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Abstract

An (m, n, 2)-balanced Latin rectangle is an m× n array on symbols
0 and 1 such that each symbol occurs n times in each row and m times
in each column, with each cell containing either two 0’s, two 1’s or both
0 and 1. We completely determine the structure of all critical sets of
the full (m, n, 2)-balanced Latin rectangle (which contains 0 and 1 in
each cell). If m, n ≥ 2, the minimum size for such a structure is shown
to be (m − 1)(n − 1) + 1. Such critical sets in turn determine defining
sets for (0, 1)-matrices.

Keywords: Full design, critical set, (0, 1)-matrix, balanced Latin rectan-
gle, Latin square.

1 Introduction

Since this paper deals with multisets, we first clarify our use of set theory
notation. If we denote the multiplicity of an element s in a multiset A by νA(s),
then some of the multiset notations are defined by the following multiplicity
functions:

• νA∩B(s) = min{νA(s), νB(s)},

• νA∪B(s) = max{νA(s), νB(s)},

• νA\B(s) = max{0, νA(s) − νB(s)},



• νA⊎B(s) = νA(s) + νB(s),

where A⊎B is the multiset sum of the multisets A and B. Finally, the size of
a multiset is the sum of multiplicities of its elements.

For each natural number n, [n] denotes the set {0, 1, 2, . . . , n − 1}. An
(m,n, t)-balanced Latin rectangle is a (possibly multi-)set of ordered triples
(r, c, s) ∈ [m] × [n] × [t], such that:

• for each r ∈ [m] and c ∈ [n], there are t triples of the form (r, c, s);

• for each r ∈ [m] and s ∈ [t], there are n triples of the form (r, c, s);

• for each c ∈ [n] and s ∈ [t], there are m triples of the form (r, c, s).

We represent such a structure in two ways. Firstly, given an (m,n, t)-balanced
Latin rectangle R, we may construct an m × n array of multisets, with the
set in cell (r, c) containing λ occurrences of element s if and only if the triple
(r, c, s) has multiplicity λ in R. Thus we may think of an (m,n, t)-balanced
Latin rectangle as an m×n array of multisets, each of size t, with each element
from [t] occurring m times in each column and n times in each row.

The second representation will be via an edge-coloured bipartite graph.
Given an (m,n, t)-balanced Latin rectangle R, such a graph BR has partite
sets [m] and [n], with λ edges of colour s between vertices r and c whenever
the triple (r, c, s) has multiplicity λ in R. We will switch freely between these
equivalences in this paper, using whichever form makes proofs easier to follow.

We may trivially construct an (m,n, t)-balanced Latin rectangle for any
m,n, t ≥ 1 by placing the set [t] in each cell of an m × n array. We call such
a structure (which is equal to [m] × [n] × [t]) the full (m,n, t)-balanced Latin
rectangle.

Henceforth in this paper we focus on the case t = 2 and we denote the
full (m,n, 2)-balanced Latin rectangle by Fm,n. A defining set for an (m,n, 2)-
balanced Latin rectangle R is some D ⊂ R such that if R′ is an (m,n, 2)-
balanced Latin rectangle and D ⊂ R′, then R′ = R. In other words, a defining
set is some partially filled-in array with unique completion to an (m,n, 2)-
balanced Latin rectangle. A critical set is a minimal defining set; i.e. deleting
any element from D allows at least two completions. Our main goal in this
paper is to completely determine the structure of any critical set of the full
(m,n, 2)-balanced Latin rectangle. The precise structure is described in the
next section.

We emphasize that deleting any element of a critical set of Fm,n allows
a completion to an (m,n, 2)-balanced Latin rectangle which is not equal to
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Fm,n. We illustrate this example below: on the left is a critical set C of F3,4;
we give two completions of C \ {(0, 3, 1)}, one of which is F3,4 and the other a
(3, 4, 2)-balanced Latin rectangle not equal to F3,4.

1 1 1
1 1 1

0

0,1 0,1 0,1 0,1
0,1 0,1 0,1 0,1
0,1 0,1 0,1 0,1

1,1 0,1 0,1 0,0
0,1 0,1 0,1 0,1
0,0 0,1 0,1 1,1

This paper is motivated by the analogous concept of full designs (see [1, 8,
9, 10, 12, 13]). For block size k, a full design simply consists of all the possible
subsets of size k from a foundation set [v]. In [9], it is shown that any minimal
defining set for a design is the result of an intersection of the design with a
minimal defining set of the full design of the same order.

The following similar result was shown in [6].

Theorem 1.1. Let C be a defining set of the full (n, n, n)-Latin rectangle and
let L be any Latin square of order n. Then L ∩ C is a defining set for L.

By similar arguments, the critical sets in this paper can be used to identify
defining sets for (0, 1)-matrices. Given integral vectors R and S of orders m

and n respectively, A(R,S) is the set of all m× n matrices with entries either
0 or 1 with row and column sums prescribed by R and S. We may think of
a (0, 1)-matrix as a set of ordered triples as above. A defining set for a (0, 1)-
matrix A ∈ A(R,S) is thus a subset D ⊆ A such that if D ⊆ A′ ∈ A(R,S)
then A = A′.

Theorem 1.2. Let C be a defining set of Fm,n and let A ∈ A(R,S) be a
(0, 1)-matrix with R and S integral vectors of orders m and n, respectively.
Then A ∩ C is a defining set for A.

Proof. Suppose that A ∩ C is not a defining set for A. Then there exists a
(0, 1)-matrix A′ ∈ A(R,S) such that A′ 6= A and A ∩C ⊂ A′. Let T = A \A′

and T ′ = A′ \ A. Since A ∩ C ⊂ A ∩ A′, T ∩ C = ∅.

Now T and T ′ are partially filled-in, disjoint arrays with the same set of
occupied cells, with 0 and 1 occurring the same number of times in each row
and column. Consider the array given by Gm,n := (Fm,n \ T ) ⊎ T ′. From the
above properties of T and T ′, 0 and 1 occur n times in each row of Gm,n and
m times in each column of Gm,n. Thus Gm,n is an (m,n, 2)-balanced Latin
rectangle. Furthermore since T ∩ C = ∅, C ⊂ Gm,n. Since Gm,n 6= Fm,n, C is
not a defining set for Fm,n, a contradiction.
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The results in this paper thus have the potential to tell us much about
defining sets in (0, 1)-matrices.

In Section 2 we describe sets of partial m × n arrays A[a, b] where a and
b are vectors of non-negative integers satisfying certain properties. Using the
theory of trades developed in Section 3, in Section 4 we show that each such
array is a critical set of the full (m,n, 2)-balanced rectangle Fm,n. In Section
5 we show that in fact all critical sets of Fm,n are thus described (up to a
reordering of rows and columns), thus completing the proof of our main result
Theorem 2.1. Having completed our classification, in Section 6 we show that
the size of the smallest critical set of Fm,n is (m − 1)(n − 1) + 1 whenever
m,n ≥ 2.

Section 2 of [6] determines the structure of any saturated critical set C of
the full (m,n, t)-balanced rectangle for t ≥ 2; here saturated means that each
cell of C is either empty or contains [t].

Theorem 1.3. ([6]) A set C is a saturated critical set for the full (m,n, t)-
balanced Latin rectangle if and only if the bipartite graph B is a tree, where B

is on partite sets [m] and [n] with i ∈ [m] and j ∈ [n] adjacent if and only if
cell (i, j) is empty in C.

The results in this paper generalize this result in the case t = 2.

2 The general structure of a critical set

In this section, we describe arrays which we will ultimately classify all critical
sets of the full (m,n, 2)-balanced rectangle Fm,n (up to a reordering of the rows
and columns).

Henceforth, (a, b) = ((a1, a2, . . . , ak), (b1, b2, . . . , bk)) is always a pair of
integral non-negative vectors such that

∑k

i=1
ai = m and

∑k

i=1
bi = n. We

use the vectors a and b to define partitions of the sets [m] and [n]. For each
I ∈ [k], let RI = [

∑I

i=1
ai]\ [

∑I−1

i=1
ai] and CI = [

∑I

i=1
bi]\ [

∑I−1

j=1
bi]. Note that

if aI = 0 (bI = 0) then RI (respectively, CI) is empty.

Definition 2.1. We define A[a, b] to be the set of all m×n arrays A with the
following structure. Let r ∈ RI and c ∈ CJ where I, J ∈ [k].

• If I > J , cell (r, c) of A contains entry 0.

• If I < J , cell (r, c) of A contains entry 1.

• If I = J , cell (r, c) of A is either empty or contains {0, 1}, subject to the
following. Let BI be a bipartite graph with partite sets given by RI and

4



CI , with edge {r, c}, r ∈ RI , c ∈ CI existing if and only if cell (r, c) is
empty in A. Then BI is a tree.

In general there is more than one array in A[a, b] (since there are typi-
cally many choices for BI). For example, the following are two elements of
A[(3, 2, 1), (3, 1, 3)]:

0,1 0,1 1 1 1 1
0,1 0,1 1 1 1 1

1 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0

0,1 0,1 1 1 1 1
0,1 1 1 1 1

0,1 1 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0

We sometimes describe an array A in A[a, b] in terms of blocks. For each
I, J ∈ [k], the block AI,J is the subarray of A induced by the rows RI and
columns CJ . That is, AI,J = {(r, c, s) | r ∈ RI , c ∈ CJ , (r, c, s) ∈ A}. The
blocks of the form AI,I are said to form the main diagonal blocks. Thus all
cells below the main diagonal blocks contain 0 and all those above contain 1.

Definition 2.2. We say that a pair of vectors (a, b) is good if:

(C1) for each i ∈ [k], ai > 0 or bi > 0;

(C2) if ai = 0 then ai−1 ≥ 2, bi−1 ≥ 1 (if i > 1) and ai+1 ≥ 2, bi+1 ≥ 1 (if
i < k); and

(C3) if bi = 0 then bi−1 ≥ 2, ai−1 ≥ 1 (if i > 1) and bi+1 ≥ 2, ai+1 ≥ 1 (if
i < k).

For a good pair of vectors, observe that for each I at least one of RI or CI

is non-empty.

The following theorem, the significance of which is that the critical sets of
Fm,n are precisely classified, is the main result of this paper. Its proof is given
in Sections 4 and 5.

Theorem 2.1. Let (a,b) be a pair of good vectors. Then any element of A[a, b]
is a critical set of the full (m,n, 2)-balanced Latin rectangle Fm,n. Conversely,
up to a reordering of the rows and columns, any critical set of Fm,n is an
element of A[a, b] for some pair (a, b) of good vectors.

In the example below we exhibit elements of A[(2, 0, 2), (3, 1, 2)], A[(3, 1, 0), (2, 1, 2)]
and A[(3, 1), (2, 3)], respectively. The pair of vectors in the centre array is not

5



in fact good since a2 = 1 and a3 = 0. However it is a superset of the array on
the right. We give the general version of this idea in the next lemma, which
will be an important step in our classification.

0,1 0,1 1 1 1
1 1 1

0 0 0 0 0,1
0 0 0 0

0,1 1 1 1
1 1 1

0,1 1 1 1
0 0 1 1

0,1 1 1 1
1 1 1

0,1 1 1 1
0 0

In the following lemma, (a, b)i denotes the pair of vectors obtained by
adding the ith element to the (i + 1)th element (in each vector), decreasing
the order of each vector by 1. Formally,

(a, b)i = ((a′
1, a

′
2, . . . , a

′
k−1), (b

′
1, b

′
2, . . . , b

′
k−1))

where a′
x = ax, b′x = bx (if x < i); a′

i = ai + ai+1, b′i = bi + bi+1; and a′
x = ax+1,

b′x = bx+1 (if k > x > i).

Lemma 2.1. Suppose that there exist a pair of vectors (a, b) such that A is an
array in A[a, b]. Then there exists a pair of good vectors (a′, b′) and an array
A′ (obtained by deleting entries from A if needed) such that A′ is an array in
A[a′, b′].

Proof. Suppose that A is an array in A[a, b], where the pair (a, b) is not good.
We first make adjustments to the vectors a and b.

Satisfying (C1) is fairly trivial; simply delete from (a, b) any pairs (ai, bi) =
(0, 0).

We next show that consecutive 0’s in either vector are essentially redun-
dant. Formally, if ai = ai+1 = 0 or bi = bi+1 = 0 for some i, we replace (a, b)
with (a, b)i. Repeat this step for each pair of consecutive 0’s in either vector.
The resultant vectors still describe A as in this section, however contain no
consecutive 0’s.

Next, suppose that ai = 0 and either ai−1 = 1 or bi−1 = 0. The cells in
row

∑i−1

i=1
ax − 1 and columns from Ci each contain the entry 1 only. Delete 1

from each of these cells, making them empty. If ai−1 = 1, replace (a, b) (the
latest pair of vectors) with (a, b)i−1. Otherwise ai−1 > 1 and bi−1 = 0; adjust
a by decreasing ai−1 by 1 and incrementing ai by 1, leaving b unchanged.

Next, suppose that ai = 0 and either ai+1 = 1 or bi+1 = 0. The cells in
rows

∑i

i=1
ax and columns from Ci each contain entry 0 only. Delete 0 from

each of these cells, making them empty. If ai+1 = 1, replace (a, b) (the latest
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pair of vectors) with (a, b)i. Otherwise ai+1 > 1 and bi+1 = 0; adjust a by
decreasing ai+1 by 1 and incrementing ai by 1, leaving b unchanged.

The case when bi = 0 is similar to above. Repeat this process for each
violation of conditions (C2) and (C3). (Since whenever we delete an element
from a cell we increase the dimensions of a block, the above algorithms termi-
nate.)

3 Trades in (m, n, 2)-balanced Latin rectangles

Understanding the structure of a critical set or defining set of any kind of com-
binatorial design typically involves an analysis of the trades in that combinato-
rial design (see, for example, [4]). Informally, a trade in an (m,n, 2)-balanced
Latin rectangle R is a subset T which can be removed and replaced with a
(disjoint) subset T ′ to create a distinct (m,n, 2)-balanced Latin rectangle R′.

Definition 3.1. A trade in Fm,n is some non-empty T ⊂ Fm,n such that there
exists a disjoint mate T ′ where T ′ ∩ T = ∅ and (Fm,n \ T ) ⊎ T ′ is an m × n

balanced 2-rectangle (which is clearly not full). A trade T is said to be minimal
if there does not exist a trade U such that U ⊂ T .

As with other combinatorial designs, trades are intrinsically related to
defining sets and critical sets.

Lemma 3.1. The set D is a defining set of Fm,n if and only if D ⊆ Fm,n and
D intersects every trade within Fm,n. A defining set D of Fm,n is in turn a
critical set if and only if, for each (r, c, e) ∈ D, there is a trade T in Fm,n such
that T ∩ D = {(r, c, e)}.

Proof. Suppose that D ⊂ Fm,n and T is a trade within Fm,n with disjoint mate
T ′ such that D ∩ T = ∅. Then D ⊂ (Fm,n \ T )⊎ T ′, so D is not a defining set.
Conversely, if D is not a defining set of Fm,n, there exists an (m,n, 2)-balanced
Latin rectangle R not equal to Fm,n such that D ⊂ R. Then T = Fm,n \ R is
a trade in Fm,n with disjoint mate given by R \ Fm,n. Moreover T does not
intersect D. The second statement in the lemma follows from the fact that a
critical set is a minimal defining set.

Let Bm,n denote the bipartite edge-coloured graph corresponding to Fm,n

(see the Introduction). This can be thought of as a bipartite graph with partite
sets [m] and [n] with one red edge and one blue edge (corresponding to entries
0 and 1, respectively) between each pair of vertices from different partite sets.
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Consider the subgraphs BT and BT ′ of Bm,n equivalent to a trade T with
disjoint mate T ′ (respectively) in Fm,n. Since BT ′ is obtained from BT by
switching the colours on each edge of BT , it follows that each vertex in T is
incident with the same number of blue and red edges. Suppose that there
exists vertices v and w such that there exists both a red edge and a blue edge
in T of the form {v, w}. Then there also exists an edge of each colour on
{v, w} in T ′, contradicting the fact that T ∩ T ′ = ∅. It follows that BT is
the union of properly edge-coloured cycles (an even cycle is said to be properly
edge-coloured if its edges are coloured alternately red and blue (i.e. each vertex
in the cycle is adjacent to one red edge and one blue edge)). We call a properly
edge-coloured even cycle (and the corresponding array) a trade cycle and we
have proven the following.

Lemma 3.2. Any trade within Fm,n is the union of cell-disjoint trade cycles.

Corollary 3.1. Any minimal trade is a trade cycle.

We next need the following graph theoretic result. To this end, two edges
in a multigraph are parallel if they are distinct yet share the same pair of
vertices. A doubled cycle refers to the multigraph obtained by replacing each
edge in a cycle with a parallel pair of edges.

The following lemma is a generalization of the elementary result from graph
theory that if two non-equal cycles share an edge, there is a cycle not including
that edge. Note that cycles in this paper are simple graphs and thus a bipartite
cycle has at least 4 edges.

Lemma 3.3. Let G be a bipartite multigraph with each edge coloured either
red or blue, satisfying the following properties.

1. There exist properly edge-coloured cycles C1 and C2 (each of even size)
and edges e1 and e2 (from cycles C1 and C2, respectively) such that e1

and e2 are parallel.

2. Every edge of G belongs to either C1 or C2 (possibly both).

3. Any two parallel edges are coloured differently.

Then either there exists a doubled cycle including the edges e1 and e2 or a
properly edge-coloured cycle including neither e1 nor e2.

Proof. Suppose first that every edge belongs to a parallel pair. Since every
edge belongs to a cycle and a cycle cannot contain parallel edges, for each
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edge {v, w} in G, there is a red edge {v, w} in Ci and a blue edge {v, w}
in C2−i, where i ∈ {1, 2}. Therefore if we replaced each parallel pair with a
single edge, we would obtain a cycle. Thus the entire graph G is a doubled
cycle. Otherwise delete all parallel pairs of edges from G to create a non-empty
bipartite graph G′. Since G is bipartite, it suffices to show that each vertex
v of degree at least 1 in G′ is incident with at least one red edge and at least
one blue edge. Suppose, for the sake of contradiction, that this is false.

Without loss of generality, v is adjacent to a blue edge but not a red edge
in G′. Then, since every edge of G belongs to a properly edge-coloured cycle,
there is a pair of parallel edges in G including v. Since the maximum degree in
G is 4, there is at most one such pair of edges. The blue edge in this parallel
pair cannot belong to a cycle in G, a contradiction.

Lemma 3.4. Let D be a critical set of Fm,n. Suppose that cell (r, c) of D

contains {0, 1}. Let D′ = D \ {(r, c, 0), (r, c, 1)}. Let B0 be the bipartite
graph with partite sets given by {r1, r2, . . . , rm} and {c1, c2, . . . , cn} with an
edge {ri, cj} if and only cell (ri, cj) is empty in D′. Then B0 contains a cycle
which includes the edge {r, c}.

Proof. By Lemma 3.1, since D is a critical set, each entry 0 and 1 in cell (r, c)
belongs to a trade of Fm,n which intersects D in only one element; let such
trades be T1 and T2, respectively. From Lemma 3.2 and Corollary 3.1, we may
assume T1 and T2 are trade cycles.

Construct a bipartite multigraph G (with edges coloured either red or
blue) with partite sets {r1, r2, . . . , rm} and {c1, c2, . . . , cn}, with an edge {ri, cj}
coloured red whenever (ri, cj, 0) ∈ T1 ∪ T2 and an edge {ri, cj} coloured blue
whenever (ri, cj, 1) ∈ T1 ∪ T2. Then G satisfies the conditions of Lemma 3.3,
where cycles C1 and C2 correspond to T1 and T2, respectively, with e1 and e2

each on the vertices r and c.

If there exists a properly edge-coloured cycle in G including neither e1 nor
e2, this corresponds to a trade in Fm,n which does not include D, contradicting
the fact that D is a defining set. Thus, by Lemma 3.3, there is a doubled cycle
in G including the edge {r, c}. This corresponds to a cycle in B0 which includes
the edge {r, c}.

4 Existence of critical sets

In this section we show that any element of A[a, b] is indeed a critical set of the
full (m,n, 2)-balanced Latin rectangle, where (a, b) is a good pair of vectors.
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This proves the first part of Theorem 2.1. We make use of the theory of trades
developed in the previous section.

Lemma 4.1. Let (a, b) be a good pair of vectors. Let A be an array in A[a, b]
and suppose that cell (r, c) of A contains 0 only. Then there exists a row r′ < r

and a column c′ > c satisfying one of the following cases:

1. (r′, c, 0) ∈ A and (r, c′), (r′, c′) are each empty;

2. (r, c′, 0) ∈ A and (r′, c), (r′, c′) are each empty;

3. (r′, c′, 1) ∈ A and (r, c′), (r′, c) are each empty; or

4. (r′, c′) is empty and (r′, c, 0), (r, c′, 0) ∈ A.

Proof. We illustrate the above cases below.

c c′

r′ 0
r 0

c c′

r′

r 0 0

c c′

r′ 1
r 0

c c′

r′ 0
r 0 0

.

Let r ∈ RI and c ∈ CJ ; by definition I > J (see Section 2). First, suppose
that both |RJ | ≥ 1 and |CI | ≥ 1. Then selecting r′ ∈ RJ and c′ ∈ CI such
that (r′, c) and (r, c′) are empty, cell (r′, c′) must contain 1. This results in
Case 3 above.

Next, suppose that |RJ | = 0. Since I > J , J < k, so since (a, b) is a good
pair of vectors, |RJ+1| ≥ 2 and |CJ+1| ≥ 1. If I = J + 1, since BJ+1 is a tree
and is thus connected, there exists r′ ∈ RJ+1 and c′ ∈ CJ+1 such that (r′, c′)
and (r, c′) are each empty. Then cell (r′, c) lies in block AI,J and thus contains
entry 0 only. This results in Case 1. If |RJ | = 0 and I > J +1, then let (r′, c′)
be an empty cell in block AJ+1,J+1. Then (r, c′) and (r′, c) are in blocks AI,J+1

and AJ+1,J , each of which contain only 0’s. Case 4 follows.

Otherwise |CI | = 0. Then |CI−1| ≥ 2 and |RI−1| ≥ 1. Block AI,I is empty
and each other block of the form AI,J ′ with J ′ < I contains only 0’s. Suppose
that J = I − 1. Thus, since BI−1 is a tree, there is a row r′ ∈ RI−1 and
a column c′ 6= c in CI−1 such that (r′, c′) and (r′, c) are empty. Since (r, c′)
contains only entry 0 we have Case 2. If J < I − 1, let c′ ∈ CI−1 and let
r′ ∈ RI−1 where (r′, c′) is empty. Then (r, c′) and (r′, c) each only contain
entry 0, so we have Case 4.

The following theorem proves one part of Theorem 2.1.

Theorem 4.1. Let A be an element of A[a, b]. Then A is a critical set of the
full (m,n, 2)-balanced Latin rectangle.
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Proof. Suppose first that A is not a defining set of the full (m,n, 2)-balanced
Latin rectangle. Then there exists an (m,n, 2)-balanced Latin rectangle F ′ 6=
Fm,n such that A ⊂ F ′. Let T = Fm,n \ F ′ and T ′ = F ′ \ Fm,n. Observe that
the non-empty cells of T (and T ′) are precisely the cells of F ′ which contain
either {0, 0} or {1, 1}.

Without loss of generality, let (i, j) be a cell of F ′ containing {0, 0}. Then,
since the total number of 0’s and 1’s in each row and column is fixed, there
exists a column j′ 6= j such that (i, j′) is a cell of F ′ containing {1, 1}. Similarly,
there exists a row i′ 6= i such that (i′, j′) is a cell of F ′ containing {0, 0}.

By finiteness there exists a list of distinct cells

(i(1), j(1)), (i(1), j(2)), (i(2), j(2)), . . . , (i(µ), j(µ)), (i(µ), j(µ + 1) = j(1))

where (i(a), j(a)) contains {0, 0} (in F ′) and (i(a), j(a+1)) contains {1, 1} (in
F ′) for each a ∈ N(µ).

Because of the structure of A, for each a ≥ 1 either i(a) ∈ RI and i(a+1) ∈
RJ for some I and J with J > I or cells (i(a), j(a+1)) and (i(a+1), j(a+1))
belong to the same main diagonal block. Moreover, either j(a) ∈ CI and
j(a + 1) ∈ CJ for some J > I or cells (i(a), j(a)) and (i(a), j(a + 1)) belong
to the same main diagonal block. Since µ > 1, either i(µ) ∈ RJ and i(1) ∈ RI

with I < J or the entire trade is contained within a main diagonal block. If the
former holds, cell (i(µ), j(1)) contains 0 only (in A), a contradiction, and if the
latter holds there is a cycle in the graph BI (for some I), also a contradiction.

We next show that A is a minimal defining set. That is, we remove each
entry from A and show that it is no longer a defining set.

Case 1: The cell (r, c) contains one element. By symmetry we may assume
without loss of generality, that (r, c, 0) ∈ A and let A′ = A\{(r, c, 0)}. In each
of the Cases 1 to 4 given in Lemma 4.1, Fm,n \ A′ contains a trade cycle (on
the four cells given by that lemma). So by Lemma 3.1, A′ is not a critical set
of Fm,n.

Case 2: The cell (r, c) contains two elements. Thus (r, c) belongs to a block
of the form AI,I . Since BI is a tree, there is a trade cycle using either (r, c, 0)
or (r, c, 1) and entries in cells which are empty in A.

By Lemma 3.1, A is a critical set of Fm,n.
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5 A classification of critical sets

In Theorem 4.1 we showed that any element of A[a, b] is a critical set of Fm,n,
where (a, b) is a pair of good vectors. In this section we will show that any
critical set of Fm,n is thus described, up to a reordering of rows and columns.
We will thus complete the proof of Theorem 2.1.

In what follows, let D be a critical set of Fm,n. Let B0 be the bipartite
graph with partite sets V1 = {1, 2, . . . ,m} and V2 = {1, 2, . . . , n} with an edge
from r ∈ V1 to c ∈ V2 if and only if cell (r, c) is empty in D. Then any cycle in
B0 gives rise to a trade cycle in Fm,n which does not intersect D (see Section
3), contradicting Lemma 3.1. It follows that B0 is a forest.

Suppose there are ℓ components (i.e. trees) of the graph B0, where ℓ ≥ 0.
Partition the rows and columns of D into ℓ + 1 sets R1, R2, . . . , Rl+1 and
C1, C2, . . . , Cl+1 so that the ith tree is on vertex set Ri ∪ Ci, for each i. Thus
Rl+1 and Cl+1 contain any vertices which do not belong to trees.

Let AI,I be the block formed by the intersection of rows RI and columns
CI , where 1 ≤ I ≤ l. We shall call these blocks the main blocks. The definition
of a tree implies that if (r, c) is a non-empty cell within a main block, adding
the edge {r, c} creates a cycle within B0. Thus if cell (r, c) contains only one
entry, there is a trade cycle which does not intersect D; it follows that each
non-empty cell of a main block contains {0, 1}. Thus in each main block, each
cell either contains {0, 1} or is empty, with the empty cells forming a tree.

Next, Lemma 3.4 implies that there are no cells containing {0, 1} outside
of the main blocks. Thus any cell outside of the main blocks has exactly one
entry (0 or 1). We strengthen this result in the following lemma.

Lemma 5.1. Let 1 ≤ I ≤ l. Let r, r′ ∈ RI and c 6∈ CI . Then cells (r, c) and
(r′, c) contain the same entry in D. Let c, c′ ∈ CI and r 6∈ RI . Then cells
(r, c) and (r, c′) contain the same entry in D.

Proof. Suppose, for the sake of contradiction, that (r, c, 0), (r′, c, 1) ∈ D where
r, r′ are distinct rows in RI and c 6∈ CI . Then there is a unique path P in B0

from r to r′. Adding the edges {r, c} and {r′, c} to this path creates a cycle.
In particular there is a trade cycle in Fm,n \D (including (r, c, 1) and (r′, c, 0)),
contradicting the fact that D is a defining set. The second observation is
proven similarly.

The following lemma has a very similar proof which we omit.

Lemma 5.2. Let (r, c), (r′, c′) belong to distinct main blocks. Then cells (r, c′)
and (r′, c) contain distinct entries. Let (r, c) belong to a main block but suppose
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that cells (r, c′), (r′, c) and (r′, c′) do not belong to a main block, with (r′, c)
and (r, c′) containing the same entry e ∈ {0, 1}. Then (r′, c′) also contains e.

For the next step, we exploit some known results on (0, 1)-matrices. To this
end, we transform D to two (0, 1)-matrices D0 and D1, as follows. For each
cell belonging to a main block, replace its contents (whether full or empty)
with the entry e to create De, where e ∈ {0, 1}.

A trade in a (0, 1)-matrix M is a subset T such that there exists a disjoint
mate T ′ such that (M \ T ) ∪ T ′ is a (0, 1)-matrix with the same column and
row sums as M . Observe that any (0, 1)-matrix m × n is in fact a subset of
Fm,n. Indeed, any trade in a (0, 1)-matrix is a disjoint union of trade cycles
([3]; an equivalent result is also shown by Lemma 3.2.1 of [2]).

We once again turn to a coloured edge bipartite representation to make
our proof easier to explain.

Lemma 5.3. Let G be a bipartite multigraph with each edge coloured either red
or blue. Let W be a closed walk in G such that consecutive edges in the walk
have different colours. Suppose there exists a pair of vertices {v, w} such that
there is a unique edge in W on these vertices. Then W contains a properly
2-coloured cycle.

Proof. Recursively delete any closed sub-walks from W not containing the
edge which occurs uniquely. What remains must be a properly 2-coloured
cycle.

Lemma 5.4. Let e ∈ {0, 1}. If there is a trade in De there is a trade in
Fm,n \ D.

Proof. Suppose there is a trade T in De. Then T contains a trade cycle C.
Since T contains occurrences of both entry 0 and entry 1 and cells in a main
block inside De contain entry e, there is at least one cell of T outside a main
block (containing entry 1 − e). (∗)

List the non-empty cells of C in a list L so that consecutive elements in the
list share either a row or column. Now consider the list of cells L with respect
to D. We adjust the list L to create a new list L′ as follows. Each cell in the
list L either remains unchanged or is replaced by a sublist. Firstly, any cells
outside of the main blocks of D remain unchanged. Whenever cell (r, c) ∈ L

lies within a main block, if that cell is empty leave it unchanged. Otherwise,
since B0 is a forest, there is a unique path P on edges in B0 from vertex r to
c which forms a cycle if edge {c, r} is appended. Replace (r, c) in the list L

with the cells corresponding to P .
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Observe that the resultant list of 2k cells L′ = l1, l2, . . . , l2k has the following
properties. Firstly, any consecutive cells, in particular l1 and l2, either lie in
the same row or column. Assume the former without loss of generality. From
(∗), we may also assume without loss of generality that cell l1 contains the
entry 1 − e only. Thus, if i is even and i ≥ 2 then li lies in the same row as
li−1. If i is odd and i ≥ 3 then li lies in the same column as li−1. We also have
that l1 lies in the same column as l2k. Finally, if i is even then cell li is either
empty or contains e and if i is odd then cell li is either empty or contains 1−e.
(∗∗).

We now construct a closed walk W with edge sequence w1, w2, . . . , w2k,
based on the above list of cells. If li = (ri, ci), then edge wi = {ri, ci}. Colour
the edges of W alternately with two colours. From (∗), there exists an edge not
repeated in W . Thus from the above lemma, W contains a properly 2-coloured
cycle. From (∗∗), there is a trade in the corresponding cells of Fm,n \ D, a
contradiction.

From the previous lemma we may conclude that De has no trades, for each
e ∈ {0, 1}. This is useful because it is well-known that a (0, 1)-matrix has no
trades (and is thus the unique member of its class A(R,S)) if and only if its
rows and columns can be rearranged so that a line of non-increasing gradient
can be drawn with all the 0’s below and the 1’s above. This statement of the
Gale-Ryser theorem (see [2]) is given as Lemma 3 in [3].

Since D0 contains no trades, we may rearrange the rows and columns of
D0 so that there exist a line l0 of non-increasing gradient such that each cell
below line l0 contains 0 and each cell above contains 1. Apply the same
rearrangement to the rows and columns of D.

From this property of l0, for each pair of rows {r1, r2} and each pair of
columns {c1, c2} such that r1 < r2 and c1 < c2, we must have one of the
following 2 × 2 subarrays in D0:

c1 c2

r1 0 0
r2 0 0

c1 c2

r1 0 1
r2 0 0

c1 c2

r1 0 1
r2 0 1

c1 c2

r1 1 1
r2 0 0

c1 c2

r1 1 1
r2 0 1

c1 c2

r1 1 1
r2 1 1

.

We next show that we can further rearrange the rows and columns so
there are no “gaps” between the main blocks and the line l0. We express this
formally in the following claim.

Claim: If (r, c) is a cell from a main block and (r, c′) contains 0 in D where
c′ > c, we can swap columns c and c′ in D and D0, preserving the properties
of the line l0. Similarly, if (r, c) is a cell from a main block and (r′, c) contains
0 in D where r′ < r, we can swap columns r and r′ in D and D0, preserving
the properties of the line l0.
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So if our claim holds, we may assume that the rows and columns within
each main block are contiguous and that the line l0 includes the upper edge
and right-hand-side edge of each main block. It follows that there exist a pair
of vectors (a, b) such that D ∈ A[a, b]. Lemma 2.1 implies that D is the
superset of a critical set D′ ∈ A[a′, b′] where a

′ and b
′ are good vectors. This

completes the proof of Theorem 2.1.

So it remains to prove the above claim. We prove only the first part of the
claim as the second follows by a similar (transpose) argument. To this end,
let (r, c) be a cell from a main block and suppose there exists a column c′ > c

such that (r, c′) does not belong to a main block and (r, c′) is below the line l0
(thus (r, c′, 0) ∈ D ∩ D0 and (r, c, 0) ∈ D0). Our aim is to show that for each
r 6= r′, either (i) (r′, c) belongs to a main block (indeed the same main block
as (r, c) and (r′, c, 0) ∈ D or (ii) both (r′, c) and (r′, c′) contain the same entry
in D. The claim then follows.

Let r′ 6= r. First suppose that (r′, c) belongs to a main block. If (r′, c′)
also belongs to a main block, then so does (r, c′), a contradiction. Otherwise
(r′, c′) does not belong to a main block and (r′, c′, 0) ∈ D (by Lemma 5.1).
This proves (i).

Otherwise (r′, c) does not belong to a main block. If (r′, c′) belongs to a
main block, Lemma 5.2 forces (r′, c) to contain 1. Since (r, c), (r, c′) and (r′, c′)
each contain 0 in D0 and c < c′, we cannot have one of the six possible 2 × 2
configurations above, a contradiction. If (r′, c) contains 1 and (r′, c′) contains
0 then we again cannot have one of the six possible 2×2 configurations above.
If (r′, c) contains 0 and (r′, c′) contains 1 then Lemma 5.2 is contradicted. This
proves (ii).

6 The smallest critical set

Having now classified the structure of any critical set in the full (m,n, 2)-
balanced Latin rectangle Fm,n, we can now determine the smallest possible
size of such a structure.

To this end, for m,n > 1 we define R1
m,n and R2

m,n be the unique elements
of A[(m − 1, 1), (1, n − 1)] and A[(1,m − 1), (n − 1, 1)], respectively. Below is
the partial array R1

3,4:

1 1 1
1 1 1

0
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From Theorem 4.1, both R1
m,n and R2

m,n are critical sets of Fm,n. Observe
that they each have size (m−1)(n−1)+1. We next show that R1

m,n and R2
m,n

are critical sets of Fm,n of minimum size and are unique in this property.

Lemma 6.1. If m,n > 1 then the size of the smallest critical set of the full
(m,n, 2)-balanced Latin rectangle is (m− 1)(n− 1) + 1. Up to a reordering of
rows and columns, R1

m,n and R2
m,n are the unique critical sets with this property

(unless m = n = 2).

Proof. Let C be a critical set of the full (m,n, 2)-balanced Latin rectangle
and let e be the number of empty cells in C. From Theorem 2.1, the graph
B0 corresponding to the empty cells forms a forest, so e ≤ m + n − 1. If
e = m + n− 1, then B0 is a tree on m + n vertices. Thus each non-empty cell
contains 2 elements and |C| ≥ 2(mn−m− n + 1) ≥ (m− 1)(n− 1) + 1, with
equality only possible in the case m = n = 2. Otherwise, e ≤ m + n − 2 and
|C| ≥ mn−m− n− 2 = (m− 1)(n− 1) + 1, with equality only possible if B0

has two components and no cells containing {0, 1}.

Next, suppose that C is a critical set of Fm,n of size (m − 1)(n − 1) + 1
where (m,n) 6= (2, 2). From above, B0 has precisely two components, each of
which is a complete bipartite graph and thus a star. So C ∈ A[(a1, a2), (b1, b2)]
and either a1 = b2 = 1 or a2 = b1 = 1.

Observe that in the case m = n = 2, any element of A[(2), (2)] also gives a
critical set of minimum possible size.
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