A conjecture of De Koninck regarding particular square values of the sum of divisors function

Kevin Broughan*, Daniel Delbourgo, Qizhi Zhou
Department of Mathematics, University of Waikato, Private Bag 3105, Hamilton, New Zealand

A R T I C L E I N F O

Article history:

Received 28 March 2013
Received in revised form 5 August 2013
Accepted 20 October 2013
Available online 24 December 2013
Communicated by David Goss

$M S C$:

11A25
11A41

Keywords:

Sum of divisors
Squarefree core
De Koninck's conjecture
Compactification

Abstract

We study integers $n>1$ satisfying the relation $\sigma(n)=\gamma(n)^{2}$, where $\sigma(n)$ and $\gamma(n)$ are the sum of divisors and the product of distinct primes dividing n, respectively. If the prime dividing a solution n is congruent to 3 modulo 8 then it must be greater than 41 , and every solution is divisible by at least the fourth power of an odd prime. Moreover at least $2 / 5$ of the exponents a of the primes dividing any solution have the property that $a+1$ is a prime power. Lastly we prove that the number of solutions up to $x>1$ is at most $x^{1 / 6+\epsilon}$, for any $\epsilon>0$ and all $x>x_{\epsilon}$.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A decade ago, Jean-Marie De Koninck asked for all integer solutions n to the equation

$$
\begin{equation*}
\sigma(n)=\gamma(n)^{2} \tag{1}
\end{equation*}
$$

[^0]where $\sigma(n)$ denotes the sum of all positive divisors of n, and $\gamma(n)$ is the product of the distinct prime divisors of n. The only known solutions with $1 \leqslant n \leqslant 10^{11}$ are $n=1$ and $n=1782$, and so De Koninck sensibly conjectured that there exist no other solutions. It is included in Richard Guy's compendium [4, Section B11] as an unsolved problem.

In [2] a number of restrictions on the form of Eq. (1) were developed: the two solutions $n=1$ and $n=1782$ are the only ones having $\omega(n) \leqslant 4$; furthermore, if an integer $n>1$ is fourth power free (i.e. $p^{4} \nmid n$ for all primes p), then it was shown that n cannot satisfy De Koninck's equation.

The aim of this work is to present further items of evidence in support of De Koninck's conjecture, and to indicate the necessary structure of a hypothetical counter-example. In fact, upon combining together the results of [2] and this article, then any non-trivial solution other than 1782 must be even, have one prime divisor to power 1 and possibly another prime divisor to a power congruent to 1 modulo 4 , while all other odd prime divisors should occur only to even powers. Here we shall establish that if the prime to power 1 is congruent to 3 modulo 8, then it must be no less than 43 (Proposition 1). Moreover, we prove that at least one odd prime divisor must appear with an exponent no smaller than 4 (Theorem 1).

Applying an idea from [3], we show in Corollary 2 that more than $2 / 5$ of the exponents a appearing in the prime factorization of any solution of Eq. (1) are such that $a+1$ is a prime or a prime power. We then count the number of potential solutions n up to x, in the following manner: using results of Pollack and Pomerance [8], and by extending a method of $[2$, Thm. 1], we shall prove in Theorem 2 that the number of solutions $n \leqslant x$ to Eq. (1) can be at most $x^{1 / 6+\epsilon}$, for any $\epsilon>0$ and every $x>x_{\epsilon}$.

Finally, by exploiting the properties of the product compactification of \mathbb{N}, we show there are only finitely many solutions to (1) supported on any given finite set of primes \mathcal{P}. Indeed we will prove a more general result for the equation

$$
\begin{equation*}
\sigma(n)^{\alpha} \times \phi(n)^{\beta}=\theta \times n^{\mu} \times \gamma(n)^{\tau} \tag{2}
\end{equation*}
$$

where $\alpha, \beta, \mu, \tau \in \mathbb{Z}$ with $\theta>0$ some fixed rational, and $\alpha+\beta>\mu$ (see Theorem 3). The argument itself has a rather different flavor from that in [5].

Notations. If p is prime then $v_{p}(n)$ is the highest power of p which divides $n, \omega(n)$ will denote the number of distinct prime divisors of n, and \mathcal{K} is the set of all solutions to $\sigma(n)=\gamma(n)^{2}$. Lastly, the symbols p, q, p_{i}, q_{i} are reserved exclusively for odd primes.

2. Preliminary lemmas

We begin by recalling some basic structure theory concerning solutions to Eq. (1). The following two background results were proved in [2].

Lemma 1. If $n>1$ belongs to \mathcal{K}, then one has a decomposition

$$
n=2^{e} \times p_{1} \times \prod_{i=2}^{s} p_{i}^{a_{i}}
$$

where $e \geqslant 1$, and a_{i} is even for all $i=3, \ldots, s$. Furthermore, either a_{2} is even in which case $p_{1} \equiv 3(\bmod 8)$, or instead $a_{2} \equiv 1(\bmod 4)$ and $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$.

Lemma 2. If $n>1$ is an element of \mathcal{K} and does not equal to $1782=2 \cdot 3^{4} \cdot 11$, then n has at least 5 distinct prime factors, and there exists a prime (either even or odd) dividing n to at least a fourth power.

The proof of the next result is due Pollack, and can be found in [6].
Lemma 3. If $\sigma(n) / n=N / D$ with $\operatorname{gcd}(N, D)=1$, then given $x \geqslant 1$ and $d \geqslant 1$:

$$
\#\{n \leqslant x \text { such that } D=d\}=x^{o(1)} \quad \text { as } x \rightarrow \infty
$$

Lastly we will require Apéry's solution to the generalized Ramanujan-Nagel equations.
Lemma 4. (See Apéry [1].) The Diophantine equation $x^{2}+D=2^{n+2}$, with given non-zero integer $D \neq 7$, has at most two solutions. In addition:
(i) if $D=23$ then $(x, n) \in\{(3,5),(45,11)\}$,
(ii) if D has the form $2^{m}-1$ with $m \geqslant 4$, then $(x, n) \in\left\{(1, m),\left(2^{m}-1,2 m-1\right)\right\}$.

Hence, in both these cases, there are exactly two solutions.

3. Restrictions on primes dividing members of \mathcal{K}

In this section, we shall make a preliminary study of restrictions on the possible values of p_{1} and p_{2} associated to elements of \mathcal{K}, additional to those described in Lemma 1 above. Clearly $p_{1}+1$ cannot be divisible by any cube, otherwise Eq. (1) is violated. Hence for prime numbers congruent to 3 modulo 8, this excludes first 107 and secondly (in increasing order) 499 from occurring.

We will henceforth refer to these as bad De Koninck primes; indeed there are an infinite number of primes $p \equiv 3(\bmod 8)$ such that $p+1$ is divisible by a proper cube. In Proposition 1 below, we shall prove that 3,11 and 19 are also bad. In the case $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ and $a_{2}=1$, this same constraint applied to $\left(p_{1}+1\right)\left(p_{2}+1\right)$ excludes for those primes less than 100, the pairs

$$
\begin{aligned}
& \{5,17\},\{5,53\},\{5,89\},\{13,53\},\{13,97\},\{17,29\},\{17,41\},\{17,53\}, \\
& \{17,89\},\{29,53\},\{29,89\},\{37,53\},\{41,53\},\{41,89\},\{41,97\}
\end{aligned}
$$

called here bad De Koninck pairs. Later in Corollary 1, we show $\{5,13\}$ is also bad.

Proposition 1. Under the same notations as Lemma 1, if a solution $n \in \mathcal{K}$ satisfies both $\omega(n)>4$ and $p_{1} \equiv 3(\bmod 8)$, then the prime $p_{1} \geqslant 43$.

Proof. First suppose that $p_{1}=3$, in which case

$$
\left(2^{e+1}-1\right) \times 4 \times \prod_{i=2}^{m} \frac{\sigma\left(p_{i}^{a_{i}}\right)}{p_{i}^{2}}=4 \times 3^{2} .
$$

As a direct consequence $2^{e+1}-1<9$ so $e \in\{1,2\}$, and by [2, Theorem 3] we can assume $a_{2} \geqslant 4$. Therefore

$$
3 \times 13=3\left(3^{2}+3+1\right)<\left(2^{e+1}-1\right) \times \frac{\sigma\left(p_{2}^{a_{2}}\right)}{p_{2}^{2}}<3^{2}
$$

which is obviously false, and we conclude that $p_{1} \neq 3$.
Next if one supposes that $p_{1}=11$, then

$$
\left(2^{e+1}-1\right) \times 12 \times \prod_{i=2}^{m} \sigma\left(p_{i}^{a_{i}}\right)=4 \times 11^{2} \times \prod_{i=2}^{m} p_{i}^{2}
$$

thus $3 \times\left(2^{e+1}-1\right)<11^{2}$ which implies that $1 \leqslant e \leqslant 4$. If all of the a_{i} were strictly less than 4 , then by [2, Theorem 3] again we would have $e=4$, in which case

$$
\left(2^{e+1}-1\right) \times\left(p_{1}+1\right) \times \prod_{i=2}^{m} \frac{\sigma\left(p_{i}^{a_{i}}\right)}{p_{i}^{2}}=4 \times 11^{2}
$$

The latter implies

$$
31 \times 3 \times \prod_{i=2}^{m} \frac{\sigma\left(p_{i}^{a_{i}}\right)}{p_{i}^{2}}=11^{2},
$$

hence there exists an $i \geqslant 2$ with $11 \mid p_{i}^{2}+p_{i}+1$; this is impossible since $11 \not \equiv 1 \bmod 3$. It follows there is at least one $i \geqslant 2$ with $a_{i} \geqslant 4$, and without loss of generality suppose that it is a_{2} say. One therefore obtains an inequality

$$
\left(2^{e+1}-1\right) \times \frac{p_{1}+1}{4} \times \frac{\sigma\left(p_{2}^{a_{2}}\right)}{p_{2}^{2}}<11^{2}
$$

and consequently,

$$
3^{2} \times \frac{\sigma\left(3^{4}\right)}{3^{2}}=11^{2}<11^{2}
$$

which is clearly false. Therefore $p_{1} \neq 11$.

Finally suppose $p_{1}=19$. Using Lemma 1 we can write $n=2^{e} \times p_{1} \times \prod_{i=2}^{m} p_{i}^{a_{i}}$, whence

$$
\left(2^{e+1}-1\right) \times\left(p_{1}+1\right) \times \prod_{i=2}^{m} \frac{\sigma\left(p_{i}^{a_{i}}\right)}{p_{i}^{2}}=4 p_{1}^{2}
$$

Thus $\left(2^{e+1}-1\right) \times 5 F=19^{2}$ where F is a positive rational value strictly greater than 1 . As a consequence $\left(2^{e+1}-1\right)<19^{2} / 5$, implying that $1 \leqslant e \leqslant 5$.

Case (1). If $e=5$ then

$$
9 \times 7 \times 5 F=19^{2}
$$

and it follows that $F<19^{2} / 315<1.15$. If some exponent $a_{i} \geqslant 3$ then $F \geqslant \sigma\left(p_{i}^{3}\right) / p_{i}^{2}>3$ which cannot occur, and therefore one may assume that $a_{i}=2$ for every $i \in\{2, \ldots m\}$. Now by studying the left hand side, there must exist a prime p_{i} (which we will call p_{2}) that equals 3 . Then $\sigma\left(p_{2}^{2}\right)=3^{2}+3+1=13$ yields a new prime, denoted p_{3}, with $\sigma\left(p_{3}^{2}\right)=13^{2}+13+1=3 \times 61$. One thereby obtains a left hand side with at least three 3 's in the numerator but at most two 3 's in the denominator, while the right hand side has none. This contradiction shows $e<5$.

Case (2). If $e=4$ then

$$
31 \times 5 \times \prod_{i=2}^{m} \frac{\sigma\left(p_{i}^{a_{i}}\right)}{p_{i}^{2}}=19^{2}
$$

Arguing as in the previous case, without loss of generality assume $a_{i}=2$ for $i \geqslant 2$. Examining the left hand side, one of the primes p_{i} must equal 31 ; let us call it p_{2}. Then we have $\sigma\left(p_{2}^{2}\right)=31^{2}+31+1=3 \times 331$, thence the new prime $p_{3}=331$ gives $\sigma\left(p_{3}^{2}\right)=331^{2}+331+1=3 \times 7 \times 5233$, and ultimately $p_{4}=7$ with $7^{2}+7+1=3 \times 19$. Hence there are at least three 3 's in the numerator and exactly two in the denominator, with none occurring on the right hand side. This shows $e<4$.

Case (3). If $e=3$ then $15 \times 5 F=19^{2}$ implies $75 \times\left(3^{2}+3+1\right)<19^{2}$, which is false.

Case (4). If $e=2$ then we would get $7 \times 5 \times 13<19^{2}$, which again is false.
Case (5). Henceforth we consider the situation where $e=1$. It follows that

$$
3 \times 5 \times \prod_{i=2}^{m} \sigma\left(p_{i}^{a_{i}}\right)=19^{2} \times \prod_{i=2}^{m} p_{i}^{2}
$$

implying $3 \mid n$. One can then take $p_{2}=3$, and (by Lemma 1) assume that a_{2} is even. Suppose first that $a_{2} \geqslant 6$. Then $\sigma\left(3^{a_{2}}\right) \geqslant \sigma\left(3^{6}\right)=1093$, in which case

$$
5 \times 1093 \times \prod_{i=3}^{m} \sigma\left(p_{i}^{a_{i}}\right) \leqslant 5 \times \sigma\left(3^{a_{2}}\right) \times \prod_{i=3}^{m} \sigma\left(p_{i}^{a_{i}}\right)=19^{2} \times 3 \times \prod_{i=3}^{m} p_{i}^{2}
$$

which is false, whence $a_{2} \in\{2,4\}$. However if $a_{2}=2$, then

$$
3 \times 5 \times\left(3^{2}+3+1\right) \times \prod_{i=3}^{m} \frac{\sigma\left(p_{i}^{a_{i}}\right)}{p_{i}^{2}}=19^{2} \times 3^{2}
$$

and there must exist an odd prime dividing n which is greater than 3 , and which divides n to a power not less than 4 . This eventuality in turn implies

$$
5 \times 13 \times\left(5^{2}+5+1\right)<19^{2} \times 3
$$

which again is impossible.

Hence the only remaining possibility is that $a_{2}=4$. Because $\sigma(19)=2^{2} \times 5$ and $\sigma\left(3^{4}\right)=11^{2}$, one may then assume $p_{3}=5$ and $p_{4}=11$, which gives us the equality

$$
\sigma\left(2^{1}\right) \sigma\left(19^{1}\right) \sigma\left(3^{4}\right) \sigma\left(5^{a_{3}}\right) \sigma\left(11^{a_{4}}\right) \times \prod_{i=5}^{m} \frac{\sigma\left(p_{i}^{a_{i}}\right)}{p_{i}^{2}}=2^{2} \times 19^{2} \times 3^{2} \times 5^{2} \times 11^{2} .
$$

Canceling like terms yields

$$
5^{a_{3}} \times 11^{a_{4}}<\sigma\left(5^{a_{3}}\right) \sigma\left(11^{a_{4}}\right) \leqslant 19^{2} \times 3 \times 5
$$

which is false if either $a_{3} \geqslant 4$ or $a_{4} \geqslant 4$; since both are even, clearly $a_{3}=a_{4}=2$.
Now $2 \cdot 19 \cdot 3^{4} \cdot 5^{2} \cdot 11^{2} \notin \mathcal{K}$ so there exists a prime $p_{5} \geqslant 7$ such that $p_{5}^{a_{5}} \| n$ with a_{5} even. If $a_{5} \geqslant 4$ then one would have

$$
\left(7^{2}+7\right) \times 5^{2} \times 11^{2}<5^{2} \times 11^{2} \times \frac{\sigma\left(p_{5}^{a_{5}}\right)}{p_{5}^{2}}<19^{2} \times 3 \times 5
$$

which is certainly false; thus all primes other than $2,3,19$ which divide n must do so exactly to the power 2 .

As a consequence $m \geqslant 5$, and we can write

$$
n=2 \times 19 \times 3^{4} \times 5^{2} \times 11^{2} \times \prod_{i=5}^{m} p_{i}^{2}
$$

Substituting this form into the equation $\sigma(n)=\gamma(n)^{2}$ and then canceling, one deduces

$$
31 \times 131 \times \prod_{i=5}^{m}\left(\frac{p_{i}^{2}+p_{i}+1}{p_{i}^{2}}\right)=19^{2} \times 3 \times 5
$$

Therefore the set of p_{i} with $5 \leqslant i \leqslant m$ includes $\{31,131\}$ and none out of $\{3,5,19\}$. However $\sigma\left(31^{2}\right)=3 \times 331, \sigma\left(131^{2}\right)=17293$ and $\sigma\left(17293^{2}\right)=3 \cdot 13 \cdot 7668337$, hence $3^{2}=9$ divides the numerator of the product on the left and does not cancel with any denominator. This circumstance is impossible, as 9 does not divide the right hand side.

The above contradiction completes the proof that $p_{1} \neq 19$.

Proposition 2. If $p_{1} \equiv 1(\bmod 4)$ and $a_{2} \geqslant 5$, then $p_{1} \geqslant 173$.
Proof. Applying Lemma 1 one knows $p_{2} \geqslant 5$, and we can write

$$
\left(2^{e+1}-1\right) \times \frac{\sigma\left(p_{2}^{a_{2}}\right)}{p_{2}^{2}} \times \prod_{i=3}^{m} \frac{\sigma\left(p_{i}^{a_{i}}\right)}{p_{i}^{2}}=\frac{4 p_{1}^{2}}{p_{1}+1}
$$

However $\sigma\left(5^{5}\right) / 5^{2}=2906 / 25 \leqslant \sigma\left(p_{2}^{a_{2}}\right) / p_{2}^{2}$ in which case $\left(2^{e+1}-1\right) \times \frac{2906}{25}<\frac{4 p_{1}^{2}}{p_{1}+1}<4 p_{1}$; the latter inequality is only satisfied by primes $p_{1} \geqslant 173$.

Proposition 3. If $n \in \mathcal{K}$ is a solution with $p_{1} \equiv 3(\bmod 8)$ such that n is not divisible by the fourth power of any odd prime, then p_{1} cannot divide $2^{e+1}-1$.

Proof. Using [2, Theorem 3], one can express

$$
n=2^{e} \times p_{1} \times \prod_{i=2}^{m} p_{2}^{2}
$$

and moreover $2^{e+1}-1 \leqslant 4 p_{1}^{2} /\left(p_{1}+1\right)<4 p_{1}$. Thus under the assumption that $p_{1} \mid 2^{e+1}-1$, either $p_{1}=2^{e+1}-1$ or $3 p_{1}=2^{e+1}-1$.

First suppose that $p_{1}=2^{e+1}-1$. From the proof of [2, Theorem 3], one has

$$
\frac{1}{4} \times \prod_{i=2}^{m} \frac{p_{i}^{2}+p_{i}+1}{p_{i}^{2}} \leqslant 0.73
$$

consequently $\left(p_{1}-1\right) \times 0.73 \geqslant p_{1}$. The latter inequality implies $p_{1}<3$, which is false.
Alternatively if $3 p_{1}=2^{e+1}-1$, because $9 \neq 2^{e+1}-1$ for any value of e, clearly $3 \neq p_{1}$, so we can instead set $p_{2}=3$. Similarly $13=3^{3}+3+1 \neq p_{1}$, and $13^{2}+13+1=3 \times 61$ with $61 \neq p_{1}$. However $3 \mid 61^{2}+61+1$ giving at least three powers of 3 dividing the left hand side of $\sigma(n)=\gamma(n)^{2}$, which again yields a contradiction.

The following three technical lemmas are key ingredients in the proof of Theorem 1.

Lemma 5. If $n \in \mathcal{K}$ is divisible by 3 , there exists an odd prime p such that $p^{4} \mid n$.

Proof. Assume (hypothetically) n is not divisible by the fourth power of an odd prime. If $p_{1} \equiv 3(\bmod 8)$ then using Lemma 1 , we can write

$$
\left(2^{e+1}-1\right) \times\left(p_{1}+1\right) \times\left(p_{2}^{2}+p_{2}+1\right) \times \cdots \times\left(p_{m}^{2}+p_{m}+1\right)=4 p_{1}^{2} p_{2}^{2} \cdots p_{m}^{2}
$$

By Lemma 1 once more, we know $p_{1} \neq 3$ so instead put $p_{2}=3$. Consider the system:

$$
\begin{array}{rlll}
3^{2}+3+1 & =13 ; & 13 \equiv 5 \bmod 8, & 13 \neq p_{1}, \\
13^{2}+13+1 & =3 \times 61 ; & 61 \equiv 5 \bmod 8, & 61 \neq p_{1}, \\
61^{2}+61+1 & =3 \times 13 \times 97 ; & 97 \equiv 1 \bmod 8, & \\
97 \neq p_{1}, & p_{4}=61 \\
p_{5}=97 .
\end{array}
$$

We observe that the left hand side of the previous equation must be divisible by $3^{3}=27$ whilst the right hand side is only divisible by $3^{2}=9$, yielding a contradiction.

If $p_{1} \equiv 1(\bmod 4)$, one has the decomposition

$$
\left(2^{e+1}-1\right) \times\left(p_{1}+1\right) \times\left(p_{2}+1\right) \times\left(p_{3}^{2}+p_{3}+1\right) \times \cdots \times\left(p_{m}^{2}+p_{m}+1\right)=4 p_{1}^{2} p_{2}^{2} \cdots p_{m}^{2}
$$

Neither p_{1} nor p_{2} can be 3 , thus we may take $p_{3}=3$.
If $p_{1}=13$ then $p_{1}+1=2 \times 7$, and we set $p_{4}=7$; therefore $7^{2}+7+1=3 \times 19$ and $19^{2}+19+1=3 \times 127$, again giving too many 3 's.

If neither p_{1} nor p_{2} is 13 , we can choose $p_{4}=13$ and thereby obtain $13^{2}+13+1=3 \times 61$.
If $61=p_{1}$ or p_{2} (let's say $p_{1}=61$), we can write $n=2^{e} \cdot 61 \cdot p_{2} \cdot p_{3}^{2} \cdots p_{m}^{2}$ and so $p_{1}+1=2 \times 31$ with $31 \neq p_{2}$. Consequently we can choose $p_{4}=31$, leading to the equation $\sigma\left(31^{2}\right)=31^{2}+31+1=3 \times 331$ and again too many 3 's.

Finally if $61 \neq p_{1}, p_{2}$ then we still pick up an additional 3 , since $3 \mid 61^{2}+61+1$.
Lemma 6. If a solution $n \in \mathcal{K}$ is not divisible by the fourth power of an odd prime and $p_{1} \equiv 3(\bmod 8)$, then $3 \mid n$.

Proof. Suppose $n \in \mathcal{K}$ but $3 \nmid n$. In general, if a prime $q \mid p^{2}+p+1$ then either $q=3$, or we must have $q \equiv 1(\bmod 3)$ so that $3 \mid q^{2}+q+1$. Now from the expression

$$
\left(2^{e+1}-1\right) \times\left(p_{1}+1\right) \times\left(p_{2}^{2}+p_{2}+1\right) \times \cdots \times\left(p_{m}^{2}+p_{m}+1\right)=4 p_{1}^{2} p_{2}^{2} \cdots p_{m}^{2}
$$

we can define $Q:=\prod_{i=2}^{m}\left(p_{i}^{2}+p_{i}+1\right)$. Because $3 \nmid n$, each prime number p_{j} with $1 \leqslant j \leqslant m$ which appears as a factor of Q does not appear in the form $p_{i}^{2}+p_{i}+1$; this means we must have $Q \mid p_{1}^{2}$. However by Lemma 2, the integer Q has at least three quadratic factors, giving rise to a contradiction.

Lemma 7. If $n \in \mathcal{K}$ satisfies $p_{1} \equiv 1(\bmod 4)$ and $3 \nmid n$, then n is divisible by the fourth power of an odd prime.

Proof. Suppose $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$. Then in the notation of Lemma 6, it follows that there are two quadratic factors for $Q=\prod_{i=2}^{m}\left(p_{i}^{2}+p_{i}+1\right)$ and (following cancelation) three possible forms for the equation $\sigma(n)=\gamma(n)^{2}$. We shall treat each of these separately.

Case (1):

$$
\begin{aligned}
p_{3}^{2}+p_{3}+1 & =p_{1} \\
p_{4}^{2}+p_{4}+1 & =p_{2} \\
\left(2^{e+1}-1\right)\left(\frac{p_{1}+1}{2}\right)\left(\frac{p_{2}+1}{2}\right) & =p_{1} p_{2} p_{3}^{2} p_{4}^{2} .
\end{aligned}
$$

Note that $\frac{p_{2}+1}{2}$ has at least one prime divisor, and at most three prime divisors.
(1.1) If $\frac{p_{2}+1}{2}$ has only one prime divisor then $\frac{p_{2}+1}{2}=p_{1}$; under this scenario, there are seven possibilities for $\frac{p_{1}+1}{2}$.
(1.1.1) If $\frac{p_{1}+1}{2}=p_{2}$ then $2^{e+1}-1=p_{3}^{2} p_{4}^{2}$, which is impossible.
(1.1.2) If $\frac{p_{1}+1}{2}=p_{3}^{2}$ then $p_{3} \mid p_{1}+1$; however $p_{3} \mid p_{1}-1$ so $p_{3} \mid \operatorname{gcd}\left(p_{1}+1, p_{1}-1\right)=2$, which is impossible.
(1.1.3) If $\frac{p_{1}+1}{2}=p_{4}^{2}$ then

$$
p_{3}^{2}+p_{3}+1=\frac{p_{2}+1}{2}=\frac{p_{4}^{2}+p_{4}+2}{2}
$$

implying both $p_{3} \mid p_{4}+1$ and $p_{4} \mid p_{3}+1$, which is clearly false.
(1.1.4) If $\frac{p_{1}+1}{2}=p_{3} p_{4}$ then $p_{3} \mid p_{1}+1$; however $p_{3} \mid p_{1}-1$ hence $p_{3} \mid\left(p_{1}+1, p_{1}-1\right)=2$, which is again false.
(1.1.5) If $\frac{p_{1}+1}{2}=p_{2} p_{3}^{2}$ then $2^{e+1}-1=p_{4}^{2}$, which is impossible.
(1.1.6) If $\frac{p_{1}+1}{2}=p_{2} p_{4}^{2}$ then $2^{e+1}-1=p_{3}^{2}$, which is impossible.
(1.1.7) If $\frac{p_{1}+1}{2}=p_{2} p_{3} p_{4}$ then $p_{3} \mid p_{1}+1$; now $p_{3} \mid p_{1}-1$ thus $p_{3} \mid \operatorname{gcd}\left(p_{1}+1, p_{1}-1\right)=2$, which is false.
(1.2) If $\frac{p_{2}+1}{2}$ has two prime divisors, either $\frac{p_{2}+1}{2}=p_{3}^{2}$; or p_{4}^{2}; or $p_{3} p_{4}$.
(1.2.1) If $\frac{p_{2}+1}{2}=p_{3}^{2}$, then either $\frac{p_{1}+1}{2}=p_{2}$ or $\frac{p_{1}+1}{2}=p_{4}^{2}$:
(1.2.1.1) If $\frac{p_{1}+1}{2}=p_{2}$ then one has $2 p_{4}\left(p_{4}+1\right)=p_{3}\left(p_{3}+1\right)$, which implies $p_{3} \mid p_{4}+1$ and $p_{4} \mid p_{3}+1$; the last two conditions are incompatible.
(1.2.1.2) If $\frac{p_{1}+1}{2}=p_{4}^{2}$ then $p_{4}\left(p_{4}+1\right)=2\left(p_{3}+1\right)\left(p_{3}-1\right)$, which implies that $p_{4}<p_{3}$; further $p_{3}\left(p_{3}+1\right)=2\left(p_{4}+1\right)\left(p_{4}-1\right)$ which implies $p_{3}<p_{4}$, impossible!
(1.2.2) If $\frac{p_{2}+1}{2}=p_{4}^{2}$, then either $\frac{p_{1}+1}{2}=p_{2}$ or $\frac{p_{1}+1}{2}=p_{3}^{2}$:
(1.2.2.1) If $\frac{p_{1}+1}{2}=p_{2}$ then $p_{4}=2$, which is false.
(1.2.2.2) If $\frac{p_{1}+1}{2}=p_{3}^{2}$ then $p_{3}=2$, which is false.
(1.2.3) If $\frac{p_{2}+1}{2}=p_{3} p_{4}$, then either $\frac{p_{1}+1}{2}=p_{2}$ or $\frac{p_{1}+1}{2}=p_{3} p_{4}$:
(1.2.3.1) If $\frac{p_{1}+1}{2}=p_{2}$ then $p_{3} \mid p_{4}+1$ and $p_{4} \mid p_{3}+1$, which is impossible.
(1.2.3.2) If $\frac{p_{1}+1}{2}=p_{3} p_{4}$ then $p_{1}=p_{2}$, which is false as they are distinct primes.
(1.3) If $\frac{p_{2}+1}{2}$ has three prime divisors, either $\frac{p_{2}+1}{2}=p_{1} p_{3}^{2}$; or $p_{1} p_{3} p_{4}$; or $p_{1} p_{4}^{2}$.
(1.3.1) If $\frac{p_{2}+1}{2}=p_{1} p_{3}^{2}$ then one deduces $2^{e+1}-1=p_{4}^{2}$, which is false.
(1.3.2) If $\frac{p_{2}+1}{2}=p_{1} p_{3} p_{4}$ then $\frac{p_{1}+1}{2}=p_{2}$, which implies that $p_{4} \mid p_{3}+1$ and $p_{3} \mid p_{4}+1$; the latter conditions are incompatible.
(1.3.3) If $\frac{p_{2}+1}{2}=p_{1} p_{4}^{2}$ then we find $2^{e+1}-1=p_{3}^{2}$, which is false.

Combining (1.1), (1.2), and (1.3) together, clearly Case (1) is impossible in its entirety.
Case (2):

$$
\begin{aligned}
p_{3}^{2}+p_{3}+1 & =p_{1} \\
p_{4}^{2}+p_{4}+1 & =p_{1} p_{2}^{2} \\
\left(2^{e+1}-1\right)\left(\frac{p_{1}+1}{2}\right)\left(\frac{p_{2}+1}{2}\right) & =p_{3}^{2} p_{4}^{2} .
\end{aligned}
$$

Here $p_{3} \equiv p_{4} \equiv 2(\bmod 3), \frac{p_{1}+1}{2} \equiv \frac{p_{2}+1}{2} \equiv 1(\bmod 3)$, and there are at least two prime factors in $2^{e+1}-1$ (which being congruent to 3 modulo 4 cannot include p_{2}, and being congruent to 1 modulo 3 cannot include p_{3} or p_{4}). It follows that there is at least one prime factor in $\frac{p_{1}+1}{2}$ and $\frac{p_{2}+1}{2}$ respectively, which leaves us only $\frac{p_{1}+1}{2}=p_{3}$ or $\frac{p_{1}+1}{2}=p_{4}$, and these are both impossible.

Case (3):

$$
\begin{aligned}
p_{3}^{2}+p_{3}+1 & =p_{1} \\
p_{4}^{2}+p_{4}+1 & =p_{1} p_{2} \\
\left(2^{e+1}-1\right)\left(\frac{p_{1}+1}{2}\right)\left(\frac{p_{2}+1}{2}\right) & =p_{2} p_{3}^{2} p_{4}^{2} .
\end{aligned}
$$

Note that it cannot happen that one of p_{2}, p_{3}, p_{4} is the only prime divisor of $\frac{p_{2}+1}{2}$. Furthermore $2^{e+1}-1$ must have at least two prime divisors, and it cannot be a square; in addition $2^{e+1}-1 \equiv p_{2} \equiv \frac{p_{1}+1}{2} \equiv \frac{p_{2}+1}{2} \equiv 1(\bmod 3)$ and $p_{3} \equiv p_{4} \equiv 2(\bmod 3)$. One therefore deduces

$$
\begin{aligned}
\frac{p_{1}+1}{2} & =p_{2} \\
2^{e+1}-1 & =p_{3} p_{4} \\
\frac{p_{2}+1}{2} & =p_{3} p_{4} .
\end{aligned}
$$

From these three equations, we obtain

$$
p_{3}=\frac{\sqrt{2^{e+5}-31}-1}{2}
$$

and by the result of Apéry in Lemma 4, this is clearly an impossible occurrence.
We are now ready to give the main result of this section.
Theorem 1. If $n \in \mathcal{K}$ then n is divisible by the fourth power of an odd prime.
Proof. Firstly applying Lemma 5 , if $n \in \mathcal{K}$ and $3 \mid n$ then $p^{4} \mid n$ for some odd prime p. Without loss of generality, we may therefore assume $n \in \mathcal{K}$ and $3 \nmid n$.

If $p_{1} \equiv 1(\bmod 4)$ then the result is covered by Lemma 7 . Likewise if $p_{1} \equiv 3(\bmod 8)$ then the result is covered by Lemma 6 . Finally the remaining case $p_{1} \equiv 7(\bmod 8)$ is already excluded courtesy of Lemma 1.

Corollary 1. If $\left\{p_{1}, p_{2}\right\}=\{5,13\}$ then $a_{2} \geqslant 5$.
Proof. Assume that $a_{2}=1$. Since $\sigma(n)=\gamma(n)^{2}$, setting $p_{3}=3$ and $p_{4}=7$ implies

$$
\left(2^{e+1}-1\right) \cdot(2 \times 3) \cdot(2 \times 7) \times \prod_{i=3}^{m} \sigma\left(p_{i}^{a_{i}}\right)=4 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \times \prod_{i=5}^{m} p_{i}^{2}
$$

Using the divisibility of n by the fourth power of an odd prime (which minimally is 3):

$$
\left(2^{e+1}-1\right) \times 3 \cdot 7 \cdot \frac{121}{9} \cdot \frac{31}{5^{2}} \cdot \frac{57}{7^{2}} \cdot \frac{183}{13^{2}}<1
$$

so $\left(2^{e+1}-1\right) \cdot 2<1$, which is false for $e \in \mathbb{N}$. Therefore $a_{2}>1$, in which case $a_{2} \geqslant 5$.

4. The exponents for members of \mathcal{K}

We now study the exponents a_{i} occurring in the decomposition of a De Koninck number. The first step is to adapt an idea of Chen and Chen [3], in order to relate $\omega(n)$ with $\sum_{i=0}^{m} d\left(a_{i}+1\right)$, where $d(x)$ is defined to be the number of divisors of an integer $x \geqslant 1$. The second step is to apply the AM/GM inequality, then further analyse the exponents.

Lemma 8. Let a solution $n \in \mathcal{K}$ be represented as the product $n=2^{e} \times p_{1} \times \prod_{i=2}^{m} p_{i}^{a_{i}}$. If we set $p_{0}=2, a_{0}=e$ and $a_{1}=1$, then there are inequalities

$$
2 \omega(n) \leqslant \sum_{i=0}^{m} d\left(a_{i}+1\right) \leqslant 3 \omega(n) .
$$

Proof. One need only derive the upper bound, since the lower bound follows from (1).
First consider the case where $i \geqslant 2$ and a_{i} is even, so p_{i} is odd. Put $w_{i}=d\left(a_{i}+1\right)-1$ and write $n_{i, 1}, \ldots, n_{i, w_{i}}$ to denote all the positive integer divisors of $a_{i}+1$ other than 1 . Let $q_{i, j}$ be a primitive prime divisor of $\left(p_{i}^{n_{i, j}}-1\right) /\left(p_{i}-1\right)$ for $0 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant w_{i}$. In particular, there are divisibilities

$$
q_{i, j}\left|\frac{p_{i}^{n_{i, j}}-1}{p_{i}-1}\right| \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}
$$

and if $\Omega(x)$ counts the number of prime factors of x with multiplicity, then

$$
w_{i} \leqslant \omega\left(\sigma\left(p_{i}^{a_{i}}\right)\right) \leqslant \Omega\left(\sigma\left(p_{i}^{a_{i}}\right)\right)
$$

Alternatively, if $i=0$ then primitive divisors exist except for $e+1=6$, and in that case

$$
w_{0}=d(e+1)-1=3=\Omega\left(2^{6}-1\right)
$$

Lastly if $i=1$ or $a_{2}=1$, then we have $1=d\left(a_{i}+1\right)-1<2 \leqslant \Omega\left(p_{i}+1\right)=\Omega\left(\sigma\left(p_{i}^{a_{i}}\right)\right)$.
Therefore in all cases $d\left(a_{i}+1\right)-1 \leqslant \Omega\left(\sigma\left(p_{i}^{a_{i}}\right)\right)$, hence there is an inequality

$$
\begin{aligned}
\sum_{i=0}^{m} d\left(a_{i}+1\right)-\omega(n) & =\sum_{i=0}^{m}\left(d\left(a_{i}+1\right)-1\right) \\
& \leqslant \sum_{i=0}^{m} \Omega\left(\sigma\left(p_{i}^{a_{i}}\right)\right)=\Omega(\sigma(n))=\Omega\left(\gamma(n)^{2}\right)=2 \omega(n)
\end{aligned}
$$

thereby completing the derivation of the upper bound.
Corollary 2. If $n \in \mathcal{K}$ then in the notation of Lemma 8, a proportion of more than $2 / 5$ of the numbers $a_{i}+1$ must be either prime or prime powers.

Proof. Because $2^{\omega\left(a_{i}+1\right)} \leqslant d\left(a_{i}+1\right)$, using the arithmetic-geometric mean and Lemma 8:

$$
\left(2^{\sum_{i=0}^{m} \omega\left(a_{i}+1\right)}\right)^{\frac{1}{\omega(n)}} \leqslant \frac{\sum_{i=0}^{m} 2^{\omega\left(a_{i}+1\right)}}{\omega(m)} \leqslant 3 .
$$

Moreover, taking the logarithm of both sides, one deduces

$$
\sum_{i=0}^{m} \omega\left(a_{i}+1\right) \leqslant\left(\frac{\log 3}{\log 2}\right) \times \omega(n)
$$

For an integer $i \geqslant 1$, let $n_{i}:=\#\left\{j: \omega\left(a_{j}+1\right)=i\right\}$. Then the above inequality becomes

$$
n_{1}+2 n_{2}+3 n_{3}+\cdots \leqslant\left(\frac{\log 3}{\log 2}\right) \times\left(n_{1}+n_{2}+\cdots\right)
$$

which implies

$$
\left(2-\frac{\log 3}{\log 2}\right)\left(n_{2}+n_{3}+\cdots\right) \leqslant\left(2-\frac{\log 3}{\log 2}\right) n_{2}+\left(3-\frac{\log 3}{\log 2}\right) n_{3}+\cdots \leqslant\left(\frac{\log 3}{\log 2}-1\right) n_{1} .
$$

Rearranging the n_{i} 's yields

$$
n_{1}+n_{2}+\cdots \leqslant\left(\frac{\frac{\log 3}{\log 2}-1}{2-\frac{\log 3}{\log 2}}+1\right) \times n_{1}
$$

and as the bracketed term equals 2.41 to two decimal places, we conclude that

$$
\frac{2}{5}<\frac{1}{2.41} \leqslant \frac{n_{1}}{n_{1}+n_{2}+\cdots+n_{m}} \leqslant n_{1}
$$

as required.

5. Counting the elements in $\mathcal{K} \cap[1, x]$

For every real $x>0$, we will from now on use the notation $\mathcal{K}(x):=\mathcal{K} \cap[1, x]$. In $[2$, Theorem 4], it was shown that the size of the solutions $\mathcal{K}(x)$ is asymptotically bounded by $x^{1 / 4+o(1)}$ as x tends to infinity (and this result was itself an improvement on the work of Pomerance and Pollack [8], which instead gave an upper bound of $\left.x^{1 / 3+o(1)}\right)$. In this section we will sharpen the bound still further, as described directly below.

Theorem 2. The estimate

$$
\# \mathcal{K}(x) \leqslant x^{1 / 6+o(1)}
$$

holds as $x \rightarrow \infty$.
Proof. Let $n>1$ be in $\mathcal{K}(x)$, so we may express it as $n=A \times B$ where $\operatorname{gcd}(A, B)=1$, with A squarefree and B squarefull. Exploiting Lemma 1, then $A \in\left\{p_{1}, 2 p_{1}, p_{1} p_{2}, 2 p_{1} p_{2}\right\}$ and B is divisible by at least one prime to the fourth power or greater.

Under the notation of Lemma 3, one can write

$$
\frac{N}{D}=\frac{\sigma(n)}{n}=\frac{\gamma(n)^{2}}{n}=\frac{\gamma(A)^{2}}{A} \times \frac{\gamma(B)^{2}}{B}=\frac{A}{B / \gamma(B)^{2}}>1
$$

with $\operatorname{gcd}\left(A, B / \gamma(B)^{2}\right)=1$. It follows that $B / \gamma(B)^{2}<A$, whence

$$
\frac{B^{2}}{\gamma(B)^{2}}<A B=n \leqslant x \quad \Longrightarrow \quad \frac{B}{\gamma(B)} \leqslant \sqrt{x}
$$

Now by Lemma 1, we can always decompose $B=\delta \times C^{2} \times D$ where $\delta \in\left\{1,2^{3}\right\}, C$ is a squarefree integer, D is a 4 -full integer, and such that δ, C and D are pairwise coprime. As a consequence,

$$
\frac{B}{\gamma(B)}=\frac{\delta}{\gamma(\delta)} \times C \times \frac{D}{\gamma(D)} \quad \Longrightarrow \quad \frac{D}{\gamma(D)} \leqslant \sqrt{x}
$$

In addition

$$
\frac{B}{\gamma(B)^{2}}=\frac{\delta}{\gamma(\delta)^{2}} \times \frac{D}{\gamma(D)^{2}}
$$

so that

$$
\frac{B}{\gamma(B)^{2}}=\frac{D}{\gamma(D)^{2}} \quad \text { or } \quad \frac{B}{\gamma(B)^{2}}=2 \times \frac{D}{\gamma(D)^{2}} .
$$

Moreover one knows that $D / \gamma(D) \leqslant \sqrt{x}$ above, which means $D / \gamma(D)^{2} \leqslant \sqrt{x}$.
Now if two 4-full numbers D_{1} and D_{2} satisfy $D_{1} / \gamma\left(D_{1}\right)=D_{2} / \gamma\left(D_{2}\right)$, then we must also have $D_{1} / \gamma\left(D_{1}\right)^{2}=D_{2} / \gamma\left(D_{2}\right)^{2}$. Hence the number of choices for $D / \gamma(D)^{2} \leqslant \sqrt{x}$ with $D / \gamma(D) \leqslant \sqrt{x}$ and D-full, is less than or equal to the number of choices for $D / \gamma(D) \leqslant \sqrt{x}$ which is of type $x^{\frac{1}{6}+o(1)}$.

Therefore the number of choices for $B / \gamma(B)^{2}$ is also $x^{\frac{1}{6}+o(1)}$, and the proof is completed upon applying Lemma 3.

6. Applications of the product compactification

For each prime p, let \mathbb{N}_{p} denote the one point compactification of \mathbb{N}; in particular, each finite point $n \in \mathbb{N}$ is itself an open set, and a basis for the neighborhoods of the point at infinity, p^{∞} say, is given by the open sets $U_{p}^{(\epsilon)}=\left\{p^{e} \in \mathbb{N}: e \geqslant 1 / \epsilon\right\} \cup\left\{p^{\infty}\right\}$ with $\epsilon>0$. If \mathbb{P} indicates the set of prime numbers, let us write

$$
\hat{\mathbb{N}}:=\prod_{p \in \mathbb{P}} \mathbb{N}_{p}
$$

for the product of these indexed spaces, endowed with the standard product topology. Then $\hat{\mathbb{N}}$ is a compact metrizable space so it is sequentially compact, hence every sequence in $\hat{\mathbb{N}}$ has a convergent subsequence.

Remark. We shall call $\hat{\mathbb{N}}$ equipped with its topology the product compactification of \mathbb{N}. A nice account detailing properties of the so-called 'supernatural topology' in attacking the odd perfect number problem, is given by Pollack in [7].

Consider now the more general equation

$$
\begin{equation*}
\sigma(n)^{\alpha} \times \phi(n)^{\beta}=\theta \times n^{\mu} \times \gamma(n)^{\tau} \tag{3}
\end{equation*}
$$

where $\alpha, \beta, \mu, \tau \in \mathbb{Z}$ and $\theta>0$ is a rational number. Write $\mathcal{K}=\mathcal{K}_{\alpha, \beta, \mu, \tau}$ for the set of solutions

$$
\mathcal{K}_{\alpha, \beta, \mu, \tau}=\left\{n \in \mathbb{N}: \sigma(n)^{\alpha} \times \phi(n)^{\beta}=\theta \times n^{\mu} \times \gamma(n)^{\tau}\right\}
$$

which clearly depends on the initial choice of quintuple $(\alpha, \beta, \mu, \tau, \theta)$.

Theorem 3. Let $\mathcal{P} \subset \mathbb{P}$ denote a fixed finite set of primes, and assume that $\alpha+\beta>\mu$. Then there exist only finitely many $n \in \mathcal{K}$ with support in \mathcal{P}.

Before we give the demonstration, we point out that choosing $\alpha=1, \beta=0, \mu=0$, $\tau=2$ and $\theta=1$ implies there exist only finitely many solutions to De Koninck's equation (1), supported on any prescribed finite set of primes \mathcal{P}.

Proof. Given $A, B, M, T \in \mathbb{Z}$, define a multiplicative function $h=h_{A, B, M, T}: \mathbb{N} \rightarrow \mathbb{Q}>0$ by the formula

$$
h(n):=\frac{\sigma(n)^{A} \times \phi(n)^{B}}{n^{M} \times \gamma(n)^{T}} .
$$

For every $r \geqslant 1$ and at each prime p, one calculates that

$$
h\left(p^{r}\right)=p^{A-B-T}(p-1)^{B-A}\left(1-p^{-r-1}\right)^{A} \times\left(p^{r}\right)^{A+B-M}
$$

while $h(1)=1$. This naturally leads us to the definition

$$
\hat{h}\left(p^{\infty}\right):= \begin{cases}\infty & \text { if } A+B>M \\ 0 & \text { if } A+B<M \\ p^{A-B-T}(p-1)^{B-A} & \text { if } A+B=M\end{cases}
$$

and provides a unique extension $\hat{h}: \hat{\mathbb{N}} \rightarrow \mathbb{R} \cup\{\infty\}$ of the original arithmetic function h. In fact if $A+B=M$ and $T=0$, one can then show \hat{h} is continuous on the monoid $\hat{\mathbb{N}}$.

Fix a finite set of primes $\mathcal{L}=\left\{l_{1}, \ldots, l_{k}\right\}$, and put

$$
\mathbb{N}_{\mathcal{L}}:=\left\{n \in \mathbb{N}: n=l_{1}^{e_{1}} \cdots l_{k}^{e_{k}}, e_{j} \geqslant 1\right\} .
$$

Key claim. If $A+B \geqslant M$ then $\left.h\right|_{\mathbb{N}_{\mathcal{L}}}$ is monotonic increasing with respect to divisibility.
To establish this claim suppose that $n=n^{\prime} \times l_{j}^{e_{j}}$ with $n^{\prime} \in \mathbb{N}_{\mathcal{L} \backslash\left\{l_{j}\right\}}$, and set $m=$ $n^{\prime} \times l_{j}^{e_{j}+1}$. Then $h(m)=h\left(n^{\prime}\right) \times h\left(l_{j}^{e_{j}+1}\right)$ and

$$
h\left(l_{j}^{e_{j}+1}\right)=\frac{\sigma\left(l_{j}^{e_{j}+1}\right)^{A} \times \phi\left(l_{j}^{e_{j}+1}\right)^{B}}{l_{j}^{\left(e_{j}+1\right) M} \times \gamma\left(l_{j}^{e_{j}+1}\right)^{T}}
$$

$$
\begin{aligned}
& =\left(\frac{\sigma\left(l_{j}^{e_{j}+1}\right)}{\sigma\left(l_{j}^{e_{j}}\right)}\right)^{A} \times l_{j}^{B-M} \times \frac{\sigma\left(l_{j}^{e_{j}}\right)^{A} \phi\left(l_{j}^{e_{j}}\right)^{B}}{l_{j}^{e_{j} M} \gamma\left(l_{j}^{e_{j}}\right)^{T}} \\
& =l_{j}^{B-M} \times\left(\frac{l_{j}^{e_{j}+2}-1}{l_{j}^{e_{j}+1}-1}\right)^{A} \times h\left(l_{j}^{e_{j}}\right) .
\end{aligned}
$$

However

$$
\begin{aligned}
l_{j}^{B-M} \times\left(\frac{l_{j}^{e_{j}+2}-1}{l_{j}^{e_{j}+1}-1}\right)^{A} & =l_{j}^{B-M} \times\left(\frac{l_{j}^{e_{j}+2}-l_{j}}{l_{j}^{e_{j}+1}-1}+\frac{l_{j}-1}{l_{j}^{e_{j}+1}-1}\right)^{A} \\
& =l_{j}^{B-M} \times\left(l_{j}+\frac{l_{j}-1}{l_{j}^{e_{j}+1}-1}\right)^{A}>l_{j}^{A+B-M} \geqslant 1
\end{aligned}
$$

since $A+B \geqslant M$. It follows that $h\left(l_{j}^{e_{j}+1}\right)>h\left(l_{j}^{e_{j}}\right)$, in which case

$$
h(m)=h\left(n^{\prime}\right) \times h\left(l_{j}^{e_{j}+1}\right)>h\left(n^{\prime}\right) \times h\left(l_{j}^{e_{j}}\right)=h(n)
$$

The proof of the claim then follows by induction on the number of primes (with multiplicity) which divide the quotient of a general pair n and m, with $n \mid m$.

Now let us take $A=\alpha$, and choose $B, M \in \mathbb{Z}$ such that

$$
\mu-\beta<M-B \leqslant \alpha
$$

Suppose there exists a sequence of elements in \mathcal{K} supported on \mathcal{P} which are all distinct. Under the supernatural topology, there exists a subsequence $\left(N_{i}\right)_{i \geqslant 1}$ and a limit $N_{o} \in \hat{\mathbb{N}}$ such that $N_{i} \rightarrow N_{o}$. The element N_{o} is supported on \mathcal{P}, otherwise at least one of the N_{i} would also not be supported on \mathcal{P}. We may therefore write $N_{o}=A \times B^{\infty}$ where $\operatorname{supp}(A) \subset \mathcal{P}, \operatorname{supp}(B) \subset \mathcal{P}$, and $\operatorname{gcd}(A, B)=1$ with B squarefree. Furthermore

$$
\operatorname{supp}(A) \cup \operatorname{supp}(B)=\mathcal{L}=\left\{l_{1}, \ldots, l_{k}\right\}, \text { say. }
$$

Then there exists a subsequence $\left(N_{i_{j}}\right)_{j \geqslant 1}$ of the sequence $\left(N_{i}\right)_{i \geqslant 1}$ satisfying for all $j \geqslant 1$:
(i) $\operatorname{supp}\left(N_{i_{j}}\right)=\mathcal{L}$,
(ii) $N_{i_{j}}$ properly divides $N_{i_{j+1}}$, and
(iii) $A \| N_{i_{j}}$.

Each $N_{i_{j}} \in \mathcal{K}$ and h is monotonic on the monoid (\mathbb{N}, \times), hence for all $j \geqslant 2$ one has

$$
0<h\left(N_{i_{1}}\right)<h\left(N_{i_{j}}\right) \stackrel{\text { by }}{=}{ }^{(3)} \frac{\theta \times \phi\left(N_{i_{j}}\right)^{B-\beta}}{N_{i_{j}}^{M-\mu} \times \gamma\left(N_{i_{j}}\right)^{T-\tau}}
$$

$$
\begin{aligned}
& =\frac{\phi\left(N_{i_{j}}\right)^{B-\beta}}{N_{i_{j}}^{M-\mu}} \times \frac{\theta}{\left(\prod_{s=1}^{k} l_{s}\right)^{T-\tau}} \\
& \leqslant N_{i_{j}}^{(B-\beta)-(M-\mu)} \times \frac{\theta}{\left(\prod_{s=1}^{k} l_{s}\right)^{T-\tau}}
\end{aligned}
$$

which tends to zero as $j \rightarrow \infty$ since $M-B>\mu-\beta$.
This immediately yields a contradiction, and completes the proof of the theorem.

7. Final comments

In Theorem 2, we believe it should be possible to reduce the upper bound to $x^{o(1)}$. Moreover extending the list of bad De Koninck primes, for example by finding additional infinite sets, seems readily achievable.

In the fundamental Lemma 1, showing that the exponent e of the power of 2 equals 1 (or at least is odd) looks like a reasonable goal, but we have been unable to prove this.

Lastly, extending the method of Theorem 3 to include subsets of \mathcal{K} with prime support of bounded size, seems altogether more challenging.

References

[1] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960) 1263-1264, 1451-1452.
[2] K.A. Broughan, J.M. De Koninck, I. Kátai, F. Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq. 15 (2012) 1-12.
[3] F.J. Chen, Y.G. Chen, On odd perfect numbers, Bull. Aust. Math. Soc. 86 (2012) 510-514.
[4] R.K. Guy, Unsolved Problems in Number Theory, third edition, Springer, 2004.
[5] F. Luca, On numbers n for which the prime factors of $\sigma(n)$ are among the prime factors of n, Results Math. 45 (2004) 79-87.
[6] P. Pollack, The greatest common divisor of a number and its sum of divisors, Michigan Math. J. 60 (2011) 199-214.
[7] P. Pollack, Finiteness theorems for perfect numbers and their kin, Amer. Math. Monthly 119 (2012) 670-681.
[8] P. Pollack, C. Pomerance, Prime-perfect numbers, Integers 12 (6) (2009) 1417-1437.

[^0]: * Corresponding author.

 E-mail addresses: kab@waikato.ac.nz (K. Broughan), delbourg@waikato.ac.nz (D. Delbourgo), qz49@waikato.ac.nz (Q. Zhou).

