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Abstract

“Knowledge discovery” is one of the most recent and fastest growing fields of
research in computer science. It combines techniques from machine learning
and database technology to find and extract meaningful knowledge from large,
real world databases. Much real world data is temporal in nature, for example
stock prices, dairy cow milk production figures or meteorological data. Most
current knowledge discovery systems utilise similarity-based machine learning
methods—"learning from examples”—which are not in general well suited to
this type of data. Time-series analysis techniques are used extensively in signal
processing and sequence identification applications such as speech recognition,

but have not often been considered for knowledge discovery tasks.

This report documents new methods for discovering knowledge in real
world time-series data. Two complementary approaches were investigated: 1)
manipulation of the original dataset into a form that is usable by conventional
similarity-based learners; and 2) using sequence identification techniques to
learn the concepts embedded in the database. Experimental results obtained
from applying both techniques to a large agricultural database are presented

and analysed.
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1. Introduction

Chapter 1

Introduction

The amount of information stored in electronic databases around the world is
enormous, and increasing at a rapid pace [4, 14, 37]. It has been estimated that
the world supply of data is doubling every 20 months. Much of this data is
collected automatically and is never seen by a human. The sheer quantity of
data has caused many traditional analysis methods to become obsolete—they
are too slow or inefficient to use on large databases, or knowledge of the prob-
lem domain is required that is not available from a large mass of automatically
gathered data. Knowledge discovery (KD) provides new techniques for extract-
ing meaningful knowledge from large, real world databases. KD is a relatively
young field which has grown rapidly in recent years. It combines techniques
from both machine learning (ML) and database technology to discover relevant
features or relationships in data and present these in ways that are meaningful

to human users [16, 5].

A significant amount of real world data is temporal in nature, in that the
values of the variables are sampled at multiple points over some time period,
so that the data stored for each entity has an additional “time” dimension.
Examples of such time-series data are stock prices, dairy cow milk produc-
tion figures or meteorological (wind and rainfall) measurements. Most exist-
ing knowledge discovery systems are built around similarity-based learning
methods—*learning from examples”—which are not well suited to temporal

data. Similarity based learners operate by generating descriptions of a concept
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or classification over a set of examples, where each example describes a single
object in the problem domain [21]. In a temporal database each object is de-
scribed by a number of records—or alternatively, each of an objects’ variables
takes multiple values—along the time “axis”. The mapping from time-series

data to the examples used by the learning scheme is not obvious.

Time-series analysis techniques are well known in the signal processing
world, where they play a part in applications such as speech recognition, data
communications and image processing. In particular, sequence identification
algorithms are used to detect and classify patterns occurring in a data stream.
These methods include dynamic time warping (DTW) and hidden Markov
models (HMMs). Sequence identification techniques have not been investi-
gated in the context of knowledge discovery until very recently [4], but may
have potential to be useful for tasks outside their traditional signal processing

domain.

This report describes recent research into applying knowledge discovery
techniques to time-series data. Experimental work was carried out using a
large database of dairy cow milk production and performance measurements
[36]. The primary aim of the research was to investigate and develop techniques
for extracting knowledge from this database. Two different approaches were

taken in this investigation:

1. Manipulation and restructuring of the original temporal data into a form
that could be used effectively by conventional similarity based machine

learning algorithms.

2. Adaptation of sequence identification methods to “learn” concepts de-
scribed by a temporal database, and integration of these techniques into

a similarity based learnine system.
o vl

This research was undertaken as part of the WEKA Machine Learning Project
[13, 22] at the University of Waikato. The objectives of the WEKA Project are:
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1. To develop an interactive Machine Learning “Workbench” and the inte-

gration of new or novel ML schemes into this system.

2. To carry out case studies of the application of different machine learning

techniques to problems in agriculture.

3. To extend the development and application of an entropy-based scheme

for evaluation generalisations.

The research described here comprises part of Objectives 1 and 2.

The remainder of this report is structured as follows: Chapter 2 contains
background information relating to knowledge discovery, machine learning,
sequence identification and previous work combining these techniques. Chap-
ter 3 describes the dairy cow database used for the experimental work, as
well as the methodology for the experiments with both conventional machine
learning schemes and sequence identification techniques. Chapter 4 contains
a summary, analysis and discussion of the results for all experiments. Finally,
Chapter 5 contains conclusions and a brief outline of proposed future work

in this area. Complete, detailed results for all experiments may be found in

Appendix A.
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Chapter 2

Background and
Review of Literature

While the goals and objectives of knowledge discovery and time-series analysis
may have much in common, the two fields have not had much to do with each
other until very recently. Knowledge discovery has developed largely from
research in artificial intelligence and database technology, whereas sequence
identification has generally been considered as a signal-processing application.
There has been little crossover between the two areas so far. This chapter pro-
vides an introduction to machine learning, knowledge discovery and sequence

identification techniques, and a review of relevant literature in these areas.

2.1 Machine Learning

Machine learning (ML) is the term used a encompass a wide variety of tech-
niques used for the discovery of patterns and relationships in sets of data. The
fundamental goal of any machine learning algorithm is to discover meaningful
or non-trivial relationships in a set of “training” data and produce a general-
isation of these relationships that can be used to interpret new, unseen data.

Michie [24] defines the learning process as follows:
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“A learning system uses sample data to generate an updated basis for im-
proved classification of subsequent data from the same source, and expresses

the new basis in intelligible symbolic form”.

This definition excludes a number of learning paradigms that do not produce
symbolic descriptions, including connectionist methods, neural networks and
genetic algorithms. For the purposes of the applications and methods described
in this report only those techniques that do generate symbolic representations
of knowledge. The output of a learning scheme is then some form of structural

description of a dataset, acquired from examples of that data [21].

The knowledge learned by a machine learning scheme—the structural de-
scriptions of the data—can be represented in different ways. Schemes such as
genetic algorithms [11] or neural networks, mentioned above, generate implicit
internal models of the data which are not easily understood by human beings or
other machines. In this study we are concerned with being able to communicate
the acquired knowledge to people, making the use of such schemes impractical.
Other schemes generate more useful descriptions which can be interpreted by

human users. These include:

Rules These are a popular form of knowledge representation as they resemble
the way human experts tend to describe their knowledge of a domain.
Rule representations range from simple “if-then” production rules [6] to
more complex systems such as “ripple-down” rules and exception based

schemes [9].

Decision trees and graphs The most basic form of decision graph is a simple
binary tree, which is exactly equivalent to a set of if-then rules [28, 6] . Tree
representations are not considered to be as comprehensible to humans
as rules. However, newer schemes such as “exception dags” (directed
acyclic graphs) [9] are claimed to be more natural and understandable

representations.

Concept hierarchies Here the data is classified into a tree of categories and

sub-categories. The topmost level of the tree represents the broadest
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classification of the examples, this is, the most general description. Lower
levels of the tree refine the initial classification, with the examples at the
leaves of the tree having the most specific description [18, 8, 23]. A concept
hierarchy differs from a decision tree in that examples may be placed at
internal nodes of the concept tree. These examples are representative
of more general relationships in the data—anomalous cases tend to be
pushed down towards the leaves. In a decision tree all of the examples

are classified at the leaves.

Machine learning schemes can be further compared along a number of
different dimensions [21]. These dimensions tend to overlap to some extent but

do provide a useful basis for comparison.

Supervised vs. Unsupervised learning This is one of the most fundamental
distinctions between learning methods. Supervised learning involves de-
veloping descriptions from a pre-classified set of training examples, where
the classifications are assigned by an expert in the problem domain. The
aim is to produce descriptions that will accurately classify unseen test
examples. In unsupervised leam‘ing, no prior classification is provided,
and it is up to the learning scheme itself to generate one based on its anal-
ysis of the training data. Unsupervised schemes are often referred to as
“clustering” schemes and are often closely related to statistical clustering

methods [7, 12].

Similarity-based vs. Knowledge-based Similarity-based schemes form gener-
alisations based solely on the similarities and differences found between
the training examples. Knowledge-based learning makes use of a “do-
main theory” or background knowledge of the problem domain, usually
supplied by an expert. If the domain theory is complete and correct, we

£

have “explanation-based learning,” where the scheme attempts to learn
new and more efficient ways of interpreting new examples by analysing
how existing examples are explained by the theory. In the case of an in-
complete background knowledge the learner tries to improve the domain

theory by correcting mistakes or adding new parts to the theory.
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Top-down vs. Bottom-up A top-down scheme begins by examining a set of
training examples, looking for generalisations that best describe the dif-
ferences between the cases. In essence the scheme searches the space
of possible concept descriptions for one which best matches the data.
Bottom-up or “case-based” schemes look at the individual examples and

build up descriptive structures from them.

Exact vs. Noise-tolerant Some schemes are able to cope with noisy input, such
as missing or incorrect data. Similarity-based methods often fall into this
category, since that look at large numbers of cases simultaneously and can
average out some of the effects of noise. Knowledge-based schemes which
analyse a single example extensively are more prone to failure when faced

with inconsistent data.

As mentioned above, these distinctions are not orthogonal and there is
much interest in hybrid schemes which combine several techniques to produce
better overall performance [38]. Most schemes operate in batch mode, but it is
also possible to have interactive learners, where the user serves as a “teacher”,
explaining new examples to the machine when the data fails to fit its existing
model of the domain. These types of schemes are well suited to incremental
learning, where new cases are assimilated without needed to re-process all

previously seen examples.

2.2 Knowledge Discovery

Knowledge discovery (KD) is concerned with the extraction of meaningful
knowledge from collections of real-world data, and communicating the discov-
ered knowledge to people in an understandable way [16]. Typical knowledge
discovery systems combine techniques from machine learning, statistics, arti-
ficial intelligence and database technology. These systems move beyond con-
ventional machine learning in that they seek to discover knowledge that is both

meaningful and relevant to specific groups of target users in a particular appli-
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cation domain. The knowledge discovery process has been variously referred

to as “database mining” or “database exploration” [21, 16].

Real-world data brings with it a new set of problems not generally faced
in the idealised world of a pure machine learning task. Data is often noisy—
sometimes extremely so—or poorly collected. There may be redundant or
irrelevant variables present or, worse, important data might not have been
collected at all. Large amounts of data are gathered automatically and might
never been seen by a human user. In these cases prior knowledge of the
domain may be deficient or missing entirely. Finally, real databases are often
enormous—potentially thousands of variables and tens of millions of records

may be present.

Brachman & Anand [5] consider the process of knowledge discovery as a
human-centered task, with interaction between the user and machine at each
step. They broadly divide the process into two parts—a data analysis and
knowledge acquisition stage, and an application to make use of the discov-
ered knowledge. The analysis phase may use a variety of statistical, machine
learning or other tools, in tight intera‘ct-ion with a human data analyst. The
idea is to find segments of the data worthy of further analysis, develop initial
hypotheses about the data and determine which parameters of the data are
relevant or useful. Knowledge discovery tools can then be applied to extract
structural descriptions from the important subsets of the data. The analysis
and discovery process relies on the domain knowledge of the analyst to deter-
mine what is useful and what is not. The discovered knowledge is encoded
into a problem-solving system, where it can be accessed by end-users to solve
real-world problems in their domain. The end result appears very similar to
a traditional expert system, except that the knowledge embedded in the ap-
plication was obtained from a combination of human domain knowledge and

analysis, and machine discovery technology.

Most practical knowledge discovery systems to date have made use of

similarity-based learning techniques for two main reasons:

1. Similarity-based learners are among the oldest, best developed and most
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successful machine learning paradigms. Since they work with groups of
examples at a time, similarity-based methods are often more immune to

noise and work better with “messy” real-world data.

2. The output of a similarity-based scheme is usually some form of rules or
decision tree. These knowledge representations are understandable by
people and are easier to encode into an expert system or other problem

solving environment.

Similarity-based schemes are not, in general, well equipped to deal with
time-series data. The typical form of input for such algorithms is a simple two
dimensional table of attribute-value pairs for each entity in the database. If the
temporally-dimensioned data for an entity is presented to the learner as a set of
examples, these will be treated as a group of distinct entities. Since the learner
builds descriptions that can be used to classify a single example, any knowledge
“discovered” from this input can only express coincidental relationships found

between examples.

An alternative approach might be to concatenate all of the data for each
object into a single large example, tracking the changes in each variable over
a time period. This at least allows the learner to see all of the relevant data
as single unit. However, many similarity-based schemes are only able to use
zeroth-order logic in the structural descriptions they produce—each variable
is considered to be independent of the rest and is examined in isolation. The
resulting descriptions can only express relations comparing attributes which
constant values. This is clearly not useful on time-series data, where a relation
such as “production this week is greater than production last week” is both
likely to occur and probably very relevant. Fortunately some similarity-based
schemes, for instance Quinlan’s FOIL (First Order Inductive Learner) [29] deal

in first order logic and are capable of discovering these relationships.

However, a scheme like FOIL can still only cope with simple inter-attribute
relations, for example A # B or C' < D. The data may contain relationships

which are more complex to describe, such as (4 — B) > C. In order for a
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similarity based learner to detect this sort of pattern, it is necessary to gener-
ate “derived” attributes—new variables computed from the raw data values
mcqueen:agricultural. For the previous example, a new variable containing
the difference between the existing attributes A and B for each case would be
added to the database. It is in this situation that the role of the human data
analyst becomes crucial. Using their knowledge of the problem domain, the
human expert must determine a set of raw and derived attributes that will—
hopefully—enable the learning scheme to discover the useful patterns hidden

in the data.

2.3 Sequence ldentification

The task of discovering knowledge in time-series data can be modelled as a
sequence identification problem. Essentially we are attempting to find “in-
teresting” sequences or patterns in the data—where an interesting sequence
might be one which is repeated often or at regular intervals, or an unexpected
or anomalous sequence which may indicate the occurrence of a special event.
The complexity of the pattern matching task varies depending on the amount

of background knowledge about the time-series that is available.

In the worst case, we do not know what patterns we are looking for, nor
where any “interesting” events are in the data. In this case the discovery
task becomes completely unsupervised. The learning algorithm must decide
for itself what constitutes an interesting pattern. Note that being unsupervised
does not mean that the learning cannotbe interactive. Interaction with a human
user is still possible, with the person and machine working together to decide

which sequences are important enough to be examined further.

More often the occurrences of important events—such as a significant drop
in stock prices, or the onset of a hurricane—will have been recorded when
the data was collected. This additional information can be considered as a
classification of the data set. There will be a class for each type of relevant

event covering all instances of that event, and a probably much larger “default”

10
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consideration [32]. The time series is characterised by a parametric statistical
model which is configured so as to maximise the probability that the series could
have been generated by that model. Since the model optimisation can be done
algorithmically, a HMM system can adapt its own model to describe the data
well. That is, it can learn from structure of the time series from a set of training
data, and describe that structure by way of a statistical model. The model can
then be used to classify or recognise new data. Thus, a HMM performs a vary
similar task to a conventional supervised learning scheme, with the exception

that it works on time-series data.

The theory of HMMs first appeared in a series of classic papers by Baum and
his colleagues during the late 1960's and early 1970’s [3] and was extended into
speech processing applications in the 1970’s by Baker at CMU and Jelinek and
others at IBM [2]. The following overview of HMM theory and applications is
of necessity relatively brief. For a fuller introduction to the subject the reader

should consult any of [32, 19, 31, 34].

Markov Processes

A Markov process consists of a finite set of states and a set of possible transitions
between those states. At regular, discrete time intervals the system undergoes a
change of state, possibly back to the same state. A set of probabilities associated
with each state determines the distribution of transitions from that state to each
of the others. In the general case, a complete description of this system would
require knowledge of all the states the system has been in up to the current time.
In the special case of a first-order discrete-time Markov process, we assume that

the current state of the model depends only on the previous state, that is
Plgy = jlgg-1=4d.qt —=2=k,..] = Plg = jlgt — 1 = i] (2.1)

where ¢; is the state of the model at time 7. This is known as the Markoo

assumption.

The process described above is called an observable Markov model, since the

output of the system is the set of states over time, with each state corresponding

13
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class covering the remaining cases when nothing interesting was happening.
Classified data can be attacked using supervised learning techniques to find
patterns in the stream of data surrounding each event. If a pattern can be found
that relies only on the structure of the time-series prior to a class of event, that

pattern can be used to predict further occurrences of the event in the future.

In the best of all possible worlds, we would be given both completely classi-
fied training data, and a set of template patterns for each class. The learning task
then decays into a pattern matching problem for classifying future data. Each
of the templates can be matched against new data as it is generated, with the
best match used to determine the classification at that time. Ideally we should
be able to take incompletely classified data—as in the two previous cases—and
apply suitable learning tools and domain knowledge to develop a description

of the time-series that will allow us to classify unseen data in this way.

Humans are generally very good at detecting such patterns in time-series
visually, but as with most such applications programming a machine to do
so has proven to be a lot more difficult [4]. A large part of the difficulty lies
in finding ways to detect and match patterns inexactly—with some notion of
“fuzziness” to account for the ine\'ital;le noise and statistical variation in real-
world data. Researchers in a number of fields have looked at this problem. The
most relevant work appears to be in the area of signal processing, and in partic-
ular speech recognition. Good speech recognition schemes can reliably match
words from their vocabulary despite variations in timing and pronunciation
[4]. Two of the most successful techniques used recently in speech applications
are dynamic time warping (DTW) and hidden Markov models (HMMs). These

are described in more detail below.

2.3.1 Dynamic Time Warping

Dynamic time warping [33, 35] is a template-matching recognition method
based around a dynamic programming algorithm. As such, DTW is a pattern
matching method only, meaning that the templates must be generated exter-

nally, either by hand or using a discovery algorithm.

11
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5 (sample)

T ttemplate)
Figure 2.1: Example warping path

The basic aim of the dynamic time warping algorithm is to align the time
axes of a sampled time series and a template, in order to minimise some distance
measure. The time axis of either series is stretched or compressed to achieve
the best possible fit, allowing a single template to match a range of “similar”
patterns in the data. Both the template 7" and time series S consist of a sequence
of data points over a time interval, which does not need to be the same for both

sequences.

The algorithm matches each point s; in S with one or more points ¢; in T
such that the overall distance measure between the two sequences is minimised.
The process can be visualised as finding the least-cost path P through a grid
of points, as shown in Figure 2.1. The grid axes correspond to the time axes of
the two sequences, and each point (:. j) is assigned a weight which is just the

distance measure 4(i. j) between s; and t;.

2.3.2 Hidden Markov Models

In contrast to the dynamic time warping approach, hidden Markov models are

based around the idea of statistically modelling the signal or time series under

12
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Figure 2.2: Simple two-state hidden Markov model

to an observable event. The output of the system is not random, making it
unsuitable for many problems. A Hidden Markov model extends the system
to include the case where the output produced is a probabilistic function of the

state. Rabiner & Juang [32] describe the resulting system as

“a doubly embedded stochastic process with an underlying stochastic
process that is not directly observable (it is hidden) but can be observed
only through another set of stochastic processes that produce the sequence

of observations.”

The “underlying stochastic process” is the state sequence which is no longer
visible except indirectly through the output sequence. Figure 2.2 is an exam-
ple of a simple two-state HMM with two output symbols and three possible

transitions.

Elements of a hidden Markov model

A HMM using discrete output symbols can be completely specified by the

following parameters:

N The number of states in the model, indexed with 1....V. The state at time 1

is denoted by ¢;.

14
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M The number of output symbols, indexed as 1...M. The set of the outputs

themselves is written as V = {v1, v2,..., 00}

A The state transition probability matrix. Each entry «;; gives the probability
that the model will make a transition to state j, given that it was already

in state 7, thatis, a;; = Plgi+1 = jlg: = 1].

B The output probability matrix. Each entry B;;(k) gives the probability that
output v; will be produced when making a transition from state i to state
j. If the output distribution is the same for all transitions out of state i the
notation may be abbreviated to b;(k). The example HMM in Figure 2.2
associates different output distributions with the two transitions from

state 1, so the full notation is required here.

= Theinitial state distribution, where each element 7; gives the probability that

the model is in state : at time ¢ = 1.

Since N and M are implicit in A and B, the complete parameter set of an HMM

can be expressed as the vector

A= (4 B.7) (2.2)

Fundamental hidden Markov model problems

In general, there are three basic problems which must be solved in order for

HMMs to be useful in real-world applications. These are:

The evaluation problem Given a model and a sequence of observations, what
is the probability that the observations were generated by the model? The
solution to this problem can be used to recognise unseen sequences, given

a well trained model.

The decoding problem Given a model and a sequence of observations, what
is the most likely state sequence for the model to have produced the
observations? The solution to this problem is important in continuous
speech recognition but probably less relevant in a supervised learning

situation.
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The learning problem Given a model and a set of observations, what is the best
set of model parameters lambda that maximise the probability that the
model produced the observations? The solution to this problem provides

the means to “train” a model to recognise a particular sequence.

An overview of the solutions to all three fundamental HMM problems is pre-

sented below.

Problem 1—Evaluation

Here we are trying to calculate the probability of an observation sequence O
given a model A, P(O|A). The obvious approach to this problem might be to
enumerate all possible state sequences qi,....qn of length T (the number of
observations in O and calculate P(O) for every such sequence. While this brute
force solution will work it is very expensive in computational terms. For exam-
ple, with N = 5 and T = 100 the complete computation requires around 1072
operations! Fortunately however there exists a simple inductive algorithm—the

forward procedure—which solves the problem far more efficiently.
We define the forward variable a,(i) where
(i) = P(0102...0¢,q: = 1|A), (2.3)

the joint probability of the partial observation sequence up to time ¢ and of
the model being in state ¢ at this time. The forward variable can be computed

inductively as follows.

Initialisation:
ai(i) = mbi(01), 1< i< N (2.4)
Recursion:
N
_ ) 1€t<T -1 _
at4+1(7) = Zﬂr(?)aq bi(0141. ) (2.5)
i=1 1<j<A
Termination: N
P(O|A) =) ar(i) (2.6)
=1
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output = A output = B output = A

0.6x05 0.6x05 .l 06x05
10 0.30 m 0.03 State 1

05x04 05x04 0.5x04
1.0x0.3 10x0.7 y 1.0x0.3
0.0 0.20 | 0.20 0.08 State 2
time =0 time=1 time=2 time=3

P{ABA)=0.03 - 0.08 = 0.11
Figure 2.3: The forward procedure

The induction step sums the probabilities of reaching each state at time
t; from all possible previous states. The algorithm takes advantage of the
Markov assumption, so that we only need to account for one previous state.
The complexity of the forward algorithm is to the order of N 2T—for the example
of N = 5and T = 100 around 3000 operations are required, a saving of 69 orders

of magnitude over the brute-force approach.

Figure 2.3 illustrates the calculation of a using the HMM from Figure 2.2 and
the input sequence ABA. Each box show the cumulative probability of being
in that state at that time, while arrows indicate legal transitions between states.
The sum of the probabilities in the final column gives the overall probability of

the observation sequence given the model.

Problem 2—Decoding

The forward algorithm gives the probability that an observation sequence was
generated by a given HMM, but does not say anything about the underlying
sequence of states. Knowledge of the state sequence is often useful, especially

if the states have some correspondence with physical events.

Because the state sequence is hidden by definition, the best that can be
done in practice to find the most probable state sequence to have generated

the observed outputs. This can be achieved by a modification of the forward

17
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algorithm, known as the Viterbi algorithm. Instead of just summing the probabil-
ities of entering each state the Viterbi procedure remembers the most probable

transition into the state at each time period.

We first define é,(1), the probability of the most likely path which 1) accounts

for the first ¢ observations and 2) ends in state ¢, as

6(1) = qlg}quqf’(qu---q:-1-q:=="-70102---0t|/\) (2.7)
bep1(j) = (maxéy(i)ai;)b;(0r41) (2.8)

Ateach time step we need to remember the argument ¢ that maximises é;(z)
for each state. This information is stored in an N' x T array m. The complete

Viterbi algorithm proceeds as follows:

Initialisation:
61(1) = mibi(01),1<i<N (2.9)
my(i) = 0 (2.10)
Recursion:
) y 2<t<T
6:(7) = max [6,_1(7)ai;]bi(os). (2.11)
]S:_(_;’\' 1$j S_"
) = b1 (i pstsd 2.12)
my(j) = arglg}?]cv[ i—1(1)ai;)], { 2§l (2.
Termination:
P = lg}gfg,[éan(a)] (2.13)
a = arglg}%[éﬂz)] (2.14)

State sequence backtracking:

g = mea(gy) (2.15)

Problem 3—Learning

This is the most difficult of the three HMM problems. We wish to optimise the

model parameter vector A such that the probability of an observation sequence

18
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O is maximised. While there is no known analytical method of achieving this
goal, certain iterative procedures can be used to solve the problem. One such
algorithm is the forward-backward algorithm, also known as the Baum-Welch or

expectation-maximisation method.

We have already defined the forward variable a4(i), the probability that the
model is in state ¢ at time ¢ and has generated the first part of the observation
sequence 0703 ...0;. Similarly we can define the backward variable j3;(1), the
probability that the model is in state 7 at time ¢ and will generate the remaining

observations in the sequence, that is:
Bi(1) = P(01410142...07|qr = 1, A) (2.16)

As with the forward variable, the backward variable can be defined inductively:

Initialisation:

Or(i)=1.1<i:< N (2.17)
Recursion:

..  em e 1L
34(1) = 3 aijbj(oi1) B (])- _ (2.18)

We must also define 7,(i. ), the probability of taking the transition from

state i to state j at time t:

7(1.7) = Plg =1.q41=7,0/})
a4(1)a;;0;(0141)8141(7)
P(O|X) 1%

Given this, we can say that the expected number of transitions from state
i to j at any time is Z;Z\;] ye(7. j), and the expected number of transitions from
state i to any other state at any time is "7_; ", 7:(i. k). From these results, the
forward-backward procedure defines a set of re-estimation formulae for 7, A

and B:

expected number of times in state 7 at time 1

> (1. k) (2.20)

k
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expected number of transitions from state ¢ to j

o= expected number of transitions from state ¢
T o
— ?f:l 71(3-..?) (221)
oi=1 2k Ye(E, k)
Vi(k) = expected number of times in state j and observing symbol vy
2 - expected number of times in state j
_ Et:gf =k 7‘1{1‘"9.3") (222)
Zt:l ‘f'f(i'- J)

Equations 2.21 and 2.22 are both instances of the Baum-Welch algorithm
[3]. Every such re-estimation of the model parameters is guaranteed to increase
P(O[X), unless a critical point—a local or global maximum—has been reached,
in which case the estimate remains the same. The literature presents a number

of proofs of the Baum-Welch method, including [3, 20].
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Chapter 3

Experimental Methodology

A total of seven different experiments were performed on a database of dairy
cow milking records supplied by the Dairying Research Corporation. The
database tracks the performance of a small research dairy herd over part of the
1993-94 milking season. The experiments were designed to discover, recog-
nise and describe time-series patterns hidden within the milking data. Both
similarity-based learning and sequence identification techniques were used in

the experiments.

This chapter provides some background information on the history of the
dairy cow database and an overview of its structure. The methodology of
each of the seven experiments is described in detail. Several issues that were
important in the design and implementation of the experiments are introduced
and discussed, including attribute selection, representation of sequences and

the problems of skewed class sizes and missing values.

3.1 The Dairy Cow Database

The database used for the experimental work described in this report was
obtained from the Dairying Research Corporation (DRC). Researchers at the
DRC have developed an advanced dairy cow milking system—the Ruakura

Milk Harvester (RMH)—that is currently deployed on around 15 farms [36].
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Custom microcontroller hardware in each milking position is used to gather
basic production and health-related data about each cow, at every milking. The
system collects a large quantity of data thatis clearly temporal in nature, as the

performance of individual cows is tracked across the whole milking season.

Over the past three years Dr. Robert Sherlock—the designer of the RMH
control and measurement systems—has been developing software to interact
with the machine to collect and analyse milking data in real time. The soft-
ware is intended to alert the operator to significant events and perhaps modify
machine operating conditions as appropriate. This “MilkMAID"” (Milking Mon-
itor, Analysis and Information Display) system is in operation on an evaluation
basis on four farms, as well as with the DRC’s own research herd. The current
system maintains animal and machine performance databases to a high level
of reliability and allows the data to be displayed graphically. The next stage of
development is to implement “intelligent” analyses of these databases to iden-
tify and report events of significance to the farmer as they occur [36]. Several

examples of such events are described below:

Detection of cows “in heat”. Most dairy herd reproduction in New Zealand is
now performed via artificial insemination (AI), under the supervision of
the Livestock Improvement Corporation. It is essential that the farmer
knows when one of his or her cows is in heat so that the insemination can
be carried out when the cow is at her most fertile. Generally the farmer
makes this decision based on the behaviour of the animal in question,
however a reliable automatic prediction could dramatically improve the

“hit-rate” of insemination attempts.

Detection of mastitis. Mastitis is an infectious cattle disease that is relatively
widespread amongst New Zealand dairy herds. The disease is easily
treated in its early stages but is often hard to detect until it has developed

into a more serious condition.

Detection of machine faults. Certain common failures in the milking machine
are not easy to detect by simple inspection of the equipment, and may be

hard to locate once they are known to occur. Any technique that could
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identify possible fault locations with a good probability of success would

obviously be welcomed.

The DRC was interested in investigating new methods of analysing the
milking machine data. At the same time, the WEKA project was looking for
new real-world data to work on, in particular data sets that could be tackled by
sequence identification techniques. It was decided to concentrate on the first of
the three DRC objectives, namely determining when a cow was in heat, for two

reasons:

1. This was considered to be probably the simplest of the problems. A
certain amount of domain knowledge already existed that could be used

as a starting point for the investigation.

2. The data believed to be most relevant for the other two problems is not
collected very reliably by the current milking machine design. In addi-
tion, the database already contains a classification for the first problem,

indicating when cows were known to be in heat.

(1

The DRC milking machine is currently in service on several farms, and
is used with the DRC’s own research herd. Most of this research has been
carried out using the DRC herd data for the 1993-94 milking season. This herd
contains 140 cows with records of two milkings per day over a period of 137

days between August and December 1993.

Although the herd milking database was supplied as a single file, it can be
viewed as relational database structure with seven tables, as shown in Figure 3.1.

The main components of the database are:

o A header record that identifies the farm, herd and season, as well as

indicating the number of cows and milkings in the database.

¢ A table of summary information for each milking. Fields in this table
include the milking date and time, the number of cows that took part, and

the total volume of milk received.
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o A table of cow definitions, one for each cow in the herd. The data for a

cow includes its age, breed and the date of its last calving.

o The herd is divided into as many as 16 possibly overlapping subgroups,
plus a “whole herd” group, for statistical purposes. There is a table
containing summary statistics for each group over every milking. This
table contains data such as the number of group members that took part in
a given milking, and the mean and standard deviation of the milk volume

for that group.

o Thelargest table in the database holds the individual cow milking records.

These records track five primary variables:

1. Milk volume

2. Milking duration
3. Milk conductivity
4. Milk flow rate

5. Order in which the cow entered the milking shed

These quantities are recorded as percentage deviations from the herd
mean for that milking. Running means and standard deviations of these
percentage differences are also recorded. The milking records contain a
number of binary variables, including the indication of whether the cow
was in heat at a given time. Milking records are stored for every cow in
the herd over every milking, regardless of whether the cow was actually

present at a milking or not.
* A table associating a name with each herd subgroup.

¢ A table indicating which groups each cow is a member of. As mentioned
above, a cow can be in more than one group and indeed every cow is

implicitly a member of the 17th “whole herd” group.
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Figure 3.1: Organisation of the herd milking database

3.2 Database Conversion

The herd milking database was supplied by the DRC as a single file, in the format
produced by the data gathering computer attached to the milking machine. The
file was in a packed binary format that was very dependent on the architecture—
an IBM compatible PC—and compiler—Borland/Turbo C—used by the data
acquisition system. On the other hand, the WEKA workbench requires its
input files to use the locally developed ARFF (Attribute-Relation File Format)
representation [10]. ARFF is a human-readable text based format that is only
able to represent a single flat table in each file. It was therefore necessary to
perform some structural conversion on the database to render it into a form

acceptable to the workbench schemes.

As a first step in converting the database, a program was written to convert
the raw database file to a text based form. This program runs under MS-DOS
on an IBM-PC compatible machine, with the output file being transferred to the
UNIX-based Sun system used by the WEKA workbench. No information was
changed by this process—the numbers are simply written out as text strings

rather than the more compact binary form of the raw file. The advantages of a
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textual representation are twofold: firstly the file is far more portable between
machines and operating systems; and secondly a text file is much easier to
edit and manipulate both by hand and with the various UNIX file processing
utilities. The major drawback is that the file size is much increased—by a factor

of approximately five in this case.

The DRC milking machine is still at an experimental stage in its develop-
ment. Because of this the information in the database was not complete at the
time the file was received. In particular, a large proportion of the “in heat”
data from the individual milking records was missing. This data was entered
by hand from a printed spreadsheet. Unfortunately the new data was given as
a three-state enumeration—yes, no or maybe—whereas the database file repre-
sents this as a binary yes or no decision. After discussion with DRC researchers
it was decided that the maybe class could be treated the same as the yes class
if a binary classification was desired. However, the data stored in the textual
database file still uses the three-state representation since this information may

prove useful in later experiments.

An ARFF file consists of a header with the names and types of each of
the variables, and a set of examples; thus it is essentially just a simple two-
dimensional data table. Each of the experiments described below makes use
of a different set of raw and computed attributes. In some cases subsets of the
available examples have been used with a given attribute set. Programs and
shell scripts were developed for each experiment to generate the required ARFF
files from the plain text form of the database. These programs also perform the
conversion of the “in heat” attribute from a probability to a binary value as
described above. The operation of individual programs is described in more

detail below where appropriate.

3.3 Similarity-based Learning Experiments

The first series of experiments with the herd milking database made use of

similarity-based machine learning schemes. The aim of these experiments was
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to determine if such schemes could be used to recognise and describe patterns
in temporal data. The development of the experiments was more evolutionary
than predetermined. The design of new experiments was influenced by the
results of previous trials as more of the structure of the data became apparent.
Complete results for all of the experiments described here can be found in

Appendix A.

3.3.1 Atiribute Selection

Probably the most important decision to be made in any experiment of this
nature is to decide exactly which attributes should be included in the file given
to a machine learning scheme. The attribute selection includes variables present
in the raw database and “derived” attributes generated from existing variables.
In the case of a relational database such as the herd milking data, producing
input for a learning scheme will almost always involve some kind of projection
or “flattening” of the database [22]. It is important that as little information as

possible is lost by this process.

Initially, the only information available to guide the attribute selection pro-
cess was the domain knowledge of the DRC researchers. Based on the available
domain knowledge, it was decided to use only the attributes from the individual

cow milking table, for the following reasons:

Firstly, the attributes considered important by the DRC for determining if
the cow is in heat are in this table. These attributes are the volume percentage
deviation from the herd mean, and the place in line that the cow entered the
milking shed. Secondly, the group statistics table may contain interesting rela-
tionships common to the members of a group. However, since a cow may be a
member of more than one group, flattening this table could generate data sets
with huge numbers of attributes. Such data sets are impractical to deal with
and often take an extremely long time to process with certain learning schemes.
Worse, records with varying numbers of attributes might be generated when
flattening the group table. None of the available learning schemes can deal

with this situation.
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Thirdly, the cow definition table is static—it contains no temporal data, so
including any of these attributes would introduce a lot of redundancy into
the data set. Redundant data is generally more difficult for similarity based
schemes to deal with [21] so should be avoided. Finally, the milking summary
table might be useful to detect the occurrence of global events affecting the
whole herd, but using it would introduce redundancies similar to the cow

definition data.

While no attributes from the other tables were used directly in any of the
experiments, there is not reason why they cannot be used in the computation

of derived attributes if desired.

3.3.2 The Schemes

The similarity-based experiments used two different learning schemes, C4.5

and FOIL. These are described briefly below:

C4.5

C4.5 [30] is a system for inducing rules and decision trees from a set of examples.
Much of C4.5 is derived from Quinlan’s earlier induction system, ID3 [28]. The
basic ID3 algorithm has been tested and modified by numerous researchers
since its invention (25, 39]. However, C4.5 adds several new and interesting

features that are worth mentioning:

o (4.5 uses a new gain ratio criterion for determining how to split the ex-
amples at each node of a decision tree. This removes ID3’s strong bias
towards tests with many outcomes. C4.5 also allows splits to be made on

the values of numeric as well as enumerated variables.

¢ Decision trees induced by ID3 are often very complex and have a tendency
to “over fit” the data. As a partial solution to this problem C4.5 introduces

pruned decision trees. Pruned trees are derived from the original tree and
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in general will lead to structures that cover the training set less thoroughly

but perform better on unseen cases.

e C4.5 can also represent its learned knowledge in the form of production
rules. Similarly to pruned decision trees, C4.5’s rules are derived from
the unpruned tree and are roughly equivalent to pruned trees in terms of

classification accuracy.

FOIL

FOIL (First Order Inductive Learner) is another scheme developed by J. R. Quin-
lan at the University of Sydney [29]. It builds on concepts found in ID3 and
Michalski’s AQ to generate descriptions of logical relations using a subset of
first-order logic. FOIL analyses a set of positive and negative examples of some
relation and produces a structural description of the relation expressed as a set
of Horn clauses. For data containing more than two classes, each class in turn
is used as the source of positive examples, with the remaining data assumed
to be negative examples. In this way a logical description of each class can be
constructed. FOIL is able to express relationships between attributes, a feature

that I hoped would be useful when analysing time-sequence examples.

The WEKA Prolog Evaluator

One of the most important features of the WEKA Workbench is that it allows
many different schemes to be run on the same set of data and for the output
of each scheme to be evaluated in a consistent fashion. The rules or decision
tree produced by a learning scheme are translated into an equivalent Prolog
representation and evaluated with respect to the training and test data sets.
For each rule or decision tree leaf the evaluator indicates how often the rule
or leaf is used, and how many examples it classifies correctly and incorrectly.
The evaluator also provides a summary showing how many examples were
classified correctly, classified incorrectly, classified into multiple classes or not

classified at all. Many schemes—including FOIL—have only minimal internal
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evaluation methods so the Prolog evaluator is immediately useful for analysing
the output from these schemes. Additionally it is a valuable tool for evaluating

the performance of different schemes on “neutral ground”.

3.3.3 The Experiments
Experiment 1

The first experiment with the herd milking database was relatively simple,
using no derived attributes and no re-arrangement of the data with respect to
time. At this early stage I had no real knowledge of any structure in the data,
how much noise was present or which attributes were the most relevant. The
main purpose of the experiment was to make a rough “first pass” over the data

and use the knowledge gained as a guide when developing later experiments.

The data set used for this experiment was the entire individual milking
table from the herd database. All attributes were used with the exception of the
unique cow and milking identifiers. The data set contained 38,360 examples
with 27 attributes. The data was split into three classes based on the value the

“heat observed” attribute.

Three different learning scheme “runs” were made using this data set.
Firstly, in order to reduce the amount of data used for training, the data was
split into 10 equal-sized, non-overlapping sections. For each of the sections,
C4.5 was trained on the 10% subset and the descriptions it produced evaluated

against the whole dataset.

For the second and third runs, C4.5 and FOIL were each trained and tested
on the complete dataset. At this time the WEKA Prolog evaluator was not able

to handle C4.5 rules so the results presented are for decision trees only.

Experiment 2

A number of changes were made to the data set for this experiment. Firstly

the three-way yes/no/maybe classification from Experiment 1 was changed to a
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binary yes/no, with the original yes and maybe classes merged together. The
maybe class was very small—only 114 instances. From the farmer’s point of
view it is preferable to have an occasional “false positive” prediction than to

miss times when a cow is in heat, so these examples were reclassified as yes.

Secondly, the two milkings for each cow on a given day were combined
into a single example, thus reducing the number of instances in the data set to
19180. This was done mainly because the classification was made on a daily
rather than individual milking basis, so it made sense to group the related
milkings together. I hoped that this change would help to reveal relationships

between the two milkings on a day when the cow was in heat.

Finally, several attributes were removed from the data set since they did
not appear close to the top of the decision trees from Experiment 1. Attributes
that are only used close to the leaves in a decision tree are probably only useful
for making decisions specific to the training set and should not therefore be
used to classify test cases. The retained attributes were the milking volume
and the percentage deviations and running means/standard deviations for the
volume, duration, milk rate, conductivity and milking order. These variables
were included in each example for both milkings on that day. This gives a total

of 33 attributes including the class.

Using this modified dataset, learning runs were carried out using C4.5 on
10% subsets of the data, plus C4.5 and FOIL runs on the whole file, as described

in the previous experiment.

Experiment 3

In order to further investigate the idea of combining a time sequence of data into
a single example, more modifications were made to the dataset. The milkings
for each cow were split into a series of overlapping three-day periods, with the
six milkings in each period making up an example in the dataset. The existing
binary classification was retained, with an example classified as yes if the cow

was in heat during the middle day of the time period. Clearly any descriptions
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induced from this data can use future information and would not therefore
be useful for prediction. However, I was trying to determine if the learning
schemes could be used to detect a pattern across a time series, and felt that

there were likely to be useful relationships in the future as well as past data.

With six milkings combined into one example the potential number of at-
tributes was quite large. In order to have the learning schemes terminate within
a reasonable amount of time more attributes were removed from each milking,
again using the trees from the previous experiment to guide this decision. Even-
tually only the absolute volume and the five percentage deviation fields were

retained for each milking.

The final dataset contained 6300 examples with 37 attributes including the

class. The same learning runs were performed as for Experiments 1 and 2.

Experiment 4

The experiments described so far only use variables present in the raw herd
milking database. These attributes simply record the physical measurements
taken by the milking machine for each cow. The concepts hidden within these
raw attributes are not necessarily in an “obvious” form that can be spotted by

a similarity-based learner.

Specifically, the milking database records statistics for an individual cow
relative to the performance of the entire herd at a particular time. Variations
amongst the individual animals may be treated as random noise by the learner
or worse, as very specific cases to be handled separately. Either strategy canlead
to highly inaccurate descriptions by producing structures that far too general

or too specific.

A possible solution to this problem is to make use of derived attributes—new
variables computed or derived from the existing data. Derived variables can
be as simple as the sum or difference of two attributes, or far more complex,

for example a filtering or domain transform operation on a variable. The set
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of possible derived attributes that could be generated is infinite. For a given
application the attribute set must be chosen carefully to accentuate features of
the data without obscuring or eliminating relevant information. It may also
be appropriate to retain some or all of the original raw attributes alongside the
derived variables. A combination of derived and raw attributes were used for

the remainder of the similarity-based learning experiments, described below.

A problem that became particularly apparent during the previous exper-
iments was the large disparity in size between the yes and no classes in the
data. In the raw database, milkings when a cow was observed to be in heat
account for only around 1.5% of the total data. This huge difference allows a
learning scheme to produce a rule classifying every instance as no and still be
correct 98.5% of the time. C4.5 is particularly guilty of this. It was decided to
investigate this phenomenon to see if it could be controlled or at least discover

how and why it was happening.

Experiment 4 extended the use of time-sequenced data in the learning exam-
ples. Instead of the three day segments of data used in Experiment 3, week-long
(seven day) samples were used. The samples for each cow were generated by
sliding a seven day wide “window” along the series of milkings for the cow
and extracting the milkings within the window at each step. This procedure is
shown in Figure 3.2. The contents of each window formed the basis of a single
example in the resulting ARFF file. Examples were classified as true if the cow
was in heat during the final day of the window, or false otherwise. As shown in
the figure, successive windows overlap by six days, so it is possible for an “in

heat” event to occur within a window that is classified as false.

The Experiment 4 dataset used the following raw and derived attributes for

each of the 14 milkings in an example:

e The raw volume percentage deviation from the herd mean.

o The volume percentage deviation of this milking from the previous-but-
one milking of this cow. This is the deviation from the previous morning

for a morning milking, or the previous afternoon for an afternoon milking.
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Figure 3.2: Sliding window for extracting time-series examples

o The volume percentage deviation from the mean of the morning and
afternoon milkings in the window. The deviation from the morning mean
was used for a morning milking, and the afternoon mean for an afternoon

milking.

These attributes were chosen to model the performance of a cow with respect to
itself as well as the whole herd. The complete dataset has 43 attributes including
the class, and 14037 instances—368 true and 13669 false.

In addition to the complete dataset, a set of six smaller datasets with reduced
numbers of negative examples were generated to investigate the effect of class
size disparity on the results. The ARFF file generation program produced
the reduced files by randomly selecting a specified percentage of the negative
examples that it found. All of the positive examples were included as before.
The new datasets contained respectively 1%, 2%, 5%, 10%, 20%, 50% and 100%
of the negative examples (100% is the complete dataset). The ratio of positive
to negative examples in the full dataset is just over 2.5%, so the 2% set has the

closest to an even mix of classes.

C4.5 and FOIL were run on each of the seven datasets. In each case the
scheme was trained on the full file and results evaluated against the training
data by the WEKA Prolog evaluator. The output from the six reduced datasets

was also evaluated against the full 100% set. The C4.5 evaluations were carried
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out using each of the unpruned trees, pruned trees and rules produced by the

program.

Experiment 5

The methodology used for this experiment is identical to that of Experiment 4—
C4.5 and FOIL runs on seven datasets with varying proportions of negative
examples. The differences in this experiment lie in the attribute selection and

in the way the samples were generated.

The raw and derived attributes used in the Experiment 5 datasets were as

follows:

¢ Raw milking volume.
o Raw volume percentage deviation from herd mean.

o Raw “milking order,” This is the point when the cow entered the milking

shed, expressed as a percentage of the whole herd.

¢ Raw running mean and running standard deviation of the volume and

milking order deviations.

o The difference between the volume deviation and its running mean, ex-

pressed as the number of running standard deviations from the mean.

« The difference between the milking order and its running mean, expressed

as the number of standard deviations from the mean.

o The ratio of the morning and afternoon milking volumes for each day.

These attributes are replicated for each of the 14 milkings in an example.

In the previous experiment the overlapping of sample windows meant that
many negative examples also contained the “in heat” event that identifies a
positive example. The Experiment 5 ARFF file generator was modified to

prevent this situation from occurring. In the new generator program, after
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Figure 3.3: Modified sliding window for positive examples

a positive example has been generated the window is slid forward by the
full seven days so that there is no overlap with the previous sample. The
change is illustrated by Figure 3.3. This change was intended to increase the
differentiation between patterns in the two classes—if the same pattern occurs
in both positive and negative cases, the learner will have difficulty formulating
a description that can distinguish between the two when the same pattern is

seen in a test example.

The complete Experiment 5 dataset has 99 attributes including the class, and

a total of 14548 examples—371 positive and 14177 negative.

[ also made a second set of learning runs over the Experiment 5 datasets,
with one additional derived attribute added. The new attribute indicates the
number of days that have passed since the cow was last in heat, relative to
the final day of the sample. This variable appears as a missing value for any
examples before the first positive one for each cow. Using this attribute might
appear at first to be perilously close to “cheating”. However, it turns out that
this attribute covers a reasonably wide range of values across all the positive
examples, so the best we can do is to say that if the value lies outside this range
then it must be a negative example. More information is required to make the

determination as to whether an example is positive.
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The second set of Experiment 5 trials will be referred to as Experiment 5a for

the remainder of this report.

3.4 Sequence ldentification Experiments

This set of experiments used hidden Markov modelling techniques to learn
the structure of the dairy herd database. Markov modelling has been used
with considerable success for learning patterns in one-dimensional time-series
such as speech signals. The objective of these experiments was to investigate
whether or not these techniques could be used to form useful descriptions of

the multi-dimensional data in the herd milking database.

3.4.1 The Hidden Markov Model Toolkit (HTK)

HTK is a comprehensive package of hidden Markov model research soft-
ware developed by the Cambridge University Engineering Department Speech
Group [41, 42]. The HTK system is intended primarily for speech recognition
applications, and contains numerous features that are specific to this purpose.
However, the heart of HTK is a reasonably general Markov modelling pack-
age that can in theory be used to model time-sequenced processes other than
speech. The system is composed of approximately ten separate programs and
a library of low-level support routines. Between them these programs provide

the necessary functionality for

1. Preprocessing and encoding of time-series data using Linear Predictive

Coding (LPC) techniques.

2. Initialising and re-estimating the HMM parameters from a set of training

examples.

3. Testing the recognition performance of the trained model on a set of

unseen test sequences.

37



3. Experimental Methodology

The system allows individual models to be combined in arbitrary networks
to represent complete phrases and sentences as well as individual words and

sub-words, making it a very powerful and flexible package.

3.4.2 Attribute and Model selection

As with the previous experiments using similarity-based learning, the choice
of which attributes and records from the database to use is very important.
Unlike the similarity based schemes, HTK expects each “example” that it is
given to consist of a time-sequenced set of values for one or more variables.
The individual values in the sequence are known as samples, with the complete
sequence referred to as a sample file. A sample file usually begins life as a raw
digitised speech signal. This signal is generally encoded by some form of LPC
algorithm into a multi-dimensional parameterised representation of the raw
data. A network of HMMs can then be trained and tested on the parameterised

sample data.

An extra complication added to the HMM experiments was the need to
define both initial “prototype” models and the way these were combined into
a network for the recognition program. It was decided to use a single model
for each class in the data, that is, a model for true and a model for false. The
recognition network was defined so that the recogniser was forced to make an
absolute decision between true and false for each test sequence. Defining the
systemin this way gives experiments that are conceptually similar to those using
similarity-based methods, despite the radically different learning algorithm

being used.

HTK uses a prototype model to define the number of states and initial
transition probabilities for the HMMs used in an experiment. The transition
probabilities and output probability distributions are updated by the model
initialisation and re-estimation programs to reflect the data in the training sam-
ples. The number of states is not changed however. It is possible to use different

prototypes for each model, or for subsets of the models. In the interests of keep-
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ing the experiments simple a single prototype was used for both models in each

experiment. The designs of the prototypes are described in detail below.

3.4.3 Experimenté

This first sequence identification experiment used the same set of attributes as
Experiment 5a, the final similarity-based experiment. In Experiment 5a a series
of milkings for an individual cow were combined into a single “wide"” example
for the learning scheme. This approach is not necessary with HTK, since each

member of the time-series can become a separate element in a sample.

Another conversion program was written to convert the data used in Ex-
periment 5a into sequences suitable for use with HTK. This program used the
same group of raw and derived attributes from each milking, and extended the
“length” of the sequences from five days to seven. Each milking became a sep-
arate sample in the sequence. Thus each sequence was made up of a sequence
of 14 consecutive milking records for a given cow. Sequences were classified as
true if an “in heat” event was recorded during the seventh day of the sequence,
or false otherwise. As for Experiment 5a the sequences were arranged to be non-
overlapping following the occurrence of a positive example. The final dataset

contained 13996 sequences with the following attributes in each:

o The class—true or false.

o Raw milking volume.

o Volume ratio for the day of the milking.

¢ Number of days since the last “in heat” event for the cow.

o Volume percentage deviation, running mean and standard deviation, and

number of standard deviations from the running mean.

e Milking order percentage, running mean and standard deviation, and

number of standard deviations from the running mean.
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Unlike the similarity-bases schemes used in my earlier experiments, HTKhasno
concept of a “missing value” in its data. Missing values occur when a milking is
missing from the database. For this firstexperiment the missing data was simply
replaced with zeroes—this is in fact what was done in the raw database file.
Obviously this simple approach is not ideal since it adds noise to the sequences
where the missing values occur. However, the number of missing milkings in
the database is not large—around 5% of the total milkings—so the effects were
not expected to be too serious. Possible alternative solutions to this problem are
to eliminate sequences containing missing values, or to somehow interpolate
the missing data from surrounding milkings. the first of these alternatives has

been used in Experiment 7, described below.

The dataset for Experiment 6 contains 11 different values plus the class in
each sample, so can be considered multi-dimensional data. The HTK LP coding
tools only support single-dimensional data, thus it was not practical to LP en-
code the milking samples before passing them into the Markov modeller. Each
sequence was simply treated as an 11-dimensional parametric representation
of a time-series pattern. I did not consider this to be a serious problem since the
herd milkings are not speech data and the Markov modelling system is capable
of dealing with arbitrary sequences. It would be possible to LP encode each
attribute separately, but this would result in an explosive increase in the num-
ber of attributes and the complexity of the models—this could not be justified

during the initial stages of the investigation.

Four different prototype models were used, with differing numbers of states
and initial transition matrices. The complete definitions for all of the prototype
models used can be found in Appendix B. The most important parts of the
prototype transition matrices are the elements that are set to zero. These ele-
ments will never be changed by the modelling system, and thus define the set
of possible paths through the model. The exact choice of non-zero values in the
remaining matrix elements is not crucial, as these values will be modified by

the re-estimation process to best fit the training data.

The HTK system has a hard-coded limit on the number of samples it can
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process at once, so it was impossible to use all of the available negative examples.
A subset of the negative examples was randomly chosen, of approximately the
same size as the set of positive examples. The final dataset was made up of 359

positive and 344 negative sequences.

The prototype models were trained on a randomly chosen two-thirds (66%)
of the dataset. A preliminary model initialisation run was made to config-
ure the output probability distributions. The complete parameter sets of each
model were then updated using the Baum-Welch re-estimation algorithm. The
parameter re-estimation step was performed 10 times for each model. After
this many iterations, none of the model parameters were changed significantly
by further re-estimation. The resulting models were tested on the remaining

one-third (34%) of the data.

3.4.4 Experiment?7

This experiment used a methodology similar to that of Experiment 6, with
some significant changes to the structure of the input sequences and prototype

models.

The sequences in this experiment used data from a single day’s milkings,
instead of the relatively short sequences of multi-dimensional samples in the
previous experiment. Raw and derived attributes from the two milkings of a
cow on a given day were combined into a long sequence of 64 one-dimensional
samples. All of the 25 available raw attributes from the milking records were

used, along with the following derived attributes for each milking:

¢ The number of days since the cow was last in heat.
o The ratio of the AM and PM milking volumes for the day.

¢ The number of standard deviations from the running mean of the volume,
duration, rate and conductivity percentage deviations, and the milking

order percentage.
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All attributes were scaled to fit within the range of a 16-bit integer, that is
—32768...32767 for signed values or 0...65535 for unsigned quantities. Se-
quences were classified as positive if the cow was recorded as being in heat on
the day in question, or as negative otherwise. If either of the day’s milkings
was missing from the database, the sequence was discarded. The full dataset
contained 13637 sequences in all, with 385 of these being positive. As for Ex-
periment 6, a smaller subset of negative examples was randomly chosen for use

in the experiment. This reduced set contained 425 negative examples.

Because the examples were represented as one-dimensional sequences of
integers, it was possible to make use of HTK’s LP encoding tools to pre-process
the data. The sequences were encoded using LP filters of six different orders—
2nd, 3rd, 5th, 8th, 10th and 12th order filters were used. A single five-state
prototype model was trained and tested on each filtered dataset, following the

procedure described above for Experiment 6.

Two further training and test runs were made with a different prototype
model and more complex filtering of the raw data. The sequences were encoded
using 10th and 12th order filters producing cepstral and cepstral delta coefficients
instead of the simple linear prediction coefficients used above. A new five-state
model was trained and tested on these datasets. The initial transition matrices

for both models used in this experiment can be found in Appendix B.
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Chapter 4

Results and Discussion

This chapter presents a summary of results from the experiments described in
the previous chapter, and a discussion of these results in the context of the ob-
jectives of the WEKA project and the Dairy Research Corporation. A complete
set of results for the experiments can be found in Appendix A. Several problems
that arose during the experimental work are discussed further, in particular the
problems of small disjuncts [38] and highly skewed class distributions. The fol-
lowing summary of experimental results has been divided into sections relating
to the similarity-based and sequence identification experiments respectively, as

in the previous chapter.

4.1 Similarity-based Experiments

Many different metrics have been used to quantify the performance of a clas-
sification algorithm on a dataset. The most common of these is the simple
classification accuracy—the percentage of correct classifications made on a set
of test data. While it is a popular measure of performance, the classification
accuracy is known to have several defects [25, 17). More robust measures of
classifier performance make use of measures such as the size of the descriptions,
their complexity and other information-theoretic metrics in addition to the raw

accuracy [17, 27).
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However, in the context of a real-world classification problem, human users
of a discovery system are unlikely to be concerned with theoretical measures of
classification complexity and information gain. They will be far more interested
in how often the system makes the correct prediction, and how much better it
is than predictions made by domain experts. The classification accuracy is a
suitable measure to use in this situation since it shows exactly how well a scheme
has performed on a particular dataset. The size and complexity of descriptions
are less important, provided that the descriptions are general enough to cope

with all but the most anomalous test data.

4.1.1 Classification accuracy

Figures 4.1-4.12 show the raw classification accuracy for each dataset used in
the similarity-based learning experiments. These figures show the accuracy,
on both the training and test data, for C4.5 unpruned trees, pruned trees and
rules, and for FOIL rules. The graphs also indicate the baseline accuracy of the
complete dataset used for each experiment. Baseline accuracy is defined as the
percentage of examples that fall in the largest class of the data. Itis that accuracy
that would be achieved by a naive learner that simply picks the majority class,
and s often used as a standard against which new learning results are compared
[15]. The baseline accuracy shown on the plots is that of the test data, which in
all cases is the complete dataset. The baseline accuracy of many of the training

sets is less than this value.

Looking first at Experiments 1-3, in Figures 4.1-4.2; the results from the
C4.5 runs with 10% subsets of the data have been averaged and are shown
in Figures 4.1, 4.3 and 4.5. The graphs indicate the maximum, minimum and
average accuracy values over the ten runs. The C4.5 and FOIL results for the
complete dataset are given in Figures 4.2, 4.4 and 4.6. Results are shown for C4.5
unpruned trees, pruned trees and rules, and FOIL rules, for both the training

and test data.

As expected the unpruned trees have tended to perform better in training,

with the pruned trees and rules showing noticeably better (up to 3%) accuracy
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on the test data. The most obvious feature of these results, though, is that the
test accuracy very rarely rises above the baseline accuracy of the dataset. At
first glance this appears to be an extremely poor result, since it means that a
scheme that simply classifies all cases as false will perform better than either C4.5
or FOIL. However it must be remembered that the baseline accuracy exceeds
95% in all the experiments, making for an extremely difficult learning task for
any algorithm. For a dataset with a less skewed classification, a classification
accuracy greater than 90% would generally be considered an excellent result.
Most of the test accuracies, especially for Experiments 2 and 3, are above the

90% mark so in this respect the learning schemes have performed well.

There are a number of possible reasons why C4.5 is unable to achieve the
baseline accuracy with this dataset. Firstly, the information necessary to classify
the examples this accurately may simply not be present in the data. This
situation might occur if there were insufficient examples, if the raw data was
particularly noisy or poorly collected, or if an inappropriate attribute set was
used for classification. The C4.5 decision tree building algorithm will only
generate tests which compare the value of asingle attribute with a constant, thus
the set of raw and derived attributes must be chosen such that the classification

can be described in these terms.

Secondly, the heuristic used by C4.5 to evaluate the quality of tests at decision
tree branches may be partly to blame. By default C4.5 uses an information-
theoretic heuristic, the gain ratio criterion [30]. This is the ratio of the information
gained by partitioning a set of examples according to some test, to the potential
amount of information that could be generated from the same partitioning.

Thus, for some test X,
gain ratio( X ) = info gain(X')/partition info(X') (4.1)

which expresses the proportion of information generated by the partition that
is useful for classification purposes. The gain ratio criterion selects a test that
maximises the value of this ratio. According to Quinlan [30], the gain ratio
criterion usually gives a better choice of test than the gain criterion used by

ID3. However, Mingers [26] expresses some concern about the tendency of
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the gain ratio criterion to favour highly skewed partitionings of the examples.
Often when such unequal “splits” occur, the small group—possibly consisting
of only two or three examples—is purely of one class, and the split will not
be divided any further. Quinlan argues that the tendency of the gain ratio
criterion to form such splits is desirable, because it generally leads to smaller
decision trees. Statistically however, these small group are most likely to be
chance occurrences that are unreliable for predicting test cases. In the statistical
sense it is better to have larger groups, possibly containing a few examples from

different classes.

The heavily skewed distribution of the herd milking database and the bias
inherent in the gain ratio criterion means that there is ample opportunity for
small splits to occur in decision trees induced from this data. The C4.5 system

does offer two possible solutions to the problem:

1. The decision tree inducer can use the older gain criterion instead of the

gain ratio measure.

2. The sizes of the partitions produced by a test can be restricted, so that
each outcome of the partitioning must contain at least a specified mini-
mum number of examples. By default the minimum partition size is two
examples. Increasing this value would prevent C4.5 from considering

many potential small splits in the decision tree.

Experiments 4-5a (Figures 4.7-4.8) were designed to reduce the problem of
skewed classifications by using a smaller proportion of the negative examples
for training. The implicit assumption was thata smaller set of examples would
be sufficient to induce accurate descriptions while avoiding the problems en-
countered in the earlier experiments. The figures show the training and test
accuracy of the C4.5 unpruned trees, pruned trees and rules, and the FOIL
rules, as a function of the percentage of negative examples used. As shown by
the test accuracy graphs for these experiments (Figures 4.8, 4.10 and 4.12), this

approach has been partially successful.
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Again as expected, the C4.5 pruned trees and rules have performed better in
testing than the less general unpruned trees. It is somewhat surprising that the
rules generated by FOIL have not performed particularly well on the test data
with respect to the C4.5 descriptions. This can probably be accounted for by the
fact that FOIL does not do any pruning of its rulesets, so testing is done using
unpruned rules and will tend to perform badly whenever there is noise present
in the test data. FOIL consistently out-performed C4.5 on the training runs,
in many cases giving training accuracies significantly higher than the baseline

accuracy.

As with Experiments 1-3, very few of the test accuracies for Experiments 4-
5a have exceeded the baseline accuracy. In particular the descriptions trained
using less than 20% of the negative examples have performed quite badly, often
producing test accuracies of less than 70%. However, most of the training
sets using 20% or more of the negative examples have generated descriptions
with accuracy above 80%. Many of the pruned tree and rule accuracies exceed
90%. It should also be noted that almost all of the training runs have performed
better than baseline accuracy of their respective training sets. Therelatively poor
performance of the smaller datasets—t}‘]ose using less than 20% of the negative
examples—indicates that there is significant noise and natural variation present
in the examples, so that a relatively large training set is required to cover all of

the anomalous situations that occur.

4.1.2 Types of classification errors

It is also interesting to examine the types of classification errors being made by
the various descriptions. Figures 4.13-4.18 show the percentages of positive
and negative test examples misclassified for Experiments 3, 5 and 5a. As for the
classification accuracy graphs, separate curves are given for unpruned trees,

pruned trees, C4.5 rules and FOIL rules.

The majority of misclassifications made by the trees and rules of Experi-

ment 3 are “false negatives”—positive examples misclassified as negative. The
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rate of false positive classifications is less than 4% for nearly all of the test runs.
This is indicative of the small splits problem discussed above—small clusters
of positive examples give good performance in training but lack any real pre-
dictive power on the test data. FOIL does not suffer from this problem and has
low misclassification rates for both positive and negative examples. This is not
especially useful however since for this experiment FOIL was trained on the
entire dataset, so a low test error rate is to be expected for the unpruned FOIL

rules.

The misclassification results for Experiments 5 and 5a are quite similar: as
the proportion of negative examples in the training set increases, the percent-
age of false negative classifications goes up as the percentage of false positive

decreases. This is particularly noticeable with the C4.5 pruned trees and rules.

FOIL has performed particularly well on these experiments, with low mis-
classification rates for both positive and negative examples. The number of
false positive classifications generated by the FOIL rules drops significantly as
the proportion of negative examples approaches the 10-20% level. This is fur-
ther evidence that below this level, the amount of random variation present in
the negative examples prevents an accurate description being induced from the

training data.

The proportion of false negative classifications made by C4.5 rises as the
proportion of negative examples—and thus the classification skew—increases.
This is another example of the small splits problem. The effect is less severe for
the unpruned rules because the small split decisions are at least able to correctly
classify the examples that caused the split to occur in the first place. Many of
the small splits will disappear from the tree during pruning, with the small
groups of positive examples from these decisions then incorrectly classified as

nega tive.

Ting [38] has developed a composite learning scheme that partly alleviates
the problem of small splits or small disjuncts. His method uses an instance-based
learner [1] to classify test cases belonging to a small disjunct, otherwise the C4.5

decision tree is used. Both learners are trained in parallel on the same training
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set. The advantage of this system is that the specific instances that caused the
small disjunct are used to classify test cases, instead of relying on generalised—
and probably inaccurate—rules. The performance of large disjuncts is not
affected since these are still classified using the C4.5 decision tree. On a selection
of datasets from the UCI machine learning database repository, the composite

learner performed on average 2.5% better in testing than C4.5 alone.

4.2 Sequence ldentification Experiments

The Viterbi recognition package included with HTK produces an overall recog-
nition accuracy figure and a confusion matrix, for each testing run. It is also
possible to generate a list of the individual cases that were misclassified. Fig-
ures 4.19-4.22 show the test accuracy and the positive and negative misclassi-
fication results for Experiments 6 and 7. Figures 4.19 and 4.20 also indicate the
baseline accuracy of the respective test sets. The baseline accuracy for these
experiments is significantly lower than for Experiments 1-5a because the mod-
els were trained and tested on a subset of the data having an approximately
uniform class distribution. This use of a reduced dataset was necessary due to

the limit on the number of training sequences imposed by HTK.

Although the test accuracy results in Figures 4.19 and 4.20 consistently
exceed the baseline accuracy for the test set used in the experiment, they are
significantly below the baseline accuracy of the whole dataset. The baseline
accuracy for both experiments was close to 50%, with the majority of the test
results lying in the 55-60% range. A baseline accuracy of 50% is not particularly
useful in the context of a two-class problem, since a learner could achieve the
same level of accuracy simply by making random guesses. Thus the Markov
models have performed better than random chance, but only by a narrow
margin. A classification accuracy of less than 60% is unlikely to be considered

a “good” result under any circumstances.

There are several possible explanations for the poor performance of the

Markov modelling technique on this dataset. Firstly, it is clear that there is
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a significant amount of noise and random variation present in the milking
database. The similarity based schemes discussed above performed poorly on
training sets containing less than 10-20% of the available negative examples.
The training sets in the hidden Markov model experiments used approximately
2% of the negative examples, so it is possible that there was simply not enough
“clean” data present for HTK to build an accurate model. The model parameter
estimation process is statistically-based, so the presence of noise will tend to

“blur” any distinctions between the classes, leading to an inaccurate model.

Secondly, it is probable that many of the cows in the database do not show
any obvious indication of the times they are in heat. Robert Sherlock from
the DRC has estimated that “in heat” events can be easily identified by visual
inspection for as little as 20% of the herd. A further unknown proportion of the
herd—estimated at up to 50%—will exhibit similar but less obvious patterns
that are hard to identify visually. A similarity- or statistically-based learning
scheme should be able to correctly classify these groups, given sufficient training
examples from both sets. The remainder of the herd is not expected to show
any pattern similar to these two groups. Of course it is possible that the data
for the remaining cows will contain different, non-obvious patterns that could

be used for classification.

While a similarity-based learner would be able to classify the non-obvious
examples separately, using whatever similarities did exist between the instances
of each class, a statistically-based system cannot do this. HTK will attempt to
build a single model that accurately describes all of the training examples for
a particular class. The examples from cows that do not show any recognisable
pattern contribute very little information about the class, but the model will
still attempt to account for them. This behaviour leads to both models trying
to classify a group of quite similar examples. Consequently, the models will
perform poorly when an instance from this group is encountered during testing.
Either model could give a better recognition score in this case, so these examples

will effectively be classified randomly.

Finally, the initial models, attribute sets or observation vectors used in the
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experiments may have been inappropriately chosen. A variety of different
models were used in the experiments, with no significant improvements in
classification accuracy for any particular model. Thus it is unlikely that the
choice of model is to blame for the poor testing performance. It is far more likely
that the choice of attribute set or the way that the examples were presented to

the modeler is responsible.

HTK expects its raw input data to be a time-series of samples of a single
variable. It is not particularly set up to deal with the multi-dimensional data
used in Experiment 6 and 7. Even after the data had been manipulated into into
a form that was acceptable to HTK, it was necessary to in effect “lie” to HTK
about the source format and encoding of the data. This is because the HTK
interface assumes that it is dealing with speech signals and cannot be changed

from this point of view.

The sequences of multi-dimensional observations used in Experiment 6
were presented to HTK as though they were LP encoded versions of single-
dimensional raw data. HTK will attempt to make use of the supposed relation-
ship between the elements of each observation vector, although these are in fact
potentially independent variables. In Experiment 7 the attribute values from
each example were normalised and presented to HTK as a single-dimensional
raw sequence. HTK could be justified in assuming a temporal relationship
between the observations that did not in fact exist. This discrepancy between
the form of observations expected by HTK and the data available from the herd
milking database is very likely to lead to poor classification results, as observed
in the experiments. Some possible solutions to this problem will be discussed

in the following chapter.
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Chapter 5

Conclusions and Future Work

The goals of this project were: firstly, to investigate the use of machine learning
and knowledge discovery techniques and algorithms for the analysis of real-
world time-series data; and secondly, to apply these techniques to the DRCherd
milking database to produce useful and relevant descriptions. Two different

approaches to analysing time-series data have been investigated:

1. Using conventional similarity-based learning techniques to describe the

structure of the time-series database, in particular C4.5 and FOIL.

2. Using sequence identification techniques from signal processing applica-
tions such as speech recognition. A hidden Markov modelling system

was used to learn statistically-based descriptions of the time-series data.

The database used in this study contains real-world data, and has features
that are not often encountered with the datasets commonly used in the machine

learning literature:

o Theclass distribution is highly skewed—approximately 98% of the records

in the database describe negative examples.

o There is a significant amount of random noise present in the data, as well

as missing values where the necessary data has not been collected.
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o The database is relatively large, containing approximately 38,000 individ-

ual records.

Similarity-based learning schemes have no concept of time, so a significant
amount of pre-processing was required to present the database in a form that
made the time dimension implicitly available to the learner. In the case of the
hidden Markov modeller, the time-series can be explicitly represented. How-
ever, pre-processing was still required to generate suitable sets of attributes and

observations for presentation to the modeller.

C4.5 is able to deal with features of real-world data such as noise and missing
values, and in general has performed well on both training and test datasets.
The major source of error lies in the extreme skewness of the class distribution.
C4.5's gain-ratio criterion reacts badly to this type of distribution and tends
to build decision trees containing many small disjuncts, that perform poorly
in testing. This type of highly skewed data has caused similar problems in
other cases studies undertaken by the WEKA projects [40]. Clearly this is a
common and significant problem when working with real-world datasets, and
a methodology needs to be developed to address it. For the particular case
of C4.5 it is possible that the parameters of the tree induction algorithm could
be optimised on a case-by-case basis. In general however a more fundamental
solution is required. As mentioned previously Ting [38] has obtained useful
results with a composite scheme using a combination of C4.5 and an instance-
based learner. The success of this composite learning technique makes it a good

candidate for further research in this area.

The rulesets generated by FOIL performed particularly well on training
data. This is because FOIL is able induce full first-order logical relations from
the examples—thus it is able to express the implicit time-series relationship be-
tween variables within an instance. FOIL rules consistently performed poorly
in testing however, primarily because no pruning of the ruleset was performed.
First-order—and higher—schemes such as FOIL have great potential for learn-
ing time-series relations. Before this potential can be realised these schemes

need to incorporate more of the advanced features now commonplace in zero-
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order decision-tree learners, especially pruning and other forms of ruleset gen-

eralisation and optimisation.

Hidden Markov modelling is based around building a parameterised sta-
tistical model of the data. Thus, the sequences used for training need to be
statistically “close” in order to generate a model that will only recognise se-
quences that are similar to the training data. Unfortunately this is not true for
the DRC herd milking database. The data effectively contains two distinct dis-
tributions of cows—those that exhibit a recognisable pattern in the time-series
and those that do not. This dual distribution cannot be accurately described by
a single set of models. The end result is the poor classification accuracy seen in

Experiments 6 and 7.

The HMM technique has already proven to be very effective with speech
signals—which are just simple single-dimensional time-series data. The milk-
ing data differs in that it is multi-dimensional, and the sequences used are
significantly shorter than would be encountered in a typical speech processing
application. The milking data also has the advantage of being highly periodic.
There would seem to be no obvious reason why the HMM method should not
be capable of performing well in application domains other than speech, given

a homogeneous set of training examples and a suitable prototype model.

5.1 Future Work

Research is continuing in a number of areas related to the DRC milking database
and to the general problem of time-series data analysis. Firstly, the HTK Markov

modelling system is to be integrated into the WEKA workbench. This involves:

o Construction of a graphical user interface to the HTK tools.
o Extensions to the ARFF file format to directly handle sequence data.

« Modifications to the HTK code to allow larger training sets and the ability

to LP encode multi-dimensional data.
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Integration into the workbench gives access to various WEKA tools such as the
attribute editor and experiment editor, hopefully allowing new experiments to
be designed much more quickly, with automatic processing and collation of

results.

Secondly, two new herd milking databases have recently been received from
the DRC. The first of these contains data from the 1994-95 milking season for the
same DRC herd as the 1993-94 database used in this study. The makeup of the
DRC herd has not changed significantly between seasons so there is expected
to be a high correlation of the characteristics of individual animals across the
two databases. The second new dataset comes from a production farm and
contains data for the 1994-95 season. Initially it is planned to repeat some of
the experiments described in this report with the new datasets, to verify the
results obtained with the original DRC database. All three datasets will be used
in the new experiments described below. It should also be possible to combine
the data for cows appearing in both of the DRC herd datasets into single large
dataset. This will allow experiments to be run on larger amounts of training

and test data.

(1

Finally, based on the results obtained in this study we plan to conduct further
experiments, particularly in the area of hidden Markov modelling. Several new

approaches are under consideration, including:

o Building models based only on the subset of the herd that exhibits a
relatively easy to identify pattern. This subset will initially be chosen
by visual inspection of the data. Although this method cannot expect to
produce models that accurately classify all possible test cases, it should
eliminate a large amount of the error encountered in Experiments 6and?7.
Models that correctly classify a proportion of the herd are far more useful

than models that perform poorly on the entire herd.

e As a limiting case of the method above, separate models could be con-
structed for each individual cow. In theory this should produce very

accurate models, at the cost of some generality—new models would have
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to build over a period of time whenever a new cow joined the herd. Mod-
els generated for one herd would also not be applicable to any other herd.
The success of this approach would at least show that Markov modelling

is a viable technique for this application.

¢ Some investigation of different prototype models, derived attribute sets

and observation vectors should also be carried out using all three datasets.

We also plan to test the effects of modifying the C4.5 induction parameters—in
particular those affecting the operation of the gain-ratio criterion—and possibly
apply a pruning algorithm to rulesets generated by FOIL in order to improve

their test performance.
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Appendix A

Experimental Results

This appendix presents complete results for all of the experiments described

previously.

A.1 Similarity-Based Learning Experiments

The results presented in this section were taken directly from the output of the
WEKA Prolog evaluator. A set of nine tables of results is provided for each of the

similarity-based learning experiments, containing the following information:

Example counts. The total number of examples in the full dataset for each
experiment, and the numbers of positive and negative examples in this
set. For Experiment 1, the yes and maybe classes are combined to form the

positive examples.

Baseline accuracy. The proportion of examples falling in the largest class of
the dataset. Baseline accuracy is often used as a basis for comparing the
performance of learning schemes [15, 17]. The baseline accuracy figures

given below are for the complete dataset used in each experiment.
Dataset size. The total number of examples in the dataset used for each trial.

Ruleset size. The number of rules or decision tree leaves in the descriptions

generated by the learning scheme.
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Accuracy. The overall accuracy of the description with respect to the dataset,

expressed as the percentage of examples classified correctly.

Incorrect classifications. The percentage of examples classified incorrectly by

the description.

Unclassified examples. The percentage of examples which were not classified

at all by the description.

Multiply classified examples. The percentage of examples classified by more

than one rule or leaf.

T = F misclassifications. The number of positive examples in the dataset
which were misclassified as negative. This is expressed as a percentage of
the total number of positive examples, including multiple classifications—

examples classified as both positive and negative.

F = T misclassifications. The number of negative examples in the dataset
which were misclassified as positive. Expressed as a percentage of the
total negative examples.

With the exception of baseline accuracy and example counts, each of these

variables is presented for both the training and test sets used in each trial.

For Experiments 1-3, the trials identified as “C4.5 set 1 " "C4.5 set 10" corre-
spond to the ten data subsets used in the ten-way cross-validation experiments.
Each set consists of 10% of the examples from the full dataset, with no overlap

between subsets.

The Experiment 4-5a results show a percentage figure beside the name of
the learner used in each trial. This number indicates the percentage of the
available negative examples included in the training set. In all cases testing

was done using the whole, 100% dataset.
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A.1.1 Experiment|]

Examples: 38360; Positive: 536, Negative: 37824

Baseline accuracy: 98.6%

Training | Ruleset | Training Test
Size Size || Accuracy% | Accuracy%

C4.5 (all) 38360 505 99.4 99.4
C4.5set 1 3836 40 99.5 96.4
C4.5set2 3836 27 99.6 88.0
C4.5set3 3836 27 99.5 96.8
C4.5set4 3836 56 99.5 89.5
C4.5 set5 3836 53 99.6 84.4
C4.5set 6 3836 54 99.3 93.8
C4.5set7 3836 53 99.5 82.5
C4.5 set 8 3836 63 99.2 83.3
C4.5set9 3836 55 99.3 85.7
C4.5set10 || 3836 16 99.8 88.7

Table A.1: Experiment 1 accuracy (unpruned trees)

Training | Ruleset || Training Test
Size Size || Accuracy% | Accuracy%

C4.5 (all) 38360 16 98.7 98.7
C4.5set1 3836 4 98.9 98.3
C4.5 set2 3836 1 98.6 98.6
C4.5set3 3836 8 98.7 98.2
C4.5set 4 3836 5 98.6 98.3
C4.5 set 5 3836 1 98.6 98.6
C4.5set6 3836 1 98.4 98.6
C4.5set7 3836 1 98.6 98.6
C4.5set8 3836 1 98.3 98.6
C4.55et9 3836 5 98.5 92.0
C4.5 set 10 3836 1 99:5 98.6

Table A.2: Experiment 1 accuracy (pruned trees)
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Training | Ruleset || Training Test
Size Size | Accuracy% | Accuracy%

C4.5 (all) 38360 36 98.9 98.9
C4.5setl 3836 11 99.3 96.1
C4.5 set 2 3836 17 99.4 88.7
C4.5set3 3836 11 99.1 96.3
C4.5set 4 3836 14 o 88.8
C4.5set5 3836 18 99.5 77.3
C4.5 set6 3836 15 99.0 94.7
C4.5set7 3836 18 99.4 76.2
C4.5 set 8 3836 12 98.8 81.1
C4.5set9 3836 20 99.0 86.4
C4.5 set 10 3836 6 99.7 93.9
FOIL 38360 227 99.2 99.2

Table A.3: Experiment 1 accuracy (rules)
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Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 0.6 0.0 0.0 0.6 0.0 0.0
C45setl 0.5 0.0 0.0 3.6 0.0 0.0
C4.5 set 2 0.4 0.0 0.0 12.0 0.0 0.0
C4.5set 3 0.5 0.0 0.0 3.2 0.0 0.0
C4.5set 4 0.5 0.0 0.0 10.5 0.0 0.0
C4.5set5 0.4 0.0 0.0 15.6 0.0 0.0
C4.5set6 0.7 0.0 0.0 6.2 0.0 0.0
C4.5set7 0.5 0.0 0.0 17.5 0.0 0.0
C4.5set 8 0.8 0.0 0.0 16.7 0.0 0.0
C4.5set9 0.7 0.0 0.0 14.3 0.0 0.0
C4.5 set 10 0.2 0.0 0.0 11.3 0.0 0.0
Table A.4: Experiment 1 errors (unpruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 13 0.0 0.0 1.3 0.0 0.0
C4.5set 1 1:1 0.0 0.0 1.7 0.0 0.0
C4.5set 2 14 0.0 0.0 14 0.0 0.0
C4.5set 3 13 0.0 0.0 1.8 0.0 0.0
C4.5 set 4 14 0.0 0.0 1.7 0.0 0.0
C4.5set5 14 0.0 0.0 1.4 0.0 0.0
C4.5set6 1.6 0.0 0.0 1.4 0.0 0.0
C4.5set7 14 0.0 0.0 1.4 0.0 0.0
C4.5set8 1.7 0.0 0.0 14 0.0 0.0
C4.5set9 15 0.0 0.0 8.0 0.0 0.0
C4.5 set 10 0.5 0.0 0.0 1.4 0.0 0.0
Table A.5: Experiment 1 errors (pruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 1.1 0.0 0.0 1.1 0.0 0.0
C4.5set1 0.7 0.0 0.0 3.9 0.0 0.0
C4.5 set 2 0.6 0.0 0.0 11.3 0.0 0.0
C4.5set3 0.9 0.0 0.0 3.7 0.0 0.0
C4.5set 4 0.9 0.0 0.0 11.2 0.0 0.0
C4.5set5 0.5 0.0 0.0 22.7 0.0 0.0
C4.5set6 1.0 0.0 0.0 5.3 0.0 0.0
C4.5set7 0.6 0.0 0.0 23.8 0.0 0.0
C4.5set8 1.2 0.0 0.0 18.9 0.0 0.0
C4.5set9 1.0 0.0 0.0 13.6 0.0 0.0
C4.5 set 10 0.3 0.0 0.0 6.1 0.0 0.0
FOIL 0.0 0.8 0.0 0.0 0.8 0.0

Table A.6: Experiment 1 errors (rules)
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A. Experimental Results

Training% Test%

T=>F|F=>T|T=>F|F=>T
C4.5 (all) 38.2 0.1 38.2 0.1
C45setl 43.5 0.0 90.7 2.4
C4.5 set 2 25.0 0.1 84.3 11.0
C4.5set3 25.0 0.1 85.1 2.0
C4.5set4 27 .4 0.0 77.6 9.5
C4.5setb 26.9 0.1 78:1 14.7
C4.5set 6 40.3 0.1 85.6 5.0
C4.5set7 26.9 0.1 79.1 16.6
C4.5set8 32.8 0.2 84.1 15.8
C4.5 set9 27.3 0.2 80.6 13:3
C4.5set 10 40.0 0.0 84.5 10.2

Table A.7: Experiment 1 misclassifications (unpruned trees)

Training% Test%

T=>F|F=>T||T=>F|F=T
C4.5 (all) 93.7 0.0 93.7 0.0
C4.5setl 89.1 0.0 98.9 0.4
C4.5 set 2 100.0 0.0 100.0 0.0
C4.5set3 83.3 0.0 92.2 0.5
C4.5set4 85.5 0.0 95.7 0.4
C4.5set5 100.0 0.0 100.0 0.0
C4.5setb 100.0 0.0 100.0 0.0
C45set7 100.0 0.0 100.0 0.0
C4.5set 8 100.0 0.0 100.0 0.0
C4.5 set9 89.4 0.0 76.7 6.7
C4.5set 10 || 100.0 0.0 100.0 0.0

Table A.8: Experiment 1 misclassifications (pruned trees)

Training% Test%
T=>F|F=>T|T=>F|F=>T
C4.5 (all) 79.9 0.0 79.9 0.0
C4.5set1 56.5 0.0 91.6 2.6
C4.5 set 2 36.5 0.1 86.2 10.2
C4.5 set3 60.0 0.0 87.1 2.5
C4.5set4 50.0 0.1 78.4 10.3
C4.5set5 34.6 0.1 70.3 22.0
C4.5 set 6 58.1 0.0 93.1 4.1
C4.5set7 323 0.1 754 23.0
C4.5set 8 61.1 0.1 86.8 18.0
C4.5 set9 47.0 0.2 84.0 12.6
C45set10 || 55.0 0.0 93.7 4.9
FOIL 0.0 0.0 0.0 0.0

Table A.9: Experiment 1 misclassifications (rules)
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A. Experimen tal Results

A.1.2 Experiment 2

Examples: 19180; Positive: 349, Negative: 18831

Baseline accuracy: 98.2%

Training | Ruleset | Training Test
Size Size || Accuracy% | Accuracy%

C4.5 (all) 19180 362 99.4 98.4
C4.5setl 1918 57 99.1 94.8
C4.5 set 2 1918 68 98.9 94.8
C4.5set3 1918 72 98.9 94.7
C4.5 set4 1918 57 98.7 94.3
C4.5 set5 1918 38 99.0 93.9

C4.5set6 1918 1 99.7 98.2
C45set? 1918 1 99.9 98.2
C4.5 set 8 1918 | 100.0 98.2
C4.5 set9 1918 1 100.0 98.2
C4.5 set 10 1918 1 100.0 98.2

Table A.10: Experiment 2 accuracy (unpruned trees)

Training | Ruleset | Training Test
Size Size Accuracy% | Accuracy%

C4.5 (all) 19180 23 98.4 98.4
C4.5setl 1918 5 96.9 98.3
C45set2 1918 <) 96.4 98.1
C45set3 1918 a 96.5 98.2
C4.5set4 1918 1 96.7 98.2
C4.5set5 1918 4 97.9 98.0
C4.5set6 1918 1 99.7 98.2
C4.5 set?7 1918 1 99.9 98.2
C4.5set8 1918 1 100.0 98.2
C4.5 set9 1918 1 100.0 98.2
C4.5 set 10 1918 1 100.0 98.2

Table A.11: Experiment 2 accuracy (pruned trees)
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A. Experimental Results

Training | Ruleset || Training Test
Size Size || Accuracy% | Accuracy%

C4.5 (all) 19180 12 98.4 98.4
C4.5setl 1918 8 97.2 97.1
C4.5set2 1918 6 96.7 974
C4.5set3 1918 9 96.7 98.1
C4.5set4 1918 3 96.7 98.2
C4.5 set5 1918 6 98.0 97.8
C4.5set6 1918 1 99.7 98.2
C4.5set7 1918 1 99.9 98.2
C4.5set8 1918 1 100.0 98.2
C4.5 set9 1918 1 100.0 98.2
C45set10 || 1918 1 100.0 98.2
FOIL 19180 149 99.0 99.0

Table A.12: Experiment 2 accuracy (rules)
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A. Experimental Results

Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 0.6 0.0 0.0 0.6 0.0 0.0
C4.5set 1 0.9 0.0 0.0 5.2 0.0 0.0
C4.5set 2 11 0.0 0.0 5.2 0.0 0.0
C4.5set3 14 0.0 0.0 5.3 0.0 0.0
C4.5set4 13 0.0 0.0 5.7 0.0 0.0
C4.5 set5 1.0 0.0 0.0 6.1 0.0 0.0
C4.5 set 6 0.3 0.0 0.0 1.8 0.0 0.0
C4.5set?7 0.1 0.0 0.0 1.8 0.0 0.0
C4.5set 8 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set9 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set 10 0.0 0.0 0.0 1.8 0.0 0.0
Table A.13: Experiment 2 errors (unpruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 1.6 0.0 0.0 1.6 0.0 0.0
C4.5set 1 3.1 0.0 0.0 17 0.0 0.0
C4.5 set 2 3.6 0.0 0.0 19 0.0 0.0
C4.5set 3 3.5 0.0 0.0 1.8 0.0 0.0
C4.5set4 3.3 0.0 0.0 1.8 0.0 0.0
C4.5set5 21 0.0 0.0 2.0 0.0 0.0
C4.5set6 0.3 0.0 0.0 1.8 0.0 0.0
C4.5set7 0.1 0.0 0.0 1.8 0.0 0.0
C4.5set 8 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set9 0.0 0.0 0.0 1.8 0.0 0.0
C4.5 set 10 0.0 0.0 0.0 1.8 0.0 0.0
Table A.14: Experiment 2 errors (pruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 1.6 0.0 0.0 1.6 0.0 0.0
C4.5set1 2.8 0.0 0.0 2.9 0.0 0.0
C4.5 set 2 3.3 0.0 0.0 2.6 0.0 0.0
C4.5set 3 33 0.0 0.0 19 0.0 0.0
C4.5 set 4 3.3 0.0 0.0 1.8 0.0 0.0
C45set5 2.0 0.0 0.0 2.2 0.0 0.0
C4.5set 6 0.3 0.0 0.0 1.8 0.0 0.0
C4.5set?7 0.1 0.0 0.0 1.8 0.0 0.0
C4.5set8 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set9 0.0 0.0 0.0 1.8 0.0 0.0
C4.5 set 10 0.0 0.0 0.0 1.8 0.0 0.0
FOIL 0.0 1.0 0.0 0.0 1.0 0.0

Table A.15: Experiment 2 errors (rules)
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A. Experimental Results

Training% Test%
T=F|F=>T|T=F|F=T
C4.5 (all) 20.3 0.2 20.3 0.2
C4.5setl 18.8 0.2 74.2 4.0
C4.5set2 21.5 0.3 70.2 4.0
C4.5set3 16.5 0.4 69.3 41
C4.5set4 30.2 0.3 78.8 4.3
C4.5setd 33.3 0.3 79.7 4.7
C4.5setbh 100.0 0.0 100.0 0.0
C4.5set7 100.0 0.0 100.0 0.0
C4.5set8 100.0 0.0 100.0 0.0
C4.5set9 — 0.0 100.0 0.0
C4.5set 10 — 0.0 100.0 0.0

Table A.16: Experiment 2 misclassifications (unpruned trees)

Training% Test%

T=>F|F=>T|T=>F|F=T
C4.5 (all) 86.2 0.0 86.2 0.0
C4.5set1 85.5 0.0 90.8 0.1
C4.5set2 83.6 0.0 91.9 0.2
C45set3 78.8 0.1 89.1 0.2
C4.5set4 100.0 0.0 100.0 0.0
C4.5set5 91.1 0.0 94.0 0.0
C4.5setb6 100.0 0.0 100.0 0.0
C45set7 100.0 0.0 100.0 0.0
C4.5set8 100.0 0.0 100.0 0.0
C4.55set9 — 0.0 100.0 0.0
C4.5set 10 — 0.0 100.0 0.0

Table A.17: Experiment 2 misclassifications (pruned trees)

Training% Test%
T=>F|F=>T|T=>F|F=>T
C4.5 (all) 84.5 0.0 84.5 0.0
C45setl 76.8 0.1 87.7 1.3
C4.5set2 79.7 0.0 85.1 1.1
C4.5set3 729 0.1 87.4 0.3
C4.5set4 100.0 0.0 100.0 0.0
C4.5setd 82.2 0.1 92.8 0.5
C45setb6 100.0 0.0 100.0 0.0
C45set7 100.0 0.0 100.0 0.0
C4.5set8 100.0 0.0 100.0 0.0

Ca5set9 | — | 00 | 1000 | 00
C45set10| — | 00 [ 1000 | 00
FOIL 0.0 | 00 0.0 0.0 |

Table A.18: Experiment 2 misclassifications (rules)
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A. Experimental Results

A.1.3 Experiment 3

Examples: 6300; Positive: 115, Negative: 6185

Baseline accuracy: 98.2%

Training | Ruleset || Training Test
Size Size Accuracy% | Accuracy%

C4.5 (all) 6300 96 99.3 99.3
C4.5set 1 630 25 95 953
C4.5 set 2 630 23 99.5 95.5
C4.5et3 630 31 99.0 94.9
C4.5 set 4 630 14 98.9 97.4
C4.5 set5 630 11 99.7 97.8

C4.5setb 630 1 100.0 98.2
C4.5set7 630 1 100.0 98.2
C4.5set8 630 1 100.0 98.2
C4.5set9 630 1 100.0 98.2
C4.5 set 10 630 1 100.0 98.2

Table A.19: Experiment 3 accuracy (unpruned trees)

Training | Ruleset || Training Test
Size Size Accuracy% | Accuracy%

C4.5 (all) 6300 6 98.4 98.4

C4.5 set 1 630 12 97.9 97.1

C4.5set2 630 7 97.8 97.5

C4.5set3 630 4 95.2 98.2

C4.5set4 630 1 97.1 98.2
C4.5set5 630 1 98.7 98.2
C4.5set6 630 1 100.0 98.2
C4.5set?7 630 1 100.0 98.2
C4.5set8 630 1 100.0 98.2
C4.5set9 630 1 100.0 98.2
C4.5 set 10 630 1 100.0 98.2

Table A.20: Experiment 3 accuracy (pruned trees)
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A. Experimental Results

Training | Ruleset || Training Test
Size Size || Accuracy% | Accuracy%

C4.5 (all) 6300 9 98.6 98.6
C4.5set 1 630 9 98.1 96.3
C4.5 set 2 630 7 98.1 97.5
C4.5 set 3 630 6 96.2 97.7
C4.5 set 4 630 4 97.8 98.1
C4.5set5 630 4 99.7 97.8
C4.5set6 630 1 100.0 98.2
C4.5set7 630 1 100.0 98.2
C4.5 set 8 630 1 100.0 98.2
C4.5set9 630 1 100.0 98.2
C4.5 set 10 630 1 100.0 98.2
FOIL 6300 55 99.0 99.0

Table A.21: Experiment 3 accuracy (rules)
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A. Experimental Results

Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 0.7 0.0 0.0 0.7 0.0 0.0
C4.5set1 0.5 0.0 0.0 4.7 0.0 0.0
C4.5set 2 0.5 0.0 0.0 4.5 0.0 0.0
C4.5set3 1.0 0.0 0.0 51 0.0 0.0
C4.5set4 11 0.0 0.0 2.6 0.0 0.0
C4.5 set 5 0.3 0.0 0.0 22 0.0 0.0
C4.5set 6 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set?7 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set8 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set9 0.0 0.0 0.0 1.8 0.0 0.0
C4.5 set 10 0.0 0.0 0.0 1.8 0.0 0.0
Table A.22: Experiment 3 errors (unpruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 1.6 0.0 0.0 1.6 0.0 0.0
C45setl 2.1 0.0 0.0 29 0.0 0.0
C4.5 set 2 22 0.0 0.0 2.5 0.0 0.0
C4.5set 3 4.8 0.0 0.0 1.8 0.0 0.0
C4.5set4 29 0.0 0.0 1.8 0.0 0.0
C4.5set5 1.3 0.0 0.0 1.8 0.0 0.0
C4.5set6 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set7 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set 8 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set9 0.0 0.0 0.0 1.8 0.0 0.0
C4.5 set 10 0.0 0.0 0.0 1.8 0.0 0.0
Table A.23: Experiment 3 errors (pruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.5 (all) 14 0.0 0.0 1.4 0.0 0.0
C4.5set1 1.9 0.0 0.0 3.7 0.0 0.0
C4.5 set 2 2.5 0.0 0.0 1.9 0.0 0.0
C4.5set 3 3.8 0.0 0.0 2.3 0.0 0.0
C4.5set4 22 0.0 0.0 1.9 0.0 0.0
C4.5set5 0.3 0.0 0.0 22 0.0 0.0
C4.5set6 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set?7 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set8 0.0 0.0 0.0 1.8 0.0 0.0
C4.5set9 0.0 0.0 0.0 1.8 0.0 0.0
C4.5 set 10 0.0 0.0 0.0 1.8 0.0 0.0
FOIL 0.0 1.0 0.0 0.0 1.0 0.0

Table A.24: Experiment 3 errors (rules)
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A. Experimental Results

Training% Test%
T=>F|F=>T|T=>F|F=>T
C4.5 (all) 33.9 0.1 33.9 0.1
C4.5setl 6.9 0.2 67.8 3.5
C4.5set2 8.3 0.2 71.3 3.2
C4.5set3 111 0.3 61.7 41
C4.5 set4 27.8 0.3 78.3 1.1
C4.5setd 125 0.2 92.2 0.5

C4.5setb - 0.0 100.0 0.0
C45set7 = 0.0 100.0 0.0
C4.5 set8 - 0.0 100.0 0.0
C4.5 set9 — 0.0 100.0 0.0
C4.5 set 10 — 0.0 100.0 0.0

Table A.25: Experiment 3 misclassifications (unpruned trees)

Training% Test%
T=>F|F=>T|T=>F|F=>T
C4.5 (all) 87.0 0.0 87.0 0.0
C45setl 44.8 0.0 79.1 1.4
C4.5 set 2 58.3 0.0 84.3 1.0
C4.5set3 83.3 0.0 92.2 0.1
C4.5set4 || 100.0 0.0 100.0 0.0
C4.5set5 || 100.0 0.0 100.0 0.0

C4.5 set 6 — 0.0 100.0 0.0
C4.5set7 — 0.0 100.0 0.0
C4.5 set 8 — 0.0 100.0 0.0
C4.5set9 — 0.0 100.0 0.0
C4.5 set 10 — 0.0 100.0 0.0

Table A.26: Experiment 3 misclassifications (pruned trees)

Training% Test%
T=F|F=>T|T=F|F=>T
C4.5 (all) 7o 0.0 75.7 0.0
C45setl 414 0.0 76.5 24
C4.5set2 50.0 0.0 80.9 1.1
C4.5set3 63.9 0.2 80.9 0.9
C4.5setd 66.7 0.3 87.8 0.3
C4.5set5 12.5 0.2 92.2 0.5

C4.5setb —_ 0.0 100.0 0.0
C4.5set7 — 0.0 100.0 0.0
C4.55set8 - 0.0 100.0 0.0
C4.5set9 — 0.0 100.0 0.0
C4.5set 10 — 0.0 100.0 0.0

FOIL 0.0 0.0 0.0 0.0

Table A.27: Experiment 3 misclassifications (rules)
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A. Experimen tal Results

A.1.4 Experiment 4

Examples: 14037; Positive: 368, Negative: 13669

Baseline accuracy: 97.4%

Training | Ruleset | Training Test
Size Size || Accuracy% | Accuracy%

C451% 512 64 93.4 40.8
C4.5 2% 638 94 94.5 49.6
C4.55% 1036 152 95.2 66.4
C4.5 10% 1718 193 929 80.6
C4.5 20% 3080 249 93.2 86.9
C4.5 50% 7162 286 92.7 91.3
C4.5100% || 14037 340 94.0 94.0

Table A.28: Experiment 4 accuracy (unpruned trees)

Training | Ruleset | Training Test
Size Size Accuracy% | Accuracy%

C4.51% 512 60 93.2 40.5

C4.52% 638 87 93.9 49.7

C4.55% 1036 139+ 95.0 66.1

C4.510% 1718 157 91.6 80.6
C4.5 20% 3080 47 87.9 92.0
C4.5 50% 7162 21 94.5 96.3
C4.5100% | 14037 11 96.7 96.7

Table A.29: Experiment 4 accuracy (pruned trees)

87



A. Experimental Results

Training | Ruleset || Training Test
Size Size || Accuracy% | Accuracy%

C4.51% 512 7 73.8 59
C4.52% 638 9 68.0 441
C4.55% 1036 12 76.1 92.2
C4.510% 1718 12 84.7 95.6
C4.520% 3080 7 90.3 96.9
C4.5 50% 7162 8 95.5 97.5
C4.5100% 14037 12 97.7 97.7
FOIL 1% 512 40 96.9 18.5
FOIL 2% 638 60 98.6 29.2
FOIL 5% 1036 77 96.6 532
FOIL 10% 1718 99 96.9 73.2
FOIL 20% 3080 118 97.2 84.7
FOIL 50% 7162 131 96.6 94.7
FOIL 100% || 14037 129 973 97.3

Table A.30: Experiment 4 accuracy (rules)

88




A. Experimental Results

Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.51% 3.5 a1 0.0 55.3 3.8 0.0
C4.5 2% 2.4 3.1 0.0 47.0 3.4 0.0
C4.5 5% 2.7 2.1 0.0 30.6 3.1 0.0
C4.5 10% 2.6 4.5 0.0 15.6 4.5 0.0
C4.5 20% 1.9 49 0.0 8.3 4.8 0.0
C4.5 50% 1.8 5.6 0.0 3 5.5 0.0
C4.5 100% 1.3 4.7 0.0 1.3 4.7 0.0

Table A.31: Experiment 4 errors (unpruned trees)

Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C451% 3.7 3.1 0.0 55.8 37 0.0
C4.52% 2.7 34 0.0 47.1 3.2 0.0
C4.5 5% 29 2.1 0.0 30.9 3.0 0.0
C4.510% 3.9 44 0.0 15.0 44 0.0
C4.520% 7.9 42 0.0 3.9 4.1 0.0
C4.5 50% 4.3 1.2 0.0 2.4 1.3 0.0
C4.5 100% 2.3 1.0 0.0 23 1.0 0.0

Table A.32: Experiment 4 errors (pruned trees)

Training% | Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C451% 26.2 0.0 0.0 94.1 0.0 0.0
C4.5 2% 32.0 0.0 0.0 55.9 0.0 0.0
C4.55% 239 0.0 0.0 7.8 0.0 0.0
C4.510% 15.3 0.0 0.0 4.4 0.0 0.0
C4.5 20% 9.7 0.0 0.0 3.1 0.0 0.0
C4.5 50% 4.5 0.0 0.0 2.5 0.0 0.0
C4.5 100% 2.3 0.0 0.0 2.3 0.0 0.0
FOIL 1% 0.2 2.9 0.0 42.5 21.4 17.6
FOIL 2% 0.0 1.4 0.0 27.5 21.2 221
FOIL 5% 0.1 3.3 0.0 11.3 18.2 17.3
FOIL 10% 0.1 29 0.0 47 11.8 10.3
FOIL 20% 0.2 2.5 0.0 1.9 73 6.1
FOIL 50% 0.5 32 0.0 0.5 3.8 1.0
FOIL 100% 0.1 2.7 1.0 0.0 27 0.0

Table A.33: Experiment 4 errors (rules)
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A. Experimental Results

Training% Test%
T=>F | F=>T|T=>F|F=>T
C451% 31 5.0 3.1 59.0
C4.52% 1.7 3.4 1.7 49.9
C4.5 5% 47 1.7 47 323
C4.510% 7.3 1.6 7.3 16.6
C4.520% 10.3 0.9 10.3 8.7
C4.5 50% 27.0 0.5 27.0 2.7
C4.5 100% 37.2 0.4 37.2 0.4

Table A.34: Experiment 4 misclassifications (unpruned trees)

Training% Test%
T>F|F=T|T=>F|F=>T
C4.51% 3.1 5.7 &1 59.4
C4.52% 1.7 42 1.7 499
C4.5 5% 3.6 2.6 3.6 32.6

C4.510% 11.8 21 11.8 15.8
C4.520% 67.0 0.3 67.0 23
C4.5 50% 84.1 0.0 84.1 0.3
C4.5 100% 88.9 0.1 88.9 0.1

Table A.35: Experiment 4 misclassifications (pruned trees)

Training% Test%
T=F | F=>T||T=>F|F=T
C451% 22 '93.1 0.0 96.6
C4.52% 23.9 43.0 23.9 56.8
C4.55% 67.4 0.0 67.4 6.2
C4.510% 73.9 0.1 73.9 2.5
C4.5 20% 81.3 0.0 81.3 1.0
C4.5 50% 87.2 0.0 87.2 0.2

C4.5 100% 87.0 0.1 87.0 0.1
FOIL 1% 0.0 0.8 0.0 64.2
FOIL 2% 0.0 0.0 0.0 50.4
FOIL 5% 0.3 0.0 0.0 29.6

FOIL 10% 0.0 0.2 0.0 15.6
FOIL 20% 0.3 0.3 0.3 8.3
FOIL 50% 2.1 0.1 21 1.6

FOIL 100% 2.7 0.1 2.7 0.1

Table A.36: Experiment 4 misclassifications (rules)
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A. Experimental Results

A.1.5 Experiment5

Examples: 14548; Positive: 371, Negative: 14177

Baseline accuracy: 97.4%

Training | Ruleset | Training Test
Size Size || Accuracy% | Accuracy%

C451% 520 61 91.5 39.7

C4.5 2% 656 87 91.6 54.6

C4.55% 1084 127 93.0 70.7

C4.510% 1796 190 94.4 82.3
C4.5 20% 3203 224 94.4 88.9
C4.5 50% 7481 284 95.0 93.2
C4.5100% || 14548 325 95.2 95.2

Table A.37: Experiment 5 accuracy (unpruned trees)

Training | Ruleset || Training Test
Size Size Accuracy% | Accuracy%

C4.51% 520 52 912 40.8

C4.52% 656 78 91.2 53.8

C4.55% 1084 116 93.0 70.2

C4.510% 1796 170 94.4 81.4
C4.520% 3203 98 90.9 914
C4.5 50% 7481 49 93.3 94.3
C4.5100% || 14548 25 96.4 96.4

Table A.38: Experiment 5 accuracy (pruned trees)
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A. Experimental Results

Training | Ruleset | Training Test
Size Size || Accuracy% | Accuracy%

C4.51% 520 8 62.7 77.7
C4.5 2% 656 7 72.1 66.8
C4.55% 1084 11 80.8 90.1
C4.510% 1796 11 84.9 95.8
C4.5 20% 3203 18 91.8 96.7
C4.5 50% 7481 11 95.9 957
C4.5100% || 14548 15 98.0 98.0
FOIL 1% 520 35 99.2 18.8
FOIL 2% 656 51 98.5 35.9
FOIL 5% 1084 77 99.2 938
FOIL 10% 1796 95 99.7 74.2
FOIL 20% 3203 112 99.1 86.3
FOIL 50% 7481 124 98.7 95.9
FOIL 100% || 14548 127 98.9 98.9

Table A.39: Experiment 5 accuracy (rules)
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A. Experimental Results

Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.51% 3.3 5.2 0.0 56.6 3.6 0.0
C4.52% 35 4.9 0.0 41.8 3.6 0.0
C4.5 5% 2.7 4.3 0.0 25.6 3.6 0.0
C4.510% 1.6 4.0 0.0 13.8 39 0.0
C4.5 20% 1.3 42 0.0 6.8 4.2 0.0
C4.5 50% 0.9 41 0.0 2.6 42 0.0
C4.5 100% 0.6 4.2 0.0 0.6 4.2 0.0
Table A.40: Experiment 5 errors (unpruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C451% 3.7 52 0.0 55.6 3.6 0.0
C4.52% 4.0 4.9 0.0 42.6 3.6 0.0
C4.5 5% 2.7 4.3 0.0 26.1 3.6 0.0
C4.510% 1.8 3.7 0.0 14.9 3.7 0.0
C4.5 20% 4.8 4.2 0.0 4.4 4.2 0.0
C4.5 50% 3.4 3.4 0.0 22 3.5 0.0
C4.5 100% 2.0 1.6 0.0 2.0 1.6 0.0
Table A.41: Experiment 5 errors (pruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C451% 37.3 0.0 0.0 22.3 0.0 0.0
C4.52% 279 0.0 0.0 33.2 0.0 0.0
C4.5 5% 19.2 0.0 0.0 9.9 0.0 0.0
C4.510% 15.1 0.0 0.0 4.2 0.0 0.0
C4.520% 8.2 0.0 0.0 33 0.0 0.0
C4.5 50% 4.1 0.0 0.0 2.3 0.0 0.0
C4.5 100% 2.0 0.0 0.0 2.0 0.0 0.0
FOIL 1% 0.0 0.8 0.0 41.3 20.8 19.1
FOIL 2% 0.0 1.5 0.0 23.0 19.2 219
FOIL 5% 0.0 0.7 0.1 9.2 16.4 20.6
FOIL 10% 0.0 0.2 0.1 3.6 10.3 11.9
FOIL 20% 0.0 0.8 0.1 12 6.1 6.4
FOIL 50% 0.0 12 0.1 0.2 2.5 14
FOIL 100% 0.0 1.1 0.0 0.0 1 0.0

Table A.42: Experiment 5 errors (rules)
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A. Experimental Results

Training% Test%
T=>F|F=>T|T=>F|F=>T
C4.51% 2.5 5.8 25 60.2
C4.52% 34 1.1 34 444
C4.5 5% 42 2.0 42 27.2
C4.5 10% 43 1.0 43 14.7
C4.5 20% 7.1 0.6 | 7.1
C4.5 50% 11.0 0.4 11.0 2.5
C4.5 100% 18.4 0.2 18.4 0.2

Table A.43: Experiment 5 misclassifications (unpruned trees)

Training% Test%
T=a>F|F=>T|T=>F|F=T
C4.51% 3.1 5.8 3.1 59.1
C4.5 2% 2.8 5.9 2.8 45.3
C4.5 5% 4.0 2.2 4.0 27.7
C4.510% 43 1.3 4.3 15.7
C4.5 20% 41.0 0.3 41.0 3.6
C4.5 50% 70.5 0.1 70.5 0.5
C4.5 100% 80.8 0.0 80.8 0.0

Table A.44: Experiment 5 misclassifications (pruned trees)

Training% Test%

T=>F|F=>T|T=>F|F=T

C4.51% 50.1 '5.4 50.1 21.5

C4.52% 30.7 242 30.7 33.3

C4.55% 55.8 0.1 55.8 8.7
C4.510% 73.3 0.0 73.3 24
C4.520% 68.6 0.0 68.6 1.6
C4.5 50% 83.6 0.0 83.6 0.1
C4.5 100% 78.7 0.0 78.7 0.0

FOIL 1% 0.0 0.0 0.0 63.1
FOIL 2% 0.0 0.0 0.0 44.8
FOIL 5% 0.3 0.0 0.3 29.3
FOIL 10% 0.0 0.1 0.0 15.6
FOIL 20% 0.0 0.1 0.0 7.8
FOIL 50% 0.0 0.1 0.0 1.6
FOIL 100% 0.0 0.0 0.0 0.0

Table A.45: Experiment 5 misclassifications (rules)

94




A. Experimental Results

A.1.6 Experiment 5a

Examples: 14548; Positive: 371, Negative: 14177

Baseline accuracy: 97.4%

Training | Ruleset | Training Test
Size Size || Accuracy% | Accuracy%

C4.51% - 520 63 72.1 41.0

C4.5 2% 656 80 75.2 55.6

C4.55% 1084 125 81.5 68.8

C4.5 10% 1796 159 82.7 759
C4.5 20% 3203 178 84.0 81.5
C4.5 50% 7481 209 87.0 85.7
C4.5100% || 14548 277 86.3 86.3

Table A.46: Experiment 5a accuracy (unpruned trees)

Training | Ruleset || Training Test
Size Size || Accuracy% | Accuracy%

C451% 520 32 70.6 43.0
C4.52% 656 61 75.8 61.1
C4.55% 1084 75" 81.5 76.2
C4.510% 1796 78 82.6 81.4
C4.520% 3203 88 84.8 85.0
C4.5 50% 7481 79 88.0 88.1
C4.5100% | 14548 61 88.5 88.5

Table A.47: Experiment 5a accuracy (pruned trees)
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Training | Ruleset | Training Test
Size Size || Accuracy% | Accuracy%

C4.51% 520 6 89.2 61.8
C4.52% 656 8 85.1 59.8
C4.55% 1084 6 79.5 89.2
C4.510% 1796 13 86.9 95.3
C4.5 20% 3203 11 89.3 91.9
C4.5 50% 7481 13 96.2 97.7
C4.5100% || 14548 15 97.8 97.8
FOIL 1% 520 33 98.7 28.6
FOIL 2% 656 47 98.9 46.7
FOIL 5% 1084 64 99.1 65.7
FOIL 10% 1796 76 99.2 79.0
FOIL 20% 3203 97 1994 87.0
FOIL 50% 7481 111 99.1 95.8
FOIL 100% || 14548 112 99.0 99.0

Table A.48: Experiment 5a accuracy (rules)
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A. Experimental Results

Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.51% 2.3 25.6 0.0 46.9 123 0.0
C452% 1.8 23.0 0.0 32.3 121 0.0
C4.55% 1.4 171 0.0 19.0 12.2 0.0
C4.510% 1.7 15.5 0.0 12.0 12.1 0.0
C4.5 20% 1.3 14.7 0.0 5.8 12.7 0.0
C4.550% 0.6 12.4 0.0 1.9 12.4 0.0
C4.5 100% 0.5 13.2 0.0 0.5 13.2 0.0
Table A.49: Experiment 5a errors (unpruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.51% 4.2 25.2 0.0 45.5 11.5 0.0
C4.52% 1.5 227 0.0 27.3 11.5 0.0
C4.5 5% 1.8 16.7 0.0 12.7 11.1 0.0
C4.510% 24 15.0 0.0 7.4 11.3 0.0
C4.520% 1.7 135 0.0 37 11.2 0.0
C4.5 50% 12 10.7 0.0 1.3 10.6 0.0
C4.5 100% 1.0 10.5 0.0 1.0 10.5 0.0
Table A.50: Experiment 5a errors (pruned trees)
Training% Test%
Incorrect | None | Multiple || Incorrect | None | Multiple
C4.51% 10.8 0.0 0.0 38.2 0.0 0.0
C4.5 2% 14.9 0.0 0.0 40.2 0.0 0.0
C4.55% 205 0.0 0.0 10.8 0.0 0.0
C4.510% 13.1 0.0 0.0 4.7 0.0 0.0
C4.5 20% 10.7 0.0 0.0 8.1 0.0 0.0
C4.5 50% 3.8 0.0 0.0 2.3 0.0 0.0
C4.5 100% 2:2 0.0 0.0 22 0.0 0.0
FOIL 1% 0.0 13 0.0 26.6 12.6 32.2
FOIL 2% 0.0 1.1 0.0 14.6 13.2 254
FOIL 5% 0.0 0.8 0.1 7.9 11.0 15.4
FOIL 10% 0.0 0.5 0.3 29 7.8 10.3
FOIL 20% 0.0 0.5 0.1 1.5 5.4 6.1
FOIL 50% 0.0 0.8 0.1 0.2 23 1.6
FOIL 100% 0.0 0.9 0.0 0.0 0.9 0.0

Table A.51: Experiment 5a errors (rules)
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A. Experimental Results

Training% Test%
T=>F|[F=>T||T=>F|[F=>T
C4.51% 1.5 6.3 1.5 54.4
C4.52% 1.2 3.6 1.2 37.5
C4.5 5% 1.1 19 1.1 221
C4.510% 4.5 1.5 4.5 13.8
C4.5 20% 6.8 0.9 6.8 6.6
C4.5 50% 6.5 0.4 6.5 2.0
C4.5 100% 15.4 0.3 15.4 0.3

Table A.52: Experiment 5a misclassifications (unpruned trees)

Training% Test%
T=>F|F=>T|T=F|F=>T
C4.51% 1.1 14.8 1.1 52.5

C4.52% 1.9 2.0 1.9 31.5
C4.55% 53 0.8 5.3 14.5
C4.5 10% 109 1.1 10.9 8.2

C4.5 20% 16.3 0.4 16.3 3.9
C4.5 50% 31.7 0.1 31.7 0.8
C45100% || 51.5 0.0 530 0.0

Table A.53: Experiment 5a misclassifications (pruned trees)

Training% Test%

T=F|F=>T|T=F|F=T
C4.51% 4.0 Y275 4.0 39.1

C4.5 2% 2.2 31.6 2.2 41.2

C4.5 5% 44.7 7.6 447 9.9
C4.5 10% 61.7 0.8 61.7 32
C4.5 20% 429 6.5 429 72
C4.550% 76.5 0.0 76.5 0.3
C4.5 100% 80.6 0.1 80.6 0.1

FOIL 1% 0.0 0.0 0.0 50.2
FOIL 2% 0.0 0.0 0.0 36.5
FOIL 5% 0.0 0.1 0.0 22.9
FOIL 10% 0.0 0.3 0.0 132
FOIL 20% 0.0 0.1 0.0 7.7
FOIL 50% 0.0 0.1 0.0 1.9
FOIL 100% 0.0 0.0 0.0 0.0

Table A.54: Experiment 5a misclassifications (rules)
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A. Experimental Results

A.2 Sequence Identification Experiments

The output produced by the HTK model testing program produces a confusion
matrix and overall percentage recognition accuracy for each testing run. The
tables below present this information for all of the sequence identification ex-
periments described in Chapter 3. These tables also indicate the sizes of the

training and test sets used, and the baseline accuracy of the dataset.

A.2.1 Experimenté

Sequences: 703; Positive: 359, Negative: 344

Training size: 466; Test size: 237; Baseline accuracy: 51.1%

Test % | Test% | Test %
Prototype || Accuracy |T = F | F =T

1 63.29 18.6 54.6
2 63.29 22.0 51.3
3 58.65 39.0 43.7
4 64.98 19.5 50.4

Table A.55: Experir;nent 6 test accuracy
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A.2.2 Experiment?7

Sequences: 810; Positive: 385, Negative: 425

Training size: 574; Test size: 263; Baseline accuracy: 52.5%

Test% | Test% | Test%

Filter Accuracy |T= F | F=>T
Order 2LP 55.02 46.0 44.0
Order 3LP 57.03 45.7 40.4
Order 5 LP 53.23 45.7 47.8
Order 8LP 53.61 48.8 441
Order 10 LP 59.32 53.5 28.7
Order 12LP 54.37 449 46.3
Order 10 LP Cepstra 61.60 54.3 235
Order 12 LP Cepstra 58.17 62.8 31.6

Table A.56: Experiment 7 test accuracy
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B. Hidden Markov Model Prototypes

Appendix B

Hidden Markov Model
Prototypes

This appendix presents the initial state transition matrices used in Experiments 6
and 7. These prototype models form the basis for the models learnt by the HTK
re-estimation tools. Row i of a transition matrix represents the probabilities for
transitions out of state 7 of the model. The first and last states (rows) of an HTK
model are non-emitting states, that is they do not generate an output symbol.
Essentially they are placeholder states—the first state defines the probability of
the first output being generated by each of the other states and the last state is
an “exit” state which is entered when the model is ready to terminate. These

two states can safely be ignored when designing a prototype model.

Transitions that are marked with zeroes in the prototype matrices are not
changed by any of the HTK tools, thus will always remain set to zero. These
elements indicate transitions that are not allowed. The non-zero elements of
each row give a weighting to the permitted transitions. The entries in each row

need not add to one—they will be scaled appropriately by the HTK system.
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B.1 Experimenté

The sequences used in Experiment 6 consisted of 14 milkings (7 days) of a
particular cow. All of the prototype models presented below are examples
of left-right models, since the only transitions allowed are those to the current
or later states. Transitions back to a previous state are not permitted. The
first prototype uses seven internal states, one for each day represented in the
sequence. The second and third models extend this idea by having a state for
each milking in the sequence—14 internal states in total. The fourth model used
in this experiment has only two internal states, that do not have any intentional

correspondence with the samples making up each sequence.

(010 0 0 0 0 0 0 0 |
00505 0 0 0 0 0 O
0 0 05050 0 0 0 0
00 0 05050 0 0 0
00 0 0 0505 0 0 0
00 0 0 @ 0505 0 0
00 0 0 0 0 0505 0
00 0 0 0 0O 0 0505
o0 0 0 0 0 0 0 0|

Figure B.1: Experiment 6 prototype model 1
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Figure B.2: Experiment 6 prototype model 2
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Figure B.3: Experiment 6 prototype model 3
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[ 0.1 07 02 0 |
0 01 07 02
0 0 01 09
0 0 0 1.0

Figure B.4: Experiment 6 prototype model 4

B.2 Experiment?7

This experiment made use of sequences of values from a single days’ milkings.
There is no obvious relationship between samples in these sequences and states
in a model. Both models presented below use three internal states. The first
model is a simple left-right design, similar to those used in Experiment 6 above.
This model was the prototype for the models trained from standard LP encoded
sequences. The second model was used with the sequences encoded using LP
cepstral and cepstral delta coefficients. 'All of the entries in this transition matrix
are equal, meaning that any state transition is possible. This design allows HTK
to define a model structure entirely based on the training sequences—transitions
which are unimportant will become zero and the probabilities on the best path

through the model will be increased.

(001 0 0 0| (10 1.0 1.0 1.0 1.0 ]
0 0505 0 O 1.0 1.0 1.0 1.0 1.0
0 0 05 05 0 1.0 1.0 1.0 1.0 1.0
0 0 0 05 05 1.0 1.0 1.0 1.0 1.0
0 0 0 0 0 |10 1.0 1.0 1.0 1.0 |
LP encoded models LP Cepstral encoded models

Figure B.5: Experiment 7 prototype models
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