Working Paper Series
ISSN 1170-487X

MiraCalc: The Miranda
Calculator
The Unix Version

by Doug Goldson, Mike Hopkins
& Steve Reeves

Working Paper 94/5
April, 1994

© 1994 by Doug Goldson, Mike Hopkins & Steve Reeves
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

MiraCalc: The Miranda' Calculator
The Unix Version

Doug Goldson
Key Centre of Design Computing,
Department of Architecture and Design Science,
University of Sydney, Australia
douglas@archsci.arch.su.edu.au

Mike Hopkins
Department of Computer Science,
QMW, University of London, U.K.
leonardo@dcs.qmw.ac.uk

Steve Reeves
Department of Computer Science,
University of Waikato,
Hamilton, New Zealand
stever@waikato.ac.nz

April 1994

1. What is MiraCalc?

Those of you who already have some experience of programming, or experience of simply
using a computer, will know that computers can be very unforgiving. They are fussy, and
unless you get things exactly right they will complain. The program described in this document
has grown out of an attempt to help you to understand what is going on when the computer
complains. It is designed to help you with the Miranda scripts that you will be writing as part
of the process of learning Miranda

We have called our program "MiraCalc" (Miranda Calculator) since we hope that you will use it
in the same way as you might use an arithmetic or scientific calculator, except that instead of
calculating with numbers, our calculator works with Miranda expressions. We hope that you
will experiment with MiraCalc and use it to explore and learn about Miranda.

The calculations of which MiraCalc is capable are of three sorts:
to calculate the type of Miranda expressions
to calculate the scope of names in Miranda expressions

to calculate the value of Miranda expressions

I Miranda is a trademark of Research Software Ltd.

So, one function of MiraCalc is to help you to understand the role that fype plays in Miranda.
In arithmetic there are only three types of object, rational numbers, real numbers and number
Junctions (operations on numbers) but in Miranda there are lots of different kinds or types of
object including, of course, the numbers and functions of arithmetic. Introducing lots of new
objects means that we can do lots more calculations than those of arithmetic but it also raises a
danger, since it makes it more likely that we will mix these objects up in cocktails of nonsense.
In order to avoid, or rather to detect, these nonsense combinations Miranda has a discipline of

types.

The second function of MiraCalc is to allow you to investigate the notion of scope. A name is
in scope if it can be given a value by the system. Some names are always in scope because their
definitions are supplied by the Miranda system. They are part of the standard Miranda
environment or, simply, the standard environment. The system always works in a current
environment which is at least as large as the standard one, in the sense that it contains all the
objects defined in the standard environment and perhaps more besides. The effect of
successfully compiling a script is to extend the standard environment with the new objects
which are defined in the script. MiraCalc allows you to ask if names in your script occur free,
bound or binding.

The third function of MiraCalc concerns the values of expressions. Just as a pocket calculator
works out that 232 equals 512, we would like our calculator to work out that the value of
27372 1is 512. But since the Miranda system itself already provides a means of calculating the
value of Miranda expressions, why have we bothered to write our own calculator? The reason
is because we believe it is often very useful to watch a calculation proceed one step at a time
whereas the calculation which the Miranda system performs is always silent, giving the
appearance that it occurs ‘all at once’. J

In conclusion, MiraCalc is intended to help you to investigate the scope, meaning and value of
Miranda expressions in the same way as an ordinary pocket calculator allows you to investigate
the structure and value of arithmetic expressions.

2. Using MiraCalc

MiraCalc has seven menus - File, Edit, Font Size, Navigate, Utilities,
Calculate and Help.

Since MiraCalc uses different sorts of window, for example a script window or a calculation
trace window, and since each sort of window can only meaningfully have certain operations
applied to its contents, the options available to you from the menus and buttons will change as
the choice of the currently selected window changes. For example, if the script window is
selected then, as far as the Calculate option is concerned, at first you can only parse it2; not
until that has been successfully completed can you do an evaluation since that option does not
make sense when applied to an unparsed script.

An existing file can be edited using Open in the File menu to open the file and display its
content in a window and a new file can be created using New. Files are closed and saved using
Close.., Save and Save as.... When you are ready to finish a session, use Exit in the

2 In fact you can choose Evaluate at this point, but you will only be able to refer to names defined in the
standard environment.

2

File menu. You will be asked, for each open window that has changed during the session,
whether or not you want to save the changes.

The Edit menu offers the standard editing options. Thus it is possible to Cut, Copy and
Paste text in a window and to search and replace selected text. Since MiraCalc is a program
editor it is also convenient, in addition to these options, to have a Line number option which
moves the cursor to a selected line in a window. This is useful because line numbers are
reported in diagnostic messages where there are errors in the script.

There is also a Font Size option, which allows you to change the size of the font, which
you might want to make bigger so that the script is more easily readable, or smaller so that you
can see tmore of a script by having more of it visible at once.

The Navigate menu allows you to move to the top or bottom of a file, to move to where the
cursor is currently situated and to move to a line number of your choice.

The Utilities menu allows you to find and change text in the script window.
The Help menu offers brief reminders of the function of menu options.

The Calculate menu allows you to explore the structure and meaning of Miranda scripts.
The menu options are explained in the next section.

3. Sorts of calculation

3.1 Parse

(1

The Parse option in the Calculate menu allows you to parse a Miranda script. Parsing is
the activity of reading a collection of symbols according to a particular syntax of expressions.
The Parse option reads the current script window as if it were a Miranda script, i.e. according
to the syntax rules of Miranda. If MiraCalc succeeds in this then your script is syntactically
correct or well-formed. For a script to be meaningful it must be well-formed. If your script is
not well-formed then a message will appear in the lower window that says there is an error in
your script together with some diagnostic information.

For example, after parsing the script
badsyntax = 1 + @

your screen should look like the picture on the next page.

Not every well-formed script is meaningful. Try parsing the following script
badtype = 1 + ‘a’

As well as being well-formed a script must also be well-typed. If your script is then it is type-
checked to ensure that it is well-typed too. If type-checking is successful then you can be sure
that your script is executable. Again, if the script is not well-typed then a message will appear
in the lower window.

If the content of your script window is both well-formed and well-typed then it is possible to
use the other items of the Calculate menu to explore its structure.

r‘ Miranda Calculator — /home/stever/newmira/mira/* L

File Edit Font Size MNavigate Utilities Calculate

badsyntax = 1 + @

- asmm—

parsing text ...

Lexical error reading an unexpected symbol
badsyntax = 1 +

at line IA

S o LA g A e e .
§v:r:-.* .>-.-.>;A| faag] 1l .:-‘.'?;‘.:-I fueese | E:.r:*:w.v,,'v*;l

L T

3.2 Expand and Contract

The Expand and Contract options operate on the parsed version of your source. They are
meant to illustrate the structure of program expressions, the grammar of definitions, the
associativity and precedence of operators, and the structure of curried functions and functions
defined using patterns. Expand is used to expand expressions, Contract Left and
Contract Right to contract expressions. Back can be used to go back to previous states
of the cursor.

Expand works as follows. It takes the current cursor selection in the script window and then
expands this selection to cover the smallest enclosing expression. For example, using a box to

4

represent the extent of highlighted text in a window, the effect of successive expansions can be
illustrated as

times (double|2) (double 2)

times | (double 2

—

(double 2)

times (double 2) | (double 2)

times (double 2) (double 2)

This example illustrates the fact that application associates to the left.

Some operations, like *, are written infix. Others, like application, are written prefix.
However, there is nothing essentially infix about * and it is just a matter of convention that we
writeit 1 * 2 instead of * 1 2. The same applies to the other arithmetic operators, allowing

2 x*2 + 3 *vy

to be written
+ 2 2 3 R I

ie.
+ (* (" x 2)) (* 3 vy)

MiraCalc’s internal representation of expressions is prefix which explains the following
sequence of expansions

[2]* x*2 + 3 *
[2 *|x*2 + 3 *

2 * xt214 3 ¥

2 *x*°2 +|3 *

S ™

2 ¥ X2 + 3 *

As you would expect, the Contract options of the Calculate menu offer the inverse of
Expand, with the choice of contracting to the left-hand sub-expression or the right-hand one
(assuming they exist).

For example, given the last expansion in the expression above, Contract Left gives

2 * x"2 +3 *vy

whereas Contract Right gives

2 * x"2 +|3 * vy

Lists are built-in Miranda data structures which are built up from the empty list, [], and the list
constructor :, pronounced “cons”. So, if 1 is alist then x : 1 is a list too, provided that x
has the same type as the type of all the list elements of 1. Miranda has two ways of
representing lists, one uses : and [], for example

|M| . |i| . lrl . |a! . ini : rdl . !al . []

the other uses a shorthand
[IMI' rir' Ir', ‘alt 'nl, Idl’ ’al]

It is important to realise that the shorthand is just another way of writing the same list, i.e.

[IMI' |i|f 'I", Ia ; Inl.‘ Idl, Ial] =
er . lil . trl . |at . lnl . rdl . !al . []

Tuples are also built-in Miranda data structures. Unlike lists, the individual elements of tuples
may have different types, for example
(['M','i1','r','a','n','d', 'a'], (remove, "Miranda”) , +)

This is a triple, or 3-tuple. The first element is a list of characters, the third element is a numeric
function and the second element is itself a tuple, a 2-tuple whose first element is a function and
whose second is a list of characters.

Tuples raise a problem for Expand and Contract because, unlike lists, they are not defined
as binary structures. Tuples are n-ary structures where n = 0 or n > 2. Defining the left and
right contraction of a list x : 1 issimple.Itis x : and 1 respectively (remembering that
Miranda operators are curried) but how do we define the left and right contraction of
(x,v,z)? The answer is that we cannot, so we avoid the problem by making the contraction
of (x,v, z) itself. For similar reasons the expansion of, say

(x ,|yl|, 2z)

is

(x , ¥, 2)

3.3 Scope: Free, Bound and Binding

As you learn more about Miranda you will learn how to determine when an occurrence of a
name is free, bound or binding in an environment and you will see that it is sometimes quite
hard to calculate. For example, which binding occurrence of x binds the second occurrence of
X in

f x=x+ 1 where x =1

and does £ 2 have the value 2 or 3?7 To answer this question we can experiment with
MiraCalc. First you need to open a new file using New. . . from the File menu. Call this file
examplel. Now type in the definition of £ given above and parse it using the Parse option
from the Calculate menu. Your screen should look like the first picture below. Now select
the second occurrence of x and check to see that it is bound by selecting the Bound option
from the Calculate menu. A message is displayed confirming your guess as correct and,

6

importantly for deciding the binding of this x, the cursor selection in the window is moved to
cover the binding occurrence of x. The window will now look like the second picture.

"9 Miranda Calculator - /home/stever/newmira/mira/* i

File Edit Font Size Navigate Utilities Calculate

‘[x=x+lwhere><=1

parsing text ... parsing completed
checking dependencies ... dependency checking completed
checking types ... tupe checking completed

Dt S .>'.'3‘§'| g.:—ﬂ?\.;-l g'f:a .:'.'?S'.:-I g-.r:é:-l X»’:?N"--,}'?l

’J“

f@ Miranda Calculator — /home/stever/newmira/mira/* "1

File Edit Font Size MNavigate Utilities Calculate

Fx=><+lmher‘eﬁ\=l

r bound by 1
- i Correct: that occurrence is bound
parsing text ... ”
checking depende ed

checking types ... type checking completed

3.4 Type

MiraCalc allows you to check your knowledge of types using the Show Type or Guess
Type options in the Calculate menu. In order to determine the type of an expression you
first select it using the cursor and then choose the Show Type option. A dialogue appears
telling you the type of the expression.

Using the Guess Type option creates a dialogue which invites you to guess the type of the
selected expression. If your guess is correct a message appears to confirm it. Otherwise, a
diagnostic message is given which includes the correct type of the selected expression. This

8

option is sometimes more helpful than Show Type since it gives limited information about
why a guess is wrong (if it is). It may be useful to use Expand and Contract to make the
initial selection.

3.5 Evaluate

You can choose this option even if you have not yet parsed a script because the standard
Miranda environment is always available as a calculational environment and so, as long as you
only refer to expressions defined there, you can evaluate them in the absence of a parsed script.

However, to show how this option can be used we will assume the existence of a file called
‘listfuns.m’ which has been opened and parsed. (You can examine the script by looking
at the picture below.) If you choose the Evaluate option you will get a dialogue asking for
an expression to evaluate. Let us assume that you ask for the expression

numsfrom_inc 5 1

to be evaluated, then your screen will look like

r' Miranda Calculator — /home/stever/newmira/mira/examples/listfuns.m

e s . . 31 : Fonaitoe
N Hein b Pepal T R ok Pies P b gsen
B fahd 4 U R 4 MAaIGare BLETEL RS

numsfrom n = n : numsfrom (n + 1)

numsfrom_inc x y = x 1 (humsfrom_inc (x + y) y)

numsfrom” a = numsfrom_inc a 1
posints = numsfrom 1

takewhile p (numsfrom a) where p x = x <= b

numsfrom_to a b

[a), if a=b
a : (humsfrom_to (a+1) b), if a<b
a i (numsfrom_to (a-1) b), otherwise

numsfrom_to a b

numsfrom_to_inc

Q

b c = takewhile p (a : (numsfrom_inc b (b - a))) where p x = x <= ¢

inf_nums a b = a : (numsfrom_inc b (b - a))

numsfrom_via_to a b € = a : numsfrom_via_to b (b+b-a) c, if (a<b & a<=c) \/ (b<a & c<=a) \/ a=

numsfrom_inc 5 IA i

R =

ione stepl fskipl ;all stepsl ;::r.-i:-l i:::ts-?:‘:;;-‘.'
1-| ot

1=

The One Step button causes MiraCalc to do a single step in the calculation, and the result is
displayed in the lower window as shown in the first picture below. Further choices of One
Step lead to a calculation window which looks like the second picture.

The Skip button causes MiraCalc to do a ‘larger’ step in the calculation of a value. In fact,
sometimes its effect will be the same as One Step but in general it will have a larger effect. It
can be useful in skipping the ‘uninteresting’ aspects of a calculation in order to focus on its
‘interesting’ parts. The precise behaviour of Skip is best determined by experimentation.

=) Miranda Calculator — /home/stever/newmira/mira/examples/listfuns.m i

Font taze Raagate lbvhibiee falogiabe Help

-_— ——
numsfrom n = n & numsfrom (h + 1) ﬁ
numsfrom_inc x y = x ! {numsfrom_inc (x + y) u)
numsfrom” a = numsfrom_inc a 1

posints = numsfrom 1

nunsfrom_to a b = takewhile p (numsfrom a) where p x = x <= b

[a], if a=b
a : (numsfrom_to (a+1) b), if a<b
a ¢ (nhumsfrom_to (a-1) b), otherwise

numsfrom_to a b

L |

numsfrom_to_inc a b ¢ = tokewhile p {a : (humsfrom inc b (b - a))) where pX=x<=c

inf_nums a b = a : (humsfrom_inc b (b - a))

runsfrom_via to a b ¢ = a : numsfrom_via_to b (b+b-a}) c, if (a<b & a<=c) \/ (b<a & c<=a) \/ a=

numsfrom_inc 5 1 %

{ numsfrom_inc)

== 5 : numsfrom_inc (5 + 1) 14

R =
fone stepl fskipl iall stepsl §undol §:!=’.t‘?:'=;}-°‘.|
1

10

numsfrom n = n @ numsfrom (n + 1)

numsfrom_inc x y = x : (numsfrom_inc (x + y) y)
numsfrom” a = numsfrom_inc a 1

posints = numsfrom 1

numsfrom_to a b = takewhile p (numsfrom a) where p x = x <= b

[al, if a=b
a : (numsfrom_to (a+1) b), if a<b
a & (numsfrom_to (a-1) b), otherwise

numsfrom_to a b

numsfrom_to_inc a b c = takewhile p {(a : (humsfrom_inc b (b - a))) where p x = x <= ¢

inf_nums a b = a : (humsfrom_inc b (b - a))

numsfrom_via_to a b ¢ = a : numsfrom_via_to b {b+b-a) c, if (a<b & a<=c) \/ (b<a & c<=a) \/ a=

rumsfrom_inc 5 1
{ numsfrom_inc)
= 5 : numsfrom_inc (5 + 1) 1
(numsfrom_inc)
= S5 :5+ 1 1 numsfrom_inc ((5 + 1) + 1) 1
(+)
= 5 :6 : numsfrom_inc ({5 + 1) + 1) 1
{ numsfrom_inc) 5
= S:6:(5+ 1) +1 1 numsfrominc (((5 + 1) + 1) + 1) 1
(+)

== 5:6:6+1:numsFrDm_inc(((5+|)+1)+I)1A

éone stepl gskipl %all stepsI gundol i;::is-r:w,-;-él

1

v

1

The A11 Steps button performs calculation steps silently, like Miranda, until an expression
is fully evaluated. Since some expressions, like numsfrom 5, are never fully evaluated, it is
possible that an all-steps calculation may never terminate so that if you leave the calculation for
long enough you will eventually get a message telling you that MiraCalc’s memory is
exhausted. If you get bored waiting for an all-steps calculation to terminate you can press the

interrupt button to stop it.

The Undo button deletes the current step of the calculation and takes you back to the previous

one.

11

4. New expressions

In order to be able to display step-by-step calculations in all circumstances it was necessary to
invent some new notation which extends the language of Miranda expressions.

4.1 Embedded where-expressions and renaming

Returning to the example of §3.3 we can use the Evaluate option to calculate the value of

f 2. The window looks like

() Miranda Calculator — fhome/stever/newmira/mira/examples/* |

vie Bahvb Famd hine Haeoygate

ngiabe Lisaias

fx=x+1 where x =1

f2
(f)

== x + 1 where
x =1

{ where—clause)

= (% where
x =1
)+
(=)
= 1 + 1
{+)
= ZA

;fif jzepl iikxpl ;eil 3€¢;3| Eundol ;;nt&?fh“\

1

12

The second step in this calculation shows how a where-expression is evaluated. A where-
expression is an expression of the form
expression where defs

For example
X + 1 where x = 1

MiraCalc uses two rules to evaluate where-expressions and which rule applies depends upon
the form of the given expression. The rule applied to this expression moves the where-clause
where x = 1lintothebody x + 1 of the where-expression so that it qualifies the defined
expression x. The resulting expression is

(x where x = 1) + 1

The thing to remember is that this expression, containing an embedded where-expression, is
not a legal expression of Miranda but has been introduced by us in order to show how Miranda
where-expressions can be evaluated one step at a time.

where-expressions have given rise to a second extension to Miranda. Consider the script

y = 2
fx=x+ vy where v = 1

What is the value of £ y? The picture over the page gives the answer. Notice that the first step
of the calculation has renamed the definition of y in the where-clause. This renaming is
performed by the rule for evaluating function applications to prevent the capture of names in the
function’s arguments. If the local definition of v (value 1) in the definition of £ is not renamed
to @y, then the argument of £, y (value 2), will change its meaning in the course of the
calculation. This so-called capture of the free y (value 2) by the binding v (value 1) must be
avoided.

The special symbol @ has been carefully chosen to guarantee that if x occurs in a Miranda
expression then @x does not. The thing to remember is that names beginning with @ are not
legal Miranda names.

13

J_' Miranda Calculator - /home/stever/newmira/mira/examples/* .

G lie g s i Fad CA L £, . TR L. T gd 5 P
vigoopabvh o ol brne Mavigabe by isiise Laisgiabe gl

y =2

fox

x + 4y where y = 1

= y + @y where
@By =1

({ where-clause)
= y + (By where
By = 1
)

{y)

= 2 + (Py where
ey = 1
)

14

4.2 Embedded if-expressions

if-expressions, like where-expressions, can also become embedded during the course of a
calculation. Consider a function ident

ident x = x+1, if x < 1

ident x = x+2, 1if x <= 2

and the calculation of ident 1 + 1

@) Miranda Calculator — /home/stever/* :
yie Ed 7 # o Navigate ibyiviyec dignaiaie #ig
ident x = x + 1, if x < 1

nu

ident x = x + 2, if x <=2

ident 1 + 1
{ ident)

= (1 +1,if 1< 1) +1
(<)

= (1 + 1,if False) + 1
(ident)

= (1 +2,if 1 <=2) +1
(<=

= (1 + 2,if True) + 1
{ case-elim)

= (1 +2) +1

(+)

= 3+ 1
{(+)

= 4

;-:r:-.* .s=:<.>;-| ;.s.k:.;-l §ﬁ .5‘:-.’;-.&' fundol §1f=2£-?:'=;;-2l

L =

15

4.3 Iterative expressions: list comprehensions

Expressions like [1..] and [10,9..1] are evaluated by following the rules that define
them, and no further additions to the language had to be made in order to explain their
evaluation step-by-step.

[1..] is evaluated by following the rule that this list is the one defined by the equation
[a..] = a:[a+1l..], where we consider [..] asthe “name” of a function. Similarly
with [10, 9. .1] where the function being evaluated has the name [, .. 1. This is the list
whose head is 10, whose next element is 9 and whose subsequent elements are spaced from 9
by a value equal to the difference of the values of the previous two (i.e. 10 - 9). The list is
continued until 1 is reached. The next two pictures show how these two expressions are
evaluated.

Miranda Calculator - fhome/stever/*

. & g WG R X R % TR) T . b R e
HEE R HIEA - R AT R A CEHE S S EDEASRAF S EL 1A

= 12 [1 71 wal

= 142% [2+ 1 4]

16

Miranda Calculator — /home/stever/*

i [il O AT 5. 4y B Pitey ial St - (RN
=1 RMYC PRI RIA mavigale Dhyiviyes alegiabe g

== 18 : [9,(9+9) -108 .. 1]

= 18:[9,18 - 18 .. 1]
(infix -)
= 18 : [9,8 .. 1]

{ [y=ee])
== 18 :9:[8,(8+8) -9..1]

= 18 : 9 : [8,16 -9 ., 1]
{ infix =)
=0 18 : 9 : [8,7 .. 1]

€ [seanad)
= 18 :9:8:[7,(7+7) -8 ..1]

Es-kipl §all steps' gundol %;-‘:u‘?m:;“:l

__________________ _ N
More complicated list expressions have required more thought. In the case of a list
comprehension like [2*x | x <- [1,2,3,4,5]], the evaluation looks quite
straightforward.

17

F Miranda Calculator — /home/stever/* L

[2=x]| x=<- [1,2,3,4,5]]
([Ll=—5...1)

= 21 :[2%x|x=< [2,3,4,5]]
(%)

= 2:[2*x]|x=< [2,3,4,5]]
([Ll=—;...])

= 2:2%2:[2%x| x< [3,4,5]]
(%)

== 214 [2% x| x< [3,4,5]]
{ [l<veaa])

= 2:14:2%3: [2%x]| x< [4,5]]

=0 2:4:6: [2%x]|x=< [4,5]]

== 2:4:6:2%4: [2%x]|x< [5]]

= 2:4:6:8: [2%x]|x< [5]],

Il comee——————————————— e
one step Z 5kip| fall steps| undol e |
.= el

When we start to add further generators and filters then things become slightly more

complicated. Note how the evaluation of [(x,v)

| x <= [1,2]; v <- ['a']] goes.

Basically the rule here is that we unravel the iteration by following the structure of the lists, so

[(x,¥) | x <- [1,2]; v <- ['a']]

is rewritten to

18

[(Ly) | yv<-1['a'l]l ++ [(x,y) | x <= [2]; v <= ['a']]

so the first list in this concatenation is simple to deal with since it has Jjust one generator, and
the second list has been made simpler because one of its generating lists has been made shorter.
In this way, in general, the iteration makes progress.

=) Miranda Calculator — /home/stever/* L

Fra i b Renad e Piime an mann e fiten §q fon gngs fooxien st fise by
HEES 2508 FREI OLILe MRV GATS BLCE R AT Laifgiars A

[(x:'-_-l) I X <= [11'2];- IR o "]
A U B

= [U)|y <~ "a"]
?XJH)H X <= [2].! y <= " "J

GEEZS SRS
= (1 .r .r

1 -
[(?},L>” o y < "a"]

C Llsrgeead)
= (Iqu’.) . [(xr':l} I X == [2]; y == "Q“]

¢ lemsgen])

Ea (1 n lI

o |y <
e e %

R E N .
= U.!’qr.}

[(2 %) | g{- []][] -
x <= |]; y=<=-"a

(Llgwiaadd D

= (a1 27 1 (o) | x < [1; y < "a"]
([Ll<—;...])

= [(1,7a"),,"a"]

2-:!:-.* .'>=:-.>;-| ;.;t;;-l fﬁ .;=:-.°;-.s] éundol RS ERTIN] ‘

A similar tactic is used in the evaluation of [x | x <= [1..]; X mod 2 = 0].

19

Miranda Calculator — /home/stever/*

i, I S 8 £ Bota i, 15 i ity liym P P A FE
8 s AR FENIC Lale MAEVILaDe LMUTIILIee LRI A

[x | x == [1 -.]; x mod 2 = @]
([Lad)
= [x]xf—l:[l+1..];xmod2=ﬂ]
[Bl §
= [1] 1 mod 2 =g]
+ [x |3 x <= [1 +1 ..];xmod2=@]
{ mod)
= [1]1=mg9]
H [x |7 x <= [1 +1 --]; x mod 2 = @]
(=)
= [1 | False]
++ [x |3 x <= [1 +1 -]; x mod 2 = @]
{ case-elim)
= [x(x{—[1+1..];xmod2=9]
(+)
= [xlx{-[2..];xmod2=5]
([..])
= [x,'x<-2:[2+1..];xmod2=-‘3]
(Lloesgon] 3
= [2]2nod2 = @]
+H [x [} x <= [2+1 --]; x mod 2 = @]
{ mod)
= [2]8=a8]
+ [x |} x<=[2 +1 ..];xmod2=6]
(=)
= [2 | True]
H [x |3 x<= [2 +1 .]; x mod 2 = @]
(case-elim)
= 2:[x|'><-=:—[2+1..];xmodE-*—E]A

5. Conclusions

There are other parts of Miranda that we have not discussed in this introduction to MiraCalc.
These include sections and user-defined types. These are supported by MiraCalc and you are
encouraged to explore them with its aid.

Please remember that MiraCalc is still under development and in particular, while it uses
normal-order evaluation it does not support sharing, so it is not truly lazy. Also, the Skip and
All Steps options of the Evaluate dialogue are limited in what they can do. However,
remember that MiraCalc is intended to be used alongside Miranda as a support tool when things
g0 wrong. It is not intended as a replacement . If you try to use it as a replacement you will
soon discover its limitations.

MiraCalc was first implemented to run on a Mac (under MacOS and A/UX) and successfully
supported first-year teaching of Miranda in the course Functional Programming One during
1992 at QMW, University of London. It is implemented in Prolog (LPA MacProlog in the case
of the Mac version and SICStus Prolog with an interface written in C in the case of the Unix
version). The Unix version is currently implements more of Miranda than the Mac version, but
the Mac version is currently being updated (using LPAProlog32) so that both versions have the
same capabilities.

We have no doubt that problems await discovery and it will help us enormously if these are
promptly reported to us.

21

