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Abstract

Modern interactive systems can be incredibly complex, with a variety of screens,

menus, widgets, etc. available to the user. Due to this, modelling these interactive

systems can also be incredibly complex and while there are techniques to help

overcome this, it can often lead to radically different models depending on the

modeller.

This thesis explores the use of two design patterns created in order to help

simplify modelling interactive systems. In the process of doing this, we first

explore µ-Charts and its semantics, which are defined in Z, in order to understand

its capabilities. We then discover a feature we name the Return feature, which we

break down into two parts, Return Home and Return Back, and create patterns

in order to concisely model them. Finally, we test these patterns and evaluate the

tools we used to create the µ-charts, translate them into their Z semantics and

test them.
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Chapter 1

Introduction

Model checking is a branch of formal methods that aims to formally verify and

validate finite-state systems, by creating a formal model to represent a system

and then, if possible, exhaustively checking whether this model meets a set of

requirements, which are specified as properties. These models can be represented

textually, using textual specification languages such as Z and B, as well as graphi-

cally, using graphical specification languages such as StateCharts [4] and µ-Charts

[9] [12].

Graphical specification languages were initially introduced in the form of Stat-

eCharts by Harel. Harel argued that reactive systems require a different ap-

proach to their specification than textual languages and that visual languages

and methodologies are the best way to specify them. This marked the beginning

of research into graphical specification languages, which led to the creation of

other similar languages such as Mini-Statecharts [7] and µ-Charts.

The levels of complexity within modern user interfaces means that creating

models at a suitable level of abstraction that are reasonably sized, readable, and

therefore usable, is very challenging. In response to this issue, the idea of using

design patterns to simplify and make models more readable was offered [2].

Software design patterns are reusable methods that can be applied to com-
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monly occurring software design problems [5]. They have been used within soft-

ware design since 1987 but it was not until Gamma, Helm, Johnson and Vlissides

published the book Design Patterns: Elements of Reusable Object-Oriented Soft-

ware [5] that the idea of applying patterns to computer programming started

to gain popularity. Their use within interface design analysis and verification,

however, has been limited.

The use of design patterns to model interactive systems is an area Bowen and

Reeves explored in 2015 [2]. Their goal was to make certain patterns explicit in

the hope that a body of known patterns could then be developed in a similar

manner as programming patterns. They introduced two patterns, the Callback

pattern and the Binary Choice pattern, while formalising them and using them

within examples.

In this research project we aim to continue the work of Reeves and Bowen to

explore design patterns within graphical models in an attempt to more elegantly

model complex systems. Using the µ-Charts semantics, we then intend to inves-

tigate and prove properties within these design patterns by translating them into

the Z specification language. We will also evaluate the tools, AMuZed, Zoom and

ProZ, used within this process.

The rest of this thesis is structured as follows: in chapter two we discuss the

basics of the specification languages Z and µ-Charts, in order to clarify aspects

of these languages that will be used in later chapters; in chapter three we discuss

the Return Home and Return Back design patterns, as well as the interpretations

of µ-Charts made to model them; in chapter four we discuss the testing of the

design patterns, as well as the tools that have been used as part of the testing

process; and finally, we conclude in chapter five.
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Chapter 2

Background

The goal of this chapter is to provide the background knowledge that is required to

understand the content within the subsequent chapters. It provides overviews of

the specification languages Z and µ-Charts, as well as the tools AMuZed, ZooM

and ProZ. It also discusses the prior work on using design patterns to model

interactive systems.

2.1 Z

Z is a formal specification language based upon set theory and first order predicate

logic [3] widely used within the formal methods community to describe and model

computing systems. Specification languages differ from programming languages

in that they are used to describe systems, not produce executable code. A typical

Z-modelled system will consist of a state space, which represents the state of the

system, and operations that change said state. Operations are represented using

schemas, which consist of declarations and predicates. Z uses syntactic sugar

in order to allow the reader to focus more on the specification than the logic.

As an example of this, there is an implicit logical AND that combines multiple

predicate lines. The Z specification of a simple counter system is shown below to
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demonstrate.

Counter

count ,max : N

count ≤ max

The Counter schema shown above shows the state space of the counter. First

it declares the observations, which is a name we use for the parts of the state

that can be observed, count and max as natural numbers. The predicate section

follows, which constrains the observation count to be less than or equal to the

maximum max within this state space.

InitCounter

Counter ′

count ′ = 0

max ′ = 100

The InitCounter operation schema is shown above. This schema first declares

that it involves both the declaration and predicate parts of the primed Counter ′

state space and then initialises the primed observations count ′ and max ′. This

priming convention is used to denote the next state of the system, so the Counter ′

space represents the next state of the Counter state space and the max ′ observa-

tion represents the next state of the max observation. As mentioned above, there

is an implicit logical AND combining both initialisations, making it equivalent to

count ′ = 0 ∧ max ′ = 100. If these values did not satisfy the predicate within

the state space, i.e. count ≤ max , the counter system would not be able to be

initialised.
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Increment

Counter

Counter ′

count ′ = value + 1

The above schema shows the Increment operation schema. It declares that

the schema uses the Counter state space, as well as the primed Counter ′ state

space. The primed count ′ observation is defined as the sum of the current count

incremented by one every time the increment operation occurs, so long as the

predicate within the Counter and Counter ′ state space is true.

Note that within the Increment schema, an error has been made by leaving the

primed max ′ observation without a value. Within Z, if an observation within the

state space has been left unconstrained without a value, then it may potentially

be any value within its definition so long as it satisfies the predicate. Within

the Increment schema, this means that the max ′ observation may change to any

natural number so long as the predicate count ′ ≤ max ′ is satisfied. This can be

used deliberately if there is an unknown factor within a system but in this case,

the error can be fixed by adding the line max ′ = max to the Increment schema’s

predicate as can be seen below.

Increment

Counter

Counter ′

count ′ = value + 1

max ′ = max
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2.2 µ-Charts

µ-Charts are a state diagram variant [13] with semantics given in Z [12] [14],

involving states and transitions, and created with the assumption that sets of

input signals will appear from the environment from time to time. One of the

states is called the starting state and denotes the state the system begins in.

Transitions occur only when sets of inputs appear and all resulting actions occur

instantaneously alongside them. It is labelled with a pair, the guard and an action,

written in the form guard/action.

The guard is a conditional expression, which usually involves input signals,

but can also include local variables and feedback. If the guard is left empty, we

consider this syntactic sugar for a TRUE value, which means that it may occur,

whatever the input signals are.

An action can consist of sending an output signal, changing a local variable

or both. µ-Charts also include a number of other features that set them apart,

such as composed and decomposed charts, as well as the aforementioned local

variables, value carrying signals and feedback. Like the guard, the action can be

left empty, which we consider syntactic sugar for no action occurring other than

the transition to the new state. If the action is empty, we also do not include the

slash.

This section will focus on sequential charts, decomposed charts, local variables,

feedback and value carrying signals, as they are the features that are used within

this paper. For more information on composed charts, see [12].

2.2.1 Sequential charts

Figure 2.1 shows a simple sequential µ-chart. It contains two states, the start state

X and the state Y , and a transition from state X to state Y . The transition is

labelled a/b. It transitions from state X to state Y when the input signal a is
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received, while outputting the signal b.

A

X Y

a/b

Figure 2.1: Simple sequential µ-chart

The semantics of µ-Charts consists of generic schemas and definitions that

give the semantics of any µ-chart in Z. These definitions are used by machine

translation tools, such as ZooM. The tool ZooM will be explained below but it is

a tool that translates µ-Charts into the Z semantics. When it does this it creates

numerous schemas to describe the chart, as well as higher level system schemas

which are used to receive input and output from the environment. It is usually

simple to recognise which part of the system a schema is associated with, as the

chart name will be included within the schema name in subscript.

µState ::= A | AX | AY

Signal ::= Sb | Sa

Seen above is the first detail of the semantics: the system type definitions.

The first, µState , is a type which is defined, using the ::= symbol, to consist of all

charts and states within the system. The states have the name of the chart they

are part of prefixed to their state names. For example, the state Y appears as

state AY because it is part of the chart A. In this case, the µState type consists

of the chart A, as well as the states AX and AY . The second type, Signal is a

set of the input and output signals used within the chart and, as they are signals,

are denoted by a capital S before the signal name. In this case, the Signal type

consists of the signals Sb and Sa.
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statesA : PµState

inputIA : P Signal

outputIA : P Signal

statesA = {AX ,AY }

inputIA = {Sa}

outputIA = {Sb}

Above is the first schema of chart A, showing chart A’s global constants. These

global constants are used throughout the system and are used as types. statesA

is a set of the states within chart A. It is has a power set type, denoted by

the symbol P, of the µState type previously defined. A power set is a set of all

possible subsets of a type, as well as the set itself and including an empty set. For

example, the power set of the µState type would consist of the subsets {}, {A},

{AX }, {AY }, {A,AX }, {A,AY }, {AX ,AY } and {A,AX ,AY }. statesA is then

constrained to the {AX ,AY } subset, as these are the two states that are part of

chart A.

inputIA and outputIA are similar. inputIA is a set of the input signals within

chart A, while outputIA is a set of the output signals within chart A. They are each

declared as having power set types of the Signal type and are then constrained.

inputIA is constrained to the signal Sa, as that is the only input signal received

by chart A. outputIA is constrained to the Sb signal, as it is the output signal

that can be sent by chart A.

ChartA

cA : statesA

The schema above shows the state space of chart A. It has a single observation,

cA, which represents the current state of chart A.
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InitA

ChartA

cA = AX

The InitA operation schema is shown next, which specifies how chart A is

initialised. It declares that it includes the ChartA state space and then initialises

the current state of chart A to AX .

AX

ChartA

cA = AX

AY

ChartA

cA = AY

The two schemas shown above are schemas representing the two states within

chart A, AX and AY . Both declare that their respective states are the cur-

rent state. The transition schemas, declared later, include these schemas. If a

transition schema includes schema AX , the start state of that transition is state

AX .
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δXY

AX

AY ′

active : PµState

iA? : P inputIA

oA! : P outputIA

active(A)

Sa ∈ iA?

oA! = {Sb}

Above we see δXY operation schema, which is the schema for the transition

labelled a/b within the example. The system transitions from state AX to state

AY when the input signal Sa is received, outputting the signal Sb in the process.

The lower case delta symbol, δ, is used to denote some operation schemas, in this

case the transition from state AX to state AY . This symbol is then followed by

XY because the schema transitions from state AX to state AY .

Within the declarations, we see that the AX schema is included. This means

that the start state of this transition is the state AX . The primed AY ′ schema

means that the next state of the chart after the transition occurs is state AY .

The next declaration is the observation active, which has a power set type of

the µState type. Combined with the predicate, active(A), this observation means

that chart A is the active chart. This observation is used within the top level of

the ASys schema and we will detail this further within that section.

The last two declarations are the input signals, iA?, and output signals, oA!.

The input observation will either be the signal Sa or there will be no signal. The

guard of δXY within the example µ-chart was a, due to this the predicate includes

the line Sa ∈ iA?, which means that for transition δXY to occur, the input signal

Sa must be received. The output has a power set type of outputIA, which means
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that we will either output no signals or the signal Sb. The action of δXY within

the example µ-chart was b, so the predicate includes the line oA! = {Sb}.

εA

∆ChartA

active : PµState

iA? : P inputIA

oA! : P outputIA

active(A)

c ′
A = cA

¬ (AX ∧ Sa ∈ iA?)

oA! = {}

The above schema is the εA (epsilon) operation schema for chart A. The

epsilon operation is intended to account for any steps within the chart when no

transition occurs. As such, this schema represents the chart being idle, where it

is active but no transitions occur.

The first declaration of the epsilon schema is ∆ChartA. The upper case delta,

∆, is used to denote a state change to ChartA. If this is used, we know that there

may be changes to the observations within the state space. In this case, we can

see the predicate c ′
A = cA below. This means that the current state of chart A,

cA, will remain the same within the next state of the system.

The next declaration is active, which is declared and constrained exactly as it

was in the δXY operation schema.

After this, the input signals, iA?, and output signals, oA!, are declared as

having power set types of type inputIA and outputIA, respectively. Within the

predicate, we see that the output signals are constrained to an empty set, so there

cannot be any output signals being sent.

This schema may occur when no other transitions within the system may
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occur. There is only one transition within this example µ-chart and that is the

δXY transition. In order to ensure the epsilon operation schema occurs when that

transition will not occur, we include the line ¬ (AX ∧ Sa ∈ iA?) within the

predicate. This means that the epsilon schema will only occur when δXY will not.

IactiveA

ΞChartA

active : PµState

oA! : P outputIA

¬ active(A)

oA! = {}

Above we see chart A’s inactive operation schema, named IactiveA. This

schema is intended to account for when the chart containing this transition is

inactive.

The first declaration of the inactive schema is ΞChartA. The upper case Xi,

Ξ, is used to denote when there are no changes being made to the state. As such,

this means that the inactive schema makes no changes to the observations within

the ChartA state space and the current state of the chart will remain the same

when the inactive schema occurs.

Following this, active is once again declared having a power set type of the

µState type. Within the predicate, active(A) is negated. As the name of the

inactive schema implies, this is because this operation schema will only occur

when chart A is inactive and this predicate ensures that.

Finally, like the epsilon schema, the inactive schema declares and constrains

the output signals, ensuring that it does not send any. It is worth noting that there

are no input signals declared or constrained. This is because they are irrelevant

to chart A while it is inactive.

δA =̂ δXY ∨ IactiveA ∨ εA
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The predicate above is the final chart A schema. It shows the main chart A

operation schema, δA. This schema is intended to be the main operation schema

for a chart, with every other operation schema, such as the transitions, epsilon

and inactive schemas, available as possibilities within it. As such, it is defined as

the disjunction of all of these operation schemas, in this case the δXY , IactiveA

and εA.

Following the chart A schemas, we have the top level system schemas. In this

case, the schemas are named ASys , with the suffix Sys added to the chart name.

These are used to receive input and send output every time sets of inputs are

received from the environment. It also ensures that the main chart is active.

InitASys

InitA

The first ASys schema is the InitASys initialisation schema. This schema is

used to initialise all charts within the system, which in this case is simply chart

A, so it includes the InitA schema within it.

ASys

∆ChartA

iA? : P Signal

oA! : P Signal

∃ active : PµState •

active(A) ∧ δA

The second and final ASys schema is the top level operation schema named

simply ASys , which is the main operation schema of the entire system. Similar to

the way the δA operation schema gathers the various operation schemas within its

respective chart, this schema gathers all main operation schemas from the level

below it. In this case, it is only δA.
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A

U V

c+d

a.b

Figure 2.2: µ-chart with more complex transitions

In addition to the simple sequential chart seen in Figure 2.1, µ-Charts also

provide support for more complex transitions, such as transitions that loop back

to the same state and transitions that make use of more than one input signal.

An example of this is shown in Figure 2.2.

This chart features two transitions, one of which is a loop transition which

starts and ends on the same state. Within the guards of the transitions, we see

that they use AND, denoted by the dot symbol, and OR, denoted by the plus

symbol. An AND will be true only if both pieces of the guard are true, whereas

an OR will be true if one or both pieces of the guard are true.

δUU

AU

AU ′

iA? : P inputIA

oA! : P outputIA

active : PµState

active(A)

(Sa ∈ iA?

∧ Sb ∈ iA?)

oA! = {}

The semantics of these transitions are very similar to the transition operation
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schema seen in the previous example, as can be seen in the semantics of the

a.b loop transition above in δUU . This operation schema features two points of

difference in comparison to the δXY transition schema detailed earlier. The first

is that due to this transition being a loop transition from state U , or in this case

state AU due to the chart name being prefixed to the state name, back to the

same state. As a result, the name of the schema, δUU , features the name of the

state twice and the current and next state within the declarations is said to be

the state AU .

The second point of difference is the predicate (Sa ∈ iA? ∧ Sb ∈ iA?). Unlike

µ-Charts, Z uses the ∧ symbol as its logical AND and as such, this predicate can

only be true if both the Sa and Sb signals are sent to the system as input signals.

The δUV is not shown but uses Z’s logical OR, ∨.

2.2.2 Decomposition operator

The decomposition operator is a feature of µ-Charts that consists of a chart that

exists within another chart, as seen in Figure 2.3. We name these two charts the

parent and child. The child chart is represented within the parent chart by a

rectangular state, which features the same name as the child chart. We call this

the decomposed state. In Figure 2.3, this can be observed in the parent chart,

Parent , which features the decomposed state Child , and then the child chart,

Child , which obviously features the same name as the decomposed state. Both

the parent and child charts are initialised at their starting states: state X in the

Parent chart and state Z in the Child chart. Input is shared by the entire system

(i.e. both charts Parent and Child) but transitions will only occur when a chart

is active and the Child chart is only active when the decomposed state Child is

either the parent chart’s current state or will be its next current state.

When a chart is inactive, the semantics of µ-Charts defines it so that the

chart will retain its current state until it becomes active again and a transition
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A

X Y

a/b

e/f

Child

Z

c

d

W

Figure 2.3: Decomposed µ-chart

may occur within it. Using Figure 2.3 as an example, if the current state of the

Parent chart was the decomposed state Child and the current state of the Child

chart was state W , the Child chart would become inactive if the e/f transition in

the Parent chart occurred and it transitioned to state X . Even if the input signal

d were then received, the Child chart would remain in state W until it became

active again.

The Z semantics of decompositions are more complex than a sequential chart.

Both the Parent and Child charts are translated in a similar fashion as chart A

in the previous example but there are additional schemas added to the semantics

to detail the relationship between those two charts. The name of these schemas

within this example is ParentChildDec, which is named by combining the name

of the parent and child charts together and then adding the Dec suffix to the end,

indicating that these schemas are related to the decomposition.
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statesParentChildDec : PµState

inputIParentChildDec : P Signal

outputIParentChildDec : P Signal

statesParentChildDec = statesParent ∪ statesChild

inputIParentChildDec = inputIParent ∪ inputIChild

outputIParentChildDec = outputIParent ∪ outputIChild

Above we see the first ParentChildDec schema. Like the chart schemas shown

earlier, it shows the declaration and constraint of global constants. The three

constants are very similar to the example shown previously, with the states, input

and output all declared. The predicate, however, is very different. Here, instead

of constraining them to specific values, we are using the union, ∪, to constrain

each constant to the combination of the relevant Parent and Child constants.

As such, if we assume statesParent = {ParentX ,ParentChild} and statesChild =

{ChildZ ,ChildW }, statesParentChildDec would then consist of {ParentX, Parent-

Child ,ChildZ ,ChildW }.

ChartParentChildDec

ChartParent

ChartChild

InitParentChildDec

InitParent

InitChild

The next two schemas are the ChartParentChildDec and InitParentChildDec schemas.

These schemas are very simple in that they only include the equivalent Parent and

Child chart schemas. The result of this is that InitParentChildDec schema initialises

both charts, while ChartParentChildDec is the combined state space of both charts.
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δParentChildDec

∆ChartParentChildDec

iParentChildDec? : P inputIParentChildDec

oParentChildDec! : P outputIParentChildDec

active : PµState

((ParentChild ∨ ParentChild ′) ∧ active(Parent))⇔ active(Child)

∃ iParent?, iChild?, oParent !, oChild ! : P Signal •

iParent? = iParentChildDec? ∩ inputIParent ∧

iChild? = iParentChildDec? ∩ inputIChild ∧

oParentChildDec! = oParent ! ∪ oChild ! ∧

δParent ∧ δChild

Finally, we see the last ParentChildDec schema above, the δParentChildDec oper-

ation schema. This is the schema that details the relationship between the Parent

and Child charts and, as a higher level schema than the δParent or δChild , is then

included within the system operation schema, which in this case is ParentSys .

Many of the declarations within this schema are similar to previous examples.

First it declares that there may be state changes within this schema. Then it

declares the input, output and active state.

The predicate, however, is very different. The first line concerns whether the

Child chart is active. It uses an if and only if, ⇔, to ensure that both sides have

the same value, whether true or false. If one side is true while the other is false

the predicate will be false and this operation schema will not be able to occur.

As such, the right hand side of the if and only if operator, which states that the

Child chart is active, can only be true if the left hand side is true. The left hand

side will be true if both the Parent chart is active and the decomposed state

ParentChild is either the current state or the next state of Parent chart. As the

System schemas already define the Parent chart as always active, this means that
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whether the Child chart is active depends entirely upon whether the decomposed

state ParentChild is the current or next state. If it is not then the Child chart

must be inactive.

The rest of the predicate within this schema is a conjunction. First it states

that the input and output observations of the Parent and Child charts exist as

having power set types of the Signal type. These can be considered the same as

each of these charts operation schema’s input and output observations. It follows

this by using the intersection, ∩, to ensure that any input received by either chart

must be part of the respective chart’s input global constant. This essentially filters

the input the δParentChildDec operation schema receives down to the relevant charts.

This is followed by the combination of the output received from both Parent and

Child charts using the union to form the ParentChildDec’s output. Then finally,

the delta operations schemas of both Parent and Child schemas are included.

2.2.3 Feedback operator

The feedback operator is a feature of µ-Charts that allows us to instantaneously

feed a set of designated output signals back into the chart as input signals. As

such, we can use this feature to send signals between multiple charts within a

composed or decomposed chart.

The graphical representation of the feedback signal set is presented in a box

located below the µ-Chart. This box is used to display the chart’s feedback,

hidden and filtered signals, the latter two of which are µ-Charts features detailed

in [13], but for our purposes, we only make use of the feedback signals. A form

of syntactic sugar is used to help simplify this. If there is only one set of signals

within the box, this means that there are no hidden or filtered signals within this

chart and the set must be the feedback signal set.

Within a decomposed chart, the relationship between the parent and child

charts results in some unique rules in regards to the feedback operator. Both the

19



parent and child charts have their own sets of feedback signals but only the signals

included within the parent chart’s feedback signal set will be received as input by

both charts. As such, the child chart will receive feedback signals from the parent

chart even if these signals are not included within its own feedback signal set but

in order for the child chart to send a feedback signal to the parent chart, this

signal must be included within both the parent and child charts’ feedback signal

sets. An example of this is shown below in Figure 2.4.

Parent

X

a/b

{b}

Child
Child

Y

b

Z

Figure 2.4: µ-chart with feedback

The feedback signal set located at the box at the bottom of the Parent chart

contains the signal b, meaning that if the Parent chart outputs the signal b,

it will feed this signal back into both the Parent and Child charts as an input

signal. Using this example, if we were to receive the input signal a, the transition

labelled a/b would occur. This transition would both make the decomposed chart

active and output the signal b. This signal which would then be fed back into the

system as the input signal b and would be received by the Child chart. The Child

chart would transition to state Z due to this. All of these actions would occur

immediately, within a single step.

Shown below are some excerpts from the semantics of this chart.

ΨParent : P Signal

ΨParent = {Sb}

Seen above is the declaration of the Parent chart’s feedback constant, which

we represent using the Ψ symbol. This is then constrained to the signal Sb, as
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this is the only feedback signal within the chart.

Sa ∈ iParent? ∪ (oParent ! ∩ΨParent)

oParent ! = {Sb}

Above we see the two relevant pieces of predicate from the Parent chart’s

transition from state X to the decomposed state Child .

With the addition of feedback, the input signal predicate is extended to take

the local chart’s feedback signals into account. We determine which output signals

have been fed back into the chart by getting the intersection of the output and

feedback signal sets and then combine this with the input signal set to check

whether the input signal Sa has been received. This extension to the predicate

is redundant within a decomposition’s parent chart due to the ParentChildDec

operation schema predicate detailed below but in a sequential or child chart, this

is how output signals are fed back into the chart.

In this same transition, we also include the signal Sb as output, which will

later be fed back into the system.

Sb ∈ iChild? ∪ (oChild ! ∩ΨChild)

In the Child chart, we see the above predicate in the transition from state Y

to state Z . In this case, the feedback signal Sb will be received as an input signal.

ΨParentChildDec : P Signal

ΨParentChildDec = {Sb}

The remaining changes are made within the ParentChildDec schemas, which

define the relationship between the Parent and Child charts. We see the first

change above, where the feedback constant is identical to the Parent chart’s feed-

back constant. This is because the Parent chart is the main chart within the

system, so only signals listed within its feedback set may be sent between the
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two charts. If the Child chart had its own feedback signals, these would not be

included within this feedback set.

iParent? = (iParentChildDec? ∪ (oParentChildDec! ∩ΨParentChildDec)) ∩ inputIParent ∧

iChild? = (iParentChildDec? ∪ (oParentChildDec! ∩ΨParentChildDec)) ∩ inputIChild

Finally, within the ParentChildDec operation schema, the input signals of both

the Parent and Child charts are defined as a combination of the input that has

been received from the environment and the output signals that are meant to be

fed back into the charts. This means that if the Parent chart outputs the signal

Sb, this schema will ensure it will be received by both charts as an input signal.

2.2.4 Value carrying signals

Value carrying signals are signals that contain values within them. These signals

can be used to help simplify charts, as related signals can be grouped together

as possible values of a single value carrying signal, rather than be represented by

multiple different signals. We can also send value carrying signals as output and

use them in conjunction with the feedback operator and local variables.

A

X

sig=1

a/sig:=2

Y

Figure 2.5: µ-chart with value carrying signals

Seen in Figure 2.5 is a chart containing the value carrying signal sig , which is

used within both transitions. In this case, we want the values this signal carries

to be of an integer type and so we make sure our use of it is restricted solely to

integers. The first transition has a guard of sig = 1, so for this transition to occur,
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sig must be received containing the value 1. The second transition has sig := 2

within its action, which means that when this transition occurs, it outputs sig

with the value 2.

The semantics of value carrying signals is slightly different to a standard signal,

which can be seen below in the system’s Signal type declaration.

Signal ::= Sa | Ssig〈〈Z〉〉

It is declared in a similar fashion as standard signals, with the S prefix added

to the signal name, but is followed by its value type within double angle brackets.

In this case, its value is of the integer type but this type depends on what values

it has been set to within the µ-Chart.

inputIA = {Sa} ∪ {n : Z • Ssig n}

outputIA = {n : Z • Ssig n}

The next addition is to the chart’s input and output global constants. The

value carrying signals in both are defined in the same way, with the integer n

declared such that Ssig contains n. They are defined in a separate set than

standard signals because of their differences.

Ssig 1 ∈ iA?

Above we see the input predicate from the example’s first transition, which

means that for that transition to occur, the signal Ssig must be received containing

the integer 1.

oA! = {Ssig 2}

Last, we see the output predicate of the example’s second transition. When

this transition occurs, this means that the signal Ssig will being sent as output

containing the integer 2.
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2.2.5 Local variables

Local variables are used within µ-Charts to store a value which may then be used

within a transition’s guard or action. The use of this can be seen within Figure

2.6, where the local variable var is initialised in the top right corner to its default

value start . This local variable is then used within both of the chart’s transitions,

demonstrating how local variables can be used within the guard and action. The

first transition, labelled a/var := stop, occurs when the state X is the current

state and the input signal a is received. The local variable var is then set to the

value stop within the action of this transition. The second transition, labelled

var = stop/var := start , then occurs when the current state is Y and the local

variable var is stop. As the local variable var was set to the value stop within the

previous transition, this means that the transition may occur straight after the

previous transition occurred. Then within the action of this transition, the local

variable var is set to the value start .

[var=start]LV

X Y

a/var:=stop

var=stop/var:=start

Figure 2.6: µ-chart with local variable

The inclusion of local variables to a chart adds a few new points of details to

the Z semantics, which is detailed below.

FValvar ::= stop | start

We first see the local variable type definition, which defines a type FValvar to

either be the value stop or the value start . This is named FValvar by prefixing

FVal onto the local variable name, var .
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VariablesLV

Vvar : FValvar

Next is the VariablesLV schema, which declares the local variable Vvar of type

FValvar . This schema is used to declare any local variables to be used within the

state space. Similar to the local variable type, the names are created by prefixing

V onto the local variable name.

ChartLV

cLV : statesLV

VariablesLV

Above see the ChartLV schema, which is the state space of the chart. This

declares both the current state and the VariablesLV schema, which in turn adds

all local variables declared within it to the state space.

InitLV

ChartLV

cLV = LVX

Vvar = start

Next is the InitLV schema, which as has been explained before, initialises the

chart. The only difference from previous examples is that it initialises the local

variable, Vvar , is initialised to the value start , as it was in Figure 2.6.
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δXY

LVX

LVY ′

∆VariablesLV

iLV ? : P Signal

active : PµState

oLV ! : P outputILV

active(LV )

Sa ∈ iLV ?

Vvar ′ = stop

oLV ! = {}

Above is the δXY operation schema, which is the semantics of Figure 2.6’s first

transition, labelled a/var := stop. There are two parts of this schema that are

relevant to local variables. The first is that the VariablesLV schema is declared

using the upper case delta symbol, indicating that there will be changes to the local

variable observations within it. The second is the line Vvar ′ = stop within the

predicate, which sets the primed local variable Vvar ′ to the value stop, meaning

that the local variable Vvar will be set to stop in the next state of the system.

This is an accurate translation of the transition’s label a/var := stop.
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δYX

LVY

LVX ′

∆VariablesLV

active : PµState

oLV ! : P outputILV

active(LV )

Vvar = stop

Vvar ′ = start

oLV ! = {}

Finally we see the δYX operation schema and the Z semantics of Figure 2.6’s

second transition, labelled var = stop/var := start . Like the previous example, it

indicates that there will be changes to the local variable observations within the

VariablesLV schema using the upper case delta symbol. Then within the predicate,

it first ensures the current value of the local variable Vvar is stop and sets the

primed local variable Vvar ′ to the value start . So in order for the transition to

occur, the current value of Vvar must be stop and then after the transition occurs,

Vvar will be set to the value start .

While not shown, an additional change is made to the εLV and IactiveLV

schemas, adding the predicate Vvar ′ = Vvar . This ensures that the value of the

local variable Vvar remains unchanged if either of these operation schemas occur.

2.3 Tools

Within this section, we will talk about the tools AMuZed, ZooM and ProZ.
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2.3.1 AMuZed and ZooM

AMuZed and ZooM are tools designed for use with µ-Charts and in conjunction

with one another. AMuZed is a graphical editing tool designed with the intention

to create, save, edit and print µ-charts. It was used to create the µ-charts that

appear within this paper. ZooM is a tool that is used to convert µ-charts into Z

using the semantics that defines µ-Charts, first by checking that the syntax of the

chart is correct and then translating it into a LATEX-formatted Z specification.

AMuZed and ZooM were both developed in Haskell in parallel with one an-

other, so their source code is integrated together into a group of source files.

Their graphical user interfaces were created using Tcl/Tk via an interface named

TclHaskell. Unfortunately, support for TclHaskell has since been abandoned and

it is no longer compatible with modern operating systems, so they can only be

run from a virtual machine that has been specifically created to run them. Efforts

to re-engineer both tools have been made but neither are at a point where they

can fully replace them.

AMuZed is shown in use in Figure 2.7. The tool bar shown offers a number of

options, such as creating a new chart, opening and saving charts with AMuZed’s

.muz file extension and outputting the chart as an image, and tools, such as

creating new states, transitions and adding a local variable. These tools are used

to build the µ-charts. The window shown on the right hand side displays the

graphical model. In addition, each decomposition that exists within the model is

shown in an additional window.

ZooM features a minimalist interface. It is comprised of an open file dialogue,

which the user can use to select the .muz file they want to translate into its Z

semantics, and an error dialogue, which will display any errors encountered during

translation.
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Figure 2.7: AMuZed user interface

2.3.2 ProZ

ProZ is an extension to the ProB Animator and Model Checker tool [10], which is

an animator, graphical visualiser, constraint solver, simulator and model checker

for B [1], a formal specification language similar to Z. ProZ uses the Fuzz type-

checker [15] to typecheck and extract the formal content from Z specification files

when they are loaded into ProB. It then parses this content and translates it into

B [10], allowing ProB to simulate it as if it were a B specification.

Figure 2.8 shows the user interface of ProZ, which consists of a toolbar at the

top and four panes. The top pane is a text editor we call the specification editor,

which allows us to read and edit Z specifications. Changes that are made are not

immediately simulated by ProZ, instead the file needs to be saved and reopened

using an item in the File menu, in order for it to parse and simulate the spec-

ification. The bottom three panes, from left to right, are the State Properties,

Enabled Operations and History panes. The State Properties pane lists the cur-

rent values of the system’s state observations and constants, providing the user

with the current state of the system. The Enabled Operations pane provides a list

of operations that are possible in the current state of the system. Some of these

operations require inputs, in this case ProZ provides possible input observation

values that the user can choose. This means that the same operation may appear

within the Enabled Operations list multiple times. In µ-Charts the input signals
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Figure 2.8: ProZ user interface

are received from the environment and may or may not be user controlled, so the

interpretation in ProZ is slightly different from the µ-Charts interpretation.

The resulting output of each operation is also shown in curly brackets following

an arrow. Each operation will be shown in a colour depending on their outcome,

and we are primarily focused on the blue, green and black operations. Blue

operations make no changes to the current state of the system, green operations

lead to a new, unexplored state of the system and black operations lead to a

different but previously explored state of the system. The History pane provides

a list of the operations that have occurred to reach the current state of the system

and can be used to move back to a previous state.

Using ProZ, we have the ability to simulate Z specifications and explore the

effect operations have on the state of the system. This allows us to test whether

specifications we have created work as intended or have any bugs, by extensively

exploring each possible operation and ensuring the system’s observations are as

we intended.
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2.4 Design Patterns

The use of design patterns to graphically model interactive systems was first

introduced in the paper Design Patterns for Models of Interactive Systems by

Bowen and Reeves [2]. Within this paper, Bowen and Reeves defined two patterns:

the Callback and Binary Choice patterns.

2.4.1 Callback pattern

The Callback pattern was created to model the behaviour of a dialogue box that

offers two choices, as well as the ability to cancel and return to the user’s previous

state. It uses a local variable to store the user’s previous state while transitioning

to the dialogue box and then uses that variable to determine which state it will

return to if cancelled. An example of this pattern can be seen in Figure 2.9.

[prevState=null]CallbackPattern

Stopped

Proceed

Activity0

Activity1

Activity2

Ok

NextCancel.prevState=a1

Cancel.prevState=a2

Cancel.prevState=a0
Logoff/prevState=a2

Logoff/prevState:=a0

Next
Logoff/prevState:=a1

Login

Figure 2.9: Callback pattern

This Callback pattern example is a model of a logout confirmation dialogue.

The Activity0, Activity1 and Activity2 states represent possible windows within

the interface, the Stopped state represents the logged out state within the system

and the Proceed state represents the dialogue box where the user is asked to
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confirm whether they want to log out. The prevState local variable is used to

store a value representing the previous state, which is then used to determine

which state it will return to if the logout dialogue is cancelled.

Normally, a design similar to the logout dialogue can lead to issues for a

modeller, as it requires the logout dialogue to be available from every state within

the system and be able to return to the previous state if the dialogue is cancelled.

As such, a modeller may choose to model the logout dialogue individually for

each state within the system but this is an unnecessarily complex solution which

leads to a much larger state space. The Callback pattern is a much more suitable

solution.

2.4.2 Binary Choice pattern

The Binary Choice pattern was created to model the behaviour of an interactive

system where the user inputs something and the part of the system they end up

is dependent on what they input. We model this within the pattern using a value

carrying signal which is used to represent the system’s behaviour having received

the input.

BinaryChoicePattern

Login.correct=true

LogoutRetry

Login.correct=false

MainProgramLoginFail Login

Figure 2.10: Binary Choice pattern

Figure 2.10 shows an example of the Binary Choice pattern within a model of

a login window, where the Login state represents the login window. If the login

details are correct, a signal correct will be received carrying the value true and

will transition to the MainProgram state, which is self explanatory. If the login
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details are false, correct will be received carrying the value false and the system

will instead transition to the LoginFail state, where an error message may be

received.

While there are other possible ways to model this system and this pattern

may be more complex than some solutions, it accurately reflects both how the

user interacts with the system and how the user interface behaves.
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Chapter 3

Design Patterns

In this chapter we discuss finding design patterns and then lay out the Return

Home and Return patterns.

3.1 Discovering Design Patterns

Modern interactive systems are often incredibly complex, which, in turn, makes

modelling these systems incredibly complex as well. In order to manage this

complexity, we use a technique called abstraction to model at a level of detail we

find relevant, while suppressing the more complex details below this level. We

call these levels of detail, the levels of abstraction.

During our research, we found that one of the most important parts of dis-

covering design patterns is finding the appropriate level of abstraction to view

systems at: one that ensures the model retains enough detail to capture all the

important elements of a system’s design, while avoiding adding excessive detail

that may hamper discoveries.

One of the systems we first attempted to model in our work to discover design

patterns was the PlayStation 4 user interface, named the PlayStation Dynamic

Menu, and was based on the 2.50 version of it. This system was chosen because
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Figure 3.1: PS Dynamic Menu user interface

it is a well-regarded interface for a popular entertainment device, which made it

interesting to analyse for design patterns.

Seen in Figure 3.1 is the home menu of the PlayStation Dynamic Menu. There

are two levels of widgets within it. The bottom level consists of recently used game

and media applications, as well as the Library on the far right of that menu, where

all purchased applications are available to use or download.

The top level provides a variety of different widgets that will take the user to

different parts of the interface. From left to right these are the Store, Notifications,

Friends, Messages, Party, Profile, Trophies, Settings and Power settings. The

Store is used to buy and download both game and media applications, as well as

additional content and services that may be available. The Notifications screen

provides news relevant to the user, such as whether there have been any friend or

multiplayer invites to them, download progress, etc. The Friends screen provides a

list of the user’s current friends, which can be selected to view each player’s profile,

as well as a list of friend invites and players the user has recently played with in a

multiplayer game. The Messages screen provides a list of ongoing conversations,
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which once selected will display the full conversation, as well as providing the

ability to create a new conversation with a friend of the player’s choosing.

The Party screen provides a list of ongoing parties of players, where they

can talk to one another via text or audio chat, invite friends and play together

in multiplayer games. There is also a widget that allows the user to create a

new party and invite their friends upon its creation. The Profile screen provides a

variety of information on the user, such as their friends and trophies. The Trophies

screen displays a list of games the user has played, as well as the in-game trophies

they have been awarded for completing specific objectives. Within this screen,

there is the Compare Trophies widget, which lets the user compare their trophies

to the trophies their friends have collected. The Settings screen provides a large

number of different settings that can be adjusted, such as network, audio, display,

accessibility and storage settings. Lastly, the Power settings provides the user the

ability to log out, put the system into rest mode, restart it or turn it off.

Figure 3.2 shows an attempt at modelling the PlayStation Dynamic Menu.

As can be seen there are a large number of states that represent screens with

significant inter-connectivity between different areas of the user interface. As this

chart was intended to model the user interface and not potential video games

or media apps that can be run on it, which have different user interfaces and

behaviours, these are represented by the single App state and not delved into.

The starting state Home represents the main screen of the user interface, where

all the features and applications are available for selection. From this state, other

screens of the interface branch from it, such as Notifications, Friends List, Party

List, etc. These screens, as well as their own sub-screens, may then provide the

option to lead the user to a different screen or sub-screen within the interface,

creating branches within the chart that represent these sections of the interface.

Additionally, pressing the circle button on the controller will lead the user back to

their prior screen. This functionality is difficult to model because of the numerous
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Figure 3.2: PS Dynamic Menu chart with states representing duplicate branches



transitions required to model every option, while taking into account the ability

to go back to the prior screen.

In an effort to help simplify the chart, a form of syntactic sugar has been used

in the form of duplicate states that represent other screens within the interface.

These duplicate states are prefixed with an abbreviation of the prior state. For

example such as FPParty is a duplicate the Party state where FriendProfile was

its previous state. It is assumed that they behave identically to the original state,

as well as the states that branch off of them, but with the Back input signal

returning back to the appropriate prior state.

Another model of the interface can be seen in Figure 3.3. This chart is similar

to the chart seen in Figure 3.2 but with a goal to remove the duplicate states

by using a local variable to track the prior state and then using it in conjunc-

tion with input signals within transitions to ensure that when the user tries to

return to their prior state, they move back to the appropriate state. This chart

makes use of the local variable PrevState. It is used by setting its value to an

abbreviation that represents the previous state, such as in the transition labelled

GotoFriendsList/PrevState := UP .

The transition labelled GotoMessages/PrevState := FL leads to the state Mes-

sageList if the input signal GotoMessages has been received and, as its action, it

sets PrevState to the value FL, which represents the prior state FriendsList . This

local variable is then used within the transition labelled Back .PrevState = FL,

which will only occur if the PrevState local variable is set to the value FL and the

input signal Back has been received.

This model removes 18 of the duplicate states seen within Figure 3.2 but adds

a significant amount of complexity to the model, as can be seen within this chart

by the number of transitions that cross over one another.

It could be argued that there would be fewer transitions crossing over one

another if the states were rearranged, the chart was larger or even that the chart
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Figure 3.3: PS Dynamic Menu chart with local variable storing previous state



was modelled in 3D. These are options but the fact that these suggestions had

to be made emphasises how complex the chart is. The inter-connectivity of the

various different states within it make creating a clear and concise chart very

difficult.

The µ-Charts specification AMuZed is based on only allows a local variable

to store one value at a time. Due to this, when we use the PrevState local vari-

able to record the previous state, it loses the value it had previously stored. To

avoid potential issues this may cause, we created an informal rule dictating that

the PrevState variable should be set once on any possible branch of the chart,

meaning that there should be no possible branch where the PrevState variable is

set twice or more. Unfortunately, when we initially created Figure 3.3 the merg-

ing of branches resulted in a chart that was so complex, particularly surrounding

the PartyList branch, that this issue occurred numerous times but was not im-

mediately identified. This helps emphasise how useful and important reducing

the complexity of µ-Charts is, while also suggesting that further additions to the

µ-Charts specification AMuZed is based on would help reduce complexity.

In this case, the ability to use an array of values would have eliminated this

issue but as the µ-Charts specification we use does not have this functionality, we

had to find other solutions.

In an effort to resolve these issues, our initial plan was to eliminate the poten-

tial second variables by duplicating these branches, seen in Figure 3.4. The use of

these duplicate states is not the same as the duplicates seen in Figure 3.2, as we

did not want to use any syntactic sugar to cut corners with this chart. Instead,

we needed to fully model all states and transitions within each duplicated branch.

These duplicate states are denoted with an additional digit which indicates that

they are duplicate states. For example, the first duplicate of the PartyList state

will be named PartyList2, the second will be named PartyList3 and so on.

As the PrevState variable had already been set in the transitions to the
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Figure 3.4: PS Dynamic Menu chart with local variable and duplicate states



Message, FriendProfile and FriendList states, this meant that their following

transitions to the PartyList branch set the value of the PrevState variable for a

second time. As a result, the PartyList branch then needed to be duplicated once

for each of these states, leading to an additional 12 states being added to the

chart, as the PartyList branch is four states that needed to be duplicated three

times.

The next instance of this issue involved the CompareTrophiesSum sub-branch

of the Trophies branch. The FriendProfile, FriendsList and SelectPlayer states all

set the PrevState variable prior to their transitions to the CompareTrophiesSum

state, so this was again resolved by duplicating this sub-branch for the Friend-

Profile and FriendsList states. This led to an additional six states being added

to the chart, as the CompareTrophiesSum branch is three states that needed to

be duplicated twice.

Finally, the third instance of this issue involved the TrophyList state, which

both the TrophySummary and Notifications states transitioned to and set the

PrevState value in doing so. While transitioning to the TrophyList state via the

Notifications state only sets the value of the PrevState variable once, transitioning

to it via the TrophySummary state sets it twice. To resolve this issue, we once

again needed to duplicate these states for the Notifications state, adding an ad-

ditional two states to the chart. Overall, these changes resulted in an additional

20 states being added to the chart, making it significantly larger than Figure 3.3

and significantly more complex.

Unfortunately, as we were solving these issues, we continued to encounter other

instances of this issue. For example, transitioning from the UserProfile state to

the FriendList state sets the value of the PrevState variable once, which can then

be followed by transitioning to the FriendProfile state, where the variable is set

for a second time, and then finally it can also be followed by transitioning to

the Message state, where the variable is set for a third time. Continuing to use
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this plan would have led to an additional 20 states being added to the chart

by duplicating the states involved in that sequence alone. As a result of these

continual issues, we decided to abandon this plan.

Our next plan to solve the issues seen in 3.3 was to use multiple local variables

to help track prior states. The reason this plan was considered after the previous

plan was because we believed using multiple local variables would make the chart

considerably less legible upon an initial view, as a viewer would have to track

which local variables were in use at any one time. However, as the previous plan

would have eventually led to at least 40 new states being added to the chart, we

believed the issues that may arise with multiple local variables were a necessary

level of complication.

Using this plan, we determined that the best way to implement multiple local

variables was to create a new local variable for each state that is transitioned into

by more than one state. In doing so, we identified nine states that did this: the

PartyList , PartyLobby , Library , TrophySummary , TrophyList , CompareTrophy ,

Message, FriendList and FriendProfile states. We then attempted to reduce the

number of local variables needed by these states by figuring out whether some

of the variables associated with states that are part of the same branch could be

combined without causing too much complexity or additional issues to arise.

As an example of this, the TrophySummary and TrophyList states are both

within the same branch and they both are transitioned into by two states. The

TrophySummary state can be transitioned to from the Home and UserProfile

states, while the TrophyList state can be transitioned to from the TrophySummary

and Notifications states. Using a single local variable with these two states,

which we call TrophyPState, standing for the Trophy Previous State, can be done

with no issues and only requires changes to two transitions. The first change is

to the transition from TrophySummary to TrophyList , which was previously la-

belled by ViewTrophyList/PrevState := TS . As both states now use the same
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local variable, it no longer needs to set it to the abbreviation that represented

the TrophySummary state. As such, the label for this transition is now simply

ViewTrophyList .

The second change is to the transition from the TrophyList back to the Tro-

phySummary state, which was previously labelled as Back .PrevState = TS . As

the local variable is no longer set to the abbreviation that represents the Tro-

phySummary State, we need to instead check whether the local variable is set

to the abbreviation that represents one of the states that previously transitioned

into the TrophySummary state. As the Home state is represented by H and

the UserProfile state is represented by UP , this leads to the transition label

(Back .TrophyPState = H ) + (Back .TrophyPState = UP), which can be short-

ened into a more concise Back .(TrophyPState = H + TrophyPState = UP).

However, we chose not to combine the FriendsList and FriendProfile local

variables, as we believed there were too many states that transitioned to those

states and combining the local variables would lead to more complexity within

the chart.

The result of these efforts can be seen in Figure 3.5. As it is largely based

on Figure 3.3 but with additional local variables, it features the same number of

states and transitions. The additional local variables add some complexity to the

chart but in doing so, fixes the numerous issues that were rampant within the

older chart.

Having modelled the PlayStation Dynamic Menu, we can draw two conclusions

from it. The first is that the user interface can be quite simple when looking past

the inter-connectivity between its various features. This is shown best by Figure

3.2, where all branches are centred around the Home menu and all features are

consolidated within these different branches. A casual user of the device is likely to

care little for the various enthusiast features it offers, while being most interested

in major features, such as video games, media applications, settings and power
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Figure 3.5: PS Dynamic Menu chart with multiple local variables



settings. As these major features are all immediately available from the Home

menu, we believe it effectively caters to these users.

The second conclusion is that this user interface also appears very complex

upon viewing these charts, particularly Figure 3.5, and is largely due to the inter-

connectivity between its various different features. Upon analysis we found that

this inter-connectivity, while over-complicating the model, did make sense in con-

text. For example, when viewing a friend’s profile or selecting a friend from a list,

the user has the ability to interact with their friend in a variety of different ways,

such as sending their friend a message and inviting their friend into a party. As

such, we believe much of the inter-connectivity, and thus complexity, seen within

the PlayStation Dynamic Menu were a result of the expectations their enthusiast

audience would have of the PlayStation 4’s feature set.

The combination of these two conclusions suggests to us that the designers of

the PlayStation Dynamic Menu purposefully prioritised creating an interface that

was simple on initial view but feature rich upon closer investigation. This is shown

by the simple layout of the Home menu, with all major features immediately

available from it and all other features grouped together into specific branches,

such as Friends, Messages and Party. The complexity of the inter-connectivity

between these branches was then a product of this design and the expectations of

their enthusiast audience, as they then sought to provide more convenient ways

for users to open other related branches directly from within a different branch if

they chose to do so.

3.2 Return Home pattern

While modelling the PlayStation Dynamic Menu, we discovered a feature that we

found added significant complexity to the model. The Dynamic Menu allows the

user to return to the home screen with the press of the PS button on its controller,

46



ReturnHome

Home

PartyList

CreateParty

PartyLobby InvitePlayers

GotoPartyList

CreateParty

Back

PartySelected

InvitePlayers

Back+ReturnHome

ReturnHome ReturnHome

ReturnHome

PartyCreated

PlayersInvited+Back

GotoPartyList+LeaveParty

Figure 3.6: Party segment from PS Dynamic Menu chart with Return Home

feature

similar to the show desktop shortcut in Windows or the Home button found on

iOS and Android devices. We named this feature the Return Home function.

Upon a second press of the PS button, the user will then be returned to their

prior screen, which we named the Return Back function. Finally, the combination

of the two functions was called the Return feature.

In order to model this feature correctly, the decision was made to first focus

on the Return Home function and then later combine this with the Return Back

function to capture the full behaviour of the feature.

Figure 3.6 shows an initial attempt at modelling the Return Home function

using a small segment of the Dynamic Menu. The Home state is the starting state

of the model and there are an additional four states representing screens within the

Dynamic Menu, PartyList , PartyLobby , CreateParty and InvitePlayers . There
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ReturnHome

ReturnHomeMain

Main

Home M

GotoM

Figure 3.7: Simple Return Home pattern

are a number of transitions within this chart that are identical to the transitions

within Figures 3.2, 3.3 and 3.4 but the transitions of note are the ReturnHome

transitions. To model the Return Home function, one transition from each non-

starting state to the starting state is required, though in the case of the transition

from PartyList to Home, as there is already a transition between these two states,

we can simply add another possible input to its guard.

The problem with this model was that there was a y = x − 1 relationship

between the states and ReturnHome transitions, where y represents ReturnHome

transitions and x represents states. Upon trying to use this with the full PlaySta-

tion Dynamic Menu chart seen in Figures 3.2, 3.3 and 3.4, which feature 33 states,

23 states and 35 states respectively, it quickly became very complex with the in-

clusion of additional transitions and/or guards from every non-starting state to

the starting Home state. This is shown in Figure 3.8, with the Return Home func-

tion applied to the PlayStation Dynamic Menu. An additional 23 transitions have

been added to the chart and another 10 transitions have had the ReturnHome in-

put added to their guards. As a result of this, it was decided that we should find

a more efficient way to represent this feature.

In order to find a concise design pattern that modelled the behaviour of the

Return Home function, we needed a method that reset a chart to its starting state

regardless of what state the current state was. Upon researching the logic and

semantics of µ-Charts, we discovered a possible solution within the paper The

syntax and semantics of µ-Charts [13]. This paper offered two different interpre-

tations of how a decomposition may behave. In one behaviour, the child chart
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Figure 3.8: Full PS Dynamic Menu chart with Return Home function added
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Figure 3.9: Return Home pattern applied to Party segment from PS Dynamic

Menu chart

remembers and stays in the exact state it was in when it was last active in the

parent chart. In the other behaviour, the child chart does not remember its state

while it is inactive and as a result, is re-initialised every time it becomes active.

Using this interpretation, we created the Return Home pattern in its simplest

form, shown in Figure 3.7. This chart contains a decomposition within it. Within

the parent chart, ReturnHome, there is a single decomposed state with a single

self-loop transition on it that receives the input ReturnHome. Within the child

chart, Main, there are two states, the Home starting state, which represents the

home screen of the system, while the state M represents any possible screens

within the PlayStation Dynamic Menu. There is one transition between these

two states, which receives the input GotoM in order to transition from the Home

state to the state M .

This pattern works by assuming that all non-Return Home interactions within

the user interface will be made within the child chart, Main. If a ReturnHome in-

put signal is received at any point, the self-loop on the parent chart’s decomposed
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state will occur, resetting the child chart to its starting state Home no matter

where it was previously within the interface.

Seen in Figure 3.9 is the Return Home pattern applied to the earlier example.

The pattern has resulted in the removal of the three ReturnHome transitions from

states PartyLobby , CreateParty and InvitePlayers to the starting state Home, as

well as the ReturnHome input signal from the guard of the transition from state

PartyList to the Home state. Applied to a small chart like this, the difference

is relatively small but it is easy to recognise how much easier it would make

modelling the Return Home functionality on much larger charts, such as the ones

seen in Figures 3.2, 3.3 and 3.4, where instead of five states, there are over 20 or

30 states.

Finally in Figure 3.10 we see the Return Home pattern applied to the PlaySta-

tion Dynamic Menu. While the chart is still very complex, it is significantly less

complex compared to Figure 3.8 as it no longer requires every state within the

Main chart to transition to the Home state in order to model the Return Home

function. As the chart was already very complex before the Return Home function

was added to the model, this helps us a lot, as it means we do not need to add

further complexity to the chart, aside from the addition of the decomposition.

The Return Home function is there but modelled more abstractly, providing us a

clearer look at the design of the Dynamic Menu interface.

3.3 Return pattern

Having modelled the Return Home function, we could then move on to model the

Return Back function and then combine these two into a full model of the Return

feature.

Figure 3.11 shows an initial attempt at modelling the Return Back function.

Using the same segment of the Dynamic Menu seen in Figure 3.6, we see that the
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Figure 3.10: Return Home pattern applied to full PS Dynamic Menu chart



Home state is the starting state and there are an additional four states within

the chart, the PartyList , PartyLobby , CreateParty and InvitePlayers states. The

majority of transitions also resemble Figure 3.6 but there are two key differences.

The first difference is that there are an additional three transitions, each from

the states PartyLobby , CreateParty and InvitePlayers states to the starting state

Home, as well as an additional guard within the transition from the Home state

to the PartyList state. This is because with the Return Back function, we now

need to be able to transition back to the previous state after a ReturnHome input

signal has caused the chart to transition back to the Home state. This means that

for every state that is added to the chart, an additional transition must also be

added, alongside the ReturnHome transitions that were mentioned in the Return

Home section. As a result of this, we go from having a y = x − 1 relationship in

Figure 3.6, where x represents the number of states and y represents the number

of transitions, to a y = 2(x − 1) relationship. So for every extra state added to

a chart featuring the Return Back function, two new transitions related to that

function need to be added, adding a significant amount of complexity to it in the

process.

The second difference is the use of the local variable Return, which can be seen

initialised to the value null in the upper left corner of Figure 3.11. Similar to the

PrevState local variable in the Design Patterns section, this variable is used to

store an abbreviation representing a specific state within the chart, for example

the state PartyList is represented by its abbreviation PLi .

This variable is used by the transitions which contain ReturnHome or Return-

Back within their guards. The ReturnHome transitions use the variable within the

action to set it to the value that represents the previous state. For example, the

transition labelled (GotoHome + ReturnHome)/Return := PLi sets the Return

variable to the value that represents the state PartyList , PLi , if the input signals

GotoHome or ReturnHome are received. Note that the state PartyList will still
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[Return=null]ReturnBack

Back+ReturnHome/Return:=PLi

PartySelected

PartyCreated

Back

CreateParty

InvitePlayers

PlayersInvited+Back

ReturnHome/Return:=CP

ReturnBack.Return=PLo

ReturnHome/Return:=PLo

ReturnHome/Return:=IP ReturnBack.Return=IP

GotoPartyList

GotoPartyList+LeaveParty

ReturnBack.Return=CP

InvitePlayers

Home

PartyList

PartyLobby

CreateParty

Figure 3.11: Party section from PS Dynamic Menu chart with both Return fea-

tures

be recorded as the previous state even if the GotoHome input signal is received

instead of a ReturnHome input signal. This behaviour is consistent with the be-

haviour of the PS Dynamic Menu. The ReturnBack transitions use the Return

variable to specify which state the chart should return to if a ReturnBack input

signal is received. For example, the transition labelled ReturnBack .Return = PLo

will only occur and transition to the state PartyLobby if both the ReturnBack in-

put signal is received and the Return variable is set to the value PLo.

Having successfully modelled the Return Back function, our next goal was to

combine both the Return Home and Return Back patterns in order to fully model

the Return function and thus create the Return pattern. Figure 3.12 shows the

resulting pattern.

Similar to the Return Home pattern shown in Figure 3.7, decomposition is

used by the Return pattern in order to reset the chart to its starting state if a

ReturnHome input signal is received. Additionally, it also resembles the Return

54



[Return=null]ReturnPattern

Main ReturnHome

Main

Home

GotoM+(ReturnBack.Return=M)

M

ReturnHome/Return:=M

Figure 3.12: Simple Return pattern

chart shown in Figure 3.11, using local variables to store the previous state and

then using these variables to determine which state the chart needs to return

back to if a ReturnBack signal is received. A small difference seen within this

chart is that the local variable is part of the parent chart. This is because our

understanding of the relationship between the parent and child charts, defined in

[11], gave the child chart access to the parent chart’s local variables.

The most significant difference between the two charts is the self-loop transi-

tions on every non-starting state within the child chart. These self-loop transitions

occur when a ReturnHome input signal has been received and then within the ac-

tion, sets the local variable to the numerical value that represents it.

Due to the way µ-Charts work, where a set of input signals will appear from the

environment and all resulting actions occur simultaneously, we have the ability

to make more than one transition within multiple charts occur simultaneously.

So long as the resulting actions can happen in the same step, in that they do

not conflict with one another, any potential non-determinism is nullified. As a

result, if state M is the current state of the child chart, Main, and a ReturnHome

input signal is received, both the ReturnHome transition within the parent chart,

ReturnBack , and the ReturnHome/Return := M self-loop transition within the

child chart, Main, will occur. This will both set the Return local variable to the

value M , representing state M , while also resetting the child chart Main to its

starting state.

The requirement to have self-loop ReturnHome transitions on every non-
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starting state and a ReturnBack transition from the starting state to every non-

starting state means that the Return pattern does not reduce the total number of

transitions within the chart, in fact it may increase that number. What it does do

is reduce the number of transitions between the starting state and non-starting

states, potentially halving it, significantly reducing the clutter and complexity

that can occur with too many transitions within a chart.

Unfortunately, it was at this point we discovered an error in our understanding

of how local variables work between parent and child charts. Due to an example

used within one of our reference materials [11], we were under the impression

we could use a parent chart’s local variables within the child chart. However,

upon further analysis of this material and the semantics of decompositions, we

discovered that what led us to this assumption was instead a typographical error

and that use of local variables was actually intended to be limited solely to its

local chart. We believe this was done in order to help simplify the semantics, as

giving both charts use of a local variable may have led to potential conflicts. For

example, a transition within the parent chart and a transition within the child

chart may have tried to set a variable at the same time. This created a significant

issue with our Return pattern, forcing us to completely rethink it.

Due to this issue, we needed a new way to retain the previous state while the

child chart was re-initialised. In an effort to find a solution, we then explored the

use of the feedback operator and value carrying signals in order to send and then

receive the previous state to and from the parent chart.

One feature of value carrying signals that stood out to us was the way we could

use them with local variables. If we want to assign the value carried by a signal

to a local variable or the reverse, we simply use an action such as lvar := val .

This assigns the value of the value carrying signal val to the local variable lvar .

Assigning the value of a local variable to a value carrying signal was exactly the

same, using the action val := lvar . This feature led to the creation of Figure 3.13.
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[Return=null]Return

Main ReturnHome/Return:=val

ReturnBack/val:=Return

{val}

Main

Home M

GotoM+val=M

ReturnHome/val:=M

{val}

Figure 3.13: Revised Return pattern using feedback and value carrying signals

This chart greatly resembles the previous Return pattern but with the inclusion

of value carrying signals and feedback. Both charts have the value carrying signal,

val , applied as feedback, allowing them both to send the signal to the other. We

use val to store the current state at the point the child chart is re-initialised, send

it to the parent chart and store that value within the parent chart’s Return local

variable. Then upon a ReturnBack signal being received, we send this value back

using val and the child chart receives the signal val = M and transitions back to

its previous state.

This chart had a major problem, however, in that it would re-initialise the

child chart when the transition labelled ReturnBack/val := Return occurred. So

instead of transitioning back to its previous state, it would instead re-initialise

again. With this we realised that due to the changes we had made with our

interpretation, it was not possible to send signals from the parent chart back to

the child chart without re-initialising it.

At this point, it became obvious that there were no possible solutions without

some significant changes to µ-Charts or at least our interpretation of µ-Charts.

In an effort to solve this issue, we came up with three possible solutions.

The first solution was to modify µ-Charts, as well as its semantics, to support

the child chart having access to its parent chart’s local variables. This change

would have supported our initial Return pattern but it would have required a

significant amount of work to figure out how to ensure there would be no conflicts
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ReturnHome
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ReturnHome
Main

Main

Home M

GotoM

Figure 3.14: Final Return Home pattern

within the semantics and potentially would have required significant modifications.

As such, we believed this solution was not one that should be explored, as we

wanted to add features to µ-Charts that had been previously detailed, not change

it to suit whatever our needs were at the time.

Our second solution was to change the semantics so that the local variables are

not re-initialised to their initial values within the child chart. This change would

have allowed us to store and retain the previous state within the child chart,

avoiding the problems related to sending and receiving the previous state to and

from the parent chart. While this would have been a simple solution, we did not

believe it was appropriate, as it would essentially be changing the re-initialisation

of the child chart into a partial re-initialisation solely to make our jobs easier.

Our final solution was to rethink how we determined when a re-initialisation

was meant to occur. Our previous interpretation was that whenever the parent

chart transitioned out of the decomposed state, even if it were a loop transition,

the child chart would be re-initialised. However, if we were to instead focus on

whether the decomposed state was the current state, we would find that a loop

transition would not re-initialise the child chart, as the decomposed state would

remain the current state after it occurred. The only time the child chart would be

re-initialised was when the parent chart transitioned from the decomposed state

to a completely different state. It was this interpretation that first led to a revision

of the Return Home pattern.

Within Figure 3.14 we see our revised Return Home pattern, which has been

58



[Return=null]ReturnPattern

Main ReturnHome

ReturnHome.prev/Return:=prev

/

ReturnBack/prev:=Return

{prev}

Main

Home M
GotoM+prev=M

ReturnHome/prev:=M

{prev}

Figure 3.15: Final Return pattern

adapted to the new interpretation. This chart works almost identically to the

previous Return Home pattern but instead of immediately re-initialising the child

chart within a single step using a loop transition, we now re-initialise it by tran-

sitioning to the ReturnHome state when the ReturnHome signal is received and

then transitioning back. As the transition back to the decomposed state lacks

a guard, it is considered TRUE and will immediately occur in the next step,

regardless of what input signals are received.

While the additional step within this Return Home pattern was more inconve-

nient than our initial Return Home pattern, we believed this change was necessary,

as the Return pattern would clearly not work otherwise and we did not want to

move forward while juggling two different interpretations.

Using this interpretation, we then proceeded to revise the the Return pattern,

which can be seen in Figure 3.15. This combined the revised Return Home pattern

with the use of the feedback signals and value carrying signals from Figure 3.13

to create a Return pattern that we believed accurately modelled the behaviour

of the Return feature. The use of value carrying signals and feedback allowed

us to send the child chart’s previous state to the parent chart, which would save

this state within a local variable. The child chart would then be re-initialised,

as the parent chart transitioned to the ReturnHome state and then back to the

decomposed state in the next step. At this point, if the ReturnBack signal were

received, our new interpretation would allow us to send the previous state back
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[Return=null]ReturnPattern
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Figure 3.16: Final Return pattern applied to Party segment of PS Dynamic Menu

chart

to the child chart within a value carrying signal without re-initialising the child

chart. The child chart would then receive this signal and then transition to its

previous state based on the value the signal carried.

Having produced these revised patterns, we believed that this solution was the

appropriate move to make and decided to move forward with them.

In Figure 3.16 we see the revised Return pattern applied to the Party segment

of the Dynamic Menu. We previously observed that there were 15 transitions

when modelling the Return feature with this segment in Figure 3.11. Here we

see that the Return pattern features 16 transitions, one more than the previous

example, but it also reduces the visual complexity from the centre of the chart

by removing three transitions to the Home state. These transitions are instead

modelled as self-loop transitions on each of the states they start from, moving this

visual complexity to the side of the chart, instead of the centre as it was originally.
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As an example of this, we can see in Figure 3.11 that there are two transitions,

labelled ReturnHome/Return := CP and ReturnBack .Return = CP , that go to

and from the Home state and CreateParty state. These two transitions then both

cross over the two transitions between the states PartyLobby and PartyList . This

creates more complexity within the centre of the chart, making it more difficult

to recognise the structure of it upon first glance. In Figure 3.16, the transition

labelled ReturnHome/prev := CP is instead a self-loop transition going to and

from the CreateParty state. This works in conjunction with the transition labelled

ReturnHome within the parent chart, ensuring that it is logically identical to the

equivalent transition within Figure 3.11 but is instead located to the left hand

side of the chart, removing that complexity from the centre of the chart.
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Chapter 4

Testing

In this chapter we discuss the testing of the Return Home and Return patterns,

including the translation of the Return Home µ-Chart into Z using the ZooM tool

and the testing of the Return Home Z schemas using the tool ProZ.

4.1 ZooM Modifications

Having created the Return Home and Return patterns, we then needed to test

whether they behaved in the manner we believed they should. As the semantics

of µ-Charts are given in Z, this meant that the best way to test both patterns was

to translate them into Z and then test both Z specifications. For the first step of

this plan, we decided to use the ZooM application.

ZooM is an application created by the University of Waikato to convert and

translate µ-Charts into Z based on the semantics defined within [13]. It was

developed in Haskell in conjunction with the AMuZed tool, using a Tcl/Tk in-

terface named TclHaskell to create its graphical user interface. Unfortunately, as

TclHaskell is no longer supported and has become incompatible with modern sys-

tems, ZooM was initially only accessible to us via a virtual machine that had been

set up specifically to run both AMuZed and ZooM. This is an inconvenient solu-
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tion, as it could only be used on certain computers at the University of Waikato

and could not be modified to suit different purposes.

Our first task was to modify ZooM, removing the user interface and replacing

it with a command line interface, while trying not to make too many unneces-

sary changes in an effort to reduce the risk of inadvertently causing unexpected

behaviour.

Additionally, as both AMuZed and ZooM were developed in conjunction with

one another, the source code of both tools was integrated together into a number

of source files. So an additional goal was to remove any source files that were

irrelevant to ZooM.

The ZooM user interface was simple, limited to open file and error dialogue

boxes, so on face value it appeared it would be simple to strip the graphical user

interface code from its source code. However, as AMuZed and ZooM’s source code

were integrated with each other, numerous functions were included and source files

were referenced that ZooM never used. This led to a slow process of separating

the source files that were imported into ZooM or a ZooM related source file from

the ones that were not and then further filtering these files down by removing

source files that were only used by functions that were not relevant to ZooM. This

reduced the total number of source files from 15 files to nine files.

Once this was accomplished, we then moved onto removing TclHaskell from

the source code. As most of the TclHaskell functions that were used within the

ZooM source code were inherited from Haskell’s own IO monad [8], replacing those

function calls involved replacing them with the IO equivalent. For the TclHaskell

functions that were not inherited by the IO monad, removing them involved trying

to trace the function that called them back to ZooM. If those functions did not

trace back to ZooM, the TclHaskell functions were replaced by placeholders, which

would display an error message in the possible event that they were called at some

point. However, if those functions did trace back to ZooM, we would have then
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needed to rewrite ZooM’s code so that it did not need to call said TclHaskell

functions.

Due to ZooM’s limited user interface, almost all of the TclHaskell function

calls within its source code fell under the first two cases. They could be replaced

with the IO monad’s equivalent or a placeholder. The third case only occurred

twice within its source code and were both located within the same source file,

which dealt with building the open file and error dialogue boxes. Both functions

were well coded and documented, so rewriting them to instead run from and print

to the command line was then a simple task.

4.2 µ-Charts Semantics Modifications

Our next task with ZooM was to modify it so that it parsed and then correctly

translated the additional interpretations of µ-Charts we were using into Z. Our

first step towards this task was to figure out how these interpretations would be

translated to Z.

4.2.1 Translating decomposition re-initialisation

IactiveChild

ΞChartChild

active : PµState

oChild ! : P outputIChild

¬ active(Child)

oChild ! = {}

Our first solution was a simple change to the child chart’s inactive operation

schema, seen above. As has been detailed previously, this operation schema occurs

when the child chart is considered inactive. As such, using this schema to re-
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initialise the child chart would have been a very simple and eloquent adjustment.

We removed the declaration ΞChartChild , as it ensured no state changes would be

made within this schema. Replacing it would be the declaration InitChild , which

would declare that any observations and local variables within the state space of

the child chart would be set to the initial values defined within the InitB schema.

This schema can be seen below.

IactiveChild

InitChild

active : PµState

oChild ! : P outputIChild

¬ active(Child)

oChild ! = {}

Unfortunately, the relationship between the parent and child charts defined

within the ParentChildDec section of the µ-Chart Z semantics prevented this

solution from solving our problem. The issue is the predicate below from the

δParentChildDec schema:

((ParentChild ∨ ParentChild ′) ∧ active(Parent))⇔ active(Child)

This line of predicate meant that the Child chart would be active so long as the

decomposed state ParentChild was either the current state or the next state of the

Parent chart. Due to this, if a loop transition were to occur on the decomposed

state, such as the one used in the initial Return Home pattern, the Child chart

would continue to stay active. This is because the decomposed state would be

both the current and next state of the loop transition, making the left hand side

of the if and only if operator true and thus the right hand side, which states that

the child chart is active to also be true.

In addition to this, the Child chart would also stay active if the Parent chart
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transitioned from the decomposed state to another state and then directly back

to the decomposed state in the next step, as it does in our revised Return Home

and Return patterns. This is because the decomposed state would be the current

state while transitioning to the other state and then it would be the next state

while transitioning back, so at no point would the left hand side of the predicate

be false.

In order to make this predicate compatible with Return Home and Return

patterns, we explored modifying it so that the child chart would only be active

when the decomposed state was the current state. If the decomposed state was

only the next state, the child chart would be considered inactive. This was a very

small change, as seen below:

(ParentChild ∧ active(Parent))⇔ active(Child)

Without having tested it, we thought this modification accurately translated

the behaviour we expected from our interpretation and as such, would have accu-

rately translated our patterns. However, while we explored this idea, we came to

the conclusion that this modification was making too significant a change to the

semantics of µ-Charts. The predicate had been originally designed that way for

a reason and we did not want to change this solely to suit our purposes. For this

reason, we decided not to move forward with this solution.

Our second solution to translating re-initialisations in Z was significantly more

complex. It involved re-initialising the child chart from within the parent chart’s

transition operation schemas. We then needed to ensure that this did not conflict

with other actions within the child chart.

While we knew that we needed to re-initialise the child chart from within the

parent chart’s transition operation schemas, which of these schemas we would

do this in was a decision we needed to make. Specifically, we needed to decide

whether we would re-initialise the child chart when we transitioned out of the

decomposed state or whether we would re-initialise it when we transitioned into
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the decomposed state. We did not need to make this decision when first exploring

the re-initialisation interpretation because the end result of both variants was

the same in terms of input/output behaviour but on a semantics level, it was an

important distinction to make. As a result, we decided to re-initialise the child

chart when transitioning out of the decomposed state, as we believed this would

better visually represent the state of the system when the child chart was inactive.

δChildX

ParentChild

ParentChild ′

active : PµState

iParent? : P inputIParent

oParent ! : P outputIParent

Init ′Child

active(Parent)

oParent ! = {}

Using this work, we created the Parent chart’s transition schema from the

decomposed state Child to state X shown above. As this operation transitions

out of the decomposed state, we want it to re-initialise the Child chart. As such,

the Init ′Child schema has been included as a declaration. This inclusion means

that when this transition occurs, the next state of the Child chart’s state space

observations will be re-initialised to the values defined in the InitChild schema.

δChild =̂ δHomeM ∨ IactiveChild ∨ εChild

δChildNC =̂ (δHomeM ∨ IactiveChild ∨ εChild) \ (cChild)

Above we see the Child chart’s main operation schema, δChild , and new opera-

tion schema, δChildNC . This new schema is needed because the relationship defined
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between the Parent and Child charts requires both main operation schemas to

occur at the same time. For this reason, if the re-initialisation occurs within the

Parent chart, this will conflict with any state changes within the Child chart’s

operations.

To solve this issue, we create the δChildNC operation schema. The additional

NC within its name stands for non-conflicting, as this schema has been created

to ensure that no conflict occurs when the Child chart is re-initialised. It does

this by using the hide operator, \, to exclude any changes within its preceding

operation schemas to the state space observations that follow it. In this case, any

change to the current state within the δXY , IactiveChild or εChild is ignored. If

there were more observations within the Child chart state space, we would also

list those alongside the current state. This operation schema is then used in place

of δChild only when a re-initialisation occurs.

δParentChildDec

∆ChartParentChildDec

iParentChildDec? : P inputIParentChildDec

active : PµState

oParentChildDec! : P outputIParentChildDec

((ParentChild ∨ ParentChild ′) ∧ active(Parent))⇔ active(Child)

∃ iParent?, iChild?, oParent !, oChild ! : P Signal •

iParent? = iParentChildDec? ∩ inputIParent ∧

iChild? = iParentChildDec? ∩ inputIChild ∧

oParentChildDec! = oParent ! ∪ oChild ! ∧

((δChildX ∧ δChildNC ) ∨ (¬ δChildX ∧ δParent ∧ δChild))

The final change we make is shown above. The point of interest is the final

line within the predicate, which is where we determine whether we use the δChild

or δChildNC operation schemas. This predicate is a disjunction at its top-level. On
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the right hand side, the main operation schemas of both charts are included like

they normally would but only if the δChildX transition operation does not occur.

If it does occur, then the left hand side will occur instead, including the δChildNC

operation, which will ensure there are no conflicts with δChildX ’s re-initialisation

of the Child chart.

If a chart features multiple transitions out of the decomposed state, then this

predicate will look slightly different. Instead of the single transition operation

δChildX , there will be disjunctions of all possible transitions on both sides of the

top-level disjunction within sets of brackets.

With these changes in mind, we made the changes to ZooM’s code. As we

did not want our changes to affect every decomposition that was translated by

ZooM, we used the command line flag ’-d’ to ensure this interpretation was strictly

optional.

4.2.2 AMuZed and ZooM bugs

Unfortunately, during our testing of AMuZed and ZooM, we encountered three

bugs related to the use of local variables.

The first bug involved local variables within decompositions. If a user added

a local variable to the parent chart in a decomposition, AMuZed would often not

save this local variable within its resulting .muz file. This variable would not

appear within ZooM’s Z translation and any use of this variable would then be

falsely translated as a value carrying signal.

The second bug we encountered involved local variables within the guard of

transitions. If a local variable were used within the guard in disjunction with an

input signal or another local variable, ZooM would then translate this relationship

into a conjunction.

Finally, the third bug we encountered involved local variables and value car-

rying signals within the action of transitions and had two resulting translation
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issues. If a local variable were set to the value stored within a value carrying sig-

nal, ZooM would fail to translate this action at all. Instead the semantics would

make no mention of it

All three bugs were significant issues, capable of dramatically changing the

translation we expected. It became apparent that this functionality had not been

properly tested when AMuZed and ZooM were initially created. As we did not

know where in the code base these bugs occurred, we decided to manually fix these

issues ourselves. The AMuZed bug could be easily fixed by manually editing its

saved .muz file and ensuring the local variables were all saved within the file. The

guard bug could be fixed by manually editing the Z translation and changing the

erroneous conjunction back into a disjunction.

We also manually edited the Z translation to fix the action bug but it was

slightly more involved, as it required a more complicated predicate. For this we

needed to add predicate similar to the following:

(∃ x : Z • Ssig x ∈ iParent? ∪ (oParent ! ∩ΨParent) ∧ Var ′ = x )

This states that an integer x exists such that it is the signal Sval ’s signal and

has been received as input. We then set the next state of the local variable Var

to this value.

4.3 ProZ

With the Return Home and Return patterns translated into their Z semantics, we

then needed to test that they behaved the way we expected. For this, we turned

to ProZ, a plugin for the verification tool ProB, which allows us to simulate, test

and verify Z specifications.
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4.3.1 ProZ formatting issues

Upon importing our translated Z semantics into ProZ, we were first met with

numerous formatting errors. These included errors such as ProZ not supporting

specifications that are spread across multiple files, LATEX formatting tags ProZ

conflicted with and operations that ProZ did not recognise. As a result of this,

we created the following list of changes that needed to be applied to all ZooM

translated Z specifications in order for them to be recognised by ProZ.

• Combine all .tex specification files into a single file

• Remove all lines starting with \Label

• Rewrite all instances of active(chart) to chart ∈ active

• Delete all instances of \ following active declaration

• Change top level System initialisation schema name to Init

• Expand and make explicit any value carrying signals within the feedback

definition

While most of these points are simple formatting errors, the final point is

slightly more complicated. When a value carrying signal is included within a

feedback signal set, ZooM translates it in a format similar to the below.

ΨParent = {Ssig}

While not incorrect, as the value carrying signal Ssig would have been previ-

ously defined, ProZ does not have the capability to know that these are related.

For this reason, we need to instead expand and make explicit any value carrying

signals within the feedback signal set, such as:

ΨParent = {n : Z • Ssig n}
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4.3.2 ProZ memory issues

Having resolved the formatting issues, we then found that the size and scope of our

Z specifications, particularly decompositions, would often lead to ProZ running

out of memory while simulating them. In an effort to prevent this from occurring,

we then worked towards reducing the scope of the Z specifications by simplifying

some of the semantics.

The first change we made to our Z specifications was to remove the types and

observations that were not used within the system. As ZooM translates µ-Charts

into a generic form of its Z semantics, it will often include all expected types and

observations, even if they are not used within the system. As an example of this,

the Return Home pattern does not produce any output but the output types and

observations still appear within its semantics. As it is a waste of resources for

ProZ to simulate these, we safely remove them and all inclusions of them while

making sure not to affect the predicate.

One of the most memory intensive parts of the Z semantics we identified was

the power sets. ProZ simulates these by exploring every possible subset and as

such, systems that contain a large number of power sets can be very memory

intensive. In order to simplify them, we identified two methods we could use.

The first was to split the µState type into two separate types: Charts and States.

As the µState type included both chart and state elements but the observations of

power set µState type were all limited to either the state elements or chart elements,

we could safely split this type into two types without causing any issues. This

significantly reduced the cardinality of each type and thus reduced the memory

intensiveness of their power sets.

The second method we identified was to replace the power set declarations

with the appropriate explicit definitions. For example, the explicit definition

of δParentChildDec’s PµState type is {{}, {Parent}, {Child}, {Parent ,Child}}. This

change significantly reduced the number of calculations made within the simula-
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tion.

4.3.3 Testing the patterns

Having made these three changes, we then proceeded to test both the Return

Home and Return patterns using ProZ. We found that both patterns behaved

as intended. The Return Home pattern successfully re-initialised when the Re-

turnHome input signal was received, returning to the default Home state with

no unintended side effects. The Return pattern had identical results when the

ReturnHome input signal was received, while it also successfully returned to its

previous state when the ReturnBack input signal was received following a re-

initialisation.
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Chapter 5

Conclusion and Future Work

In this chapter we provide an overview of the goals of our thesis, summarise our

results and then provide directions for future work.

5.1 Overview of Project Goals

In this project, we have explored design patterns within graphical models, in an

attempt to more elegantly model complex systems. We have then used this to

explore µ-Charts and their semantics, which are defined in Z. Lastly, we evaluated

the tools, AMuZed, ZooM and ProZ, which were used to create µ-Charts, translate

µ-Charts into their Z semantics and test Z specifications, respectively.

5.2 Summary of Results

We started this project with a focus on design patterns within graphical models

and worked towards this goal, modelling two interesting features we named the

Return Home and Return Back functions. This resulted in the Return Home and

Return patterns.

During this process, we found ourselves increasingly studying µ-Charts and

its Z semantics, which greatly informed us throughout our project and became a
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much larger part of it than previously expected. Not only did it help us create

the aforementioned patterns, particularly by offering a different interpretation to

how decomposed charts operate than the one that was usually detailed, but it also

helped us translate these patterns into their Z semantics and solve a number of is-

sues that we encountered. One such issue was the direct result of a typographical

error within one of our resources but due to the work we had done and our under-

standing of the semantics, we quickly found a viable solution. We also used this

understanding to investigate what changes we needed to make to the semantics

in order to translate our interpretation of how decomposed charts operate.

In our use of the tools, we modified the µ-Chart translation tool, ZooM, in

order to make it more easily accessible from the command line and have the

ability to translate decompositions using the interpretation we used. We tested

ZooM in order to ensure the changes we made had no unintended effect on the

resulting translations. While we did not discover any errors that were caused by

our changes, we did uncover a number of bugs related to the translation of local

variables that existed prior to our work.

Finally, we created a number of steps that can be used in order to put ZooM

translations into a format that ProZ would accept. We additionally provided a

number of steps that could be used to reduce the memory imprint of the µ-Charts

semantics within ProZ should anyone encounter them.

5.3 Future Work

While this thesis only explored two patterns, in future we believe there should be

a continuation of building a library of design patterns. This library could then be

used to help model systems and homogenise the way different people may model

a system.

During our work, we used the tool, AMuZed. As AMuZed is reliant on the
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Tcl/Tk interface, TclHaskell, which was abandoned and is no longer compatible

with modern operating systems, it can only be run from a virtual machine that has

been specifically created to operate it. While there is a new version of AMuZed

that has been re-engineered with the goal to replace it, it is not in a state to do

so. As such, we believe more work should be done in order to instead update

the original version of AMuZed. In our research, we came across another Tcl/Tk

interface for Haskell named HTk [6], which we believe could be used to replace

TclHaskell.

We also believe more work should be made to test and fix the tool, ZooM.

We encountered and detailed a number of bugs and translation issues during our

research and due to this, we do not believe it has been tested extensively. For this

reason, we believe that if it is to be continued to be used, it needs to be further

tested, starting with the tests we have compiled.
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Appendix A

Initial Return Home Pattern

Semantics

The Z semantics of the initial Return Home pattern displayed in Figure 3.7 are

shown here, formatted to be compatible with ProZ.

µState ::= ReturnHomePattern | Main | ReturnHomePatternMainDec |

ReturnHomePatternMain | MainHome | MainM

Signal ::= SGotoM | SReturnHome

statesReturnHomePattern : PµState

inputIReturnHomePattern : P Signal

statesReturnHomePattern = {ReturnHomePatternMain}

inputIReturnHomePattern = {SReturnHome}

ChartReturnHomePattern

cReturnHomePattern : statesReturnHomePattern
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InitReturnHomePattern

ChartReturnHomePattern

cReturnHomePattern = ReturnHomePatternMain

ReturnHomePatternMain

ChartReturnHomePattern

cReturnHomePattern = ReturnHomePatternMain

δMainMain

ReturnHomePatternMain

ReturnHomePatternMain ′

iReturnHomePattern? : P Signal

active : PµState

Init ′Main

ReturnHomePattern ∈ active

SReturnHome ∈ iReturnHomePattern?

εReturnHomePattern

∆ChartReturnHomePattern

iReturnHomePattern? : P Signal

active : PµState

ReturnHomePattern ∈ active

¬ (ReturnHomePatternMain ∧ SReturnHome ∈ iReturnHomePattern?)

c ′
ReturnHomePattern = cReturnHomePattern
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IactiveReturnHomePattern

ΞChartReturnHomePattern

active : PµState

¬ ReturnHomePattern ∈ active

δReturnHomePattern =̂ δMainMain ∨ IactiveReturnHomePattern ∨ εReturnHomePattern

statesMain : PµState

inputIMain : P Signal

statesMain = {MainHome,MainM }

inputIMain = {SGotoM }

ChartMain

cMain : statesMain

InitMain

ChartMain

cMain = MainHome

MainHome

ChartMain

cMain = MainHome

MainM

ChartMain

cMain = MainM
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δHomeM

MainHome

MainM ′

iMain? : P Signal

active : PµState

Main ∈ active

SGotoM ∈ iMain?

εMain

∆ChartMain

iMain? : P Signal

active : PµState

Main ∈ active

¬ (MainHome ∧ SGotoM ∈ iMain?)

c ′
Main = cMain

IactiveMain

ΞChartMain

active : PµState

¬ Main ∈ active

δMain =̂ δHomeM

∨ IactiveMain ∨ εMain

δMainNC =̂ (δHomeM

∨ IactiveMain ∨ εMain) \ (cMain)
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statesReturnHomePatternMainDec : PµState

inputIReturnHomePatternMainDec : P Signal

statesReturnHomePatternMainDec = statesReturnHomePattern ∪ statesMain

inputIReturnHomePatternMainDec = inputIReturnHomePattern ∪ inputIMain

ChartReturnHomePatternMainDec

ChartReturnHomePattern

ChartMain

InitReturnHomePatternMainDec

InitReturnHomePattern

InitMain

δReturnHomePatternMainDec

∆ChartReturnHomePatternMainDec

iReturnHomePatternMainDec? : P inputIReturnHomePatternMainDec

active : PµState

((ReturnHomePatternMain ∨ ReturnHomePatternMain ′) ∧

ReturnHomePattern ∈ active)⇔ Main ∈ active

∃ iReturnHomePattern?, iMain? : P Signal •

iReturnHomePattern? = iReturnHomePatternMainDec?

∩inputIReturnHomePattern ∧

iMain? = iReturnHomePatternMainDec? ∩ inputIMain ∧

((δMainMain ∧ δMainNC ) ∨ (¬ δMainMain ∧ δReturnHomePattern ∧ δMain))

Init

InitReturnHomePatternMainDec
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ReturnHomePatternSys

∆ChartReturnHomePatternMainDec

iReturnHomePatternMainDec? : P inputIReturnHomePatternMainDec

∃ active : PµState •

ReturnHomePattern ∈ active ∧ δReturnHomePatternMainDec
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Appendix B

Final Return Home Pattern

Semantics

The Z semantics of the final Return Home pattern displayed in Figure 3.14 are

shown here, formatted to be compatible with ProZ.

µState ::= ReturnHomePattern | Main | ReturnHomePatternMainDec |

ReturnHomePatternMain | ReturnHomePatternReturnHome |

MainHome | MainM

Signal ::= SGotoM | SReturnHome

statesReturnHomePattern : PµState

inputIReturnHomePattern : P Signal

statesReturnHomePattern = {ReturnHomePatternMain,

ReturnHomePatternReturnHome}

inputIReturnHomePattern = {SReturnHome}

ChartReturnHomePattern

cReturnHomePattern : statesReturnHomePattern
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InitReturnHomePattern

ChartReturnHomePattern

cReturnHomePattern = ReturnHomePatternMain

ReturnHomePatternMain

ChartReturnHomePattern

cReturnHomePattern = ReturnHomePatternMain

ReturnHomePatternReturnHome

ChartReturnHomePattern

cReturnHomePattern = ReturnHomePatternReturnHome

δMainReturnHome

ReturnHomePatternMain

ReturnHomePatternReturnHome ′

iReturnHomePattern? : P Signal

active : PµState

Init ′Main

ReturnHomePattern ∈ active

SReturnHome ∈ iReturnHomePattern?
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δReturnHomeMain

ReturnHomePatternReturnHome

ReturnHomePatternMain ′

iReturnHomePattern? : P Signal

active : PµState

ReturnHomePattern ∈ active

εReturnHomePattern

∆ChartReturnHomePattern

iReturnHomePattern? : P Signal

active : PµState

ReturnHomePattern ∈ active

¬ (ReturnHomePatternMain ∧ SReturnHome ∈ iReturnHomePattern?)

c ′
ReturnHomePattern = cReturnHomePattern

IactiveReturnHomePattern

ΞChartReturnHomePattern

active : PµState

¬ ReturnHomePattern ∈ active

δReturnHomePattern =̂ δMainReturnHome ∨ δReturnHomeMain

∨ IactiveReturnHomePattern ∨ εReturnHomePattern

statesMain : PµState

inputIMain : P Signal

statesMain = {MainHome,MainM }

inputIMain = {SGotoM }
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ChartMain

cMain : statesMain

InitMain

ChartMain

cMain = MainHome

MainHome

ChartMain

cMain = MainHome

MainM

ChartMain

cMain = MainM

δHomeM

MainHome

MainM ′

iMain? : P Signal

active : PµState

Main ∈ active

SGotoM ∈ iMain?
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εMain

∆ChartMain

iMain? : P Signal

active : PµState

Main ∈ active

¬ (MainHome ∧ SGotoM ∈ iMain?)

c ′
Main = cMain

IactiveMain

ΞChartMain

active : PµState

¬ Main ∈ active

δMain =̂ δHomeM

∨ IactiveMain ∨ εMain

δMainNC =̂ (δHomeM

∨ IactiveMain ∨ εMain) \ (cMain)

statesReturnHomePatternMainDec : PµState

inputIReturnHomePatternMainDec : P Signal

statesReturnHomePatternMainDec = statesReturnHomePattern ∪ statesMain

inputIReturnHomePatternMainDec = inputIReturnHomePattern ∪ inputIMain

ChartReturnHomePatternMainDec

ChartReturnHomePattern

ChartMain
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InitReturnHomePatternMainDec

InitReturnHomePattern

InitMain

δReturnHomePatternMainDec

∆ChartReturnHomePatternMainDec

iReturnHomePatternMainDec? : P inputIReturnHomePatternMainDec

active : PµState

((ReturnHomePatternMain ∨ ReturnHomePatternMain ′) ∧

ReturnHomePattern ∈ active)⇔ Main ∈ active

∃ iReturnHomePattern?, iMain? : P Signal •

iReturnHomePattern? = iReturnHomePatternMainDec?

∩inputIReturnHomePattern ∧

iMain? = iReturnHomePatternMainDec? ∩ inputIMain ∧

((δMainReturnHome ∧ δMainNC )

∨ (¬ δMainReturnHome ∧ δReturnHomePattern ∧ δMain))

Init

InitReturnHomePatternMainDec

ReturnHomePatternSys

∆ChartReturnHomePatternMainDec

iReturnHomePatternMainDec? : P inputIReturnHomePatternMainDec

∃ active : PµState •

ReturnHomePattern ∈ active ∧ δReturnHomePatternMainDec
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Appendix C

Return Pattern Semantics

The Z semantics of the final Return pattern displayed in Figure 3.15 are shown

here, formatted to be compatible with ProZ.

µState ::= ReturnPattern | Main | ReturnPatternMainDec |

ReturnPatternMain | ReturnPatternReturnHome |

MainHome | MainM

Signal ::= SGotoM | SReturnBack | SReturnHome | Sprev〈〈Z〉〉

statesReturnPattern : PµState

inputIReturnPattern : P Signal

outputIReturnPattern : P Signal

ΨReturnPattern : P Signal

statesReturnPattern = {ReturnPatternMain,

ReturnPatternReturnHome}

inputIReturnPattern = {SReturnHome, SReturnBack}

outputIReturnPattern = {n : Z • Sprev n}

ΨReturnPattern = {n : Z • Sprev n}
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VariablesReturnPattern

VReturn : Z

ChartReturnPattern

cReturnPattern : statesReturnPattern

VariablesReturnPattern

InitReturnPattern

ChartReturnPattern

cReturnPattern = ReturnPatternMain

VReturn = 0

ReturnPatternMain

ChartReturnPattern

cReturnPattern = ReturnPatternMain

ReturnPatternReturnHome

ChartReturnPattern

cReturnPattern = ReturnPatternReturnHome
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δMainReturnHome

ReturnPatternMain

ReturnPatternReturnHome ′

∆VariablesReturnPattern

iReturnPattern? : P Signal

active : PµState

oReturnPattern ! : P outputIReturnPattern

Init ′Main

ReturnPattern ∈ active

SReturnHome ∈ iReturnPattern? ∪ (oReturnPattern ! ∩ΨReturnPattern)

oReturnPattern ! = {}

δReturnHomeMain

ReturnPatternReturnHome

ReturnPatternMain ′

∆VariablesReturnPattern

iReturnPattern? : P Signal

active : PµState

oReturnPattern ! : P outputIReturnPattern

ReturnPattern ∈ active

oReturnPattern ! = {}

VReturn ′ = VReturn
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δMainMain

ReturnPatternMain

ReturnPatternMain ′

∆VariablesReturnPattern

iReturnPattern? : P Signal

active : PµState

oReturnPattern ! : P outputIReturnPattern

ReturnPattern ∈ active

SReturnBack ∈ iReturnPattern? ∪ (oReturnPattern ! ∩ΨReturnPattern)

oReturnPattern ! = {Sprev VReturn}

VReturn ′ = VReturn

εReturnPattern

∆ChartReturnPattern

iReturnPattern?, oReturnPattern ! : P Signal

active : PµState

ReturnPattern ∈ active

¬ (ReturnPatternMain ∧ SReturnHome ∈ iReturnPattern?

∪(oReturnPattern ! ∩ΨReturnPattern))

¬ (ReturnPatternMain ∧ SReturnBack ∈ iReturnPattern?

∪(oReturnPattern ! ∩ΨReturnPattern))

c ′
ReturnPattern = cReturnPattern

oReturnPattern ! = {}

VReturn ′ = VReturn
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IactiveReturnPattern

ΞChartReturnPattern

active : PµState

oReturnPattern ! : P outputIReturnPattern

¬ ReturnPattern ∈ active

oReturnPattern ! = {}

VReturn ′ = VReturn

δReturnPattern =̂ δMainReturnHome ∨ δReturnHomeMain

∨ δMainMain

∨ IactiveReturnPattern ∨ εReturnPattern

statesMain : PµState

inputIMain : P Signal

outputIMain : P Signal

ΨMain : P Signal

statesMain = {MainHome,MainM }

inputIMain = {SGotoM , SReturnHome} ∪ {n : Z • Sprev n}

outputIMain = {n : Z • Sprev n}

ΨMain = {n : Z • Sprev n}

ChartMain

cMain : statesMain

InitMain

ChartMain

cMain = MainHome
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MainHome

ChartMain

cMain = MainHome

MainM

ChartMain

cMain = MainM

δHomeM

MainHome

MainM ′

iMain? : P Signal

active : PµState

oMain ! : P outputIMain

Main ∈ active

(SGotoM ∈ iMain? ∪ (oMain ! ∩ΨMain)

∨ Sprev 1 ∈ iMain? ∪ (oMain ! ∩ΨMain))

oMain ! = {}
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δMM

MainM

MainM ′

iMain? : P Signal

active : PµState

oMain ! : P outputIMain

Main ∈ active

SReturnHome ∈ iMain? ∪ (oMain ! ∩ΨMain)

oMain ! = {Sprev 1}

εMain

∆ChartMain

iMain?, oMain ! : P Signal

active : PµState

Main ∈ active

¬ (¬ SGotoM ∈ iMain? ∪ (oMain ! ∩ΨMain)

∧ ¬ (Sprev 1 ∈ iMain? ∪ (oMain ! ∩ΨMain)))

¬ (MainM ∧ SReturnHome ∈ iMain? ∪ (oMain ! ∩ΨMain))

c ′
Main = cMain

oMain ! = {}

IactiveMain

ΞChartMain

active : PµState

oMain ! : P outputIMain

¬ Main ∈ active

oMain ! = {}
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δMain =̂ δHomeM ∨ δMM

∨ IactiveMain ∨ εMain

δMainNC =̂ (δHomeM

∨ IactiveMain ∨ εMain) \ (cMain)

statesReturnPatternMainDec : PµState

inputIReturnPatternMainDec : P Signal

outputIReturnPatternMainDec : P Signal

ΨReturnPatternMainDec : P Signal

statesReturnPatternMainDec = statesReturnPattern ∪ statesMain

inputIReturnPatternMainDec = inputIReturnPattern ∪ inputIMain

outputIReturnPatternMainDec = outputIReturnPattern ∪ outputIMain

ΨReturnPatternMainDec = {n : Z • Sprev n}

ChartReturnPatternMainDec

ChartReturnPattern

ChartMain

InitReturnPatternMainDec

InitReturnPattern

InitMain
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δReturnPatternMainDec

∆ChartReturnPatternMainDec

iReturnPatternMainDec? : P inputIReturnPatternMainDec

active : PµState

oReturnPatternMainDec! : P outputIReturnPatternMainDec

((ReturnPatternMain ∨ ReturnPatternMain ′) ∧

ReturnPattern ∈ active)⇔ Main ∈ active

∃ iReturnPattern?, iMain?, oReturnPattern !, oMain ! : P Signal •

iReturnPattern? = (iReturnPatternMainDec? ∪ (oReturnPatternMainDec!

∩ΨReturnPatternMainDec))

∩inputIReturnPattern ∧

iMain? = (iReturnPatternMainDec? ∪ (oReturnPatternMainDec!

∩ΨReturnPatternMainDec))

∩inputIMain ∧

oReturnPatternMainDec! = oReturnPattern ! ∪ oMain ! ∧

((δMainReturnHome ∧ δMainNC )

∨ (¬ δMainReturnHome ∧ δReturnPattern ∧ δMain))

Init

InitReturnPatternMainDec

ReturnPatternSys

∆ChartReturnPatternMainDec

iReturnPatternMainDec? : P inputIReturnPatternMainDec

oReturnPatternMainDec! : P outputIReturnPatternMainDec

∃ active : PµState •

δReturnPatternMainDec
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