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Consider a classical Hamiltoniath in n dimensions consisting of a kinetic energy
term plus a potential. If the associated Hamilton—Jacobi equation admits an or-
thogonal separation of variables, then it is possible to generate algorithmically a
canonical basi®, P whereP,=H, P,,...,P, are the other second-order constants

of the motion associated with the separable coordinates{@n@Q;}={P;,P;}
=0,{Q;,P;}=4;; . The 2n—1 functionsQ,,...,Qn,P1,...,P, form a basis for the
invariants. We show how to determine for exactly which spaces and potentials the
invariantQ; is a polynomial in the original momenta. We shed light on the general
guestion of exactly when the Hamiltonian admits a constant of the motion that is
polynomial in the momenta. Far=2 we go further and consider all cases where
the Hamilton—Jacobi equation admits a second-order constant of the motion, not
necessarily associated with orthogonal separable coordinates, or even separable
coordinates at all. In each of these cases we construct an additional constant of the
motion. © 2002 American Institute of Physic§DOI: 10.1063/1.1484540

[. INTRODUCTION

The quest for integrable systems has a long history. Basically, the question is, given a classical
HamiltonianH=H(x,p) wherex= (x4, ... Xn), P=(P1,--..Pn), how can one find all the so-
lutions to the Poisson bracket condition

HU=2 | oo

=1\ Jp; 9% 9% Ip;

" [oH L 9H dL
>=0, 1)

whereL=L(x,p).! There is no known comprehensive solution to this problem. However, if the
associated Hamilton—Jacobi equatidifx, 9S/dx) =E is additively separable in the orthogonal
variablesx, then a complete integral of the equation can be constructed by quadratures and one
can find a basis of 2— 1 functionally independent solutions to Ed). Indeed there is an explicit
canonical change of coordinates from the variaklgs with {x; ,p;} = §;; to variablesQ, P where

P,=H, P,,...,P, are the other second-order constants of the motion associated with the orthogo-
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nal separabl&-coordinates, an§iQ; ,Q;} ={P;,P;}=0,{Q;,P;}=&; . Thus the 2—1 functions
Q2,....Qn,P1,...,P, form a basis for the invariants. Each invari&jtcan be expressed as a sum
of the form

Q= M(x,P), (2)
k=1

see Ref. 1.

Numerous examples have been found through this approach, but important problems remain.
Many of the known interesting dynamical systems have extra constants of the ratibich are
polynomialin the canonical momentg; ,i=1,...n. This often enables global statements to be
made about the system in question, e.g., the existence of closed orbits. However, though many
interesting results have been obtained, e.g., Refs. 2 and 3, an algorithmic way of generating all
polynomial solutions ta1) is not known. In particular, from the&-based integrals inf2) it is
difficult to tell if Q; is a polynomial in the momentp; . In this article we adopt g-based
approach to the calculation of the invarian@g in which the termM, take the formM
=M(px,P), and we can say in advance for exactly which separable metrics and poténtials
a polynomial in the momenta. We give, in principle, a complete solution to this problem. More-
over, we show how to characterize each tévipin (2) by the Poisson bracke{/,,P;}. [Note:
Although the termM(x,,P) always exists, there are cases where it cannot be expressed as
M(pk.P), i.e., as a function op, alone. These are exactly the cases whgrés anignorable
variable, i.e., where the components of the metric tensor ix4t®ordinates do not depend &p
and where, also, the potentildoes not depend ox). However, these special cases whirg
and the invarian®; of which it is a component term always have polynomial dependéafter
multiplication by a linear combination of second-order invariang be handled separately or by
requiring thatM, depends on a variable with somalependence, such &%,(r (x,)px,P) treated
below)]

Of course, the system could admit a polynomial invariant

L=R(P,Q,,...,.Qn)

such thatL,P is functionally independent, even @,,...,Q,, are not polynomials. It is a much
more difficult problem to classify all such possibilities for polynomiiahs functions of possibly
nonpolynomialQ;. We make some progress toward the solution of this problem, through the
consideration of important examples. These questions of when a systermn wgiticond-order
constants of the motiofgenerated by an orthogonal separation of varigbdebnits additional
polynomial constants of the motion are closely related to the concept of superintegfabflity.

For dimensiomn=2 in this article, we go beyond the formulation discussed above and con-
sider all cases where the Hamilton—Jacobi equation admits a second-order constant of the motion,
not necessarily associated with orthogonal separable coordinates, or even separable coordinates at
all. In each of these cases we construct an additional constant of the motion.

II. CARTESIAN SYSTEMS IN TWO DIMENSIONS

Let us first consider two dimensional Euclidean space. In Cartesian coordinates the Hamil-
tonianH has the form

H=pZ+pi+V(x.y).
If we have separation of variables in Cartesian coordinates the potential must take the form

V(X,y)=X(x)+Y(y). ©)
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We immediately observe that there are already two invariants arising from the separation, namely
L;=pZ+X(x) andL,=p3+Y(y). Our problem is to calculate a third invariant and determine
when it can be chosen to be a polynomial in the canonical momenta. To do this we compute two
functionsM(x,py) andN(y,p,) that satisfy the conditions

{H,M}=1, {H,N}=1. 4

These equations can be solved in principle if we know the original funckoasdY. Indeed, if
we write out the first of these conditions, we obtain

LM M
Pxox =7 ap,

This equation can be readily solved to give

M=—J X'~1dQ,

where Q=p, andL,;=pZ+X. [We considerX’' "*=dx/dX to be a function ofX=L,;—Q? to
compute the integral. An arbitrary functidfL,,L,) can be added to the integral, but this makes
no difference sincé ;,L, are invariantd.OnceM andN have been determined, we see that
=N—M must be an invariant. It is immediately clear thaXitx** wherep is an integer, then

M is a polynomial inp,. As examples of this consider the following.

(1) p=3:
M = —3x*%p,— 4x"p}— ¢pj.
(2) p=4:
M = —4x¥p,— 8x"%] — Exp3— Sipy.
It follows from these two examples that the Hamiltonian
H= pi"‘ pf,-i- X134+ y1/4
has, in addition to the obvious invariants
Li=p;+x'3  L,= pi"'ylm,
the additional invariant
Lo =3x%p,+ x5+ §py—4y¥p,— 8y %) — Zy¥pj— &py. (5
From this observation we conclude that all potentials of the form
V=ax+ gyl (6)
have the superintegrability property with three functionally independent invariants which are

polynomial inp, andpy . This includes the known examples corresponding tol,2. If X(x) is
determined by a polynomial relation of the form

n
E anj=X,
=1
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we can go even further. Then the functibhis always a polynomial in the canonical momentum
py. As an example consider

X(x) =27 Y {x+ 2+ 1} {x+ X2+ 1} 717, (7)
The inverse function is
;. 3
X=X+ zng
and the corresponding functiavi(x,p,) is given by
8 & 3 2 3
~MX,Px) = g P AX Pyt 3XPut S Pxc-

It is clear that all that we have done applies also to potentials that separatgirimensions,
in Cartesian coordinates. There is only one further Cartesian case for which polynomial invariants
can be generated. Let us consider the case wker) = wixz. The corresponding function
M (X,py) is given by

2,2 2
@1X"— Py

1 .
M (X,px) = 4—w1arcsn‘( m

If Y(y)=w3y?, this establishes that the Hamiltonian

H=pZ+p;+ wix?+ wjy? (8)
has the constant of motion
1 oX-pf| 1 w3y?—p;
L,=——arcsil ——s——> | — ——arcsin ——-—
3 4w1acs”(w§x2+p§ bl vk ©

in addition to the constants;=p+ wix? and L,=p;+w3y?. In general this invariant is not
polynomial in the canonical momenta. Howeverpif/ w, is a fractionp/q for integersp,q, then
w1=PpS,w,=0qs andL;=sin(4spgls) will be a rational invariant whose common denominator is
a product of powers df ; andL,. The numerator is then an additional polynomial invariant, e.g.,
considerw,=1,w,=2. Then

L1L3—2(xpZ— 4y pyp, — 4xy?)?

LL=sin(8L,)= 12 :
2

which indicates thatL’3’,=xp§—4ypxpy—4xy2 is an additional invariant. In general,
LPLY sin(4spgls) will be a polynomial invariant, functionally independent lof andL .

Ill. GENERAL TWO-DIMENSIONAL SEPARABLE SYSTEMS

If we extend this problem to the case of orthogonal separable coordinates in a general Rie-
mannian space, we know that the Hamiltonian in a given set of coordinates with a separable
potential has the form

2 2
Pt Pyt ua(X)tua(y)

f1(x)+fa(y) ’

and, due to the separability, there is the invariarit

H:Ll

(10
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L fa (Pt 0a(0) — 100 (py+v2(Y))
’ f1(x) +fa(y)

We can implement the same ansatz as we have done previously by looking for a function
M(H,x,p,) which satisfies

HMl=————. 11

M= 0+ ) ay
The condition has the form

4 fr(x)H M 2 aM—l 12

(—vi(x)+f(x) )(9—px+ Px =1 (12

Assuming thafv|+|f1|>0, we see that this equation has the solution

M(H,Lz-px)=f u’'~1dQ,
where
Q=px, Ly=vi(¥)—f100H+pZ, U()=—vi(x)+F10H+L,.

[We considetd’ ~*=dx/dU to be a function ofU=Q?. An arbitrary functionf(L,,L,) can be
added to the integral, but this makes no difference sinceH andL, are invariantd.There is a
similar condition for the functioN(H,L,,y,p,). The new invariant it ;=N—M. Itis straight-
forward to verify the condition

{Lz,L3}: 1 (13)
Indeed,{L, ,M}="f,/(f;+f5), {L,,N}=—"f,/(f{+f,). This implies that the set;,L,,L3 is

functionally independent.
Similarly, we can construct functior™d (H,x,p,),N(H,y,p,) that satisfy

f1(x) —fa(y)

M=oy PN oo o)

14

Assuming thatv{|+|f/|>0 fori=1,2, we see that these equations have the solutions

M(H Lopo = [ 200U 24Q, N(H.Lo by =— [ f0U3 a0
where
U=-v;+fH+L,.
SettingL,=N—M, we see that,, not an invariant, satisfies
{H.Lip=1, {Ls,L4}=0. (15
Let us illustrate what can happen with some examples.

(1) We choose parabolic coordinates in Euclidean sfface= 1/2 (¢2— %), y' = &7. First
consider the parabolic-separable Hamiltonian
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2 2
H=L,=—%—>—. (16)
R
We can immediately associate with this the extra invariant
7Ppi— Epot ¢
e+

If we look for our functionsM(&,p;) andN(#,p,), as before we obtain

L,

1
VHp -+ §_§H

M(£,pg)=—=In
4\H 1

H —Hpg+ 5 —¢H
1 \/ﬁn+p,,)

N(7,p,)= I :

P e,

If we now consider the constant cosh{#¢N)/H), we find that it can be written in the form

= L2H
4COSN4(M—N) H)—m,
where
2%n , (&7
Ls——§2+ 7]2(p§+ p5) —2peP,+ 2 17

is an additional invariant quadratic in the canonical momenta. This is a special case of a more
general example in Ref. 23.
(2) Consider the Hamiltonian in Cartesian coordinates

H=pZ+p;+ (18)

X
Ny
In parabolic coordinates this Hamiltonian has the form
_pEpyHE— 7
&+

The second-order invariant associated with this separation is

H:Ll

&pi— i 28y
- e+’ '

The additional invariant calculated by our method is given by

Lo

arccoskl (H— 1) &2+ pZJ/[(H—1)&2 - p?])
La= H—1

N arccosk[ (H+1) n?+ p2 /[ (H+1) »*—p2])

\CE |

(19
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which is clearly transcendental.
(3) If we consider the Hamiltonian

H=pZ+pj+ib(x+iy), (20)
then using the semihyperbolic coordindtes
x+iy=i(u+w), x—iy=(—i/2)(u—w)?

and applying our construction, we find

expM—N)—i . Vb—iX

expM-N)+i ptix’

thus giving rise to the additional constaxit=p,+ip, .
(4) Let us now look at an example of a potential where our construction yields elliptic
integrals. We consider the potentidl=2x+ B/y?. If we carry out the construction using para-

bolic coordinatesx=(3) (£2— %), y= &, then the function andN are given by the integrals

M_1J &d¢ N_lj ndn
C2) =g g 2) Ity L B

wherel is the quadratic constant associated with the separation of variables in parabolic coordi-
nates. If we change variables accordinguts ¢2, v=— 7?, then bothM andN are given by
integrals of the form

|=3f dx
2 ) Ja=N)(b=N)(c—n)

wherex=u,v and
abc=-p, L=ab+bct+ac, H=a+b+c.
There are a variety of ways of evaluating elliptic integrals of this type. We recall that all our

considerations are in the complex domain. As an example, we can choose to use the complex
equivalent of the integral

fu dx _ 2 E )
@ 0b-x(cx Jac "

valid for a>b>c=u and for which

/a—c_, . B a—b

Then if we calculate sif\a—c(M—N),p) using the addition formulas for elliptic functions we
obtain

snz(\/a—c(M—N),p)=$le,
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whereL , is the second quadratic constant associated with this super-integrable system. Because of
the various ways of evaluating elliptic integrals, there are a number of ways of uncovering the
presence of ;.

In analogy with the construction($)—(7), we can find Riemannian spaces and potentials with
polynomial invariants of arbitrarily high order. Set

U+A
a+ BH

=P,

, A=6+¢H—-L,, (21

whereP,, is a polynomial of orden ande«, B, 8, ¢ are constants. Then there exists a functgn
inverse toP,,, i.e.,F,(P,(y)) =Y, such that

U=(a+BH)F (X)— 35— dH+L,,

andv 1(X)=—aF,(x)+ 6, f1(X)=BF.(X)— ¢, where @+ BH)"M(x,p,) is a polynomial in the
momenta. The Cartesian coordinate constructi@is(7) correspond to the special cage=0.

The solution of the equatiofll) can be understood in a more general context. We have the
dual relations

x=F(U-L,,H), UXH)=—v(X)+f(X)H+L,, U,#0. (22

(SinceU and L, occur only asU—L,, we will, without loss of generality, sdt,=0 in the
theoretical developments to follow, and then replacby U — L, in the example$.Thus we have

1=FUUX, FUUH+FH=0.

The condition thatJ(x,H) is linear inH, i.e., Uy4=0, leads to the following necessary and
sufficient conditions that the function=F(U,H) correspond to an invariab on a Riemannian
manifold with potential:

FunF§—2FunFuFu+FuuFi=0, Fy#0. 23

This equation admits an infinite dimensional conformal symmetry group. Indé&d (U,H) is
a solution, therG(V) is also a solution, foany nonconstant functio®. Also, this group contains
the subgroup of inhomogeneous affine symmetries:(lf),H) is a solution, then so iB([a,U
+apH+ +agl/A[anU+ayH+a+ay]/A), wherea;; are constants, det()#0 and

A= a.31U + a32H + + a.33.

Note that the functio’V,= (U + 6+ ¢H)/(a+ BH) satisfieq23), so any function o#/; must
also satisfy the requirement. This pygl) in the proper context. A more general solutionvig
=(U+pH+8)/(aU+ BH+ y), where again any function df, also satisfies the requirement.
Equation(23) also occurs in the theory of level sets, used in computational geometry and com-
puter vision?* since it describes the family of functio’s whose level sets are always straight
lines in the U,H) plane.

We have seen that the constructi(#l) always leads to a polynomial invariaht, up to
multiplication by a polynomial irH andL,. In fact these are thenly polynomial invariantd_5
that can be constructed directly from the integration. This follows from the following theorem.

Theorem 1: The function KU,H) with F;#0 is a solution of Eq. (21) with polynomial
dependence on U if and only if it is of the form

Ut+aH+g

F(UH)=P|— 1

where P is a (nonconstant) polynomial an¢3,y, s are constants withy|2+]|8/2>0.
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Proof: Let
F=ag(H)UN+a;(H)UN 14 +ay_1(H)U+ay(H)

be a solution of21) with N=1 anday+# 0. Substituting this expression inf@1) and equating the
coefficient ofUN~2 on both sides of the resulting expression, we find the condafiay=((N

+1)/N)ajy?, soag(H)=(yH+ 6)~N. Now we make the change of variablgs= U/(yH+ §),
H=(¢H+,)/(yH+ 5), wheres— yp+0. It follows that

F=UN+3,(F)UN 1+ +3y_(H) U +3\(H)
in the new coordinates, arfé is a solution of
—) - =2
FHHFD_ZFUHFUFHJ{_FUUFQZO‘ (24)

Substituting the polynomial int¢é24) and equating coefficients d#®N~2, we find@;N?=0 or
%,=a;H+ B;. Using this information, we return to our original expression for the polynomial
and make a new change of variables of the form

Ut+taH+pB H_)(H—i—g

U=—"h7s ° YH+6'

(25

wherey— y¢#0, ande, B are chosen such that the transformed coefficiett"f* vanishes. In
these variables

F=0N+3,(H)ON 2+ +ay_(H) U +ay(H).

We substitute this expression int®4), and equating coefficients &f*N~* we finda=0, soda,

is a polynomial inH of order<1. Proceeding in this fashion to equate coefficient&) &~ for
s=5,6,... in order, we find that the first occurencégfk=3 in this sequence of equations takes
the formay, = py(3,,...,8¢_1) Wherep, is a polynomial of order 3 at most. It follows by induction

on k that eaclg, is a polynomial inH.

At this point we have shown thd is a polynomial in bothU and inH. Let H™ be the
maximal power ofH that occurs inF. If M=0, we are done. Assumkl=1. If we use the
argument of the first paragraph of this proof withandH interchanged, we see that the coeffi-
cient of H™ in F must take the formag /(8,0 + 1) with ao# 0. SinceF is a polynomial inU we

must haveB;=0.
Thus

F=0N+2,(F)ON "2+ +3y_1(H) U+ agHM.

Now substitute this expression int24) and equate coefficients &f"H™ wheren+ m is maximal.
SupposeN=M. The highest power term iﬁggF% is ayM (M —1)N?AM~202N=2, The highest
power term ianaF% is aZN(N—1)M2H2M~20N=2 put this is of lower order. The highest
power term in FGEFiFy is t=2anay u,NiMNMUNN"2HM M2 whereay s the
coefficient of UNtHM1 in F. HereN;<N,M;<M. If N>N;+M;, then the highest power term
is the coefficient o™ ~2U?N"2, soM=1. If N<N;+My, thent=0, soay u,=0. Thus, the
only possiblity isM=1, so

F:UN+C¥20N_2+'"+C¥N_1U+CYNH.
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Substituting this expression into the differential equation we seeRhgt=0, or F=U+ ayH.
But this is impossible sinchl=1 and the coefficient 0N ~* must be 0. Henc€& depends only

onU. There is a similar argument for the casgle>N. QED
If we limit our search for potentials to a space in whidky=f(x) is prescribed, then the
general condition$23) are replaced by

Fu+fi(F)Fy=0, Fy#0. (26)
Equation(26) admits the complete integral

U+a

F(UH,a,B)=f "t HTp

wheref; ! is the function inverse té,. From this one can use standard technig@mesthod of
characteristics, envelopes of solutipfrem the theory of quasilinear first-order partial differential
equations to construct solutions @) that satisfy particular initial conditions or that depend on
arbitrary functiongRef. 25, Chap. Il or Ref. 26, Sec. B8

Note: Standard Hamilton—Jacobi theory gives essentially these same constants of the motion,
but from a different viewpoint.Our expression fot 5, for example, is

L3=f U;‘ldpx—f U, 'dp,=M-—N,
whereU,=—v(X)+f;(X)H+L,, etc. Standard Hamilton—Jacobi theory gives

1 dx 1 dy ~ -
L3=—J———J—=M—N
2 \/_Ul+f1H+L2 2 \/_02+f2H_L2

In the standard theorﬁl = I\~/I(H,L2,x), etc., whereas in our approabh=M (H,L,,p,), etc. In
both cases the conditidd?2) is satisfied. Our approach makes it easier in some cases to determine
if polynomial invariants exist. It also points out the bracket relations betwdeN and the
operatord.; defining the separation, e.g11).

Examples abound of spaces for which these constructions apply. We illustrate this with a
family of surfaces in Minkowski spacets’=dz>—dy?—dx?. The surfaces involve a horispheri-
cal coordinatet and take the form

X(t,6)=(x,y,2)=(2t£,9() + (£ - Dt,g(t) + (£2+ 1)t). (27)
The metric on the surface is
ds?=4[tg’ (1) dt*~t?d&?]=4t’[dp®~ dé?]=(f(p) + 1)[dp?—d£?],

where dp/dt)?=g’(t)/t?, and we can construct a polynomial invariant for the surfacel for an
appropriate added potentigirovided that the functiot?=F(p) has a polynomial inverse func-
tion, i.e.,p=G(t?) whereG is a polynomial. Clearlyg’ (t)=4t*G’(t%)? and any polynomial
will determine a surface with a polynomial invariant. For example, ch@@8) = t*+1t2. Then
we can takeg(t) = 2t°+ &7+ &5 and p(t) = t*+t2. The resultingM will be third-order polyno-
mial in p andp,. Similarly, we can determine a potential tetrtp) with v’ #0 such that N is
a polynomial inp, andp,, .

Rather than make either of the choiggsor x for the independent variable {12) we could
choose some other functian(x,p,), adapted to the specific problem at hand. For example, let us
takew(x,py) =r'(x)py for some given functiom, and requireM =M (H,L,,w). Solving(12) in
these variables we find
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where
w2=U=r'(x)?pi=r'(x)%(—v1+fH+L,), r(x)=F(U,H,Ly,).

This approach will work even if, andf, are constants; it is guaranteed to yield a polynomial
invariant if we require

U+ alH + C(2L2+ a3
a4H+a5L2+ ag ’

(29

r=r,

whereP,, is a polynomial of orden and thea; are constants. Then there exists a functon
inverse toP,,, such that

U=(a4H+a5L2+ aG)Fn(r)—(a1H+a2L2+ a3)=r'2(—vl+f1H+L2).

Equating coefficients df , we find the condition’ (x)2= asF,(r) — @, and we can solve far(x)
by quadratures. Equating coefficientstbfand the constant term, we obtain expressions f@and
Ul:

asFp(r)—a; az— agFnp(r)

M= g —a 1T aF - ay

It follows that (ayH + asl,+ ag)"M (rp,) is a polynomial in the momenta.

IV. LIE FORM AND NONORTHOGONAL SEPARATION IN TWO DIMENSIONS
We know that if a Hamiltonian
2
H=i;l gijpipj

admits a constant of the motidnthat is quadratic in the momenta

2
L= > app;, {H,.L}=0, (30)

i,j=1

and if the roots of the determinafa'/ —\g'/| are distinct, then the eigenforms define n@epa-
rable variablesp, w and the Hamiltonian can be written in Liouville form
_ PR
f(p)+a(m)

However, it may be that the roots of this determinant are equal. In thisttasanot be put into
Liouville form, but rather Lie form, which for a suitable choice of variablesnseparab)eis

_ PxbPy
- X+B(y)" (3D
The associated quadratic constant of the motion is
L=pZ—2yH. (32
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We now ask the question: When the rootslofare equal, how can we calculate the third
invariant? We are interested in the the same question when a potential is added to the Hamiltonian.
These questions can readily be answered. Indeed if we look for a furi(idrL,y,py) that is in
involution with H, we obtain the equation

(x+B(y))Ny+ pyB’(y)pr=0. (33

If we solve (31) and(32) for x and p, in terms of the variablesi, L, y andp,, we obtain

py=VL+2yH, x= % vL+2yH—B(y).
The equation(33) for N then has the form

JL+2yH

—HB’(y) Ny+N

0.

Py~
From this condition a second invariant can be readily obtained in the form

JL+2yH a

We now extend these considerations by considering the possibility of adding a potential. If we
do this and have an extra quadratic constant, theemdL have the forms

L’ (34)

PPyt IKY) 1 L,
_X+—B(y)+§U (y), L=px—2yH+U(y). (39

Solving (35) for p, andx gives

pyvL—U(y)+2yH+ 3K(y) -

H=2zU'(y)

Px=VL=U(y)+2yH, x= B(y).

Then the equation foN has the form
2JL—=U(y)+2yH(2H—U’(y))Ny+[—2U"(y) yL—=U(y) +2yHp,+B'(y)U’(y)?
+4B’(y)H2—U”(y)K(y)—4B’(y)U’(y)H+K’(y)U’(y)—ZK’(y)H]pr=0. (36)

This equation can, in principle, be solved directly. In fact, for suitable redefinition of the variables
y—Y, py—Py, Eq.(36) can be put in the form

Ny+ (Py+s(Y))Np =0 (37
that can be solved by the further transformation
Py =Py+t(Y), Y =Y.
Then, provided that
t'(Y)—t(Y)+s(Y)=0,

(37) reduces to
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Nyr + Pyr NPY' = 0
From this we immediately deduce an extra constant of the motion of the form
L'=e"'/Py . (38)

The equation fot(Y) has the solution
Y
t(Y)=er e Ys(u)du.

There is one remaining possibility for a quadratic constant of the m@86nin two dimen-
sions: the constant may be associated withorthogonalseparation of variables. In two dimen-
sions there is only one case: separation in light donél) coordinate$’ For this case the Hamil-
tonian takes the form

H=p,pz+f(2),

and there is a Killing vectop,, so p§ is a second-order constant of the motion. In addition there
is a quadratic constant

L=M | J_dfd_
= pz+§ Zd_? Z

Thus we have answered the following questions.

(1) If a Hamiltonian with potential admits a quadratic constant of the motion in two dimensions
how does one calculate the third constant?

(2) A subset of problem 1 is when we require separation only and ask to calculate the third
constant.

V. SYSTEMS IN THREE DIMENSIONS

Let us now look at how the orthogonal separation of variable considerations extend to three
dimensions. If we have a general separable coordinate system in three dimensions, we could take
the Hamiltonian to b&282°

J2—03
)

9:—9g
(P2, +v1(Xp) + =2

SR Hoa(xa) + 2 (pF Fualx)), (39

H:L]_:

whereg;=g;(x;),f;=f(x;) and® is the determinant of the Stkel matrix

1 f; 0:
1 f 02]. (40)
1 f3 03

This automatically gives us two more invariants:

fa—f fi—f fo—f
Lo=—g— (P, v + =g (P, +0200) + —g— (P} +us0a)), (4D

f192—f29
S (Pt ua(xg):

(42

fogs—f fag—f
_ 293(1) ng(p)2(1+v1(xl))+ 391~ 1103

Ls D

(P%,v2(X0) +
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We need to find an additional two invariants, such that the five form a functionally independent
set.
If we look for a functionM; such that

9g>—03

{HIM 1}: (I) ’ (43)
then this function satisfies the equation
2Py, 05, My [ —vi(x) + fH+giL,]0p Mi=1, (44)

which looks like the form we have been using in two dimensions. There are similar equations for
the corresponding functionsl; for i=2,3. ForM(H,L,,L;,Q;) with Q1= Py, this has the

solution

M1=f Ui 'dQy,

whereU(Xq)=—v(X;)+f{H+g.Lo+Ls andLz=v;—f{H—g4Lo+ pﬁl. (Here, we consider

U; '=dx,/dU; to be a function oflU;=Q? to compute the integral. We also assume {bat
+|f1/+]g1/>0.) The corresponding invariant that we can calculate from these three functions is
L;=M;+M,+Mj. This is based on the obvious identity

(92—93) +(935—91) +(9:—92)=0.

Note:As in the two dimensional case, the solution of the equat#@h can be understood in
a more general context. We have the dual relations

x=F(U-L3z,H,Ly), U(XH,Ly==vy(X)+f(x)H+g1(x)Lo+ L3, (45
whereU,# 0. (SinceU and L occur only asU—L5; we can, without loss of generality, skt
=0 in the equations immediately following, and then replelcby U — L 5 in the example$.Thus
we have

1=FUUX, FUUH+FH=O, FUUL2+F|_2=0.

The condition thalU(x,H,L,) is linear inH andL,, i.e., UHH:UL2L2=UHL2=O, leads to the
following necessary and sufficient conditions that the functienF(U,H,L,) correspond to an
invariantM, on a Riemannian manifold with potential:

FunF3—2FyuFuFu+FuuF3=0, Fy#0,
FuuFt,—2FLuFLFutFLFi=0, (46)
FL2L2F|2—|_2FHL2FHFL2+ FHHFfzzo'
These equations admit an infinite dimensional conformal symmetry group. Indeéd, if
=F(U,H,L,) is a solution, therG(V) is also a solution, foany nonconstant functio. Also,
this group contains the subgroup of inhomogeneous affine symmetriegUifH,L,) is a solu-
tion, then so is F([aMU + ale + a13L2+ 314]/A,[321U + azzH + 323L2+ a24]/A,[a31U + a32H

+agsl,+ay]/A) wherea;; are constants, det()#0 and

A= a41U + a.42H + a43|_2+ a.44.
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As in the two dimensional case, the only polynomial functiénef U are of a very special
form.

Theorem 2: The function RU,H,L,) with F;#0 is a solution of Egs. (46) with polynomial
dependence on U if and only if it is of the form

U+a1H+a2L2+,8
’)’1H + ’}/2L2+ o

F(UH,L,)=P

where P is a (nonconstant) polynomial ang,3,y;,8 are constants withy|?+]|y,|?+]8|?
>0.

Proof: The proof is similar to that of Theorem 1. It follows from this theorem and the first two
equations in(46) that

F=POWD L,)=PB@WU@ H),
where theP() are polynomials of strict ordeX in their first arguments and

U+ a{PLH+ gL, 2 YUt aPHL,+ BPH
YPLH+ 6L, YPHL,+ 6@H

u®=

Furthermore, the coefficients of ti— 1-st power of their first arguments can be asumed to be
zero. Comparing the coefficients of the highest pow&rof U in F, we see that this coefficient
must be of the form

(yH+ yolo+ yaHL,+8) 7N,

where now they;,§ are constants. Substituting this into the third equatiod) and equating
coefficients ofU3N, we see thaty;=0. _
Equating the coefficients ddN~?! in the P()) we see that

U+a1H +a2L2+ ¢H L2+ﬁ

W=—y@=yg=
U U U ’ylH+’}/2L2+5 '

where the coefficients are constants. Then, substituting this result into the third equation again and
comparing coefficients otU3N"1 we see that¢=0. At this point we have shown thdf
=P(U,H,L,) whereP is a polynomial of order exactli in its first argument. The proof tha
is independent of its second and third arguments follows exactly as in the last part of the proof of
Theorem 1. QED

If we limit our search for potentials to a space in whit;m:fl(x),ULz:gl(x) are pre-
scribed, then the general conditiof#6) are replaced by

Fy+fi(F)Fy=0, F_ +0:(F)Fy=0, Fy#0. (47

From this one can use standard technigquesthod of characteristics, envelopes of solutjdream
the theory of systems of quasilinear first order partial differential equations to construct solutions
of (47) that satisfy particular initial conditions or that depend on arbitrary functions.

The invariantL;=M,+M,+ M3 also commutes with.,. Indeed, from the fact that

fo—fo ., ,
Loy=——(v;—fiH—g;L,)

J n

X1

we can verify thai{44) implies
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{L21M1}:%- (48
The corresponding conditions are satisfied My and M;. Then the fact thafL,,L3}=0 is
implied by the obvious identity

(fa—fa)+(f1—f3)+(f2—f1)=0.
Finally, from the fact that

fo05—f30, , ,
07x1L3:T(01_f1H —0:L2)

we can verify thai{44) implies

93— 30
%

fa
{L3,My}= (49)

The corresponding conditions are satisfied My and M;. Then the fact thafLs,L3}=1 is
implied by the identity

(f295—f302) +(f391—193) + (f19,—fo0,) = D. (50

Similarly, we can define a new invariabt by requiring that a new functioM, satisfy

{L11M1}:gl(gsp_93)v (51)

with analogous conditions foM, and M5. For M;(H,L,,L3,Q4) with Q1=py, this has the
solution

M= f gluiilder

whereU(Xq)=—vq(X;) +fiH+g.L,+L3.

[Note that forM ; to be a polynomial irp, ,py ,p, we must havey,(F)F a polynomial inU.
If g1=0, this reduces to requirirg to be a polynomial irJ. If g; # 0, we can replace the variable
X by X;=r(xq)=f0g1(xq)dx; with X;,=G(U,H,L,,L3). Theng,(F)Fy =Gy and our original
analysis goes through with replaced byG. It is guaranteed to yield a polynomial invariant if we
require

U + C(lH + a2L2+ a3L3+ ay
CY5H+C¥6L2+ ay '

r=~P,

91=r"(X1), (52)

whereP,, is a polynomial of orden and thea; are constants. Then there exists a functon
inverse toP,,, such that

U =(a5H +C¥6L2+ a7)Fn(l’)—(a1H+a2L2+ a3L3+ Cl(4): _U1+le +91L2+ L3.

Equating coefficients df, we find the condition’ = agF,(r) — @, and we can solve far(x;) by
quadratures. Equating coefficientstdf L5 and the constant term, we fingy=—1 and

fi(X)=asFp(r)—ay, 0i1(X)=agF (r)—az, vi(X)=as—a7F,(r).

It follows that (asH + agl,+ a7)"M is a polynomial in the momenta.
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The corresponding invariant that we can calculate from these three functidns=iM,
+M,+Mj. This is based on the obvious identity

91(92—93) +92(95—91) +93(91—92)=0.

Then it follows that

91(fz—f2) 91(f293—f302)
{Lz,Ml}:%, {LsyMl}z%,

with analogous results favl,, M. Thus, from the definition o> we see thafL,,L;}=1.
Finally, we define a functioh;=M;+M,+ M3 by requiring

f —
(LM} = 1(93) 93)1 53)

with similar conditions foM, andM 3. ForM(H,L,,L3,Q1) with Q;= Px, this has the solution

Ml:f flUi_ldQl.
Then it follows that

fi(f3—1y) f1(f205—f30,)
{Lo,My}= B — {L3,Mq}= B S—

with analogous relations favl, and M.
In summary, all brackets between the six functibnsL are zero except that

{Ls,Laf={Ls,Lo}={Ls,L1}=1. (54
Thus the mapping>(1,x2,x3,pxl,pxz,px3)—>(Ll,L2,L3,L1,Lé,Lé) is canonical.

Note: Standard Hamilton—Jacobi theory gives exactly these same constants of the motion,
from a different viewpoint. Our expression fot}, for example, is

L§=; fuj"ldprg M;,

whereU;= —v;(x;) +fjL;+g;L,+Lz andU;= pij. Standard Hamilton—Jacobi theory gives

1 dx; ~
L’=—2j ’ => M.
3 2] \/_Uj+ijl+gjL2+L3 j !
In the standard theory M;=M;(Ly,Ls,L3,X;), whereas in our approachM,;

=M;(Lq, L2,L3,pxj). In both cases the conditidA4) is satisfied. Our approach makes it straight-
forward to determine exactly when the are polynomials in the momenpa;(j. It also points out
the bracket relations between thg and the operatorks; defining the separation, e.g43), (48),
(49), (51, and(53).

The generalization ta dimensions is straightforward.
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