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Consider a classical HamiltonianH in n dimensions consisting of a kinetic energy
term plus a potential. If the associated Hamilton–Jacobi equation admits an or-
thogonal separation of variables, then it is possible to generate algorithmically a
canonical basisQ, P whereP15H, P2 ,...,Pn are the other second-order constants
of the motion associated with the separable coordinates, and$Qi ,Qj%5$Pi ,Pj%
50, $Qi ,Pj%5d i j . The 2n21 functionsQ2 ,...,Qn ,P1 ,...,Pn form a basis for the
invariants. We show how to determine for exactly which spaces and potentials the
invariantQj is a polynomial in the original momenta. We shed light on the general
question of exactly when the Hamiltonian admits a constant of the motion that is
polynomial in the momenta. Forn52 we go further and consider all cases where
the Hamilton–Jacobi equation admits a second-order constant of the motion, not
necessarily associated with orthogonal separable coordinates, or even separable
coordinates at all. In each of these cases we construct an additional constant of the
motion. © 2002 American Institute of Physics.@DOI: 10.1063/1.1484540#

I. INTRODUCTION

The quest for integrable systems has a long history. Basically, the question is, given a cl
HamiltonianH5H(x,p) wherex5(x1 , . . . ,xn), p5(p1 , . . . ,pn), how can one find all the so
lutions to the Poisson bracket condition

$H,L%5(
i 51

n S ]H

]pi

]L

]xi
2

]H

]xi

]L

]pi
D50, ~1!

whereL5L(x,p).1 There is no known comprehensive solution to this problem. However, if
associated Hamilton–Jacobi equationH(x, ]S/]x)5E is additively separable in the orthogon
variablesx, then a complete integral of the equation can be constructed by quadratures an
can find a basis of 2n21 functionally independent solutions to Eq.~1!. Indeed there is an explici
canonical change of coordinates from the variablesx, p with $xi ,pj%5d i j to variablesQ, P where
P15H, P2 ,...,Pn are the other second-order constants of the motion associated with the ort
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nal separablex-coordinates, and$Qi ,Qj%5$Pi ,Pj%50, $Qi ,Pj%5d i j . Thus the 2n21 functions
Q2 ,...,Qn ,P1 ,...,Pn form a basis for the invariants. Each invariantQj can be expressed as a su
of the form

Qj5 (
k51

n

Mk~xk ,P!, ~2!

see Ref. 1.
Numerous examples have been found through this approach, but important problems r

Many of the known interesting dynamical systems have extra constants of the motionL which are
polynomial in the canonical momentapi ,i 51,...,n. This often enables global statements to
made about the system in question, e.g., the existence of closed orbits. However, though
interesting results have been obtained, e.g., Refs. 2 and 3, an algorithmic way of genera
polynomial solutions to~1! is not known. In particular, from thex-based integrals in~2! it is
difficult to tell if Qj is a polynomial in the momentapi . In this article we adopt ap-based
approach to the calculation of the invariantsQj in which the termMk take the formMk

5M (pk ,P), and we can say in advance for exactly which separable metrics and potentialsQj is
a polynomial in the momenta. We give, in principle, a complete solution to this problem. M
over, we show how to characterize each termMk in ~2! by the Poisson brackets$Mk ,Pj%. @Note:
Although the termMk(xk ,P) always exists, there are cases where it cannot be express
Mk(pk ,P), i.e., as a function ofpk alone. These are exactly the cases wherexk is an ignorable
variable, i.e., where the components of the metric tensor in thex-coordinates do not depend onxk

and where, also, the potentialV does not depend onxk . However, these special cases whereMk

and the invariantQi of which it is a component term always have polynomial dependence~after
multiplication by a linear combination of second-order invariants! can be handled separately or b
requiring thatMk depends on a variable with somex dependence, such asMk(r (xk)pk ,P) treated
below.#

Of course, the system could admit a polynomial invariant

L5R~P,Q2 ,...,Qn!

such thatL,P is functionally independent, even ifQ2 ,...,Qn are not polynomials. It is a much
more difficult problem to classify all such possibilities for polynomialL as functions of possibly
nonpolynomialQj . We make some progress toward the solution of this problem, through
consideration of important examples. These questions of when a system withn second-order
constants of the motion~generated by an orthogonal separation of variables! admits additional
polynomial constants of the motion are closely related to the concept of superintegrability.4–18

For dimensionn52 in this article, we go beyond the formulation discussed above and
sider all cases where the Hamilton–Jacobi equation admits a second-order constant of the
not necessarily associated with orthogonal separable coordinates, or even separable coord
all. In each of these cases we construct an additional constant of the motion.

II. CARTESIAN SYSTEMS IN TWO DIMENSIONS

Let us first consider two dimensional Euclidean space. In Cartesian coordinates the H
tonianH has the form

H5px
21py

21V~x,y!.

If we have separation of variables in Cartesian coordinates the potential must take the for

V~x,y!5X~x!1Y~y!. ~3!
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We immediately observe that there are already two invariants arising from the separation, n
L15px

21X(x) and L25py
21Y(y). Our problem is to calculate a third invariant and determ

when it can be chosen to be a polynomial in the canonical momenta. To do this we compu
functionsM (x,px) andN(y,py) that satisfy the conditions

$H,M %51, $H,N%51. ~4!

These equations can be solved in principle if we know the original functionsX andY. Indeed, if
we write out the first of these conditions, we obtain

2px

]M

]x
2X8

]M

]px
51.

This equation can be readily solved to give

M52E X821dQ,

whereQ5px and L15px
21X. @We considerX8215dx/dX to be a function ofX5L12Q2 to

compute the integral. An arbitrary functionf (L1 ,L2) can be added to the integral, but this mak
no difference sinceL1 ,L2 are invariants.# OnceM andN have been determined, we see thatL3

5N2M must be an invariant. It is immediately clear that ifX5x1/p wherep is an integer, then
M is a polynomial inpx . As examples of this consider the following.

~1! p53:

M523x2/3px24x1/3px
32 8

5 px
5 .

~2! p54:

M524x3/4px28x1/2px
32 32

5 x1/4px
52 64

35 px
7 .

It follows from these two examples that the Hamiltonian

H5px
21py

21x1/31y1/4

has, in addition to the obvious invariants

L15px
21x1/3, L25py

21y1/4,

the additional invariant

L353x2/3px14x1/3px
31 8

5 px
524y3/4py28y1/2py

32 32
5 y1/4py

52 64
35 py

7 . ~5!

From this observation we conclude that all potentials of the form

V5ax1/p1by1/q ~6!

have the superintegrability property with three functionally independent invariants which
polynomial inpx andpy . This includes the known examples corresponding top51,2. If X(x) is
determined by a polynomial relation of the form

(
j 51

n

ajX
j5x,
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we can go even further. Then the functionM is always a polynomial in the canonical momentu
px . As an example consider

X~x!5221/3@$x1Ax211%1/32$x1Ax211%21/3#. ~7!

The inverse function is

x5X31
3

22/3X

and the corresponding functionM (x,px) is given by

2M ~x,px!5
8

5
px

514Xpx
313X2px1

3

22/3px .

It is clear that all that we have done applies also to potentials that separate inn dimensions,
in Cartesian coordinates. There is only one further Cartesian case for which polynomial inva
can be generated. Let us consider the case whenX(x)5v1

2x2. The corresponding function
M (x,px) is given by

M ~x,px!5
1

4v1
arcsinS v1

2x22px
2

v1
2x21px

2D .

If Y(y)5v2
2y2, this establishes that the Hamiltonian

H5px
21py

21v1
2x21v2

2y2 ~8!

has the constant of motion

L35
1

4v1
arcsinS v1

2x22px
2

v1
2x21px

2D 2
1

4v2
arcsinS v2

2y22py
2

v2
2y21py

2D , ~9!

in addition to the constantsL15px
21v1

2x2 and L25py
21v2

2y2. In general this invariant is no
polynomial in the canonical momenta. However, ifv1 /v2 is a fractionp/q for integersp,q, then
v15ps,v25qs andL385sin(4spqL3) will be a rational invariant whose common denominator
a product of powers ofL1 andL2 . The numerator is then an additional polynomial invariant, e
considerv151,v252. Then

L385sin~8L3!5
L1L2

222~xpy
224ypxpy24xy2!2

L1L2
2 ,

which indicates that L395xpy
224ypxpy24xy2 is an additional invariant. In genera

L1
pL2

q sin(4spqL3) will be a polynomial invariant, functionally independent ofL1 andL2 .

III. GENERAL TWO-DIMENSIONAL SEPARABLE SYSTEMS

If we extend this problem to the case of orthogonal separable coordinates in a gener
mannian space, we know that the Hamiltonian in a given set of coordinates with a sep
potential has the form

H5L15
px

21py
21v1~x!1v2~y!

f 1~x!1 f 2~y!
, ~10!

and, due to the separability, there is the invariant19–21
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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L25
f 2~y!~px

21v1~x!!2 f 1~x!~py
21v2~y!!

f 1~x!1 f 2~y!
.

We can implement the same ansatz as we have done previously by looking for a fu
M (H,x,px) which satisfies

$H,M %5
1

f 1~x!1 f 2~y!
. ~11!

The condition has the form

~2v18~x!1 f 18~x!H !
]M

]px
12px

]M

]x
51. ~12!

Assuming thatuv18u1u f 18u.0, we see that this equation has the solution

M ~H,L2 ,px!5E U821dQ,

where

Q5px , L25v1~x!2 f 1~x!H1px
2 , U~x!52v1~x!1 f 1~x!H1L2 .

@We considerU8215dx/dU to be a function ofU5Q2. An arbitrary functionf (L1 ,L2) can be
added to the integral, but this makes no difference sinceL15H andL2 are invariants.# There is a
similar condition for the functionN(H,L2 ,y,py). The new invariant isL35N2M . It is straight-
forward to verify the condition

$L2 ,L3%51. ~13!

Indeed,$L2 ,M %5 f 2 /( f 11 f 2), $L2 ,N%52 f 1 /( f 11 f 2). This implies that the setL1 ,L2 ,L3 is
functionally independent.

Similarly, we can construct functionsM (H,x,px),N(H,y,py) that satisfy

$H,M %5
f 1~x!

f 1~x!1 f 2~y!
, $H,N%5

2 f 2~y!

f 1~x!1 f 2~y!
. ~14!

Assuming thatuv i8u1u f i8u.0 for i 51,2, we see that these equations have the solutions

M ~H,L2 ,px!5E f 1~x!U18
21dQ, N~H,L2 ,py!52E f 2~y!U28

21dQ,

where

Ui52v i1 f iH1L2 .

SettingL45N2M , we see thatL4 , not an invariant, satisfies

$H,L4%51, $L2 ,L4%50. ~15!

Let us illustrate what can happen with some examples.
~1! We choose parabolic coordinates in Euclidean space22 x85 1/2 (j22h2), y85jh. First

consider the parabolic-separable Hamiltonian
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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H5L15
pj

21ph
21j

j21h2 . ~16!

We can immediately associate with this the extra invariant

L25
h2pj

22j2ph
21h2j

j21h2 .

If we look for our functionsM (j,pj) andN(h,ph), as before we obtain

M ~j,pj!5
1

4AH
lnS AHpj1

1

2
2jH

2AHpj1
1

2
2jH

D ,

N~h,ph!5
1

4AH
lnS AHh1ph

AHh2ph
D .

If we now consider the constant cosh(4(M2N)AH), we find that it can be written in the form

4 cosh~4~M2N!AH !5
L3

2H

~124HL2!L2
,

where

L35
2jh

j21h2 ~pj
21ph

2 !22pjph1
h~j22h2!

j21h2 ~17!

is an additional invariant quadratic in the canonical momenta. This is a special case of a
general example in Ref. 23.

~2! Consider the Hamiltonian in Cartesian coordinates

H5px
21py

21
x

Ax21y2
. ~18!

In parabolic coordinates this Hamiltonian has the form

H5L15
pj

21ph
21j22h2

j21h2 .

The second-order invariant associated with this separation is

L25
j2ph

22h2pj
222j2h2

j21h2 .

The additional invariant calculated by our method is given by

L35
arccosh~@~H21!j21pj

2#/@~H21!j22pj
2# !

AH21

1
arccosh~@~H11!h21ph

2 #/@~H11!h22ph
2 # !

AH11
, ~19!
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which is clearly transcendental.
~3! If we consider the Hamiltonian

H5px
21py

21 ib~x1 iy !, ~20!

then using the semihyperbolic coordinates22

x1 iy5 i ~u1w!, x2 iy5~2 i /2!~u2w!2

and applying our construction, we find

exp~M2N!2 i

exp~M2N!1 i
52 i

Ab̄2 iX

Ab1 iX
,

thus giving rise to the additional constantX5px1 ipy .
~4! Let us now look at an example of a potential where our construction yields ell

integrals. We consider the potentialV52x1 b/y2. If we carry out the construction using para

bolic coordinatesx5( 1
2)(j

22h2), y5jh, then the functionsM andN are given by the integrals

M5
1

2 E jdj

A2j61Hj41Lj22b
, N5

1

2 E hdh

Ah61Hh41Lh22b
,

whereL is the quadratic constant associated with the separation of variables in parabolic c
nates. If we change variables according tou5j2, v52h2, then bothM and N are given by
integrals of the form

I 5
1

2 E dl

A~a2l!~b2l!~c2l!
,

wherel5u,v and

abc52b, L5ab1bc1ac, H5a1b1c.

There are a variety of ways of evaluating elliptic integrals of this type. We recall that all
considerations are in the complex domain. As an example, we can choose to use the c
equivalent of the integral

E
2`

u dx

A~a2x!~b2x!~c2x!
5

2

Aa2c
F~a,p!,

valid for a.b.c>u and for which

Aa2c

a2u
5sina5sn~A,p!, p5Aa2b

a2c
.

Then if we calculate sn2(Aa2c(M2N),p) using the addition formulas for elliptic functions w
obtain

sn2~Aa2c~M2N!,p!5
c2a

c1b1L1
,

23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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whereL1 is the second quadratic constant associated with this super-integrable system. Bec
the various ways of evaluating elliptic integrals, there are a number of ways of uncoverin
presence ofL1 .

In analogy with the constructions~5!–~7!, we can find Riemannian spaces and potentials w
polynomial invariants of arbitrarily high order. Set

x5PnS U1A

a1bH D , A5d1fH2L2 , ~21!

wherePn is a polynomial of ordern anda,b,d,f are constants. Then there exists a functionFn ,
inverse toPn , i.e., Fn(Pn(y))5y, such that

U5~a1bH !Fn~x!2d2fH1L2 ,

andv1(x)52aFn(x)1d, f 1(x)5bFn(x)2f, where (a1bH)nM (x,px) is a polynomial in the
momenta. The Cartesian coordinate constructions~5!–~7! correspond to the special caseb50.

The solution of the equation~11! can be understood in a more general context. We have
dual relations

x5F~U2L2 ,H !, U~x,H !52v1~x!1 f 1~x!H1L2 , UxÞ0. ~22!

~Since U and L2 occur only asU2L2 , we will, without loss of generality, setL250 in the
theoretical developments to follow, and then replaceU by U2L2 in the examples.! Thus we have

15FUUx , FUUH1FH50.

The condition thatU(x,H) is linear in H, i.e., UHH50, leads to the following necessary an
sufficient conditions that the functionx5F(U,H) correspond to an invariantM on a Riemannian
manifold with potential:

FHHFU
2 22FUHFUFH1FUUFH

2 50, FUÞ0. ~23!

This equation admits an infinite dimensional conformal symmetry group. Indeed ifV5F(U,H) is
a solution, thenG(V) is also a solution, foranynonconstant functionG. Also, this group contains
the subgroup of inhomogeneous affine symmetries: ifF(U,H) is a solution, then so isF(@a11U
1a12H11a13#/A,@a21U1a22H1a231a23#/A), whereai j are constants, det(aij)Þ0 and

A5a31U1a32H11a33.

Note that the functionV15(U1d1fH)/(a1bH) satisfies~23!, so any function ofV1 must
also satisfy the requirement. This puts~21! in the proper context. A more general solution isV2

5(U1fH1d)/(aU1bH1g), where again any function ofV2 also satisfies the requiremen
Equation~23! also occurs in the theory of level sets, used in computational geometry and
puter vision,24 since it describes the family of functionsF whose level sets are always straig
lines in the (U,H) plane.

We have seen that the construction~21! always leads to a polynomial invariantL3 , up to
multiplication by a polynomial inH andL2 . In fact these are theonly polynomial invariantsL3

that can be constructed directly from the integration. This follows from the following theore
Theorem 1: The function F(U,H) with FUÞ0 is a solution of Eq. (21) with polynomia

dependence on U if and only if it is of the form

F~U,H !5PS U1aH1b

gH1d D ,

where P is a (nonconstant) polynomial anda,b,g,d are constants withugu21udu2.0.
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Proof: Let

F5a0~H !UN1a1~H !UN211¯1aN21~H !U1aN~H !

be a solution of~21! with N>1 anda0Þ0. Substituting this expression into~21! and equating the
coefficient ofU3N22 on both sides of the resulting expression, we find the conditiona09a05((N
11)/N)a08

2, so a0(H)5(gH1d)2N. Now we make the change of variablesŨ5 U/(gH1d) ,
H̃5 (fH1r)/(gH1d), wherefd2grÞ0. It follows that

F5ŨN1ã1~H̃ !ŨN211¯1ãN21~H̃ !Ũ1ãN~H̃ !

in the new coordinates, andF is a solution of

FH̃H̃F
Ũ

2
22FŨH̃FŨFH̃1FŨŨF

H̃

2
50. ~24!

Substituting the polynomial into~24! and equating coefficients ofŨ3N23, we find ã19N
250 or

ã15a1H̃1b1 . Using this information, we return to our original expression for the polynom
and make a new change of variables of the form

Ũ5
U1aH1b

gH1d
, H̃5

xH1z

gH1d
, ~25!

wherexd2gzÞ0, anda, b are chosen such that the transformed coefficient ofŨN21 vanishes. In
these variables

F5ŨN1ã2~H̃ !ŨN221¯1ãN21~H̃ !Ũ1ãN~H̃ !.

We substitute this expression into~24!, and equating coefficients ofŨ3N24 we find ã2950, soã2

is a polynomial inH̃ of order<1. Proceeding in this fashion to equate coefficients ofŨ3N2s for
s55,6,... in order, we find that the first occurence ofãk ,k>3 in this sequence of equations tak
the formãk95pk(ã2 ,...,ãk21) wherepk is a polynomial of order 3 at most. It follows by inductio
on k that eachãk is a polynomial inH̃.

At this point we have shown thatF is a polynomial in bothŨ and in H̃. Let H̃M be the
maximal power ofH̃ that occurs inF. If M50, we are done. AssumeM>1. If we use the
argument of the first paragraph of this proof withŨ and H̃ interchanged, we see that the coef
cient of H̃M in F must take the forma0 /(b1Ũ11) with a0Þ0. SinceF is a polynomial inŨ we
must haveb150.

Thus

F5ŨN1ã2~H̃ !ŨN221¯1ãN21~H̃ !Ũ1a0H̃M.

Now substitute this expression into~24! and equate coefficients ofŨnH̃m wheren1m is maximal.
SupposeN>M . The highest power term inFH̃H̃F

Ũ

2
is aNM (M21)N2H̃M22Ũ2N22. The highest

power term inFŨŨF
H̃

2
is aN

2 N(N21)M2H̃2M22ŨN22, but this is of lower order. The highes

power term in 2FŨH̃FH̃FŨ is t52aNaN1 ,M1
N1M1NMŨN11N22H̃M11M22 whereaN1 ,M1

is the

coefficient ofŨN1H̃M1 in F. HereN1,N,M1,M . If N.N11M1 , then the highest power term
is the coefficient ofH̃M22Ũ2N22, so M51. If N<N11M1 , then t50, soaN1 ,M1

50. Thus, the
only possiblity isM51, so

F5ŨN1a2ŨN221¯1aN21Ũ1aNH̃.
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Substituting this expression into the differential equation we see thatFŨŨ50, or F5Ũ1aNH̃.
But this is impossible sinceN51 and the coefficient ofŨN21 must be 0. HenceF depends only
on Ũ. There is a similar argument for the caseM.N. QED

If we limit our search for potentials to a space in whichUH5 f 1(x) is prescribed, then the
general conditions~23! are replaced by

FH1 f 1~F !FU50, FUÞ0. ~26!

Equation~26! admits the complete integral

F~U,H,a,b!5 f 1
21S U1a

H1b D ,

where f 1
21 is the function inverse tof 1 . From this one can use standard techniques~method of

characteristics, envelopes of solutions! from the theory of quasilinear first-order partial differenti
equations to construct solutions of~26! that satisfy particular initial conditions or that depend
arbitrary functions~Ref. 25, Chap. II or Ref. 26, Sec. 88!.

Note:Standard Hamilton–Jacobi theory gives essentially these same constants of the m
but from a different viewpoint.1 Our expression forL3 , for example, is

L35E Ux8
21dpx2E Uy8

21dpy5M2N,

whereUx52v1(x)1 f 1(x)H1L2 , etc. Standard Hamilton–Jacobi theory gives

L35
1

2 E dx

A2v11 f 1H1L2

2
1

2 E dy

A2v21 f 2H2L2

5M̃2Ñ.

In the standard theoryM̃5M̃ (H,L2 ,x), etc., whereas in our approachM5M (H,L2 ,px), etc. In
both cases the condition~12! is satisfied. Our approach makes it easier in some cases to dete
if polynomial invariants exist. It also points out the bracket relations betweenM ,N and the
operatorsL j defining the separation, e.g.,~11!.

Examples abound of spaces for which these constructions apply. We illustrate this w
family of surfaces in Minkowski space:ds25dz22dy22dx2. The surfaces involve a horispher
cal coordinatej and take the form

X~ t,j!5~x,y,z!5~2tj,g~ t !1~j221!t,g~ t !1~j211!t !. ~27!

The metric on the surface is

ds254@ tg8~ t !dt22t2dj2#54t2@dr22dj2#5~ f ~r!11!@dr22dj2#,

where (dr/dt)25g8(t)/t2, and we can construct a polynomial invariant for the surface~and for an
appropriate added potential! provided that the functiont25F(r) has a polynomial inverse func
tion, i.e.,r5G(t2) whereG is a polynomial. Clearlyg8(t)54t4G8(t2)2 and any polynomialG
will determine a surface with a polynomial invariant. For example, chooseG(t2)5 1

2t
41t2. Then

we can takeg(t)5 4
9t

91 8
7t

71 4
5t

5 andr(t)5 1
2t

41t2. The resultingM will be third-order polyno-
mial in pj andpr . Similarly, we can determine a potential termv(r) with v8Þ0 such that N is
a polynomial inpj andpr .

Rather than make either of the choicespx or x for the independent variable in~12! we could
choose some other functionw(x,px), adapted to the specific problem at hand. For example, le
takew(x,px)5r 8(x)px for some given functionr , and requireM5M (H,L2 ,w). Solving ~12! in
these variables we find
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M5E dr~x!

dw2 dw, ~28!

where

w25U5r 8~x!2px
25r 8~x!2~2v11 f 1H1L2!, r ~x!5F~U,H,L2!.

This approach will work even ifv1 and f 1 are constants; it is guaranteed to yield a polynom
invariant if we require

r 5PnS U1a1H1a2L21a3

a4H1a5L21a6
D , ~29!

wherePn is a polynomial of ordern and thea i are constants. Then there exists a functionFn ,
inverse toPn , such that

U5~a4H1a5L21a6!Fn~r !2~a1H1a2L21a3!5r 82~2v11 f 1H1L2!.

Equating coefficients ofL2 we find the conditionr 8(x)25a5Fn(r )2a2 and we can solve forr (x)
by quadratures. Equating coefficients ofH and the constant term, we obtain expressions forf 1 and
v1 :

f 1~x!5
a4Fn~r !2a1

a5Fn~r !2a2
, v1~x!5

a32a6Fn~r !

a5Fn~r !2a2
.

It follows that (a4H1a5L21a6)nM (rpx) is a polynomial in the momenta.

IV. LIE FORM AND NONORTHOGONAL SEPARATION IN TWO DIMENSIONS

We know that if a Hamiltonian

H5 (
i , j 51

2

gi j pipj

admits a constant of the motionL that is quadratic in the momenta

L5 (
i , j 51

2

ai j pipj , $H,L%50, ~30!

and if the roots of the determinantuai j 2lgi j u are distinct, then the eigenforms define new~sepa-
rable! variablesr, m and the Hamiltonian can be written in Liouville form

H5
pr

21pm
2

f ~r!1g~m!
.

However, it may be that the roots of this determinant are equal. In this caseH cannot be put into
Liouville form, but rather Lie form, which for a suitable choice of variables~nonseparable! is

H5
pxpy

x1B~y!
. ~31!

The associated quadratic constant of the motion is

L5px
222yH. ~32!
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We now ask the question: When the roots ofL are equal, how can we calculate the thi
invariant? We are interested in the the same question when a potential is added to the Hami
These questions can readily be answered. Indeed if we look for a functionN(H,L,y,py) that is in
involution with H, we obtain the equation

~x1B~y!!Ny1pyB8~y!Npy
50. ~33!

If we solve ~31! and ~32! for x andpx in terms of the variablesH, L, y andpy , we obtain

px5AL12yH, x5
py

H
AL12yH2B~y!.

The equation~33! for N then has the form

AL12yH

HB8(y)
Ny1Npy

50.

From this condition a second invariant can be readily obtained in the form

L85HE B8~y!

AL12yH
dy2py . ~34!

We now extend these considerations by considering the possibility of adding a potential.
do this and have an extra quadratic constant, thenH andL have the forms

H5
pxpy1 1

2 K~y!

x1B~y!
1

1

2
U8~y!, L5px

222yH1U~y!. ~35!

Solving ~35! for px andx gives

px5AL2U~y!12yH, x5
pyAL2U~y!12yH1 1

2 K~y!

H2 1
2 U8~y!

2B~y!.

Then the equation forN has the form

2AL2U~y!12yH~2H2U8~y!!Ny1@22U9~y!AL2U~y!12yHpy1B8~y!U8~y!2

14B8~y!H22U9~y!K~y!24B8~y!U8~y!H1K8~y!U8~y!22K8~y!H#Npy
50. ~36!

This equation can, in principle, be solved directly. In fact, for suitable redefinition of the varia
y→Y, py→Py , Eq. ~36! can be put in the form

NY1~PY1s~Y!!NPY
50 ~37!

that can be solved by the further transformation

PY85PY1t~Y!, Y85Y.

Then, provided that

t8~Y!2t~Y!1s~Y!50,

~37! reduces to
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NY81PY8NPY8
50.

From this we immediately deduce an extra constant of the motion of the form

L85eY8/PY8 . ~38!

The equation fort(Y) has the solution

t~Y!5eYEY

e2us~u!du.

There is one remaining possibility for a quadratic constant of the motion~30! in two dimen-
sions: the constant may be associated withnonorthogonalseparation of variables. In two dimen
sions there is only one case: separation in light cone~null! coordinates.27 For this case the Hamil-
tonian takes the form

H5pzpz̄1 f ~ z̄!,

and there is a Killing vectorpz , sopz
2 is a second-order constant of the motion. In addition th

is a quadratic constant

L5Mpz1
i

2 E z̄
d f

dz̄
dz̄.

Thus we have answered the following questions.

~1! If a Hamiltonian with potential admits a quadratic constant of the motion in two dimens
how does one calculate the third constant?

~2! A subset of problem 1 is when we require separation only and ask to calculate the
constant.

V. SYSTEMS IN THREE DIMENSIONS

Let us now look at how the orthogonal separation of variable considerations extend to
dimensions. If we have a general separable coordinate system in three dimensions, we co
the Hamiltonian to be20,28,29

H5L15
g22g3

F
~px1

2 1v1~x1!!1
g32g1

F
~px2

2 1v2~x2!!1
g12g2

F
~px3

2 1v3~x3!!, ~39!

wheregi5gi(xi), f i5 f (xi) andF is the determinant of the Sta¨ckel matrix

S 1 f 1 g1

1 f 2 g2

1 f 3 g3

D . ~40!

This automatically gives us two more invariants:

L25
f 32 f 2

F
~px1

2 1v1~x1!!1
f 12 f 3

F
~px2

2 1v2~x2!!1
f 22 f 1

F
~px3

2 1v3~x3!!, ~41!

L35
f 2g32 f 3g2

F
~px1

2 1v1~x1!!1
f 3g12 f 1g3

F
~px2

2 1v2~x2!!1
f 1g22 f 2g1

F
~px3

2 1v3~x3!!.

~42!
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We need to find an additional two invariants, such that the five form a functionally indepe
set.

If we look for a functionM1 such that

$H,M1%5
g22g3

F
, ~43!

then this function satisfies the equation

2px1
]x1

M11@2v18~x1!1 f 18H1g18L2#]px1
M151, ~44!

which looks like the form we have been using in two dimensions. There are similar equatio
the corresponding functionsMi for i 52,3. For M1(H,L2 ,L3 ,Q1) with Q15px1

this has the
solution

M15E U18
21dQ1,

where U1(x1)52v1(x1)1 f 1H1g1L21L3 and L35v12 f 1H2g1L21px1

2 . ~Here, we consider

U18
215dx1 /dU1 to be a function ofU15Q1

2 to compute the integral. We also assume thatuv18u
1u f 18u1ug18u.0.! The corresponding invariant that we can calculate from these three functio
L385M11M21M3 . This is based on the obvious identity

~g22g3!1~g32g1!1~g12g2!50.

Note:As in the two dimensional case, the solution of the equation~44! can be understood in
a more general context. We have the dual relations

x5F~U2L3 ,H,L2!, U~x,H,L2!52v1~x!1 f 1~x!H1g1~x!L21L3 , ~45!

whereUxÞ0. ~SinceU and L3 occur only asU2L3 we can, without loss of generality, setL3

50 in the equations immediately following, and then replaceU by U2L3 in the examples.! Thus
we have

15FUUx , FUUH1FH50, FUUL2
1FL2

50.

The condition thatU(x,H,L2) is linear in H and L2 , i.e., UHH5UL2L2
5UHL2

50, leads to the
following necessary and sufficient conditions that the functionx5F(U,H,L2) correspond to an
invariantM1 on a Riemannian manifold with potential:

FHHFU
2 22FUHFUFH1FUUFH

2 50, FUÞ0,

FUUFL2

2 22FL2UFL2
FU1FL2L2

FU
2 50, ~46!

FL2L2
FH

2 22FHL2
FHFL2

1FHHFL2

2 50.

These equations admit an infinite dimensional conformal symmetry group. Indeed,V
5F(U,H,L2) is a solution, thenG(V) is also a solution, forany nonconstant functionG. Also,
this group contains the subgroup of inhomogeneous affine symmetries: ifF(U,H,L2) is a solu-
tion, then so isF(@a11U1a12H1a13L21a14#/A,@a21U1a22H1a23L21a24#/A,@a31U1a32H
1a33L21a24#/A) whereai j are constants, det(aij)Þ0 and

A5a41U1a42H1a43L21a44.
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As in the two dimensional case, the only polynomial functionsF of U are of a very specia
form.

Theorem 2: The function F(U,H,L2) with FUÞ0 is a solution of Eqs. (46) with polynomia
dependence on U if and only if it is of the form

F~U,H,L2!5PS U1a1H1a2L21b

g1H1g2L21d D ,

where P is a (nonconstant) polynomial anda i ,b,g i ,d are constants withug1u21ug2u21udu2

.0.
Proof: The proof is similar to that of Theorem 1. It follows from this theorem and the first

equations in~46! that

F5P(1)~U (1),L2!5P(2)~U (2),H !,

where theP( i ) are polynomials of strict orderN in their first arguments and

U (1)5
U1a1

(1)L2H1b (1)L2

g1
(1)L2H1d (1)L2

U (2)5
U1a1

(2)HL21b (2)H

g1
(2)HL21d (2)H

.

Furthermore, the coefficients of theN21-st power of their first arguments can be asumed to
zero. Comparing the coefficients of the highest powerUN of U in F, we see that this coefficien
must be of the form

~g1H1g2L21g3HL21d!2N,

where now theg i ,d are constants. Substituting this into the third equation in~46! and equating
coefficients ofU3N, we see thatg350.

Equating the coefficients ofUN21 in the P( i ) we see that

U (1)5U (2)5Ũ5
U1a1H1a2L21fHL21b

g1H1g2L21d
,

where the coefficients are constants. Then, substituting this result into the third equation aga
comparing coefficients ofU3N21 we see thatf50. At this point we have shown thatF
5P(Ũ,H,L2) whereP is a polynomial of order exactlyN in its first argument. The proof thatP
is independent of its second and third arguments follows exactly as in the last part of the pr
Theorem 1. QED

If we limit our search for potentials to a space in whichUH5 f 1(x),UL2
5g1(x) are pre-

scribed, then the general conditions~46! are replaced by

FH1 f 1~F !FU50, FL2
1g1~F !FU50, FUÞ0. ~47!

From this one can use standard techniques~method of characteristics, envelopes of solutions! from
the theory of systems of quasilinear first order partial differential equations to construct sol
of ~47! that satisfy particular initial conditions or that depend on arbitrary functions.

The invariantL385M11M21M3 also commutes withL2 . Indeed, from the fact that

]x1
L25

f 32 f 2

F
~v182 f 18H2g18L2!

we can verify that~44! implies
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$L2 ,M1%5
f 32 f 2

F
. ~48!

The corresponding conditions are satisfied byM2 and M3 . Then the fact that$L2 ,L38%50 is
implied by the obvious identity

~ f 32 f 2!1~ f 12 f 3!1~ f 22 f 1!50.

Finally, from the fact that

]x1
L35

f 2g32 f 3g2

F
~v182 f 18H2g18L2!

we can verify that~44! implies

$L3 ,M1%5
f 2g32 f 3g2

F
. ~49!

The corresponding conditions are satisfied byM2 and M3 . Then the fact that$L3 ,L38%51 is
implied by the identity

~ f 2g32 f 3g2!1~ f 3g12 f 1g3!1~ f 1g22 f 2g1!5F. ~50!

Similarly, we can define a new invariantL28 by requiring that a new functionM1 satisfy

$L1 ,M1%5
g1~g22g3!

F
, ~51!

with analogous conditions forM2 and M3 . For M1(H,L2 ,L3 ,Q1) with Q15px1
this has the

solution

M15E g1U18
21dQ1,

whereU1(x1)52v1(x1)1 f 1H1g1L21L3 .
@Note that forM1 to be a polynomial inpx ,py ,pz we must haveg1(F)FU a polynomial inU.

If g1850, this reduces to requiringF to be a polynomial inU. If g18Þ0, we can replace the variabl
x by x̃15r (x1)5*g1(x1)dx1 with x̃15G(U,H,L2 ,L3). Then g1(F)FU5GU and our original
analysis goes through withF replaced byG. It is guaranteed to yield a polynomial invariant if w
require

r 5PnS U1a1H1a2L21a3L31a4

a5H1a6L21a7
D , g15r 8~x1!, ~52!

wherePn is a polynomial of ordern and thea i are constants. Then there exists a functionFn ,
inverse toPn , such that

U5~a5H1a6L21a7!Fn~r !2~a1H1a2L21a3L31a4!52v11 f 1H1g1L21L3 .

Equating coefficients ofL2 we find the conditionr 85a6Fn(r )2a2 and we can solve forr (x1) by
quadratures. Equating coefficients ofH, L3 and the constant term, we finda3521 and

f 1~x!5a5Fn~r !2a1 , g1~x!5a6Fn~r !2a2 , v1~x!5a42a7Fn~r !.

It follows that (a5H1a6L21a7)nM1 is a polynomial in the momenta.#
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The corresponding invariant that we can calculate from these three functions isL285M1

1M21M3 . This is based on the obvious identity

g1~g22g3!1g2~g32g1!1g3~g12g2!50.

Then it follows that

$L2 ,M1%5
g1~ f 32 f 2!

F
, $L3 ,M1%5

g1~ f 2g32 f 3g2!

F
,

with analogous results forM2 , M3 . Thus, from the definition ofF we see that$L2 ,L28%51.
Finally, we define a functionL185M11M21M3 by requiring

$L1 ,M1%5
f 1~g22g3!

F
, ~53!

with similar conditions forM2 andM3 . For M1(H,L2 ,L3 ,Q1) with Q15px1
this has the solution

M15E f 1U18
21dQ1 .

Then it follows that

$L2 ,M1%5
f 1~ f 32 f 2!

F
, $L3 ,M1%5

f 1~ f 2g32 f 3g2!

F
,

with analogous relations forM2 andM3 .
In summary, all brackets between the six functionsLi ,Li8 are zero except that

$L3 ,L38%5$L2 ,L28%5$L1 ,L18%51. ~54!

Thus the mapping (x1 ,x2 ,x3 ,px1
,px2

,px3
)→(L1 ,L2 ,L3 ,L18 ,L28 ,L38) is canonical.

Note: Standard Hamilton–Jacobi theory gives exactly these same constants of the m
from a different viewpoint.1 Our expression forL38 , for example, is

L385(
j
E U j8

21dpxj
5(

j
M j ,

whereU j52v j (xj )1 f jL11gjL21L3 andU j5pxj

2 . Standard Hamilton–Jacobi theory gives

L385
1

2 (
j
E dxj

A2v j1 f jL11gjL21L3

5(
j

M̃ j .

In the standard theory M̃ j5M̃ j (L1 ,L2 ,L3 ,xj ), whereas in our approachM j

5M j (L1 ,L2 ,L3 ,pxj
). In both cases the condition~44! is satisfied. Our approach makes it straigh

forward to determine exactly when theLi8 are polynomials in the momentapxj
. It also points out

the bracket relations between theMi and the operatorsL j defining the separation, e.g.,~43!, ~48!,
~49!, ~51!, and~53!.

The generalization ton dimensions is straightforward.
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