbourhood size K

begin
/* start with an empty dataset with dimensionality that

is a function of K */

D ← create empty dataset(K);
/* iterate over every turbine in the layout */

foreach turbine position (xi, yi) ∈ T do
/* get the K nearest neighbours of the current

turbine */

knn← k nearest neighbours(T,K, (xi, yi));
/* calculate the angle and distance of each

neighbour from the current turbine */

foreach neighbour (xj, yj) ∈ knn do
dj ← distance((xi, yi), (xj, yj));
θj ← angle((xi, yi), (xj, yj));

end
/* sort the neighbours into ascending order of

distance and then add the neighbourhood

configuration to D */

sort by distance(knn);
ex← create example(xi, yi, d1, θ1, . . . , dK , θK , wi);
add example(D, ex);

end
/* learn the model given the labelled dataset */

P ← build model(D);
/* done -- return the newly built model */

return P
end

Algorithm 1: Model building algorithm. It is assumed that each turbine
has an associated wake free ratio, i.e. |T | = |W |.

10

More formally, Algorithm 1 shows pseudocode used to construct the262

model. In our approach, we use polar coordinates (i.e. an angle and a263

distance) to encode relative location information. This makes the sorting264

step of the algorithm easier because the distances are explicit and do not265

need to be calculated.266

The algorithm is also not specific about the particular predictive model267

used. Essentially, any predictive model capable of regression is appropriate.268

Input: turbine positions T = {(x1, y1), (x2, y2), . . . }, wake free ratios
W = {w1, w2, . . . }, number of samples N , predictive model P

begin
/* select the worst turbine out of the entire layout */

i← index of turbine with lowest wfr(W);
/* randomly select the first sample */

(xbest, ybest)← random valid location();
wbest ← predict wfr(T, P, (xbest, ybest));
/* select N-1 more samples (note that this loop will

not execute if N=1) */

for j = 2 . . . N do
(x, y)← random valid location();
w ← predict wfr(T, P, (x, y));
/* always keep the best sample */

if w > wbest then
(xbest, ybest)← (x, y);
wbest ← w;

end

end
/* shift the worst turbine to the best predicted point

from amongst the samples */

T ← move turbine(T, i, (xbest, ybest));
/* return the updated list of turbine positions */

return T
end

Algorithm 2: Informed Mutation Operator algorithm.

11

3.3. Informed Mutation Operator269

We now turn to a description of our informed mutation operator. The270

mutation operator proposed here takes two of the same inputs as used by the271

previous algorithm, namely the (x, y) positions of the turbines on the layout272

as well as the wake free ratios of those individual turbines. It also takes two273

additional parameters: the model P which was built by applying Algorithm274

1, as well as a new parameter N that specifies how many randomly selected275

locations will be evaluated by the model.276

Essentially, the mutation operator first of all selects the turbine with the277

lowest individual wake free ratio which it decides to shift. It then samples278

N random valid locations on the layout. The wake free ratio at each of the279

N locations is predicted by first of all “pretending” that the turbine under280

consideration is to be shifted to the sampled position, and then using the281

model to predict what the turbine’s wake free ratio would be at that point.282

The sampled location with the highest prediction is the one that the turbine283

is actually shifted to.284

This process is depicted in Algorithm 2. Clearly, when N = 1, there is285

no influence of the model on position selection and therefore the mutation286

operator amounts to a randomised operator. However, when N > 1, the287

model does have some influence, and with higher values of N , the influence288

is greater. On the surface, it may seem that extremely high values of N289

would be beneficial because there is a much greater chance that locations290

with high predicted wake free ratio can be discovered. However, in practice291

(as our evaluations later show), higher values of N may also mislead the292

search if the model is inaccurate. We therefore prefer modest values for N293

such as 10, 100, or at most, 1000.294

3.4. Final Evolutionary Strategy295

The final algorithm (depicted as Algorithm 3) that we are presenting296

in this paper is now described. Basically, we propose a 1+1 Evolutionary297

Strategy (ES) [15] with a stopping criteria determined by a maximum number298

of evaluations MAX EV ALS. Inside the main loop of the algorithm, there299

is first of all a check to determine if the predictive model should be either300

built for the first time or rebuilt. We included the periodic model rebuilding301

because if the model is built only once, it may quickly go “out of date,” as302

the algorithm proceeds to better layouts well beyond its initial one in terms303

of quality.304

12

Input: neighbourhood size K, number of samples N , maximum
number of evaluations MAX EV ALS, model rebuild interval
MRI

begin
/* initialise the evolutionary strategy by creating a

random initial layout */

best← create initial layout();
best val← evaluate(best);
num evals← 1;
/* begin the evolutionary strategy’s main iteration */

repeat
/* check to see if the model P needs to be built

using Algorithm 1 */

if (num evals− 1)%MRI == 0 then
T ← get turbine positions(best)
W ← get wake free ratios(best)
P ← invoke algorithm1(T,W,K);

end
/* copy the best solution and then mutate it using

Algorithm 2 */

candidate← copy(best);
T ← get turbine positions(candidate)
W ← get wake free ratios(best)
T ← invoke algorithm2(T,W,N, P);
set turbine positions(candidate, T);
/* evaluate the candidate solution and keep it if it

is better */

candidate val← evaluate(candidate);
num evals← num evals+ 1;
if candidate val ≥ best val then

best← candidate;
best val← candidate val;

end

until num evals ≥MAX EV ALS;
/* done -- return best layout found */

return best
end

Algorithm 3: Final Evolutionary Strategy.

13

A parameter MRI is used to govern the frequency with which the model305

should be rebuilt. As the algorithm indicates, if MRI = 1 then the model306

will be built every iteration, but if MRI ≥ MAX EV ALS, it will be built307

only once. Any value of MRI between these extremes is a compromise308

and represents a trade off between recency of the model and model building309

overhead.310

The next step in the main loop of the algorithm is to mutate the copy311

of the current best layout. This is performed using Algorithm 2 which has312

already been described.313

Finally, the candidate copy is evaluated and compared to the best layout.314

If its overall expected wake free ratio is higher or the same, then the candidate315

is retained as the new best layout.316

3.5. Other Considerations317

Although we have presented our approach as a 1+1 ES, it is by no means318

limited to this. It is straightforwardly possible to generalise Algorithm 3 to319

a λ+ µ ES, or even a genetic algorithm, but we leave this to future work.320

Finally we will point out that the algorithm used in this study differs from321

the one previously published [11] during our preliminary investigation of this322

approach. The main changes are primarily that the current version of the323

algorithm selects the worst turbine to mutate on each iteration; previously324

it was a random turbine, which was less effective. Furthermore, in order to325

make the algorithm more comparable to TDA, this version of the algorithm326

shifts only one turbine at a time. Previously, a percentage of turbines were327

moved per iteration – which in turn meant that the effects of mutation were328

partially dependent on the layout size (i.e. larger layouts resulted in more329

turbines moving per iteration and vice versa). By changing the algorithm to330

shift only one turbine per iteration, this drawback is ameliorated.331

4. Evaluation332

In this section, we describe the scenarios and implementation-specific333

settings used to evaluate our informed mutation operator-based ES, and then334

compare our approach with the current state-of-the-art algorithm TDA.335

4.1. Scenarios336

The test scenarios utilised are those used in the 2014 Wind Farm Layout337

Optimisation competition [14]. There are five diverse and challenging layout338

14

Table 1: The layout dimensions and number of turbines for each scenario.

Scenario Width (m) Height (m) # Turbines
1 3,500 16,100 220
2 4,000 9,900 150
3 15,800 11,300 710
4 10,500 7,400 300
5 15,900 14,500 910

problems in the evaluation set, and while they are all layouts with a rectan-339

gular boundary, they also all contain obstacles of different shapes and sizes.340

The number of turbines that must be optimised is fixed for each scenario,341

but varies considerably between 150 and 910 turbines. The exact dimensions342

and number of turbines per scenario is given in Table 1.343

Each scenario also has its own unique wind speed/direction profiles. The344

wind speed data is discretised into 15◦ bins, and is depicted in Figure 3 using345

wind roses. Note that in our wind roses, each reading on the wind roses346

gives an expected wind speed along one discretised wind direction. Expected347

wind speed is defined as the average speed observed when wind blows in one348

particular direction, multiplied by the probability of the wind blowing in that349

direction. The scale of the wind rose is then adjusted to fit the expected wind350

speeds. In contrast, typical wind roses show show the probability of wind351

blowing in a direction and its speed separately – which potentially results in352

a more difficult plot to read.353

Finally, each scenario also has its own unique obstacles, and these vary354

from a single large rectangular obstacle to multiple smaller obstacles, or a355

mixture of larger and smaller obstacles. The exact obstacles are best de-356

scribed visually, and are depicted in Figure 4.357

4.2. Experimental Set-up358

The evaluation we performed consisted of comparing TDA to our pro-359

posed new approach. To make the comparison, we implemented TDA and360

set its parameters to the same values as used in the original paper describing361

TDA [2] where possible. We also fixed the maximum number of evaluations362

to the same for both algorithms, and set the model rebuild interval for the363

ES to a constant. These fixed parameters are shown in Table 2.364

We note that the number of evaluations performed is fixed for all algo-365

rithms to a constant 1,000. This makes the comparison fair, but it does mean366

15

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5

Figure 3: Wind profiles used in each scenario. Depicted are the wind roses, which give
the expected wind speed in each direction. Directions are discretised into 15◦ bins. Each
concentric circle in a rose represents an expected wind speed increase of 0.2 m/s.

Table 2: The fixed parameters used in the evaluation.

Algorithm Parameter Value
TDA/ES MAX EV ALS 1000

TDA p 0.2
TDA σdir

π
6

TDA σdist init 1.05×min. turbine dist.
ES MRI 50

16

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5

Figure 4: Layouts with obstacles used in each scenario. Layouts are not shown to scale.

17

Table 3: The algorithms used in the evaluation.

Algorithm K N
TDA 4 –
TDA 8 –
ES – 1
ES 4 10
ES 4 100
ES 4 1000
ES 8 10
ES 8 100
ES 8 1000

that the experimental algorithms will have a computational overhead due to367

the model building and predictions made. Fortunately, the model building368

overhead requires constant time (since it is a function of the layout size and369

the number of evaluations, both of which are fixed per run) while the num-370

ber of predictions made is linearly proportional to N . In comparison to the371

evaluation function, therefore, the model’s overhead is low. We also note372

that the constant-time model building overhead depends on the specific re-373

gression model learning algorithm used, and will therefore vary considerably374

depending on choice made.375

In terms of the parameters that were varied, we were interested in as-376

sessing the effects of different neighbourhood sizes (by varying K for both377

algorithms), and also the effect of the model in the ES (which can be varied378

by changing N). We therefore considered nine different algorithms in total,379

each differing in the value of K and N used. The specific values of K and380

N are given in Table 3. There are three baselines in this experiment: two381

variants of TDA, and one ES version with N = 1 (which effectively ignores382

the model, so K is not relevant). This third baseline amounts to an ES with383

a randomised mutation operator.384

In terms of the exact predictive model used by the ES, we have chosen the385

widely-used machine learning algorithm Random Forest [16] which is easily386

adapted for regression.387

One final issue in our set-up is the way that initial layouts for both algo-388

rithms are constructed. One choice is to create the initial layouts randomly,389

i.e. by placing turbines at random valid locations where they intersect nei-390

18

ther with each other nor an obstacle. However such an approach tends to391

produce inferior and more variable starting conditions which may unduly in-392

fluence the performance of an algorithm. Therefore Wagner uses a grid-based393

initialisation for TDA [2]. In this initialisation approach, turbines are placed394

in a grid formation with the spacing between turbines fine-tuned so that the395

correct number of turbines can occupy the maximum amount of space.396

The difficulty with initialising layouts in a grid formation in our scenarios397

is the presence of obstacles: if the grid is sized to optimally fit the correct398

number of turbines, then some of the turbines will collide with obstacles,399

and the initial layout will therefore not be able to fit the requisite number400

of turbines. In the original paper on TDA, this was not an issue because no401

obstacles were present.402

We therefore propose an alternative, “obstacle-friendly” means of creating403

an initial layout in an approximate grid formation. We use this initialisation404

approach for all of our algorithms. The basic idea is, first of all, tune the405

spacing between turbines in the grid so that the layout can fit slightly more406

turbines than are required, even if turbines are not placed on locations con-407

taining obstacles. A consequence of this is that the spacing between turbines408

shrinks as the area of the obstacles increases.409

Once the turbines have been positioned, then some of them are randomly410

culled from the layout until the number of turbines is reduced to the required411

fixed quantity. This approach means that turbines will be mostly initialised412

in a grid formation around the obstacles, but some of the grid positions will413

be vacant. For exactness, the layout initialisation algorithm is shown as414

Algorithm 4.415

To conclude this overview of the experiment, we report the total number416

of runs and repetitions we performed. For each algorithm and scenario, we417

conducted thirty independent trials. This meant that in total, we conducted418

30 × 5 × 9 = 1, 350 runs from which the results in the next section are419

discussed.420

4.3. Results421

The results of our evaluation are depicted in Figure 5 using box-and-422

whisker plots. To understand the results, we have arranged the algorithm423

result sets on each plot from left to right in the same order as they appear424

in Table 3. The first three box-and-whisker plots depict performances of425

our three baseline algorithms, and the following six plots depict the results426

of our experimental algorithms. Each plot clearly shows the median, upper427

19

Input: desired initial layout size S, minimum turbine distance MTD,
scenario width and height W and H, scenario obstacles O

begin
/* calculate the optimal grid spacing between turbines

*/

spacing ← W
2

;
count← num turbines in rectangle(spacing,W,H,O);
while count < S and spacing > MTD do

spacing ← spacing × 0.999;
counts← num turbines in rectangle(spacing,W,H,O);

end
/* add the turbines to the grid so long as they do not

collide with any obstacles or each other */

layout← create empty layout(W,H);
x← 0;
y ← 0;
while x < W do

while y < H do
place turbine if possible(layout, x, y, O);
y = y + spacing;

end
x = x+ spacing;

end
/* randomly remove turbines if too many were added */

while size(layout) > S do
delete random turbine(layout);

end
/* done */

return layout
end

Algorithm 4: Algorithm used to construct the initial layout.

20

Table 4: Best layouts found by scenario.

Scenario Best wake free ratio Algorithm
1 0.9282 ES, K = 8, N = 1000
2 0.9264 ES, K = 8, N = 1000
3 0.8715 ES, K = 8, N = 1000
4 0.8946 ES, K = 4, N = 10
5 0.8599 ES K = 8, N = 1000

and lower quartiles, along with the minimum and maximum wake free ra-428

tios achieved by each algorithm on each scenario over thirty runs. All data429

points (including outliers) are included within the whiskers of the plots for430

conciseness.431

We can make the following general observations from Figure 5.432

Firstly, for each scenario, the algorithm producing the overall best final433

layout (i.e. the algorithm with the highest “whisker”) is uniformly one of the434

experimental algorithms. In four cases out of five it is the ES with K = 8 and435

N = 1000. Specific details about the best layout found for each scenario and436

which algorithm found it are given in Table 4. The fact that our proposed437

approach consistently finds the best layouts overall is encouraging.438

An examination of the median performances that the various algorithms439

tells a different story, however. For Scenario 1, the baseline ES with N = 1 is440

at least equal to the median performance of the best experimental algorithm.441

Similarly, for Scenario 2, the baseline method’s median is only slightly less442

than the best experimental algorithm’s median. It is only for the latter three443

scenarios that there is a clearer distinction between the median of the best444

baseline algorithm and the median of the best experimental algorithm. The445

difference in distributions is clearest in the case of Scenario 5, in which the446

interquartile ranges of the algorithms with K = 8 do not overlap the baselines447

at all.448

With respect to neighbourhood sizes, the results show that smaller neigh-449

bourhood sizes in general (i.e. where K = 4) lead to poorer results. This may450

be due to underfitting because the number of features used by the predictive451

model is smaller.452

Poorer median performance also appears to be correlated with higher453

values of N . If only median values are considered, then a modest value of454

N = 10 is optimal in most cases.455

Ironically however, it is the cases with N = 1000 that mostly produce the456

21

(a) Scenario 1

(b) Scenario 2

Figure 5: Results depicted as box-and-whisker plots.

22

(c) Scenario 3

(d) Scenario 4

Figure 5: Results depicted as box-and-whisker plots.

23

(e) Scenario 5

Figure 5: Results depicted as box-and-whisker plots.

Table 5: Reported performance of TDA in the 2014 Wind Farm Layout Optimisation
competition.

Scenario Reported best wake free ratio
1 0.9151
2 0.9112
3 0.8535
4 0.8777
5 0.8373

best layouts on all scenarios except for Scenario 4. A possible explanation457

for this is that higher values of N lead to a greater variance (i.e. a higher458

chance of discovering better or worse layouts) across individual runs. The459

longer “whiskers” for these algorithms on the plots are evidence for this.460

It is useful to compare the results of our evolutionary strategies to TDA,461

the current state-of-the-art approach in the literature. In most cases, the ES462

variants outperforms TDA by a wide margin. Furthermore, the distribution463

of results is much narrower for TDA than it is for the ES variants.464

We were curious as to whether TDA’s lower performance was a conse-465

quence of our implementation of it, or a genuine reflection of TDA’s true466

likely performance. To that end, we examined the result of the 2014 Wind467

24

Farm Layout Optimisation competition in which TDA was an entrant. The468

results of TDA on the five scenarios, as reported in the competition results,469

are given in Table 5. They show that, if any conclusion is to be drawn, it470

is that our implementation of TDA actually slightly outperforms the version471

used in the competition. Specifically, the median results in the plots are472

actually slightly higher than the wake free ratios shown in Table 5.473

It is interesting to speculate as to the reason why TDA’s performance474

is below that of the other algorithms. In our opinion, TDA’s performance475

is related to the size of the layouts. Scenario 2 in the evaluation set is the476

layout with the smallest number of turbines (only 150) and Figure 5(b),477

which concerns this scenario, shows that TDA is comparable to the other478

algorithms. Since 1,000 evaluations are performed per run, it can be expected479

that TDA will mutate each individual turbine in Scenario 2 1000
150

= 6.66 times480

on average per run. However for the largest layout (Scenario 5 with 910481

turbines), the number of expected mutations per turbine drops to 1000
910

= 1.10.482

TDA therefore may be the optimal choice for smaller layouts, but for larger483

layouts it suffers because it requires more evaluations to achieve the same484

degree of position tuning. A future modification to the TDA algorithm could485

alleviate this problem.486

5. Impact of Model Error on Algorithm Performance487

In the final section of the evaluation portion of this paper, we examine the488

quality of the predictive models that our proposed algorithms are learning.489

In machine learning, a critical factor in model performance is the amount of490

training data supplied to the model. A smaller amount of training data may491

result in an underfit model, which consequently is less accurate than it could492

be if more training data were supplied.493

Unfortunately, data quantity may be an issue for our proposed ES ap-494

proach because the data used to construct the models is dependent on the495

number of turbines in the layout. Specifically, as Algorithm 1 shows, the496

number of examples in each dataset is equal to the number of turbines in497

the layout. This means that for some layouts (e.g. Scenario 2) the number498

of training examples is low, whereas for other layouts (e.g. Scenario 5) the499

number of examples is much higher.500

To explore this issue, we ran another experiment in which a single al-501

gorithm (ES with K = 8 and N = 1000) was executed on each of the five502

25

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

1 50 150 250 350 450 550 650 750 850 950

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Figure 6: Cross-validated model RMSE error (y) by evaluation number (x) as measured
during one run of the ES with K = 8 and N = 1000. The Model Rebuild Interval (MRI)
in all cases was 50, and the error was estimated each time the model was built or rebuilt.

26

scenarios. All other parameters were set to the same values as in the previ-503

ous experiments. However, we did make one change to the implementation504

of our algorithm: whenever the model was rebuilt, its generalisation error505

was estimated by performing a ten-fold cross-validation experiment on the506

training data. The results are depicted in Figure 6.507

Figure 6 is interesting for two main reasons. Firstly, it shows model error508

increasing in the early stages of the ES’ run across all scenarios. Although509

seemingly counter-intuitive, this makes sense because layouts are initialised510

with a grid formation (see Algorithm 4) and therefore the wake free ratios511

are likely more predictable in the early stages of the run. However, as the512

layouts become more randomised over time, the prediction problem becomes513

more difficult and model error increases.514

The second interesting aspect of Figure 6 is the ranking in terms of error.515

A simple comparison with Table 1 shows that the model error decreases as516

the number of turbines in the scenario increases. Specifically, Scenarios 1517

and 2, with the smallest number of turbines, experiences the highest model518

error; conversely Scenario 5, with the most turbines, experiences the least519

error.520

This indicates that to some extent, the models may indeed be underfitting521

the problem for scenarios with a smaller number of turbines, and therefore522

greater performance gains may be possible if this issue is addressed algorith-523

mically by finding a better way to obtain data for building the models.524

6. Conclusion525

To summarise, we have investigated a novel approach to optimising wind526

farm layouts in which an ES is combined with an informed mutation operator527

(based on machine learning) to bias the search for wind farm layouts with low528

expected velocity deficits/high expected wake free ratios. We have evaluated529

our proposed algorithm on five challenging wind farm simulation scenarios,530

and have shown that our approach finds the best layout compared to two531

baseline algorithms, the Turbine Displacement Algorithm [2] and a more532

standard evolutionary strategy.533

One issue for further investigation is whether the reductions in overall534

velocity deficit that we have observed would correspond to actual increases535

in power output for a real farm. Admittedly, the gains “in silico” are small536

but two caveats are worth mentioning.537

27

Firstly, all of our experimental runs had a limited budget of 1,000 eval-538

uations. This enabled us to perform multiple repeats and therefore obtain539

statistics about average algorithm performance. In practice, the evaluation540

budget is only limited by compute power and therefore long runs of much541

more than 1,000 evaluations (with correspondingly fewer repetitions) would542

be feasible in an industrial setting with only a single scenario of concern.543

Differences between algorithms may become more pronounced under such544

conditions.545

Secondly, we should also point out that the evaluation function we used546

was chosen primarily to enable comparison of results reported in the liter-547

ature, and its limitations are well-known (see, for example, the discussion548

of models in the survey by Herbert-Acera et al. [8]). Beyond the Kusiak &549

Song approach, development of new wake models is a current area of research.550

For example, a three-dimensional (as opposed to a two dimensional) decision551

model is proposed by Song et al. [17], and an improved variant of Kusiak552

& Song’s method is proposed by Lückehe at al. [18]. Computational fluid553

dynamics (CFD) is also commonly used, for example in commercial software554

such as WaSP [19].555

However, depending on the method used, the time complexity of some of556

the more advanced methods may be exponential or even hyper-exponential557

[8]. Such approaches are clearly not suitable for repeated simulation of large558

layouts, but they could be used occasionally to validate the approximate559

performance of simpler models, in a style related to surrogate modelling via560

problem approximation [20, 21] – this is an intriguing area of future research.561

We would expect however that any final assessment of an algorithm’s per-562

formance when applied to a realistic wind engineering situation will depend563

on some or all of the layouts being evaluated by whichever more advanced564

and accurate methods are available at the time.565

To conclude, the results presented in this paper are encouraging and566

should be useful for researchers working in wind farm design automation.567

Extending the algorithm to cope with a variable number of turbines (as568

opposed to a fixed number), addressing the underfitting issue identified in569

Section 5, and exploring the same approach but with different wake modelling570

techniques are our future areas of investigation.571

[1] A. Kusiak, Z. Song, Design of wind farm layout for maximum wind572

energy capture, Renewable Energy 35 (2010) 685–694.573

28

[2] M. Wagner, J. Day, F. Neumann, A fast and effective local search algo-574

rithm for optimizing the placement of wind turbines, Renewable Energy575

51 (2013) 64–70.576

[3] Global Wind Energy Council, Global Wind Energy Outlook 2014, 2014.577

[4] London Array brochure, Online PDF brochure, retrieved 9 Nov578

2015, http://www.londonarray.com/wp-content/uploads/London-579

Array-Brochure.pdf.580

[5] Alta Wind Energy Center, WWW, retrieved 9 Nov 2015,581

http://www.power-technology.com/projects/alta-wind-energy-582

center-awec-california/.583

[6] J. Watts, Winds of change blow through china as spending on renew-584

able energy soars, http://www.theguardian.com/world/2012/mar/585

19/china-windfarms-renewable-energy, The Guardian.586

[7] M. Samorani, The wind farm layout optimization problem, in: P. Par-587

dolas (Ed.), Handbook of Wind Power Systems, Springer-Verlag, 2013,588

pp. 21–38.589

[8] J. F. Herbert-Acero, O. Probst, P.-E. Réthoré, G. C. Larsen, K. K.590

Castillo-Villar, A review of methodological approaches for the de-591

sign and optimization of wind farms, Energies 7 (11) (2014) 6930.592

doi:10.3390/en7116930.593

URL http://www.mdpi.com/1996-1073/7/11/6930594

[9] G. Mosetti, C. Poloni, B. Diviacco, Optimization of wind turbine posi-595

tioning in large wind farms by means of a genetic algorithm, Journal of596

Wind Engineering and Industrial Aerodynamics 51 (1) (1994) 105–116.597

[10] K. Rasheed, H. Hirsh, Informed operators: Speeding up genetic-598

algorithm-based design optimization using reduced models, in: Pro-599

ceedings of the Genetic and Evolutionary Computation Conference600

(GECCO), Morgan Kaufmann, 2000, pp. 628–635.601

[11] M. Mayo, M. Daoud, An adaptive model-based mutation operator for602

the wind farm layout optimisation problem, in: Proc. IEEE Conference603

on Systems, Man and Cybernetics, 2015.604

29

[12] D. Wilson, E. Awa, S. Cussat-Blanc, K. Veeramachaneni, U.-M.605

O’Reilly, On learning to generate wind farm layouts, in: Proceedings606

of the 15th Annual Conference on Genetic and Evolutionary Computa-607

tion, GECCO ’13, ACM, 2013, pp. 767–774.608

[13] D. Wilson, S. Cussat-Blanc, K. Veeramachaneni, U. O’Reilly, H. Luga,609

A continuous development model for wind farm layout optimization,610

in: Proceedings of the 2014 Conference on Genetic and Evolutionary611

Computation, GECCO ’14, ACM, New York, NY, USA, 2014, pp. 745–612

752.613

[14] D. Wilson, http://www.irit.fr/wind-competition/, URL (2015).614

[15] H. Beyer, H. Schwefel, Evolution strategies: A comprehensive introduc-615

tion, Journal Natural Computing 1 (1) (2002) 3–52.616

[16] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.617

[17] Z. Song, Z. Zhang, X. Chen, The decision model of 3-dimensional618

wind farm layout design, Renewable Energy 85 (2016) 248 – 258.619

doi:http://dx.doi.org/10.1016/j.renene.2015.06.036.620

URL http://www.sciencedirect.com/science/article/pii/621

S0960148115300586622

[18] D. Lückehe, M. Wagner, O. Kramer, On evolutionary approaches to623

wind turbine placement with geo-constraints, in: Proceedings of the624

2015 on Genetic and Evolutionary Computation Conference, GECCO625

’15, 2015.626

[19] Wind Atlas Analysis and Application Program (WAsP), available online627

http://www.wasp.dk/ (date accessed: 10 nov 2015).628

[20] Y. Jin, Surrogate-assisted evolutionary computation: recent advances629

and future challenges, Swarm and Evolutionary Computation 1 (2011)630

61–70.631

[21] M. Bhattacharya, Evolutionary approaches to expensive optimisation,632

International Journal of Advanced Research in Artificial Intelligence633

2 (3) (2013) 53–59.634

30

