Working Paper Series
ISSN 1170-487X

Generating Rule Sets
from Model Trees

by Geoffrey Holmes, Mark Hall
and Kibe Frank

Working Paper 99/2
March 1999

© 1999 Geoffrey Holmes, Mark Hall
and Eibe Frank
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Generating Rule Sets from Model Trees

Geoffrey Holmes, Mark Hall and Eibe Frank
Department of Computer Science
University of Waikato, New Zealand
{geoff,mhall eibe}@cs.waikato.ac.nz

Abstract

Knowledge discovered in a database must be represented in a form that is easy to understand.
Swmall, easy to iuterpret nuggets of knowledge from data are one requirement and the ability to induce
them from a variety of data sources is a second. The literature is abound with classification algorithins,
and in recent years with algorithms for time sequence analysis, but relatively little has been published
on extracting meaningful information from problems involving continuous classes (regression).

Model trees—decision trees with linear models at the leaf nodes—have recently emerged as an
accurate method for numeric prediction that produces understandable models. However, it is well
known that decision lists—ordered sets of If-Then rules—have the potential to be more compact and
therefore more understandable than their tree counterparts.

In this paper we present an algorithm for inducing simple, yet accurate rule sets from model
trees. The algorithm works by repeatedly building model trees and selecting the best rule at cach
iteration. It produces rule sets that are, on the whole, as accurate but smaller than the model tree
constructed from the entire dataset. Experimental results for various heuristics which attempt to
find a compromise between rule accuracy and rule coverage are reported. We also show empirically
that our method produces more accurate and smaller rule sets than the commercial state-of-the-art
rule learning system Cubist.

1 Introduction

Recent work in knowledge discovery on time series data (Das, Lin, Renganathan & Smyth, 1998), indicates
that the scope of application of data mining algorithms has gone beyond the relatively “straightforward”
classification of nominal attributes in files and databases. These applications are important to business,
medicine, engineering and the social sciences, particularly in areas concerned with understanding data
from sensors (Keogh & Pazzani, 1998).

Of equal importance, particularly for business applications is the prediction, and consequent interpre-
tation, of numeric values. For example, the 1998 KDD-Cup concentrated on predicting whether or not
someone would donate to a charity. It is arguable that the charity would like to know both the amount
someone is likely to donate and the factors which determine this donation from historical data so that
they can produce a more effective marketing campaign.

Predicting numeric values usually involves complicated regression formulae. However, in data mining it
is important to present results that can be easily interpreted. Decision lists presented in the If-Then
rule format are one of the most popular description languages used in machine learning. They have the
potential to be more compact and more predictive than their tree counterparts (Weiss & Indurkhya,
1995). In any application, the desired outcome is a small descriptive model which has strong predictive

capability. It has to be small to be interpretable and understandable, and it has to be accurate so that
generalization capabilities can be attributed to the model.

In this paper we present a procedure for generating rules from model trees (Quinlan, 1992), based on
the basic strategy of the PART algorithm (Frank & Witten, 1998), that produces accurate and compact
rule sets. Section 2 discusses the motivation for PART and alternative approaches to continuous class
prediction. Section 3 describes the adaptation of PART to model trees. Section 4 presents an experimental
evaluation on standard datasets. We compare the accuracy and size of the rule sets of our procedure
with model trees and the rule-based regression learner Cubist!, the commercial successor of M5 (Quinlan,
1992). Secction 5 concludes with a discussion of the results and areas for further research on this problem.

2 Related Work

Rule learning for classification systems normally operates in two-stages. Rules are induced initially and
then refined at a later stage using a complex global optimization procedure. This is usually accomplished
in one of two ways; either by generating a decision tree, mapping the tree to a rule set and then refining
the rule set based on boundary considerations of the coverage achieved by cach rule, or by employing the
separate-and-conquer paradigm. As with decision trees this strategy usually employs a rule optimization
stage.

Frank and Witten (1998) combined these two approaches in an algorithm called PART (for partial decision
trees) in order to circumvent problems that can arise with both these techniques. Rules induced from
decision trees are computationally expensive and this expense can grow alarmingly in the presence of
noise (Cohen, 1995), while separate-and-conquer methods suffer from a form of overpruning called “hasty
generalization” (Frank & Witten, 1998).

PART works by building a rule and removing its cover, as in the separate-and-conquer technique, re-
peatedly until all the instances are covered. The rule construction stage differs from standard separate-
and-conquer methods because a partial pruned decision tree is built for a set of instances, the leaf with
the largest coverage is made into a rule, and the tree is discarded. The pruned decision tree helps to
avoid the overpruning problem and the expensive rule optimization stages associated with decision tree
rule learning are not performed. Results on standard data sets show smaller rule sizes with no loss in
accuracy when compared with the decision tree learner C4.5 (Quinlan, 1993) and greater accuracy when
compared with the separate-and-conquer rule learner RIPPER (Cohen, 1995). In this paper we adapt
the basic procedure of PART to continuous class prediction to examine whether similar results can be
obtained, namely smaller rule sets with no loss in accuracy.

Although the literature is light in the area of continuous class prediction, a taxonomy can be found.
A first split can be made on whether a technique generates interpretable results. Those that do not
include neural networks, and various statistical approaches at dealing with non-linear regression, such as
MARS (Freidman, 1991) and projection pursuit (Freidman & Stuetzle, 1981). Those that do produce
readable output are further split on whether or not they are based on the two major paradigms for rule
generation—rule sets represented as regression or model trees, and the separate-and-conquer rule-learning
approach. Examples from the regression tree family include: CART (Breiman, Olshen & Stone, 1984),
RETIS (Karalic, 1992) and M5 (Quinlan, 1992). Separate-and-conquer methods include a system that
maps a regression problem into a classification problem (Weiss & Indurkhya, 1995), and a propositional
learning system (Torgo, 1995).

LA test version of Cubist is available from http://www.rulequest.com

3 Generating Rules From Model Trees

Model trees (Quinlan, 1992) are a technique for dealing with continuous class problems that provide a
structural representation of the data and a piecewise linear fit of the class. They have a conventional
decision tree structure but use linear functions at the leaves instead of discrete class labels. The first
implerentation of model trees, M5, was rather abstractly defined in (Quinlan, 1992) and the idea was
reconstructed and improved in a system called M5 (Wang & Witten, 1997). Like conventional decision
tree learners, M5’ builds a tree by splitting the data based on the values of predictive attributes. Instead of
selecting attributes by an information theoretic metric, M5’ chooses attributes that minimise intra-subset
variation in the class values of instances that go down each branch.

After constructing a tree, M5’ computes a linear model for each node; the tree is then pruned back
from the leaves, so long as the expected estimated error decreases. The expected error for each node is
calculated by averaging the absolute difference between the predicted value and the actual class value
of each training example that reaches the node. To compensate for an optimistic expected error from
the training data, this average is multiplied by a factor that takes into account the number of training
examples that reach the node and the number of parameters in the model that represent the class value
at that node.

This process of tree construction can lead to sharp discontinuities occurring between adjacent linear
models at the leaves of the pruned tree. A procedure called smoothing is used to compensate for these
differences. The smoothing procedure computes a prediction using the leaf model, and then passes that
value along the path back to the root, smoothing it at each node by combining it with the value predicted
by the linear model for that node.

3.1 Rule Generation

The method for generating rules from model trees, which we call M5'Rules, is straightforward and works
as follows: a tree learner (in this case model trees) is applied to the full training dataset and a pruned tree
is learned. Next, the best leaf (according to some heuristic) is made into a rule and the tree is discarded.
All instances covered by the rule are removed from the dataset. The process is applied recursively to
the remaining instances and terminates when all instances are covered by one or more rules. This is the
basic separate-and-conquer strategy for learning rules; however, instead of building a single rule, as it is
done usually, we build a full model tree at each stage, and make its “best” leaf into a rule. This avoids
potential for over-pruning called hasty generalization (Frank & Witten, 1998). In contrast to PART,
which employs the same strategy for categorical prediction, M5'Rules builds full trees instead of partially
explored trees. Building partial trees leads to greater computational efficiency, and does not affect the
size and accuracy of the resulting rules.

This paper concentrates on generating rules using unsmoothed linear models. Because the tree from
which a rule is generated is discarded at each stage, smoothing for rules would have to be done as a post
processing stage after the full set of rules has been produced. This process is more complicated than
smoothing model trees—it would involve determining the boundaries between rules and then installing
linear models to smooth over them.

3.2 Rule Selection Heuristics

So far we have described a general approach to extracting rules from trees, applicable to either classifi-
cation or regression. It remains to determine, at each stage, which leaf in the tree is the best candidate
for addition to the rule set. The most obvious approach (Frank & Witten, 1998) is to choose the leaf

M5’ Rules,
Rules found by max coverage.

Rule 1:

LM3 (11/28.6%) Time <=32.2

Total > 15

->T20Bolt =5.26 + 0.465Time [16/5.44%]

<=15 > 15

Rule 2:
Time <=23.2
-> T20Bolt =0 + 2Time [12/0%]

LML (13/0%) LM2 (16/5.44%)

Rule 3:
->T20Bolt =76 - 0.214Run + 0.914Time [12/38.7%]

Linear models:

LMI1: T20Bolt =0+ 2Time

LM2: T20Bolt = 5.26 + 0.465Time
LM3: T20Bolt=74.9

Figure 1: Model tree and rules for the bolts dataset.

which covers the most examples. Figure 1 shows a tree produced by M5' and the rules generated by
M5'Rules using the coverage heuristic for the dataset bolts. The values at the leaves of the tree and
on the consequent of the rules are the coverage and percent root mean squared error respectively for
instances that reach those leaves (satisfy those rules).

Note that the first rule will always map directly to one branch of the tree, however, subsequent rules
often do not. In Figure 1, Rule 1 and LM2 are identical as are Rule 2 and LM1, however, Rule 3 and
LM3 are very different.

We have experimented with three other heuristics, designed to identify accurate rules and to trade
off accuracy against coverage. These measures are similar to those used in the separate-and-conquer
procedure when evaluating the specialization of one rule from another (Torgo, 1995).

The first of these calculates the percent root mean squared error as shown in Equation 1:

N. .
N (¥ —)2 /N,
—— VI - g2

— 1)
VEN -

where Y; is the actual class value for example i, y; is the class value predicted by the linear model at a
leaf, N, is the number of examples covered by leaf, Y is the mean of the class values, and NV is the total
number of examples. In this case, small values of G (less than 1) indicate that the model at a leaf is
doing better than simply predicting the mean of the class values.

One potential problem with percent root mean squared error is that it may favour accuracy at the
expense of coverage. Equations 2 and 3 show two heuristic measures designed to trade off accuracy
against coverage. The first, simply normalises the mean absolute error at a leaf using the number of
examples it covers; the second, multiplies the correlation between the predicted and actual class values
for instances at a leaf by the number of instances that reach the leaf.

Table 1: Continuous class datasets used in the experiments

Dataset Instances Missing Numerie Nominal
values (%) attributes attributes

autod3 93 0.7 16 [
autollorse 205 1.1 17 8
autoMpg 398 0.2 4 3
autoPrice 159 0.0 15 0
baskball 96 0.0 0
bodyfat 252 0.0 14 0
breast Tumor 286 0.3 1 8
cholesterol 303 0.1 6 7
cleveland 303 0.1 6 7
cloud 108 0.0 4 2
cpu 209 0.0 6 1
echoMonths 131 7.5 6 3
elusage 55 0.0 1 1
fishcatch 158 6.9 5 2
housing 506 0.0 12 1
hungarian 294 19.0 6 7
lowbwt 189 0.0 2 7
mbagrade 61 0.0 1 1
meta 528 4.3 19 2
pbe 418 15.6 10 8
pharynx 195 0.1 1 10
pollution GO 0.0 15 0
pwLinear 200 0.0 10]
quake 2178 0.0 3 0
sensory 576 0.0 0 11
5ervo 167 0.0 Q 4
sleep 62 2.4 7 0
strike 625 0.0 5 1
veteran 137 0.0 3 4
vineyard 52 0.0 3 ¢

N, -
N YL_ —y;
RIK&E / COVQI = ZDETT'M’ (2)
N,
i—1 Vil
CC x Cover = 2z Vil X N,. (3)
Nr(TyO'y

In Equation 3, Y, and y; are the actual value and predicted value for instance ¢ expressed as deviations
from their respective means.

4 Experimental Results

In order to evaluate the performance of M5'Rules on a diverse set of machine learning problems, experi-
ments were performed using thirty continuous class datasets. The datasets and their properties are listed
S

in Table 1.

As well as M5'Rules using each of the rule-selection heuristics deseribed above, M5’ (with unsmoothed
lincar models) and the commercial regression rule learning system Cubist were run on all the datasets.
The mean absolute error, averaged over ten ten-fold cross-validation runs and the standard deviations of
these ten error cstimates were calculated for each algorithm-dataset combination. The same folds were
used for each algorithm.

(14

Table 2: Experimental results: comparing M5'Rules with M5’

Dataset M5’ M5'R, M5'R. M5'R M5'R
Unsmoothed % RMS MAE/Cover CCxCover Cover
autot3 3.6640.2 3.664+0.2 3.664+0.2 3.66+0.2 3.66£0.2
autollorse 8.97+0.5 9.4440.5 V4 9.3640.5 Vv 9.40+0.5 e/ 9.3240.5 i
autoMpg 2.08+0.0 2.1040.1 V4 2.0840.1 N4 2.08+£0.0 v 2.084+0.0 v
autoPrice 1522.96+53.2 1636.904:96.6 o/ 1655.504+109.9 e/ 1650.81+£129.0 +/ 1637.444124.7 o/
baskball 0.074£0.0 0.0740.0 0.0740.0 0.07+0.0 0.07+0.0
bodyfat 0.374+0.1 0.40+0.0 X 0.3840.1 X 0.3740.1 0.36+£0.1
breastTumor 8.06£0.1 8.06£0.1 8.06+0.1 8.06+0.1 8.06£0.1
cholesterol 40.98+1.4 40.91+1.4 40.99+1.4 40.77+1.4 40.98+1.4
cleveland 0.664+0.0 0.654+0.0 0.66+0.0 0.6640.0 0.66+0.0
cloud 0.29+0.0 0.28+0.0 0.28+£0.0 0.2940.0 0.2940.0
cpu 13.4041.2 13.31+1.3 13.33+1.3 13.18+1.5 13.274+1.4
echoMonths 3.9040.1 8.9040.1 8.9040.1 8.90+0.1 8.90£0.1
elusage 9.571+0.6 9.57+0.6 9.5710.6 9.57+0.6 9.57+0.6
fishcatch 38.70x1.6 39.474+1.5 V4 41.5541.5 .o/ 38.53+1.9 V4 38.61+1.8 v
housing 2.75:£0.2 2.6440.1 / 2.7140.2 271401/ 277401/
hungarian 0.2840.0 0.28+0.0 4 0.284+0.0 V4 0.2840.0 0.2840.0
lowbwt 370.934+6.7 370.934+6.7 370.9346.7 370.9346.7 370.5746.4
mbagrade 0.234:0.0 0.23+0.0 0.23+0.0 0.23+0.0 0.23+£0.0
meta 115.73413.3 123.824£24.5 / 135.33+22.8 V4 131.294+12.8 V4 127.72425.1 v
pbc 716.13412.8 715.674£12.2 716.134+12.8 716.13+12.8 716.13+12.8
pharynx 352.8545.8 352.6646.1 351.82£7.5 352.76%7.9 353.2445.9
pollution 35.1542.0 35.15+2.0 35.03+2.1 34.99+2.1 35.03+2.1
pwLinear 1.154+0.0 1.154+0.0 1.154:0.0 1.15£0.0 1.1540.0
quake 0.15£0.0 0.15:£0.0 v 0.15£0.0 0.15£0.0 ./ 0.154+0.0
sensory 0.584+0.0 0.58£0.0 +/ 0.58+0.0 N4 0.59+0.0 V4 0.58+£0.0 V4
servo 0.314+0.0 0.3240.0 +/ 0.3240.0 v 0.3240.0 V4 0.32£0.0 4
sleep 2.56+0.1 2.564+0.1 2.5640.1 2.56+0.1 2.56+0.1
strike 215.8747.1 231.1249.7 o/ 220.1444.9 / 222.9546.4 o/ 214.91+7.4 o/
veteran 92.06+4.3 90.48+4.8 90.4944.8 90.91+4.5 91.52+4.7
vineyard 2.48+0.1 25140.2 / 251401 +/ 243401 251401/

o,8(y/ ,x) statistically significant improvement or degradation

Table 2 compares the results for M5'Rules with those for M5’ unsmoothed. Results for M5'Rules are
marked with a o if they show a significant improvement over the corresponding results for M5, and
with a e if they show a significant degradation. Results marked with a y/ show where M5'Rules has
produced significantly fewer rules than M5';? those marked with a x show where M5'Rules has produced
significantly more rules than M5'. Results are considered “significant” if the difference is statistically
significant at the 1% level according to a paired two-sided #test, each pair of data points consisting of the
estimates obtained in one ten-fold cross-validation run for the two learning algorithms being compared.

From Table 2 it can be seen that all four heuristic methods for choosing rules give results that are as good
as M5, In fact, choosing rules simply by coverage gives an excellent result—accuracy on only one dataset
is significantly degraded. Each of the remaining three heuristics degrade accuracy on two datasets.

As well as accuracy, the size of the rule set is important because it has a strong influence on comprehen-
sibility. Correlation times coverage and plain coverage never result in a larger rule set than M5'. These
two heuristics reduce the size of the rule set on eleven, and ten datasets respectively. Both percent root
mean squared error and mean absolute error over cover increase the size of the rule set on two datasets,
while decreasing size on twelve and eleven datasets respectively.

Table 3 compares accuracy for M5'Rules with those for Cubist and Table 4 compares rule set size. The
results of both these tables—as well as Table 2—are summarised for quick comparison in Table 5. Each
entry in Table 5 has two values: the first indicates the number of datasets for which the method associated

2We calculate rule size for a tree as the number of leaves.

Table 3: Experimental results: comparing accuracy of M5'Rules with Cubist

Dataset Cubist M5'R M5'R M5'R. M5'R

% RMS MAE/Cover CCxCover Cover
autof3 4.07+0.2 3.664+0.2 o 3.664+0.2 o 3.66+0.2 o 3.66+0.2 o
autoHorse 9.274+0.5 9.4440.5 9.36£0.5 9.40+0.5 9.3240.5
autoMpg 2.2440.1 2.10-£0.1 o 2.08+0.1 o 2.084+0.0 o 2.0840.0 o
autoPrice 1639.12463.8 1636.90496.6 1655.50+109.9 1650.81+129.0 1637.41+124.74
baskball 0.07+0.0 0.07£0.0 o 0.07+0.0 o 0.074+0.0 o 0.0740.0 o
bodyfat 0.33+0.0 0.40£0.0 e 0.3840.1 0.3740.1 0.3640.1
breastTumor 8.97+0.1 8.06+0.1 o 8.06£0.1 o 8.06£0.1 o 8.06+0.1 o
cholesterol 43.0241.5 40.914+1.4 o 40.994+1.4 40.77£1.4 o 40.98+1.4
cleveland 0.6540.0 0.65+0.0 0.66£0.0 0.66+0.0 0.66+0.0
cloud 0.2640.0 0.28+0.0 o 0.284+0.0 e 0.2940.0 e 0.2940.0 e
cpu 10.96+1.1 13.31£1.3 e 13.33+1.3 L) 13.1841.5 . 13.27+1.4 ®
echoMonths 9.41-+0.2 8.90£0.1 o 8.90+£0.1 o 8.90£0.1 o 8.90£0.1 o
elusage 7.5940.2 9.57£0.6 e 9.5740.6 ° 9.57+0.6 . 9.57£0.6 .
fishcatch 41.66+0.8 39.474+1.5 o 41.554£1.5 38.53+1.9 o 38.61+1.8 o
housing 2.374£0.1 2.644£0.1 e 2.71£0.2 e 2.71£0.1 o 2.77+0.1 .
hungarian 0.2340.0 0.284+0.0 0.284+0.0 0.2840.0 e 0.28+0.0 .
lowbwt 340.2947.2 370.93+6.7 e 370.93£6.7 . 370.93+6.7 . 370.57+6.4 .
mbagrade 0.23::0.0 0.234+0.0 0.234+0.0 0.23+0.0 0.23£0.0
meta 107.26+9.8 123.82+24.5 135.33£22.8 e 131.294+12.8 127.72£25.1 O
pbc 774.76+16.3 715.67£12.2 o 716.13+12.8 o 716.13+12.8 o 716.13+12.8 o
pharynx 448.934+2.7 352.664£6.1 o 351.8247.5 o 352.76+7.9 o 353.24+5.9 o
pollution 34.68+2.4 35.15+2.0 35.03+2.1 34.99+2.1 35.03+2.1
pwLinear 1.1440.0 1.15£0.0 1.154+0.0 1.15+0.0 1.154+0.0
quake 0.15+0.0 0.15£0.0 0.15£0.0 0.15£0.0 0.154+0.0
sensory 0.61+0.0 0.58:£0.0 o 0.58+0.0 o 0.59£0.0 o 0.58+0.0 o
Servo 0.38+£0.0 0.32£0.0 o© 0.32+0.0 o 0.32+£0.0 [¢] 0.32+0.0 o
sleep 2.84+0.2 2.56+0.1 o 2.56+0.1 o 2.56+0.1 o 2.56+0.1 o
strike 201.31+5.0 231.1249.7 o 220.14+4.9 . 222.95+6.4 . 214.914+7.4 .
veteran 88.765.5 90.48+4.8 90.49+4.8 90.91+4.5 91.52+4.7
vineyard 2.28+0.1 2.51£0.2 e 2.51+0.1 . 2.43£0.1 . 2.51+0.1 O

o,e statistically significant improvement or degradation

with its column is significantly more accurate than the method associated with its row; the second (in
braces) indicates the number of datasets for which the method associated with its column produces
significantly smaller rule sets than the method associated with its row.

From the first row and the first column of Table 5 it can be noted that all four versions of M5'Rules—as
well as (perhaps surprisingly) M5'—outperform Cubist on more datasets than they are outperformed by
Cubist. % RMS and CC x Cover are more accurate than Cubist on twelve datasets, Cover on eleven
datasets and MAE / Cover on ten datasets. By comparison, Cubist does better than all four M5'Rules
variants on eight datasets and better on nine individually. When rule set sizes are compared, it can
be seen that M5'Rules produces smaller rule sets than Cubist more often than not. % RMS and CC
x Cover produce smaller rule sets than Cubist on twenty-three datasets, and MAE / Cover and Cover
produce smaller ones on twenty-two datasets. Cubist, on the other hand, produces smaller rule sets than
all variants of M5'Rules on only six datasets. From Table 4, it can be seen that in many cases M5'Rules
produces far fewer rules than Cubist. For example, on the sensory dataset Cubist produces just over
forty-five rules, while M5'Rules is more accurate with just over four rules.

5 Conclusion

We have presented an algorithm for generating rules for numeric prediction by applying the separate-
and-conquer technique to generate a sequence of model trees, reading one rule off each of the trees.

Table 4: Experimental results: number of rules produced by M5 Rules compared with number of rules
produced by Cubist

Dataset Cubist M5'R. M5'R. M5'R. M5'R
% RMS MAE/Cover CCxCover Cover
auto9f3 2.9240.2 1.0840.1 o 1.0840.1 o 1.084£0.1 o 1.084+0.1 ¢
autoHorse 5.314+0.3 2.124+0.6 o 2.20£0.6 o 2.834+0.7 o 2.794+0.5 o
autoMpg 6.21+£0.5 3.4140.4 o 3.87+0.4 o 3.9440.4 o 3.9140.4 o
autoPrice 3.2840.2 4.884+0.5 e 4.70£0.4 e 4.75£0.5 o 4.244+0.4 o
baskball 5.17£0.2 1.00£0.0 o 1.00£0.0 o 1.00%£0.0 o 1.00£0.0 o
bodyfat 1.38£0.2 3.97+0.6 e 3.734£0.14 e 3.5840.4 @ 3.561£0.4 e
breastTumor 22.1940.6 1.06£0.1 o 1.064+0.1 o 1.06£0.1 o 1.0640.1 o
cholesterol 18.634+0.8 2.334+0.4 o 2.454+0.5 o 2.084+0.4 o 2.46-+0.5 o
cleveland 8.27+0.8 1.07£0.1 o 1.06£0.1 o 1.16£0.3 o 1.184£0.3 o
cloud 1.0940.1 2.62£0.5 o 2.554£0.4 2.60£0.4 o 2.631£0.4 e
cpu 2.00-£0.0 2.7440.2 e 2.7240.2 e 2.70+0.2 o 2.714+0.2 o
echoMonths 6.2440.4 1.00+0.0 o 1.00+0.0 o 1.0040.0 o 1.00£0.0 o
elusage 2.00£0.0 1.62+0.2 o 1.624+0.2 o 1.624+0.2 o 1.6240.2 o
fishcatch 2.00+0.0 3.47£0.3 o 2.87£0.4 o 3.63+0.3 o 3.631+£0.3 e
housing 6.90+£0.4 9.61+1.6 ¢ B8.44+0.8 e 8.324£0.8 o 8.574+0.7 o
hungarian 9.1540.5 1.561+0.2 o 1.56+£0.2 o 1.654+0.2 o 1.69£0.3 o
lowbwt 6.45+0.2 1.054+0.1 o 1.054+0.1 o 1.05+0.1 o 1.0440.1 o
mbagrade 3.57£0.1 1.00£000o 1.00£0.00 1.00£0.00 1.00£0.00
meta 12.9040.3 5.40+0.4 o 5.004+0.4 o 5.404+0.6 o 4.66+0.5 o
pbc 21.63+0.9 1.6340.1 o 1.6440.1 o 1.654+0.1 o 1.6440.1 o
pharynx 7.96+0.1 2.07+0.5 o 2.201+0.5 ¢ 2.16+0.4 0o 2.18+0.4 o
pollution 1.534+0.2 1.2240.1 o 1.1940.1 o 1.20£0.1 o 1.21+0.1 o
pwLinear 2.00+0.0 2.00£0.0 2.00+£0.0 2.004+0.0 2.00+0.0
quake 4.53£0.9 2.45+0.3 o 3.61£0.4 1.984+0.2 o 3.66+£0.4
Sensory 45.31+£1.1 4.194£0.5 o 4.04£0.4 o 3.97+0.3 o 4.13£0.5 o
Servo 5.77+0.1 5.05+0.3 0o 5.20+0.40 4.1840.3 0 4.09£0.3 o
sleep 2.174+0.2 1.00-40.0 o 1.00+0.0 o 1.00+0.0 o 1.004+0.0 o
strike 16.65+1.5 4.68-+0.9 o 4.784+0.9 o 4.9541.0 o 4.86+1.1 0
veteran 6.48+0.6 1.26+0.3 o 1.27+£0.3 o 1.294£0.2 o 1.36£0.3 o
vineyard 2.77£0.1 2.27+0.2 o 2.07£0.2 o 2.18+£0.2 o 2.07£0.2 o

o,e statistically significant improvement or degradation

The algorithm is straightforward to implement and relatively insensitive to the heuristic used to select
competing rules from the tree at each iteration. M35'Rules using the coverage heuristic is significantly
worse, in terms of accuracy, on only one (autoPrice) of the thirty bench mark datasets when compared
with M5’. In terms of compactness, M5'Rules never produces larger rule sets and produces smaller sets
on ten datasets. When compared to the commercial system Cubist, M5'Rules outperforms it both on
accuracy and size. It is more than three times more likely to produce significantly fewer rules.

Published results with smoothed trees (Wang & Witten, 1997) indicate that the smoothing procedure
substantially increases the accuracy of predictions. Smoothing cannot be applied to rules in the same way
as for trees because the tree containing the relevant adjacent models is discarded at each iteration of the
rule generation process. It seems more likely that improvements to M5'Rules will have to be made as a
post-processing optimization stage. This is unfortunate because generation of accurate rule sets without
global optimization is a compelling aspect of the basic PART procedure, on which M5'Rules is based.
However, smoothing usually increases the complexity of the linear models at the leaf nodes, making the
resulting predictor more difficult to analyze.

6 Acknowledgements

We would like to thank Yong Wang for his helpful discussions on this paper.

Table 5: Results of paired #tests (p = 0.01): number indicates how often method in column significantly
outperforms method in row; number in braces indicates how often method in column produces significantly
fewer rules than method in row.

Cubist M5’ % RMS MAE / Cover CC x Cover Cover
Cubist - 12 {20} 12 {23} 10 {22} 12 {23} 11 {22}
M5’ 8 {6} - 0 {12} 0 {11} 0 {11} 0 {10}
% RMS 9 {6} 2{1} . 1 {2} 0 {4} 1 {5}
MAE / Cover 9 {6} 2{1} 1{2} - 1 {4} 1 {2}
G0 x Cover 9 {6} 2{0} 1{2} L {1} . 1 {2)
Cover 9 {6} 1 {0} 0 {3} 0 {1} 0 {2} -

References

Breiman, L., Olshen, J. & Stone, C. (1984). Classification and Regression Trees. Montcrrey, Ca:
Wadsworth.

Cohen, W. W. (1995). Fast effective rule induction. In Proc. of the Twelfth International Conference on
Machine Learning (pp. 115-123). Morgan Kaufmann.

Das, G., Lin, K. I., Renganathan, G. & Smyth, P. (1998). Rule discovery from time series. In Proc. of
the Fourth International Conference on Knowledge Discovery and Data Mining (pp. 16-22). AAAl
Press.

Frank, E. & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In Proc. of
the Fifteenth International Conference on Machine Learning (pp. 144-151). Morgan Kaufmann.

Freidman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19(1), 1-141.

Freidan, J. & Stuetzle, W. (1981). Projection pursuit regression. J. American Statistics Association,
76, 817-823.

Karalic, A. (1992). Employing linear regression in regression tree leaves. In Proc. of the Tenth European
Conference on Artificial Intelligence. Vienna, Austria.

Keogh, E. J. & Pazzani, M. J. (1998). An enhanced representation of time series which allows fast
and accurate classification, clustering and relevance feedback. In Proc. of the Fourth International
Conference on Knowledge Discovery and Data Mining (pp. 239-243). AAAT Press.

Quinlan, J. R. (1992). Learning with continuous classes. In Proc. of the Fifth Australian Joint Conference
on Artificial Intelligence {pp. 343-348). World Scientific, Singapore.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA.: Morgan Kaufmann.

Torgo, L. (1995). Data fitting with rule-based regression. In Zizka, J. & Brazdil, P. (Eds.), Proc. of the
Workshop on Artificial Intelligence Techniques (AIT’95). Brno, Czech Republic.

Wang, Y. & Witten, I. H. (1997). Induction of model trees for predicting continuous classes. In Proc.
of the poster papers of the Furopean Conference on Machine Learning (pp. 128-137). Prague, Czech
Republic.

Weiss, S. & Indurkhya, N. (1995). Rule-based machine learning methods for functional prediction. Journal
of Artificial Intelligence Research, 8, 383-403.

