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Abstract

In this note we show that for each Latin square L of order n ≥ 2,
there exists a Latin square L′ 6= L of order n such that L and L

′ differ in
at most 8

√
n cells. Equivalently, each Latin square of order n contains

a Latin trade of size at most 8
√
n. We also show that the size of the

smallest defining set in a Latin square is Ω(n3/2).
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1 Introduction

For each positive integer a, we use the notation [a] for the set of integers
{0, 1, 2, . . . , a− 1}.

A partial Latin square of order n is an n × n array, where each cell of the
array is either empty or contains a symbol from [n], such that each symbol
occurs at at most once per row and at most once per column. A Latin square
is a partial Latin square in which no cell is empty, and hence each symbol
occurs precisely once in each row and once in each column.

Indexing rows and columns by [n], we may consider a partial Latin square
to also be a set of ordered triples of the form (i, j, L(i, j)), where L(i, j) is
the symbol in row i and column j (if occupied). The distance (or Hamming



distance [8]) between two partial Latin squares L and L′ of the same order is
then defined to be |L \ L′|.

We show the following.

Theorem 1.1. For each Latin square L of order n, there exists a Latin square
L′ 6= L of order n such that |L \ L′| ≤ 8

√
n.

Note that it is trivial to obtain an upper bound of 2n in the above; simply
swap two rows of L to create L′. Theorem 1.1 however is the first such upper
bound which is o(n). This a step towards the possible truth of Conjecture 4.25
from [5]:

Conjecture 1.1. For each Latin square L of order n,

min{|L \ L′| | L′ is a Latin square of order n and L′ 6= L} = O(log n).

We may also state Theorem 1.1 as a result about Latin trades. Given two
distinct Latin squares L and L′ of the same order n, L\L′ is said to be a Latin
trade with disjoint mate L′ \ L. In terms of arrays, we say that two partial
Latin squares are row balanced if corresponding rows contain the same set of
symbols; column balanced is defined similarly. A Latin trade T and its disjoint
mate T ′ are thus a pair of partial Latin squares which occupy the same set of
cells, are disjoint and are both row and column balanced.

Example 1.2 In the example below, d(L1, L2) = 18 and L\L′ is a Latin trade
with disjoint mate L′ \ L.

1 2 0 6 3 4 5
6 1 5 4 0 2 3
0 5 4 2 1 3 6
3 4 2 1 5 6 0
4 3 1 5 6 0 2
2 6 3 0 4 5 1
5 0 6 3 2 1 4

2 1 0 6 3 4 5
6 5 4 1 0 2 3
0 2 5 4 1 3 6
3 4 2 5 6 0 1
4 3 1 2 5 6 0
1 6 3 0 4 5 2
5 0 6 3 2 1 4

L1 L2

1 2
1 5 4
5 4 2

1 5 6 0
5 6 0 2

2 1

2 1
5 4 1
2 5 4

5 6 0 1
2 5 6 0

1 2

L1 \ L2 L2 \ L1
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Theorem 1.1 thus implies:

Theorem 1.3. Each Latin square L of order n contains a Latin trade T such
that |T | ≤ 8

√
n.

As Latin squares are precisely operation tables for quasigroups, our main
result can also be considered in the context of Hamming distances of algebraic
objects (see [8] for more detail on this topic).

Let Bn be the Latin square formed by the addition table for the integers
modulo n; (i.e. Bn(i, j) = i + j mod n). The upper bound in Conjecture 1.1
cannot be decreased, since it is known that any Latin trade in Bn has size
at least e log p + 3, where p is the least prime that divides n ([9, 4]). It was
recently shown in [14] that for each integer n, Bn contains a Latin trade of
size 5 log2 n.

If Conjecture 1.1 above is true, it thus may be that the back circulant Latin
square is the “loneliest” of all Latin squares; i.e. the Latin square with greatest
minimum distance to any other Latin square. The smallest Latin trade, known
as an intercalate, has size 4 and consists of a 2 × 2 subarray on two symbols
(the disjoint mate is formed by swapping the symbols). It is shown in [13] that
for any ǫ > 0, almost all Latin squares of order n possess at least O(n3/2−ǫ)
intercalates. Thus we know that most Latin squares are not as “lonely” as the
back circulant Latin square.

A defining set L′ for a Latin square L of order n is a subset L′ ⊆ L such that
if L′′ is a Latin square of order n and L′ ⊆ L′′ then L′′ = L. In other words, a
defining set has unique completion to a Latin square of specified order. If T
is a Latin trade in a Latin square L with disjoint mate T ′, (L \ T ) ∪ T ′ is a
Latin square distinct from L. The following is immediate.

Lemma 1.1. If D is a defining set for a Latin square L and T is a Latin trade
such that T ⊆ L, then T ∩D 6= ∅.

It comes as no surprise then, that the new results on Latin trades in this
paper yield a new result on defining sets.

A critical set for a Latin square of order n is a minimal defining set; i.e. a
defining set D which is not the superset of any smaller defining set of the same
order. A much studied open problem is to determine the smallest possible size
of a critical set of order n (equivalently, the smallest possible size of a defining
set of order n), denoted by scs(n). It is conjectured that the correct value
for scs(n) is equal to ⌊n2/4⌋. (This has been verified computationally for
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n ≤ 8 [1]). Defining sets of such size are known to exist for each n ≥ 1
([6, 7]). Until quite recently, the best known lower bound for large n was
scs(n) ≥ n⌊(log n)1/3/2⌋ [2], which in turn improved results given in [10] and
[12]. However, very recently this has been improved by Hatami and Qian ([11])
who have shown that scs(n) ≥ 10−4n2 for sufficiently large n.

Using the Latin trades constructed in Section 2 of this paper, we show that
scs(n) = Ω(n3/2). Although this does not improve the result in [11], we include
it as an interesting application of the theory used to prove Theorem 1.3.

Theorem 1.4. The size of the smallest defining set of any Latin square of
order n has size Ω(n3/2).

2 Latin trades

Given a Latin square L of order n, two distinct symbols a, b ∈ [n] and some
function f = f(n) ∈ N (we use f(n) = ⌈19√n/6⌉ + 1 in Section 3 and
f(n) = n in Section 4), we construct a coloured digraph G(= GL,a,b,f ) of order
n as follows. The vertices of G are labelled with [n] and correspond to the
columns of L. Each directed edge will be coloured green, black or yellow. In
what follows, a directed cycle of length m ≥ 1 is a set of directed edges (of any
colour) of the form {[vi, vi+1) | i ∈ [m]} where vm = v0 and v1, v2, . . . , vm−1

are distinct vertices in G. Note that we include loops and directed circuits of
length 2 are in our definition of a directed cycle.

Whenever (r, c, a), (r, c′, b) ∈ L for some fixed row r, we add a green edge
from c to c′ in the digraph G. There are no other green edges. We say that
{(r, c, a), (r, c′, b)} is the partial Latin square associated with this green edge.

From the definition of a Latin square, the following is immediate.

Lemma 2.1. The green edges of the graph G form a directed 2-factor of G.

For fixed r, c and r′ 6= r (∗), we define the following (infinite) sequence. Let
c0 = c and e0 = a where (r, c, a) ∈ L. For each i ≥ 0, let ei+1 be the entry such
that (r′, ci, ei+1) ∈ L and let ci+1 be the column such that (r, ci+1, ei+1) ∈ L.
This creates a “zig-zag” pattern, as shown below:

c0 c1 c2
r e0 e1 e2 . . .
r′ e1 e2 e3 . . .

For each integer k we define Pk(r, r
′, c) to be the following subset of L of

size 2k:
{(r, ci, ei), (r′, ci, ei+1) | i ∈ [k]}.
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By finiteness, observe that eK = a for some K such that 0 < K ≤ n; assume
K(= K(r, r′, c)) is minimum with respect to this property.

Lemma 2.2. The partial Latin square PK(r, r
′, c) is a Latin trade of size 2K.

Proof. Simply swap r and r′ in each triple to form the disjoint mate.

Any such Latin trade as in the previous lemma is called a row cycle trade.

We are now ready to define the black edges in the digraph G. Suppose
that ek = b for some k such that 0 < k < K and k ≤ f(n). Then add a black
edge from c0 to ck−1 in the graph G. We say that Pk(r, r

′, c = c0) is the partial
Latin square associated with a black edge.

Note that not every choice of (r, c, a) and r′ 6= r (see ∗) will result in a
black edge; there are two possible obstacles. Firstly, it may happen that the
sequence e0, e1, e2, . . . does not contain the symbol b; equivalently, the Latin
trade PK(r, r

′, c) does not include symbol b. Secondly, it is possible that ek = b
implies that k > f(n).

The following lemma is straightforward.

Lemma 2.3. Considering only green and black edges, the graph G has neither
loops nor multiple edges (i.e. no two edges sharing the same initial vertex c
and the same terminal vertex c′.)

It is our next aim to choose a and b in order to maximize the number of
black edges in our digraph.

Lemma 2.4. Either the Latin square L contains a Latin trade of size at most
2f(n) or the total number of black edges in digraphs of the form GL,a,b,f (where
a and b are distinct symbols) is at least n2(n− 1)(f(n)− 1).

Proof. If the Latin square L contains a Latin trade of size at most 2f(n) we
are done. So in what follows, we assume that no such Latin trade exists.

Now, there are n2(n−1) ways of choosing an element (r, c, a) ∈ L and a row
r′ 6= r for fixed r, r′ and c. Each such choice yields lists c0, c1, . . . cf(n)−1 and
e0, e1, . . . , ef(n)−1 (each with possible repeated elements) as above. If f(n) ≥
K, then from Lemma 2.2 there exists a Latin trade of size 2K ≤ 2f(n), a
contradiction. Thus f(n) < K and the list c0, c1, . . . , cf(n)−1 has no repeated
elements. Moreover, for each i such that 0 < i < f(n), there is a black edge
from c0 to ci in the graph GL,e0,ei+1,f(n).

Thus there are a total of n2(n − 1)(f(n) − 1) black edges in all of the
graphs of the form GL,a,b,f(n) (where a 6= b). Note there is no over-counting
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here because the edges are directed and for each choice of a in column c and b
in column c′ there are unique rows r and r′ such that (r, c, a), (r′, c′, b) ∈ L.

Since there are n(n−1) choices for the ordered pair of symbols (a, b) (where
a 6= b), the following corollary is immediate.

Corollary 2.1. There exist distinct symbols a and b such that the graph GL,a,b,f

contains at least n(f(n)− 1) black edges.

We finally define yellow edges as follows. Whenever there is a green edge
from c1 to c2, a black edge from c3 to c2 and a green edge from c3 to c4 (and
c1 6= c4), we add a yellow edge from c1 to c4. By Lemma 2.3, c1 6= c2, c1 6= c3,
c2 6= c3, c2 6= c4 and c3 6= c4. However c1 = c4 is possible; in such a case our
yellow edge is a loop. The partial Latin square associated with a yellow edge
is the union of the partial Latin squares associated with these two green edges
and one black edge.

Our next aim is to show that any directed cycle in G gives rise to a Latin
trade in L.

A symbol cycle trade is a Latin trade containing only two symbols. For
example:

a b
a b

a b
b a

b a

Clearly the disjoint mate is formed by swapping symbols a and b within each
row. In our graph, such a trade corresponds to a directed cycle of green edges.
The following lemma is immediate.

Lemma 2.5. Let T be the union of partial Latin squares associated with the
edges of a green directed cycle of length k. Then T is a Latin trade of size 2k.

We now wish to consider directed cycles with edges of colours green, black
or yellow. For expediency we say that a partial Latin square associated with a
directed edge of colour s is coloured s. For each coloured partial Latin square
P , we define the mate P ′ of P as follows. (The mates of partial Latin squares
will ultimately define a disjoint mate of a Latin trade.) Firstly, the mate P ′ of
P has the same set of occupied cells of P but is disjoint from P . For a green
partial Latin square P = {(r, c, a), (r, c, b)}, its mate P ′ = {(r, c, b), (r, c, a)}.
For a black partial Latin square P , the mate P ′ of P is formed by swapping
the rows of P and then the symbols a and b. For a yellow partial Latin square
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P , the mate P ′ of P is formed by swapping the symbols in each column with
two symbols and swapping a with b in columns with only one symbol.

Examples of mates for green, black and yellow partial Latin squares are
exhibited below, with symbols from P ′ given as subscripts.

ab ba
a1 12 23 3a
1b 21 32 b3

ab b2 21 1a
2b 12 a1 ba

Green Black Yellow

Observe the following lemma.

Lemma 2.6. If P ′ is the mate of a partial Latin square P associated with a
green, black or yellow edge, then:

• P and P ′ are row-balanced;

• If we remove a from P and b from P ′ in the first column and if we
remove b from P and a from P ′ in the final column then P and P ′

become column-balanced.

(Here the first and final columns correspond to the initial and terminal vertices,
respectively, of the coloured edge.)

What we have then, are partial Latin squares paired with mates that be-
have almost like Latin trades except for at the initial and terminal vertices.
However if each terminal vertex of one edge coincides with an initial vertex
of another edge (that is, we have a directed cycle) and if the partial Latin
squares are disjoint, it is clear we have a Latin trade. (This is demonstrated in
Example 1.2: there is a green edge from the first column to the second column,
a black edge from the second to the fourth column, another black edge from
the fourth to the seventh column and finally a green edge from the seventh to
the first column.) This is true even if our directed cycle has one edge; i.e. is
a yellow loop.

Corollary 2.2. Suppose there is a directed cycle C in G (with edges of any
colour) and that the partial Latin squares associated with the edges of C are
pairwise disjoint. Then there is a Latin trade of size at most 2g + 2bf(n) +
2y(f(n)+1), where g, b and y are the number of green, black and yellow edges,
respectively, in the cycle C.

Proof. Let T be the union of the partial Latin squares associated with the
edges of C and let T ′ be the union of the mates of these partial Latin squares.
Since T is a subset of the Latin square L, T is certainly a partial Latin square
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(i.e. no symbols are repeated in rows or columns). Clearly T and T ′ occupy
the same set of cells and by construction are row balanced. Let e1 and e2 be
directed edges of C such that column c is the terminal vertex of e1 and the
initial vertex of e2. (Note that e1 = e2 if C is a loop.) Then there is a cell
in column c in the partial Latin square corresponding to e1 where symbol b is
replaced with symbol a in the mate, and vice versa in the partial Latin square
corresponding to e2. It follows that T and T ′ are column balanced. Thus T is
a Latin trade with disjoint mate T ′.

We are nearly ready to prove Theorem 1.1 - we just have to consider the
case when the associated partial Latin squares are not disjoint.

Theorem 2.1. Let C be a directed cycle of minimum length in G. Then there
is a Latin trade of size at most 2g + 2bf(n) + 2y(f(n) + 1), where g, b and y
are the number of green, black and yellow edges, respectively, in the cycle C.

Proof. Let C be a directed cycle in G and consider only the partial Latin
squares which are associated with edges of G. Firstly, if a green partial Latin
square intersects either a black or yellow partial Latin square, two directed
edges have the same initial or terminal vertex, a contradiction.

Next suppose two black partial Latin squares intersect; say Pk(r1, r2, c) and
Pℓ(r3, r4, c

′). Then clearly {r1, r2} ∩ {r3, r4} 6= ∅. If either r1 = r3 or r2 = r4
then two directed edges in C start at the same vertex or terminate at the same
vertex (respectively), a contradiction. Otherwise if r1 = r4 and r2 = r3, then
Pk(r1, r2, c)∪Pl(r3, r4, c

′) forms a row cycle Latin trade of size 2(k+ ℓ) and we
are done.

Next, suppose that r3 = r2 and r1 6= r4 and the associated partial Latin
squares intersect. (The case when r1 = r4 and r2 6= r3 is equivalent.) Removing
the two black edges from C creates two directed paths; let D be the directed
path which starts at ck (i.e. the final column of Pk(r1, r2, c)) and terminates
at c′. However since r3 = r2 there is a green edge from c′ to ck; together these
form a directed cycle with length shorter than C, a contradiction.

Next suppose two yellow partial Latin squares intersect. Let the black
partial Latin squares which are subsets of these yellow partial Latin squares
be Pk(r1, r2, c) and Pl(r3, r4, c

′), respectively. The cases r1 = r3 or r2 = r4
lead to contradictions as above. The case r1 = r4 and r2 = r3 implies a trade
of size 2(k + ℓ), similarly to above. This leaves the case r2 = r3 and r1 6= r4
(equivalent to the case r1 = r4 and r2 6= r3). Again, there is a green edge from
c′ to ck, which combined with a directed path from C, forms a directed cycle
which is shorter than C.

Finally, suppose a black partial Latin square Pk(r1, r2, c) intersects with a
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yellow partial Latin square (containing the black partial Latin square Pℓ(r3, r4, c
′)).

If Pk(r1, r2, c) = Pℓ(r3, r4, c
′), then there is a green edge from ck to c′, which

combined with a directed path from C forms a directed cycle which is shorter
than C. Otherwise if {r1, r2} = {r3, r4} there is a trade of size 2(k+ ℓ) within
these rows. The cases r1 = r3 or r2 = r4 lead to contradictions as above. If
r1 = r4 and r2 6= r3, let c

′′ be the column of Pℓ(r3, r4, c
′) which contains b in

row r4. Then there is a directed path in C from c′′ to c and a green edge from
c to c′′, creating a cycle shorter than C. Finally, if r2 = r3 and r1 6= r4, let
c′′′ be the column of Pℓ(r3, r4, c

′) which contains b in row r3. Then there is a
directed path in C from c′′′ to c′ and a green edge from c′ to c′′′, again causing
a contradiction.

3 An upper bound on the distance between

Latin squares

In this section we give a proof of Theorem 1.1. To ultimately show the existence
of Latin trades, we first make some observations about drawing edges between
parallel line paths without edges crossing. In what follows, for the sake of
simplicity of explanation, we embed two directed paths P and Q (of orders p
and q, respectively) in the Euclidean plane so that P lies entirely within the
line y = 0 and Q lies entirely within the line y = 1 and the vertices have integer
coordinates with each edge directed from left to right. (Really we simply need
P and Q to be drawn as parallel line segments, the above specificity avoids any
ambiguity). The following lemma is easy to show for example by induction.

Lemma 3.1. At most p + q − 1 straight line segments can be drawn between
vertices of P and vertices of Q without any edges crossing.

Proof. Our proof is by induction on p+q. The result is clearly true for p+q = 2.
Next, assume the result holds whenever p+q = k for some integer k ≥ 2. Then
adding one vertex to either path we can add at least one line segment which
does not cross existing edges; the result follows.

For our purposes we need something more specific.

Lemma 3.2. Let p, q ≥ 3. If more than 2(p + q − 2) straight line segments
are drawn between vertices of P and vertices of Q, then there exists two edges
which cross such that the edges do not use vertices adjacent in P or adjacent
in Q.

Proof. Assume, for the sake of contradiction, that no such two edges exist.
Properly colour the vertices of P with colours c1 and c2 and the vertices of Q
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with colours c′1 and c′2 (that is, within each path vertices of the same colour
are not adjacent). Let Xij be the number of vertices of colour ci or c

′
j. Then

X11 +X12 +X21 +X22 = 2(p+ q). Let Yij be the set of line segments between
vertices of colours ci and c′j. From the previous lemma, |Yij| ≤ Xij − 1. Thus
there are at most 2(p+ q − 2) line segments, a contradiction.

We now explain why we need the previous lemmas.

Lemma 3.3. Let P and Q be directed paths of green edges embedded in the
Euclidean plane as above, where p ≥ 3 and q ≥ 3. If there exist more than
2(p + q − 2) black edges between vertices of P and vertices of Q, then there
exists a directed cycle in G on the vertices of P and Q such that the number
of edges which are either black or yellow is at most 2.

Proof. Let the vertices of P be 1, 2, . . . , p and let the vertices of Q be 1′,
2′, . . . , q′ where each directed edge is from i to i+1 in P or from i′ to (i+1)′ in
Q for some i. From the previous lemma, there exists a black edge on vertices
i and (j + ℓ)′ and a black edge on vertices j′ and i+ k where k, ℓ ≥ 2. If these
black edges are directed from (j+ ℓ)′ to i and from i+k to j′, respectively, we
are done. If there is a black edge from i to (j + ℓ)′, then by definition there
is a yellow edge from (j + ℓ − 1)′ to i + 1. If there is a black edge from j′ to
(i+ k), then by definition there is a yellow edge from i+ k − 1 to (j + 1)′. In
any case, we can construct the required directed cycle.

Theorem 3.1. For n ≥ 2, each Latin square contains a Latin trade of size at
most 8

√
n.

Proof. If n < 16, 8
√
n > 2n and since any Latin square of order n ≥ 2 has

a Latin trade of size 2n we may assume henceforth that n ≥ 16. Let b = 4,
k = 4/3 and d = 19/6. Suppose, for the sake of contradiction, there exists a
Latin square L of order n such that every Latin trade in L has size greater than
2b
√
n. We consider the directed coloured graph G = GL,a,b,f(n) as defined in

the previous section where f(n) = ⌈d√n⌉+1. From Lemma 2.5, each directed
green cycle in G has length greater than b

√
n ≥ 16. We now partition the

green edges into directed paths so that each path has order at most k
√
n. It

is clear that we can minimize the number of such paths by ensuring that each
cycle contributes at most one path of order less than ⌊k√n⌋.

Since each cycle has length greater than b
√
n, the number of directed green

cycles is less than
√
n/b. Thus the number of paths of order less than ⌊k√n⌋

is at most
√
n/b. Also the total number of paths of order equal to ⌊k√n⌋ is

at most
√
n/k. Thus the total number of paths in our partition of the green

edges is at most
√
n(b + k)/bk. In turn, the total number of pairs of paths is

less than n(b+ k)2/2b2k2.
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By Corollary 2.1, G has at least dn3/2 black edges. Suppose there are at
least 4k

√
n black edges between two of the paths of order at least 3 in the

partition. Then by Lemma 3.3, there is a directed cycle in G using at most
2k

√
n green edges and at most 2 edges which are either black or yellow. Thus

by Theorem 2.1 there is a Latin trade of size at most 2(k−1)
√
n+2d

√
n+4 =

2
√
n(k + d − 1) + 4. Since b = k + d − 1/2 and n ≥ 16, we are done in this

case.

Thus there are less than 4k
√
n black edges between each pair of directed

green paths of order at least 3. There are also at most 4k
√
n black edges

between a path of order at most 2 and any other path. If there is a black
edge using two vertices from the same directed green path, then we create a
directed cycle with at most k

√
n edges and thus we are done.

Thus the total number of black edges is less than 4k
√
n times the number

of pairs of directed paths. Given the above lower bound of dn3/2 on the number
of black edges, we have:

2(b+ k)2

b2k
≥ d,

a contradiction given the above values of b, d and k.

4 A lower bound on the size of a defining set

In this section we give a proof of Theorem 1.4. To that end, it suffices to prove
the following.

Theorem 4.1. The size of the smallest defining set of any Latin square of
order n is Ω(n3/2).

Proof. Suppose for the sake of contradiction, there exists a Latin square L of
order n with a defining set D′ such that |D′| ≤ cn3/2 where 0 < c < 1/

√
40.

If we can show that L \ D′ contains a Latin trade, we are done by Lemma
1.1. It thus suffices to show that L \D contains a Latin trade for any D such
that D′ ⊆ D ⊂ L and |D| = ⌈cn3/2⌉. We let f(n) = n and define graphs
GL,a,b,f(n) with coloured edges as in Section 2, with the proviso that only edges
corresponding to partial Latin squares which do not include elements of D
are included. By Theorem 2.1 it suffices to show that the graph G contains a
coloured cycle for some ordered pair of symbols (a, b). (We set f(n) = n as we
simply need to show the existence of a Latin trade; its size to us is irrelevant.)
We let B be the total number of black edges in any graph of the form GL,a,b,n.

We first obtain a lower bound for B. Let xi be the number of elements
in row i of D. Then

∑n−1
i=0 xi = ⌈cn3/2⌉. Consider the first two rows of L.
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Let k = x0 + x1. The elements in these rows partition into row-cycles (or
possibly just one large row-cycle), as in Lemma 2.2. Rearrange the columns
so that any columns in the same row-cycle form a consecutive set of integers.
Since each row cycle gives a Latin trade, each row cycle contains an element of
D. Rearrange the columns further so that the first column in each row-cycle
contains an element of D. Finally rearrange the columns within each trade
so that the element in cell (1, c) is the same as the element in cell (0, c + 1),
unless c+ 1 belongs to a different row-cycle to c.

Let c1, c2, . . . , ce be the columns containing elements of D where k/2 ≤ e ≤
k. (The lower bound arises in the extreme case that each column contains two
elements from D in rows 1 and 2). For each 1 ≤ i < e we define block Bi to be
the set of columns strictly between ci and ci+1 (not including ci and ci+1). Let
bi = ci+1 − ci − 1 and be = (n− 1)− ce. Observe that

∑e
i=1 bi = n− e ≥ n− k.

We illustrate the above notation in the example below. Elements of D are
given in bold and underlined; x0 = x1 = 2, k = 4, e = 3, c1 = 0, c2 = 3,
c3 = 5, b1 = 2, b2 = 1 and b3 = 4.

0 7 2 3 4 5 6 1 8 9
7 2 0 4 5 6 1 8 9 3

Observe that any pair of distinct columns within a block gives rise to two
black edges. For example, in the above the columns in B1 give rise to an edge
from the second to the third column in GL,7,0,n and an edge from the third to
the second column in GL,0,7,n. Thus the number of black edges arising from
rows 0 and 1 is equal to

2
e

∑

i=1

(

bi
2

)

= e− n+
e

∑

i=1

b2i

≥ e− n+ e ((n− e)/e)2

= 2e− 3n+ n2/e

≥ k − 3n+ n2/k

= (x0 + x1)− 3n+
n2

(x0 + x1)
.

So, considering all pairs of rows,

B ≥ c(n− 1)n3/2 − 3

2
n2(n− 1) + n2

∑

i<j

1

xi + xj

.

The last sum in the above expression is minimized when all xi’s are equal, i.e.,
xi = ⌈cn3/2⌉/n ≤ cn1/2 + 1, so:

B ≥ c(n− 1)n3/2 − 3

2
n2(n− 1) +

n3(n− 1)

4(cn1/2 + 1)
. (1)
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Next we calculate an upper bound for B; if this is less than the previous
expression we are done. Let zi be the number of times symbol i appears in D.
Then clearly

∑n−1
i=0 zi = ⌈cn3/2⌉.

Consider the green edges in GL,0,1,n. Let z0+ z1 = ℓ. Let m be the number
of green edges missing in the graph; observe that ℓ/2 ≤ m ≤ ℓ. We know
that there are no directed cycles of green edges, otherwise we will be done by
Lemma 2.5. Thus there are m green paths; let their orders be: g1, g2, . . . , gm.

There are less than 3m ≤ 3ℓ vertices not belonging to a green path of order
at most 3. Thus there are less than 3nℓ black edges which are not incident
with a green path of order at least 3. (Note we must avoid directed cycles
of black edges of length 2, so each pair of vertices has at most one directed
black edge.) Next, there are less than 2

∑

i<j(gi + gj) black edges between
green paths of order at least 3, otherwise there exists a directed cycle (and
thus from Theorem 3.3 a Latin trade).

In total, the number of black edges in GL,0,1,n is less than:

3nℓ+ 2
∑

i<j

(gi + gj) ≤ 3nℓ+ 2(m− 1)(n−m)

≤ 3nℓ+ 2(ℓ− 1)(n− ℓ/2)

< 5nℓ+ ℓ = (z0 + z1)(5n+ 1).

Hence summing over all pairs of symbols,

B ≤ (5n+ 1)
∑

i 6=j

(zi + zj) = 2(n− 1)(5n+ 1)
∑

i

zi

≤ 2(n− 1)(5n+ 1)(cn3/2 + 1).

However, combining this upper bound for B with the lower bound in (1) creates
a contradiction for large enough n.

We remark that the bound in the previous theorem is asymptotic. For
small orders greater than 8, linear bounds (e.g. [10], [12]) are still the best
known. To give an idea of the limitations of our methods in the main results
of this paper, consider the following graph G on vertex set N(n = m2). For
each k ∈ [m], let Gk = [km, km+1, . . . , k(m+1)−1] be a directed green path
in G. Add a directed black edge from i to j whenever i − j is divisible by m
and i < j. Such a graph has Ω(n3/2) black edges yet is free of directed cycles.
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