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ABSTRACT 
The problem of nonlinear, steady state magnetic reconnection in incompressible plasmas is considered. A 

self-consistent treatment is developed which allows a formal analytic solution of the resistive induction equa­
tion, valid for all sub-Alfvenic velocity fields. This solution relates the velocity stream function to the global 
magnetic field structure and highlights several key properties of the resistive system. In particular, the field 
lines are isobars of uniform current density and characteristics of the velocity stream function. 

The impact of this analysis on "fast" magnetic reconnection is then considered. Despite strong constraints 
on the flow topology-no separatrix flows are allowed-fast, nonlinear models can be developed self­
consistently. It is shown that the reconnection rate is maintained against reductions in the plasma restrictivity 
by the increasing amplitude but decreasing width of the current layer aligned to the separatrix. It is concluded 
that "open" flow topologies allow fast reconnection to continue under conditions which lead to stalling in 
"closed" or periodic geometries. 
Subject headings: MHD - plasmas 

1. INTRODUCTION 

Despite the vigorous development of steady state, magnetic 
reconnection theory over the last 30 years (e.g., Vasyliunas 
1975; Forbes & Priest 1987), a definitive global model of the 
magnetic merging process has yet to be established. A major 
difficulty with the traditional, semi-analytic approach is 
matching the large-scale advection of the outer magnetic field 
to a localized diffusion layer surrounding the neutral point. 
Recent numerical simulations of magnetic merging have shed 
some light on the global problem but often at the expense of 
traditional "fast" reconnection theory (e.g., Biskamp 1986). 
Whether the classical approach leads to a reconnective model 
which can account for, say, the explosive energy release in a 
solar flare, remains highly contentious. 

More recently, the problem of dynamic reconnection has 
been addressed. An analytic treatment is possible for the case 
of small amplitude, compressible disturbances on X-type 
neutral points (Craig & McClymont 1991; Hassam 1992). 
Remarkably, all global disturbances-not just perturbations 
altering the intrinsic X-point topology-dissipate resistively 
on a "fast" timescale, that is, over a timescale effectively inde­
pendent of the plasma resistivity (Craig & McClymont 1993). 
This analysis also presents a graphic description of the 
dynamic collapse to small length scales that must occur if 
reconnection is to provide a viable mechanism for fast mag­
netic annihilation (Craig & Watson 1992). Numerical simula­
tions confirm that fast, dynamic reconnection persists for large 
amplitude disturbances (Biskamp & Welter 1980; DeLuca & 
Craig 1992; Rickard & Craig 1993) but the dissipation rate 
eventually stalls when finite compressibility and nonplanar 
magnetic field components are introduced (Craig, Henton, & 
Rickard 1993). Apparently, the strong current localizations 
necessary for rapid ohmic dissipation are inhibited by the 
buildup of back-pressures at the neutral point. 

To what extent the stalling of fast, dynamic reconnection is 
an artifact of the restricted flow topology imposed by the 
"closed" X-point geometry is unclear. But it seems likely that 
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the "open" flow topology of traditional steady state theory, or 
more general three-dimensional geometries, could allow suffi­
cient freedom to prevent strong pressure gradients retarding 
the flow. Motivated by these considerations, Craig & Rickard 
(1994) demonstrate analytically that fast, linear, steady state 
reconnection in incompressible plasmas is maintained for the 
"open" planar geometries of traditional theory. However, the 
analytic solution for the flow topology explicitly forbids fluid 
motions across the separatrices, a result in contradiction to the 
flow topologies of traditional steady state theory! 

The purpose of this paper is to extend the linear analysis of 
Craig & Rickard (1994) into the nonlinear regime of the clas­
sical theory. This approach allows the diffusion and advection 
regions to be treated self-consistently in a mathematically 
unambiguous fashion. Specifically, an exact analytic solution 
of the resistive induction equation is constructed that relates 
the plasma flow to the magnetic field structure under very 
general conditions. This construction makes explicit certain 
fundamental properties of all resistive reconnective solutions. 
The main restriction on the analysis is that flow speeds are 
limited to below the Alfven Mach number of the plasma-a 
constraint also shared by the traditional quasi-linear approach 
(Priest & Forbes 1986). 

The paper is organized as follows. In § 2 we introduce the 
resistive system-and briefly background the conventional 
quasi-linear approach-before discussing the details and 
implications of the present analysis. Section 3 describes appli­
cations of the theory to the problem of" fast" linear and non­
linear magnetic reconnection. A summary of our findings is 
presented in§ 4. 

2. STEADY STATE RECONNECTION ANALYSIS 

2.1. Resistive System 

We consider the steady state momentum and induction 
equations for a resistive, incompressible plasma in a two­
dimensional geometry. The reconnective system is conve-
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niently expressed in the nondimensional form, 

(v • V)v = -V2t/,Vt/, - Vp, 

v • Vt/, = E + 17V2 t/, , 

(2.1) 

(2.2) 

where p is the plasma pressure and t/, is a flux function for the 
magnetic field 

B = V x tf,z. (2.3) 

The incompressibility condition is satisfied by introducing a 
velocity stream function 

v=Vx</>f., (2.4) 

where v = (u, v) = (</>y, -<f>x) and differentiation of the depen­
dent variables is indicated by subscript notation. 

We adopt the traditional symmetries, namely, 

u=t/lx=O on x=O, v=t/ly=O on y=O, (2.5) 

and thus model the positive quadrant of the reconnection 
region (0 :=:;; x, y :=:;; 1). The origin is both a neutral point of the 
magnetic field and a stagnation point of the plasma flow. 

The system is specified by the dimensionless parameters E 
and 17. Here E defines a uniform electric field which determines 
the strength of the external plasma flow. With flow speeds 
measured in units of the boundary Alfven speed, the dimen­
sionless resistivity 17 is an inverse magnetic Reynolds number of 
order 10- 10 for typical coronal plasmas. Consequently, to 
avoid "slow" magnetic merging, the reconnection rate cannot 
depend strongly upon 17. This is tantamount to the assumption 
that, for well-defined "external" boundary conditions, E can 
be chosen essentially independent of the plasma resistivity. 

Before considering the reconnective system in more detail, it 
is instructive to outline the traditional quasi-linear approach, 
as systematized by Priest & Forbes (1986). 

2.2. Perturbation Expansion Approach 
The classical approach assumes a perturbation expansion, in 

which the Alfvenic flow speed is the implicit small parameter, 
for an" outer field" region of zero resistivity: 

t/l=t/lo+t/11+ ... , v=vo+v1+ .... 

The equilibrium structure comprises stationary (v0 = 0), anti­
parallel magnetic fields: however, the transition layer across 
the neutral line-a region of high current density-is never 
considered. The effects of finite resistivity are likewise ignored 
beyond the assumption that the dimensions of the current 
sheet can be adjusted to match the external flow solution. 
Under these restrictions, Priest & Forbes (1986) show that the 
perturbation expansion leads to families of "fast" reconnec­
tion models, for example, Petschek (1964). 

The problems associated with the traditional approach are 
well known and will not be detailed here. We simply mention 
that attempts to confirm the classical picture by direct simula­
tion have been largely unsuccessful (as emphasized by Biskamp 
1986) unless bolstered by additional effects not included in the 
original formulation of the problem (e.g., the nonuniform 
plasma resistivities of Yan et al. 1992). Interpretive problems 
are compounded by the notorious difficulty of adopting 
boundary conditions for" open" steady state flow (Forbes & 
Priest 1987) and by the limited range of resistivities that can be 
simulated numerically. 

2.3. Momentum Equationfor Sub-Alfvenic Flows 
In the following analysis we neglect the convective derivative 

in the momentum equation (2.1). This simplification only 

affects the second and higher order components of the momen­
tum equation which remain small for sub-Alfvenic flow veloc­
ities. 

In terms of the stream function (2.4) the system reduces to 

V2 t/,Vt/, = -Vp , (2.6) 

(2.7) 

To satisfy equation (2.6) we must have p = p(tf,) and so 

v2 tf, = - p'(t/1) . (2.8) 

The magnetic field lines are then isobars along which the 
current density is constant. A further implication is that no 
plasma can flow across the separatrices. This follows by noting 
that since 

p'(t/1) = - V2 t/, = E/17 , (2.9) 

is satisfied at the origin, equation (2.9) holds along any mag­
netic field line that threads the neutral point. Therefore the 
flow term in the induction equation (2.7) must vanish on the 
separatrix. 

Returning to the momentum equation, we note that equa­
tion (2.6) must contain the totality of information in the zeroth­
and first-order components of the magnetic field. To be more 
explicit, we write the pressure as 

p(tf,) = po(tf,) + Ap(tf,) , (2.10) 

and set t/1 = t/,0 + t/, 1 . An expansion about t/,0 then yields the 
equilibrium structure 

V2 t/,0 = -p~(t/10), (2.11) 

and the first-order solution (Craig & Rickard 1994) 

V2t/11 + p~(t/,0)t/,1 = -Ap'(t/10). (2.12) 

The requirements for solving equations (2.11) and (2.12) are 
well known. Each source function must be specified within the 
region of interest, while a linear combination of the dependent 
variable and its normal derivative must be prescribed on the 
boundary. The equilibrium structure (2.11) can be chosen 
current free, but the first-order solution must contain strong, 
localized currents at the neutral point if significant reconnec­
tion is to occur. The form of the source function Ap'(t/, 0) in the 
Helmholtz equation (2.12) is therefore critical in determining 
the reconnection speed. Similarly, for the full nonlinear equa­
tion (2.8), it is the increment function Ap'(t/,) that is of central 
importance. 

2.4. Analytic Solution of the Induction Equation 

In the present approach, the magnetic field is determined 
independently of the induction equation, mainly by the choice 
of the generating function p'(tf,). Although we cannot assert 
that the full nonlinear equation (2.8) always has well-posed 
solutions, we can guarantee solutions in linear (Craig & 
Rickard 1994) and quasi-linear applications (Priest & Forbes 
1986). 

Let us assume therefore that a solution for t/, can be con­
structed. The induction equation (2. 7) can be written as 

(2.13) 

According to the method of characteristics, the stream function 
</> can be determined from the ordinary differential equations 

dx _ dy _ d<f> 
t/ly - t/lx - E - 17p'(tf,)" 

(2.14) 
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The characteristics are curves in the x-y plane on which the 
total differential of <P is specified. These are simply the mag­
netic field lines given by 

di/I= i/lxdx + i/lydy = 0. 

We can express the solution for <P as a quadrature over either 
of the independent variables. Choosing y to parameterize the 
characteristics gives the general solution 

f y dy 
</J(x,y) = [E - r,p'(i/1)] i/lx[x(i/1, y), y] + µ(i/1), (2.15) 

where the arbitrary function µ(i/1) is the integration constant for 
each characteristic. Since Vµ = µ'Vi/I, the velocity field Vµ x z 
is directed along the magnetic field lines. 

We conclude that (2.15) is the general solution of the induc­
tion equation valid for sub-Alfvenic flows. The solution is com­
pletely determined when boundary conditions are specified on 
any noncharacteristic curve in the x-y plane. For the standard 
reconnection geometry we can choose <P = 0 along the x and 
y-axes and set µ(i/1) = 0 to eliminate plasma flow across the 
inner boundaries. Obviously, no freedom is left to specify 
"outer" boundary conditions for ¢. 

2.5. Universal Features of the Reconnection Problem 

We now detail several fundamental properties of the recon­
nective system. For convenience we shall normalize 1/J so the 
level 1/1 = 0 defines the separatrices of the magnetic field. We 
then have 

1. The magnetic field lines are isobars along which the 
current density is constant; the field lines are characteristics of 
the velocity stream function. 

2. No separatrix flows are allowed (by eq. [2.15]). 
3. The pressure in the vicinity of the separatrix (2.9) has the 

form 

E 
p = PN +- 1/1, 

f/ 

where PN is some constant. 

(2.16) 

It should be emphasized that, although these results contra­
dict traditional steady state models, they can only be undone 
by modifying the resistive system in some essential way. In 
particular, as regions of strong current contiguous with the 
separatrices extend uniformly from the origin to the outer 
boundary, it is incorrect to assume that high currents can be 
localized within a small "rectangular" diffusion region sur­
rounding the neutral point. Admittedly, such localized current 
structures may be achieved by the expedient of nonuniform 
resistivities (e.g., Yan, Lee, & Priest 1992), in much the same 
way as flow across the separatrices requires the inclusion of 
fluid viscosity (as in Priest et al. 1994). However, the motiva­
tion for introducing such complications seems dubious given 
that the simplest resistive systems are not well understood. 

The question of whether solutions that disqualify fluid 
motion across the separatrices can be classed as 
"reconnective" is essentially a matter of definition (Priest et al. 
1994). If a narrow definition is taken which requires separatrix 
flow (Vasyluinas 1975), then we have proved that 
"reconnection" is impossible for the invicid resistive system. 

More seriously, this definition leads to the bizarre result that 
"reconnection" must depend on the level of the fluid viscosity 
in the problem. This seems absurd given that reconnection is 
intrinsically resistive, and capable of rigorous definition even 
for invicid plasmas (e.g., Craig & McClymont 1993)! 

Finally, we point out an interesting ramification of our 
analysis. Suppose equation (2.16) is applied to a magnetic field 
which is locally "X-type "; that is, locally of the form 
1/J oc (x2 - ix2y2), 0 < ix ::;; 1. The origin is then a saddle point of 
the pressure being a maximum on the inflow axis and a 
minimum on the outflow axis. 

3. FAST RECONNECTIVE SOLUTIONS 

3.1. Introduction 

We now investigate the possibility of fast steady state energy 
dissipation. As we have the freedom to specify the generating 
function p'(i/1) and boundary conditions (Neumann or 
Dirichlet) for 1/1, we cannot uniquely determine a fast reconnec­
tion model. Our aim therefore is to demonstrate fast, linear and 
nonlinear solutions under simple, plausible parameterizations 
of the generating function. 

So far we have considered only one measure of" fast " recon­
nection, namely, the flux annihilation rate at the neutral point 
as determined by the scaling of E with r,. Also of interest 
however, are the total current in the dissipation region and the 
ohmic release rate, namely 

I~= llV2 i/lldxdy, W,, = f/ llV2 i/ll 2 dxdy. (3.1) 

In particular, W,, measures the transfer of magnetic energy into 
heat, as opposed to the kinetic energy of mass motion. We 
follow De Luca & Craig (1992) in adopting "fast" to indicate 
that at least one of the measures, E or W,,, scales independently 
of any positive power of r,. 

3.2. The Form of the Generating Function 

Although the construction of fast reconnection mechanisms 
is a central goal of magnetic merging theory, it appears that 
only a fully dynamic model is capable of yielding unambiguous 
reconnection scalings. In the traditional steady state approach, 
for example, families of reconnection models are distinguished 
by the nature of the flow topology in the vicinity of the neutral 
point (Priest & Forbes 1986). Each family differs with respect 
to the gross properties of the current sheet. In contrast a 
unique solution is guaranteed for any dynamic model that 
evolves from well-defined initial conditions. 

Arguably, the simplest dynamic model for fast dissipation is 
provided by the theory of the linearized X-point (Craig & 
McClymont 1993). In this case lq, W,,, and the flux annihilation 
rate all scale independently of resistivity-at least to within 
nondimensional factors of 0( I ln r, I ). The reconnection rate 
stalls (only Iq remains invariant) when significant gas pressures 
are introduced, but it is conjectured that "open" flow topol­
ogies may allow fast reconnection to persist, even for incom­
pressible plasmas (Craig & Watson 1992). 

Motivated by these considerations, we consider a simple 
analytic form for the generating function 

p'(i/1) = ~ F(J.i/f) ' ). = /J ~ ' (3.2) 
f/ f/ 
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where p is some fixed number of order unity. Considerations of 
symmetry imply that F must be even and for analytic conve­
nience we take F(x) = sech2 (x). The key point, as confirmed 
below, is that (3.2) naturally reproduces the scaling of the 
dynamic X-point theory while allowing plausible construc­
tions into the nonlinear regime. 

3.3. Linear X-Point Solutions 

We now apply the analysis of§ 2 to equilibrium X-points of 
the form 

(3.3) 

The background current is uniform so equation (2.12) reduces 
to 

E 
V2 t/1 1 = -Ap'(t/10) = - - sech2 (J..t/1 0). (3.4) 

1'/ 

The solution for the stream function below the separatrix 
(x > 1XY) is given by 

</> = [E -17~p'(t/lo)J . h-1 [ IXY J 
IX sm (21t/lol)112 • 

(3.5) 

Above the separatrix (x < 1XY), the solution is obtained by 
replacing ocy with x in the numerator of the hyperbolic argu­
ment. 

Figures 1 and 2 show the basic features of the linear solution 
for the case E = 1, 11 = 0.1, p = 1, and IX = 3112/2. Contours of 
the equilibrium flux function (t/1 0 ) and the velocity stream func­
tion(</>) confirm the presence of strong shearing flows parallel 
to the separatrices (Figs. la and lb, respectively). Plasma 
inflow along the negative x-axis is compensated by an outflow 
jet below the separatrix. Similarly, the strong inflow jet above 
the separatrix is balanced by a weaker, but more extended, 
outflow through the upper boundary. 

Figure 2a illustrates the ridge of peak current that extends 
uniformly along the separatrix to the outer boundary. Notably, 
the contours of the perturbed flux function in Figure 2b resem-

1.0 

0.8 

0.6 

;,, 

0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 
x 

FIG. la 

ble the aximuthal contours of dynamic X-point theory (Craig 
& Watson 1992), although variations caused by extended 
current ridges along the separatrix are clearly apparent. 

We now determine reconnective scalings under the assump­
tion that E is invariant with resistivity. First we note that 
length scales in the vicinity of the neutral point (3.4) are deter­
mined by J..- 112 - 17 112• Taking a localized current of magni­
tude E/1'/ over the area AS - 11 yields I~ - W,, - q0 . This simple 
dimensional argument-which ignores the current extension 
along the separatrices-already suggests that fast ohmic dissi­
pation is achieved. 

To obtain more precise scalings we introduce the variable 
change 

r = x - IXY , s = x + IXY • 

The integral for the current then transforms to 

2 i2a i2a E (J..rs) I~=- -sech2 - drds, 
IX o o 1'/ 2 

and so 

4 i2).a2 dt 
I = - tanh (t) - . 
~ IX/3 o t 

(3.6) 

It follows that 

IX/3 2 
4 I~= B0 + B1 ln(2J..1X ) , (3.7) 

where B0 is a sum (of order unity) of Bernoulli numbers and B1 

satisfies tanh (1) ~ 0.762 < B1 < 1. A similar evaluation of the 
ohmic dissipation rate gives the scaling 

(3.8) 

Since E is invariant the model is marginally more effective at 
converting magnetic energy to heat than the kinetic energy of 
fluid motion. However, both reconnection measures are fast in 
agreement with dynamic X-point theory. 

1.0 
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0.6 

;,, 

0.4 

0.2 
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0.0 0.2 0.4 0.6 0.8 1.0 
x 

FIG. lb 

FIG. 1.-Plots of 1/1 and </J for the linearized X-point problem with parameters 17 = 0.01, E = 0.1, ct= ./3;2, and f3 = 1. The background magnetic field (1/1 0) is 
characterised by a separatrix inclined at 60° to the x-axis (a). The stream function (b) is evaluated from solution (3.5) and exhibits strong shear-flows parallel to the 
separatrix. 
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FIG. 2a FIG. 2b 

FIG. 2.--{a) Surface plot of the perturbation current for the linearized problem of Fig. 1. (b) Contours of the perturbed flux functions lj, 1• 

Finally, we mention that the major limitation of the linear­
ised model is the severe restriction [O(IJ)] on the perturbation 
amplitude. If this is exceeded, the perturbation field (Fig. 2b) 
overwhelms the background field and the linearization fails (as 
discussed in Craig & Watson 1992). 

3.4. Nonlinear Solutions 
For large amplitude displacements the momentum equation 

(2.8) is highly nonlinear and therefore difficult to treat analyti­
cally. In practice we employ an implicit relaxation technique to 
model the time-evolution equation 

i/J = p'(i/1) + v2ifJ . 
Boundary conditions are set by assuming initial conditions of 
the X-point form (3.3). After each iteration ijJ is implicitly nor­
malized so that ijJ = 0 defines the separatrix contour. Once a 
relaxed solution for ijJ is achieved, it is a simple exercise to 
determine the stream function <p, for instance by numerically 
integrating along the characteristics (2.14). 
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0.8 
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0.0 0.2 0.4 0.6 0.8 1.0 
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FIG. 3a 

Results from a typical nonlinear computation are presented 
in Figure 3 (1'/ = O.Ql, E = 0.1, oc = 1, and p = 8). In common 
with the linear analysis of§ 3.3, strong shear flows parallel to 
the separatrices are a salient feature (Fig. 3b). The nonlinear 
results however, as illustrated in Figure 4a, show a tendency 
for the separatrix structure near the neutral point to flatten 
into a quasi-one-dimensional current sheet. The saddle point 
pressure variation close to the origin is shown in Figure 4b. 

To determine reconnective scalings we systematically reduce 
1'/ while keeping all other parameters fixed. Figure 5a confirms 
that I~ and Jv.i remain essentially independent of resistivity. 
However, the increasing quasi-one-dimensionality of the 
current profile implies that the reconnection scalings are main­
tained predominantly by reductions in the width of the current 
sheet. Figure 5b shows that the width of the sheet indeed 
reduces in proportion to 1'/· As the length is effectively invari­
ant, the area of the current sheet must scale as the resistivity­
hence reconnective scaling consistent with the linear model. 

Finally, we illustrate the dramatic collapse of the current 
structure with reductions in resistivity. The contour plots of 
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0.6 
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0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 
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FIG. 3b 

FIG. 3.-Plots of lj, (a) and <P (b) for the nonlinear solution with parameters '1 = 0.01, E = 0.1, ex = 1, and f3 = 8. A notable feature is the flattening of the separatrix 
near the neutral point. 
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FIG. 4a FIG. 4b 

FIG. 4.--{a) Surface plot of the current density for the nonlinear solution of Fig. 3. (b) Surface plot of the pressure variation. 

Figure 6 show the effect ofreducing rJ by a factor of 10. Quasi­
linear structures obtained at large rJ rapidly degenerate to thin 
current sheets aligned to the separatrix. 

3.5. A Solution for Antiparallel Magnetic Merging 

As a final demonstration of the fast reconnective scalings 
associated with equation (3.2), we consider the merging of 

1.0 

(a) 

0.1~~~~~~~-~~~~~-~~~~~ 

0.01 

1.00 

- 0.10 

/, 

/, 

0.10 

' /, 

/ 

/ 
/ 
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1.00 

/ 

/ 

10.00 

(b) 

0.01 l__L__.,~~~~_.__J_-~~~~.......L-~~~~~ 

0.01 0.10 1.00 10.00 

7) 

FIG. 5.--{a) Plot of integrated current and ohmic dissipation rate vs. resis­
tivity. (b) Current sheet width (I) vs. resistivity. The dashed line indicates the 
reference scaling I - 'I 1. 

strictly antiparallel magnetic fields. Taking i/1 = i/J(x) and 
specializing to f3 = 1 in equation (3.2) gives 

i/Jx = tanh (~ X), </> = Eyi/Jx, (3.9) 

where i/J has the explicit form 

i/J(x) = i/1 N + i In [ cosh ( ~ x) J . (3.10) 

This simple example illustrates several key features of the 
problem. With E fixed, the magnetic field and inflow speed on 
the outer boundary (x = 1) are invariant with '7· Reductions in 
the plasma resistivity are compensated by the decreasing width 
( - I'/) of the transition layer overlying the y-axis. A simple cal­
culation confirms the invariance of the integrated current in 
the diffusion layer I~ and the ohmic dissipation rate w,,. 
Notably, these scalings-and the width of the current layer­
are consistent with the nonlinear, two-dimensional field scal­
ings of the previous section. 

The shear-flow topology however, degenerates in the case of 
a strictly one-dimensional field. Close to the origin a stagna­
tion point flow exists(</> ~ E 2xy/rJ) with plasma being ejected 
in a narrow jet along the neutral line. The restriction of sub­
Alfvenic outflows can always be met, formally at least, by 
taking E sufficiently small: specifically for rJ > 17min say, we take 
E ~ rJ!fi!· None the less, relatively large outflow speeds appear 
a natural feature of anti parallel merging. 

3.5. Summary 

The present results confirm that fast shear-flow solutions 
can be generated self-consistently in both linear and nonlinear 
applications. Although all models have essentially the same 
ohmic dissipation and flux annihilation scalings, the current 
structure in the vicinity of the neutral point degenerates from 
near-cylindrical to quasi-one-dimensional with the increasing 
nonlinearity of the solution. As a result, in the nonlinear 
models, reductions in resistivity are compensated entirely by 
the diminishing width ( -11) of the current layer. This contrasts 
with the linear models in which the bulk of the current is 
contained in a cylindrical spike ( of area -11) surrounding the 
origin. 

In practice, we note that the strong shear flows that charac­
terize our solutions will be modified by viscous effects. 
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FIG. 6.-Contour plots of current density ('I = 1.0, 0.5, 0.1 in diagrams (a), 
(b), and (c), respectively). The rapid collapse toward a quasi one-dimensional 
current sheet is immediately apparant. 

However, we take the view that if fast dissipation is possible for 
the resistive system as is, then fast reconnection should persist 
when local effects allowing greater freedom in the flow topol­
ogy are introduced. This view contrasts with Priest et al. (1994) 
who modify the resistive system on the grounds that solutions 
which disqualify motion across the separatrices are qualit­
atively unlike historical reconnection models. 

4. DISCUSSION AND CONCLUSIONS 

We have considered the incompressible, resistive system of 
traditional steady state theory. Under the restriction of sub­
Alfvenic flow speeds, a global treatment is possible which 
allows the velocity stream function to be expressed analytically 
as a functional of the magnetic field structure. This treatment 
shows that 

1. The magnetic field lines are characteristics of the velocity 
stream function along which the pressure and current density 
are constant. Ridges of peak current contiguous with the 
separatrices extend uniformly from the origin to the outer 
boundary. 

2. All separatrix flows vanish; strong shear flows occur 
parallel to the separatrices. 

3. The neutral point is a saddle point of the pressure profile: 
it is a local maximum in the direction of the inflow but a local 
minimum along the outflow. 

It should be stressed that these properties can only be 
undone by modifying the system, say by assuming non­
uniform resistivities (Yan et al. 1992), or by including viscous 
damping (Priest et al. 1994). Either way, classical "solutions" 
which assume separatrix flows and current structures localized 
to the neutral point are misleading as models of the incom­
pressible resistive system. 

Turning to the possibility of fast magnetic energy dissi­
pation, we have shown that the constraint of vanishing 
separatrix flows is still compatible with fast reconnective solu­
tions. In particular, the models of § 3 provide an explicit 
demonstration that "open" topologies allow fast reconnection 
to persist under conditions that lead to stalling in "closed" or 
periodic geometries (Craig, Henton, & Rickard 1993; Craig & 
McClymont 1993). In nonlinear applications the reconnection 
rate is maintained against reductions in plasma resistivity by 
the increasing amplitude, but decreasing width, of the 
separatrix current layer. By way of constrast, the linear models 
are characterized by current "spikes" at the origin whose are a 
contracts uniformly with resistivity. 

Finally we mention that, although we have explored only a 
limited class of nonlinear models, a cursory glance at reconnec­
tion simulations reveals many of the features predicted by our 
analysis. The tendency for the strong separatrix shear flows is 
obscured by pseudoviscous effects required for numerical sta­
bility, but the presence of global current structures extending 
uniformly along the separatrices is unmistakable in both 
steady state and dynamic computations of compressible 
plasmas (e.g., Sato & Hayashi 1979; Biskamp 1986). Convinc­
ing nonlinear simulations of fast reconnection have yet to be 
achieved, but our analysis suggests that narrow strips of high 
current [0(17- 1)] contiguous with the separatrices of the field 
should be a signature for classes of fast reconnective models. 

We are pleased to acknowledge helpful discussions with 
A. D. Sneyd. 
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