Working Paper Series
ISSN 1170-487X

Visible-C
A Simple Visualisation
For C Data Structures

by: William J. Rogers

Working Paper 96/10

April 1996

© 1996William J. Rogers
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

VISIBLE-C
A SIMPLE VISUALISATION SYSTEM FOR C DATA STRUCTURES

William J. Rogers
Department of Computer Science,
University of Waikato, Hamilton, New Zealand.
w.rogers @cs.waikato.ac.nz

Introduction

I teach half of a second year “Programming with Data
Structures” course in which students learn to program
with dynamic memory and build linked data structures. In
this paper I describe a piece of software, VisibleC, which I
have developed to assist in teaching these concepts.

The VisibleC system reads C++ declarations and displays
declared variables graphically, showing record, array, and
pointer structures. Students may enter C++ assignment
and allocation statements and see the effect of their
execution. Statements can be read from files, typed
interactively, or built by pointing and clicking on the
displayed structures.

The paper is organized as follows: Section one describes
the teaching context. In section two I describe an earlier
piece of software I have used for teaching pointer
concepts, explain where this work fits in the software
visualisation field, and discuss some of my design
considerations. Section three covers the VisibleC
program, and has a little on its implementation. In
section 4 I comment on the results I have had in using the
system, and give results from a small survey of student
reactions. In section 5 I present my conclusions and
intentions for further development.

1. Teaching Context

In the Waikato University Computer Science Department
we teach introductory programming to our first year
students in two half courses. The half courses are strands
in our first semester “Introduction to Computing”, and
second semester “Introduction to Computer Science”
courses respectively. We use C++ as the principle
programming language, although it might be more
accurate to say that we teach Pascal, using C syntax
(stealing a little from C++), and a C++ compiler. By the
end of their first year students have learned the equivalent
of the Pascal language without fully covering pointers.
The idea of a pointer and of a list structure has been
explained in lectures, but there have been no
programming exercises. Students have also worked on
algorithm and some data structure material. That is
covered in the non-programming strands of the first year
courses [Holmes et al 96].

The current first year arrangement was first introduced in
1995. It was in the change made at that time that we
moved to using C++ as our introductory programming
language. The reasons for using C++ are worthy of some
comment.

During the 80’s, like nearly everyone else, we taught
students to program using Pascal. By the end of the
decade we found ourselves wanting to change
programming language. The main motivation for change
was the desire to use a language which supported data
abstraction and promoted good organisation of programs
which were too large to handle as a single file. This was
important to allow access to libraries of interesting
software in the introductory course and to pave the way for
the development of larger pieces of software in later years.
With two colleagues I wrote an introductory text [Hopper
et al 91] on programming in Modula-2. The book places
particular emphasis on program structure and
organisation, and took advantage of the module facility in
the language. We wrote a library of software to
accompany the book, which allowed students access to
graphics from their first practical sessions, and later let
them experiment with windows and mouse input.

The Modula-2 book was used with good results for four
years. When we first began writing the book, Modula-2
had seemed a promising candidate for becoming one of
the world’s principal programming languages. A major
standardisation effort was underway, and it was in use in
New Zealand for embedded system work. By 1994,
however, it had become obvious that history had
consigned Modula-2 to the list of also-rans. Whilst we
were still satisfied with it as an introductory programming
language it began to cause difficulties later in the
curriculum. Senior students programmed on UNIX
systems, for which we could not obtain a satisfactory
Modula-2 compiler. Staff wanted them to use C, and
started to devote time in their courses to teaching it. Qur
four year degree program places strong emphasis on an
honour’s project in the fourth year of study. We found
that most of the programming projects undertaken
required C or C++, either because they involved
developing and extending some existing software, or
because they interfaced to some C/C++ library code.

I was tempted to quote the adage that “Students taught
using a good language will be better programmers ...” and
recommend that we continue with Modula-2. The only
difficulty was that I didn’t believe it. I knew perfectly
well that even quite capable students seemed to find the
step from Pascal or Modula-2 to C difficult. In particular,
students found it very difficult to learn and use C/C++
during their honour’s project. So although we engaged in
some debate, as befits a decision usually beset by feelings
of almost religious fervour, no-ones heart was really in it,
and we quickly settled on teaching C++ from the outset.
We do not claim that it is an especially good decision.
C++ is not an ideal first programming language—just a
pragmatic choice, giving in to the fact that C/C++ is now
the language most commonly used for software
development and the language we need students to know
for advanced courses. A cost of the decision was that
extra teaching time would be needed help students cope
with details of the language.

We had observed the difficulty our senior students most
often had with C was to do with memory allocation. C
provides the programmer with considerable freedom in the
declaration of pointers, allocation of storage and
manipulation of addresses. It seemed that we had
protected students too much when teaching Modula-2.
They had not developed sufficient awareness of the way in
which memory was allocated and accessed. They tended
to rely on dynamic checking of array bounds, and not
reason carefully about their memory allocation when
writing programs. Rather than burden the first year
courses, we carefully restricted first year teaching to a
‘safe’ subset of C, avoiding any use of pointers by using
the C++ syntax for reference procedure parameters, and
for text input. Laboratory demonstrators are aware that
students are likely to have programs crash in odd ways
due to array bound overflows, and assist as necessary. We
then planned to put in additional material at second year
help students develop sufficient understanding and
awareness of memory allocation and access to cope with
the full C/C++ language.

Accordingly the second year courses have been revised for
1996, to follow on from the 1995 first year arrangements.
Students now take two programming papers. The first
semester course “Programming with Data Structures”
completes the introduction to dynamic memory use, and
covers a restricted ‘data structures’ syllabus. It also
introduces students to a functional programming language
(we use Gofer, a Haskel subset). The second “Program
Structure and Organisation”, covers file structures and
object oriented programming.

The “Programming with Data Structures™ paper sets out to
address the difficulties of programming in C/C++ in two
ways. The first is the direct and obvious one. We are
allocating quite a lot of time to memory, allocation, de-
allocation, and the building of linked structures. The

second is an attempt to enforce a ‘decoupling’ of data
structure design from implementation. Students are asked
to design and prototype data structures in the functional
language Gofer, which is high level enough to hide issues
of memory allocation and access. They then implement in
C/C++.

The final innovation in our second year program is a
negative one. Having the Gofer material and the
additional C/C++ material in the course has squeezed out
a good deal of the traditional content of a second year data
structures course. Students will still see lists, trees and
hash tables, but we will not discuss balancing binary trees,
or B-tree structures, etc. until our third year algorithms
course. There was some opposition to this change, but I
take the view that it may be beneficial in its own right.
We have observed that our honours students have been
quite reluctant to build linked data structures in their
programs, or at least think that it is a significantly
adventurous thing to do. I suspect that the reason is that
by teaching about linked structures in the context of
algorithms like tree balancing, we have given them the
impression that such algorithms are always required.
They had not had the chance to develop confidence with
simple linked structures first.

This then is my teaching task and context. 1 have students
who have met the idea of a pointer, but not programmed
using the idea. My role is to teach them about the use,
design and implementation of elementary data structures.
I have a curriculum in which I have time in which to
slowly and carefully cover the issues involved in reliably
building linked structures in the C/C++ language. I am
not under pressure to teach a complete traditional data
structures course.

2. Background

When designing teaching support software it is easy to
concentrate on the expected gains, and neglect the
intellectual overhead of learning to use and understand the
tools themselves. We found this to be a difficulty, for
example, with the libraries we provided with our Modula-
2 system. They did make it possible for students to use
graphics at the outset, but they also constituted an
overhead. Students needed to learn the specifics of those
libraries and we needed to use lecture time in explaining
them. In writing software to demonstrate pointers and
their use I have been very conscious of this pitfall and
tried to write programs with very minimal user interfaces
and only the needed functionality.

The VisibleC program evolved from a simple
demonstration program (Pointers) I wrote some time ago
for use in teaching the small introductory section on
pointers we included in our first year course at that time.
Pointers was first written for Pascal and later modified to
use Modula-2 syntax. It assumed the declaration of a

simple record structure for holding names and phone
numbers.

TYPE nptr POINTER TO node;
node = RECORD

Name: ARRAY [1..7] OF CHAR;
Num: CARDINAL;

Link: nptr

END;

and three variables
VAR One, Two, Three: nptr;

The user of the program could enter ‘NEW’, ‘DISPOSE’,
and assignment statements interactively at the keyboard.
Correct statements were immediately executed, updating
the semi-graphic display. In the practical session which
used this program students were asked to enter statements
to allocate, link, and fill nodes so as to build a linked list
of four elements.

One Tuo Three

ﬂ I [wie || EEEEEEE |
Hame | Sam Hame | Bew Hame | Jenny Hame | Hicola
Hum 4488 Hum 4489 Hum 4418 Hum 4411
Link | Link Link Link | HIL

Enter command:

The educational objective was to allow students to learn
and become familiar with the syntax for accessing data
structure components. It was therefore appropriate that
they should type statements. To minimise the kind of
frustration the novice programmer experiences in the
typical edit/compile cycle the program used a hand coded
instant parser—which detected errors as soon as a single
incorrect character was typed. The parser was written
rather like a recursive descent parser, except that the
parsing algorithm worked down to the character level.
Input strings were reparsed at every input keystroke.
Incomplete tokens at the end of the current statement were
ignored.

e
[Hams | B Wame | B Wame | fam Wame | Baw
Mam | 44w Wom | 44 Hon | e Wam | 4t | a1
Link | Link | 77707 Link | rrvvemy Link s |
tntar comnand: Ons. Enter command: Ona* Enter commends Gme®.Lisk

o Tor

Hane [] Wams | (T
am m | a1 Wam |
Lisk Link 1 Link | 1rrreny

[Enrer commands One®.Link*. Hans

After each parse, the diagram of the data structure was
updated to highlight the part of the structure currently

[Entar command fna®.Link*

being referenced. For example, in typing
One”.Link".Name the highlighting goes through the
sequence shown.

The very restricted programming context made it possible
to issue highly specific error messages as soon as an
incorrect character was entered. Thirty five distinct error
conditions were detected and reported—providing good
guidance to the student operating the program.

The fact that the program displayed at most four nodes
provided an unexpected bonus. If a node was ‘orphaned’,
by losing its pointer, there was no way that access to it
could ever be regained, and no way that the ‘memory’
could ever be recovered. The demonstrated quite forcibly
the need to keep careful track of allocated memory.

From the teaching viewpoint I think that this program
worked well within its limited objectives. It did not do
anything without explicit instruction by the learner, and it
responded in some way to each action. The only special
command to learn was ‘quit’. Otherwise it accepted
standard Modula-2 statements. Tutors and lab
demonstrators reported that students responded favourably
to the program and appeared to understand the concepts
involved. As we did not ask students to write programs
using pointers in that course, we never determined
whether the skills gained with the graphic system
generalised to ordinary programming activity. However,
the narrow goal of teaching how to access data structure
components seemed to have been achieved. Students
performed well on such exam questions. The graphic
interface was very helpful in the laboratory. It is certainly
much easier to discuss a programming problem with a
student when there is a graphic display of the results of
their actions in from of you both. It is also very helpful to
be able to conduct experiments quickly.

I felt that my second year class would also benefit from
using a program which allowed them to visualise their
data structures. The educational objectives were extended
though. It was important to reinforce the mechanics of
data structure access, but now necessary to show just how
C declarations allocate memory, and how a variety of data
structures could be assembled from linked components. It
was important that the new program accept and process a
variety of data structures, so that students could
experiment with their own examples.

There is a large literature in the area of software
visualisation—using graphics (and even sound) to convey
to the programmer a mental image of a program and/or its
behaviour. In 1994 it was reported [Price et al 94] that
over 100 software visualisation prototypes had been built.
They vary from ‘pretty-printing’ programs [Hueras et al
75] [Baecker et al 90], to a system which attempts to infer
and display abstract interpretations of data structures
[Henry et al 90]. A great deal of this work has been
directed towards program/algorithm animation—systems

which attempt at various levels of abstraction to display
the dynamic behaviour of programs.

A taxonomy of the area was first proposed by Myers
[Myers 86&90] and refined by Price, Baecker, and Small
[Price et al 94]. Systems are distinguished by their: Scope
the range of programs and systems they will run on;
Content the aspects of the program that they exhibit; Form
the nature of their visualisation; Specification extra
commands, if any, required to describe the visualisation;
and Navigation the means and nature of the interaction
they permit.

Stated in terms of the taxonomy my requirements are as
follows. Scope: a small number of declarations (less than
100 lines), but a need to cope with data structures whose
display might not comfortably fit on one screen; Content:
data structures only. Form: graphic presentation of data
structures as understood by a C programmer—I did not
need details like address and size of memory areas used,
nor were any abstract views required. Specification:
should require no commands additional to C declarations
and statements. Navigation: the user would need to pan
over large displays, and scale down or up to allow broad
or detailed viewing.

Of the systems described in the literature, the one closest
to my requirements was one of the earliest—Myers’
Incense prototype for displaying Pascal data structures
[Myers 83]. Incense is effectively a debugger which
allows a programmer to graphically explore the data
structures of a running program. A ‘display’ command is
used to request a drawing of a variable and its linked
structures. The default display form was a direct
rendering of Pascal basic values, records and arrays using
nested and stacked boxes, although provision was made
for the programmer to supply alternative display functions
to obtain more abstract views. Considerable efforts were
made to make the system lay-out linked structures in a
visually sensible manner, including the use of curved lines
to depict pointers. The basic display forms of Incense
were just what I required. However, Incense did not allow
entry of statements or changes to data. I wanted students
to be able to enter statements interactively and see their
effect immediately.

Incense was developed into a production system called
Amethyst [Myers et al 88] and later integrated into a
commercial Pascal system known as Pascal Genie
[Changhok et al 91]. Pascal Genie supports a structure
editor and the graphic visualisation facility as parts of an
integrated environment. It has been used in educational
settings with good success [Goldenson 89].

In comparison to these systems, my requirements are very
modest. I do not discount the advantages of having
students work with advanced environments, but I am wary
of introducing systems where the intellectual overhead of
learning the system is high. Such overhead could only be

justified if the students could go on using the systems in
later years. At present my task is to teach students to be
competent in using a conventional text only programming
system. Our decision has been to try to teach the more
abstract view of data structures using Gofer, and to
concentrate our C/C++ teaching on concrete
implementation details.

In examining other systems I did decide however that
there was a benefit in including a facility for navigation
over data structures, allowing construction of statements
by point and click, would be a useful addition. The idea
here was to help students to map between graphic and
textual presentations, by allowing statements to be entered
either way, and having the system construct the alternative
form. The Pointers program accepted text and showed by
highlighting the graphic interpretation. I wanted the new
program to work both ways.

In summary then I wanted my new system to extend my
old Pointers program to accept arbitrary C declarations, to
provide a capability for view navigation over a larger
display, and to allow point and click statement
construction. The features 1 wished to retain were the
absence of a command structure beyond the C language
itself and the high level of interactivity.

3. VisibleC

VisibleC is written in C, using X windows and the Athena
3D widget set. The computers used in the lab are Pentium
PC’s running Linux. They have sufficient processing
power available to permit redrawing of the entire screen
on any change. As a result the graphics programming

was quite straightforward.
QUIT
person -
EEEEEEEEEEN

name [first|S|a|m|ule| I |o|—]|—
last|Ro|gle|r|s|[e]—[—
phone| 4408
next \

name [first|B
last

Visible-C V1.1 February 1996

VisibleC is usually started from a command shell, with
the name of a file holding type and variable declarations,
initialisations and statements. On start-up it displays a
window with command buttons and a view of the data.

The command buttons are: QUIT to exit the program;
LOAD to load a file of declarations or statements; SAVE
was intended to save the current ‘machine’ state but has
not yet been implemented; and ZOOM & zoom for
magnifying and shrinking the display. The display can be
panned by ‘grabbing’ the view window background and
dragging it. Panning and zooming can also be done with
the arrow keys and +/- keys on the numeric keypad
respectively. The remaining buttons are used when
building statements.

To begin an assignment statement the user must press the
ASSIGN button. To begin a delete statement the user
must press DELETE. In either case they may then click
on the data view to build an object reference. As
components are clicked a C statement is built and
displayed near the bottom of the window. The data
structure is also highlighted to show which component is
currently being referenced. The assignment statement
may be completed with a new clause or a second
reference. Literals are entered using the keyboard. All
keyboard entry is captured by the program line widget,
and at any stage the user has the option of continuing their
statement using the keyboard. Pressing the EXECUTE
button runs the current statement.

There is a single parser used for both file and keyboard
input, and it can accept arbitrarily ordered declarations
and statements, providing only that a declaration before
use convention is followed. Declarations accepted are
typedef’s or variable declarations. Modifiers (static,
unsigned, etc.) are not supported. The C++ style of
structure declarations is used as that is what our students
have been taught. ILe.: the structure name always becomes
a type name. The basic types recognised are char, int,
and float. Array, pointer and structure declarations are
supported with standard C syntax. The program does not
provide union or enumeration declarations. The full C
syntax for initialisation of variables is supported,
including nested structures and arrays, with the exception
that basic items must be literals. The system cannot
evaluate expressions.

The statements supported are assign and delete. The right
hand side of an assignment can be a new clause, a
variable reference or a literal. In choosing delete for
deallocation and new for allocation we followed the C++
syntax, rather than C usage. Again the reason was
because this was what our students had been taught.
Assignment is treated as a statement, not an operator, and
there is no support for expressions. Array indices must be
integer literals.

Type compatibility was generally treated rather liberally.
It is possible to assign string literals to character arrays
regardless of size. This provides convenience for
interactive use. Array and record assignment is permitted.
Pointer compatibility rules, however, are stricter than in a

proper C implementation. A pointer cannot point to a
component of something, only to an entire variable or
allocated object. In this respect VisibleC behaves more
like Pascal than C,

The data view uses colour to distinguish objects of
different kinds. Variables are cyan, objects allocated in
the heap are grey, and string literals are blue. The effects
of subtly different declarations can be observed. For
example the declarations

char a[l0] = “hello”;
char b[] = “hello”;
char (*c)[] = “hello”;

generate the following display.

b
Lhle[1]ITo[s]

a
[hle[TTTTole][-T--[-]

| ———+——{h[e[I[I]o]s]

The algorithm for arranging objects on the screen is
simple. When a new object is to be placed, VisibleC
searches for gap to insert it into. The search is performed
in a left to right, bottom to top order over a rectangular
search area. When the program first starts, the rectangle
is that displayed in the program’s window. Whenever a
search for space fails the rectangle is enlarged by 50% to
the right and bottom. When a new is executed, the search
for a place to put the newly allocated heap object begins
with a rectangle whose top left corner is on the pointer
cell receiving the new pointer. For simple examples the
result of this strategy is to place variables across the top of
the display and to draw lists downwards to the right.

Automatic placement of objects is not always successful.
The system allows the user to rearrange the display to
their own satisfaction. Objects may be grabbed and
dragged about with the right mouse button.

Point and click statement construction must be done in the
same series of operations as are required in the C text.
This was deliberate. It would have been possible to allow
the user to click on any component of a data structure and
have the entire C access text generated. However, that
would have taught students very little about the C
language. For example, to generate the phrase

start->next->name.first[2]
the student must complete seven steps.

1. Click on start: highlights the contents of the variable
including the arrow representing the pointer,

2. Click on the arrow to access the target of the pointer.
The whole target record is highlighted. At this stage
the generated code is * (start).

3. Click on the ‘next’ field of the highlighted record.
Now only that field (and outgoing arrow) is highlighted
and the generated code is changed to start->next.

4. Click on the arrow.

= WUisible-CVILT

{*start=>next)

5,6, 7. Click on name field, first field, and finally the
third element of the character array to select the
character cell holding the ‘v’.

The syntax of C is unhelpful in this example. I wanted to
emphasise the step of dereferencing the pointer by having
students click on the arrow. It is a pity that the C
statement does not grow linearly with the access path. In
complex accesses the jumping between the * () and ->
notations is quite irritating. One possibility for improving
the interface would be to allow direct clicking on a pointer
field, corresponding to the -> operator. It would still be
necessary to click on the arrow (explicitly dereference the
pointer) in the case of pointers to objects other than
records.

VisibleC does very strict run time checking. Variables
which have not been initialised are displayed with
question marks in their value fields. Attempts to
dereference an undefined pointer are trapped, as are
attempts to use a NULL pointer. Copying an undefined
value is however permitted. Array bounds are also
checked.

The current implementation is not complete in some
respects. I have not managed to provide such detailed and
useful error messages as for the Pointers program. The
parser was constructed using BISON (GNU YACC clone)
and is not suitable for use on partial statements. This
means that it cannot be used in ‘instant’ mode like the
parser in Pointers. As a result the display does not
highlight while a statement is being typed. I felt that the
point and click statement entry provided a sufficient
alternative for those unsure of C.

There is not the extent of interaction between the keyboard
and graphic statement construction that I would like. It
was intended that statements begun on the keyboard could
be extended by point and click. As the implementation

currently stands, once keyboard entry starts, it must be
used to finish the entire statement. This was also a
consequence of difficulty with the parser. Finally the
system does not properly check the type specified in a
‘new’ phrase.

4. Results

At the time of writing I have used the program for an
introductory laboratory session, designed to review the
mechanics of pointer access and to get students to the
point of building their own first linked list program. They
worked through a staged exercise, first trying accesses to a
variety of data structures, and then experimenting with the
code fragments they would use to add nodes to, and
traverse, their linked list. All but 10 of the 135 students
attempting the exercise managed to write the C program
which built the linked list. My intention during the
remainder of the course is to encourage students to test
data declarations and experiment with code fragments on
the system, prior to writing C programs.

As a preliminary evaluation I surveyed the students after
their first exercise. Each student was asked whether they
thought the VisibleC program had helped them, whether
they found the user interface acceptable, and what changes
or improvements they would like. Of the 74 students
asked, 73 filled in the form.

Question 1: In learning about pointers and linked lists |
found the VisibleC program to:

Be very helpful 45
Be helpful 25
Make no difference 3
Be unhelpful 0
Be very unhelpful 0

This is very encouraging. Nearly two thirds of the
students found the program very helpful, and none
thought that using it effected them adversely.

Question 2: [found the VisibleC program to be
(choose a point on the scale):

Simple and intuitive to use 15
33
19
6

Clumsy and awkward touse | 0

Whilst the responses are generally favourable, there is
clearly room for improvement here. There were aspects of
the operation of the program which were not satisfactory.

Question 3. Are there any aspects of the VisibleC
program which you feel could be improved
or changed, or are there any additions you
would like to see made?

Of the 73 participants, 43 gave written comments to this
question and one student asked for a meeting to explain
his views. I found it very pleasing that so many took the
time to make constructive suggestions. A brief summary
of those comments follows.

4 comments requested correction of problems with C
syntax: 2 wanted the type properly checked in a new
clause; and 2 wanted semicolons to be compulsory on
statements entered interactively.

22 of the comments requested corrections or minor
improvements. Of these: 8 were about command entry,
and the relationship between keyboard and graphic
statement entry; 2 requested better file load command
entry; | asked for the addition of a command to delete all
data; 8 asked for more documentation and better error
messages; 3 wanted improvements in visual appearance

2 people reported serious problems with the program: one
found that learning to use the program took too long; and
the other had their work plan disrupted by a fault in my
installation of the program which meant that it hadn’t
worked on the day the assignment was first issued.

18 can be classified as requests for new capabilities: 3 of
these were for some output trace of commands entered; 3
for a built-in editor for declaration files; and 12 for a fuller
implementation of the C language to be interpreted by the
system.

4 concerned point and click manipulations: 1 wanted
pointer assignment by direct manipulation (i.e.: to be able
to assign pointers) by dragging from pointer to target); 1
wanted to be able to shortcut the process of building data
structure accesses by clicking immediately on the required
component; and 1 explicitly objected to clicking on the
arrow to dereference pointers.

5. Future Directions

There are a number of changes I would like to make to the
VisualC program. The most important is to replace the
LALR parser it is using. Faults in the current parser
include the limited nature of its error messages and its
inability to deal sensibly with incomplete sentences and
tokens. Improvement in the parser should make it
possible to better integrate keyboard and graphic entry of
statements. Corrections to the parser would satisfy 16 of
the requests made by students. Simple changes to the file
loading system and the documentation of the program
included in the laboratory assignment would probably
satisfy 6 more.

I am also interested in experimenting with improvements
to the display algorithms. There is room to improve the

rendering of arrays. At present all arrays are shown as
horizontally stacked boxes, and this leads to very long
narrow objects. It should be possible to reformat arrays to
display them more compactly. The other interesting area
for improvement of the display is in the automatic layout
of linked structures.

At present VisibleC simply attempts to place newly
allocated objects down and to the right of the location
receiving their pointers. In the Incense system Myers uses
an invisible layer of nested boxes to contain descendants
of an object with pointers, allowing sublists to extend off
in different directions. A similar effect could be achieved
in VisibleC by varying the starting points for placement
search with the position of the pointer field in the parent
structure. The situation in VisibleC is however more
complex than in Incense because the display must
accommodate changes in data structures. It would be
possible to move other objects about when a new item was
installed, but that seems to me to spoil the visual metaphor
to some extent. When a new object arrives, it shouldn’t
alter the ‘position’ in the heap of existing objects. A
compromise solution might be to institute a ‘redisplay’
command button which could be used to reorganise a
messy display. This would at least make it clear that
rearrangement was purely for the benefit of the observer,
and not an action of the C language.

The student responses in the laboratory and in the survey
suggest that VisualC is helpful in teaching pointer
concepts. Their responses to the usability question
suggest that it does require some learning effort however,
and offer a warning that new capabilities should be added
with great care. The ideas for improvement in the
preceding paragraphs do not increase the complexity of
the program from the viewpoint of a user—they are
intended to make perform better and interact more
uniformly.

Moving to a fully visual programming environment with
structure editor, debugging and animation facilities might
be worthwhile in the future. The positive reaction of
students to VisibleC is an encouragement to further
experimentation with visual programming systems. Some
of the suggestions made by the students are clearly
requesting a move in this direction. In my context it is not
appropriate to make such a move immediately. My task at
present, is to teach students who must go on to program in
a conventional textual environment. It is important that
they do learn about conventional C programming from the
systems they use.

A program like VisualC is helpful because it has a small
learning overhead, and assists in developing mental
pictures of data structures which students can continue to
use, either in the abstract or with pen and paper.

References

Baeker, R-M. & Marcus, A. (1990), Human Factors and
Typography for More Readable Programs, Reading, MA,
Addison-Wesley.

Chandhok, R., Garlan, D., Meter, G., Miller, P., & Pane,
I. (1991), Pascal Genie (Version 1.0), Chariot Software
Group, San Diego, CA.

Goldensen, D.R. (1989), The Impact of Structured Editing
on Introductory Computer Science Education: The Results
So Far, ACM SIGCSE Bulletin 21(3), Sept 89, pp 26-29.

Henry, R.R., WHaley, K.M., & Forstall, B. (1990), The
University of Washington Illustrating Compiler, Proc
ACM SIGPLAN’90 Conference on Programming
Language Design and Implementation, pp 223-233.

Holmes, G., Smith, T., Rogers, W.J. (1996), Computer
Concepts Without Computers: A First Course in
Computer Science.

Hopper, K., Holmes, G., Rogers W. (1991), The Magic of
Modula-2, Addison Wesley.

Hueras J.,, & Ledgard, H. (1977), An Automatic
Formatting Program for Pascal, = ACM SIGPLAN
Notices, 12(7), pp 82-84.

Myers, B.A. (1983), Incense: A System for Displaying
Data Structures, Computer Graphics, 17(3), pp 115-125.

Myers, B.A. (1986), Visual Programming, Programming
by Example, and Program Visualization: A Taxonomy. In
M.Mantei & P.Orbeton(Ed.), Proc Human Factors in
Computing Systems (CHI’86), New York, ACM Press,
pp 59-66.

Myers, B.A., Changhok, R. & Sareen, A. (1988),
Automatic Data Visualization for Novice Pascal
Programmers, Proc. IEEE Workshop on Visual
Languages, New York, IEEE Computer Society Press,
pp 192-198.

Myers, B.A. (1990), Taxonomies of Visual Programming
and Program Visualization, Journal of Visual Languages
and Computing, 1(1), pp 97-123.

Price, B.A., Baecker, RM. & Small, 1.S. (1994), A
principled Taxonomy of Software Visualisation, Journal of
Visual Languages and Computing 4(3), pp 211-266.

