THE UNIVERSITY OF

7 WAIKATO Research Commons

gty 16 Whare Winanga o Waikato

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the
Act and the following conditions of use:

e Any use you make of these documents or images must be for research or private
study purposes only, and you may not make them available to any other person.

e Authors control the copyright of their thesis. You will recognise the author’s right
to be identified as the author of the thesis, and due acknowledgement will be
made to the author where appropriate.

e You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Design Patterns:

Infrastructure and Examples

A thesis
submitted in partial fulfillment
of the requirements for the degree
of
Master of Science in Computer Science
by
Scott Crickett

supervised by

Steve Reeves

THE UNIVERSITY OF

WAIKATO

Te Whare Wananga o Waikato

2017

Abstract

Modern interactive systems can be incredibly complex, with a variety of screens,
menus, widgets, etc. available to the user. Due to this, modelling these interactive
systems can also be incredibly complex and while there are techniques to help
overcome this, it can often lead to radically different models depending on the
modeller.

This thesis explores the use of two design patterns created in order to help
simplify modelling interactive systems. In the process of doing this, we first
explore p-Charts and its semantics, which are defined in Z, in order to understand
its capabilities. We then discover a feature we name the Return feature, which we
break down into two parts, Return Home and Return Back, and create patterns
in order to concisely model them. Finally, we test these patterns and evaluate the
tools we used to create the p-charts, translate them into their Z semantics and

test them.

i

Acknowledgements

First, I want to thank my supervisor, Professor Steve Reeves. His encouraging
guidance, accurate proof-reading, helpful pointers and seemingly endless patience
have been instrumental to the completion of my research and this thesis and it is
all greatly appreciated.

I would like to thank Colin Pilbrow for his help with Z, during our mutual
research into pu-Charts semantics and as a sounding board when I needed some
quick feedback. His helpfulness cannot be understated.

I would also like to thank Sapna Jaidka for her assistance at numerous points,
as well as Dr. Judy Bowen for her help at different points, particularly in regards
to AMuZed and ZooM.

Finally, I would like to thank my my parents for being hugely supportive
during my research, as well as my little niece and nephew, whose enthusiasm and

energy is as infectious as it is exhausting.

il

Contents

1

2

3

Introduction

Background

21 7 .

22 p-Charts
2.2.1 Sequential charts
2.2.2 Decomposition operator L.
2.2.3 Feedback operator
2.2.4 Value carrying signals
2.2.5 Local variables o0

23 Tools
2.3.1 AMuZed and ZooM
232 ProZ

2.4 Design Patternso Lo
2.4.1 Callback pattern
2.4.2 Binary Choice pattern

Design Patterns

3.1 Discovering Design Patterns
3.2 Return Home pattern
3.3 Return pattern

v

S O w W

15
19
22
24
27
28
29
31
31
32

4 Testing
4.1 ZooM Modifications
4.2 p-Charts Semantics Modifications
4.2.1 'Translating decomposition re-initialisation
4.2.2 AMuZed and ZooM bugs
4.3 ProZo
4.3.1 ProZ formatting issues
4.3.2 ProZ memory issues

4.3.3 Testing the patterns

5 Conclusion and Future Work
5.1 Overview of Project Goals

5.2 Summary of Results
5.3 Future Work

Appendix A Initial Return Home Pattern Semantics

Appendix B Final Return Home Pattern Semantics

Appendix C Return Pattern Semantics

62
62
64
64
69
70
71
72
73

74
74
74
75

79

85

91

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9

Simple sequential p-chart o000 7
p-chart with more complex transitions 14
Decomposed p-charto 16
p-chart with feedbacko 20
p-chart with value carrying signals 22
p-chart with local variable 24
AMuZed user interface 29
ProZ user interface oL 30
Callback pattern 31
Binary Choice pattern o0 32
PS Dynamic Menu user interface 35
PS Dynamic Menu chart with states representing duplicate branches 37

PS Dynamic Menu chart with local variable storing previous state 39
PS Dynamic Menu chart with local variable and duplicate states . 41
PS Dynamic Menu chart with multiple local variables 45
Party segment from PS Dynamic Menu chart with Return Home

featureo 47
Simple Return Home pattern 48
Full PS Dynamic Menu chart with Return Home function added . 49
Return Home pattern applied to Party segment from PS Dynamic

Menu chart o 50

vi

3.10
3.11

3.12
3.13
3.14
3.15
3.16

Return Home pattern applied to full PS Dynamic Menu chart . . 52

Party section from PS Dynamic Menu chart with both Return fea-

tures L 54
Simple Return pattern 55
Revised Return pattern using feedback and value carrying signals 57
Final Return Home pattern 58
Final Return pattern 59
Final Return pattern applied to Party segment of PS Dynamic

Menu chart 60

vil

Chapter 1

Introduction

Model checking is a branch of formal methods that aims to formally verify and
validate finite-state systems, by creating a formal model to represent a system
and then, if possible, exhaustively checking whether this model meets a set of
requirements, which are specified as properties. These models can be represented
textually, using textual specification languages such as Z and B, as well as graphi-
cally, using graphical specification languages such as StateCharts [4] and p-Charts
9) [12].

Graphical specification languages were initially introduced in the form of Stat-
eCharts by Harel. Harel argued that reactive systems require a different ap-
proach to their specification than textual languages and that visual languages
and methodologies are the best way to specify them. This marked the beginning
of research into graphical specification languages, which led to the creation of
other similar languages such as Mini-Statecharts [7] and u-Charts.

The levels of complexity within modern user interfaces means that creating
models at a suitable level of abstraction that are reasonably sized, readable, and
therefore usable, is very challenging. In response to this issue, the idea of using
design patterns to simplify and make models more readable was offered [2].

Software design patterns are reusable methods that can be applied to com-

monly occurring software design problems [5]. They have been used within soft-
ware design since 1987 but it was not until Gamma, Helm, Johnson and Vlissides
published the book Design Patterns: Elements of Reusable Object-Oriented Soft-
ware [5] that the idea of applying patterns to computer programming started
to gain popularity. Their use within interface design analysis and verification,
however, has been limited.

The use of design patterns to model interactive systems is an area Bowen and
Reeves explored in 2015 [2]. Their goal was to make certain patterns explicit in
the hope that a body of known patterns could then be developed in a similar
manner as programming patterns. They introduced two patterns, the Callback
pattern and the Binary Choice pattern, while formalising them and using them
within examples.

In this research project we aim to continue the work of Reeves and Bowen to
explore design patterns within graphical models in an attempt to more elegantly
model complex systems. Using the u-Charts semantics, we then intend to inves-
tigate and prove properties within these design patterns by translating them into
the Z specification language. We will also evaluate the tools, AMuZed, Zoom and
ProZ, used within this process.

The rest of this thesis is structured as follows: in chapter two we discuss the
basics of the specification languages Z and p-Charts, in order to clarify aspects
of these languages that will be used in later chapters; in chapter three we discuss
the Return Home and Return Back design patterns, as well as the interpretations
of pu-Charts made to model them; in chapter four we discuss the testing of the
design patterns, as well as the tools that have been used as part of the testing

process; and finally, we conclude in chapter five.

Chapter 2

Background

The goal of this chapter is to provide the background knowledge that is required to
understand the content within the subsequent chapters. It provides overviews of
the specification languages Z and u-Charts, as well as the tools AMuZed, ZooM
and ProZ. It also discusses the prior work on using design patterns to model

interactive systems.

21 7

7 is a formal specification language based upon set theory and first order predicate
logic [3] widely used within the formal methods community to describe and model
computing systems. Specification languages differ from programming languages
in that they are used to describe systems, not produce executable code. A typical
Z-modelled system will consist of a state space, which represents the state of the
system, and operations that change said state. Operations are represented using
schemas, which consist of declarations and predicates. 7 uses syntactic sugar
in order to allow the reader to focus more on the specification than the logic.
As an example of this, there is an implicit logical AND that combines multiple

predicate lines. The Z specification of a simple counter system is shown below to

demonstrate.

_ Counter

count, max : N

count < max

The Counter schema shown above shows the state space of the counter. First
it declares the observations, which is a name we use for the parts of the state
that can be observed, count and maz as natural numbers. The predicate section
follows, which constrains the observation count to be less than or equal to the

maximum maz within this state space.

_ InitCounter

Counter’

count’ =0

maz’ = 100

The InitCounter operation schema is shown above. This schema first declares
that it involves both the declaration and predicate parts of the primed Counter’
state space and then initialises the primed observations count’ and maz’. This
priming convention is used to denote the next state of the system, so the Counter’
space represents the next state of the Counter state space and the maz’ observa-
tion represents the next state of the max observation. As mentioned above, there
is an implicit logical AND combining both initialisations, making it equivalent to
count’ = 0 A maz’ = 100. If these values did not satisfy the predicate within
the state space, i.e. count < max, the counter system would not be able to be

initialised.

__Increment

Counter

Counter’

count’ = value + 1

The above schema shows the Increment operation schema. It declares that
the schema uses the Counter state space, as well as the primed Counter’ state
space. The primed count’ observation is defined as the sum of the current count
incremented by one every time the increment operation occurs, so long as the
predicate within the Counter and Counter’ state space is true.

Note that within the Increment schema, an error has been made by leaving the
primed maz’ observation without a value. Within Z, if an observation within the
state space has been left unconstrained without a value, then it may potentially
be any value within its definition so long as it satisfies the predicate. Within
the Increment schema, this means that the maz’ observation may change to any
natural number so long as the predicate count’ < maz’ is satisfied. This can be
used deliberately if there is an unknown factor within a system but in this case,
the error can be fixed by adding the line maz’ = maz to the Increment schema’s

predicate as can be seen below.

__Increment

Counter

Counter’

count’ = value + 1

maxr’ = max

2.2 p-Charts

p-Charts are a state diagram variant [13] with semantics given in Z [12] [14],
involving states and transitions, and created with the assumption that sets of
input signals will appear from the environment from time to time. One of the
states is called the starting state and denotes the state the system begins in.
Transitions occur only when sets of inputs appear and all resulting actions occur
instantaneously alongside them. It is labelled with a pair, the guard and an action,
written in the form guard/action.

The guard is a conditional expression, which usually involves input signals,
but can also include local variables and feedback. If the guard is left empty, we
consider this syntactic sugar for a TRUE value, which means that it may occur,
whatever the input signals are.

An action can consist of sending an output signal, changing a local variable
or both. p-Charts also include a number of other features that set them apart,
such as composed and decomposed charts, as well as the aforementioned local
variables, value carrying signals and feedback. Like the guard, the action can be
left empty, which we consider syntactic sugar for no action occurring other than
the transition to the new state. If the action is empty, we also do not include the
slash.

This section will focus on sequential charts, decomposed charts, local variables,
feedback and value carrying signals, as they are the features that are used within

this paper. For more information on composed charts, see [12].

2.2.1 Sequential charts

Figure 2.1 shows a simple sequential u-chart. It contains two states, the start state
X and the state Y, and a transition from state X to state Y. The transition is

labelled a/b. It transitions from state X to state Y when the input signal a is

received, while outputting the signal b.

Figure 2.1: Simple sequential p-chart

The semantics of pu-Charts consists of generic schemas and definitions that
give the semantics of any pu-chart in Z. These definitions are used by machine
translation tools, such as ZooM. The tool ZooM will be explained below but it is
a tool that translates p-Charts into the Z semantics. When it does this it creates
numerous schemas to describe the chart, as well as higher level system schemas
which are used to receive input and output from the environment. It is usually
simple to recognise which part of the system a schema is associated with, as the

chart name will be included within the schema name in subscript.

luState n=A ‘ AX ‘ AY

Signal ::= Sb | Sa

Seen above is the first detail of the semantics: the system type definitions.
The first, jig,,,., is a type which is defined, using the ::= symbol, to consist of all
charts and states within the system. The states have the name of the chart they
are part of prefixed to their state names. For example, the state Y appears as
state AY because it is part of the chart A. In this case, the pug,,,. type consists
of the chart A, as well as the states AX and AY. The second type, Signal is a
set of the input and output signals used within the chart and, as they are signals,
are denoted by a capital S before the signal name. In this case, the Signal type

consists of the signals Sb and Sa.

statesy = P pig, ...
inputly : P Signal
outputl, : P Signal

statesa = {AX,AY}
inputly = {Sa}

outputly = {Sb}

Above is the first schema of chart A, showing chart A’s global constants. These
global constants are used throughout the system and are used as types. statesy
is a set of the states within chart A. It is has a power set type, denoted by
the symbol P, of the pg,,,. type previously defined. A power set is a set of all
possible subsets of a type, as well as the set itself and including an empty set. For
example, the power set of the ug,,,. type would consist of the subsets {}, {A},
{AX}, {AY}, {A AX Y} {A AY), {AX,AY } and {4, AX, AY }. statesy is then
constrained to the {AX, AY'} subset, as these are the two states that are part of
chart A.

inputly and outputl, are similar. inputly is a set of the input signals within
chart A, while outputl, is a set of the output signals within chart A. They are each
declared as having power set types of the Signal type and are then constrained.
inputly is constrained to the signal Sa, as that is the only input signal received
by chart A. outputls is constrained to the Sb signal, as it is the output signal

that can be sent by chart A.

Charty

(cA . statesy

The schema above shows the state space of chart A. It has a single observation,

ca, which represents the current state of chart A.

*]m'tA

Charty

CA:AX

The Init, operation schema is shown next, which specifies how chart A is
initialised. It declares that it includes the Chart, state space and then initialises

the current state of chart 4 to AX.

_AX
Charty

CA:AX

_AY

Charty

CA:AY

The two schemas shown above are schemas representing the two states within
chart A, AX and AY. Both declare that their respective states are the cur-
rent state. The transition schemas, declared later, include these schemas. If a
transition schema includes schema AX, the start state of that transition is state

AX.

AX

AY’
active : P g, ..
14! Painputly

04! : Poutputiy
active(A)
Sa € iy?

OA! = {Sb}

Above we see dxy operation schema, which is the schema for the transition
labelled a/b within the example. The system transitions from state AX to state
AY when the input signal Sa is received, outputting the signal Sb in the process.
The lower case delta symbol, ¢, is used to denote some operation schemas, in this
case the transition from state AX to state AY. This symbol is then followed by
yy because the schema transitions from state AX to state AY.

Within the declarations, we see that the AX schema is included. This means
that the start state of this transition is the state AX. The primed AY”’ schema
means that the next state of the chart after the transition occurs is state AY.

The next declaration is the observation active, which has a power set type of
the g, type. Combined with the predicate, active(A), this observation means
that chart A is the active chart. This observation is used within the top level of
the ASys schema and we will detail this further within that section.

The last two declarations are the input signals, 147, and output signals, 04!.
The input observation will either be the signal Sa or there will be no signal. The
guard of 0 xy within the example p-chart was a, due to this the predicate includes
the line Sa € i47, which means that for transition dxy to occur, the input signal

Sa must be received. The output has a power set type of outputl, which means

10

that we will either output no signals or the signal Sb. The action of dxy within

the example p-chart was b, so the predicate includes the line 04! = {Sb}.

€A

ACharty

active : P g, ..
147 : Pinputly

o4! : Poutputly
active(A)

CA:CA

= (AX A Sa € ZA?)
oal = {}

The above schema is the €4 (epsilon) operation schema for chart A. The
epsilon operation is intended to account for any steps within the chart when no
transition occurs. As such, this schema represents the chart being idle, where it
is active but no transitions occur.

The first declaration of the epsilon schema is A Charts. The upper case delta,
A, is used to denote a state change to Chart,. If this is used, we know that there
may be changes to the observations within the state space. In this case, we can
see the predicate ¢/, = c4 below. This means that the current state of chart A,
ca, will remain the same within the next state of the system.

The next declaration is active, which is declared and constrained exactly as it
was in the dxy operation schema.

After this, the input signals, 747, and output signals, 04!, are declared as
having power set types of type inputly and outputls, respectively. Within the
predicate, we see that the output signals are constrained to an empty set, so there
cannot be any output signals being sent.

This schema may occur when no other transitions within the system may

11

occur. There is only one transition within this example p-chart and that is the
dxy transition. In order to ensure the epsilon operation schema occurs when that
transition will not occur, we include the line = (AX A Sa € i47?) within the

predicate. This means that the epsilon schema will only occur when 0 xy will not.

_ Tactivey

=Charty

active : Ppg, .
o4l : Poutputly
- active(A)

oa' = {}

Above we see chart A’s inactive operation schema, named Ilactivey. This
schema is intended to account for when the chart containing this transition is
inactive.

The first declaration of the inactive schema is ZCharts. The upper case Xi,
=, is used to denote when there are no changes being made to the state. As such,
this means that the inactive schema makes no changes to the observations within
the Charty state space and the current state of the chart will remain the same
when the inactive schema occurs.

Following this, active is once again declared having a power set type of the
Ksiare type. Within the predicate, active(A) is negated. As the name of the
inactive schema implies, this is because this operation schema will only occur
when chart A is inactive and this predicate ensures that.

Finally, like the epsilon schema, the inactive schema declares and constrains
the output signals, ensuring that it does not send any. It is worth noting that there
are no input signals declared or constrained. This is because they are irrelevant

to chart A while it is inactive.
04 = Oxy V lactivey V €4

12

The predicate above is the final chart A schema. It shows the main chart A
operation schema, d4. This schema is intended to be the main operation schema
for a chart, with every other operation schema, such as the transitions, epsilon
and inactive schemas, available as possibilities within it. As such, it is defined as
the disjunction of all of these operation schemas, in this case the dxy, lactivey
and €4.

Following the chart A schemas, we have the top level system schemas. In this
case, the schemas are named ASys, with the suffix Sys added to the chart name.
These are used to receive input and send output every time sets of inputs are

received from the environment. It also ensures that the main chart is active.

[m'tASys
(]m'tA

The first ASys schema is the Inityg, initialisation schema. This schema is

used to initialise all charts within the system, which in this case is simply chart

A, so it includes the Inity schema within it.

__ASys
ACharty
147 : P Signal

04! : P Signal

Jactive : Ppug, .. ®

active(A) N 04

The second and final ASys schema is the top level operation schema named
simply ASys, which is the main operation schema of the entire system. Similar to
the way the d4 operation schema gathers the various operation schemas within its
respective chart, this schema gathers all main operation schemas from the level

below it. In this case, it is only 4.

13

Figure 2.2: p-chart with more complex transitions

In addition to the simple sequential chart seen in Figure 2.1, u-Charts also
provide support for more complex transitions, such as transitions that loop back
to the same state and transitions that make use of more than one input signal.
An example of this is shown in Figure 2.2.

This chart features two transitions, one of which is a loop transition which
starts and ends on the same state. Within the guards of the transitions, we see
that they use AND, denoted by the dot symbol, and OR, denoted by the plus
symbol. An AND will be true only if both pieces of the guard are true, whereas

an OR will be true if one or both pieces of the guard are true.

—Opu

AU
AU’
14! Painputly
o4l : Poutputiy

active : P g, ..

active(A)
(S(l € 147
A Sb € iA?)

oal = {}

The semantics of these transitions are very similar to the transition operation

14

schema seen in the previous example, as can be seen in the semantics of the
a.b loop transition above in dyy. This operation schema features two points of
difference in comparison to the dxy transition schema detailed earlier. The first
is that due to this transition being a loop transition from state U, or in this case
state AU due to the chart name being prefixed to the state name, back to the
same state. As a result, the name of the schema, &y, features the name of the
state twice and the current and next state within the declarations is said to be
the state AU.

The second point of difference is the predicate (Sa € i47 A Sb € i47). Unlike
p-Charts, Z uses the A symbol as its logical AND and as such, this predicate can
only be true if both the Sa and Sb signals are sent to the system as input signals.

The §yy is not shown but uses Z’s logical OR, V.

2.2.2 Decomposition operator

The decomposition operator is a feature of p-Charts that consists of a chart that
exists within another chart, as seen in Figure 2.3. We name these two charts the
parent and child. The child chart is represented within the parent chart by a
rectangular state, which features the same name as the child chart. We call this
the decomposed state. In Figure 2.3, this can be observed in the parent chart,
Parent, which features the decomposed state Child, and then the child chart,
Child, which obviously features the same name as the decomposed state. Both
the parent and child charts are initialised at their starting states: state X in the
Parent chart and state Z in the Child chart. Input is shared by the entire system
(i.e. both charts Parent and Child) but transitions will only occur when a chart
is active and the Child chart is only active when the decomposed state Child is
either the parent chart’s current state or will be its next current state.

When a chart is inactive, the semantics of p-Charts defines it so that the

chart will retain its current state until it becomes active again and a transition

15

A
a/b
Y
~
e/f
Child
c
d

Figure 2.3: Decomposed p-chart

may occur within it. Using Figure 2.3 as an example, if the current state of the
Parent chart was the decomposed state Child and the current state of the Child
chart was state W, the Child chart would become inactive if the e/f transition in
the Parent chart occurred and it transitioned to state X. Even if the input signal
d were then received, the Child chart would remain in state W until it became
active again.

The Z semantics of decompositions are more complex than a sequential chart.
Both the Parent and Child charts are translated in a similar fashion as chart A
in the previous example but there are additional schemas added to the semantics
to detail the relationship between those two charts. The name of these schemas
within this example is ParentChildDec, which is named by combining the name
of the parent and child charts together and then adding the Dec suffix to the end,

indicating that these schemas are related to the decomposition.

16

statesparentChildDec -]P)p“State
7;’n‘put[ParentChildDec P Szgnal
outputlparentchilivec : P Signal

statesparentChildDec = StAt€Sparent U statescnig

inPUtIParentChildDec = Z‘nput]Parent) inPUt]Child

OUtpUtIParentChildDec = OUtPUt]Parent) OUtpUt[Child

Above we see the first ParentChildDec schema. Like the chart schemas shown
earlier, it shows the declaration and constraint of global constants. The three
constants are very similar to the example shown previously, with the states, input
and output all declared. The predicate, however, is very different. Here, instead
of constraining them to specific values, we are using the union, U, to constrain
each constant to the combination of the relevant Parent and Child constants.
As such, if we assume statespyrens = {ParentX, ParentChild} and statescpyg =
{ChildZ , ChildW }, statesparentchiapee Would then consist of {ParentX, Parent-
Child, ChildZ , Child W }.

ChartParentChildDec

ChartParent

Chartcpig

]nitParentChildDec

InitParent

Initcnig

The next two schemas are the Chartpgrenichiiapee and Initperentchilapee Schemas.
These schemas are very simple in that they only include the equivalent Parent and
Child chart schemas. The result of this is that Initpsrentchiiape. Schema initialises

both charts, while Chartparenichiapec is the combined state space of both charts.

17

— 5ParentChildDec

A ChartParentChildDec

'];Parent ChildDec 7P /énp'U/t[Parent ChildDec

OPa'rentChildDec! P OUtpU/t]ParentChildDec

actwe : Ppg, ..

((ParentChild \/ ParentChild") A active(Parent)) < active(Child)
= iParent?7 7;C’hild?a OParent!a OChild! P SZgnal e

iParent? - Z'ParemEC’hildDec? N iHPUt]Parent A

iChild! = ParentChildDec | () iNPUtlcpig N

OParentChildDec! = OParent! U OChild! A

O parent N\ OChild

Finally, we see the last ParentChildDec schema above, the 6 purentchiiapec Oper-
ation schema. This is the schema that details the relationship between the Parent
and Child charts and, as a higher level schema than the dpgen: OF dcpig, 1S then
included within the system operation schema, which in this case is ParentSys.

Many of the declarations within this schema are similar to previous examples.
First it declares that there may be state changes within this schema. Then it
declares the input, output and active state.

The predicate, however, is very different. The first line concerns whether the
Child chart is active. It uses an if and only if, <, to ensure that both sides have
the same value, whether true or false. If one side is true while the other is false
the predicate will be false and this operation schema will not be able to occur.
As such, the right hand side of the if and only if operator, which states that the
Child chart is active, can only be true if the left hand side is true. The left hand
side will be true if both the Parent chart is active and the decomposed state
ParentChild is either the current state or the next state of Parent chart. As the

System schemas already define the Parent chart as always active, this means that

18

whether the Child chart is active depends entirely upon whether the decomposed
state ParentChild is the current or next state. If it is not then the Child chart
must be inactive.

The rest of the predicate within this schema is a conjunction. First it states
that the input and output observations of the Parent and Child charts exist as
having power set types of the Signal type. These can be considered the same as
each of these charts operation schema’s input and output observations. It follows
this by using the intersection, N, to ensure that any input received by either chart
must be part of the respective chart’s input global constant. This essentially filters
the input the 0 perentchitapee Operation schema receives down to the relevant charts.
This is followed by the combination of the output received from both Parent and
Child charts using the union to form the ParentChildDec’s output. Then finally,

the delta operations schemas of both Parent and Child schemas are included.

2.2.3 Feedback operator

The feedback operator is a feature of p-Charts that allows us to instantaneously
feed a set of designated output signals back into the chart as input signals. As
such, we can use this feature to send signals between multiple charts within a
composed or decomposed chart.

The graphical representation of the feedback signal set is presented in a box
located below the p-Chart. This box is used to display the chart’s feedback,
hidden and filtered signals, the latter two of which are u-Charts features detailed
in [13], but for our purposes, we only make use of the feedback signals. A form
of syntactic sugar is used to help simplify this. If there is only one set of signals
within the box, this means that there are no hidden or filtered signals within this
chart and the set must be the feedback signal set.

Within a decomposed chart, the relationship between the parent and child

charts results in some unique rules in regards to the feedback operator. Both the

19

parent and child charts have their own sets of feedback signals but only the signals
included within the parent chart’s feedback signal set will be received as input by
both charts. As such, the child chart will receive feedback signals from the parent
chart even if these signals are not included within its own feedback signal set but
in order for the child chart to send a feedback signal to the parent chart, this
signal must be included within both the parent and child charts’ feedback signal

sets. An example of this is shown below in Figure 2.4.

Parent

a/b ;
—» Child .
b
—>
{o}

Figure 2.4: p-chart with feedback

The feedback signal set located at the box at the bottom of the Parent chart
contains the signal b, meaning that if the Parent chart outputs the signal b,
it will feed this signal back into both the Parent and Child charts as an input
signal. Using this example, if we were to receive the input signal a, the transition
labelled a/b would occur. This transition would both make the decomposed chart
active and output the signal b. This signal which would then be fed back into the
system as the input signal b and would be received by the Child chart. The Child
chart would transition to state Z due to this. All of these actions would occur
immediately, within a single step.

Shown below are some excerpts from the semantics of this chart.

U pgrent - P Signal

\IjParent = {Sb}

Seen above is the declaration of the Parent chart’s feedback constant, which

we represent using the ¥ symbol. This is then constrained to the signal Sb, as

20

this is the only feedback signal within the chart.

Sa € iPaTent? U (OParent! N \IlParent)

OParent! = {Sb}

Above we see the two relevant pieces of predicate from the Parent chart’s
transition from state X to the decomposed state Child.

With the addition of feedback, the input signal predicate is extended to take
the local chart’s feedback signals into account. We determine which output signals
have been fed back into the chart by getting the intersection of the output and
feedback signal sets and then combine this with the input signal set to check
whether the input signal Sa has been received. This extension to the predicate
is redundant within a decomposition’s parent chart due to the ParentChildDec
operation schema predicate detailed below but in a sequential or child chart, this
is how output signals are fed back into the chart.

In this same transition, we also include the signal Sb as output, which will

later be fed back into the system.
Sb € icniia? U (0cniia! NV cnita)

In the Child chart, we see the above predicate in the transition from state Y

to state Z. In this case, the feedback signal Sb will be received as an input signal.

V parentChildpec © P Stgnal

\I/ParentChildDec = {Sb}

The remaining changes are made within the ParentChildDec schemas, which
define the relationship between the Parent and Child charts. We see the first
change above, where the feedback constant is identical to the Parent chart’s feed-
back constant. This is because the Parent chart is the main chart within the

system, so only signals listed within its feedback set may be sent between the

21

two charts. If the Child chart had its own feedback signals, these would not be

included within this feedback set.

Z'Paremf? = (iParentChildDec? U (OParentChildDec! N \I/ParentChildDec)) N iHPUtIParent A

ichitd? = (iparentchitapec! U (0parentchitibec! MV parentchitdbec)) N inputlcpiig

Finally, within the ParentChildDec operation schema, the input signals of both
the Parent and Child charts are defined as a combination of the input that has
been received from the environment and the output signals that are meant to be
fed back into the charts. This means that if the Parent chart outputs the signal

Sb, this schema will ensure it will be received by both charts as an input signal.

2.2.4 Value carrying signals

Value carrying signals are signals that contain values within them. These signals
can be used to help simplify charts, as related signals can be grouped together
as possible values of a single value carrying signal, rather than be represented by
multiple different signals. We can also send value carrying signals as output and

use them in conjunction with the feedback operator and local variables.

A
sig=1
a/sig:=2

Figure 2.5: p-chart with value carrying signals

Seen in Figure 2.5 is a chart containing the value carrying signal sig, which is
used within both transitions. In this case, we want the values this signal carries
to be of an integer type and so we make sure our use of it is restricted solely to

integers. The first transition has a guard of sig = 1, so for this transition to occur,

22

stg must be received containing the value 1. The second transition has sig := 2
within its action, which means that when this transition occurs, it outputs sig
with the value 2.

The semantics of value carrying signals is slightly different to a standard signal,

which can be seen below in the system’s Signal type declaration.
Signal ::= Sa | Ssig(Z))

It is declared in a similar fashion as standard signals, with the S prefix added
to the signal name, but is followed by its value type within double angle brackets.
In this case, its value is of the integer type but this type depends on what values

it has been set to within the p-Chart.

inputly = {Sa} U{n:7Z e Ssign}

outputly = {n : Z e Ssign}

The next addition is to the chart’s input and output global constants. The
value carrying signals in both are defined in the same way, with the integer n
declared such that Ssig contains n. They are defined in a separate set than

standard signals because of their differences.
Ssigl € 147

Above we see the input predicate from the example’s first transition, which
means that for that transition to occur, the signal Ssig must be received containing

the integer 1.
04! = {Ssig 2}

Last, we see the output predicate of the example’s second transition. When
this transition occurs, this means that the signal Ssig will being sent as output

containing the integer 2.

23

2.2.5 Local variables

Local variables are used within pu-Charts to store a value which may then be used
within a transition’s guard or action. The use of this can be seen within Figure
2.6, where the local variable var is initialised in the top right corner to its default
value start. This local variable is then used within both of the chart’s transitions,
demonstrating how local variables can be used within the guard and action. The
first transition, labelled a/var := stop, occurs when the state X is the current
state and the input signal a is received. The local variable var is then set to the
value stop within the action of this transition. The second transition, labelled
var = stop/var = start, then occurs when the current state is Y and the local
variable var is stop. As the local variable var was set to the value stop within the
previous transition, this means that the transition may occur straight after the
previous transition occurred. Then within the action of this transition, the local

variable var is set to the value start.

LV [var=start]

a/var:=stop

var=stop/var:=start

Figure 2.6: p-chart with local variable

The inclusion of local variables to a chart adds a few new points of details to

the Z semantics, which is detailed below.
FValvar ::= stop | start

We first see the local variable type definition, which defines a type F'Valvar to
either be the value stop or the value start. This is named F'Valvar by prefixing

FVal onto the local variable name, var.

24

Variablesry

(Vovar : FValvar

Next is the Variablesr schema, which declares the local variable Vvar of type
FValvar. This schema is used to declare any local variables to be used within the
state space. Similar to the local variable type, the names are created by prefixing

V onto the local variable name.

Chartry

cry . statesry

Variablesry

Above see the Chartry schema, which is the state space of the chart. This
declares both the current state and the Variablesry schema, which in turn adds

all local variables declared within it to the state space.

—]nitLv

OhCLTtLV

CLy = LVX

Vvar = start

Next is the Init;y schema, which as has been explained before, initialises the
chart. The only difference from previous examples is that it initialises the local

variable, Vwar, is initialised to the value start, as it was in Figure 2.6.

25

—Oxy
LVX
LvVYy’'

A Variablesry
ipy? P Signal
actwe : Ppg, ..

ory! : Poutputlyy

active(LV)
Sa € Z.LV?
Vvar' = stop

opv! = {}

Above is the dxy operation schema, which is the semantics of Figure 2.6’s first
transition, labelled a/var := stop. There are two parts of this schema that are
relevant to local variables. The first is that the Variables;y schema is declared
using the upper case delta symbol, indicating that there will be changes to the local
variable observations within it. The second is the line Vwar’ = stop within the
predicate, which sets the primed local variable Vwar’ to the value stop, meaning
that the local variable Vwar will be set to stop in the next state of the system.

This is an accurate translation of the transition’s label a/var := stop.

26

—Oyx
LVY
LVX'

A Variablesry
actwe : Ppg, ..

ory! - Poutputlyy
active(LV)

Vvar = stop

Vvar' = start

orv! = {}

Finally we see the dyx operation schema and the Z semantics of Figure 2.6’s
second transition, labelled var = stop/var := start. Like the previous example, it
indicates that there will be changes to the local variable observations within the
Variablesry schema using the upper case delta symbol. Then within the predicate,
it first ensures the current value of the local variable Vwar is stop and sets the
primed local variable Vwvar’ to the value start. So in order for the transition to
occur, the current value of Vvar must be stop and then after the transition occurs,
Vwar will be set to the value start.

While not shown, an additional change is made to the e,y and lactivery
schemas, adding the predicate Vwar’ = Vwar. This ensures that the value of the

local variable Vvar remains unchanged if either of these operation schemas occur.

2.3 Tools

Within this section, we will talk about the tools AMuZed, ZooM and ProZ.

27

2.3.1 AMuZed and ZooM

AMuZed and ZooM are tools designed for use with p-Charts and in conjunction
with one another. AMuZed is a graphical editing tool designed with the intention
to create, save, edit and print p-charts. It was used to create the p-charts that
appear within this paper. ZooM is a tool that is used to convert p-charts into Z
using the semantics that defines pu-Charts, first by checking that the syntax of the
chart is correct and then translating it into a IXTEX-formatted Z specification.

AMuZed and ZooM were both developed in Haskell in parallel with one an-
other, so their source code is integrated together into a group of source files.
Their graphical user interfaces were created using Tcl/Tk via an interface named
TclHaskell. Unfortunately, support for TclHaskell has since been abandoned and
it is no longer compatible with modern operating systems, so they can only be
run from a virtual machine that has been specifically created to run them. Efforts
to re-engineer both tools have been made but neither are at a point where they
can fully replace them.

AMuZed is shown in use in Figure 2.7. The tool bar shown offers a number of
options, such as creating a new chart, opening and saving charts with AMuZed’s
.muz file extension and outputting the chart as an image, and tools, such as
creating new states, transitions and adding a local variable. These tools are used
to build the p-charts. The window shown on the right hand side displays the
graphical model. In addition, each decomposition that exists within the model is
shown in an additional window.

ZooM features a minimalist interface. It is comprised of an open file dialogue,
which the user can use to select the .muz file they want to translate into its Z
semantics, and an error dialogue, which will display any errors encountered during

translation.

28

File

Parent

(g

Child

il =)
=15)

28
T

Figure 2.7: AMuZed user interface
2.3.2 ProZ

ProZ is an extension to the ProB Animator and Model Checker tool [10], which is
an animator, graphical visualiser, constraint solver, simulator and model checker
for B [1], a formal specification language similar to Z. ProZ uses the Fuzz type-
checker [15] to typecheck and extract the formal content from Z specification files
when they are loaded into ProB. It then parses this content and translates it into
B [10], allowing ProB to simulate it as if it were a B specification.

Figure 2.8 shows the user interface of ProZ, which consists of a toolbar at the
top and four panes. The top pane is a text editor we call the specification editor,
which allows us to read and edit Z specifications. Changes that are made are not
immediately simulated by ProZ, instead the file needs to be saved and reopened
using an item in the File menu, in order for it to parse and simulate the spec-
ification. The bottom three panes, from left to right, are the State Properties,
Enabled Operations and History panes. The State Properties pane lists the cur-
rent values of the system’s state observations and constants, providing the user
with the current state of the system. The Enabled Operations pane provides a list
of operations that are possible in the current state of the system. Some of these
operations require inputs, in this case ProZ provides possible input observation
values that the user can choose. This means that the same operation may appear

within the Enabled Operations list multiple times. In p-Charts the input signals

29

x ProZ: 1.7.0-final: [VCSig3ProZ.tex]

File Edit Animate Verify Analyse Visualize Preferences Debug Files Help

\begin{zsection} {Declarations\ }

\begin{zed} J
Fsvaflprev ::= M\\
\MicroState ::= Parent | Child | ParentChildDec | ParentDec
\also
States ::= \ParentChild | \ChildStateOne | \ChildStateTwo
\also
Signal ::= Sa | Sval \ldata FSvalprev \rdata
“end{zed}

\end{zsection}
\begin{zsection} {Parent\ 1}

\begin {axdef}

Ve oo Ve oo

Ln 50, Col 4, Mode z

[oK] State Properties ke, 3| £ Enabled operations (8) 4|] History (6)

invariant_ok \deltaParentChildDec({})—>{} — [ParentSys({Sa})—>{Sval(M}} M
\fParent = {Sval(M)} deltaParentChildDec({Sval(M}})->{} ParentSys({Sa})->{5val(M)}

\inputiParent = {Sa} deltaParentChildDec({Sa})->{Sval(M}} ParentSys({Sa})-=>{sval(M)}

outputiParent = {Sval(M)} deltaParentChildDec({Sa,Sval(M)})—>{Sval(M}} ParentSys({Sa})—>{Sval(M)}

\statesParent = {\ParentChild} ParentSys({})—>{} INITIALISATION(\cChild =\ChildStateOne, \cParent=\ParentChild)
\inputIChild = {Sval(M)} ParentSys({Sval(M)})—=>{} SETUP_CONSTANTS (\fParent={Sval(M)} \inputiParent={Sa} \outp
\statesChild = {\ChildStateOne,\ChildStateTwo} Parentsys({Sa})->{sval(M)}

fParentChildDec = {Sval(M)} ParentSys({Sa,Sval(M)})->{Sval(M)}

\inputiParentChildDec = {Sa,Sval(M)}

outputiParentChildDec = {Sval(M)}

\statesParentChildDec = {\ParentChild.\ChildStateOne \Childstate]
cChild = \ChildStateTwo

cParent = \ParentChild

I Bl |

Figure 2.8: ProZ user interface

are received from the environment and may or may not be user controlled, so the
interpretation in ProZ is slightly different from the p-Charts interpretation.

The resulting output of each operation is also shown in curly brackets following
an arrow. Each operation will be shown in a colour depending on their outcome,
and we are primarily focused on the blue, green and black operations. Blue
operations make no changes to the current state of the system, green operations
lead to a new, unexplored state of the system and black operations lead to a
different but previously explored state of the system. The History pane provides
a list of the operations that have occurred to reach the current state of the system
and can be used to move back to a previous state.

Using ProZ, we have the ability to simulate Z specifications and explore the
effect operations have on the state of the system. This allows us to test whether
specifications we have created work as intended or have any bugs, by extensively
exploring each possible operation and ensuring the system’s observations are as

we intended.

30

2.4 Design Patterns

The use of design patterns to graphically model interactive systems was first
introduced in the paper Design Patterns for Models of Interactive Systems by
Bowen and Reeves [2]. Within this paper, Bowen and Reeves defined two patterns:

the Callback and Binary Choice patterns.

2.4.1 Callback pattern

The Callback pattern was created to model the behaviour of a dialogue box that
offers two choices, as well as the ability to cancel and return to the user’s previous
state. It uses a local variable to store the user’s previous state while transitioning
to the dialogue box and then uses that variable to determine which state it will

return to if cancelled. An example of this pattern can be seen in Figure 2.9.

CallbackPattern [prevState=null]

¢ Stopped

Ok
Cancel.prevState=a2 Logoff/prevState:=29

Logoff/prevState=a2 Cancel.prevState=a0

aqcel.prevState=al Logoff/prevState:>&1

Figure 2.9: Callback pattern

This Callback pattern example is a model of a logout confirmation dialogue.
The Activity0, Activityl and Activity2 states represent possible windows within
the interface, the Stopped state represents the logged out state within the system

and the Proceed state represents the dialogue box where the user is asked to

31

confirm whether they want to log out. The prevState local variable is used to
store a value representing the previous state, which is then used to determine
which state it will return to if the logout dialogue is cancelled.

Normally, a design similar to the logout dialogue can lead to issues for a
modeller, as it requires the logout dialogue to be available from every state within
the system and be able to return to the previous state if the dialogue is cancelled.
As such, a modeller may choose to model the logout dialogue individually for
each state within the system but this is an unnecessarily complex solution which
leads to a much larger state space. The Callback pattern is a much more suitable

solution.

2.4.2 Binary Choice pattern

The Binary Choice pattern was created to model the behaviour of an interactive
system where the user inputs something and the part of the system they end up
is dependent on what they input. We model this within the pattern using a value

carrying signal which is used to represent the system’s behaviour having received

the input.
BinaryChoicePattern
Login.correct=false Login.correct=true
<>
Retry Logout

Figure 2.10: Binary Choice pattern

Figure 2.10 shows an example of the Binary Choice pattern within a model of
a login window, where the Login state represents the login window. If the login
details are correct, a signal correct will be received carrying the value true and

will transition to the MainProgram state, which is self explanatory. If the login

32

details are false, correct will be received carrying the value false and the system
will instead transition to the LoginFail state, where an error message may be
received.

While there are other possible ways to model this system and this pattern
may be more complex than some solutions, it accurately reflects both how the

user interacts with the system and how the user interface behaves.

33

Chapter 3

Design Patterns

In this chapter we discuss finding design patterns and then lay out the Return

Home and Return patterns.

3.1 Discovering Design Patterns

Modern interactive systems are often incredibly complex, which, in turn, makes
modelling these systems incredibly complex as well. In order to manage this
complexity, we use a technique called abstraction to model at a level of detail we
find relevant, while suppressing the more complex details below this level. We
call these levels of detail, the levels of abstraction.

During our research, we found that one of the most important parts of dis-
covering design patterns is finding the appropriate level of abstraction to view
systems at: one that ensures the model retains enough detail to capture all the
important elements of a system’s design, while avoiding adding excessive detail
that may hamper discoveries.

One of the systems we first attempted to model in our work to discover design
patterns was the PlayStation 4 user interface, named the PlayStation Dynamic

Menu, and was based on the 2.50 version of it. This system was chosen because

34

Figure 3.1: PS Dynamic Menu user interface

it is a well-regarded interface for a popular entertainment device, which made it
interesting to analyse for design patterns.

Seen in Figure 3.1 is the home menu of the PlayStation Dynamic Menu. There
are two levels of widgets within it. The bottom level consists of recently used game
and media applications, as well as the Library on the far right of that menu, where
all purchased applications are available to use or download.

The top level provides a variety of different widgets that will take the user to
different parts of the interface. From left to right these are the Store, Notifications,
Friends, Messages, Party, Profile, Trophies, Settings and Power settings. The
Store is used to buy and download both game and media applications, as well as
additional content and services that may be available. The Notifications screen
provides news relevant to the user, such as whether there have been any friend or
multiplayer invites to them, download progress, etc. The Friends screen provides a
list of the user’s current friends, which can be selected to view each player’s profile,
as well as a list of friend invites and players the user has recently played with in a

multiplayer game. The Messages screen provides a list of ongoing conversations,

35

which once selected will display the full conversation, as well as providing the
ability to create a new conversation with a friend of the player’s choosing.

The Party screen provides a list of ongoing parties of players, where they
can talk to one another via text or audio chat, invite friends and play together
in multiplayer games. There is also a widget that allows the user to create a
new party and invite their friends upon its creation. The Profile screen provides a
variety of information on the user, such as their friends and trophies. The Trophies
screen displays a list of games the user has played, as well as the in-game trophies
they have been awarded for completing specific objectives. Within this screen,
there is the Compare Trophies widget, which lets the user compare their trophies
to the trophies their friends have collected. The Settings screen provides a large
number of different settings that can be adjusted, such as network, audio, display,
accessibility and storage settings. Lastly, the Power settings provides the user the
ability to log out, put the system into rest mode, restart it or turn it off.

Figure 3.2 shows an attempt at modelling the PlayStation Dynamic Menu.
As can be seen there are a large number of states that represent screens with
significant inter-connectivity between different areas of the user interface. As this
chart was intended to model the user interface and not potential video games
or media apps that can be run on it, which have different user interfaces and
behaviours, these are represented by the single App state and not delved into.

The starting state Home represents the main screen of the user interface, where
all the features and applications are available for selection. From this state, other
screens of the interface branch from it, such as Notifications, Friends List, Party
List, etc. These screens, as well as their own sub-screens, may then provide the
option to lead the user to a different screen or sub-screen within the interface,
creating branches within the chart that represent these sections of the interface.
Additionally, pressing the circle button on the controller will lead the user back to

their prior screen. This functionality is difficult to model because of the numerous

36

3yoidpusiiid
oeg Areiqrio109
pUSLAMSIA

Joeg

é. alyoIdiosn

ArewwngAydos | maip

ddyjoog siake|danau|

oeg

Aydou | sredwon

ddyaso|n

910}50]0! siake|danau|

9]1J0ION

soeg Aydouj aredwon 18r1spuUskiad

1ake|dios|es xoeg

sbumasolon

1s1Aydos) asedwo)

pajosjasiaield saiydo. | aredwon

1s17Aydou) aredwo) yoeg

Aqqohuey

wngAydos) aredwon4

ArewwngAydou] 0j0n

SIREEIINL)
wngAydos) sredwo) pajosiesAved

Auedoion obessap4

Spusl40l0H
soeq

abesseiypuss

5 19MOJ0}0Sy
sabessapyol0 08!
1sAydoi maip oo e eg saiydo. | sredwo)d
SUOIIBOIIONOIOD) Joeg
1sIabessapy fqqoAvedd

Aydoa) maip oeg

yoeg é SpusL40}0D)

yoeg obessapymaIn

abessapyaleain yoeg+pappysiokeld SUOIBIION £
Uedoleald
soeg

Apedorea Auegenes
*oeg
soeg aloIdMaIA -

1s1Aydou 0109y soeg ——
siofeidiosles o s soeg abessapdd 3|oidpusiiy Aaqorhedds
pejosjegsiokeld ~ &~ @
siake|dppy obessapypUSS $2ed Aueganes
Auederealn yoeg saydo., ._.m_mu%

wngAydou | asedwodd4

AqqoAuediN

Auedenes

nuspoIweuAq

PS Dynamic Menu chart with states representing duplicate branches

Figure 3.2

transitions required to model every option, while taking into account the ability
to go back to the prior screen.

In an effort to help simplify the chart, a form of syntactic sugar has been used
in the form of duplicate states that represent other screens within the interface.
These duplicate states are prefixed with an abbreviation of the prior state. For
example such as FPParty is a duplicate the Party state where FriendProfile was
its previous state. It is assumed that they behave identically to the original state,
as well as the states that branch off of them, but with the Back input signal
returning back to the appropriate prior state.

Another model of the interface can be seen in Figure 3.3. This chart is similar
to the chart seen in Figure 3.2 but with a goal to remove the duplicate states
by using a local variable to track the prior state and then using it in conjunc-
tion with input signals within transitions to ensure that when the user tries to
return to their prior state, they move back to the appropriate state. This chart
makes use of the local variable PrevState. It is used by setting its value to an
abbreviation that represents the previous state, such as in the transition labelled
GotoFriendsList / PrevState := UP.

The transition labelled GotoMessages/ PrevState := FL leads to the state Mes-
sageList if the input signal GotoMessages has been received and, as its action, it
sets PrevState to the value FL, which represents the prior state FriendsList. This
local variable is then used within the transition labelled Back.PrevState = FL,
which will only occur if the PrevState local variable is set to the value FL and the
input signal Back has been received.

This model removes 18 of the duplicate states seen within Figure 3.2 but adds
a significant amount of complexity to the model, as can be seen within this chart
by the number of transitions that cross over one another.

It could be argued that there would be fewer transitions crossing over one

another if the states were rearranged, the chart was larger or even that the chart

38

yoeg 3oeg

Aydouaredwon

wngAydou sredwon 1s11Aydou | aredwo)

1sIAydos | asedwon Aydou) aredwon

m_co_n:a d4=sleISAaId soeg

4 RS

asedwo)

S1=:81e1SARId/Pa108|9SI9kEld

PETACTIGETETY
=:91e1SABId/SaIYTD

S1=9]BI87aid Yoeg | 4=8)e1SA8Id MoRg eIdMaIA

dn=aleigasidoeg
dn=eiBighaid yoeg

al0igo1od 1= HeISAS S ISPUBL010D
dn=:e1e15Aaid/saiydos L AIA soeg

'\ : Bld/aI0IdMaIA
H=aleISABId Horg
H=:a1eIgA81d/s81yd01] 010D

 counas /o

H=aleISAaId Yoeg

alyoigpusLy

oe
o8 salydou) aredywd)

sbuipagolon

ArewwngAydos]

oeg 8lejSABld Yoeg

dd=:0le1SAald/eBesSaNMaIA

S1=9leISAald Moeg S1=:01e1SNa1dAsIAydoi | maIp

{ofeisno SPRPRSRUIIRIA

dd4=e1eI1Snaid/AuEdareal)

NS LG
T)

\\

siohe|dppy

RGes = g1d/Auedolon
Audoi maip SR ke #F

N=;2fe1SA01 /S AYdOI | maIp N=:elBISARId/ARdaleaI)

IN=sIBISASId Moeg

BEUCIEIEES]
N=:e1eignaid/Aledol0n sjoeg+pajosjagsiofeld

N=eleISnaidHoeg

Auegeso|D Agqohueq s1ake|doNAU|
s=ae)ghasdrhieiqriolnn H=8lEISABId org
poloalagAled siofe|danau)
soeg
ddyioog
Auegerealn
S=9lelgAdId Moeg Auedearealn
[linu=a1e15M8.4] nuspoIweuig

i tate

1mg previous s

PS Dynamic Menu chart with local variable stor

Figure 3.3

was modelled in 3D. These are options but the fact that these suggestions had
to be made emphasises how complex the chart is. The inter-connectivity of the
various different states within it make creating a clear and concise chart very
difficult.

The p-Charts specification AMuZed is based on only allows a local variable
to store one value at a time. Due to this, when we use the PrevState local vari-
able to record the previous state, it loses the value it had previously stored. To
avoid potential issues this may cause, we created an informal rule dictating that
the PrevState variable should be set once on any possible branch of the chart,
meaning that there should be no possible branch where the PrevState variable is
set twice or more. Unfortunately, when we initially created Figure 3.3 the merg-
ing of branches resulted in a chart that was so complex, particularly surrounding
the PartyList branch, that this issue occurred numerous times but was not im-
mediately identified. This helps emphasise how useful and important reducing
the complexity of p-Charts is, while also suggesting that further additions to the
p-Charts specification AMuZed is based on would help reduce complexity.

In this case, the ability to use an array of values would have eliminated this
issue but as the p-Charts specification we use does not have this functionality, we
had to find other solutions.

In an effort to resolve these issues, our initial plan was to eliminate the poten-
tial second variables by duplicating these branches, seen in Figure 3.4. The use of
these duplicate states is not the same as the duplicates seen in Figure 3.2, as we
did not want to use any syntactic sugar to cut corners with this chart. Instead,
we needed to fully model all states and transitions within each duplicated branch.
These duplicate states are denoted with an additional digit which indicates that
they are duplicate states. For example, the first duplicate of the PartyList state
will be named PartyList2, the second will be named PartyList3 and so on.

As the PrevState variable had already been set in the transitions to the

40

gsiake|ganau|

A} BENCRET

ghqqohued

ehuederealn
Auedeieai) A\ vxomm

ghydou) aredwon

2Aydou) aredwo)

SI5ANEg
pajosjeshued

Aydou | aredwo) soeg A V Aydos sredwio

2isAydo] aredwo)

Auedenes gisIAydos | aredwo)
S=aleISABId Moeg alyoidiesn soeg A IsriAudoseredwon
1si7Aydo. | aredwo)
2wngAydou asedwo)
——————>
ddyioog gwingAydou | aredwo)
_ e NN e gy dN=erEisraid oeg
Aydouj aredwog S saiydoieredwon Zsiekeidenau|

B@1=/01EISAPId/ISITSPUBLIJ 010D BIQASAd/HOBE MBI
- 210140105

el fdoitseduied saiydoi] aredwo) s1ake|danAu]

soeg AdQiol0n
1s17Aydou aredwon dn=:eeISAId/salydos | MY
H=e1BISAaId Morg
oeg 1sAydos] aredwo)

pareainhued
Shued

wngAydou | aredwo)

d4=:91B1SA9IdyalES S|

0105

H=:0le1gNna14/sa1ydoyf 010y

payosjegiafeld

H=81RISAZId Y0B!

Auegoarearn

19MO010D)

J1ofe|dioajes ArewwngAydos |

aTEISARIgASIISPUSLIAMa),
abessgyidlealr

salydos) aredwo)
soeg 1sinAydou maip

Aydoi maipn

sjoeg+paliaulsiofeld

oheldppy
N=:91e15A01d/0bBSSNMa), soeg

BEVCIRIRETEIS

siakejganau|
pareainhued

Aueganea

soeg suoeayioN siake|dppy

*oeg

yhuederealn

N=:2le1SAald/ALedolog

pajsjesiled Kuedoanea+oes Auederealn

1sAydos] maIp Auedearealn
siake|ganau| Auedareaio
Kydou maip

siake|danau| Aagothued palealDAued

yoeg-+paliau|siaked

[IInu=a1€15A81d] nuapyolweuAg

te states

1Ca

PS Dynamic Menu chart with local variable and dupli

Figure 3.4

Message, FriendProfile and FriendList states, this meant that their following
transitions to the PartyList branch set the value of the PrevState variable for a
second time. As a result, the PartyList branch then needed to be duplicated once
for each of these states, leading to an additional 12 states being added to the
chart, as the PartyList branch is four states that needed to be duplicated three
times.

The next instance of this issue involved the Compare TrophiesSum sub-branch
of the Trophies branch. The FriendProfile, FriendsList and SelectPlayer states all
set the PrevState variable prior to their transitions to the CompareTrophiesSum
state, so this was again resolved by duplicating this sub-branch for the Friend-
Profile and FriendsList states. This led to an additional six states being added
to the chart, as the CompareTrophiesSum branch is three states that needed to
be duplicated twice.

Finally, the third instance of this issue involved the TrophyList state, which
both the TrophySummary and Notifications states transitioned to and set the
PrevState value in doing so. While transitioning to the TrophyList state via the
Notifications state only sets the value of the PrevState variable once, transitioning
to it via the TrophySummary state sets it twice. To resolve this issue, we once
again needed to duplicate these states for the Notifications state, adding an ad-
ditional two states to the chart. Overall, these changes resulted in an additional
20 states being added to the chart, making it significantly larger than Figure 3.3
and significantly more complex.

Unfortunately, as we were solving these issues, we continued to encounter other
instances of this issue. For example, transitioning from the UserProfile state to
the FriendList state sets the value of the PrevState variable once, which can then
be followed by transitioning to the FriendProfile state, where the variable is set
for a second time, and then finally it can also be followed by transitioning to

the Message state, where the variable is set for a third time. Continuing to use

42

this plan would have led to an additional 20 states being added to the chart
by duplicating the states involved in that sequence alone. As a result of these
continual issues, we decided to abandon this plan.

Our next plan to solve the issues seen in 3.3 was to use multiple local variables
to help track prior states. The reason this plan was considered after the previous
plan was because we believed using multiple local variables would make the chart
considerably less legible upon an initial view, as a viewer would have to track
which local variables were in use at any one time. However, as the previous plan
would have eventually led to at least 40 new states being added to the chart, we
believed the issues that may arise with multiple local variables were a necessary
level of complication.

Using this plan, we determined that the best way to implement multiple local
variables was to create a new local variable for each state that is transitioned into
by more than one state. In doing so, we identified nine states that did this: the
PartyList, PartyLobby, Library, TrophySummary, TrophyList, CompareTrophy,
Message, FriendList and FriendProfile states. We then attempted to reduce the
number of local variables needed by these states by figuring out whether some
of the variables associated with states that are part of the same branch could be
combined without causing too much complexity or additional issues to arise.

As an example of this, the TrophySummary and TrophyList states are both
within the same branch and they both are transitioned into by two states. The
TrophySummary state can be transitioned to from the Home and UserProfile
states, while the TrophyList state can be transitioned to from the TrophySummary
and Notifications states. Using a single local variable with these two states,
which we call TrophyPState, standing for the Trophy Previous State, can be done
with no issues and only requires changes to two transitions. The first change is
to the transition from TrophySummary to TrophyList, which was previously la-

belled by ViewTrophyList/PrevState := TS. As both states now use the same

43

local variable, it no longer needs to set it to the abbreviation that represented
the TrophySummary state. As such, the label for this transition is now simply
ViewTrophyList.

The second change is to the transition from the TrophyList back to the Tro-
phySummary state, which was previously labelled as Back.PrevState = TS. As
the local variable is no longer set to the abbreviation that represents the Tro-
phySummary State, we need to instead check whether the local variable is set
to the abbreviation that represents one of the states that previously transitioned
into the TrophySummary state. As the Home state is represented by H and
the UserProfile state is represented by UP, this leads to the transition label
(Back.TrophyPState = H) + (Back. TrophyPState = UP), which can be short-
ened into a more concise Back.(TrophyPState = H + TrophyPState = UP).

However, we chose not to combine the FriendsList and FriendProfile local
variables, as we believed there were too many states that transitioned to those
states and combining the local variables would lead to more complexity within
the chart.

The result of these efforts can be seen in Figure 3.5. As it is largely based
on Figure 3.3 but with additional local variables, it features the same number of
states and transitions. The additional local variables add some complexity to the
chart but in doing so, fixes the numerous issues that were rampant within the
older chart.

Having modelled the PlayStation Dynamic Menu, we can draw two conclusions
from it. The first is that the user interface can be quite simple when looking past
the inter-connectivity between its various features. This is shown best by Figure
3.2, where all branches are centred around the Home menu and all features are
consolidated within these different branches. A casual user of the device is likely to
care little for the various enthusiast features it offers, while being most interested

in major features, such as video games, media applications, settings and power

44

palosjesiakeld

H=s1eISdAydo.] yoeg
PEVA-THLETEIS
dfi=areisdhydol] yoey

dAudou] soeg
saiydos) sredwo)

yoeg m:n”wﬁuwn_\fao_m_amow%@ M)

H=:a1e15dAydo. | /saiydos] 0jo5
10

H=are1sdAydo yoeg

H=aleISdAydoll sokg

15(1Aydos | ma,
dn=areisdAydou) spoeg udosLmain

S
M BleTSaq f1Sded 10!

Aydoi maip
ar61gapbERISdar/Aeiqrefon N=:21e1g dAUdo:

< orelSdar/Areiqriolon
— T
ddyioog

S=apeISdaroed

[Inu=ajeisdAydol | ‘Inu=e1eISdALIEd ‘lINU=3]EISJaBESSAN ‘|INU=3BISdaI0Id ‘[INU=RI0ISISITS ‘lINu=aleISdqr

wngAydou] aredwod

dn=eJ01Sd

oeg

Qdojon

N={e{oisd

Yoegd

sk

sobessg|
14ASISP

soeg

"Moeg

oeg

Ts1dudos | ssedwo)

H=8I01S iS4 oeg

oeg

H=:810},

i3Rein

Joeg

ASIASPUBLL010%

Ve

Aydou | aredwon

1s11Aydou) eredwod Aydou aredwon

Soeg

dd4=ale1sdAydos Yoeg

d4=:9TesgdAydo | /seiydos | aredwo)
T4=:81B1SdAydo. | /selydortaredwo)

QIeISdalljoId4oeg

a|joiIdpuaLly
dOONdH/B1OIdMBIA

S dISNG/ASNSPULLI010D 14=9)efgdalf9 _u}umm

4= :_m.,zo‘_n_u_\m_co‘_nsmg

H{=oje1Sdebessa soeg
d4=:91e15obeSsSsa|\/abessaNMaIA

T4=ofeisdpbes pIN/ebESSBN0I0D

14%e1e1Sdobgssapy soeq

d4=oreISdAued/AuedaieaI)

siafe|dppy

W=:a1e1SdAled/Auedaleal)

s1ake|danAu|

s1ake|danau|
Aqqoihued
yoeg+pajoajagsiafeld

pajoo|oS AR pajeainhued

Auederealn

nuajyolweukq

Menu chart with multiple local variables

ic

PS Dynam

Figure 3.5

settings. As these major features are all immediately available from the Home
menu, we believe it effectively caters to these users.

The second conclusion is that this user interface also appears very complex
upon viewing these charts, particularly Figure 3.5, and is largely due to the inter-
connectivity between its various different features. Upon analysis we found that
this inter-connectivity, while over-complicating the model, did make sense in con-
text. For example, when viewing a friend’s profile or selecting a friend from a list,
the user has the ability to interact with their friend in a variety of different ways,
such as sending their friend a message and inviting their friend into a party. As
such, we believe much of the inter-connectivity, and thus complexity, seen within
the PlayStation Dynamic Menu were a result of the expectations their enthusiast
audience would have of the PlayStation 4’s feature set.

The combination of these two conclusions suggests to us that the designers of
the PlayStation Dynamic Menu purposefully prioritised creating an interface that
was simple on initial view but feature rich upon closer investigation. This is shown
by the simple layout of the Home menu, with all major features immediately
available from it and all other features grouped together into specific branches,
such as Friends, Messages and Party. The complexity of the inter-connectivity
between these branches was then a product of this design and the expectations of
their enthusiast audience, as they then sought to provide more convenient ways
for users to open other related branches directly from within a different branch if

they chose to do so.

3.2 Return Home pattern

While modelling the PlayStation Dynamic Menu, we discovered a feature that we
found added significant complexity to the model. The Dynamic Menu allows the

user to return to the home screen with the press of the PS button on its controller,

46

ReturnHome

Playersinvited+Back

PartyLobby InvitePlayers

InvitePlayers

ReturnHome ReturnHome

PartyCreated

PartySelected

CreateParty

GotoPartyList

Back+ReturnHome

CreateParty

Figure 3.6: Party segment from PS Dynamic Menu chart with Return Home

feature

similar to the show desktop shortcut in Windows or the Home button found on
iOS and Android devices. We named this feature the Return Home function.
Upon a second press of the PS button, the user will then be returned to their
prior screen, which we named the Return Back function. Finally, the combination
of the two functions was called the Return feature.

In order to model this feature correctly, the decision was made to first focus
on the Return Home function and then later combine this with the Return Back
function to capture the full behaviour of the feature.

Figure 3.6 shows an initial attempt at modelling the Return Home function
using a small segment of the Dynamic Menu. The Home state is the starting state
of the model and there are an additional four states representing screens within the

Dynamic Menu, PartyList, PartyLobby, CreateParty and InvitePlayers. There

47

ReturnHome Main
GotoM
Main :) ReturnHome —>

Figure 3.7: Simple Return Home pattern

are a number of transitions within this chart that are identical to the transitions
within Figures 3.2, 3.3 and 3.4 but the transitions of note are the ReturnHome
transitions. To model the Return Home function, one transition from each non-
starting state to the starting state is required, though in the case of the transition
from PartyList to Home, as there is already a transition between these two states,
we can simply add another possible input to its guard.

The problem with this model was that there was a y = x — 1 relationship
between the states and ReturnHome transitions, where y represents ReturnHome
transitions and z represents states. Upon trying to use this with the full PlaySta-
tion Dynamic Menu chart seen in Figures 3.2, 3.3 and 3.4, which feature 33 states,
23 states and 35 states respectively, it quickly became very complex with the in-
clusion of additional transitions and/or guards from every non-starting state to
the starting Home state. This is shown in Figure 3.8, with the Return Home func-
tion applied to the PlayStation Dynamic Menu. An additional 23 transitions have
been added to the chart and another 10 transitions have had the ReturnHome in-
put added to their guards. As a result of this, it was decided that we should find
a more efficient way to represent this feature.

In order to find a concise design pattern that modelled the behaviour of the
Return Home function, we needed a method that reset a chart to its starting state
regardless of what state the current state was. Upon researching the logic and
semantics of p-Charts, we discovered a possible solution within the paper The
syntaz and semantics of p-Charts [13]. This paper offered two different interpre-

tations of how a decomposition may behave. In one behaviour, the child chart

48

soeg Aydou | aredwon

1si7Aydou | ssedwo) ' Aydou aredwo)

Ts1dudos | ssedwo) oeg

wngAydou] aredwod

pajosjesiafeld dd4=ele1sdAydou yoeg

BiSdAuetI | /selydou | aredwo)

SHERACURIE AR 1 soritons

H=s1eISdAydo.] yoeg

ajoidiosn) e—i
/

dfT=oreisdiydol | Sork o Juiniey SwoHuINeY

PEVA-THLETEIS

a|joiIdpuaLly

dAudou] soeg

d d
saydo. | asedwo) _u}umm

QWOHUWINIeY+0eg

yoeg m:n”wﬁuwn_\fao_m_&%_m a«oo_ M)

L 4010 4/BIHOIIMAIA

QwoHuINleY
1aMQJOIPD

QWoHUINEFEG

lelsdobessapy yoeg
d4=:91e15obeSsSsa|\/abessaNMaIA

pIN/ebBeSSa|NO)O!
H=ateisdAydoly okg W oieo

15(1Aydos | ma,
dn=areisdAydou) spoeg udosLmain

auoHuINleY
d4=oreISdAued/AuedaieaI)

soeg ﬁ Bg*PoppYsIokeld
\ Sdlseariiedereal) s
wﬁmﬁceyu ui
Aydou] meip s1ake|dppyY

JREENBISeifled/Auedaieal)

s1ake|danAu|

s1ake|danau|

g oIS daI1/A1eIqr10109

X Cow D
e e ddyioog

S=areISdaroeg fuegereen

Aqgqohued

yoeg+pajoajagsiafeld

[inu=ayelsdAydou ‘Inu=sleiSdAued ‘INu=sjelSdabessay ‘INu=21eISdalljoid ‘INU=2.10}SdisiTd ‘Inu=aleiSdarl nuapyolweuAq

Menu chart with Return Home function added

1C

Full PS Dynam

Figure 3.8

ReturnHome

Main ‘D ReturnHome

Playersinvited+Back

PartyLobby InvitePlayers
PartyCreated

/ InvitePlayers

CreateParty PartySelected GotoPartyList+LeaveParty

Main

CreateParty

GotoPartyList

Figure 3.9: Return Home pattern applied to Party segment from PS Dynamic

Menu chart

remembers and stays in the exact state it was in when it was last active in the
parent chart. In the other behaviour, the child chart does not remember its state
while it is inactive and as a result, is re-initialised every time it becomes active.

Using this interpretation, we created the Return Home pattern in its simplest
form, shown in Figure 3.7. This chart contains a decomposition within it. Within
the parent chart, ReturnHome, there is a single decomposed state with a single
self-loop transition on it that receives the input ReturnHome. Within the child
chart, Main, there are two states, the Home starting state, which represents the
home screen of the system, while the state M represents any possible screens
within the PlayStation Dynamic Menu. There is one transition between these
two states, which receives the input GotoM in order to transition from the Home
state to the state M.

This pattern works by assuming that all non-Return Home interactions within
the user interface will be made within the child chart, Main. If a ReturnHome in-

put signal is received at any point, the self-loop on the parent chart’s decomposed

50

state will occur, resetting the child chart to its starting state Home no matter
where it was previously within the interface.

Seen in Figure 3.9 is the Return Home pattern applied to the earlier example.
The pattern has resulted in the removal of the three ReturnHome transitions from
states PartyLobby, CreateParty and InvitePlayers to the starting state Home, as
well as the ReturnHome input signal from the guard of the transition from state
PartyList to the Home state. Applied to a small chart like this, the difference
is relatively small but it is easy to recognise how much easier it would make
modelling the Return Home functionality on much larger charts, such as the ones
seen in Figures 3.2, 3.3 and 3.4, where instead of five states, there are over 20 or
30 states.

Finally in Figure 3.10 we see the Return Home pattern applied to the PlaySta-
tion Dynamic Menu. While the chart is still very complex, it is significantly less
complex compared to Figure 3.8 as it no longer requires every state within the
Main chart to transition to the Home state in order to model the Return Home
function. As the chart was already very complex before the Return Home function
was added to the model, this helps us a lot, as it means we do not need to add
further complexity to the chart, aside from the addition of the decomposition.
The Return Home function is there but modelled more abstractly, providing us a

clearer look at the design of the Dynamic Menu interface.

3.3 Return pattern

Having modelled the Return Home function, we could then move on to model the
Return Back function and then combine these two into a full model of the Return
feature.

Figure 3.11 shows an initial attempt at modelling the Return Back function.

Using the same segment of the Dynamic Menu seen in Figure 3.6, we see that the

o1

oeg Aydo.aredwon

wngAydou aredwod 1s1Aydo | eredwo) Aydou | aredwon

Tr¥Audol j aredwon soeg

pajosjesIakeld d4=ereIsdAydou soeg

sdfudos 1 /seydos | ereduiog

dN=9BISd:

oid 4 oeg

H=aleisdAydosL soeg

Jake|diosjes

a|lj0IdpuSLy

saiydos areduiog
dn=:ereisdAydos

soeg |yoidoion

H=aI01Sdisd»oeg

H=:e1B1ISdAydos) /seiydoi) 0109

H4=eleisdebessapy soeg
d4=:e1e1Sdebessapy/ebessapymoIn

H=aleiSdAydosL soeg

SIS 1pUBLIL010KS

HeateisdAudo) wokg 14=9) ;wu\. esspy\/ebessayol0

dn=eleisdAydoi) yoeg

1s{1Aydos maIp

sebessayyojo!
\SIT4ASISPUSHAMAIA

oeg
hariTegareaIn
“ siokeidppy
SIOISQIOBNe)s e
Aydosg maip siake|dppy

H=sleIsdarysoeg

IN=:e1BISdALed/AUedereal)

= Aeg
N=ale1sdAled soeg siokelganau)

H=eleISdAled yoeg siake|danaul

pajosjeshled

oIS dar/Areiqriolon faqorhied

fuedones
oeg+pel0slegsIoneld

ddyioog

pajeaiAueq

S=alBISdqIoeg fuegoreasn Auedereain

[inu=aleiSdAydoi . ‘Inu=alelSdALed ‘lInu=ajeigdabessap U=310iSiSIT4 ‘lInu=aleisdar] ure

U=81e1Sda|jo)dd

awoHuIN}ey Qi urepy

awoHuINaY

Return Home pattern applied to full PS Dynamic Menu chart

Figure 3.10

Home state is the starting state and there are an additional four states within
the chart, the PartyList, PartyLobby, CreateParty and InvitePlayers states. The
majority of transitions also resemble Figure 3.6 but there are two key differences.

The first difference is that there are an additional three transitions, each from
the states PartyLobby, CreateParty and InvitePlayers states to the starting state
Home, as well as an additional guard within the transition from the Home state
to the PartyList state. This is because with the Return Back function, we now
need to be able to transition back to the previous state after a ReturnHome input
signal has caused the chart to transition back to the Home state. This means that
for every state that is added to the chart, an additional transition must also be
added, alongside the ReturnHome transitions that were mentioned in the Return
Home section. As a result of this, we go from having a y = z — 1 relationship in
Figure 3.6, where z represents the number of states and y represents the number
of transitions, to a y = 2(z — 1) relationship. So for every extra state added to
a chart featuring the Return Back function, two new transitions related to that
function need to be added, adding a significant amount of complexity to it in the
process.

The second difference is the use of the local variable Return, which can be seen
initialised to the value null in the upper left corner of Figure 3.11. Similar to the
PrevState local variable in the Design Patterns section, this variable is used to
store an abbreviation representing a specific state within the chart, for example
the state PartyList is represented by its abbreviation PLs.

This variable is used by the transitions which contain ReturnHome or Return-
Back within their guards. The ReturnHome transitions use the variable within the
action to set it to the value that represents the previous state. For example, the
transition labelled (GotoHome + ReturnHome)/Return := PLi sets the Return
variable to the value that represents the state PartyList, PLi, if the input signals

GotoHome or ReturnHome are received. Note that the state PartyList will still

93

ReturnBack [Return=null]

Playersinvited+Back

PartyLobby InvitePlayers InvitePlayers

ReturnHome/Return’<PLo

PartyCreated ReturnHome/Return:=IP ReturnBack.Return=IP

RetuinBack.Return=PLo

PartySelected GotoPartyList+LeavePagty

RetufnHomge/Return:=CP

CreateParty

ReturnBagk.Return=CP
reateParty

Figure 3.11: Party section from PS Dynamic Menu chart with both Return fea-

GotoPartyList

tures

be recorded as the previous state even if the GotoHome input signal is received
instead of a ReturnHome input signal. This behaviour is consistent with the be-
haviour of the PS Dynamic Menu. The ReturnBack transitions use the Return
variable to specify which state the chart should return to if a ReturnBack input
signal is received. For example, the transition labelled ReturnBack.Return = PLo
will only occur and transition to the state PartyLobby if both the ReturnBack in-
put signal is received and the Return variable is set to the value PLo.

Having successfully modelled the Return Back function, our next goal was to
combine both the Return Home and Return Back patterns in order to fully model
the Return function and thus create the Return pattern. Figure 3.12 shows the
resulting pattern.

Similar to the Return Home pattern shown in Figure 3.7, decomposition is
used by the Return pattern in order to reset the chart to its starting state if a

ReturnHome input signal is received. Additionally, it also resembles the Return

o4

Main

GotoM+(ReturnBack.Return=M
ReturnPattern [Return=null]

Main Q ReturnHome
ReturnHome/Return:=M

Figure 3.12: Simple Return pattern

chart shown in Figure 3.11, using local variables to store the previous state and
then using these variables to determine which state the chart needs to return
back to if a ReturnBack signal is received. A small difference seen within this
chart is that the local variable is part of the parent chart. This is because our
understanding of the relationship between the parent and child charts, defined in
[11], gave the child chart access to the parent chart’s local variables.

The most significant difference between the two charts is the self-loop transi-
tions on every non-starting state within the child chart. These self-loop transitions
occur when a ReturnHome input signal has been received and then within the ac-
tion, sets the local variable to the numerical value that represents it.

Due to the way p-Charts work, where a set of input signals will appear from the
environment and all resulting actions occur simultaneously, we have the ability
to make more than one transition within multiple charts occur simultaneously.
So long as the resulting actions can happen in the same step, in that they do
not conflict with one another, any potential non-determinism is nullified. As a
result, if state M is the current state of the child chart, Main, and a ReturnHome
input signal is received, both the ReturnHome transition within the parent chart,
ReturnBack, and the ReturnHome/Return := M self-loop transition within the
child chart, Main, will occur. This will both set the Return local variable to the
value M, representing state M, while also resetting the child chart Main to its
starting state.

The requirement to have self-loop ReturnHome transitions on every mnon-

95

starting state and a ReturnBack transition from the starting state to every non-
starting state means that the Return pattern does not reduce the total number of
transitions within the chart, in fact it may increase that number. What it does do
is reduce the number of transitions between the starting state and non-starting
states, potentially halving it, significantly reducing the clutter and complexity
that can occur with too many transitions within a chart.

Unfortunately, it was at this point we discovered an error in our understanding
of how local variables work between parent and child charts. Due to an example
used within one of our reference materials [11], we were under the impression
we could use a parent chart’s local variables within the child chart. However,
upon further analysis of this material and the semantics of decompositions, we
discovered that what led us to this assumption was instead a typographical error
and that use of local variables was actually intended to be limited solely to its
local chart. We believe this was done in order to help simplify the semantics, as
giving both charts use of a local variable may have led to potential conflicts. For
example, a transition within the parent chart and a transition within the child
chart may have tried to set a variable at the same time. This created a significant
issue with our Return pattern, forcing us to completely rethink it.

Due to this issue, we needed a new way to retain the previous state while the
child chart was re-initialised. In an effort to find a solution, we then explored the
use of the feedback operator and value carrying signals in order to send and then
receive the previous state to and from the parent chart.

One feature of value carrying signals that stood out to us was the way we could
use them with local variables. If we want to assign the value carried by a signal
to a local variable or the reverse, we simply use an action such as lvar := wval.
This assigns the value of the value carrying signal val to the local variable lvar.
Assigning the value of a local variable to a value carrying signal was exactly the

same, using the action val := lvar. This feature led to the creation of Figure 3.13.

o6

Main

Return [Return=null] ReturnHome/val:=M

Main D ReturnHome/Return:=val

O Home > M
GotoM+val=M
ReturnBack/val:=Return
fval} | {val} |

Figure 3.13: Revised Return pattern using feedback and value carrying signals

This chart greatly resembles the previous Return pattern but with the inclusion
of value carrying signals and feedback. Both charts have the value carrying signal,
val, applied as feedback, allowing them both to send the signal to the other. We
use val to store the current state at the point the child chart is re-initialised, send
it to the parent chart and store that value within the parent chart’s Return local
variable. Then upon a ReturnBack signal being received, we send this value back
using val and the child chart receives the signal val = M and transitions back to
its previous state.

This chart had a major problem, however, in that it would re-initialise the
child chart when the transition labelled ReturnBack /val := Return occurred. So
instead of transitioning back to its previous state, it would instead re-initialise
again. With this we realised that due to the changes we had made with our
interpretation, it was not possible to send signals from the parent chart back to
the child chart without re-initialising it.

At this point, it became obvious that there were no possible solutions without
some significant changes to pu-Charts or at least our interpretation of u-Charts.
In an effort to solve this issue, we came up with three possible solutions.

The first solution was to modify p-Charts, as well as its semantics, to support
the child chart having access to its parent chart’s local variables. This change
would have supported our initial Return pattern but it would have required a

significant amount of work to figure out how to ensure there would be no conflicts

27

ReturnHomePattern

ReturnHome

T Main
; ReturnHome
Main GotoM
————>
/

Figure 3.14: Final Return Home pattern

within the semantics and potentially would have required significant modifications.
As such, we believed this solution was not one that should be explored, as we
wanted to add features to pu-Charts that had been previously detailed, not change
it to suit whatever our needs were at the time.

Our second solution was to change the semantics so that the local variables are
not re-initialised to their initial values within the child chart. This change would
have allowed us to store and retain the previous state within the child chart,
avoiding the problems related to sending and receiving the previous state to and
from the parent chart. While this would have been a simple solution, we did not
believe it was appropriate, as it would essentially be changing the re-initialisation
of the child chart into a partial re-initialisation solely to make our jobs easier.

Our final solution was to rethink how we determined when a re-initialisation
was meant to occur. Our previous interpretation was that whenever the parent
chart transitioned out of the decomposed state, even if it were a loop transition,
the child chart would be re-initialised. However, if we were to instead focus on
whether the decomposed state was the current state, we would find that a loop
transition would not re-initialise the child chart, as the decomposed state would
remain the current state after it occurred. The only time the child chart would be
re-initialised was when the parent chart transitioned from the decomposed state
to a completely different state. It was this interpretation that first led to a revision
of the Return Home pattern.

Within Figure 3.14 we see our revised Return Home pattern, which has been

o8

ReturnPattern [Return=null]

ReturnHome.prev/Return:=prev Main

— ReturnHome/prev:=M
O /
ReturnBack/prev:=Return GotoM+prev=M

| {prev} I {prev}

Figure 3.15: Final Return pattern

adapted to the new interpretation. This chart works almost identically to the
previous Return Home pattern but instead of immediately re-initialising the child
chart within a single step using a loop transition, we now re-initialise it by tran-
sitioning to the ReturnHome state when the ReturnHome signal is received and
then transitioning back. As the transition back to the decomposed state lacks
a guard, it is considered TRUE and will immediately occur in the next step,
regardless of what input signals are received.

While the additional step within this Return Home pattern was more inconve-
nient than our initial Return Home pattern, we believed this change was necessary;,
as the Return pattern would clearly not work otherwise and we did not want to
move forward while juggling two different interpretations.

Using this interpretation, we then proceeded to revise the the Return pattern,
which can be seen in Figure 3.15. This combined the revised Return Home pattern
with the use of the feedback signals and value carrying signals from Figure 3.13
to create a Return pattern that we believed accurately modelled the behaviour
of the Return feature. The use of value carrying signals and feedback allowed
us to send the child chart’s previous state to the parent chart, which would save
this state within a local variable. The child chart would then be re-initialised,
as the parent chart transitioned to the ReturnHome state and then back to the
decomposed state in the next step. At this point, if the ReturnBack signal were

received, our new interpretation would allow us to send the previous state back

29

ReturnPattern [Return=null]

ReturnHome.prev/Return:=prev

O

ReturnBack/prev:=Return

| {prev} I

Main

ReturnHome/prev:=PLo ReturnHome/prev:=IP
. InvitePlayers .
PartyLobby Playersinvited+Back InvitePlayers
PartyCreated

prev=PLo

prev=IP

PartySelected
ReturnHome/prev:=CP

GmoPanyL\sHLeavePany

Back

prev=CP

CreateParty
GotoPartyList+prev=PLi

ReturnHome/prev:=PLi

{prev}

Figure 3.16: Final Return pattern applied to Party segment of PS Dynamic Menu

chart

to the child chart within a value carrying signal without re-initialising the child
chart. The child chart would then receive this signal and then transition to its
previous state based on the value the signal carried.

Having produced these revised patterns, we believed that this solution was the
appropriate move to make and decided to move forward with them.

In Figure 3.16 we see the revised Return pattern applied to the Party segment
of the Dynamic Menu. We previously observed that there were 15 transitions
when modelling the Return feature with this segment in Figure 3.11. Here we
see that the Return pattern features 16 transitions, one more than the previous
example, but it also reduces the visual complexity from the centre of the chart
by removing three transitions to the Home state. These transitions are instead
modelled as self-loop transitions on each of the states they start from, moving this

visual complexity to the side of the chart, instead of the centre as it was originally.

60

As an example of this, we can see in Figure 3.11 that there are two transitions,
labelled ReturnHome/Return := CP and ReturnBack.Return = CP, that go to
and from the Home state and CreateParty state. These two transitions then both
cross over the two transitions between the states PartyLobby and PartyList. This
creates more complexity within the centre of the chart, making it more difficult
to recognise the structure of it upon first glance. In Figure 3.16, the transition
labelled ReturnHome/prev := CP is instead a self-loop transition going to and
from the CreateParty state. This works in conjunction with the transition labelled
ReturnHome within the parent chart, ensuring that it is logically identical to the
equivalent transition within Figure 3.11 but is instead located to the left hand

side of the chart, removing that complexity from the centre of the chart.

61

Chapter 4

Testing

In this chapter we discuss the testing of the Return Home and Return patterns,
including the translation of the Return Home p-Chart into Z using the ZooM tool

and the testing of the Return Home Z schemas using the tool ProZ.

4.1 ZooM Modifications

Having created the Return Home and Return patterns, we then needed to test
whether they behaved in the manner we believed they should. As the semantics
of u-Charts are given in Z, this meant that the best way to test both patterns was
to translate them into Z and then test both Z specifications. For the first step of
this plan, we decided to use the ZooM application.

ZooM is an application created by the University of Waikato to convert and
translate p-Charts into Z based on the semantics defined within [13]. It was
developed in Haskell in conjunction with the AMuZed tool, using a Tcl/Tk in-
terface named TclHaskell to create its graphical user interface. Unfortunately, as
TclHaskell is no longer supported and has become incompatible with modern sys-
tems, ZooM was initially only accessible to us via a virtual machine that had been

set up specifically to run both AMuZed and ZooM. This is an inconvenient solu-

62

tion, as it could only be used on certain computers at the University of Waikato
and could not be modified to suit different purposes.

Our first task was to modify ZooM, removing the user interface and replacing
it with a command line interface, while trying not to make too many unneces-
sary changes in an effort to reduce the risk of inadvertently causing unexpected
behaviour.

Additionally, as both AMuZed and ZooM were developed in conjunction with
one another, the source code of both tools was integrated together into a number
of source files. So an additional goal was to remove any source files that were
irrelevant to ZooM.

The ZooM user interface was simple, limited to open file and error dialogue
boxes, so on face value it appeared it would be simple to strip the graphical user
interface code from its source code. However, as AMuZed and ZooM’s source code
were integrated with each other, numerous functions were included and source files
were referenced that ZooM never used. This led to a slow process of separating
the source files that were imported into ZooM or a ZooM related source file from
the ones that were not and then further filtering these files down by removing
source files that were only used by functions that were not relevant to ZooM. This
reduced the total number of source files from 15 files to nine files.

Once this was accomplished, we then moved onto removing TclHaskell from
the source code. As most of the TclHaskell functions that were used within the
ZooM source code were inherited from Haskell’s own IO monad [8], replacing those
function calls involved replacing them with the IO equivalent. For the TclHaskell
functions that were not inherited by the IO monad, removing them involved trying
to trace the function that called them back to ZooM. If those functions did not
trace back to ZooM, the TclHaskell functions were replaced by placeholders, which
would display an error message in the possible event that they were called at some

point. However, if those functions did trace back to ZooM, we would have then

63

needed to rewrite ZooM’s code so that it did not need to call said TclHaskell
functions.

Due to ZooM’s limited user interface, almost all of the TclHaskell function
calls within its source code fell under the first two cases. They could be replaced
with the IO monad’s equivalent or a placeholder. The third case only occurred
twice within its source code and were both located within the same source file,
which dealt with building the open file and error dialogue boxes. Both functions
were well coded and documented, so rewriting them to instead run from and print

to the command line was then a simple task.

4.2 p~Charts Semantics Modifications

Our next task with ZooM was to modify it so that it parsed and then correctly
translated the additional interpretations of u-Charts we were using into Z. Our
first step towards this task was to figure out how these interpretations would be

translated to Z.

4.2.1 Translating decomposition re-initialisation

— [CLCtZ"UGChild

E Ch@rtChild

active : P g, ..
ocnid! : P outputlcpiyg
= active(Child)

Ochild! = {}

Our first solution was a simple change to the child chart’s inactive operation
schema, seen above. As has been detailed previously, this operation schema occurs

when the child chart is considered inactive. As such, using this schema to re-

64

initialise the child chart would have been a very simple and eloquent adjustment.
We removed the declaration =Chartcopq, as it ensured no state changes would be
made within this schema. Replacing it would be the declaration Initcyiq, which
would declare that any observations and local variables within the state space of
the child chart would be set to the initial values defined within the Initz schema.

This schema can be seen below.

—]activecm»ld

Inatcnii

actwe : Ppg, ..
ocniia! : P outputlcpia
= active(Child)

OChild! = {}

Unfortunately, the relationship between the parent and child charts defined
within the ParentChildDec section of the p-Chart Z semantics prevented this

solution from solving our problem. The issue is the predicate below from the

5ParentChildDec schema:

((ParentChild \/ ParentChild") A active(Parent)) < active(Child)

This line of predicate meant that the Child chart would be active so long as the
decomposed state ParentChild was either the current state or the next state of the
Parent chart. Due to this, if a loop transition were to occur on the decomposed
state, such as the one used in the initial Return Home pattern, the Child chart
would continue to stay active. This is because the decomposed state would be
both the current and next state of the loop transition, making the left hand side
of the if and only if operator true and thus the right hand side, which states that
the child chart is active to also be true.

In addition to this, the Child chart would also stay active if the Parent chart

65

transitioned from the decomposed state to another state and then directly back
to the decomposed state in the next step, as it does in our revised Return Home
and Return patterns. This is because the decomposed state would be the current
state while transitioning to the other state and then it would be the next state
while transitioning back, so at no point would the left hand side of the predicate
be false.

In order to make this predicate compatible with Return Home and Return
patterns, we explored modifying it so that the child chart would only be active
when the decomposed state was the current state. If the decomposed state was
only the next state, the child chart would be considered inactive. This was a very

small change, as seen below:
(ParentChild N active(Parent)) < active(Child)

Without having tested it, we thought this modification accurately translated
the behaviour we expected from our interpretation and as such, would have accu-
rately translated our patterns. However, while we explored this idea, we came to
the conclusion that this modification was making too significant a change to the
semantics of p-Charts. The predicate had been originally designed that way for
a reason and we did not want to change this solely to suit our purposes. For this
reason, we decided not to move forward with this solution.

Our second solution to translating re-initialisations in Z was significantly more
complex. It involved re-initialising the child chart from within the parent chart’s
transition operation schemas. We then needed to ensure that this did not conflict
with other actions within the child chart.

While we knew that we needed to re-initialise the child chart from within the
parent chart’s transition operation schemas, which of these schemas we would
do this in was a decision we needed to make. Specifically, we needed to decide
whether we would re-initialise the child chart when we transitioned out of the

decomposed state or whether we would re-initialise it when we transitioned into

66

the decomposed state. We did not need to make this decision when first exploring
the re-initialisation interpretation because the end result of both variants was
the same in terms of input/output behaviour but on a semantics level, it was an
important distinction to make. As a result, we decided to re-initialise the child
chart when transitioning out of the decomposed state, as we believed this would

better visually represent the state of the system when the child chart was inactive.

— O Childx

ParentChild

ParentChild’

active_ : P g ..
iParent”’ * P inputlparent
Oparent! : P outputlparent

-y /
Initeyq

active(Parent)

OParent! = {}

Using this work, we created the Parent chart’s transition schema from the
decomposed state Child to state X shown above. As this operation transitions
out of the decomposed state, we want it to re-initialise the Child chart. As such,
the Init(y,,;, schema has been included as a declaration. This inclusion means
that when this transition occurs, the next state of the Child chart’s state space

observations will be re-initialised to the values defined in the Initcy;q schema.

Ochild = OHomem V lactivecnia V €cnia

dcniane = (Omomenm V lactivecniq V €cnia) \ (Ccnia)

Above we see the Child chart’s main operation schema, dcpi14, and new opera-

tion schema, dcpiave. This new schema is needed because the relationship defined

67

between the Parent and Child charts requires both main operation schemas to
occur at the same time. For this reason, if the re-initialisation occurs within the
Parent chart, this will conflict with any state changes within the Child chart’s
operations.

To solve this issue, we create the dcpignc operation schema. The additional
NC within its name stands for non-conflicting, as this schema has been created
to ensure that no conflict occurs when the Child chart is re-initialised. It does
this by using the hide operator, \, to exclude any changes within its preceding
operation schemas to the state space observations that follow it. In this case, any
change to the current state within the dyy, lactivecpiq or €cpig is ignored. If
there were more observations within the Child chart state space, we would also
list those alongside the current state. This operation schema is then used in place

of dcpug only when a re-initialisation occurs.

— 5Parent6’hildDec

A ChartParentChildDec
Z.ParentChildDec? P iHPUt]ParentChildDec

active_ : Ppig ..

OParentChildDec! P OUtpUt]ParentChildDec

((ParentChild vV ParentChild") A active(Parent)) < active(Child)
= Z.Parent?7 Z.Child?v OParent!7 OChild! P SZgTL(Zl hd

iParent? = Z.ParentC'hildDec? N ianI/t[Parent A

ichild! = tParentChildDec | () INPUtLcpig N

OParentChildDec! = OParent! U 0chia! N

((dcniax N dcnitanc) V (7 dcniax N Oparent N Ochid))

The final change we make is shown above. The point of interest is the final
line within the predicate, which is where we determine whether we use the dcpig

or dcpaanc operation schemas. This predicate is a disjunction at its top-level. On

68

the right hand side, the main operation schemas of both charts are included like
they normally would but only if the dcpiqx transition operation does not occur.
If it does occur, then the left hand side will occur instead, including the 0 cpianc
operation, which will ensure there are no conflicts with dcpiax’s re-initialisation
of the Child chart.

If a chart features multiple transitions out of the decomposed state, then this
predicate will look slightly different. Instead of the single transition operation
dcnaax, there will be disjunctions of all possible transitions on both sides of the
top-level disjunction within sets of brackets.

With these changes in mind, we made the changes to ZooM’s code. As we
did not want our changes to affect every decomposition that was translated by
ZooM, we used the command line flag ’-d’ to ensure this interpretation was strictly

optional.

4.2.2 AMuZed and ZooM bugs

Unfortunately, during our testing of AMuZed and ZooM, we encountered three
bugs related to the use of local variables.

The first bug involved local variables within decompositions. If a user added
a local variable to the parent chart in a decomposition, AMuZed would often not
save this local variable within its resulting .muz file. This variable would not
appear within ZooM’s Z translation and any use of this variable would then be
falsely translated as a value carrying signal.

The second bug we encountered involved local variables within the guard of
transitions. If a local variable were used within the guard in disjunction with an
input signal or another local variable, ZooM would then translate this relationship
into a conjunction.

Finally, the third bug we encountered involved local variables and value car-

rying signals within the action of transitions and had two resulting translation

69

issues. If a local variable were set to the value stored within a value carrying sig-
nal, ZooM would fail to translate this action at all. Instead the semantics would
make no mention of it

All three bugs were significant issues, capable of dramatically changing the
translation we expected. It became apparent that this functionality had not been
properly tested when AMuZed and ZooM were initially created. As we did not
know where in the code base these bugs occurred, we decided to manually fix these
issues ourselves. The AMuZed bug could be easily fixed by manually editing its
saved .muz file and ensuring the local variables were all saved within the file. The
guard bug could be fixed by manually editing the Z translation and changing the
erroneous conjunction back into a disjunction.

We also manually edited the Z translation to fix the action bug but it was
slightly more involved, as it required a more complicated predicate. For this we

needed to add predicate similar to the following:
(Fz: 7 o Ssigx € iparent? U (0parent! NV parent) A Var’ =)

This states that an integer z exists such that it is the signal Sval’s signal and
has been received as input. We then set the next state of the local variable Var

to this value.

4.3 ProZ

With the Return Home and Return patterns translated into their Z semantics, we
then needed to test that they behaved the way we expected. For this, we turned
to ProZ, a plugin for the verification tool ProB, which allows us to simulate, test

and verify 7 specifications.

70

4.3.1 ProZ formatting issues

Upon importing our translated Z semantics into ProZ, we were first met with
numerous formatting errors. These included errors such as ProZ not supporting
specifications that are spread across multiple files, IXTEX formatting tags ProZ
conflicted with and operations that ProZ did not recognise. As a result of this,
we created the following list of changes that needed to be applied to all ZooM

translated Z specifications in order for them to be recognised by ProZ.

e Combine all .tex specification files into a single file

Remove all lines starting with \Label

Rewrite all instances of active(chart) to chart € active

Delete all instances of \ _following active declaration

Change top level System initialisation schema name to Init

Expand and make explicit any value carrying signals within the feedback

definition

While most of these points are simple formatting errors, the final point is
slightly more complicated. When a value carrying signal is included within a

feedback signal set, ZooM translates it in a format similar to the below.

\IJParent = {5519}

While not incorrect, as the value carrying signal Ssig would have been previ-
ously defined, ProZ does not have the capability to know that these are related.
For this reason, we need to instead expand and make explicit any value carrying

signals within the feedback signal set, such as:

V parent = {n 1L e S‘%g n}

71

4.3.2 ProZ memory issues

Having resolved the formatting issues, we then found that the size and scope of our
7, specifications, particularly decompositions, would often lead to ProZ running
out of memory while simulating them. In an effort to prevent this from occurring,
we then worked towards reducing the scope of the Z specifications by simplifying
some of the semantics.

The first change we made to our Z specifications was to remove the types and
observations that were not used within the system. As ZooM translates pu-Charts
into a generic form of its Z semantics, it will often include all expected types and
observations, even if they are not used within the system. As an example of this,
the Return Home pattern does not produce any output but the output types and
observations still appear within its semantics. As it is a waste of resources for
ProZ to simulate these, we safely remove them and all inclusions of them while
making sure not to affect the predicate.

One of the most memory intensive parts of the Z semantics we identified was
the power sets. ProZ simulates these by exploring every possible subset and as
such, systems that contain a large number of power sets can be very memory
intensive. In order to simplify them, we identified two methods we could use.

The first was to split the ug, .. type into two separate types: Charts and States.
As the pig, .. type included both chart and state elements but the observations of
power set fig, ... type were all limited to either the state elements or chart elements,
we could safely split this type into two types without causing any issues. This
significantly reduced the cardinality of each type and thus reduced the memory
intensiveness of their power sets.

The second method we identified was to replace the power set declarations
with the appropriate explicit definitions. For example, the explicit definition
of dparentchitanec’s P gy, type is {{}, { Parent}, { Child}, { Parent, Child}}. This

change significantly reduced the number of calculations made within the simula-

72

tion.

4.3.3 Testing the patterns

Having made these three changes, we then proceeded to test both the Return
Home and Return patterns using ProZ. We found that both patterns behaved
as intended. The Return Home pattern successfully re-initialised when the Re-
turnHome input signal was received, returning to the default Home state with
no unintended side effects. The Return pattern had identical results when the
ReturnHome input signal was received, while it also successfully returned to its
previous state when the ReturnBack input signal was received following a re-

initialisation.

73

Chapter 5

Conclusion and Future Work

In this chapter we provide an overview of the goals of our thesis, summarise our

results and then provide directions for future work.

5.1 Overview of Project Goals

In this project, we have explored design patterns within graphical models, in an
attempt to more elegantly model complex systems. We have then used this to
explore pu-Charts and their semantics, which are defined in Z. Lastly, we evaluated
the tools, AMuZed, ZooM and ProZ, which were used to create pu-Charts, translate

p-Charts into their Z semantics and test Z specifications, respectively.

5.2 Summary of Results

We started this project with a focus on design patterns within graphical models
and worked towards this goal, modelling two interesting features we named the
Return Home and Return Back functions. This resulted in the Return Home and
Return patterns.

During this process, we found ourselves increasingly studying p-Charts and

its Z semantics, which greatly informed us throughout our project and became a

74

much larger part of it than previously expected. Not only did it help us create
the aforementioned patterns, particularly by offering a different interpretation to
how decomposed charts operate than the one that was usually detailed, but it also
helped us translate these patterns into their Z semantics and solve a number of is-
sues that we encountered. One such issue was the direct result of a typographical
error within one of our resources but due to the work we had done and our under-
standing of the semantics, we quickly found a viable solution. We also used this
understanding to investigate what changes we needed to make to the semantics
in order to translate our interpretation of how decomposed charts operate.

In our use of the tools, we modified the pu-Chart translation tool, ZooM, in
order to make it more easily accessible from the command line and have the
ability to translate decompositions using the interpretation we used. We tested
ZooM in order to ensure the changes we made had no unintended effect on the
resulting translations. While we did not discover any errors that were caused by
our changes, we did uncover a number of bugs related to the translation of local
variables that existed prior to our work.

Finally, we created a number of steps that can be used in order to put ZooM
translations into a format that ProZ would accept. We additionally provided a
number of steps that could be used to reduce the memory imprint of the p-Charts

semantics within ProZ should anyone encounter them.

5.3 Future Work

While this thesis only explored two patterns, in future we believe there should be
a continuation of building a library of design patterns. This library could then be
used to help model systems and homogenise the way different people may model
a system.

During our work, we used the tool, AMuZed. As AMuZed is reliant on the

75

Tecl/Tk interface, TclHaskell, which was abandoned and is no longer compatible
with modern operating systems, it can only be run from a virtual machine that has
been specifically created to operate it. While there is a new version of AMuZed
that has been re-engineered with the goal to replace it, it is not in a state to do
so. As such, we believe more work should be done in order to instead update
the original version of AMuZed. In our research, we came across another Tcl/Tk
interface for Haskell named HTk [6], which we believe could be used to replace
TclHaskell.

We also believe more work should be made to test and fix the tool, ZooM.
We encountered and detailed a number of bugs and translation issues during our
research and due to this, we do not believe it has been tested extensively. For this
reason, we believe that if it is to be continued to be used, it needs to be further

tested, starting with the tests we have compiled.

76

Bibliography

[1] Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge
University Press (August 1996)

[2] Bowen, J., Reeves, S.: Design patterns for models of interactive systems.
In: Software Engineering Conference (ASWEC), 2015 24th Australasian. pp.
223-232. IEEE (2015)

[3] Bowen, J.P.: Formal specification and documentation using Z: A case study

approach, vol. 66. International Thomson Computer Press London (1996)

[4] Harel, D.: Statecharts: A visual formalism for complex systems. Science of

computer programming 8(3), 231-274 (1987)

[5] Johnson, R., Gamma, E., Helm, R., Vlissides, J.: Design patterns: Elements
of reusable object-oriented software. Boston, Massachusetts: Addison-Wesley

(1995)

(6] Liith, C.: A short introduction to HTk—graphical user interfaces for haskell

(2002), http://www.informatik.uni-bremen.de/htk/intro/intro.ps.gz

[7] Nazareth, D., Regensburger, F., Scholz, P.: Mini-statecharts: A lean ver-
sion of statecharts. Mathematisches Institut und Institut fiir Informatik der

Technischen Universitédt Miinchen (1996)

[8] O’Sullivan, B., Goerzen, J., Stewart, D.B.: Real world haskell: Code you can
believe in. O'Reilly Media, Inc. (2008)

7

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Philipps, J., Scholz, P.: Compositional specification of embedded systems
with statecharts. TAPSOFT’97: Theory and Practice of Software Develop-
ment pp. 637-651 (1997)

Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator
and model checker. In: Integrated formal methods. pp. 480-500. Springer
(2007)

Reeve, G., Reeves, S.: p-charts and Z: Extending the translation. Tech.
rep., Technical Report 00/11, Department of Computer Science, University
of Waikato (2000)

Reeve, G., Reeves, S.: pu-charts and Z: Hows, whys, and wherefores. In:

Integrated Formal Methods. pp. 255-276. Springer (2000)

Reeve, G., Reeves, S.: The syntax and semantics of p-charts. Tech. rep.,
Technical Report 04/2004, Department of Computer Science, University of
Waikato (2004)

Reeve, G., Reeves, S.: Logic and refinement for charts. In: Proceedings of
the 29th Australasian Computer Science Conference-Volume 48. pp. 13-23.

Australian Computer Society, Inc. (2006)

Spivey, J.M.: The fuzz manual. Computing Science Consultancy 34 (1992)

78

Appendix A

Initial Return Home Pattern

Semantics

The Z semantics of the initial Return Home pattern displayed in Figure 3.7 are

shown here, formatted to be compatible with ProZ.

Pgpare = ReturnHomePattern | Main | ReturnHomePatternMainDec |

ReturnHomePatternMain | MainHome | MainM

Signal ::= SGotoM | SReturnHome

StatesReturnHomePattern : P/‘LState
inp,lth[ReturnHomePattern : PSZgnal

statesreturnHomePattern = ReturnHomePatternMain }

iNPULIReturnHome Pattern = { SReturnHome }

(ChartReturnHomePattern

CReturnHomePattern - StatesReturnHomePattern

79

—]nZtReturnHomePattern

ChafrtReturnHomePattern

CReturnHomePatiern — ReturnHomePatternMain

_ ReturnHomePatternMain

ChafrtReturnHomePattern

CReturnHomePattern = ReturnHomePatternMain

— 5M ainMain

ReturnHomePatternMain
ReturnHomePatternMain'
iReturnHomePattern | - I Signal
active : Ppg, ..

-q/
Inity

ReturnHomePattern € active

SReturnHome € iReturnHomePattern?

— €ReturnHomePattern
A Ch artRetumHomePattern

iReturnHomePattern? P Szgnal

actiwe : Ppg, ..

ReturnHomePattern € active

= (ReturnHomePatternMain N\ SReturnHome € irewrnHomePattern)

/ —_—
CReturnHomePattern — CReturnHomePattern

80

-]CLCtZ'UeReturnHomePattem

= Cha’rtReturnHomePattern

active : P g, ..

= ReturnHomePattern € active

5ReturnHomePattern = 5MamMain \ [acmveReturnHomePattern \ € ReturnHomePattern

statesnain P fhgyape
mnputiyem : P Signal
statesnrain = { MainHome, MainM }

inputlyrein, = {SGotoM }

_ Chartygin

CMain - Statesyrqin

_ Inat Main

Chartygin

Crain = MainHome

_ MainHome

Chartygin

Crain = MainHome

_ MainM

Chartaruin

Crain = MainM

81

— 5H omeM

MainHome
MainM’
iMain ! P Signal

actwe : Ppg, ..

Main € active

SGotoM ¢ Z.Main?

— €Main

A Chartpgin
WMain? : P Signal

actwe : P g, ..

Main € active

= (MainHome N SGotoM € ipggin?)

/
CMain = CMain

_Tactivepsgin

E Ch(l?” tMain

actwe : Ppg, ..

= Main € active

5Mam - 5H0meM

V Tactivenruin vV €Main

5MamNC - (5H0m6M

V lactivenain V €pain) \ (CMam)

82

5tatesReturnHomePatternMainDec : Pluswte
7;’n‘putl]—?eturnHomePatternMamDec P SZg’fL(Ll

StateSReturnHomePatternMainDec = StatesReturnHomePattern U StatesMain

ZbnputL‘%eturnHomePaifternMamDec = Z-nputIRetur’nHomePaiﬁtern U mPUtIMam

— Cha'rtReturnH omePatternMainDec

ChartReturnHomePattern

Chartasuin

]nZtReturnHomePatternMainDec

[nitReturnHomePattem

I m'tMam

— 5ReturnHomePatternMainDec

A Ch artReturnHomePatternMainDec

YReturnHomePatternMainDec 7P anUt]ReturnHomePatternMainD ec

actwe : Ppg, ..

((ReturnHomePatternMain V' ReturnHomePatternMain’) A
ReturnHomePattern € active) < Main € active

= iReturnHomePatternl iMain? P Szgnal i

iReturnHomePattern? = Z.ReturnHomePatternMainDec?
rj7;nputheiEurnHomePattern A

ZMain? - ZReturnHomePatternMainDec? N ZnPUt]Main A

((5MamMain A 5MainNC’) V (_‘ 5Ma7jnMam A 5ReturnHomePattern A 5Mam))

Init

InitReturnHomePatternMamDec

83

_ ReturnHomePatternSys

A Ch artReturnHomePatternMainDec

'];ReturnHomePatternMa'mDec? P 'I;nput[ReturnHomePatternMainDec

Jactive : Pug,,. ®

ReturnHomePattern € active N 0 geturnHomePatternMainDec

84

Appendix B

Final Return Home Pattern

Semantics

The 7Z semantics of the final Return Home pattern displayed in Figure 3.14 are

shown here, formatted to be compatible with ProZ.

Psare := ReturnHomePattern | Main | ReturnHomePatternMainDec |

ReturnHomePatternMain | ReturnHomePatternReturnHome |

MainHome | MainM

Signal ::= SGotoM | SReturnHome

State*sReturnHomePattern P M gpate
anlLt]ReturnHomePattern P Szgnal

statesgeturnHomePattern = { ReturnHomePatternMain,

ReturnHomePatternReturnHome}

INPULIReturnHome Pattern = { SReturnHome }

CReturnHomePattern - StatesReturnHomePattem

(Oha,TtReturnHomePattem

85

—]nZtReturnHomePattern

ChafrtReturnHomePattern

CReturnHomePatiern — ReturnHomePatternMain

_ ReturnHomePatternMain

ChafrtReturnHomePattern

CReturnHomePattern = ReturnHomePatternMain

_ ReturnHomePatternReturnHome

Oha'rtReturnHomePattern

CReturnHomePattern = ReturnHomePatternReturnHome

— 6MainReturnHome

ReturnHomePatternMain
ReturnHomePatternReturnHome'
iReturnHomePattern ! © P Stgnal

active : P g, ..

-y /
Inity g,

ReturnHomePattern € active

SRetumHome € Z.ReturnHomePattem?

86

— 5RetumH omeMain

ReturnHomePatternReturnHome

ReturnHomePatternMain’

iReturnHomePattern? P Szgnal

actwe : Ppg, ..

ReturnHomePattern € active

— €ReturnHomePattern

A ChartReturnHomePattern

LReturnHomePattern 7P SZgTL(Zl

actwe : Ppg, ..

ReturnHomePattern € active

= (ReturnHomePatternMain N SReturnHome € ireprnHomePattern)

I —
CReturnHomePattern — CReturnHomePattern

—]aCtiveReturnHomePattern

= ChartReturnHomePattern

active : Ppg, ..

= ReturnHomePattern € active

5RetumHomePattern = 5MainReturnHome Vv 5Retu7’nH0meMam

Vv [aCtiveReturnHomePattern V € ReturnHomePattern
statesyrain = P gy,
inputiygi, - P Signal

statespraim = { MainHome, MainM }

inputiysen = {SGotoM }

87

Chartygin

(CMain : stateSprain

— InitMam

Chart Main

Crain = MainHome

_ MainHome

Chartygin

Crain = MainHome

_ MainM

Chartasin

Crain = MainM

— 5H0meM

MainHome
MainM’
iMain ! P Signal

active : P g, ..

Muain € active

SGOtOM S iMain?

88

— €Main

A Chartyran
Ivain? P Signal

active : P g, ..

Main € active

= (MainHome N\ SGotoM € iprain?)

/ _
CMain = CMain

_lactivepsgin,

=Chartygin

active : P g, ..

= Main € active

5Main = 6HomeM

V Tactiveprzin vV €Main

5MamNC - (5H0meM
V [aCtiveMam Vv EMain) \ (CMain)
StatesReturnHomePatternMainDec : PuState
'];nput]ReturnHomePatternMamDec P SZgnal

5tateSReturnHomePattemMamDec = StatesRetUTnHomePattern U StateSMam

anut]ReturnHomePatternMainDec = ZnPUt]ReturnHomePattem U ZnPUt]Main

— ChartReturnH omePatternMainDec

Oha'rtReturnH omePattern

Chartasuin

89

I nZtReturnH omePatternMainDec

]nZtReturnHomePattern

I nZ'tMam

— 5ReturnH omePatternMainDec

A Ch artRetumHomePatternMainDec

ZbReturn[—[omePatternMcn'nDec? P ZbnputIReturnHomePaiﬁternM()LmDec

active : Ppg, ..

((ReturnHomePatternMain V' ReturnHomePatternMain’) A
ReturnHomePattern € active) < Main € active

= Z.RetM“n[-IomePatte’r’n?7 iMam? P Szgna,l b

‘?

YReturnHomePattern ¢ = ZReturnHomePatternMainDec?
ﬁinput[ReturnHomePatt‘ern A
'I;Main? = Z.ReturnHomePatternMamDec? N 'I;np/l'Lt]Main A\

((5MainReturnHome A 6MainNC)

vV (_‘ 5MamReturnHome A 5ReturnHomePattern A 5Main))

Init

]nltReturnHomePatternMainDec

_ ReturnHomePatternSys

A Ch a’rtReturnH omePatternMainDec

ZReturnHomePatternMamDec? P ZnPUt]ReturnHomePatternMainDec

Jactive : Ppug,,,. ®

ReturnHomePattern € active N 0 ReturnHomePatternMainDec

90

Appendix C

Return Pattern Semantics

The Z semantics of the final Return pattern displayed in Figure 3.15 are shown

here, formatted to be compatible with ProZ.

Psare := ReturnPattern | Main | ReturnPatternMainDec |
ReturnPatternMain | ReturnPatternReturnHome |

MainHome | MainM

Signal ::= SGotoM | SReturnBack | SReturnHome | Sprev{(Z))

statespeturnpattern * P fgate
Z'np,lfn[ReturnPattern P SZgTLCLl
OUtpUtheturnPattern P Szgnal
\IjReturnPattern P Szgnal

stateSgreturnpattern = { ReturnPatternMain,
ReturnPatternReturnHome}
inputl gerurnpattern = { SReturnHome, SReturnBack}

OUtPUtIReturnPattern = {n /R SpT’@U n}

\IjReturnPattern = {n /A SpT’@’U ’ﬂ,}

91

Va’riablesReturnPattern

VReturn : Z

ChartReturnPattern

CReturnPattern - StatesReturnPattern

VariablesReturnPattern

J—]nZtReturnPattern

ChafrtReturnPattern

CreturnPattern = ReturnPatternMain

VReturn =0

_ ReturnPatternMain

ChartReturnPattern

CheturnPattern = ReturnPatternMain

__ ReturnPatternReturnHome

OhaTtReturnPattern

CReturnPattern = ReturnPatternReturnHome

92

— 5M ainReturnHome

ReturnPatternMain

ReturnPatternReturnHome'

A Varz’ablesReturnPatterﬂ

iReturnPattern | © P Stgnal

actwe : Ppg, ..

OReturnPattern! P OUtPUtIReturnPattern

Initypim

ReturnPattern € active

SRetumHome € iRetumPattern? U <0Retu7“nPattern! N queturnPattern)

OReturnPattern! = {}

— 5ReturnHomeMain

ReturnPatternReturnHome
ReturnPatternMain’

A VariableseurnPattern
iReturnPattern| * P Signal

active : P g, ..

OReturnPattern! P OUtPUt]ReturnPattern

ReturnPattern € active

OReturnPattern! = {}

VReturn' = VReturn

93

— 5M ainMain

ReturnPatternMain
ReturnPatternMain’
A Variablesgeturnpattern
iReturnPattern | © P Stgnal

actwe : Ppg, ..

OReturnPattern! P OUtpUtIReturnPattern

ReturnPattern € active
SR@'L’UT’TLBCZCk S iReturnPattern? U (oReturnPattern! N \PReturnPattern)
OReturnPattern! = {SPTEU VR@tUTn}

VReturn' = VReturn

— € ReturnPattern

A ChartReturnPattern

iReturnPattern?a OReturnPattem! P SZgTLCLl

actwe : Ppg, ..

ReturnPattern € active
= (ReturnPatternMain N SReturnHome € igepurnpattern’
U (OReturnPattern ' nw ReturnPattern))
= (ReturnPatternMain N SReturnBack € igepurnpattern”’
U(OReturnPattern! N \PReturnPattern))
/ —
CReturnPattern — CReturnPattern

OReturnPattern! = {}

VReturn' = VReturn

94

T aCliVEReturnPattern

= ChartReturnPattern

active : P g, ..

OReturnPattern! P OUtPUtIReturnPatteML

= ReturnPattern € active

OReturnPattern! = {}

VReturn' = VReturn

(5Retu7“nPattern = 5MainReturnHome Vv 5ReturnHomeMa'm
V 5M ainMain

\%]aCtZ'UeReturnPattern \ € ReturnPattern

statesnyain P hgyame

inputlyem : P Signal

outputyrgin = P Signal
U rain - P Signal

statesnrain = { MainHome, MainM }
inputlyein, = {SGotoM , SReturnHome} U {n : Z & Sprev n}
outputlpyrein, = {n : 7 e Sprev n}

U ptain = {n : Z o Sprev n}

_ Chartygin

CMain - StateSprqin

—]nitMam

Chartaruin

Craim = MainHome

95

_ MainHome

C’hart Main

CMain = MainHome

_ MainM

ChCL?"t Main

CMain = MainM

— 5HomeM

MainHome
MainM’

ivain? P Signal
active : Ppg, ..

OMain! : P outputlysem

Main € active
(SGOtOM € iMain? U (OMam! N ‘IfMam)
V Sprev 1 € iygin? U (0main! NV atain))

OMain! = {}

96

— Omm

MainM
MainM'

ivain ! P Signal
actwe : Ppg, ..

OMain! @ P outputlysgin

Main € active
SReturnHome € ipain? U (0nain! N W ptain)

OMain! = {Sprev 1}

— €Main

AChCLTtMam
iMain > OMain! @ P Signal

actwe : Ppg, ..

Main € active

= (= SGotoM € iprain? U (0nain! 0V arain)

A = (Sprev 1 € ingain? U (0ntain! N WV itain)))

= (MainM N SReturnHome € iprain? U (0rain! 0 W pain))
CMain = CMain

OMain! = {}

_Tactiveyin

= ChaTtMam
active : P g, ..

OMain! : P outputysgm,

= Main € active

OMain! = {}

97

OMain = OHomem V Orm

V Tactiveprzin vV €Main

5MamNC - (5H0meM

V Tactivepruin V eMam) \ (CMam)

StatesReturnPattemMainDec :]P)MState
inpUtIReturnPatternMamDec P Slgnal
0UtpUtIReturnPatternMainDec P Szgnal
\IjReturnPatternMamDec P Slgnal

StatesReturnPatternMainDec = StatesReturnPattern U StateSMam
anUt]ReturnPatternMainDec = an,Ut]ReturnPattern U ZHPUtIMain
0UtpUt[ReturnPatternMainDec = OUtPUtIRetumPattern U OUtPUt]Main

\IjReturnPatternMainDec = {n YA SpT’@’U n}

Ch/artReturnPatternM ainDec

Cha/rtReturnPattern

Chartygin

I nitRetumP atternMainDec

I nZtReturnPattern

I m'tMam

98

— 5ReturnPatternM ainDec

A Ch artReturnPatternM ainDec
iReturnPatternMainD ec 7P 7;nputIReturnPatternMamDec

active : P g, ..

OReturnPatternMainDec ' P 0utPUtIReturnPattemMainDec

((ReturnPatternMain V ReturnPatternMain’) A
ReturnPattern € active) < Main € active

= iReturnPattern?a Z'Mam?a OReturnPatte'rn!; OMa'm! P Slgnal o

iReturnPattern? - (iReturnPatternMamDec? U (OReturnPattemMainDec!
m\I]Retuv"nPatternMainDec))
ﬂinPUtIReturnPattern A

iMain? - (iReturnPatternMamDec? U (OReturnPattemMainDec!

ﬁ\I'lReturnPatternMainDec))
Nenputygm N
OReturnPatternMainDec! = OReturnPattern! U OMain! A

((5MainReturnHome A 5Ma7jnNC)

Vv (_‘ 5Ma'mReturnHome A 5Retm“nPattern A\ 5Main))

Init

I nZtReturnPatternM ainDec

__ ReturnPatternSys

A Ch artRetumPatternM ainDec

ZbReturnPoLt‘iEernMainD ec ?: P inpUtheturnPatternMamDec
OReturnPatternMainDec P OUtp utl, ReturnPatternMainDec
Jactive : Ppug,,,. ®

5ReturnPatternM ainDec

99

100

