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Abstract 

The biology of three endemic and one exotic species of fish (banded kokopu, 

Galaxias fasciatus; shortfin eel, Anguilla australis; longfin eel, Anguilla 

dieffenbachii; and the European perch, Perca fluviatilis) was investigated in Lake 

Rotokare. Little is currently known regarding the local ecology of the lake. This 

study improves the understanding of the biological processes in Lake Rotokare and 

investigates the characteristics of the lake’s water quality. 

 

Fish sampling occurred in the lake using a combination of boat electrofishing, gill 

netting, and fyke netting. The tributary was sampled using night time spotlighting. 

Fish taken from the lake were used to determine length-weight relationships, size 

frequencies, CPUE, abundance estimations, fish biomass, stable isotope analyses, 

trophic levels, and perch diet. Water quality sampling was also undertaken to 

further build upon data from previous studies.  

 

The majority of fish sampled in Lake Rotokare were perch, with a mixture of size 

classes, but dominated by a large juvenile size class. Perch density was high (16.55 

fish 100 m-2). Longfin eels showed a cohort of large individuals with no evidence 

of recruitment occurring; while shortfin eels exhibited a distribution of size ranges 

with evidence of juvenile recruitment occurring.  

 

Electrofishing showed evidence of banded kokopu inhabiting the lake, even at 

distance from the tributary outlet, suggesting the possibility of a lake fringe 

population of kokopu. Spotlight sampling in June and December revealed a stable 

kokopu and kōura population residing in the lakes’ main tributary. Water quality 

data showed an overall decrease in total nitrogen and phosphorus loads within the 

lake since 1979. However, the lake has shown strong thermal stratification over 

summer over multiple years (1977, 2013, February 2017 and December 2017), and 

remains in poor condition, with a eutrophic TLI4 rating of 4.1. Frequent 

cyanobacterial blooms continue to occur during the summer season, resulting in 

closure of the lake for contact recreation.  

 

Both dietary and stable isotope analyses showed indications that chironomid larvae 

and Daphnia sp. constituted the bulk of the primary production of the food web; 
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juvenile perch were found to be the predominant food source of the three resident 

fish species. The lake food web was trophically adjusted for higher-level consumers 

and compared with chironomid larvae, dragonfly larvae, and juvenile perch as end 

members. Lipid treatment techniques were examined in this study to compare the 

bias between eel fin and muscle tissue. The results indicate that lipid treatment is 

needed for 13C isotope values for both longfin and shortfin muscle, and longfin fin 

tissue for accurate results. Mathematical equations were constructed to correct 

untreated fin tissue values into treated muscle values for 13C and 15N; avoiding the 

necessity for future lethal sampling methods. 
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1 Chapter 1: Introduction 

 Overview 

Human incursion into natural environments has become common practice in the 

last century. The acquisition of natural resources to fulfil human needs often comes 

at the expense of degrading the surrounding environment (Foley et al., 2005). 

Exploitation of aquatic ecosystems is nothing new, humans have exploited these 

environments since the dawn of civilization for a variety of reasons. However, 

manipulation of ecosystems (particularly aquatic environments) has become 

increasingly complicated in recent times – as society has learned to appreciate that 

lakes and rivers provide essential ecosystem goods and services (Arthington et al., 

2006). Over time, freshwater ecosystems have generally continued to exhibit a 

trend of decline; through withdrawal of water, degradation of water quality, 

changing the flow patterns of waterways and other various anthropogenic stressors 

(Gleick, 2003; Foley et al., 2005). 

 

This trend of decline is also apparent on a localized scale. New Zealand’s 

freshwater environments are under severe pressure from a number of destabilising 

and damaging activities (Collier & Grainger, 2015). Nationally, freshwater lakes 

and rivers have been showing steady rates of decline for decades. This coupled 

with management approaches tailored at maintaining the bottom line of acceptable 

environmental conditions; or maximum pollutant loads, has led to poor national 

standards and severe ecological degradation (Baron et al., 2002; Howard-Williams 

et al., 2010). In addition to problematic environmental management, other 

anthropogenic influences have further degraded natural freshwater ecosystems. 

For instance, primarily land-use intensification, water extraction for irrigation 

leading to habitat reduction and loss, and biosecurity threats such as unwanted 

organisms and diseases are significant contributors towards ecological degradation 

(Collier & Grainger, 2015). Furthermore, both global and regional signals point 

towards climate change exacerbating these drivers even more dramatically in the 

future.  

 

Although there are many drivers of environmental degradation, in recent years the 

unsuccessful management paradigm in New Zealand has shifted, as both the local 
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and national governing bodies, and the wider public have recognized the need for 

further improvement of water quality and freshwater ecosystems (Hughey et al., 

2013; Julian et al., 2017).  

 

 Study site 

This study focuses on a freshwater lake; Lake Rotokare, situated in the Taranaki 

region, on the west coast of the North Island, New Zealand. Lake Rotokare 

(39°27'12.1"S, 174°24'40.0"E; Figure 1.1) is a small (17.8 ha), natural-peat lake, 

formed roughly 1900 years ago through the damming of a major stream channel 

below a confluence of two streams as a result of a substantial landslide event near 

the current outflow located at the southwest end (Taranaki Catchment Commission, 

1980; Lowe & Green, 1992).  The lake is situated within the 230 ha Rotokare 

Scenic Reserve and is 37 km from the sea at an elevation of 200 m, with a 

catchment area of roughly 265 ha (Figure 1.1; Hicks et al., 2013). The reserve is 

located in the eastern Taranaki region, 12 km east of Eltham. 

 

The lake has a variable maximum depth of 10 m (Taranaki Catchment Commission, 

1980) and consists of two dominant arms. The northern arm, with a distance from 

the central N – S points of 772 m; and the eastern and western branches, with a 

distance of roughly 670 m between branches. The maximum width of the lake 

never reaches more than 200 m at any point (Turner et al., 2009). The lake consists 

of one main basin located within the centre of the lake, with two arms varying in 

depth between 5-9 m (Figure 1.2), with an average depth of approximately 6 m 

(Taranaki Catchment Commission, 1980). The banks of the lake are steep inclines, 

often greater than 3 m from the water’s edge, this is largely due to the expanse of 

vegetation growth outwards at all points surrounding the lake; with the exception 

of the developed area surrounding the boat ramp (Taranaki Catchment 

Commission, 1980). 

 

There is minimal amount of inflow or outflow of the lake. Water enters the lake 

from a number of sources, including discharge from indirect overland flow, direct 

precipitation, ground water and surface runoff, it is primarily fed by one main inlet 

stream however (Figure 1.1). The lake has an average annual flow of 50 L s-1, with 

an average annual low flow of 3 L s-1. Most of the stream inflows appearing on 
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topographical maps are ephemeral, and completely dependent on rainfall for their 

existence. However, the north-western stream inflow adjacent to the jetty is a 

continuous source of surface water, with populations of adult banded kokopu 

residing there (Hicks et al., 2013). The lake drains via the Ararata Stream, which 

flows into the Tangahoe River, with a 37 km distance to travel before reaching the 

sea (Figure 1.1). Lake Rotokare has significantly higher sedimentation rates than 

surrounding lakes within the Taranaki region; Turner et al. (2009) attribute this to 

the lake waters mixing only throughout the winter period, becoming strongly 

stratified during spring and summer, leading to a long sedimentation residency 

time. This is primarily attributed to the depth of the lake, and the lack of external 

mixing sources.  

 

Lake Rotokare is used extensively for recreational purposes as the surrounding 

region has few other accessible freshwater lakes. Therefore, Rotokare is a highly 

popular destination for locals, for a range of water-based activities – powerboating, 

kayaking, water-skiing, wind surfing, and angling; however, this popularity 

creates issues, as the stratification of the lake over summer leads to frequent 

phytoplankton blooms of blue-green algae (cyanobacteria). Cyanobacterial 

blooms are recognized as a public health hazard due to their ability to produce 

cyanotoxins, these toxins can be a threat to humans and animals if consumed in 

drinking water or through incidental contact during recreational activities, and 

pose a potential threat to anyone using the lake. Therefore the blooms at Rotokare 

often cause frequent closure of the lake during the powerboating season, which 

ties in closely with the algal growth period. Due to the high level of public 

interaction with the lake, it is important to establish detailed ongoing ecological 

research in order to establish the biotic and abiotic parameters of this lake to help 

advise on any potential future lake restoration. 
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Figure 1.1: Topographical map and location of Lake Rotokare in the Tangahoe River 
catchment with reference to location within New Zealand (Lake Rotokare/Taranaki 
Topographical map, (2017). 
 

 
Figure 1.2: Lake Rotokare depth contour map (left) and Bathymetry map (right). Both 
maps represent the depth profile of Lake Rotokare and were created using depth transect 
data from the Taranaki Catchment Commission report (1980). Depths are measured by 
metres). 
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 History of ecological change 

Lake Rotokare frequently has cyanobacterial blooms, and has suffered from past 

agricultural practices (mainly farming) from the early-mid 20th century when the 

land surrounding the lake was grazed by cattle. It has relatively few inputs for a 

lake its size, and hence, remains a relatively stable environment. In terms of the 

fish population, the lake currently has a population of European Perch (Perca 

fluviatilis; henceforth referred to as perch). Hicks et al., (2013) attribute the past 

introduction and establishment of a known invasive freshwater fish within Lake 

Rotokare; the perch, to potentially having a detrimental impact on the lakes 

ecology.  

 

Additionally, there have also been changes in Lake Rotokare’s macrophyte and 

zooplankton population, due to the invasion of exotic species. A report issued by 

the Taranaki Catchment Commission in 1980, indicated that the driving factor 

attributed to one of the macrophyte invasions was likely the development of 

Sanger road in 1975, the sole road leading into the reserve. Open access led to the 

transportation of Lagarosiphon major (oxygen weed) into the lake; presumably 

brought in by boats from other infested lakes. There has also been a documented 

shift of species composition in the planktonic community sometime between 1980 

and 2013. Hicks et al. (2013) carried out a basic ecological assessment of the lake, 

and found there was shift in the dominant species of zooplankton. Originally, the 

lake was dominated by Boeckella sp., Ceriodaphnia dubia and Bosmina 

meridionalis at the time the Catchment Commission conducted their study; 

between 1978 and 1980 (Taranaki Catchment Commission, 1980). However, at 

some point in the 33 year window, Daphnia galeata (a North American invader) 

managed to successfully establish itself and became the dominant species. These 

invasions are highly significant as changes to macrophyte and plankton 

communities  in other lakes have been documented to contribute to biodiversity 

losses (Kelly & Hawes, 2005); additionally, modifications to the composition of 

primary consumers in lakes can potentially have drastic negative effects on lake 

food webs (Duggan et al., 2006).  
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 Flora and fauna of Lake Rotokare 

Four species of fish are currently known to reside within Lake Rotokare; three 

native species, and one exotic species (Table 1.1). Both longfin and shortfin eels 

have been recorded in this lake. According to F. Gordon (personal communication, 

21 February 2017), deliberate introductions of longfin eels have occurred on 

several occasions in the past, through a series of translocations from other water 

bodies throughout the region over the last few decades. It is likely that shortfin eels 

comprise the bulk of eel population within the lake, as previous attempts of 

sampling eel populations yielded almost exclusively shortfin eels (Taranaki 

Catchment Commission, 1980; Hicks et al., 2013), with results showing only one 

longfin captured during the 2013 survey, this 2013 study addresses the gap in 

knowledge of the dynamics of the eel population within the lake, and presents a 

quantitative population and biomass estimate of both species. There were also 

previous accounts of a native galaxiid being present in the lake, Inanga (Galaxias 

maculatus); however, subsequent sampling from Hicks et al. (2013) and sampling 

during this project failed to locate or identify any inanga within the lake. However, 

as highlighted by Hicks et al., (2013), the absence of inanga may be due to the fact 

the species does not typically travel long distances upstream. Given the distance 

from the coast to the lake, it is more likely that these fish were juvenile banded 

kokopu mistaken as inanga, due to the similarity in the two species appearances.  

 

Table 1.1: Fish species found within Lake Rotokare on 9 Feb 2013 (Hicks et al., 2013). 

Common name        Scientific name   
Exotic:         
European perch     Perca fluviatilis   
Native:         
Longfin eel     Anguilla dieffenbachii 
Shortfin eel     Anguilla australis  
Banded kokopu        Galaxias fasciatus   

 

1.4.1 Perch 

On arrival in New Zealand, the early European settlers found a freshwater fish 

fauna which was low in diversity, with few fish of any angling or culinary value 

(Wise, 1990). Because of this, during the earlier stages of colonization, European 

settlers brought 19 species of exotic fish into New Zealand for liberation in lakes, 

streams and rivers. Perch were intentionally introduced into New Zealand in 1868; 
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at the time of introduction the perch were believed to be a valuable commodity for 

freshwater anglers (McDowall, 1990). Unfortunately, the introduction of this 

species into New Zealand waterways poses a significant potential threat to 

freshwater ecosystems (Chadderton et al. 2001).  

 

The founding population of perch originated from Tasmania and was introduced 

into the eastern South Island and Lake Mahinapua (McDowall, 1996). Further 

attempts to acclimate the species were undertaken, and the species was 

subsequently introduced into other regions (Canterbury, Taranaki, Wanganui and 

Wellington) between 1870 and 1877. Since that time, perch have further radiated 

out into many of the country’s waterways (Figure 1.3). The fish was introduced 

into the Lake Rotokare by an unknown source sometime in the early 1900s; 

possibly through the people that owned the surrounding countryside for angling.  

 

Perch are an endemic species throughout much of Europe and Northern Asia; 

which has subsequently spread, establishing self-sustaining populations in Spain, 

Central/Southern Italy, Australia, South Africa and New Zealand (Thorpe, 1977). 

Perch have been categorised as a ‘sports fish’ under the Freshwater Fisheries 

Regulations of 1983, and they are rarely targeted for recreational fishing purposes. 

However, their viability as a commercial fisheries option failed largely because 

populations are often dense, with a small average size of fish compared to endemic 

populations from England (Jellyman, 1980).  

 

Perch are a robust species of fish that exhibit relatively deep body forms. They 

have proportionately large heads, and display bumps at the base of the skull; a 

feature most prominent in larger individuals of the species. Perch also have large 

jaws proportional to size and body mass with moderately sized eyes. The lateral 

line arches over pectoral fins, with the first pectoral fin being considerably taller 

than any sub-sequential fins. The first dorsal fin is supported by strong, sharp 

spines, exhibited in perch throughout all life stages. The second dorsal fin is 

smaller and separate from the first. The anal fin lies directly beneath the second 

dorsal fin and somewhat similar in characteristic and shape. The slightly forked 

caudal fin is supported by a caudal peduncle. The pelvic fins are smaller in shape 

and size and located just forward of the pectoral fins. The outer exterior of the fish 

is covered in a layer of thick ctenoid scales.  
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Perch are also considerably colourful compared to freshwater endemic species. 

Their body is olive-green, paling to a silvery white sheen around the stomach. Both 

juveniles and adults exhibit a series of black vertical bands (usually 4–6), broadest 

at the front, and pale from fin to belly. The caudal fin exhibits a lower red region, 

and both anal and pelvic fins are typically red and orange. They have a thermal 

maximum of 31˚C and are therefore theoretically capable of establishing a 

population anywhere within New Zealand (Weatherly, 1977; Wise, 1990). 

 

Perch are typically found in gently flowing or still waters (Le Cren, 1958). Juvenile 

perch, or young of the year have been found to distribute themselves amongst the 

littoral zone of lakes and rivers, particularly where areas retain a depth range of ≤ 

3 m (Karas, 1996). Juveniles also exhibit congregation behaviour, forming into 

high density shoals in the shallows; adults tend to disperse and become solitary, 

distributing themselves among both the littoral and limnetic zones (Karas, 1996; 

Thorpe, 1977). Adults distribute themselves differently and tend to congregate in 

deeper waters and become solitary, entering shallow waters primarily to feed. 

 

Perch are unique in the fact that they can behave autonomously within an 

ecosystem, through the modulation and control of its own density through food 

resources (Holcik, 1977). Feeding behaviour is primarily dominated by the species 

unique ontogenetic life history; undertaking several shifts in feeding behaviour 

throughout its growth cycle (Thorpe, 1977). These shifts can be categorized into 

three major niche shifts during its life history (Hjelm et al., 2000). The first 

ontogenetic stage begins with juveniles subsisting on a diet comprised mainly of 

zooplankton; particularly Daphnia sp. (Alm, 1946; Persson & Greenburg, 1990). 

As growth occurs, a transition in ontogeny occurs and their diet changes (primarily 

due to metabolic demands), shifting prey dependency mainly towards 

macroinvertebrates (Bronmark, 1994). Finally, as the larger individuals begin 

reaching a minimum of length ≥ 120 mm, a noticeable shift occurs in their diets 

(Hargeby et al., 2005). Adults become increasingly dependent on fish as their 

primary diet and once perch reach sizes above 250 mm, their diet consists almost 

entirely of fish (Le Cren, 1992; Pekcan-Hekim et al., 2013). 
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Perch have been shown to exert influence over their freshwater environments in 

New Zealand. Perch have been implicated in the decline of several native fish 

species, and are capable of significantly altering native freshwater communities 

(Closs et al., 2001; McDowall, 1996). Perch are unique in an ecological context to 

New Zealand, as they are both controlled by, and exert control over trophic 

interactions at multiple levels; with juveniles being susceptible to competition and 

adults exerting significant predatory top-down control over native species 

(Cadwaller & Backhouse, 1983). Perch have been shown to exert a 

disproportionately large effect on smaller bodies of water when compared to that 

of larger waterbodies, due to population density factors being less intense (Collier 

& Grainger, 2015). Smith and Lester (2006) found stunted zooplanktivorous perch 

were decreasing water clarity and increasing cyanobacterial levels in the Karori 

reservoir, Wellington. Four species of Anabaena (cyanobacteria) were found 

within the catchment. Smith and Lester’s study further indicated that addition of 

nutrients, had no significant effect on cyanobacterial densities. Community 

composition of both phytoplankton and zooplankton species were also found to be 

altered by the addition of juvenile perch, via reduction in algal grazing zooplankton. 

Romare (2000) found similar evidence in their studies, with multiple lakes 

showing a clear negative association between water clarity and the presence of 

exotic fish (including perch), independent of lake depth. 

 

Ludgate and Closs (2003) found that perch have been found to heavily predate 

on the native common bully (Gobiomorphus cotidianus), throughout various 

regions in New Zealand. They further demonstrated that populations of common 

bully declined in ponds, lakes and tarns across the country in the presence of perch, 

and Kane (1995) found that the common bully had disappeared both from the 

perch’s diet and Hamilton Lake in his study. These findings implicate that perch, 

in association with other invasive species, have potentially removed bully from the 

lake entirely. Additionally, research by Rowe and Smith (2001) suggest that the 

presence and high density of perch in Lake Wainamu (Auckland) was responsible 

for the absence of two native species; the common smelt (Retropinna retropinna) 

and inanga (Galaxias maculatus). The authors highlighted the fact that even 

though both species had readily available access into the lake, there was a complete 

absence of either species during sampling.  
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Figure 1.3: Distribution of European Perch in New Zealand (NIWA, 2016a).  

 

 

1.4.2 Shortfin and Longfin eels 

Shortfin and Longfin eels are both native freshwater fish species residing in New 

Zealand. Both species of eel are nocturnal, slow growing (averaging 2-3 cm 

year-1) and omnivorous, both are unique as they are the only native carnivorous 

species in New Zealand freshwater systems (Jellyman, 1997). Shortfin eels are 

widely distributed throughout both the North and South Island and have also have 

been located on both Stewart and the Chatham Islands (Figure 1.4). They are also 

located within other South Pacific nations such as Australia, Fiji, New Caledonia, 

Norfolk and Lord Howe Island. Shortfin eels inhabit a wide range of habitat, they 

have been found in numerous levels in lowland lakes, wetlands, and streams, and 

shortfin eels form the basis of the commercial eel fishery that has existed for over 

20 years in New Zealand (Jellyman, 1987). Shortfins from Australia and New 

Zealand show small but significant differences in morphology (Jellyman, 1987; 

Watanabe et al., 2006), but have genetic homogeneity between populations 

(Dijkstra & Jellyman, 1999; Smith et al., 2001). 
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Figure 1.4: Distribution of the (A). Shortfin eel in New Zealand (NIWA, 2016b) and (B). 
Longfin eel in New Zealand (NIWA, 2016c).  
 

 

Longfin eels are endemic to New Zealand and have managed to occupy many 

freshwater reaches within the country (Figure 1.4). These eels have also sustained 

a large freshwater fishery for several decades and remain a source of cultural 

importance to Maori, as they are present in several Maori legends, and remain a 

source of whakapapa (identity) to tribes throughout the country. 

  

Both species frequently coexist, but the shortfin is principally a lowland species, 

dominating populations in lowland lakes, estuaries and the lower reaches of rivers. 

The shortfin eel reaches a maximum size of roughly 1.1 m and 3 kg, compared 

with that of the longfin, which reaches upwards of 2 m and ≥ 25 kg (Jellyman, 

2003). The two species have different habitat preferences (Jellyman et al., 2003). 

Longfins prefer flowing water and hence, are found extensively in large, deep 

flowing waterways; they penetrate long distances inland and inhabit high country 

lakes and rivers. Adults of both species prefer deep, slow-moving water, but 

shortfins prefer finer substrata (mud) than longfins, which prefer coarse gravel and 

boulders (Jellyman, 2012). There is experimental evidence of shortfin glass eels 

making specific olfactory choices about the types of waterways they invade, but 

longfins appear indifferent to water type, a response in keeping with their broader 

habitat preferences (McCleave & Jellyman, 2002). 
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Records of juvenile recruitment for both species remain poor (Jellyman, 2012); 

however, the population of longfin eel currently shows symptoms of decline and 

has been declared at risk. Due to damming of major waterways access to inland 

habitat has been severely reduced. Furthermore, additional modifications in 

freshwater environments such as river channelization, wetland drainage, 

modification of flow pathways and deforestation has also led to a significant 

reduction in suitable eel habitat.  

 

Eels are elongate, slender-bodied fishes, almost tubular. When they are small, they 

have relatively smooth heads; but as they grow, the head becomes bulbous 

(particularly longfin), with a prominent muscular dome behind the eyes (Figure 

1.5). They physiologically morph when preparing for migration to their breeding 

grounds. The head becomes much more slender and tapered, almost bullet-like and 

the eyes enlarge to up to twice their normal size. The main way to distinguish 

between these two species is by comparing the colour, skin plasticity, and shape 

of dorsal fin. Longfin eels tend to have wrinkled skin compared their shortfin 

counterparts, and can be kinked if pacified to reveal skin folds; shortfin eels remain 

smooth. Longfin eels also tend to be darker in texture, however, this can be a 

misleading identification method as shortfin eels can also be dark in texture. The 

most reliable method is to check the dorsal fin – if the dorsal fin is vertically above 

the anus, then the species is a shortfin, if the dorsal fin continues further ahead of 

the anus then the fish is a longfin (see Figure 1.6). 

 
Figure 1.5: Identification chart for distinguishing Longfin and shortfin eels apart (Science 
Learning Hub, 2014). 
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Both species of eel are omnivorous. Jellyman (1989) analysed the diets of the two 

eel species and determined that both species probably feed intermittently, and tend 

to act as opportunistic feeders consuming a wide range of food items. Jellyman 

also found that individual eels’ feeding behaviour was normally selective for single 

prey items. The diet of each species changes with size. The smallest eels of both 

species are typically known to feed primarily on amphiphods and insect larvae; 

whereas Longfin eels > 40 cm were primarily piscivorous. Whereas, fish did not 

become an important part of shortfin eel diet until eels were > 70 cm. Thus, at 

similar sizes, the two species had different diets and the transition between 

insectivorous feeding towards a piscivorous diet occurs at much different stages in 

each species’ development.  

 

The overall life cycle of both species of eel is not completely understood. Current 

knowledge of the eels’ spawning patterns has determined that eels only breed once, 

and die sometime shortly after. In autumn, the adults leave New Zealand 

freshwater systems and migrate north for thousands of kilometres, with the 

hypothesized spawning grounds somewhere near Tonga (Jellyman, 2003). 

Females can lay between 1-20 million eggs; the eggs float, hatch into larvae known 

as leptocephali and then drift in currents back towards New Zealand and return to 

coastal waters. The whole process is believed to take 15-17 months however, there 

is currently no data to verify this theory. 

 

Juvenile eels tend to spend their first year in fresh water in the upper estuarine tidal 

area, juveniles usually have a growth period of 1-3 years, migrate upstream at the 

beginning of summer (Jellyman, 1977). Both longfin and shortfin eels are 

renowned climbers (Ryan, 2007), and this has partially led to their success in 

colonizing so far inland (Jellyman, 1977). Surface tension allows the elvers to hold 

to rock faces, and elvers have been observed climbing the Patea River dam which 

is 75 m tall, demonstrating how efficient juveniles are as climbers. They lose their 

climbing ability once reaching roughly 12 cm; becoming too heavy to be held by 

surface tension. Elvers can also navigate overland through wet grass to continue 

migration upwards, with demonstrated migration distances of over 130 km inland 

over the period of one summer (Jellyman, 1977).  
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1.4.3 Banded kokopu 

The banded kokopu (Galaxias fasciatus) is one of the more common species of 

freshwater native galaxid endemic to New Zealand and found throughout the 

mainland and a few of surrounding offshore islands (McDowall, 1990). Much like 

the longfin and shortfin eel, the banded kokopu is an accomplished climber (West, 

1989). While it can climb quite effectively, its overall penetration inland remains 

limited, with population abundances typically highest in areas near the coast (West, 

1989; Figure 1.6).  

 

Being one of the larger galaxiids of New Zealand, the banded kokopu has a 

maximum length of roughly 260 mm (McDowall, 1990). Banded kokopu habitat 

commonly consists of slow flowing pools, small 1st-order headwater streams and 

tributaries, with reasonably extensive riparian vegetation (many characteristic 

small streams in native bush). Undercut banks, instream woody material and tree 

roots all appear to be strongly desired features for habitat –rapidly becoming 

absent from streams when they begin to flow through deforested reaches (e.g. 

streams leaving native forest and entering pastoral reaches below) (McCullough, 

1998). Research indicates that population abundance and distributions are high in 

forested areas of the country, and other areas with a paucity of tall woody riparian 

cover (e.g. the anthropogenic deforestation of much of the historically forested 

Waikato region) often exhibit a complete absence of banded kokopu (West, 1989; 

Hicks & McCaughan, 1997). Most populations throughout the country are 

diadromous, although lacustrine populations are also known to exist in lakes and 

reservoirs both with and without streams allowing sea access (McCullough, 1998). 

Lake Rotokare is most likely one such population, as access to the sea is limited 

due to river alterations and farmland modifications undertaken on areas adjacent 

to the stream connecting Lake Rotokare to the Arawata River. Therefore, it is 

likely the population is lacustrine and self-recruiting. 

 

Behaviourally, the species is shy and recluse, often disappearing quickly when any 

disturbance within their stream of occupation occurs (McCullough, 1998). The 

juveniles are planktivorous, feeding on zooplankton, whereas adults tend to 

become opportunistic insectivores, feeding largely on invertebrates of terrestrial 

origin falling from overhanging vegetation onto the water’s surface (Main, 1988; 

McDowall, 1990; Swales & West, 1991; Hicks, 1997). Banded kokopu contribute 
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towards a significant freshwater fishery in New Zealand - Whitebait. This and 

other galaxid fry contribute towards the whitebait fishery, and banded kokopu have 

been shown to contribute large proportions of fry towards this fishery (Rowe et al., 

1992). Currently this species remains non-threatened under the conservation status 

of New Zealand freshwater fish series published in 2013.  

 

 
Figure 1.6: Distribution of banded kokopu (Galaxias fasciatus) in New Zealand. (NIWA, 
2016d). 
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1.4.4 Invertebrates: 

Collaborating the research from the Taranaki Catchment Commissions report, and 

this study’s findings regarding invertebrate sampling – Table 1.2 highlights the 

current known species list of invertebrates present within Lake Rotokare. Three 

new species were discovered during sampling in 2017, most noticeably 

Radiospongilla sceptroides; a freshwater sponge that is known to inhabit some 

parts of Eastern Australia and New Zealand (Figure 1.7), although its true 

distribution remains relatively unknown. Two species of dragonfly were identified, 

and a cautionary note should be made in regards to the discovery of the species 

Latia neritoides in 1979 by the Taranaki Catchment Commission. It is probable 

that the person who identified Latia neritoides may have mistaken the sample for 

Pisidium sp. during identification, as the two species have a high similarity in 

physical external appearances. 

 

 
Figure 1.7: Radiospongilla sceptroides, a species of freshwater sponge discovered 
residing within Lake Rotokare on 9 June 2017. 
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Table 1.2: Invertebrate species found within Lake Rotokare (Taranaki Catchment 
Commission, 1980) and newly identified species during sampling in 2017. 
Scientific name     Common name 
Chironomus zealandicus    Chironomids 
Pycnocentrodes sp.    Caddisfly 
Potamopyrgus sp.    Mud snail 
Latia neritoides    Freshwater limpet 
Pisidium sp.    Pea clam 
Tubificidae     Oligochaete worms 
Hemiptera    True bugs 
Zygoptera    Damselfly 
Physa    Freshwater snail 
Lymnaea    Freshwater snail 
Gyraulus sp.    Freshwater snail 
Hirudinae    Leech 
     
Newly identified species:     

Antipodochlora braueri    Dusk dragonfly 
Aeschna brevistyla    Australian lancer dragonfly 
Radiospongilla sceptroides     Freshwater sponge 
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1.4.5 Plankton community: 

The planktonic community was not surveyed in detail during this study. This was 

primarily due to the fact that Hicks et al. (2013) compiled a detailed report of the 

micro community during their analysis of the lake - Table 1.3 highlights their 

findings of the plankton community residing within the lake.  

 

Table 1.3: Planktonic species found within Lake Rotokare (Hicks et al., 2013). 

Phytoplankton:  Zooplankton:     
Chlorophyta  Cladocerans:   
Botryococcus sp.  Daphnia galeata: North American invader 
Closterium sp.  Ceriodaphnia dubia   
Cosmarium sp.  Copepods:    
Eudorina sp.  Calamoecia lucasi   
Nephrocytium sp.  Mesocyclops sp.   
Oocystis sp.  Rotifers:    
Sphaerocystis sp.  Trichocerca similis   
Staurastrum sp.  Asplanchna priodonta   
Volvox sp.   Synchaeta pectinata   
Euglenophyta  Polyarthra dolichoptera  
Trachelomonas sp.  Keratella procurva   
Euglena sp.  Pompholyx complanata  
Euglena texta  Water mites (Acari: Hydrachnidae): 

Diatoms 
 

 Unidentified water mites, most likely 
Piona sp. 

Asterionella sp.      
Aulacoseira sp.      
Fragilaria sp.      
Navicula sp.      
Dinoflagellates      
Ceratium sp.      
Ankyra sp.       
Cyanobacteria       
Anabaena planktonica          
Anabaena circinalis      
Aphanocapsa sp.      
Microcystis sp.      
Pseudanabaena sp.      
Pseudanabaenaceae          
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 Study objectives 
Due to the current lack of knowledge surrounding the biotic and abiotic components 

of Lake Rotokare, the overall ecological aspects of this lake remain poorly 

understood. Therefore, this research project aims to further study both the fish 

communities within the lake, as well as the wider food web as a whole. It also 

intends to assess the water quality of the lake, and evaluate the nutrient status of 

Lake Rotokare. Additionally, this study aims to address this gap in knowledge 

through examining: 

 

Population dynamics: 

- Determine the weight-length relationships of the perch, shortfin, and longfin 

present within the lake. 

- Establish length-frequency models of the perch, shortfin and longfin eel 

populations. 

- Estimate the population size and density of shortfin and longfin eel through 

mark-recapture methods in order to determine the absolute abundance and 

density of these two species. 

- Estimate the density and relative abundance of perch within the lake through 

the use of CPUE methods. 

- Estimate the biomass of each of the three species present. 

- Finally obtain a relative abundance estimation of banded kokopu and kōura 

present in the streams flowing into the lake through spotlight counting. 

 

Food web dynamics: 

- To study the lakes trophic interactions of plants, microorganisms, 

vertebrates and invertebrates residing within the lake, through obtaining 

each species average stable isotope signature and developing a lake mixing 

model. 

- Check the validity of the isotopic readings of perch and eels against their 

respective diets through a dietary analysis of their stomach contents – 

allowing a comparison between the observed dietary patterns and the results 

of the stable isotope analysis indicating the accuracy of the isotope readings 

(in regards to diet versus growth).  
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- Compare the values of eel fin and muscle tissue, and determine whether 

lipid correction is necessary. 

- Create mathematical equations to correct stable isotope fin values into 

muscle values. 

 

Physical conditions: 

- Assess the temperature and oxygen profile within the lake and determine 

the presence and depth of the summer thermocline, and re-evaluate the 

temperature profile in winter, to establish the breakdown of the thermocline 

and subsequent oxygenation of the lake. 

- Employ Secchi disks and light meters to obtain a vertical ambient light 

profile and water clarity reading. 

- Take a series of vertical water samples to establish a water profile, and 

compare the results to previous water profiles taken to assess any changes 

in nitrogen and phosphorus in regards to vertical gradients and changes over 

time. 

- Compare our results to those taken in previous studies and determine if any 

trends are occurring. 
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2 Chapter 2: Water quality 

 Introduction 

Cultural eutrophication has been identified as the primary problem affecting surface 

water quality in both lakes and river systems globally (Smith & Schindler, 2009). 

New Zealand is not exempt from this phenomenon; the country has experienced 

over a century of environmental freshwater degradation - primarily due to urban 

land use modification, development, non-point source pollution from pastoral 

farming activities, and the expansion of forestry plantations (Douglas et al., 2016). 

Aquatic degradation has become acute since the late 1970s, as agricultural practices 

have intensified in many areas of New Zealand, due to increasing pressure from 

economic demands (Monaghan et al., 2007). This transition in agriculture has led 

to higher stocking rates and yields, increased use of fertiliser and pesticides, and the 

nationwide transition to more intensive forms of agriculture, such as dairy and cattle 

ranching (Ministry for the Environment & Stats, 2017). This is cause for concern, 

as these drivers of change have resulted in nationwide over-enrichment of surface 

waters with nitrogen (N) and phosphorus (P), leading to enhanced growth of 

phytoplankton and aquatic plants; deoxygenation of deeper waters, and a range of 

adverse impacts to freshwater biota (Carpenter et al., 1998; Monaghan et al., 2007; 

Adrian et al., 2009; Douglas et al., 2016). These factors combined with climate 

change, will only become more problematic in the future (Adrian et al., 2009; IPCC, 

2014). 

 

New Zealand remains committed to the halt of environmental decline and 

restoration of freshwater systems throughout the country (Ministry for the 

Environment, 2017). Central government has recently developed a National Policy 

Statement for Freshwater Management (NPS-FM) as well as national water quality 

guidelines to improve national water standards (Ministry for the Environment, 

2014). Variations in land use practice or environmental cues can have impacts on 

water quality (Hamilton et al., 2016) and New Zealand lakes and reservoirs around 

are rarely static in their water quality or ecological condition (Ministry for the 

Environment & Stats NZ; 2017). The best way to mitigate this is by obtaining a 

better understanding of the nutrient loads within degraded lakes, to discover the rate 

of change that is occurring, with a focus on nitrogen and phosphorus levels.  
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Lake Rotokare is an elevated lake (184 m), and therefore deemed to be at less risk 

of degradation then other catchments at lower elevations, which often show extreme 

vulnerability to degradation (Larned et al., 2004). However, the lake has been 

negatively impacted by multiple stressors, particularly due to the lake’s history of 

previous agricultural use. This has resulted in the lake developing a nutrient legacy, 

resulting in elevated levels of nitrogen and phosphorus (Taranaki Catchment 

Commission, 1980). The lake regularly suffers from severe surface water 

stratification and cyanobacterial algal blooms over the spring-summer period 

annually, subsequently leading to closure of the lake.  

 

Little has been done to monitor the nutrient loads in Lake Rotokare. The Taranaki 

Regional Council (TRC) has focused primarily on bacterial loads as a form of water 

quality monitoring (Taranaki Regional Council, 2010-2017). Therefore, obtaining 

the nutrient status of Lake Rotokare is critical, as having this information will allow 

stakeholders the information to tailor effective strategies to reduce algal blooms and 

nutrient loads to manageable levels. The aim of this study is to carry out water 

samples on the lake to establish a Trophic Level Index (TLI); a popular 

management tool across the country, typically used to provide a numerical, and 

cost-effective indicator of the trophic status of New Zealand lakes’ (Burns et al., 

1999). This has yet to be ascertained for Lake Rotokare and will provide a basis for 

future studies. Second, to obtain total and dissolved N & P measurements, 

complimented with other basic indicators of water quality such as phosphate, nitrate 

and ammonium level, allowing a comparison of past recorded nutrient levels, to set 

a baseline for future water quality studies on the lake. Light measurements and 

refraction rates from down-welling, and Secchi disc sampling. Finally, this study 

aims to sample temperature and oxygen levels within Lake Rotokare to determine 

lake stratification and severity of detachment between the epilimnion and 

hyperlimnion in summer.  

 

 Methods 

2.2.1 Location 

The deepest part of the lake (Figure 2.1) was chosen as the most suitable location 

for water sampling. This was primarily to obtain the best vertical water profile, as 



  

29 

it was considered to be the deepest part of the lake, but also because this method 

remained consistent with previous sampling efforts (Taranaki Catchment 

Commission, 1980; Hicks et al., 2013).  

 

 
Figure 2.1: Lake Rotokare sampling water quality sampling site 22 Feb 2017. 

 

 

2.2.2 Conductivity, Secchi disc depth 

Electrical conductivity was measured with an YSI 3200 conductivity meter for both 

ambient and specific conductivity (i.e., corrected water temperature of 25°C), 

during the summer sampling period; this was taken at the water surface, and then 

in 5 L water samples collected at 0.5 m intervals between the surface and the lake 

bed with a Schindler-Patalas trap. During the winter sampling period, this was 

simplified down to only incorporate specific conductivity using the YSI Pro 2030. 

Water clarity was measured at the same location (Fig. 2.1). Secchi disc depth was 

used to measure water clarity; where the distance at which a 20 cm disc with black 

and white quadrants disappears from view. 
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2.2.3 Dissolved oxygen and temperature 

Using the recommended guidelines from Bryers (2000), the dissolved oxygen (DO) 

concentration was measured as both percent saturation and absolute values 

expressed as mg L-1, and temperature (°C) were captured with a YSI Pro 2030 meter 

at the water’s surface and then at 0.5 m intervals until reaching the lake bed. 

Additionally, samples were also taken for conductivity at the same time. This was 

also repeated in June and again in December; this allowed both a consistent profile 

to match previous samples and provided a comparative analysis of temperature and 

DO for both summer and winter. Data was also retrieved from two previous studies 

from the Taranaki Catchment Commission report (1980) and Hicks et al. (2013) 

allowing a comparison of four summer’s worth of water column profiling to be 

compared; 1979, 2013, February 2017 and December 2017.  

 

2.2.4 Light measurements 

Light measurements were recorded during water quality sampling on the 23 

February 2017 at 14:42 h using the same location as was used for water quality 

sampling (Figure 2.1). The device used was a Li-Cor LI-1400 data logger equipped 

with a double sided light sensor array, to detect photosynthetically active radiation 

(or PAR) from both upwelling and downwelling. Measurements were taken 

periodically at depths at the surface, 0.5 m, 1 m and every meter subsequently until 

reaching the bottom to obtain a vertical light profile. Down-welling data was 

deemed unusable, and only upwelling data was kept. 

 

2.2.5 Dissolved nutrients & chlorophyll a 

To effectively monitor the current nutrient status of Lake Rotokare, a similar 

method of water quality sampling was used to that of Hicks et al. (2013), and the 

Taranaki regional council’s water testing during the summer period of 1979–1980 

(Taranaki Catchment Commission 1980). Water quality sampling occurred on 22 

February 2017 at the lake’s centre (Figure 2.1). A 60 mL subsample was extracted 

from Schindler-Patalas trap samples with a syringe and then filtered through a 0.45 

µm filter and placed on ice. Dissolved nutrients in each subsample were then taken 

back to the University of Waikato, and measured with an Aquakem nutrient 

analyser. These results were then compared with previous water quality analyses 
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and measurements conducted in 2013 by Hicks et al., (2013) and the original water 

profile taken by the Taranaki Catchment Commission (Taranaki Catchment 

Commission, 1980); the TRC report had multiple sites, for the purpose of this study, 

Site 5 from the TRC report was chosen for comparative data analysis as it was in a 

similar location to this study’s (Figures 2.1, 2.3). This analysis quantifies the lakes 

total N, total P, dissolved N & P, phosphate levels, nitrogen oxide (NOx), nitrogen 

dioxide (NO2), nitrate (NO3), and ammonium levels (NH4). Chlorophyll a levels 

were retrieved in a similar fashion to dissolved nutrients; two 60 mL water samples 

were taken from the lake’s surface on the 19 December 2017. These samples were 

taken back to the university to be analysed using a spectrometer. 

 

2.2.6 Trophic Level Index 

Using the equations from Burns et al., (1999), measurements of chlorophyll a 

concentration (chl a), Secchi disc depth (SD), total phosphorus (TP) and total 

nitrogen (TN) were extracted from nutrients data obtained on 22 February and 19 

December 2017 in order to quantify the TLI 3 and TLI 4 value of Lake Rotokare. 

The equations and modifications necessary to normalise the data into standardized 

units are as follows: 

 

TLc = 2.22 + 2.54 Log(chla) 

TLs = 5.10 + 2.27 Log(1/SD – 1/40) 

TLp = 0.218 + 2.92 Log(TP) 

TLn = -3.61+3.01 Log(TN) 

 

Using these equations to transform these variables, the overall TLI value can be 

obtained using the following equation: 

 

TLI = 0.25 (TLc + TLs + TLp + TLn) 

 

The TLI 3 equation was possible to be applied to the February 2017 and December 

2017 data. Due to the lack of chl a samples in February, TLI 4 was only possible in 

December. 
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2.2.7 Cyanobacterial count data and overall water quality index data 

Other basic water quality indicators such as Escheria coli levels, cyanobacterial 

level counts, turbidity, temperature and conductivity were measured by the 

Taranaki Regional Council (TRC) during their annual water quality reports. Data 

was published and made available online through their website (Taranaki Regional 

Council, 2010-2017), and was then retrieved and summarised. The dataset for 

cyanobacteria counts was split into two data sets due to the change in methods of 

cyanobacterial counts used by the TRC from 2014-2017 from cells 

ml-1 to biovolume expressed as cyanobacteria present mm-3 L-1. 

 

 Results: 

2.3.1 Thermal and oxygen stratification: 

Water column sampling undertaken in the lakes central point (Figure 2.1) 

determined that temperature on the lake surface did increase over time. Between 

the two data sets taken from February 1977–2013 there was a 1.1°C increase, from 

February 2013–2017 there was a further temperature increase of 1.3°C. Overall, 

from 1977 to present there has been an increase of 2.4°C increase between years; 

20.5°C to 22.9°C (Figure 2.2; Table 2.1). While this data is limited due to the 

minimal number of samples conducted over such a large timeframe, it does suggest 

there has been an overall temperate increase over this period. 

 

All four seasons sampled showed strong thermal stratification. While temperature 

generally increased, the thermocline; defined as the point where temperature drops  

> 1°C (Hicks et al., 2013) varied over time (Figure 2.2; Table 2.1). In February 

1977, the lakes thermal profile gradually declined from the surface (20.5°C) to 4 m 

(18.5°C), with the thermocline establishing at a depth between 4-5 m deep (Figure 

2.2; Table 2.1). The vertical temperature gradient dropped from surface to bottom 

by 8.7°C, with an average temperature of 16.6±2.35°C (95% confidence interval). 

The lake showed severe stratification, with dissolved oxygen levels (%) starting at 

116.9% at the surface (indicating a possible lack of machine calibration), then 

dropping rapidly at the thermocline (3-5 m deep) from 81.5% to 48.4%, declining 

to ≤ 3.1% from 6 m onwards. 
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2013 showed a less pronounced drop in temperature. From the surface to 6 m, the 

temperature showed minimal variation, the thermocline established between 6-7 m 

deep (Table 2.2). The vertical temperature profile of the lake dropped by 6.6°C in 

2013, with an average temperature of 18.65±1.66°C. The dissolved oxygen profile 

was less stratified in 2013, and much higher below the thermocline than in 1977 

(21.4-26.7%). Above the thermocline the oxygen rate diffused much slower 

throughout the water column with high values above the thermocline, varying 

between 96.2-78.1%. Past this point DO levels dropped rapidly from 64.7% to  

39.9% oxygen saturation. Overall stratification was less extreme in 2013 than any 

other season. 

 

2017 varied, the rate of change differed between February and December. February 

had the most extreme thermocline, with a surface temperature of 22.8°C, the 

thermocline establishing between 2-3 m deep (Figure 2.2). From that point little 

variation in temperature occurred, 20.7-18.7°C After dipping below the thermocline, 

the temperature a decreased a further 3.2°C, with a total decrease in the vertical 

temperature profile of 9°C. The average temperature in February 2017 was the 

highest recorded, with a value of 19.27±2.02°C. The water column showed extreme 

decreases in oxygen levels, with a surface value of 110.5%, declining sharply at the 

thermocline by half to 56.4%, and further dropping to 21.4% below the thermocline 

(Table 2.1). There were spikes in dissolved oxygen between 5-7 m deep (Table 2.1). 

From 8 m onwards DO values dropped to < 15%. 

 

December 2017 showed a similar thermal trend. The surface water remained stable 

for the first 3 m, establishing the thermocline between 3-4 m, with a water 

temperature of 17.3°C at 4 m (Table 2.1). From there it decreased rapidly towards 

the bottom with a final temperature of 12.5°C at 9 m deep; with an overall decrease 

of 10.4°C. The average temperature was 17.67±3.37°C. Dissolved oxygen in 

December showed a similar trend to 1977, with a surface value of 88.9% dropping 

to 78.4% at the 3 m thermocline, then rapidly dropping to 3.6% (Table 2.1). From 

that point the dissolved oxygen ratio fails to show any variation; with 0.2% change 

in oxygen at 9 m deep. 

 

The depth profile of water temperature in winter showed a very different trend, the 

lake had become fully mixed with minimal variation from the surface to the lake 
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bed; 11.3-11.2°C (Figure 2.2; Table 2.1). The dissolved oxygen profile becomes 

fully mixed during the winter season, with a dissolved oxygen decrease from 

surface to bottom of only 20.6% (Table 2.1). 

 

Table 2.1: Dissolved oxygen and temperature values from 1977-2017 for Lake Rotokare. 
Sources: Taranaki Catchment Commission (1980); Hicks et al. (2013). 

 
  

Temperature Temperature Temperature
% mg L-1 (oC) % mg L-1 (oC) % mg L-1 (oC)

0 116.9 10.5 20.5 96.2 8.5 21.6 110.5 9.45 22.8

1 104.4 9.5 19.7 98.2 8.6 21.4 107.8 9.41 22.5

2 88.3 8.1 19.5 81.9 7.4 20.9 101.0 8.85 22.2

3 81.5 7.5 19.1 78.1 7.0 20.8 56.4 5.04 20.7

4 48.4 4.5 18.5 64.7 5.8 20.5 21.4 1.90 20.3

5 3.1 0.3 16.6 44.6 4.0 20.1 32.0 2.90 20.1

6 3.0 0.3 15.0 39.9 3.6 19.3 10.6 1.05 18.7

7 2.8 0.3 13.2 30.1 2.9 17.4 34.8 3.18 19.1

8 2.8 0.3 12.6 26.7 2.6 16.3 14.7 1.43 17.0

9 2.8 0.3 11.8 25.0 2.4 15.8 12.7 1.28 14.8

10 25.0 2.5 14.9 12.9 1.36 13.8

11 21.4 2.1 14.9

Temperature Temperature

% mg/L (°C) % mg/L (oC)

0 93.7 9.45 11.3 88.9 7.67 22.9

1 93.2 9.43 11.3 87.2 7.57 23.0

2 91.4 9.41 11.3 88.9 7.55 22.9

3 91.3 8.85 11.3 78.4 6.5 22.8

4 89.6 8.83 11.3 3.6 0.34 17.3

5 86.6 8.42 11.3 3.6 0.36 15.4

6 84.1 8.37 11.3 3.7 0.38 14.2

7 82 8.21 11.3 3.5 0.38 13.0

8 79.8 8.01 11.2 3.4 0.36 12.7

9 77.4 7.92 11.2 3.4 0.35 12.5

10 74.3 7.77 11.3

11 73.1 7.56 11.2

Depth 
(m)

Dissolved oxygenDissolved oxygen
9 Feb 20132 Feb 1977 23 Feb 2017

Dissolved oxygen

Depth 
(m)

 9 June 2017 19 Dec 2017

Dissolved oxygen Dissolved oxygen
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Figure 2.2: Dissolved oxygen and temperature profiles in Lake Rotokare in A. 1977, B. 
2013, C. Feb 2017, D. Jun 2017, and E. Dec 2017. Sources: Taranaki Catchment 
Commission (1980); Hicks et al. (2013). 
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Overall, it remains hard to distinguish any year to year trends. Figure 2.3 shows all 

four water samples compared together, overall it appears that 1977 and December 

2017 share similar trends of lake stratification in both DO and temperature. 

Whereas 2013 and February 2017 show a different trend in temperature and very 

different trends in dissolved oxygen. The overall averages in temperature did not 

significantly differ from one another, the February 2013 average did differ 

significantly from February 1977, with the average of 16.6°C falling outside of the 

18.65±1.66°C sample range; the mean confidence interval (95%) of 1977 (±2.35°C) 

did overlap with 2013 however. February 2017 does remain significantly different 

from 1977 also, with a value of 19.27±2.02°C, neither set of confidence intervals 

overlap. 

 

 
Figure 2.3: Temperature and dissolved oxygen profiles of Lake Rotokare during periods 
in Feb 1977-2017 and Dec 2017. February 1977-2013 data extracted from: (Taranaki 
Catchment Commission, 1980; Hicks et al., 2013). 

 

 

2.3.2 Conductivity and Secchi disc depth 

Surface conductivity in 1976 and 1977 was 116±13 µS cm-1 (mean±1SD; Taranaki 

Catchment Commission, 1980). As Hicks et al., (2013) highlighted in their study, 

it is not clear whether the conductivity was ambient or specific. Hicks et al. (2013) 

had a similar conductivity measurement, taken on 9 February 2013, ambient 

conductivity for 2013 was 112.8 µS cm-1 and specific conductivity of 123.1 µS 

cm-1 (temperature adjusted to 25°C). 2017 data was similar, with an electrical 
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ambient conductivity of 120.5 µS cm-1, and a specific conductivity of 123.5 µS 

cm-1. 

 

Water clarity appears to be improving. While issues remain for the sampling 

methods between the 1980 and 2013-2017 data, there appears to an improvement 

in water clarity in 2017. The TRC report surveyed four sites within the lake and 

obtained an overall mean Secchi disc clarity. However, these sites were not the 

same location as our sampling site. The TRC report used sites 1-4 in the lake (Figure 

2.4), which did not align with our sampling site in the lake centre (Figure 2.1). The 

data in 1979-1980 was highly variable. Between December 1979 and January 1980 

and Feb-March 1980 there was a significant increase in water clarity from 1.5 m to 

1.9-2.18 m (1.76±0.55 m; mean 95% confidence interval). Secchi sampling in this 

study and Hicks et al. (2013) showed a more consistent pattern with a Secchi depth 

of 1.92 m in February 2013, 1.95 m in February 2017, 1.92 m deep in June 2017, 

and 2.2 m in December 2017 (Figure 2.5). The mean Secchi depth in 2017 was 

2.01±0.09 m. This suggests water clarity has overall improved in the last 35-40 

years, and that water clarity may not vary in winter, even with the breakdown of 

lake stratification (Figure 2.2). 

 

 
Figure 2.4: Sampling site locations for Secchi disc sampling and water quality samples 
taken by the TRC between 1979 and 1980 (Taranaki Catchment Commission 1980). 
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Figure 2.5: A. Mean Secchi depth measured at four sites in Lake Rotokare in summer 
1979-1980 (Error bars 95% confidence interval). B. Single measurement Secchi depth data 
from the same water quality profile used in this study (Figure 2.1) from 2017. 

 

 

2.3.3 Light extinction 

Light extinction occurred rapidly within Lake Rotokare. Diffuse attenuation 

coefficient of photosynthetically active radiation (Kd(PAR)) maximum penetration 

distance of LnPAR into the water column was 5 m. Natural logarithm (Ln) 1% of 

surface PAR was 1.87 m and the compensation depth (1% light extinction depth) 

was 3.42 m (Figure 2.6). Kd measured (0-4 m) was 1.36 m, PAR µmol extinction 

occurred at 4.77 m (Figure 2.7), therefore, the calculated Kd value (0-4.77 m) was 

1.36 m. These values match up closely with the lake stratification occurring in 

February (Figure 2.2). 

 

 
Figure 2.6: A. Light extinction coefficient curve represented by photosynthetically active 
radiation saturation from surface (100% PAR saturation) to the maximum penetration depth 
of 4 m depth (0% PAR saturation). B.  Log value graph of the light extinction coefficient 
from the surface. 
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Figure 2.7: Light extinction coefficient curve represented by photosynthetically active 
radiation saturation represented by a linear model of PAR from the surface to the maximum 
depth of PAR penetration (4.77 m). 
 

 

2.3.4 Nutrient sampling 

Dissolved nutrient sampling was the most useful measurement for comparing water 

quality between years. Dissolved reactive phosphorus (DRP) was sampled in 1976-

1977, and compared against phosphate (PO4) values sampled in 2013 and 2017. 

PO4 exhibited a large trend of decline between 1976 and 2017 (Table 2.2). However, 

the middle water PO4 values also showed a slight decrease over the same time-frame 

(Table 2.2). Nitrogen was more difficult to compare, as water nutrient data was 

inconsistent in nutrients sampled between years. The best comparable data available 

for 1977 was nitrate (NO3-N) which can be compared to NO3 samples in 2017. 

There was no sample measured in 2013 that could be directly compared to 1977 

and 2017. Therefore, NO3 was calculated for 2013 water quality values by taking  

NOx and NO2 from Hicks et al. (2013), subtracting from each other. Dissolved 

nitrogen nutrient levels show a significant decrease between 1977 and the 2013 and 

2017 water samples, with large decreases in NO3 at each depth sample. There were 

negligible differences between 2013 and 2017, suggesting NO3 levels have since 

stabilized (Table 2.2).  
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Table 2.2: Comparison of dissolved nutrient available for cross-referencing between years 
for Lake Rotokare. Data represents single sample values of each nutrient (except where 
data modification was necessary (read above). Surface represents a depth of 0.2 m, middle; 
5 m, and the bottom; 9 m. Blank cells indicate no data (Data retrieved from Table 2.3; Table 
2.4; Table 2.5).  

  DRP & PO4 mg L-1   NO3-N mg L-1 & NO3 mg L-1 
Date Surface Middle Bottom   Surface Middle Bottom 
2-Sep-76 0.165 0.050 0.170         
1-Feb-77 0.145 0.040 0.425   0.010 0.060 0.310 
9-Feb-13 0.059 0.088 0.121   0.001 < 0.001 < 0.001 
23-Feb-17 0.012 0.019 0.031   0.009 0.007 0.006 

 
Table 2.3: Dissolved nutrient concentrations measured in Lake Rotokare on 2 Sep 1976 
and 1 Feb 1977. Blank cells indicate no data. (Source: Taranaki Catchment Commission 
1980).  

 
 

 

Table 2.4: Dissolved nutrient data extracted from Hicks et al. (2013). Data measured on 9 
Feb 2013. 

 
Dissolved nutrient concentration (mg m-3) 

Depth (m) NH4 NO2 NOx PO4 

0.2 43 1 5 59 
5.0 248 1 1 88 
9.0 1173 < 0.1 < 0.1 121 
9.0 1274 < 0.1 < 0.1 98 
9.0 1342 < 0.1 < 0.1 97 

 

Depth pH Alkalinity Total hardness

Site sampled 2-Sep-76 1-Feb-77 2-Sep-76 1-Feb-77 1-Feb-77 (g m-3 as CaCO3) (g m-3 as CaCO3)
Outlet 405 1500

Ramp 350 1120

A 950 1220 7.3 80 63

1 surface 260 100 240 80 6.9 30 32

1 middle 50 10 250 70 6.8 20 31

1 bottom 245 10 330 310 6.5 40 31

2 surface 255 0 90 7.1 30 27

2 middle 70 25 310 90 7.1 30 29

2 bottom 260 15 100 6.8 30 29

3 surface 195 15 70 7.3 30 28

3 middle 120 335 330 80 7.2 30 28

3 bottom 40 10 70 7.2 30 27

4 surface 175 10 70 8.8 40 27

4 middle 195 135 270 70 8.5 30 28

4 bottom 320 1 50 8.3 20 28

5 surface 165 135 10 7.3 30 27

5 middle 50 40 260 60 7 30 28

5 bottom 170 425 310 5.3 30 34

6 surface 260 160 70 8.3 60 27

6 middle 175 80 70 8.1 40 29

6 bottom 45 15 50 8 20 28

DRP mg m-3 NO3-N mg m-3
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2.3.5 2017 nutrient results 

In February Nitrogen oxide (NOx), Nitrogen dioxide (NO2), Nitrate (NO3), and 

phosphate (PO4) levels were negligible (Table 2.5). Concentrations of NOx, NO2, 

and NO3 were all less than ≤ 0.013 mg L-1 with no noticeable changes between 

surface waters and the bottom of the lake (Table 2.5). PO4 levels were higher, 

varying between 0.012-0.053 mg L-1. Ammonia (NH4) was present in low levels 

throughout the upper-middle water column (≤ 0.5 mg L-1), bottom hypolimnion had 

extremely high levels of NH4 present; this may have been due to the spikes of 

oxygen present throughout the middle of the water column in February, lowering 

the potential for ammonia production exclusively to the bottom 3 m (Figure 2.2). 

Total nitrogen (TN) was present in extremely high quantities throughout the water 

column. The surface value was 0.582 mg L-1, increasing roughly eightfold (4.5 mg 

L-1) at the bottom, with intermittent spikes in between. Total phosphorus showed a 

similar trend to TN, starting with a surface value of 0.032 mg L-1, increasing 50-

fold at the lake bed (1.587 mg L-1), with spikes in TP appearing throughout the 

water column. Dissolved N/P (expressed as NH4/PO4) showed massive imbalances 

starting at a surface ratio of 3.6, rising to 11.75 below the thermocline, and spiking 

at 126.75 difference in dissolved N/P ratio (Figure 2.8). Total N/P was high above 

the thermocline (8.51-17.92), with more modest values below the thermocline of 

8.29-2.83. Both solid and dissolved nitrogen and phosphorus concentrations 

showed a similar trend of increase from the epilimnion to the hypolimnion (Figure 

2.8). 
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Table 2.5: Water nutrients concentrations measured in Lake Rotokare on 23 Feb 2017. 

Depth (m) 
NOx NO2 NO3 PO4 NH4 TN TP N/P N/P 

mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 Dissolved Total 
0.2 0.013 0.004 0.009 0.012 0.033 0.582 0.032 3.60 17.92 
0.5 0.011 0.004 0.007 0.011 0.031 0.564 0.041 3.47 13.78 
1 0.012 0.004 0.007 0.011 0.035 1.682 0.198 3.85 8.51 
2 0.012 0.004 0.008 0.012 0.035 0.614 0.053 3.55 11.68 
3 0.011 0.004 0.007 0.013 0.042 0.863 0.114 3.75 7.54 
4 0.013 0.004 0.008 0.013 0.148 1.915 0.231 12.41 8.29 
5 0.011 0.004 0.007 0.019 0.199 0.701 0.085 10.61 8.20 
6 0.011 0.004 0.007 0.023 0.332 0.898 0.162 14.98 5.53 
7 0.011 0.004 0.006 0.034 0.455 0.824 0.148 13.51 5.57 
8 0.011 0.005 0.006 0.053 1.171 1.245 0.529 22.19 2.36 
9 0.011 0.004 0.006 0.031 2.329 3.392 1.119 75.05 3.03 

10 0.012 0.005 0.007 0.035 4.421 4.499 1.587 126.94 2.83 
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Figure 2.8: A. Depth profiles of N:P ratios in Lake Rotokare on 23 Feb 2017.B. Phosphate 
(PO4), total phosphorus (TP), ammonium (NH4), and total nitrogen (TN) levels in Lake 
Rotokare on 22 Feb 2017. 
  

 

2.3.6 Trophic Level Index 

Using Chlorophyll a concentration (chl a), Secchi disc depth, total phosphorus and 

total nitrogen, it was possible to construct a Trophic Level Index (TLI) for Lake 

Rotokare using the formula given from Burns et al., (1999). The TLI was 

constructed using the chlorophyll a and Secchi depth data, as well as the surface TP 

and TN values from Table 2.5. The following values were estimated for the 

construction of a lake TLI value using the data from Table 2.5. TLc = 5.13, TLs = 

4.38, TLp = 4.63, and TLn =2.55. Using these conversion values, the TLI was 

estimated: 0.25(TLc + TLs + TLp + TLn) giving a final value of 4.12. This value 

shows that under the New Zealand standardized lake nutrient measurement, Lake 

Rotokare is classified as a eutrophic lake (Table 2.6). The only exception worth 

noting is the Chl a values reflected a supertrophic lake (mean = 14.01 mg m-3; Table 

2.6) rather than a eutrophic lake chl a value (Table 2.7). 

 

Table 2.6: Lake Trophic Index data used to determine the Lake Rotokare TLI 4 score in 
19 December 2017. 

Lake Trophic Index data (TLI 4) 
  Chl a    Secchi depth   TP   TN 

Date (mg m-3) 
 

(m) 
 

(mg m-3) 
 

(mg m-3) 

19-Dec-17 14.01  2.20  28  110 
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Table 2.7: Values of TLI variables that define the boundaries of different trophic levels 
(source: Burns et al., 1999). 

   Trophic level   Chl a    Secchi depth   TP   TN 
 Lake type       (mg m-3)   (m)   (mg m-3)   (mg m-3) 
Ultra-microtrophic 0.0 - 1.0   0.13 - 0.33   33 - 25   0.84 - 1.8   16 - 34 
Microtrophic 1.0 - 2.0   0.33 - 0.82   25 - 15   1.8 - 4.1   34-73 
Oligotrophic 2.0 - 3.0   0.82 - 2.0   15 - 7.0   4.1 - 9.0   73-157 
Mesotrophic 3.0 - 4.0   2.0 - 5.0   7.0 - 2.8   9.0 - 20   157 - 337 
Eutrophic 4.0 - 5.0   5.0 - 12.0   2.8 - 1.1   20 - 43   337 - 725 
Supertrophic 5.0 - 6.0   12.0 - 31.0   1.1 - 0.4   43 - 96   725 - 1558 
Hypertrophic 6.0 - 7.0   >31   <0.4   >96   >1558 

 

 

TLI 3 scores varied significantly between February (4.54) and December (3.71) in 

2017. This was primarily due to the massive reduction in lake surface TN loading 

between seasons, dropping from 582.1 to 110 mg m-3. This caused Lake Rotokare’s 

TLI classification to change between seasons, from Eutrophic in February, to 

Mesotrophic in December (Tables 2.7, 2.8). 

 

Table 2.8: Lake Trophic Index data used to determine the Lake Rotokare TLI 3 scores for 
22 Feb 2017 and 19 December 2017. 

Lake Trophic Index data (TLI 3) 
  Secchi depth   TP   TN 

Date (m)   (mg m-3)   (mg m-3) 
22-Feb-17 1.92   32.48   582.10 
19-Dec-17 2.20   28.00   110.00 

 

 

2.3.7 Cyanobacterial data and lake quality index 

Regular state-of-the-environment monitoring for cyanobacteria and water quality 

index reports have been issued by the Taranaki Regional Council since 2009 

(Cyanobacteria data: Tables 2.9, 2.10; water quality report: Table 2.11). The 

predominant genus of cyanobacteria has been Dolichospermum (Anabaena), with 

low levels of Microcystis appearing intermittently over summer, with peak 

abundance from late December through to mid-February (Table 2.9; Table 2.10). It 

appears the duration of hazardous levels of bacteria appearing is increasing. As in 

2014-2017 the hazardous level limit was exceeded in all three years all the way 

through to late March and early April in most cases (with the exception of 4 Feb 

2016 and 26 Jan 2017; Table 2.10). Compared to 2009-2014, where the limits were 

sporadically exceeded in most seasons (Table 2.9), algal blooms have occurred 
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more severely in the last few years. 2012 was an exception, with a season were cells 

mL-1 never exceed the danger level imposed by the council. Table 2.9 shows 

measurements of turbidity, surface temperatures, conductivity, and E.coli levels. 

Turbidity, surface temperatures, and conductivity are generally poor indicators of 

water quality to make any assumptions from. However, the water quality reports do 

indicate that the lake has consistently low levels of E.coli, with only one alert in 

E.coli  levels of 340 100 ml-1; nos; safety limit ≥ 550 E. coli 100 ml-1 (2016-2017) 

over the 9-year sampling period.  

 

Table 2.9: Cyanobacterial cell counts between Oct-Apr for Lake Rotokare from 2009-2014. 
Safe level counts > 15,000 cells ml-1 (source: Taranaki Regional Council 2010, 2011, 2012, 
2013, 2014).  

 
 
Table 2.10: Cyanobacterial biovolume for Lake Rotokare for Oct-Apr 2014-2017. Safety 
level ≤ 1.88 mm-3 L-1 (source: Taranaki Regional Council 2015, 2016, 2017). 

 
  

Date Biovolume Hazard Date Biovolume Hazard Date Biovolume Hazard

10/10/14 0.12 Low 04/11/15 0.7 Med 03/11/16 0.6 Med

18/11/14 0.18 Low 20/11/15 1.9 High 22/11/16 4.6 High

03/12/14 4.5 High 21/12/15 18.7 High 07/12/16 2.5 High

15/12/14 9.6 High 19/01/16 11.2 High 21/12/16 15 High

15/01/15 43.3 High 01/02/16 2.2 High 05/01/17 6.3 High

27/01/15 17.9 High 04/02/16 1.3 Med 26/01/17 1.8 Med

12/02/15 16.7 High 15/02/16 2.4 High 07/02/17 4.1 High

26/02/15 35.5 High 04/03/16 7.6 High 07/03/17 0 High

20/03/15 5.5 High 16/03/16 9 High 20/03/17 0.08 High

25/03/15 5.2 High 01/04/16 1.1

Biovolume danger level: 1.8 mm-3 L-1

2016-20172014-2015 2015-2016
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Table 2.11: Taranaki Regional Council water quality index monitoring report data from 
2009-2017. Retrieved from eight TRC technical reports (Taranaki Regional Council 2010, 
2011, 2012, 2013, 2014, 2015, 2016, 2017). 

Water quality index (2009-2017) 

  Parameter Unit 
Sample 

size Min Max Median range - comments 
20

09
-2

01
0 Conductivity mS/m 9 11.2 12.9 11.8 1.7mS/m - stable 

Temperature °C 9 15.9 22.7 20.9 6.8°C - moderate range 
Turbidity NTU 9 1.7 28 8 26NTU - high tubidity 
E.coli nos/100mL 9 1 13 3 Safe levels 

20
10

-2
01

1 Conductivity mS/m 11 11.6 18.8 11.8 1.2 mS/m - stable 
Temperature °C 11 17.8 23.7 20.3 5.9°C - moderate range 
Turbidity NTU 11 0.8 8.8 3.4 8 NTU - moderate 
E.coli nos/100mL 9 1 37 5 Safe levels 

20
11

-2
01

2 Conductivity mS/m 8 10.6 11.8 11.1 1.2 mS/m - stable 
Temperature °C 9 17.5 20.9 20.2 3.4°C 
Turbidity NTU 9 0.8 8.8 3.4 8 NTU - moderate 
E.coli nos/100mL 9 1 220 7 Safe levels 

20
12

-2
01

3 Conductivity mS/m 10 11.4 12.1 11.6 0.7mS/m - stable 
Temperature °C 11 17.1 23.9 20.3 6.8°C - moderate range 
Turbidity NTU 10 0.9 6.8 3.3 5.9 NTU - moderate 
E.coli nos/100mL 10 <1 69 3 Safe levels 

20
13

-2
01

4 Conductivity mS/m 9 11.5 12.8 11.9 1.3mS/m - stable 
Temperature °C 9 18.5 21.2 19.9 2.7°C - narrow range 

Turbidity NTU 8 1.2 14 2.3 
12.8NTU - moderate with 
spike 

E.coli nos/100mL 9 7 170 17 Safe levels 

20
14

-2
01

5 Conductivity mS/m 8 11.6 13.3 12.1 1.7mS/m 
Temperature °C 9 16 25.5 21 9.5°C - warm, wide range 
Turbidity NTU 8 3.2 35 20 32NTU - High turbidity 
E.coli nos/100mL 8 8 240 21 Safe levels 

20
15

-2
01

6 Conductivity mS/m 7 11.9 14.6 12.2 2.5mS/m - high variability 

Temperature °C 10 16.5 24.9 21.2 
8.4°C - warm, wide 
variability 

Turbidity NTU 7 3 13 7.2 10NTU - moderate 
E.coli cfu/100mL 7 11 290 80 Safe levels 

20
16

-2
01

7 Conductivity mS/m 10 12 12.6 12.2 0.6mS/m - stable 
Temperature °C 10 17.6 22.4 20 4.8°C 
Turbidity NTU 10 1.5 14 5.7 12NTU - high 

E.coli cfu/100mL 10 7 340 73 
Safe - one alert 
(340cfu/100mL) 

 

 

 Discussion: 

Overall, Lake Rotokare has poor water quality. The lake has high levels of 

phosphorus and nitrogen do not appear to have improved since 1977. The only 

exception to this is dissolved phosphorus (PO4) which has consistently dropped 

throughout each sampling period, with a large difference between concentrations. 

1976 was the lowest of the two samplings years in the TRC report, with an average 

water-column phosphate concentration of 0.16±0.04 mg L-1 (mean 95% confidence 

interval). 2013 showed a decrease of 0.4 mg L-1 with a mean water-column PO4 
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concentration of 0.09±0.02 mg L-1 and our data dropped further to an average PO4 

concentration of 0.02±0.01 mg L-1. Caution should be taken when comparing water 

samples from 1976-1980, given the differences in sampling and analytical methods. 

Comparing dissolved nitrogen was not possible between 1976 and 1980 with the 

2013 and 2017 data. However, there was minimal change in mean ammonia (NH4) 

between 2013 and 2017. Mean water column ammonium in 2013 was 0.81±0.76 

mg L-1 and in 0.77±0.85 mg L-1 in 2017. Secchi disc remained similar between 1980 

and 2017; with an increase in the Secchi disc depth of 0.25 m. There was no 

significant difference between the two years, suggesting that the lakes water clarity 

may not be improving. PAR may have been low due to the large availability of 

nutrients and high algal biomass (the lake had a cyanobacterial bloom at the time 

of sampling), which may have forced greater light dispersal (Brown, 1984).  

 

The lake likely remains hypoxic throughout the entire summer period and therefore, 

has an annual nutrient flux of phosphorus; which can be seen with the high levels 

of ammonia and total nitrogen levels below the thermocline - driven by nutrient 

release from N and P rich sediments exposed to deoxygenation. Total phosphorus 

concentrations under the thermocline were also high, and this was probably a 

response to anoxic conditions resulting in the phosphorus molecules unbinding 

from the lake sediment and rising into the water column. The burial efficiency of 

phosphorus decreases with decreasing oxygen concentrations and under anoxic 

conditions, instead of net burial, phosphorus is released from the sediment to the 

water column (Vant, 1987; Nurnberg, 1984).  

 

While it is impossible to accurately compare TP and TN of the lake from the 2017 

samples to earlier water quality tests, it is likely that TN and TP were higher in 1976 

to 1980. The limited water testing results for TP from 1977 are highly suspect, with 

results well outside of expected values or trends. The decrease in dissolved 

phosphorus concentrations is likely to be a result of fencing off the scenic reserve, 

exclusion of grazing livestock, and the discontinued use of fertilizer for agricultural 

practices around the lake. Re-establishing the dense, intact forest layer would have 

also reduced sediment run-off rates greatly and also improved bacterial levels of 

E.coli and other harmful organisms by stopping urine and faeces from entering the 

lake (Hicks et al., 2013).  
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Light penetration and the lakes’ thermocline had similar depth regimes, suggesting 

that only algae above the lake thermocline in 2017 (4 m) were capable of absorbing 

sufficient solar radiation to survive. This would mean algal biomass would be 

restricted to the epilimnion, and therefore only serve to increase the biomass of 

blue-green algal species. The lake exhibited a very low surface dissolved N/P ratio, 

which favours the persistence and domination of cyanobacterial species above the 

lake’s thermocline. Cyanobacterial species are fully capable of utilizing the 

available dissolved P nutrients available, while fixing nitrogen through 

photosynthesis (Lindenschmidt & Chorus, 1997). The fact that cyanobacterial 

blooms were dominated by Anabaena and Microcystis species is not surprising. 

Ganf and Oliver (1982) found both species are capable of fully exploiting thermal 

stratification.  

 

Additionally, both species of algae can maintain position in the water column 

through buoyancy control (Lindenschmidt & Chorus, 1997). Unlike other algal 

species, species of cyanobacteria would be able to migrate below the 1% light 

extinction region of 4.77 m and gain access to the higher nutrient levels present in 

the lower water column. The lake is experiencing annual cyanobacterial blooms, 

and this phenomena appear to be increasingly in duration and severity over time. 

This would favour the dominance of cyanobacterial species as opposed to other 

species of algae, as the ability to shift between nutrient rich waters below the 

thermocline would give the two species a massive advantage. Johnston & Jacoby 

(2003) found that Microcystis populations were 2-10 times higher in vertical 

migration rates in shallower lakes (≥ 10 m) than deeper lakes. Lake Rotokare is 

small and shallow (Figure 1.2) and has very few external sources of mixing due to 

its position in the middle of a valley surrounded by dense native forest, therefore, 

the summer water column would remain highly stable. The data from the dissolved 

oxygen-temperature analysis of the lake over successive years and months 

(December-February) supports this idea, as the water column shows extreme 

stratification and detachment of oxygen enriched surface waters from lower anoxic 

layers. This is likely to become worse in the future, as climate change is only going 

to further exacerbate this process, with cyanobacteria having both the physiological 

and physical factors to exploit warming climates, leading to the persistence and 

duration of blooms in the future (O’Neil et al., 2012; Paerl & Paul, 2012). 
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The average concentration of dissolved oxygen in the bottom water was 5.9 

mg L-1, with 20% of those values falling below ≤ 1 mg L-1 (Verburg et al., 2010). 

These results ranged from 0.3-2.1 mg L-1 in summer, suggesting Lake Rotokare is 

one of the most deoxygenated lakes in the country during the summer period. When 

stratification was not present in samples however, the average became 7.3 mg L-1, 

and Rotokare was above this with an average of 7.56 mg L-1. Low concentrations 

of dissolved oxygen in the hypolimnion can accelerate the flux of nutrients from 

lake sediments, resulting in a positive feedback loop, accelerating eutrophication 

(Verburg et al., 2010).  

 

The lake also has several species of invasive aquatic plants; with a large section of 

the lake being colonized by Lagarosiphon major, a species of exotic oxygen weed. 

Invasive plant communities have been shown to reduce the recovery time of lakes 

significantly due to the uptake and release cycle of nutrients, limiting the release of 

nutrients out of the system (Kufel & Kufel, 2002). Furthermore, the presence of 

perch in the lake can act as a control mechanism on zooplankton through predation; 

this coupled with climate change set to favour the ontogenic plankti-benthivorous 

life stage; resulting in favourability for increased algal growth (Jeppesen et al., 

2008). 

 

There is minimal water movement between systems within and outside of the lake. 

The lake inflow remains low year-round, with lake inflow being restricted to one 

stream inlet and a few ephemeral streams appearing during high rainfall events. The 

lake outflow varies, with a mean annual flow of 50 L s-1, with a mean annual low 

flow of 3 L s-1, a relatively low rate of movement. This would lead Lake Rotokare 

to have a very long retention time, and this coupled with the fact the basin of the 

lake is located in is sheltered by dense forest cover and minimal fetch would 

contribute to decreasing the rate at of removal of these nutrients from the lake. 

Therefore the retention time of phosphorus in Lake Rotokare could potentially be 

massive.  

 

The TLI indicates the lake is likely eutrophic, the TLI 4 score of 4.12 considered 

eutrophic by national, standards, and was above the national average of 3.8 

(Verburg et al., 2010). The TLI 3 score between February (4.54) and December 

(3.71) indicated a different outcome. Surface TN levels between February and 
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December 2017 were significantly different (Feb = 582.1 mg L-1 vs. 110 mg L-1) 

causing the differences in scores. December’s TLI 3 value falls below the national 

average TLI score of 3.8. However, caution should be stipulated here, as the TLI 4 

value reflects a more accurate assessment (Burns et al., 1999), falling between the 

two TLI values - suggesting the TLI 4 value best represents lake quality. Therefore, 

with the limited data available it is likely the lake would be considered eutrophic. 

The TLI is a highly useful tool for lake management approaches in New Zealand, 

and it is a common and cheap method of monitoring the general decline-

improvement ratio of the lake and to quickly assess changes and trends of 

eutrophication in lakes over time (Burns et al., 1999). There are great variations in 

the annual fluctuations of TN, TP and Secchi among lakes. Therefore, it is important 

to consider further TLI studies are necessary, in order to compensate for seasonal 

variation and obtain an accurate TLI representation of the lake. 

 

Both TN and TP are in high levels and both are attributable to phytoplankton growth 

in lakes. There are rigorous arguments for both N and P being the limiting factor 

for controlling phytoplankton biomass, thus leading to different outcomes for 

controlling eutrophication of lakes. Schindler et al., (2008) used a 37-year study on 

a large lake system in Canada, concluding that P-reduction would be the best source 

of action in managing lake eutrophication. Other arguments (as previously 

mentioned above) include the role of cyanobacterial N fixation likely making up N 

deficits in lake systems (Burger et al., 2007; Carpenter, 2008; Patterson et al., 2011; 

Muller & Mitrovic, 2014). The proliferation of N-fixing cyanobacteria is often 

associated with the presence of anoxia in bottom waters, which enhances both P-

release from bottom sediments and N losses from denitrification (Downing & 

McCauley 1992; Smith 2003; Dodds et al., 2002; Ma et al., 2015); resulting in low 

water column N:P ratio (Bergstrom et al., 2015). Our results support the theory this 

lake is driven by the availability of phosphorus. It should be noted however that 

surface TN and NH4 where high. Ultimately both elements are needed in abundance 

to supply the building blocks necessary for sustaining enhanced phytoplankton 

production (Douglas et al., 2016), therefore, it is likely remedial action for lake 

nutrient loads will require a multi-targeted approach.  

 

https://link.springer.com/article/10.1007%2Fs10452-016-9575-2#CR23
https://link.springer.com/article/10.1007%2Fs10452-016-9575-2#CR109
https://link.springer.com/article/10.1007%2Fs10452-016-9575-2#CR49
https://link.springer.com/article/10.1007%2Fs10452-016-9575-2#CR155
https://link.springer.com/article/10.1007%2Fs10452-016-9575-2#CR38
https://link.springer.com/article/10.1007%2Fs10452-016-9575-2#CR96
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 Conclusion 

Without proper management the condition of Lake Rotokare will likely show no 

improvement. Temperature-mediated phosphorus release from the sediment (which 

we can presume is highly enriched due to 2017 results) will likely increase in the 

future. This would lead to higher levels of TP in the lake bottom water column; this 

coupled with increasing hypolimnetic anoxia being driven by climate warming, 

may further drive lake eutrophication by enhancing internal loading of nutrients 

from the sediments (Adrian et al., 2009). The retention time of the lakes’ water will 

also likely make management options difficult with internal phosphorus loads 

unable to be removed from the lake. There are limited options available for restoring 

lake quality; one potential option could be the use of Alum – a substance used to 

lock up phosphorus, leaving it unable to be recycled into the water column. 

 

The lake will likely see further stratification in the future and the persistence of 

cyanobacterial algal blooms during summer. While external sources of N and P 

have been removed, the damage may well have already been done with past nutrient 

loads being sufficient to cause issues well into the future. There is reason to be 

optimistic however, as PO4 levels have significantly dropped. Nutrient sampling 

during winter would be a useful start to gaining a better understanding of the lakes 

water quality, given the fact that full nutrient mixing in the water column will have 

likely occurred by June (due to the breakdown of the thermocline). This would give 

better insights into Lake Rotokare nutrient loading, and better inform stakeholders 

on how improvement could be made in the future. Continuation of monitoring the 

lakes Trophic Level Index score would be useful for stakeholders to monitor change 

in lake conditions.  
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3 Chapter 3: Abundance and frequency of 

fish 

 Introduction 

New Zealand freshwater fish populations remain under constant strain nationwide, 

due to a variety of natural and anthropogenic influences. In total, 77 species of 

freshwater and estuarine fish are present in New Zealand; of these, 54 species of 

taxa are currently listed as resident native species. At present, 40 (74%) of the 54 

native fish species are considered to be ‘Threatened’ or ‘At Risk’ (Goodman et al., 

2013). Endemic galaxiids are particularly vulnerable, dominating the ‘Threatened’ 

and ‘At Risk’ categories, with minimal signs of improvement (Allibone et al., 2010). 

 

Previous studies undertaken by the Taranaki Catchment Commission (a regional 

government branch absorbed into the Taranaki Regional Council) between 1977 

and 1980 established that shortfin eel (Anguilla australis) and European perch 

(Perca fluviatilis) populations were present Lake Rotokare. Subsequent research by 

other parties has also established the presence of two fish species, the longfin eels 

(Anguilla dieffenbachii) and banded kokopu (Galaxias fasciatus). Addiitionally, the 

National Freshwater Fish Database was incorporated into this study, which 

determined two species of crustaceans were discovered within the lake; kōura 

(Paranephrops planifrons); a native species of crayfish and Paratya curvirostris, a 

species of freshwater shrimp (Crow, 2017). 

 

In New Zealand shortfin eels and banded kokopu are currently classified as not 

threatened according to New Zealand’s threat classification system (Goodman et 

al., 2013). This is primarily because shortfin eels have exhibited nationwide 

increase in overall abundance between 1977 and 2015; with a 0.35±0.09% (95% 

confidence interval limit) increase in abundance annually (Crow et al., 2016). 

Comparatively, longfin eels show an overall national decline in relative abundance 

of 0.09±0.08% annually (Crow et al., 2016). Longfin eels are now allocated as a 

species at risk (Goodman et al., 2013). In a localized context, little information 

exists on the current status of fish populations residing in Lake Rotokare; there is 

minimal data on population sizes, recruitment, and fish density. Thus quantifying 

population dynamics of the perch, longfin and shortfin eels in Lake Rotokare is 
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critical in understanding the ecological dynamics, giving stakeholders the ability to 

enhance the quality of the lake, through the decrease or removal of perch. 

 

The morphology and behaviour of perch have been shown to influence the 

population dynamics and community structure in lakes (Cotterill, 2016). In 

particular, perch have been linked to declines in water quality through the juvenile 

predation on zooplankton that help regulate algal growth (Hicks et al., 2013; Collier 

& Grainger, 2015; Cotterill, 2016). Therefore, removing the perch in Lake Rotokare 

could improve and enhance water quality. They have also been implicated in 

multiple declining freshwater fish populations (Cadwaller & Backhouse, 1983; 

McDowall, 1996; Ludgate & Closs, 2003). For example, the introduction of perch 

into Lake Ototoa, Auckland, led to a massive reduction in kōura and common bully 

abundance (Collier & Grainger, 2015). Furthermore, īnanga (Galaxias maculatus) 

and smelt (Retropinna retropinna) were both absent in a northern New Zealand 

dune lake dominated by perch even though the lake was readily accessible for both 

species (Rowe, 2007). Therefore, removal or reduction of perch biomass within the 

lake may also serve to significantly enhance endemic fish populations.  

 

In response to the current lack of knowledge around fish population dynamics 

within Lake Rotokare, this study aims to assess the relative abundance of banded 

kokopu and perch; and absolute abundance of longfin and shortfin eels. It also aims 

to obtain length-weight relationships and length-frequency data for perch, longfin 

and shortfin eels.  This study will produce quantitative data on the fish community 

residing in Lake Rotokare, and offer fisheries managers baseline information 

necessary to create management action plans. 
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 Methods 

3.2.1 Ethics statement 

All animal work was conducted in accordance with national and university 

guidelines to minimize discomfort to animals, and the State of Practice (SOP) 6 was 

adhered to throughout the duration of the project. As the project’s field work was 

directly supervised by a technician trained and qualified to administer the 

anaesthetic benzocaine, the ethics committee chair decided that there were no 

requirements for ethics approval.  

 

3.2.2 Fish surveys 

In order to achieve a proper representative sample of the local fish population, 

several methods of capture were utilized to obtain adequate samples and are 

described in detail below. 

 

3.2.3 Electrofishing 

The University of Waikato currently has the only working electrofishing boat in 

New Zealand, allowing for effective fishing at night time. Hicks et al. (2007) 

discovered night time electro boat fishing yielded much greater catch rates of perch 

when compared against daytime sampling. A custom-made electrofishing boat was 

brought on location to survey the lake. The boat consists of a 4.5 m-long, 

aluminium-hulled electrofishing boat, with a 5-kilowatt pulsator (GPP, model 5.0, 

Smith-Root Inc, Vancouver, Washington, USA). The pulsator is powered by a 6-

kilowatt custom-wound generator. Two anode poles, each with six stainless steel 

droppers, creates the fishing field at the bow, with the boat hull acting as the cathode 

(Hicks et al., 2006). This essentially paralysed the fish in such a way that the current 

causes nearby fish trapped within the field to swim towards to origin point, 

rendering them vulnerable to capture. 

 

The measured conductivity was then used to calculate the settings on the GPP, 

which resulted in the lake being fished with the GPP set to low range (50-500 V 

direct current), and a frequency of 60 pulses per second. The GPP was then adjusted 

to 65% of range, giving an applied current of 3.5-amp root mean square, identical 

to that used by Hicks et al. (2013) during their survey. Due to the Lake Rotokare’s 



  

59 

depth profile (Figure 1.2) and previous sampling on the lake, we determined that an 

effective fishing field would require a depth of 2-3 m, with the anode poles roughly 

2 m either side of the centre line of the boat. This equates to a transect roughly 4 m 

wide. This assumption was used to calculate total area fished. 

 

Surveying occurred between 20:30–23:00 h on February the 21 and 22, 2017. Night 

time was selected as the most effective sampling period, due to Hicks et al. (2013) 

finding of a 16-fold increase in perch capture rates at night-time, when compared 

to daytime sampling.  A total of ten sites were originally fished; however, due to a 

change in sampling methods (switching from mark-recapture to single pass 

electrofishing) part way through, only seven sites in Lake Rotokare were fished and 

weight/length values collected (Figure 3.1). This was due to the realization of a 

mark-recapture project for perch being unfeasible – given the population size. The 

total length fished was 1390 m, and the total area of the lake fished was 5560 m-2.  

 

 
Figure 3.1: Night-time boat electrofishing tracks. Night-time boat electrofishing occurred 
on 21-22 Feb 2017. 
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Fyke netting & mark-recapture 

Fyke-nets are generally an effective fish sampling technique in shallow areas of 

ponds lakes and reservoirs, with benthic, cover seeking, mobile species being most 

susceptible to capture. In order to estimate the abundance of shortfin and longfin 

eels within Lake Rotokare, we set out a series of 15 m fyke nets with 5 m wings at 

indeterminate intervals around the edge of the lake to obtain mark-recapture data 

on both species. The placement of the nets was not predetermined due to limited 

availability of potential placement locations, primarily because of fragile floating 

plant matter surrounding the lake edge. This caused a failure of the posts used to 

secure the fyke nets to the substrate, therefore limiting the amount of suitable 

netting locations greatly.  

 

A total 22 nets were set out overnight around the lake (Figure 3.2) between 

1600–18:00 h and collected at 09:00 h the following day. This timeframe was 

chosen to allow for the slow moving benthivorous eels to have sufficient time to 

come into contact with the nets. This occurred over successive days on 8-9 February, 

and again on 21-23 February. Fish were then collected and brought back to shore, 

to record weight/length measurements, and mark individuals by removing their left 

pectoral fin for their subsequent release. The same process was repeated each 

evening and morning; where marked eels were evaluated against unmarked 

individuals until sufficient data was obtained to quantify the absolute abundance of 

both species. Population estimates (N) were made based on the adjusted Chapman 

method (Ricker 1975), which uses the total number of fish originally marked (M), 

the total number caught during recapture (C), and the number of those fish marked 

that were recaptured (R), as follows: 

 

N = (M +1)(C + 1) 

   (R + 1)-1 
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Figure 3.2: Fyke net locations for the 22 fyke nets set out around the edge of Lake Rotokare 
between 8-9 Feb 2017, and 21-23 Feb 2017.  

 

 

3.2.4 Gill netting 

Gill-nets are vertical walls of netting generally set out in a straight line (Kane, 1995). 

Most often fish are captured swimming part way through the net, causing the net to 

slip behind the opercula, or become entangled by their spines fins or other body 

protrusions. The size selectivity of various mesh sizes is a problem in gill net 

sampling (Kane, 1995). Perch, the species targeted for gill-netting in Lake Rotokare 

have a wide size distribution (Hicks et al., 2013). To overcome this we selected two 

mesh sizes; 18 mm, and 25 mm (stretched); small mesh sizes were determined to 

most effectively sample smaller perch size classes. Nets were set out in February 

and June 2017, to determine CPUE for perch. February netting, undertaken on 21 

February, consisted of six nets set at a mixture of depths at various points (Figure 

3.3), with two nets set in each lake arm for two hours between 15:00-17:00 h. Issues 

with net 6 sinking below the lake’s summer thermocline occurred, and this resulted 

in no catch due to insufficient oxygen requirements, thus, this net was discarded 

from the results. The final nets set in February (n = 5), were primarily used to 
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determine if the net size was sufficient for further use, and to establish baseline 

biomass and CPUE values.  

 

Winter netting was more thorough. Between June 7 and June 8, 2017 eight nets (4 

x 18 mm, 4 x 25 mm) were set for 1.5 hours between 13:00 – 14:30 h and 10:45-

12:00 h at various points in the lakes centre (Figure 3.2) at depths greater than 5 m. 

This was possible due to the breakdown of stratification of the epilimnion and 

hypolimnion in winter, with oxygen mixing occurring in the lake’s bottom water 

(Figure 2.2); 10 nets (5 x 18 mm, 5 x 25 mm) were set around the littoral zone 

(Figure 3.4). This data was collected to compare summer to winter size classes, and 

CPUE ratios. It also gave a comparison between perch population dynamics 

between littoral perch populations and perch inhabiting deep regions of the lake. 

 

 
Figure 3.3: Summer gill net locations for 6 nets set around Lake Rotokare on 21 Feb 2017. 
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Figure 3.4: Gill netting locations in Lake Rotokare for littoral and deep zone set nets on 8-
9 Jun 2017. 

 
 

3.2.5 Spotlight counting 

To estimate banded kokopu relative abundance, we surveyed both the outlet and the 

inlet (Figure 3.3) of Lake Rotokare on 8 June 2017; and again on 19 December 

2017. McCullough and Hicks (2002) found fish were less disturbed by approach 

after dark, suggesting that from dusk to 22:00 h is the best time for visual counts of 

banded kokopu by spotlight in summer months. We followed these 

recommendations, with spotlight counting undertaken at night between 20:30 and 

22:00 h. The stream was illuminated with an Airtech RT500 spotlight and three 

head mounted spotlights. 80 m of stream was sampled for the outlet, and 100 m of 

the inlet was sampled in June. 80 m was repeated in December; however, one 

branch of the tributary had disappeared due to low water flow. Fish were visually 

measured for length, with efforts to measure more accurately with rulers where 

possible. However, as the terrain was difficult to navigate and often the usage of 

rulers spooked the fish into hiding, this method was rarely used. Banded kokopu 

were split into two classes; juveniles (≤ 70 mm), and adults (> 70 mm), while kōura 

were kept as a single class for visual observation.  



  

64 

 
Figure 3.5: Spotlight tracks for banded kokopu counts on Lake Rotokare inflow (left), and 
outflow (right). Sampling occurred on 8 Jun 2017 and 19 Dec 2017.  

 

 

3.2.6 Weight-length relationships 

Weight-length relationships were determined using data obtained from fyke netting, 

gill netting, and boat electrofishing. After fish were captured, eels were anesthetized 

using benzocaine and subsequently weighed (g) and measured (mm) on site, then 

released once the fish had revived. Perch were also weighed and measured. As this 

species is considered an invasive pest within Lake Rotokare, perch were prohibited 

from being released into the lake. Instead these fish were frozen and returned to the 

University of Waikato for later analysis.  

 

 Results 

3.3.1 Catch rates 

A total of 1498 fish were caught from Lake Rotokare in February 2017 by fyke 

netting, gill netting, and boat electrofishing (Table 3.1). A further 542 fish were 

caught in June 2017 by fyke netting and gill netting (525 perch, 10 shortfin eel, 7 

longfin eel; Appendix 1). The fish capture consisted of four different species (Table 

3.1). Perch consisted of over 80% of the total catch from within the lake, with both 

species of eels adding smaller contributions (shortfin = 12%; longfin = 6.7%), 

banded kokopu were found within the lake, but only a few fish were found during 

electrofishing (0.3%). 
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Table 3.1: Species, frequencies and proportion of catch for all fishing methods on 8-23 
Feb 2017. Blank cells indicate no catch. 

  Number of fish Proportion of  
Species Fyke net Gill net Electrofishing Total Catch (%) 
Perch 110 210 897 1217 81 
Shortfin 163   13 176 12 
Longfin 100   1 101 6.7 
Kokopu     4 4 0.3 
Total 373 210 915 1498   

 

 

The average perch length varied between sampling methods (Table 3.2), 

electrofishing was biased towards capturing smaller fish, with the lowest average 

weight (19.6±1.5 g) and length (101.9±2.1 mm) values (± represents 95% 

confidence interval limits) of the three capture methods. Gill netting was biased 

towards larger perch with the largest length-weight averages; fyke netting values 

were intermediate, with middle length-weight values, and a larger confidence 

interval range (Table 3.2). With low catch rates and a bias towards smaller eels, 

boat electrofishing poorly represented both shortfin and longfin eel populations 

(Table 3.2). Overall, fyke netting was the most accurate method for sampling, with 

diverse size ranges and high catch rates (longfin n = 76; shortfin n = 116). The 

average lengths of longfin eels were significantly different (p < 0.05) from shortfin 

eels, however, when comparing length values against weight it was clear there were 

real discrepancies between species in weight; longfin eels were on average over 3 

times larger than shortfin eels (Table 3.2). 
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Table 3.2: Mean length-weight values for each fishing method used to capture four 
fish species sampled in Lake Rotokare from 8-23 Feb 2017. Confidence interval 
levels set at 95%. Blank cells represent zero catch. 

  Electrofishing (N = 701)   Fyke net (N = 81)   Gill net (N = 210) 
Perch Length (mm) weight (g)   Length (mm) weight (g)   Length (mm) weight (g) 

mean 101.86 19.63   121.95 37.59   163.73 67.27 
std. dev 28.18 20.61   46.01 42.96   18.44 32.99 
CI 2.09 1.53   10.02 9.35   4.04 7.19 
  Electrofishing (N = 4)   Fyke net   Gill net 
Kokopu Length (mm) weight (g)   Length (mm) weight (g)   Length (mm) weight (g) 

mean 49 0.93             
std. dev 2.74 0.20             
CI 2.68 0.20             
  Electrofishing (N = 1)   Fyke net (N = 76)   Gill net 
Longfin Length (mm) weight (g)   Length (mm) weight (g)   Length (mm) weight (g) 

mean 900 2480   756.92 1838.89       
std. dev       211.14 1628.55       
CI       47.47 366.14       
  Electrofishing (N = 13)   Fyke net (N = 116)   Gill net 
Shortfin Length (mm) weight (g)   Length (mm) weight (g)   Length (mm) weight (g) 

mean 195 16.11   644.91 659.85       
std. dev 67.96 16.40   126.81 398.36       
CI 36.94 8.917   23.08 72.49      

 

 

Between sampling seasons there was significant variation between all sampling 

periods; February 2013 and February 2017, and June 2017 for perch average length 

and weight values (Table 3.3). June 2017 had the largest size group of perch caught, 

however, this was influenced by a single large perch (433 mm; 1658 g). Shortfin 

values were not significantly different between seasons in 2017, but were 

significantly different in February 2013 compared to the 2017 sampling seasons 

(Table 3.3). This difference is likely due to electrofishing being the only sampling 

method used by Hicks et al. (2013). Additionally, longfin eels lacked sufficient data 

in 2013 to make an accurate assessment, however, there was no meaningful 

difference between length and weight averages for February and June 2017, with 

confidence intervals overlapping between seasons.  
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Table 3.3: Summary of the size and number of each fish species captured within lake 
Rotokare through combined fishing methods by (A) Hicks et al., (2013); 9–10 Feb 2013, 
(B) Smith; Feb 8-23 2017 & (C) Smith; 7–11 Jun 2017. 
    number 

caught 
Length (mm)   Weight (g) 

  Species Range Mean (±95% CI)   Range Mean (± 95% CI) 
A. Perch 217 74 - 313 135 ± 5.96   4.6 - 553 45 ± 8.54 
  Shortfinned eel 16 82 - 748 447.5 ± 98.82   7 - 915 272.8 ± 73.20 
  Longfinned eel 1 1126     2582.2   
  Banded kokopu             
                
B. Perch 992 66 - 286 116.6 ± 2.35   4 - 423.8 31.2 ± 2.02 
  Shortfinned eel 129 105 - 995 599 ± 31.97   1.8 - 2323.4 595 ± 74.26 
  Longfinned eel 77 328 - 1200 758.8 ± 48.07   87 - 7253 1847.2 ± 370.01 
  Banded kokopu 4 46 - 53 49 ± 5.03   0.6 - 1.1 0.9 ± 0.38 
                
C. Perch 525 108 - 433 162.55 ± 2.92   18 - 1658 75.65 ± 8.47 
  Shortfinned eel 11 525 - 692 619.5 ± 32.03   313 - 875 561.6 ± 111.04 
  Longfinned eel 7 610 - 1110 792.49 ± 168.24   675 - 5192 2143.57 ± 1444.29 
  Banded kokopu             

 
 
The total weight of fish captured was 377.9 kg. Fyke netting contributed the largest 

volume of weight to fish biomass (Table 3.4). It was 19.6 times greater than total 

weight of fish captured by boat electrofishing, and 8.1 times greater than gill netting. 

This is almost exclusively due to the fyke nets selectivity towards eel capture; with 

longfin eels having an average weight value 59 times greater than perch, and 

shortfin having an average weight value 19.1 times greater (Table 3.2). Gill netting 

contributed a larger portion of perch weight than boat electrofishing (3 times greater; 

Table 3.4). This further shows size selectivity of sampling techniques as the number 

of perch caught between techniques was much larger for boat electrofishing with 

491 fish more fish caught (Table 3.2).  

 

Table 3.4: Total weight of eels, perch and kokopu caught by each method separately and 
by all methods combined from Lake Rotokare from 8-23 February 2017. (Juvenile kokopu 
were also sampled with a total boat electrofishing weight of 3.7g but are not represented 
due to such a small sample size). 

  Total fish weight (kg) 
Capture method Longfin Shortfin Perch Total 
Electrofishing 2.480 .21 13.76 16.45 
Gill Netting   39.72 39.72 
Fyke Netting 208.27 112.06 1.39 321.72 
total (kg): 210.75 112.27 54.88 377.90 

 

3.3.2 Electrofishing 

Boat electrofishing for 100 minutes captured 915 fish. Few eels were sampled in 

the 10 runs undertaken (shortfin N = 13; longfin N = 1). It should be noted that eel 
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capture rates are underestimated due to the fact eels were considered a bycatch of 

fishing, due to the primary focus of sampling on perch capture. Electrofishing was 

most successful for targeting perch (as mentioned above) with a total of 915 perch 

captured during fishing (702 with site 1 & 2 removed). Perch capture rates varied 

between sites, sometimes greatly (i.e. Site 7 vs 9). Juvenile kokopu were also found 

during boat electrofishing; we did not anticipate finding kokopu residing within the 

lake, so this was an unexpected find (Table 3.5).  

 

Table 3.5: Catch per unit of effort of the number of fish caught in 10 minutes at each site 
by boat electrofishing over the period of 21-22 Feb 2017. Blank cells indicate zero catch. 

  
Length 

fished (m) 
Area 

fished (m-2) 

    Number of fish caught 

Site Date 
Time 
(h) Shortfin Longfin Perch Kokopu Total 

3 161 277 21-Feb-17 2200     70   70 
4 161 183 21-Feb-17 2220     111 1 112 
5 153 2355 21-Feb-17 2240     73   73 
6 106 248 22-Feb-17 2105 2 1 70   73 
7 133 420 22-Feb-17 2131     51   51 
8 137 1917 22-Feb-17 2155 5   82   87 
9 116 147 22-Feb-17 2215 5   154 3 162 
10 148 74 22-Feb-17 2230 1   90   91 
Total 1116 5623     13 1 701 4 719 

 

 

Density was measured as fish per 100 m-2. Density of fish was negligible for all 

species except for perch (< 1 fish per 100 m-2). Perch density varied between sites 

(9.57-33.24 fish per 100 m-2), with an average density of 16.55 per 100 m-2. Sites 3 

and 7 had low perch densities; whereas sites 2, 4, and 9 showed high density rates 

(refer to Figure 3.1 for site location). Overall, perch density was consistently high 

(Table 3.6). 

 
Table 3.6: Density of fish caught by boat electrofishing in Lake Rotokare on 22-23 Feb 
2017 using the fixed-time electrofishing method (10 minute shots). 

  Length 
fished 

(m) 

Area 
Fished 
(m-2) 

     number of fish-1 100 m-2 

Site Date Time Shortfin Longfin Kokopu Perch Total 
1 152 606 21-Feb-17 2042 0.00 0.00 0.00 16.49 16.49 
2 123 491 21-Feb-17 2122 0.00 0.00 0.00 19.54 19.54 
3 161 644 21-Feb-17 2200 0.00 0.00 0.00 10.87 10.87 
4 161 644 21-Feb-17 2220 0.00 0.00 0.16 17.24 17.40 
5 153 613 21-Feb-17 2240 0.00 0.00 0.00 11.90 11.90 
6 106 423 22-Feb-17 2105 0.47 0.24 0.00 16.55 17.26 
7 133 533 22-Feb-17 2131 0.00 0.00 0.00 9.57 9.57 
8 137 550 22-Feb-17 2155 0.91 0.00 0.00 14.91 15.82 
9 116 463 22-Feb-17 2215 1.08 0.00 0.65 33.24 34.97 
10 148 593 22-Feb-17 2230 0.17 0.00 0.00 15.19 15.36 
Total: 1390 5560   Average: 0.26 0.02 0.08 16.55 16.92 
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Biomass values were estimated by obtaining the average weight of each species at 

each site, and multiplying by the number of fish caught then dividing against area 

of distance fished (biomass as grams per metre). Biomass varied greatly between 

sites with the exception of the single longfin eel captured (site 6; refer to Figure 3.1 

for site location) during sampling skewing the value upwards (Table 3.7). Averaged 

out longfin eel, shortfin eel, and banded kokopu remained low (< 1 g per metre 

squared). Shortfin eel biomass remained consistent between sites 6 to 10. Banded 

kokopu varied significantly between the two sites captured; 0.02–1.42 g m-2. 

Comparatively, perch had a high biomass compared to the other species, averaging 

at 12.3 g m-2 and there was little variation between sites, with one exception; site 3. 

 

Table 3.7: Biomass by area of fish caught estimated from fish caught during boat 
electrofishing in Lake Rotokare at the 7 sampling sites with recorded weight values on 21–
22 Feb 2017. 

  
Length 

fished (m) 

Area Biomass g m-2 

Site 
Fished 
 (m-2) Longfin eel Shortfin eel Perch Kokopu Total 

3 161 644 0.00 0.00 6.78 0.00 6.78 
4 161 644 0.00 0.00 10.89 0.00 10.89 
5 153 613 0.00 0.00 11.43 0.00 11.43 
6 106 423 5.86 0.19 16.57 0.00 22.62 
7 133 533 0.00 0.15 13.16 0.00 13.31 
8 137 550 0.00 0.15 12.75 0.00 12.90 
9 116 463 0.00 0.17 15.13 1.42 16.72 
10 148 593 0.00 0.14 11.83 0.00 11.97 
Average 139 558 0.73 0.10 12.32 0.18 13.33 
Total 1116 4462 5.86 0.80 98.54 1.42 106.62 

 

3.3.3 Gill netting capture rates and biomass 

A total of 735 perch were caught between February (N = 210) and June (N = 595) 

2017. A total of 276 m of gill net were set for a total of 25.5 hours. Catch per unit 

effort (CPUE) was expressed as the number of fish per metre per hour of fishing; a 

measurement of the relative abundance of perch within the lake. Catch rates were 

consistently highest in 18 mm mesh sizes, and CPUE was larger in winter compared 

to summer (Table 3.8). 
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Table 3.8: Capture rates for 18 and 25 mm gill nets for perch caught in Lake Rotokare 
between 22 Feb 2017 and 7-8 Jun 2017. 

Catch per unit effort (fish h-1 m-1 net set-1) 
Summer Perch Total length of net (m) 
18 mm 4.500 18 
25 mm 2.000 12 
Winter     
18 mm 4.728 54 
25 mm 4.222 54 
Combined     
18 mm 4.614 72 
25 mm 3.111 66 
All sites combined 3.863 276 

 

 

Relative fish abundance varied greatly between sites (Table 3.9), especially in 

summer with values ranging from 0.83–9.58 between sites. In summer site 2, 3, and 

4 had low abundance rates. Site 5 had a CPUE value close to the combined gill net 

CPUE (Table 3.9), and the highest perch capture rates were recorded at site 1. 

Winter CPUE rates increased, with two sites from littoral netting showing almost 

non-existent catch rates (sites 3 and 6), and two deep (sites 4 and 7). Littoral zone 

gill nets had greater catch rates in general then other sampling regions, with half the 

sites CPUE values above the average mean (3.863). Deep zone CPUE were low in 

general, with exception to nets 1, 2, and 8, which were primarily in the lake’s 

eastern arm (Figure 3.2). Overall, it appears that the western arm of the lake had the 

highest catch rates of perch, with higher CPUE yields recorded for all netting 

sessions (Table 3.9).  

Table 3.9: Mean catch rates (CPUE) of perch caught with 6 m long (18-25 mm mesh size) 
gill nets in Lake Rotokare at the 23 sampling sites between 22 February and 7-8 June 2017. 
Mixed nets set (N = 5), Littoral nets set (N = 10), and deep nets set (N = 8). 

  fish h-1 m-1 net 

  Summer Winter 
Site Mixed Littoral Deep 
1 9.58 2.22 4.67 
2 1.42 4.78 3.56 
3 2.33 0.56 2.33 
4 0.83 2.89 0.11 
5 3.33 5.78 3.11 
6 0.00  0.11 3.22 
7   5.78 0.22 
8   3.44 4.44 
9   5.33   
10   5.89   
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Biomass results varied between sites (Table 3.8). Biomass and catch rates did not 

align in many cases (Tables 3.7, 3.8). Site 1 in summer had the highest catch rate 

of any net, yet a comparatively low biomass yield compared to littoral winter 

sampling. Deep set nets had low biomass values when compared to the yields 

littoral set nets in winter, which had much greater biomass, probably due to the 

larger number of fish caught (N = 325). Overall, the summer average gill net 

biomass was almost half that of deep set nets in winter, and 3 times lower than 

littoral set nets in winter. Total biomass results for summer were negligible 

compared to winter, 3 times lower than deep set nets and 6 times lower than littoral 

set nets. This could be attributed to the growth time between sampling seasons the 

perch, with an increase in the density of larger individuals in winter compared to 

summer. 

 
Table 3.10: Biomass CPUE estimation of perch caught during 2 hour sets by gill 
netting in summer; 21 Feb 2017, and 1.5 hour sets in winter; 7-8 Jun 2017. 

  biomass g m-1 net -1 

  Summer    Winter 
Site Mixed   Site Littoral   Site Deep water 
1 2.26   1 1.35   1 2.04 
2 0.16   2 4.25   2 2.81 
3 0.71   3 0.26   3 1.02 
4 0.26   4 1.00   4 0.60 
5 0.63   5 4.06   5 1.77 
6     6 0.06   6 0.80 
7     7 5.12   7 0.99 
8     8 2.79   8 2.04 
9     9 2.93   9   
10     10 4.02   10   
Total 4.02     25.84     12.07 
Average 0.80     2.58     1.51 

 
 

3.3.4 Fyke nets 

Fyke nets were set overnight at least twice, with average sitting time of 16.3 hours 

per night at each of the 23 sampling sites, giving a total of 1059.5 hours.  Fyke net 

CPUE is expressed simply as fish caught per night, per net set. Catch rates varied 

greatly between species and sites. Perch capture rates were low, with 9 out of 23 

nets recording no perch during any sampling set. Other sites mostly had low capture 

rates; with the exception to site 2, 10, and 21 which had at one night of high perch 

yields (≥10 fish). Eel capture rates also varied between sites, with shortfin eels 

having the overall highest capture rates, with 0-15 shortfin eels captured per night. 
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Longfin eel capture rates were similar in variability to shortfin catch rates, with 

between 0-12 individuals captured per night. Sampling site 21 had the highest catch 

rate (N = 40), site 23 had the lowest yield, with one longfin eel caught over a period 

of two nights (Table 3.11). 
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Table 3.11: Average catch rates (CPUE) of fish caught per day with fyke nets in Lake Rotokare at the 23 sampling sites between 8-23 Feb 2017 
(Three sampling nights occurred on: Night 1: 8-9 Feb; Night 2: 21-22 Feb 2017; Night 3: 22-23 Feb 2017). 

  Night in 
water 

Fish per night-1   Night in 
water 

Fish per night-1 
Site Shortfin Longfin Perch Total Site Shortfin Longfin Perch Total 
1 1     1 1 12 1       0 
1 2     3 3 12 2   1   1 
1 3 1 4 6 11 13 1 3 7 1 11 
2 1 5 1 21 27 13 2   1   1 
2 2 6 3   9 13 3 2   1 3 
2 3 1 1   2 14 1   3   3 
3 1   1 7 8 14 2 5   5 10 
3 2       0 14 3 4 1   5 
3 3   1   1 15 1 1 10   11 
4 1   1   1 15 2 3 2   5 
4 2 2     2 15 3       0 
4 3       0 16 1     6 6 
5 1       0 16 2   1 4 5 
5 2 3     3 16 3 2 1 4 7 
5 3 1   1 2 17 1 3     3 
6 1 8 2   10 17 2 2 1   3 
6 2 10 1   11 17 3       0 
6 3 2 2 6 10 18 1 6     6 
7 1 3   2 5 18 2       0 
7 2 3     3 18 3     1 1 
7 3 1 1 4 6 19 1 2 9   11 
8 1 4     4 19 2 7 5 1 13 
8 2 5 1   6 19 3       0 
8 3 2 1   3 20 1 7     7 
9 1 4 1   5 20 2   1 1 2 
9 2 8     8 20 3 3 3   6 
9 3 10   2 12 21 2 13 12 15 40 
10 1     18 18 21 3       0 
10 2 1 5   6 22 2 1     1 
10 3 5 7   12 22 3 4 2   6 
11 1 4     4 23 2 3 8   11 
11 2 1     1 23 3 1 2   3 
11 3 2     2             
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3.3.5 Mark-recapture 

114 shortfin and 69 longfin eels were captured during fyke netting over the period of 21-23 February 2017 (Table 3.12). Mark-recapture 

return rates were high for longfin eels (25%; 17/69 recaptures) and low for shortfin eels (5%; 6/114 recaptures). Absolute abundance 

values for shortfin eel estimates the population at 853, and the longfin population at 143 (Table 3.12). Biomass (kg) per hectare was 

also calculated at 31.4 kg ha-1 for shortfin, and 14.8 kg ha-1 for longfin eels. In total shortfin eels contributed 560 kg to the lake biomass 

(69%) and longfin contributed 263 kg (31%). 

 

Table 3.12: Eel abundance estimates based of the modified Chapman method (Ricker, 1975) mark-recapture method within Lake Rotokare. 
Biomass per hectare estimations are also included. Estimated from fyke net data collected on 22-23 Feb 2017. 

 
 

Lower 95% 
CL

Upper 95% 
CL Estimate

Lower 
95% CL

Upper 
95% 
CL

Shortfin eel 51 114 6 0.05 853 1 424 1867 Poisson 656.1 272.3 560 31.4 20.3 89.5
Longfin eel 36 69 17 0.25 143 1 99 218 Binomial 1838.9 24.7 263 14.8 0.8 1.8
Total 823 46 21 91

Whole-lake 
biomass 

(kg)

Biomass (kg ha-1)
Chapman 

population 
estimate 

(N=(M+1)(C+1)
/(R+1)) -1

Errors for population 
estimate (N)

Error 
distribution

Mean fish 
weight (g)

Standard 
error of 

population 
estimate

MC>4N
? 1 = 

yes, 2 = 
no

Species

Number of 
fish 

originally 
marked (M)

Number of 
fish caught 

during 
recapture 

(C)

Number of 
marked 

recaptures 
(R)

Recaptured fish 
as a proportion 
of marked fish 

(R/C)
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3.3.6 Spotlight counts 

Spotlight counts of banded kokopu in the streams outlet were conducted once on 9 

June 2017, and twice for the main tributary on 9 June and 19 December 2017 (Refer 

to Figure 3.3 for site locations). Relative banded kokopu and kōura abundance 

estimates are expressed as density per 100 m-2. There was variation between inlet 

and outlet abundance (Table 3.13). Very low numbers of kokopu were spotted in 

the lake’s outlet, with no kōura present whereas the lake inlet had high numbers of 

both species present (Table 3.13B). Density increased in December for kokopu by 

34% (61/100 m-2 to 81/100 m-2) and increased threefold for kōura (Table 3.13A; 

Table 3.13C). This is likely due to the low stream level from lack of rainfall over 

the summer period, resulting in smaller habitat reaches. The stream did stop 

consistently flowing through sections 4 through to 6 in December, with the stream 

breaking down into pools on several occasions; leading to the area m-2 values 

decreasing (≥15 m-2).  

 

Table 3.13: Banded kokopu and kōura abundance estimation in A. main tributary, B. The 
outflow of Lake Rotokare estimated by spotlight counts of 20 m reaches on 8 Jun 2017. C. 
The inflow of Lake Rotokare estimated by spotlight counts of 20 m reaches on 19 Dec 2017. 

 

A.

Other

Section Area (m-2) Depth (m) Width (m) Juvenile Adult Total Koura
1 20 1.5 1 3 15 18 0

2 20 1 1 5 3 8 6

3 30 1.5 1.5 3 5 8 5

4 20 2 1 9 12 21 3

5 30 1 1.5 13 5 18 0

Total 120 33 40 73 14

27.5 33 61 12

B.

1 40 3 2 8 2 10

2 50 4 2.5 4 0 4

3 100 4 5 3 0 3

Total 190 15 2 17 0

Density (100 m-2) 8 3 11 0

C.

1 20 0.15 1 1 20 21 1

2 20 0.1 1 11 3 14 16

3 30 0.05-0.1 1.5 9 2 11 11

4 10 0.05 1 5 3 8 8

5 15 0.2 1 6 13 19 5

6 5 0.4 1 0 8 8 1

Total 100 32 49 81 42

32 49 81 42Density (100 m-2)

Spotlight count - Number of fish

Habitat means Banded kokopu

Density (100 m-2)
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3.3.7 Length-weight relationships 

Length-weight relationships (LWR) were used to back calculate fish weights (Table 

3.14). Natural logarithm weight-length values from fish captures (fyke net, gill net, 

and boat electrofishing) were used to determine LWR for summer catches. 

Parameters a and b were applied to the equation 

 

Ln Y = a Ln X * b 
 

Weight-length regressions (ln(Y) = ln(a) + ln(X), where Y = weight in g and X = 

length in mm; fork length for perch, total length for eels) allow weights to be 

calculated from lengths in future. Individual weight-length graphs (and calculations 

can be seen on Figure 3.6). Site by site LWR figures for gill netting and boat 

electrofishing in summer, and littoral and deep zone gill netting can be viewed in 

the appendix 1. 

  

Table 3.14: Length-weight relationship table of shortfin eels, longfin eels and perch. Data 
obtained from the total summer catch across gill netting, fyke netting and night-time 
electrofishing converted into natural log values (p < 0.05). Winter perch LWR values were 
taken from total gill net capture data (7-8 Jun 2017). 

Species a b r2 N 
Summer perch -11.507 3.052 0.984 992 
Winter perch -11.981 3.167 0.986 525 
Shortfin eel -14.698 3.256 0.995 129 
Longfin eel -14.755 3.318 0.994 77 

 
 
Figure 3.4 shows a difference in the LWR values of perch, with an increase in length 

and weight in winter, resulting in an increase in b (Ln length; Table 3.14). Variance 

in length-weight values around the lake were checked by breaking down 

electrofishing shots into general locations, and compared against each other by 

using a simplistic approach of ±2 times the standard error to a and b values to 

compare locations against one another (Table 3.15A). Comparing a values between 

locations showed that the northern arm of the lake was different from other regions 

of the lake, while the eastern arm of the lake was almost identical to the centre but 

different to the northern arm. Boat electrofishing b values showed differences in the 

northern arm to all other locations, the western arm was different to the eastern arm 

and lake’s centre, and the lake centre and eastern arm were similar (Table 3.15B).  
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Comparison between summer and winter perch LWR values across seasons was 

achieved by comparing summer and winter gill net catches (Table 3.16A). There 

were a significant difference in LWR values between summer and winter gill net a 

and b values between each sample session in summer and winter for a and b 

(p = < 0.001). This indicates there are significant differences in length and weight 

measurements between different arms of the lake and between seasons (Table 

3.16B). 

 

 
Figure 3.6: Weight-length relationships of perch, banded kokopu, shortfin eel and longfin 
eel sampled from all fishing methods (fyke netting, gill netting and boat electrofishing) on 
8-23 Feb 2017. Weight-length relationships of perch caught in winter sampled from gill 
netting undertaken on the 7-8 Jun 2017. 
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Table 3.15: A. Length-weight relationship for perch captured during night-time electrofishing on 21-22 Feb 2017 divided into separate locations 
of the lake. B. Similarities between sites for length and weight were checked using the ±2 SE method.  

A.              Site n Ln a SE ± (Ln a) b SE ± (b) 
Ln R2 

adjusted p value 
Equation  

(ln y=ln a + b*ln x) 
North arm 254 -11.120 0.100 3.006 0.022 0.987 <0.001  -11.120 + 3.006x 
West arm 70 -12.051 0.172 3.185 0.037 0.991 <0.001  -12.051 + 3.185x 
East arm 287 -11.590 0.118 3.091 0.026 0.980 <0.001  -11.590 + 3.091x 
Lake centre 90 -11.591 0.178 3.088 0.039 0.986 <0.001  -11.591 + 3.088x 
Total 701 -11.469 0.071 3.070 0.015 0.982 <0.001  -11.469 + 3.070x 
B.                Site n Ln a SE ± (Ln a) Ln a + 2SE Ln a - 2SE b SE ± (b) b + 2SE b - 2SE 
North arm 254 -11.120 0.100 -11.019 -11.220 3.006 0.022 3.028 2.984 
West arm 70 -12.051 0.172 -11.879 -12.223 3.185 0.037 3.221 3.148 
East arm 287 -11.590 0.118 -11.472 -11.708 3.091 0.026 3.117 3.065 
Lake centre 90 -11.591 0.178 -11.413 -11.769 3.088 0.039 3.127 3.050 
Total 701 -11.469 0.071 -11.398 -11.541 3.070 0.015 3.086 3.055 

 

Table 3.16: A: Length-weight relationship for perch captured during gill netting on 21 of Feb 2017 divided into separate locations of the lake. B: 
Similarities between sites for length and weight were checked using the ±2 SE method.  

A.    Season/location n Ln a SE ± (Ln a) b SE (b) Ln R2 adjusted p value 
Equation  

(ln y=ln a + b*ln x) 
Summer / mixed 210 -10.873 0.238 2.950 0.047 0.950 <0.001  - 10.873 + 2.950x 
Winter / Littoral 330 -11.823 0.124 3.136 0.024 0.981 <0.001  -11.823 + 3.136x 
Winter / Deep 195 -12.158 0.116 3.204 0.023 0.990 <0.001  -12.158 + 3.204x 

Total combined catch 735 -11.868 0.078 3.145 0.015 0.983 <0.001  -11.868 + 3.145x 
B.    Season/location n Ln a SE ± (Ln a) Ln a + 2SE Ln a - 2SE b SE ± (b) b + 2SE b - 2SE 

Summer / mixed 210 -10.873 0.238 -10.634 -11.111 2.950 0.047 2.996 2.903 
Winter / Littoral 330 -11.823 0.124 -11.699 -11.947 3.136 0.024 3.160 3.112 
Winter / Deep 195 -12.158 0.116 -12.042 -12.275 3.204 0.023 3.227 3.181 

Total combined catch 735 -11.868 0.078 -11.789 -11.946 3.145 0.015 3.160 3.130 
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3.3.8 Length-frequency  

Two clear cohorts of perch were apparent in the perch population (Figure 3.7A). 

These are likely to represent two age groups; age 0 perch (70-100 mm fork length), 

and age 1 perch (140-180 mm fork length). As previously shown in Table 3.2, gill 

netting shows a clear proclivity towards sampling larger perch, whereas boat 

electrofishing is useful for targeting juvenile perch (Figure 3.7A & 3.7B). 

 

 
Figure 3.7: A. Length-frequency distribution of perch caught by boat electrofishing 
in Lake Rotokare sampled on the 21-22 Feb 2017. B. Length-frequency distribution 
of perch caught by gill netting on 21 Feb 2017 (site by site data can be viewed in 
Appendix 1). 

 

 

Combining the data sets from all fishing types shows the dominance of year 0-1 

perch classes within Lake Rotokare. Larger perch were found, but remained rare 

(Figure 3.8). 

 
Figure 3.8: Total combined perch length-frequency distribution from fish sampled from 
8 -22 Feb 2017 through a combination all fishing techniques. 
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Winter perch showed the same two-tiered cohort distribution to a lesser effect, with 

a slight breakdown in size distribution. Larger individuals were captured in June 

and sampled more frequently compared to summer catches (Figures 3.8, 3.9). 

 

 

Figure 3.9: Winter perch length-frequency distribution of perch caught from gill netting in 
Lake Rotokare on 8-9 Jun 2017 (site by site data can be viewed in Appendix 1). 

 

Longfin eel length frequency distribution was dominated by large size classes, there 

is little indication of recruitment occurring due to the lack of smaller size classes (≤ 

300 mm). The lack of juvenile eels found suggests that the population within the 

lake is not self-recruiting (Figure 3.10A). Shortfin eel distribution was more 

scattered (Figure 3.10B). Much like longfin eels, there was a dominance in the lake 

of larger sized adults (≥ 500 mm). However, there is clear evidence of juveniles 

shortfin eels existing in the lake, suggesting that the population is showing juvenile 

recruitment to some extent. 

 

 

Figure 3.10: Length-frequency distribution of longfin (A) and shortfin eels (B) in Lake 
Rotokare captured through combined methods on the 8-22 Feb 2017. 
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 Discussion 

3.4.1 Longfin and shortfin eels 

Hicks et al., (2013) originally estimated shortfin eel biomass per hectare to be  

8 kg ha-1 in Lake Rotokare through single pass boat electrofishing. However, after 

extensive fieldwork, we now estimate the biomass is much higher (31.4 kg ha-1). 

Our results reflect a more accurate representation of the eel population within Lake 

Rotokare as trials have shown a single night of fyke net fishing can harvest 75% of 

the estimated eel population within the fished area (Jellyman, 2012). To generate 

robust estimates of total populations from tagged–untagged ratios, several 

assumptions need to be met; i.e. populations must be closed, tagged fishes must 

move randomly back into the population and the likelihood of catching a tagged 

fish is similar over time (Jellyman & Crow, 2016). Lake Rotokare remains a closed 

environment, with minimal chance of fish entering the system. These assumptions 

were met in this study; by ensuring fish were released in the lake centre to maximize 

the probability of population mixture. Also, limiting the time-period of mark-

recapture while using a set number of nets throughout sampling, ensured fish 

encounter rates with fyke nets remained consistent. Therefore, the population 

estimation inferred by the mark-recapture project is a strong estimation of absolute 

eel abundance in the lake. 

 

Results for shortfin eel biomass were similar to Lake Mangahia (37 kg ha-1; Hicks 

et al., 2015) and Lake Ohinewai (14-41 kg ha-1; Hicks & Tempero, 2017), but higher 

than Waikato average of 23 kg ha-1 for shortfin eels (Hicks et al., 2015). They were 

also lower than Lake Milicich; 74 kg ha-1, and well below shortfin biomass of 170 

kg ha-1 of Groynes Lake (Jellyman & Crow, 2016). Longfin eel biomass for Lake 

Rotokare was 14.8 kg ha-1 when sampled in February, and this value is 14 times 

greater than the Waikato average of 1 kg ha-1; this suggests that stocking of longfin 

within the lake is much higher for Lake Rotokare. When comparing longfin biomass 

in Rotokare to Lake Milicich, Rotokare values are over 14 times greater than 

Milicich (0.9 kg ha-1; Hicks et al., 2015), but below the generic figure of 60 kg ha−1 

figure for littoral zone biomass values for lakes nationwide (Graynoth et al., 2008). 

The ratio of longfin/shortfin biomass values is also worth noting, as shallow lakes 

in the Waikato typically have longfins contributing 0-17% of the total eel biomass 

(Hicks et al., 2015). Lake Rotokare has a much higher biomass value (31.22%). 
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With an absolute abundance estimation of 853 shortfin and 143 longfin eels in Lake 

Rotokare, the longfin population has a hugely disproportionate biomass 

contribution to the lake’s total eel biomass. 

 

The longfin eel biomass results may be a consequence of the lack of self-

recruitment within the lake. The length-frequency data indicates that self-

recruitment is unlikely. These results, in conjunction with personal communications 

from staff working for the Rotokare Scenic Reserve which detail translocations of 

longfin eels into Lake Rotokare in the past, makes it likely that the length-frequency 

data is accurate. With the population seemingly landlocked, it is likely the entire 

population of longfin in the lake are old (≥ 30 years) fish that continue to grow and 

reside within the lake until death. Jellyman (1995) studied longfin eel populations 

in Lake Rotoiti and found a slow growing longfin eel population with a sample 

range of 231-1203 mm were estimated to be between 20-106 years of age. With a 

similar size range in Rotokare (328-1200 mm) this would suggest the two 

populations share a similar age composition. Shortfin eel length-frequency data 

showed evidence to suggest there is self-recruitment occurring, with the capture of 

multiple juvenile eels during sampling.  

 

Boat electrofishing appears to be a poor method of eel sampling, at least in context 

to Lake Rotokare. Shortfin eel density estimates from electrofishing remained low 

in 2013 (0.28 fish 100 m-2; Hicks et al., 2013) and 2017 (0.08 fish 100 m-2). Longfin 

eel capture remained virtually non-existent over both sampling periods. Fyke 

netting is recommended in the future for any further eel population studies within 

the lake.  

 

3.4.2 Perch 

Perch numerically dominated the fish community in Lake Rotokare (81% of total 

fish capture in February). Perch density was much greater in this study than in 2013 

(Hicks et al., 2013); the 2013 density averaged at 4.49 fish 100 m-2, whereas 2017 

boat electrofishing yielded an average density of 16.55 100 m-2. The number of fish 

captured was also much larger (217 compared to 701) even though fishing effort 

was similar. This provides further evidence that night-time fishing is highly 

effective for electrofishing perch. Comparing boat electrofishing catch rates 
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between lakes shows that perch catch rates are much higher in Lake Rotokare then 

elsewhere. Collier & Grainger (2015) compared catch rates of perch caught 

between 2003 and 2010 in the North Island from boat electrofishing which equalled 

0.71 fish min-1. They also found an average catch rate of 0.03 fish min-1 for Lake 

Waahi; this compared with our average value at Rotokare of 8.97 fish min-1 

suggesting that Lake Rotokare has a much larger perch population. Perch average 

biomass in Lake Rotokare was 123.2 kg ha-1 and had a density of 16.55 fish 

100 m-2. Converting relative abundance values from fish 100 m-2 into fish ha-1 gives 

a total of 1665 fish ha-1, or 29,459 perch within the lake. 

 

Lake Rotokare 2013 electrofishing results (Hicks et al., 2013) support this 

estimation, with a single night-time boat electrofishing shot yielding 12.5 fish 

min-1. The size structure of the perch cohorts in the lake does not appear to have 

changed in between years either; this suggests the lake has stable biotic factors for 

perch development, with a population that has that is driven by density factors 

(Thorpe, 1977; Craig, 1982; Karas, 1996; Hjelm et al., 2000; Heibo et al., 2005; 

Hicks et al., 2007; Barbtels et al. 2012).  

 

Gill netting CPUE values of 3.2 fish net-1 in lake Rotokare for 25 mm mesh were 

similar to the Lake Rotoroa’s CPUE average value of 3.1 (Wise, 1990), and larger 

than the average CPUE value for the lower Kaori; 2.59 (Hicks et al., 2007). Mesh 

size clearly impacts catch rates and catch size distribution, and in order to best avoid 

it for future studies, a variety of net sizes from 18-45 mm mesh should be used to 

effectively target all size classes. CPUE results from winter also show that there is 

a large difference in abundance levels between littoral zones and deep zones of the 

lake, and that in summer perch are limited to the upper few metres of the lake due 

to oxygen depletion below the thermocline.  

 

Caution should be used when making comparisons of CPUE between sites as the 

assumption that catch efficiency remains constant is likely to be violated in many 

situations. If between-site comparisons are made it is important to be mindful of 

differences in variables that affect catch efficiency such as electrical conductivity 

and habitat complexity. Given that CPUE rates varied so much in this study with 

all species sampled and all sampling methods, particularly with gill net CPUE; gill 

net 4 in summer and littoral gill net 3 and deep gill net 4 in winter were all in similar 
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locations and had a low CPUE (< 1), this suggests that this area of the lake is 

unsuitable habitat for perch. Therefore, it is sensible to assume that a range of 

unknown biological factors could be influencing these values. With no known data 

on substrata or other biological parameters, making assumptions off relative 

abundance data needs to be exercised with care.  

 

3.4.3 Banded kokopu and kōura 

There is a large population of kōura and banded kokopu within the tributary 

however, the reduction of perch populations could lead to Lake Rotokare’s 

population increasing. Hicks et al. (2013) estimated banded kokopu density to be 

150 fish/100 m-2. This survey was more thorough, with on average 4x time the 

distance covered on each spotlighting trip, the results from June and December were 

modest in comparison, with somewhere between 61 to 81 fish 100 m-2. On both 

occasions during sampling, individuals recorded were estimated upwards of 250 

mm), a value high for this species (McCullough, 1998). McCullough & Hicks (2002) 

analysed the reliability of spotlight counts related to population estimates over a 

range of densities, and found on average, spotlight counts accounted for 64% of the 

population estimates. With repeated trips over successive seasons and years, it is 

likely this estimate is relatively accurate. Juveniles of both species were also present, 

although size differences in kōura were not recorded, the size range varied from 30-

90 mm. Therefore, this suggests there is recruitment within the lake for both banded 

kokopu and Kōura. 

 

While there was an instance of a native species of freshwater shrimp being surveyed 

during spotlighting in the national freshwater database (NZFFDB), there is no 

evidence to support this from spotlighting surveys in 2013 or 2017. The species 

may have been present in the past, but it is likely to have either been a mistake; or 

has become locally extinct since. Inanga failed to appear in any form of fish 

sampling undertaken in 2017, supporting the assumption Hicks et al. (2013) made 

that, the identification of the species in the lake was an error made by the Taranaki 

Catchment Commission (1980), mistaking juvenile banded kokopu for inanga. 
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3.4.4 Perch interactions with other species 

With such large densities it is likely that the perch are forcing banded kokopu and 

kōura in-lake to such small numbers, that they barely register. Until now there has 

been no evidence that either species was present within Lake Rotokare, however, it 

is likely that the surrounding fringe of dense vegetation on the lake’s edges is acting 

as a buffer zone for cover for these two species. The presence of juvenile banded 

kokopu in the outlet of the lake supports this theory. The juveniles would have most 

likely come from the inlet, after having to travel the width of the lake to reach the 

outlet. With such a large population of perch, it is difficult to believe any kokopu 

would survive the journey without adequate cover.  

 

The perch may also be supplying a rich food source for shortfin and longfin eels. 

Jellyman (1989) found evidence to show that nutrient rich diets for both species of 

eel leads to an increase in growth rates, and with warm lake water temperatures and 

rich food sources, this may accelerate eel growth within the lake considerably 

(Jellyman, 1997). This could also lead to high predation rates on elvers; with 

individuals sampled as large as 430 mm in length, it is possible the perch may target 

small eels as part of their diets. Another factor to consider is the self-regulation of 

large perch cannibalizing the young of year class (70-100 mm). Perch are unique in 

the fact that they can behave autonomously within an ecosystem, modulating 

resources, and generally control its own density through their food resources 

(Holcik, 1977). Cannibalism is common among European perch populations, and 

cannibalistic behaviour can become the predominant source of food for large perch, 

particularly in monospecific populations (Holcik, 1977). 

 

There has been a clear negative association found between water clarity and the 

presence of perch. (Romare et al., 1999; Rowe, 2007). Stunted populations of perch 

can contribute to reduced water clarity through consumption of zooplankton and 

consequent reduction in algal grazing (Romare et al., 1999; Rowe 2007). This 

mechanism was proposed as a contributing factor to cyanobacterial blooms in 

Karori Reservoir, Wellington (Smith & Lester, 2006). Hicks et al., (2005) found a 

wide-ranging size class; similar to Lake Rotokare, suggesting that perch within 

Lake Rotokare will be impacting water clarity. This is indicative in the lake already, 

with frequent cyanobacterial blooms, which are quite likely attributed to such high 

perch numbers. 



  

86 

 Conclusion 

Lake Rotokare supports a moderately large population of shortfin and longfin eels, 

which are much larger in length and weight then other lakes with similar population 

sizes. Perch are numerous in the lake and comprised the bulk of the catch for both 

2013 and 2017 sampling seasons. With such high estimated density rates of this 

invasive species, removal will be difficult (Closs et al., 2001). A follow up survey 

using multiple netting or boat electrofishing depletion rates may provide absolute 

abundance values, however, caution is issued for attempting mark-recapture 

surveys on the perch; due to their large population size.  

 

There is evidence to suggest that shortfin eel, banded kokopu, and kōura 

populations are self-recruiting. Longfin eels are not. Further studies to address the 

presence/absence of kōura and banded kokopu within the lake should be undertaken 

to assess whether there is a stable population. Establishing relative abundance in 

lake would also be useful for a complete understanding of Lake Rotokare’s in-lake 

population dynamics. 
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4 Chapter 4: Trophic Interactions 

 Introduction 

Understanding an organism’s trophic status within an ecosystem can be key to 

identifying how that organism (or species) interacts with its environment. Stomach 

content analysis is standard practice in aquatic ecology for determining fish diets; 

however, stomach content analyses does have its limitations. Gut contents can be 

difficult to identify, and seasonal variation of diets can occur; and/or individuals or 

groups can show preferential selectively towards prey items (Sunderland, 1988, 

Sheppard & Harwood, 2005). An alternative method involves incorporating stable 

isotope analysis into diet studies to effectively track consumer diets at a molecular 

level (Parnell et al., 2013). 

 

Stable isotope ratios of carbon (C) and nitrogen (N) reported here in standard δ-

notation with units of ‰ (ratios for C and N are reported as δ13C, δ15N henceforth), 

are used to trace pathways of organic matter among consumers (Peterson & 

Howarth, 1987; Hesslein et al., 1992). δ13C ratios provide information on the 

primary energy source (O’Reilly et al., 2002) and isotope ratios of consumers 

usually are similar to isotopic ratios of their diets (DeNiro & Epstein, 1978). 

Nitrogen is a useful method of determining an organism’s trophic status within food 

webs, because it is preferentially incorporated into the tissues of an animal relative 

to its diet - resulting in an enrichment of δ15N at successive trophic levels, thereby 

allowing estimations of an organism’s trophic position (DeNiro & Epstein, 1981; 

Minagawa & Wada, 1984; Vander Zanden & Rasmussen, 1999).  

 

The isotope ratio between diet and consumer shifts between trophic levels. 

Originally, DeNiro & Epstein (1978, 1981) determined the mean trophic shift for C 

(Δ δ13C; Δ denotes the change in isotope ratio between diet and consumer) was 

+1‰, and the mean Δδ15N was +3‰. It is widely accepted that the average Δδ13C 

values are ca. 0 and average Δδ15N values are ca. +3‰ (Peterson & Fry 1987; 

McCutchan et al., 2003). However, these values (Δδ13C and Δδ15N) can vary 

considerably depending on diet and life-history traits. Ratios of stable isotopes can 

also change between diet and consumer due to differential digestion or fractionation 

during assimilation (McCutchan et al., 2003). Metabolic fractionation may also 

http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b43
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b43
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b22
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b10
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b11
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b35
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b42
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cause isotope ratios of different tissues to vary substantially within individual 

consumers (DeNiro & Epstein, 1981; Hobson & Clark, 1992). Additionally, classes 

of compounds from a single consumer may differ considerably in stable isotope 

ratio from other compounds (Focken & Becker, 1998).  

 

Variation in lipid content is derived from differences in foraging dynamics and 

life history constraints, and hence can be of considerable interest to ecologists and 

evolutionary biologists (Schultz & Conover 1997; Gasser et al., 2000; Post & 

Parkinson, 2001; Arrington et al., 2006). The potential for lipids to influence δ13C 

analyses comes from two sources of variation - First, fractionation of δ13C during 

lipid synthesis results in differences in δ13C between lipids and other tissues due to 

differences in tissue carbon uptake time (DeNiro & Epstein, 1977; McConnaughey 

& McRoy, 1979). Secondly, there exists considerable heterogeneity in lipid content 

among aquatic and terrestrial organisms (McCutchan et al., 2003). These 

differences influence trophic positioning studies. One method of correcting this, is 

applying lipid removal treatments to isotope samples to homogenize the tissue 

samples (Post et al., 2007). 

 

Isotopic sampling of fish is achieved through the utilization of fin-clips, or (more 

commonly) white muscle tissue sampling (Kelly et al., 2006; Hanisch et al., 2010; 

Willis et al., 2013). White muscle tissue is usually selected for analysis because it 

has lower isotopic variability relative to other tissues (Pinnegar & Polunin, 1999). 

Furthermore, muscle tissue analysis has a (comparatively) well-understood 

fractionation behaviour (Sweeting et al., 2007), an extended dietary integration 

period (Hesslein et al., 1993), and large available tissue biomass (Willis et al., 2013).  

White muscle tissue typically requires euthanisation of the subject for sufficient 

muscle (Sanderson et al., 2009; Hanisch et al., 2010; Jardine et al., 2011; Willis et 

al., 2013). In contrast fin-clip tissue sampling is a non-lethal process. Hence, there 

is a growing call for a shift in fish sampling protocol towards reliance on fin-clip 

tissue. 

 

In this study, the trophic status of multiple organisms within Lake Rotokare was 

evaluated, to determine the food-web structure of the lake, and how the invasive 

perch population tied into the lake ecology on a larger scale. Secondly, this study 

examined the differences between non-lethal fin clips and destructive muscle tissue 

http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b24
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b17
https://link.springer.com/article/10.1007/s00442-006-0630-x#CR41
https://link.springer.com/article/10.1007/s00442-006-0630-x#CR16
https://link.springer.com/article/10.1007/s00442-006-0630-x#CR38
https://link.springer.com/article/10.1007/s00442-006-0630-x#CR2
https://link.springer.com/article/10.1007/s00442-006-0630-x#CR8
https://link.springer.com/article/10.1007/s00442-006-0630-x#CR27
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samples - by examining the differences in isotopic ratios of shortfin and longfin eels 

within Lake Rotokare. This determines whether lipid correction is necessary for 

δ13C and δ15N samples for both fin clips and muscle tissue. Finally, we looked at 

the feasibility of creating mathematical correction equations, forgoing the need for 

lipid correction models. This would allow further studies to transform non-lethal 

fin clip isotopic values into treated muscle tissue values and precluding further 

lethal sampling methods in future research. 

 

 Methods: 

4.2.1 Ethics statement 

All animal work was conducted in accordance with national and university 

guidelines to minimize discomfort to animals, State of Practice (SOP) 6 was 

adhered to throughout the duration of the project. Since the project’s field work was 

directly supervised by a trained technician who was qualified to administer the 

anaesthetics benzocaine and AQUI-S, the ethics committee chair decided that there 

were no requirements for ethics approval.  

 

4.2.2 Stomach contents 

The stomach contents of 194 Perca fluviatilis (perch) were sampled to analyse their 

diets, the stomach contents were based on two factors; occurrence, and the 

volumetric contribution of the contents in percent. The perch were split into three 

size classes, 72-110 mm, 111-180 mm, and 181-249 mm to explore differences in 

dietary patterns against size transitions. Perch were selected from a range of sites 

around the lake to ensure an event spread of information. Both gill-netting and boat 

electrofishing captured perch (see Chapter 3) were analysed (Boat electrofishing 

N = 144, gill-netting N = 50). Stomach fullness was also measured, assigning a 

subjective visual assessment of stomach fullness by assigning values between 1-5; 

as an indicator of fullness: 1 = empty, 2 = 25%, 3 = 50%, 4 = 75%, and 5 = 100%; 

similar to recommendations suggested by Hyslop’s methods (1980). 

 

4.2.3 Sampling and laboratory analyses  

Lake Rotokare was sampled in late February, early June and late December over 

three 5-day periods in 2017. The lake was used as the general site, as collecting 
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invertebrate and plant samples required careful consideration due to the depth 

profile of the lake (Figure 1.2). Fin-clip samples taken from the mark-recapture 

project in February (see Chapter 3) which were collected, frozen and brought back 

to the University of Waikato for later isotopic analysis (n = 17). In June 11 fyke 

nets were set out at intervals around the lake overnight for three consecutive days, 

to capture more eels for fin clip analysis (n = 17). Perch were captured in February 

through boat electrofishing and littoral gill-netting techniques were also selected 

for isotope analysis (n = 20). Fish were euthanized and brought back to the 

University of Waikato for isotopic analysis. More perch were retrieved in June by 

a mixture of littoral and euphotic zone gill-netting, and ten more perch were used 

to search for seasonal variability in isotope ratios. Dorsal muscle tissue of the perch 

was selected for isotopic analysis. Perch were split into three size classes during 

analysis, due to ontogenic shifts in dietary behaviour during growth (Hicks et al., 

2007). A limited number of banded kokopu (Galaxias fasciatus) (n = 4) were 

collected from the boat electrofishing in February, the fish were euthanized and the 

whole body (minus head and gut contents) were used for stable isotope analysis. 

 

Plants (Potamogeton, Lagarosiphon and Charophyta), snails (Physa, and Lymnaea), 

and dragonfly nymphs (Antipodochlora braueri and Aeschna brevistyla) were 

collected in June using sweep nets around the lakes edge. Samples were chilled and 

brought back to the University of Waikato for analysis. Whole specimens of 

dragonfly larvae were used for isotopic analysis, and snails were extracted from 

their shells to avoid contamination from non-dietary carbon (Hicks, 1997), while 

plant tissue was left unmodified. Phytoplankton and zooplankton samples were 

taken during July and December by using plankton nets; 45 µm mesh was selected 

for phytoplankton, and 125 µm mesh was used to sample zooplankton. Following 

the recommendations of Smyntek et al. (2007), two horizontal tows (50 m in length) 

were undertaken from the littoral and pelagic zone of the lake’s surface; planktonic 

samples were extracted from the filter, chilled and returned to the laboratory for 

analysis. Sediment samples were collected in December, and chironomids were 

collected during all three sampling periods using a Ponar grab.  

 

Samples were dried for 48 hours at 40°C and ground into a fine powder. Samples 

were pulverized by a mortar and pestle and surgical scissors, or softer tissue was 

processed using a coffee grinder. Powdered material was sent off to the stable 
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isotope unit at the University of Waikato, where samples were analysed with the 

Europa Scientific Tracermass mass spectrometer with a precision of c. 0.1‰ for 
13C and 0.3‰ for 15N. 

 

4.2.4 Lipid correction and fin-muscle tissue corrections  

Based on the findings of Post et al. (2007), aquatic vertebrate tissue with a C:N ratio 

of ≥ 4 required lipid treatment for accurate δ13C results. Furthermore, Pingram et al. 

(2014) found discrepancies between fin and muscle tissue values in shortfin eels - 

requiring lipid correction for fin and muscle tissue for δ13C values. Due to high C:N 

ratio results from February sampling (4.09 for longfin eels, and 3.97 for shortfin 

eels), it was necessary to further explore the potential for lipid correction for the 

isotopic values of both eel species, to obtain more reliable results. This study then 

explored the feasibility of using mathematical corrections to convert untreated fin 

isotopic values into treated muscle values. 

 

Fyke netting was undertaken on Lake Rotokare on December 19, 2017. A total of 

10 nets were set around the lakes edge; 8 longfin eels, and 16 shortfin eels were 

collected and euthanized. Fin clippings and muscle tissue samples (from the dorsal 

region) were collected. Duplicates were taken from each fish to compare treated 

and untreated samples. Lipid-corrected samples were treated in a 1:1 

methanol:chloroform solution for three 10 minute intervals following the work of 

Beaudoin et al. (2001), with the minor exception of using a convection drier rather 

than freeze drying the samples.  

 

4.2.5 Isotopic food web model 

An adjusted trophic consumer food web model was incorporated into this study to 

provide an estimate of relative isotopic contribution of various organisms residing 

within the lake. This model incorporates the variability (Standard error) of each 

species isotopic values, providing insight into each species positioning within the 

food web. The model incorporates the values of the isotope values from all species 

sampled, and encompasses the results from February, June and December 2017. 

Fractionation factors between resources and their consumers were assumed as δ13C: 

0.4±0.17‰ and δ15N: 2.3±0.28‰, based off the analysis of McCutchan et al., 

(2003). 
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 Results: 

4.3.1 Stomach content analysis 

Prey item occurrence and relative food item volume of perch stomach contents 

revealed that Zooplankton was the most abundance food source utilized by perch in 

all size classes. Zooplankton were found within 78% of all perch sampled (Table 

4.1) and consisted of 70.47±5.86% (95% confidence interval limit) of stomach total 

volume (Table 4.2). Chironomid larvae were the second most abundant food source, 

with a 37% occurrence and a lower volumetric contribution (Table 4.1; Table 4.2). 

Detritus was present in 18% of perch stomachs but constituted only 3.09±1.13% of 

stomach volume. Unidentifiable insect species were present in 11% of stomachs, 

with a 4.21±2.41% volume ratio. Algae, Diptera, dragonfly nymphs, macrophytes, 

and snails offered negligible contributions to perch diets, with ≤ 3% occurrence, 

and contribution to stomach volume values were as follows: algae; 0.1%, Diptera; 

0.53%, dragonfly nymph; 1.22%, and snail; 0.03% respectively (Table 4.2).  

 

The most noticeable changes in diet occurred in the transitional shifts between size 

classes. Chironomid larvae occurrence increased threefold between the 72-110 mm 

size class and the 111-180 mm class; and fourfold was exhibited in the 181-249 mm 

size class. Volumetrically the stomach increase was significant, with increases in 

chironomid contribution ranging from 3.29±2.25% in the 72-110 mm, through to 

27.42±7.48% (110-180 mm class), and 50.28±11.72% in individuals larger than 

180 mm (Table 4.2). Zooplankton consumption shifted between classes, occurring 

in almost all juvenile perch stomachs (72-110 mm - 97% occurrence), decreasing 

in the mid-range class to 72%, and declining further to 35% occurrence in stomach 

contents in individuals larger than 180 mm (Table 4.1). Volumetrically this trend 

remained consistent with occurrence, with significant drops between classes. Perch 

between 72-110 mm showed an average stomach zooplankton volume of 93%, this 

decreased to 60.3%, and further dropped to 34.44% in larger perch (≥ 180 mm; 

Table 4.2). There were also increases in occurrence and stomach volume between 

classes in detritus contribution, with no occurrence in the lowest class, 26% 

occurrence, and 45% occurrence, detritus contributed little to stomach volume 

(Table 4.2). No other food item showed any significant trends or increases. In total 
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there were 5 perch out of 194 with empty stomachs, with the average stomach 

fullness between size classes was 85%, 74%, and 72% (Appendix 2). 

 

Table 4.1: Mean frequency of occurrence (percentage of perch) for food items in perch 
stomachs taken from Lake Rotokare for three size classes; 80-110 mm, 110-180 mm, and 
≥ 180 mm (fork length measurement) between 21-22 Feb 2017. 

  Frequency of occurrence 
Food item  72-110 111-180 181-249 Combined 
Algae  0 4 0 2 
Chironomid larvae 16 48 60 37 
Detritus  0 26 45 18 
Diptera  0 0 5 1 
Dragonfly nymph 0 6 0 3 
Macrophyte 0 2 0 2 
Snail  1 0 0 1 
Unidentified insect 11 11 15 11 
Zooplankton 97 72 35 78 

 

Table 4.2: Volumetric comparison of three size classes of perch from lake Rotokare, 80-
110 mm, 110-180 mm, and ≥ 180 mm (fork length measurement) caught on 21-22 Feb 
2017.  

 
 

4.3.2 Eel muscle vs. fin tissue comparison 

There was variation between both longfin and shortfin stable isotope values 

between seasons. Longfin eels sampled in December for untreated fin tissue had 

a lower mean C:N ratio, and a similar value to June for untreated fin tissue 

compared to samples taken from February (Table 4.3). The average length range 

was different, with eels taken in February and June, ranging between 500-1140 

mm, and December; 474-872 mm, skewing towards smaller individuals (Table 

4.3). δ13C values of varied somewhat between sampling seasons, with an average 

δ13C of -27.30±0.49‰ (95% mean confidence interval limit) in February, δ13C 

equalled -26.65±0.46‰ in June, and -26.74±0.57‰ in December. February 

remained different from June and December values (Table 4.3). δ15N was similar 

Food i tem n average CI (95%) n average CI (95%) n average CI (95%) n average CI (95%)

Algae 0 3 0.19 0.23 0 3 0.10 0.12

Chironomid larvae 16 3.29 2.25 47 27.42 7.48 12 50.28 21.82 75 20.28 4.87

Detri tus 0 26 4.74 1.98 9 6.67 3.81 35 3.10 1.13

Diptera 0 0 1 5.56 11.72 1 0.53 1.04

Dragonfly nymph 0 6 2.35 2.37 0 6 1.22 1.23

Macrophyte 1 0.07 0.14 2 0.10 0.23 0 3 0.08 0.09

Snai l 1 0.07 0.14 0 0 1 0.03 0.05

Unidenti fied insect 7 3.56 3.71 11 4.90 3.73 3 3.06 3.92 21 4.21 2.41

Zooplankton 69 93.01 4.37 73 60.30 8.70 7 34.44 22.38 149 70.47 5.86

Combined

Size range (fork length measured in mm)

72-110 111-180 181-249
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between February and June, there was a significant difference in December from 

the other months (Table 4.4). 

 

Shortfin eels showed a different trend, with average C:N ratios falling below 4 in 

each sampling season (Table 4.3). February had a larger size range (615-930 mm) 

and arithmetic mean (746 mm) then June (525-785 mm, μ = 635 mm) or December 

(500-871 mm, μ= 627 mm). δ13C remained similar between February and June (-

26.84±0.62‰; -26.32±0.62‰), but different to December (-27.67±0.69‰). δ15N 

was significantly higher in shortfin samples in February (8.70±0.24‰) then in 

June (7.77±0.47‰) or December (-27.67±0.69‰).  

 

Table 4.3: Size classes and isotopic values for untreated fin tissue for Lake Rotokare; Feb-
Dec 2017. 

    Longfin  Shortfin 
Data    21-23 Feb  7-9 Jun  19 Dec  21-23 Feb 7-9 Jun 19 Dec 
N   10 7 8  6 11 16 

length range 520 - 1140 500 - 1110 474 - 872  615-930 525-785 500-871 

Weight range 352 - 6690 675-5192 343 - 2484  465-2001 313 - 1189 287-1650 

Average length (mm) 908 794 650  746 635 627 

Average weight (g) 2924 2144 1070  1052 615 670 

Untreated δ15N mean 9.10 8.85 8.71  8.70 7.77 7.63 

Confidence level (95%) 0.29 0.42 0.30  0.24 0.47 0.45 

Untreated δ13C mean -27.30 -26.65 -26.74  -26.84 -26.32 -27.67 

Confidence level (95%) 0.49 0.46 0.57  0.62 0.62 0.69 

C:N mean  4.09 3.82 3.85  3.97 3.71 3.79 

 

 

Variation for both species between untreated fin and muscle tissue δ15N in 

December was minimal, both average values remained within confidence interval 

ranges, δ15N for longfin untreated muscle was 8.82±0.23‰, untreated fin equalled 

8.71±0.30‰ (Table 4.4). Shortfin values were roughly 1 delta unit lower, with 

untreated muscle = 7.87±0.39‰ and fin = 7.63±0.45‰. δ13C values were variable 

between species; muscle tissue had a lower value than fin, with a Δδ13C -1.91 

between means in longfin (muscle δ13C = 28.65±0.58‰, fin δ13C = -26.74±0.57‰), 

and  a Δδ13C -2.42 in shortfin (muscle δ13C = -30.09±0.86‰, fin δ13C = -

27.67±0.69‰).  
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Table 4.4: Shortfin and longfin eel stable isotope average values for δ13C and δ15N fin and 
muscle average values taken from eels captured during fyke netting on 19 Dec 2017. 

Shortfin eel δ15N muscle δ15N fin δ13C muscle δ13C fin 
Mean 7.87 7.63 -30.09 -27.67 
Standard error 0.18 0.21 0.41 0.33 
Confidence level (95%) 0.39 0.45 0.86 0.69 
Range 2.11 2.67 5.26 4.14 
Minimum 6.77 6.44 -33.00 -29.83 
Maximum 8.87 9.11 -27.75 -25.69 
Longfin eel     
Mean 8.82 8.71 -28.65 -26.74 
Standard error 0.10 0.13 0.25 0.24 
Confidence level (95%) 0.23 0.30 0.58 0.57 
Range 0.85 1.16 2.20 1.76 
Minimum 8.36 8.01 -29.39 -27.45 
Maximum 9.21 9.18 -27.19 -25.69 

 

 

Pairwise comparison between untreated fin and muscle tissue for longfin eels 

showed generally fin was more enriched in δ13C then muscle (Figure 4.1). δ15N 

showed an opposite trend, with a modest increase in muscle values in the lower 

range of samples, compared to fin tissue. Both δ13C (R² = 0.58; p ≤ 0.05) and δ15N 

(R² = 0.84; p < 0.05) dual plots had moderate relationships between fin and muscle. 

 

 
Figure 4.1: A. Pairwise comparison of stable isotope δ13C values for longfin eel muscle vs. 
fin tissue samples. B. Pairwise comparison of longfin δ15N muscle vs. fin tissue samples, 
data came from eels caught from Lake Rotokare on 20 Dec 2017. The line represents a 1:1 
ratio between treated and untreated samples. 

 

Shortfin pairwise comparison between tissue types revealed a much larger variety 

in shortfin isotopic values (Figure 4.2). Generally, δ13C was highly enriched in fin 

tissue compared to muscle tissue, but the relationship was much weaker in longfin 

due to the variation in data points (R² = 0.36; p < 0.05). δ15N followed the same 

y = 0.7723x - 7.9939
R² = 0.5822

-33 -31 -29 -27 -25
-33

-31

-29

-27

-25

M
us

cl
e

Fin

n=8
A.

y = 0.6838x + 2.8646
R² = 0.8426

6

7

8

9

10

6 7 8 9 10

M
us

cl
e

Fin

n=8
B.



  

100 

pattern as in longfin, muscle samples were enriched compared to fin, particularly 

with values in the lower delta unit values (7‰), equalizing at ca. 8‰. The 

relationship between muscle and fin was strong (R² = 0.76; p < 0.05). 

 

 
Figure 4.2: A. Pairwise comparison of stable isotope δ13C values for shortfin eel muscle 
vs. fin tissue samples. B. Pairwise comparison of shortfin δ15N muscle vs. fin tissue samples, 
data came from eels caught from Lake Rotokare on 20 December 2017. The line represents 
a 1:1 ratio between treated and untreated samples. 

 

 

4.3.3 Lipid correction (δ13C) 

Comparison of pairwise samples from individual eels (Figure 4.3) showed that 

muscle and fin for longfin eels was imbalanced, untreated fin tissue compared to 

treated fin tissue showed a strong bias towards treated values, therefore fin tissue 

required lipid correction to homogenize results (R2 = 0.96; p < 0.05). Muscle 

tissue also showed higher treated δ13C values compared to untreated samples. 

While the regression between treated-untreated samples was moderate (R2 = 0.50; 

p < 0.05), it still exhibited that muscle tissue samples required lipid correction. 

  

y = 0.7446x - 9.4921
R² = 0.3569

-33 -31 -29 -27 -25
-33

-31

-29

-27

-25

M
us

cl
e

Fin

n=16
A.

y = 0.7581x + 2.0864
R² = 0.7648

6

7

8

9

10

6 7 8 9 10

M
us

cl
e

Fin

n=16
B.



  

101 

 
Figure 4.3: A. Pairwise comparison of stable isotope δ13C values for Longfin eel treated 
vs. untreated fin tissue samples. B. Pairwise comparison of longfin treated vs. untreated 
muscle tissue samples, data came from eels caught from Lake Rotokare on 20 Dec, 2017. 
The line represents a 1:1 ratio between treated and untreated samples. 

 

 

Shortfin required lipid correction for muscle tissue but not for fin tissue (Figure 

4.4). Fin treatment showed no relationship between treated and untreated samples, 

and overall it appeared fin tissue remains highly heterogeneous regardless of 

treatment (R2 = 0.02; p < 0.05). Muscle tissue showed lower values in δ13C when 

exposed to lipid treatment, muscle responded strongly to fin treatment and 

required lipid correction for the best results (R2 = 0.63; p < 0.05).  

 

 
Figure 4.4: A. Pairwise comparison of stable isotope δ13C values for Shortfin eel treated 
vs. untreated fin tissue samples. B. Pairwise comparison of shortfin treated vs. untreated 
muscle tissue samples, data came from eels caught from Lake Rotokare on 20 Dec, 2017. 
The line represents a 1:1 ratio between treated and untreated samples. 
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4.3.4 Lipid correction (δ15N) 

Lipid correction did little to change δ15N values in both species. Longfin eels in 

particular showed almost no change in values between treated and non-treated 

samples for both fin and muscle samples (Figure 4.5), with the majority of 

pairwise values falling on the 1:1 line. Therefore, δ15N did not need require 

treatment for longfin eels. 
 

 
Figure 4.5: A. Pairwise comparison of stable isotope δ15N values for longfin eel treated vs. 
untreated fin tissue samples. B. Pairwise comparison of longfin treated vs. untreated muscle 
tissue samples, data came from eels caught from Lake Rotokare on 20 Dec 2017. The line 
represents a 1:1 ratio between treated and untreated samples. 

 

 

Shortfin did not require correction for either fin or muscle (Figure 4.6). While the 

regression line for fin tissue was skewed slightly above the 1:1 ratio line with a 

strong R² value (0.77; p < 0.05), the majority of values remained close to the 1:1 

line, therefore it was deemed to be natural variation in samples, and treatment was 

not necessary. Muscle tissue showed a much wider spread in pairwise 

comparisons, once again most values fell around the 1:1 ratio line, and the overall 

relationship between treated and untreated samples was weak (R² = 0.22; p < 0.05).  
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Figure 4.6: A. Pairwise comparison of stable isotope δ15N values for shortfin eel treated 
vs. untreated fin tissue samples. B. Pairwise comparison of shortfin treated vs. untreated 
muscle tissue samples, data came from eels caught from Lake Rotokare on 20 Dec, 2017. 
The line represents a 1:1 ratio between treated and untreated samples. 

 

4.3.5 Mathematical correction 

Longfin eel: 

A series of mathematical equations was devised to standardize untreated fin tissue 

into treated muscle tissue values. The following steps were used to achieve 

correction: 

 

Using the regression model (Figure 4.7A); the following equation converted δ13C 

untreated fin into untreated muscle (Figure 4.7B): 

 

δ13C untreated muscle = 0.7917 (δ13C untreated fin) – 7.3765 
 

 
Figure 4.7: A. Longfin untreated muscle vs. untreated fin δ13C values, with regression 
equation attached. B. Untreated muscle vs. mathematically corrected untreated muscle. 
Samples retrieved from Lake Rotokare on 20 Dec, 2017. The line represents the 1:1 ratio 
between X and Y values. 
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Once converted, the next step is to convert untreated muscle; in this case 

mathematically corrected untreated value (Figure 4.8A) into treated muscle values 

(Figure 4.8B). This is achieved by applying the following correction: 

 

δ13C treated muscle = 0.6357 (δ13C untreated muscle) – 9.0128 

  
Figure 4.8: A. Longfin treated muscle vs. untreated muscle (mathematically corrected) 
δ13C values, with regression equation attached. B. Treated muscle vs. mathematically 
corrected treated muscle. Samples retrieved from Lake Rotokare on 20 Dec, 2017. The line 
represents the 1:1 ratio between X and Y values. 

 

The final equation converting δ13C untreated fin directly into treated muscle is as 

follows: 
 

δ13C treated muscle = 0.6357 (0.7917 x δ13C untreated fin – 7.3765) – 9.0128 

 

Shortfin eel: 

The regression model (Figure 4.9A) had a weak regression (R² = 0.36; p < 0.05), 

therefore it was determined the average value of the differences between (muscle 

minus fin) was used (-2.425) as a proxy. The following equation will convert δ13C 

untreated fin into untreated muscle (Figure 4.9B): 

 

δ13C untreated muscle = δ13C Untreated fin – 2.425 
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Figure 4.9: A. Shortfin untreated muscle vs. untreated fin δ13C values, with regression 
equation attached. B. Untreated muscle vs. mathematically corrected untreated muscle. 
Samples retrieved from Lake Rotokare on 20 Dec, 2017. The line represents the 1:1 ratio 
between X and Y values. 

 

 

Once converted, the next step is to convert untreated muscle (in this case 

mathematically corrected untreated values) into treated muscle values. This is 

achieved by applying the following correction (Figure 4.10A) to correct the values 

to closer to the 1:1 ratio (Figure 4.10B). 

 

δ13C treated muscle = 0.8471 · (δ13C untreated muscle) - 3.4733 

 

 
Figure 4.10: A. Shortfin treated muscle vs. untreated muscle (mathematically corrected) 
δ13C values, with regression equation attached. B. Treated muscle vs. mathematically 
corrected treated muscle. Samples retrieved from Lake Rotokare on 20 Dec, 2017. The line 
represents the 1:1 ratio between X and Y values. 

 

 

y = 0.7446x - 9.4921
R² = 0.3569

-33 -31 -29 -27 -25
-33

-31

-29

-27

-25

M
us

cl
e

Fin

n=16
A.

-34 -32 -30 -28 -26 -24
-34

-32

-30

-28

-26

-24

M
us

cl
e

Corrected fin

B.
n=16

y = 0.8471x - 3.4733
R² = 0.6284

-34 -32 -30 -28 -26 -24
-34

-32

-30

-28

-26

-24

Tr
ea

te
d

Untreated

n=13

-34 -32 -30 -28 -26 -24
-34

-32

-30

-28

-26

-24

Tr
ea

te
d

Untreated (corrected)

n=13



  

106 

The final equation converting δ13C untreated fin directly into treated muscle is 

as follows: 
 

δ13C treated muscle = 0.8471 · (δ13C untreated fin -2.425) - 3.4733 
 

4.3.6 Stable isotope analysis 

In total, 4 banded kokopu, 2 charophytes, 4 chironomid samples, 6 dragonfly 

nymphs, 2 Lagarosiphon major, 25 longfin eels, 37 perch, 3 phytoplankton 

samples, 2 Potamogeton, 2 sediment samples, 34 shortfin eels, 3 snails, and 6 

zooplankton samples were used for isotopic analysis. Potamogeton, a plant 

species appeared to be heavily depleted, with average values of δ13C; 

-42.15±0.02, and δ15N; -2.41±0.02 (± values represent 1SE, P < 0.05). Oxygen 

weed and charophytes were much more enriched in δ13C with average values of -

28.65±1.02 and -25.56±0.23 respectively. Both were nitrogen depleted, however 

charophytes appear to be the most nitrogen depleted plant species of the three, 

with an average δ15N value of -4.71. All three species appear to be disassociated 

with the food web, also winter phytoplankton appear to be detached from the food 

web, showing carbon depletion compared to summer samples. Phytoplankton had 

a winter δ13C value of -38.21 (single sample collected), and a δ15N value of -0.61. 

Zooplankton collected during the same season showed a similar trend, with a 

winter average δ13C value of -39.31±1.74, although δ15N did not appear different 

between winter (4.51±0.96) and summer (5.10±0.54). The rest of the food web 

appeared closely tied together, with all other isotope values falling closely within 

each other (Figure 4.11).  

  

4.3.7 Adjusted trophic consumer chain results 

Perch showed three successive trophic shifts, with juvenile perch (80-100g) 

having an average δ15N value of 7.07±0.05, and a δ13C value of -27.06. Perch 

between 100-407g were close to 1 δ15N unit above their juvenile counterparts, 

with a δ15N value of 7.95±0.19, δ13C remained similar however, with a slight 

decrease; -27.38±0.41. A singular perch was caught much larger than the other 

fish, therefore it was included into the food web, it did show a 1.2 increase in δ15N 

(δ15N = 9.15). It also was enriched in carbon compared to its smaller counterparts 

(δ13C = -26.45). Shortfin and longfin eels were originally uncorrected fin tissue 
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isotopic values. However, these values have been corrected to treated muscle 

tissue values for δ13C and δ15N using the equations created in this study. Longfin 

eels and large shortfin eels had similar values in both δ13C and δ15N. Shortfin 

heavier than 800g had δ15N values of 8.73±0.10, longfin were almost identical, 

with δ15N =8.64±0.08. Smaller shortfin showed a difference in δ15N enrichment, 

with a δ15N value of 7.98±0.10. δ13C values remained similar between all three 

groupings, with δ13C equalling -27.74±0.50, -27.35±0.12, and -28.19±0.33 

respectively.  

 

 
Figure 4.11: Stable isotope food web analysis of Lake Rotokare examining δ13C and δ15N. 
Values represent the mean data point of each species, and error bars represent 1SE from 
the mean. Isotopes were collected between Feb-Dec, 2017. 

 

Using the stable isotope baseline values, it was determined the best model would 

have three end members; chironomid larvae, dragonfly nymphs and juvenile perch 

(80-100 g). Using the meta-analysis from McCutchan et al., (2003), and their 

correction model of Δδ13C = 0.4‰ and Δδ15N = 2.3‰, the stable isotope data was 

readjusted to determine the viability of each member in the food web. Figure 4.12 

shows the three end-member polygon; trophically adjusted values for shortfin eels, 

longfin eels, banded kokopu, 100-400 g perch and snails fell within the polygon. 

There were two exceptions to this however, with zooplankton falling just outside 

of the polygon, but the error bars correct for both C and N and therefore, can be 
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considered within the food chain. The large perch also fell outside of the model, 

the δ15N value was lower than the juvenile perch δ15N once corrected (6.85 vs. 

7.07), however the δ13C corrected value of -26.85‰ remained within acceptable 

parameters. 

 

 
Figure 4.12: Adjusted trophic consumer model of various species within Lake Rotokare. 
Each species has been corrected in δ13C and δ15N values according to McCutchan et al. 
(2003)’s guidelines.  

 

 Discussion: 
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the dietary uptake of perch remains stable year round with evidence from both 

stable isotopes and stomach contents that chironomid larvae and zooplankton are 

the primary nutritional food source of the perch within the lake. The isotopic values 

of the lake food web show both food items well within the bounds of the perch’s 

potential diet. Applying the corrections of De Niro & Epstein (1978, 1981) of 3‰ 
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for δ15N; 1‰ for δ13C, and McCutchan et al., (2003) of 2.4‰ for δ15N; 0.4‰ for 

δ13C zooplankton with an average δ15N of 5.10 falls well within trophic shift 

correction limits for both juvenile and adult perch (average: 7.07 and 7.95 

respectively). Chironomid values fall outside of the limits, with an average δ15N 

of 2.98, however there does exist a high level of variation in chironomid δ15N, with 

a 1.21‰ ± 95% confidence interval limit, suggesting that there may be variation 

between seasons, possibly attributing to a low δ15N average. Grey et al. (2004) 

studied the variability of chironomid larvae δ13C and δ15N values in lakes, and found 

a high level of intraspecific variation within chironomid populations (δ13C range: 

35‰; δ15N range: 16‰), suggesting that this study failed to incorporate enough 

samples to effectively account for the variation.  

 

Zooplankton and phytoplankton showed significant variation in isotopic values 

between seasons. Winter zooplankton and phytoplankton were significantly 

different in δ13C values. Winter isotope values showed an average -10‰ shift in 

zooplankton, and -12‰ shift in phytoplankton. Zohary et al., (1994) exhibited 

modest shifts in δ13C values between summer and winter, and large shifts in δ13C 

for zooplankton, with significant δ13C depletion in winter, contributing the 

differences in phytoplankton to a reduction in DIC and photosynthetic isotope 

fractionation. Vuorio et al. (2006) studied multiple lakes and found a similar 

seasonal pattern in a wide range of phytoplankton species. Grey et al. (2001) found 

seasonal variation of zooplankton δ13C, attributing these seasonal shifts as a dietary 

switch from a reliance on allochthonous carbon from POM during winter and early 

spring, to heavy dependence on algal production during summer.  

 

The difference in shortfin eel isotopic data between the 313-800 g class, and the 

801-2001g is likely due to a transitional shift in diet from juveniles being primarily 

insectivores up until 700 mm, where they become primarily piscivorous (Jellyman, 

1997), longfin eel’s exhibit diet shifts at 400 mm, with the smallest individual 

sampled for isotope analysis above the transition length (474 mm). This could also 

be attributed to ectothermic organism’s life history traits; isotopic change is 

generally attributed to growth rather than metabolism (Logan et al., 2008). It does 

appear that the lakes food web is relatively small, with a low diversity of members 

(n = 8 different members). 
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McCutchan et al. (2003) investigated the uncertainties in isotopic variation between 

samples and individuals, and concluded much of the variation in trophic shift can 

be explained by differences in diet or method of sample preparation. They found 

that the best estimate of Δδ13C for consumers analysed whole is +0.3±0.14‰; for 

consumers analysed as muscle tissue, the best estimate is +1.3±0.30‰. δ15N was 

found to  be significantly lower for consumers raised on invertebrate diets 

(+1.4±0.20‰) than for those raised on other high-protein diets; +3.3±0.26‰. This 

may account for eel values, and for the large δ15N value exhibited by perch; each 

species would be feeding primarily off perch, and therefore requiring a larger 

trophic shift to equalize nitrogen values with their likely dietary source; juvenile 

perch. 

 

4.4.2 Fin vs muscle tissue: 

Similar heterogeneity exists among tissue types within a single organism 

(McConnaughey & McRoy 1979; Hobson & Clark 1992; Sweeting et al., 2006). 

Considerable bias in analyses based on δ13C could be introduced by the 

combination of both relatively large differences in δ13C between lipids and other 

tissue types and by the considerable heterogeneity in lipid content among samples 

(McCutchan et al., 2003; Post et al., 2007). This study found that both muscle and 

fin tissue were homogenous in δ15N values for longfin eels, and homogenous for 

shortfin eels with δ15N values above 8‰. Both species exhibit variation in fin-

muscle values below this threshold, most likely due once again to the shift in 

dietary behaviour that eels undertake, with both species likely feeding almost 

exclusively on perch once shifting to piscivory. The effect of growth rate on 

isotope ratios may also explain this, as juvenile growth rates are much greater than 

individuals smaller than 30 cm, with growth rates typically slowing down to 2–3 

cm per year and linear, with females generally growing faster than males  

(Jellyman, 1977). This may also be attributed to the quality of dietary sources 

between size classes. Webb et al. (1998) and Adams & Sterner (2000) both 

concluded that the high trophic shift for N associated with diets of low quality (i.e. 

very low protein content) may have resulted from internal recycling of N, which 

occurs in starving animals. Thus, it is possible that Δδ15N is high when dietary N 

either exceeds or is well below requirements for optimal growth, and that Δδ15N is 

low when dietary N is near the requirements for optimal growth (McCutchan et al., 

https://link.springer.com/article/10.1007/s00442-006-0630-x#CR27
https://link.springer.com/article/10.1007/s00442-006-0630-x#CR20
https://link.springer.com/article/10.1007/s00442-006-0630-x#CR24
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b57
http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2003.12098.x/full#b1
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2003). With a decrease in growth rates in larger eels, that would act as a stabilizing 

factor for δ15N values, which both species show. 

 

This study did manage to achieve correction equations between muscle and fin 

tissue values, allowing for future study on eels within the lake to rely on fin tissue 

alone. However, both fin and muscle tissue values should be used in conjunction, 

as previously mentioned different tissue types have different isotopic turnover rates, 

and reliance on a single tissue type may miss any shifts in isotopic values the eels 

are undergoing. MacNeil et al. (2006) suggest that multi-tissue sampling can 

overcome problems associated with muscle tissue sampling alone, and lead to a 

more robust evaluation of trophic dynamics for individual species. Sanderson et al. 

(2009) also caution the use of fin tissue isotope values, as fin clips is not a viable 

option for smaller fish (< 50 mm) because the majority of the caudal fin is necessary 

for analysis. This analysis was based around salmon, and these species are reliant 

on caudal fins to stabilize movement, whereas eels have much different body forms, 

possibly rendering this recommendation invalid. With a population of endangered 

species such as longfin eels, it is highly recommended to use non-lethal sampling 

techniques to offset mortality.  

 

 Conclusion: 

Stable isotopes are excellent tools for the study of trophic relationships in aquatic 

ecosystems. While it is highly probable that not all links in the mid-level trophic 

region were assessed here in this study, it remains clear that there exists a three-

way split in basal resources between larger consumers; large perch, large shortfin 

and longfin eels. Isotope and stomach content results also show the importance of 

both chironomid and zooplankton contributions to the food web. It also appears 

that juvenile perch are acting as a large food source for the eel populations within 

the lake. Given the fact that perch are an invasive species this is interesting as it 

is hard to determine whether the introduction of the perch was a positive factor 

for eels or not. This study also highlights the need for lipid correction in stable 

isotope studies for large aquatic vertebrates, with both shortfin and longfin 

requiring lipid correction for homogenous δ13C values. While these correction 

values are not applicable to other locations around the country, it does show that 

establishing mathematical equations can save unnecessary euthanisation of 
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subjects. This is particularly useful when dealing with species like longfin eels, 

where the species is in an overall decline, and populations are often present in 

small quantities. The lake appears to have a stable food web, with seasonal 

differences coming from variation in δ13C and δ15N values within species due to 

physiological factors, rather than dietary shifts. 
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Appendix 1: 

 

 

 

Appendix 1; Figure 1: Length-frequency distribution of perch caught using gill nets in Lake Rotokare 
() caught on the 21 Feb 2017. 
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Appendix 1; Figure 2: Site by site length/weight relationships of perch caught by gill netting in Lake Rotokare on 21 Feb 2017. 
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Appendix 1; Figure 3: Site-by-site length/weight relationships of perch caught by boat electrofishing in Lake Rotokare on 21-22 Feb 2017. 
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Appendix 1; Figure 4: Weight-length relationships of perch sampled from gill netting 
undertaken on the 7-8 Jun 2017. 
 
 

 
Appendix 1; Figure 5: Length-frequency distribution of perch caught by gill netting on 7-
8 Jun 2017. 
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Appendix 1; Figure 6: Length-frequency distribution of perch caught boat electrofishing 
in Lake Rotokare (see figure 1 for sample locations) caught on 21-22 Feb 2017.
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 Appendix 1: Results from the fish sampling in Lake Rotokare between 9 February and 23 February 2017. 

Date Fishing_type Fishing_type_mesh Phase Net_shot_number Net_mesh_mm Species Count_of_fish Length_mm Weight_g Mark_recapture ln_len ln_weight order 

9-Feb-17 Fyke net Fyke net Marking 1 3 Perch 1  55 unmarked  4.01 1 

21-Feb-17 Gill net Count NA 1 18 Perch 1 240 197 unmarked 5.48 5.28 1 

9-Feb-17 Fyke net Fyke net Marking 2 3 Longfin eel 1 688.58 1020 unmarked 6.53 6.93 2 

21-Feb-17 Gill net Count NA 1 18 Perch 1 286 423.8 unmarked 5.66 6.05 2 

21-Feb-17 Gill net Count NA 1 18 Perch 1 195 94.6 unmarked 5.27 4.55 3 

9-Feb-17 Fyke net Fyke net Marking 2 3 Shortfin eel 5  3761 unmarked   3 

9-Feb-17 Fyke net Fyke net Marking 2 3 Perch 20   unmarked    4 

21-Feb-17 Gill net Count NA 1 18 Perch 1 208 138.7 unmarked 5.34 4.93 4 

9-Feb-17 Fyke net Fyke net Marking 2 3 Perch 1  35 unmarked  3.56 5 

21-Feb-17 Gill net Count NA 1 18 Perch 1 190 90.9 unmarked 5.25 4.51 5 

9-Feb-17 Fyke net Fyke net Marking 3 3 Longfin eel 1 626.12 744 unmarked 6.44 6.61 6 

21-Feb-17 Gill net Count NA 1 18 Perch 1 190 100.7 unmarked 5.25 4.61 6 

9-Feb-17 Fyke net Fyke net Marking 3 3 Perch 7   unmarked    7 

21-Feb-17 Gill net Count NA 1 18 Perch 1 224 172.9 unmarked 5.41 5.15 7 

9-Feb-17 Fyke net Fyke net Marking 4 3 Longfin eel 1 1000 3870 unmarked 6.91 8.26 8 

21-Feb-17 Gill net Count NA 1 18 Perch 1 215 140.5 unmarked 5.37 4.95 8 

21-Feb-17 Gill net Count NA 1 18 Perch 1 223 162.9 unmarked 5.41 5.09 9 

9-Feb-17 Fyke net Fyke net Marking 6 3 Shortfin eel 8  3430 unmarked   9 

9-Feb-17 Fyke net Fyke net Marking 6 3 Longfin eel 2  8400 unmarked   10 

21-Feb-17 Gill net Count NA 1 18 Perch 1 185 98.3 unmarked 5.22 4.59 10 

21-Feb-17 Gill net Count NA 1 18 Perch 1 185 100 unmarked 5.22 4.61 11 

9-Feb-17 Fyke net Fyke net Marking 7 3 Shortfin eel 3  1084 unmarked   11 

9-Feb-17 Fyke net Fyke net Marking 7 3 Perch 2   unmarked    12 

21-Feb-17 Gill net Count NA 1 18 Perch 1 187 90.7 unmarked 5.23 4.51 12 
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21-Feb-17 Gill net Count NA 1 18 Perch 1 174 75.5 unmarked 5.16 4.32 13 

9-Feb-17 Fyke net Fyke net Marking 8 3 Shortfin eel 4  1735 unmarked   13 

21-Feb-17 Gill net Count NA 1 18 Perch 1 164 61.4 unmarked 5.10 4.12 14 

9-Feb-17 Fyke net Fyke net Marking 9 3 Shortfin eel 4  3042 unmarked   14 

9-Feb-17 Fyke net Fyke net Marking 9 3 Longfin eel 1 538.08 450 unmarked 6.29 6.11 15 

21-Feb-17 Gill net Count NA 1 18 Perch 1 170 66.6 unmarked 5.14 4.20 15 

9-Feb-17 Fyke net Fyke net Marking 10 3 Perch 18   unmarked    16 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 45.6 unmarked 5.04 3.82 16 

21-Feb-17 Gill net Count NA 1 18 Perch 1 164 67.3 unmarked 5.10 4.21 17 

9-Feb-17 Fyke net Fyke net Marking 11 3 Shortfin eel 4  2104 unmarked   17 

21-Feb-17 Gill net Count NA 1 18 Perch 1 144 49.1 unmarked 4.97 3.89 18 

9-Feb-17 Fyke net Fyke net Marking 13 3 Shortfin eel 3  4532 unmarked   18 

9-Feb-17 Fyke net Fyke net Marking 13 3 Perch 1   unmarked    19 

21-Feb-17 Gill net Count NA 1 18 Perch 1 148 46.6 unmarked 5.00 3.84 19 

9-Feb-17 Fyke net Fyke net Marking 13 3 Longfin eel 7  8932 unmarked   9.10 20 

21-Feb-17 Gill net Count NA 1 18 Perch 1 154 52.6 unmarked 5.04 3.96 20 

9-Feb-17 Fyke net Fyke net Marking 14 3 Longfin eel 1 1100 5179 unmarked 7.00 8.55 21 

21-Feb-17 Gill net Count NA 1 18 Perch 1 141 37.8 unmarked 4.95 3.63 21 

9-Feb-17 Fyke net Fyke net Marking 14 3 Longfin eel 1 1200 7253 unmarked 7.09 8.89 22 

21-Feb-17 Gill net Count NA 1 18 Perch 1 172 73.4 unmarked 5.15 4.30 22 

9-Feb-17 Fyke net Fyke net Marking 14 3 Longfin eel 1 1009.08 3625 unmarked 6.92 8.20 23 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 53.4 unmarked 5.04 3.98 23 

9-Feb-17 Fyke net Fyke net Marking 15 3 Longfin eel 10  27680 unmarked    24 

21-Feb-17 Gill net Count NA 1 18 Perch 1 154 52.3 unmarked 5.04 3.96 24 

21-Feb-17 Gill net Count NA 1 18 Perch 1 172 70.8 unmarked 5.15 4.26 25 

9-Feb-17 Fyke net Fyke net Marking 15 3 Shortfin eel 1 715.15 800 unmarked 6.57 6.68 25 
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9-Feb-17 Fyke net Fyke net Marking 16 3 Perch 1  318 unmarked  5.76 26 

21-Feb-17 Gill net Count NA 1 18 Perch 1 145 43.6 unmarked 4.98 3.78 26 

9-Feb-17 Fyke net Fyke net Marking 16 3 Perch 3   unmarked    27 

21-Feb-17 Gill net Count NA 1 18 Perch 1 146 43.8 unmarked 4.98 3.78 27 

9-Feb-17 Fyke net Fyke net Marking 16 3 Perch 2   unmarked    28 

21-Feb-17 Gill net Count NA 1 18 Perch 1 160 61.1 unmarked 5.08 4.11 28 

21-Feb-17 Gill net Count NA 1 18 Perch 1 146 40.1 unmarked 4.98 3.69 29 

9-Feb-17 Fyke net Fyke net Marking 17 3 Shortfin eel 3  2093 unmarked   29 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 47.1 unmarked 5.04 3.85 30 

9-Feb-17 Fyke net Fyke net Marking 18 3 Shortfin eel 6  5790 unmarked   30 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 54.8 unmarked 5.04 4.00 31 

9-Feb-17 Fyke net Fyke net Marking 19 3 Shortfin eel 1 738.33 883 unmarked 6.60 6.78 31 

21-Feb-17 Gill net Count NA 1 18 Perch 1 189 93.6 unmarked 5.24 4.54 32 

9-Feb-17 Fyke net Fyke net Marking 19 3 Shortfin eel 1 679.96 687 unmarked 6.52 6.53 32 

9-Feb-17 Fyke net Fyke net Marking 19 3 Longfin eel 9  19630 unmarked   9.88 33 

21-Feb-17 Gill net Count NA 1 18 Perch 1 158 57.3 unmarked 5.06 4.05 33 

21-Feb-17 Gill net Count NA 1 18 Perch 1 164 61.6 unmarked 5.10 4.12 34 

9-Feb-17 Fyke net Fyke net Marking 20 3 Shortfin eel 7  3278 unmarked   34 

22-Feb-17 Fyke net Fyke net Recapture 1 3 Perch 1 210 146 marked 5.35 4.98 35 

21-Feb-17 Gill net Count NA 1 18 Perch 1 169 68.7 unmarked 5.13 4.23 35 

22-Feb-17 Fyke net Fyke net Recapture 1 3 Perch 1 170 70 unmarked 5.14 4.25 36 

21-Feb-17 Gill net Count NA 1 18 Perch 1 167 77.1 unmarked 5.12 4.35 36 

22-Feb-17 Fyke net Fyke net Recapture 1 3 Perch 1 75 4 unmarked 4.32 1.39 37 

21-Feb-17 Gill net Count NA 1 18 Perch 1 154 57.3 unmarked 5.04 4.05 37 

21-Feb-17 Gill net Count NA 1 18 Perch 1 156 57.7 unmarked 5.05 4.06 38 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Shortfin eel 1 660 605 unmarked 6.49 6.41 38 
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21-Feb-17 Gill net Count NA 1 18 Perch 1 149 51.2 unmarked 5.00 3.94 39 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Shortfin eel 1 805 1178 unmarked 6.69 7.07 39 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Longfin eel 1 970 3234 unmarked 6.88 8.08 40 

21-Feb-17 Gill net Count NA 1 18 Perch 1 150 47.7 unmarked 5.01 3.86 40 

21-Feb-17 Gill net Count NA 1 18 Perch 1 153 49.6 unmarked 5.03 3.90 41 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Shortfin eel 1 670 729 unmarked 6.51 6.59 41 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Longfin eel 1 760 1380 unmarked 6.63 7.23 42 

21-Feb-17 Gill net Count NA 1 18 Perch 1 172 78.7 unmarked 5.15 4.37 42 

21-Feb-17 Gill net Count NA 1 18 Perch 1 151 51.4 unmarked 5.02 3.94 43 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Shortfin eel 1 445 136.2 unmarked 6.10 4.91 43 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Longfin eel 1 520 352 unmarked 6.25 5.86 44 

21-Feb-17 Gill net Count NA 1 18 Perch 1 159 59.5 unmarked 5.07 4.09 44 

21-Feb-17 Gill net Count NA 1 18 Perch 1 135 36.4 unmarked 4.91 3.59 45 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Shortfin eel 1 440 145 unmarked 6.09 4.98 45 

21-Feb-17 Gill net Count NA 1 18 Perch 1 154 56.2 unmarked 5.04 4.03 46 

22-Feb-17 Fyke net Fyke net Recapture 2 3 Shortfin eel 1 620 539 unmarked 6.43 6.29 46 

21-Feb-17 Gill net Count NA 1 18 Perch 1 145 42.9 unmarked 4.98 3.76 47 

22-Feb-17 Fyke net Fyke net Recapture 4 3 Shortfin eel 1 600 510 unmarked 6.40 6.23 47 

21-Feb-17 Gill net Count NA 1 18 Perch 1 172 74.4 unmarked 5.15 4.31 48 

22-Feb-17 Fyke net Fyke net Recapture 4 3 Shortfin eel 1 660 670 unmarked 6.49 6.51 48 

21-Feb-17 Gill net Count NA 1 18 Perch 1 140 39.5 unmarked 4.94 3.68 49 

22-Feb-17 Fyke net Fyke net Recapture 5 3 Shortfin eel 1 580 477 unmarked 6.36 6.17 49 

21-Feb-17 Gill net Count NA 1 18 Perch 1 160 61.5 unmarked 5.08 4.12 50 

22-Feb-17 Fyke net Fyke net Recapture 5 3 Shortfin eel 1 545 401 unmarked 6.30 5.99 50 

21-Feb-17 Gill net Count NA 1 18 Perch 1 170 72.1 unmarked 5.14 4.28 51 

22-Feb-17 Fyke net Fyke net Recapture 5 3 Shortfin eel 1 540 303 unmarked 6.29 5.71 51 
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21-Feb-17 Gill net Count NA 1 18 Perch 1 135 36 unmarked 4.91 3.58 52 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 650 570 unmarked 6.48 6.35 52 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Longfin eel 1 750 1448 unmarked 6.62 7.28 53 

21-Feb-17 Gill net Count NA 1 18 Perch 1 185 103.1 unmarked 5.22 4.64 53 

21-Feb-17 Gill net Count NA 1 18 Perch 1 165 67 unmarked 5.11 4.20 54 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 550 338 unmarked 6.31 5.82 54 

21-Feb-17 Gill net Count NA 1 18 Perch 1 177 78.3 unmarked 5.18 4.36 55 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 620 428 unmarked 6.43 6.06 55 

21-Feb-17 Gill net Count NA 1 18 Perch 1 172 64.9 unmarked 5.15 4.17 56 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 505 314 marked 6.22 5.75 56 

21-Feb-17 Gill net Count NA 1 18 Perch 1 160 65.8 unmarked 5.08 4.19 57 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 540 244 unmarked 6.29 5.50 57 

21-Feb-17 Gill net Count NA 1 18 Perch 1 164 61.7 unmarked 5.10 4.12 58 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 615 539 unmarked 6.42 6.29 58 

21-Feb-17 Gill net Count NA 1 18 Perch 1 145 44 unmarked 4.98 3.78 59 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 560 368 marked 6.33 5.91 59 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 58.7 unmarked 5.04 4.07 60 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 620 572 unmarked 6.43 6.35 60 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 55 unmarked 5.04 4.01 61 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 415 154 unmarked 6.03 5.04 61 

21-Feb-17 Gill net Count NA 1 18 Perch 1 181 85.9 unmarked 5.20 4.45 62 

22-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 535 330 unmarked 6.28 5.80 62 

21-Feb-17 Gill net Count NA 1 18 Perch 1 165 63.9 unmarked 5.11 4.16 63 

22-Feb-17 Fyke net Fyke net Recapture 7 3 Shortfin eel 1 890 1038 unmarked 6.79 6.95 63 

21-Feb-17 Gill net Count NA 1 18 Perch 1 152 49.8 unmarked 5.02 3.91 64 

22-Feb-17 Fyke net Fyke net Recapture 7 3 Shortfin eel 1 470 177 unmarked 6.15 5.18 64 
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21-Feb-17 Gill net Count NA 1 18 Perch 1 171 70.5 unmarked 5.14 4.26 65 

22-Feb-17 Fyke net Fyke net Recapture 7 3 Shortfin eel 1 785 1089.92 unmarked 6.67 6.99 65 

21-Feb-17 Gill net Count NA 1 18 Perch 1 175 85 unmarked 5.16 4.44 66 

22-Feb-17 Fyke net Fyke net Recapture 21_2 3 Shortfin eel 1 700 744 unmarked 6.55 6.61 66 

21-Feb-17 Gill net Count NA 1 18 Perch 1 144 40.8 unmarked 4.97 3.71 67 

22-Feb-17 Fyke net Fyke net Recapture 21_2 3 Shortfin eel 1 722 805 unmarked 6.58 6.69 67 

21-Feb-17 Gill net Count NA 1 18 Perch 1 146 46 unmarked 4.98 3.83 68 

22-Feb-17 Fyke net Fyke net Recapture 21_2 3 Shortfin eel 1 640 505 marked 6.46 6.22 68 

21-Feb-17 Gill net Count NA 1 18 Perch 1 148 45.3 unmarked 5.00 3.81 69 

22-Feb-17 Fyke net Fyke net Recapture 21_2 3 Shortfin eel 1 665 557 unmarked 6.50 6.32 69 

22-Feb-17 Fyke net Fyke net Recapture 8 3 Longfin eel 1 960 3046 unmarked 6.87 8.02 70 

21-Feb-17 Gill net Count NA 1 18 Perch 1 156 57 unmarked 5.05 4.04 70 

21-Feb-17 Gill net Count NA 1 18 Perch 1 140 39.3 unmarked 4.94 3.67 71 

22-Feb-17 Fyke net Fyke net Recapture 8 3 Shortfin eel 1 535 385 unmarked 6.28 5.95 71 

21-Feb-17 Gill net Count NA 1 18 Perch 1 192 98.2 unmarked 5.26 4.59 72 

22-Feb-17 Fyke net Fyke net Recapture 8 3 Shortfin eel 1 665 535 unmarked 6.50 6.28 72 

21-Feb-17 Gill net Count NA 1 18 Perch 1 150 43.8 unmarked 5.01 3.78 73 

22-Feb-17 Fyke net Fyke net Recapture 8 3 Shortfin eel 1 720 716 unmarked 6.58 6.57 73 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 54.3 unmarked 5.04 3.99 74 

22-Feb-17 Fyke net Fyke net Recapture 8 3 Shortfin eel 1 535 385 unmarked 6.28 5.95 74 

21-Feb-17 Gill net Count NA 1 18 Perch 1 186 96.2 unmarked 5.23 4.57 75 

22-Feb-17 Fyke net Fyke net Recapture 8 3 Shortfin eel 1 720 766 unmarked 6.58 6.64 75 

21-Feb-17 Gill net Count NA 1 18 Perch 1 170 70.4 unmarked 5.14 4.25 76 

22-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 600 485 unmarked 6.40 6.18 76 

21-Feb-17 Gill net Count NA 1 18 Perch 1 151 49.8 unmarked 5.02 3.91 77 

22-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 490 226 unmarked 6.19 5.42 77 
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21-Feb-17 Gill net Count NA 1 18 Perch 1 146 42.3 unmarked 4.98 3.74 78 

22-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 760 1054 unmarked 6.63 6.96 78 

21-Feb-17 Gill net Count NA 1 18 Perch 1 189 97.5 unmarked 5.24 4.58 79 

22-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 845 1490 unmarked 6.74 7.31 79 

21-Feb-17 Gill net Count NA 1 18 Perch 1 150 53 unmarked 5.01 3.97 80 

22-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 615 463 unmarked 6.42 6.14 80 

21-Feb-17 Gill net Count NA 1 18 Perch 1 152 53.4 unmarked 5.02 3.98 81 

22-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 700 804 marked 6.55 6.69 81 

21-Feb-17 Gill net Count NA 1 18 Perch 1 158 59.8 unmarked 5.06 4.09 82 

22-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 610 580 unmarked 6.41 6.36 82 

21-Feb-17 Gill net Count NA 1 18 Perch 1 160 60.5 unmarked 5.08 4.10 83 

22-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 625 497 unmarked 6.44 6.21 83 

22-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 916 2458 unmarked 6.82 7.81 84 

21-Feb-17 Gill net Count NA 1 18 Perch 1 137 37 unmarked 4.92 3.61 84 

21-Feb-17 Gill net Count NA 1 18 Perch 1 188 95 unmarked 5.24 4.55 85 

22-Feb-17 Fyke net Fyke net Recapture 10 3 Shortfin eel 1 590 439 unmarked 6.38 6.08 85 

22-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 994 3330 marked 6.90 8.11 86 

21-Feb-17 Gill net Count NA 1 18 Perch 1 171 64.5 unmarked 5.14 4.17 86 

22-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 480 314 unmarked 6.17 5.75 87 

21-Feb-17 Gill net Count NA 1 18 Perch 1 145 41.3 unmarked 4.98 3.72 87 

22-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 635 794 unmarked 6.45 6.68 88 

21-Feb-17 Gill net Count NA 1 18 Perch 1 163 53.4 unmarked 5.09 3.98 88 

22-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 500 372 unmarked 6.21 5.92 89 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 52.6 unmarked 5.04 3.96 89 

21-Feb-17 Gill net Count NA 1 18 Perch 1 165 68.5 unmarked 5.11 4.23 90 

22-Feb-17 Fyke net Fyke net Recapture 11 3 Shortfin eel 1 830 1475 unmarked 6.72 7.30 90 
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22-Feb-17 Fyke net Fyke net Recapture 12 3 Longfin eel 1 708 1160 unmarked 6.56 7.06 91 

21-Feb-17 Gill net Count NA 1 18 Perch 1 151 46.9 unmarked 5.02 3.85 91 

22-Feb-17 Fyke net Fyke net Recapture 13 3 Longfin eel 1 810 1586 marked 6.70 7.37 92 

21-Feb-17 Gill net Count NA 1 18 Perch 1 184 88.9 unmarked 5.21 4.49 92 

21-Feb-17 Gill net Count NA 1 18 Perch 1 169 63 unmarked 5.13 4.14 93 

22-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 770 872 unmarked 6.65 6.77 93 

21-Feb-17 Gill net Count NA 1 18 Perch 1 151 53.2 unmarked 5.02 3.97 94 

22-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 820 1252 unmarked 6.71 7.13 94 

21-Feb-17 Gill net Count NA 1 18 Perch 1 154 53.4 unmarked 5.04 3.98 95 

22-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 835 1370 unmarked 6.73 7.22 95 

21-Feb-17 Gill net Count NA 1 18 Perch 1 151 48 unmarked 5.02 3.87 96 

22-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 930 2001 unmarked 6.84 7.60 96 

21-Feb-17 Gill net Count NA 1 18 Perch 1 179 89.4 unmarked 5.19 4.49 97 

22-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 505 310 unmarked 6.22 5.74 97 

22-Feb-17 Fyke net Fyke net Recapture 14 3 Perch 5 95  unmarked 4.55   98 

21-Feb-17 Gill net Count NA 1 18 Perch 1 191 91 unmarked 5.25 4.51 98 

21-Feb-17 Gill net Count NA 1 18 Perch 1 149 50.8 unmarked 5.00 3.93 99 

22-Feb-17 Fyke net Fyke net Recapture 15 3 Shortfin eel 1 755 898 unmarked 6.63 6.80 99 

21-Feb-17 Gill net Count NA 1 18 Perch 1 135 32.8 unmarked 4.91 3.49 100 

22-Feb-17 Fyke net Fyke net Recapture 15 3 Shortfin eel 1 778 1087 unmarked 6.66 6.99 100 

22-Feb-17 Fyke net Fyke net Recapture 15 3 Longfin eel 1 726 1004 marked 6.59 6.91 101 

21-Feb-17 Gill net Count NA 1 18 Perch 1 155 48.6 unmarked 5.04 3.88 101 

21-Feb-17 Gill net Count NA 1 18 Perch 1 152 49.7 unmarked 5.02 3.91 102 

22-Feb-17 Fyke net Fyke net Recapture 15 3 Shortfin eel 1 698 783 unmarked 6.55 6.66 102 

22-Feb-17 Fyke net Fyke net Recapture 15 3 Longfin eel 1 1140 4663 unmarked 7.04 8.45 103 

21-Feb-17 Gill net Count NA 1 18 Perch 1 149 45.4 unmarked 5.00 3.82 103 
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22-Feb-17 Fyke net Fyke net Recapture 16 3 Longfin eel 1 1120 6690 unmarked 7.02 8.81 104 

21-Feb-17 Gill net Count NA 1 18 Perch 1 148 48.1 unmarked 5.00 3.87 104 

22-Feb-17 Fyke net Fyke net Recapture 16 3 Perch 1 165  unmarked 5.11   105 

21-Feb-17 Gill net Count NA 1 18 Perch 1 159 61.2 unmarked 5.07 4.11 105 

22-Feb-17 Fyke net Fyke net Recapture 16 3 Perch 1 140  unmarked 4.94   106 

21-Feb-17 Gill net Count NA 1 18 Perch 1 142 41.8 unmarked 4.96 3.73 106 

22-Feb-17 Fyke net Fyke net Recapture 16 3 Perch 1 158  unmarked 5.06   107 

21-Feb-17 Gill net Count NA 1 18 Perch 1 170 71.7 unmarked 5.14 4.27 107 

22-Feb-17 Fyke net Fyke net Recapture 16 3 Perch 1 93  unmarked 4.53   108 

21-Feb-17 Gill net Count NA 1 18 Perch 1 149 54.4 unmarked 5.00 4.00 108 

22-Feb-17 Fyke net Fyke net Recapture 17 3 Longfin eel 1 1040 3819 unmarked 6.95 8.25 109 

21-Feb-17 Gill net Count NA 1 18 Perch 1 165 72.8 unmarked 5.11 4.29 109 

21-Feb-17 Gill net Count NA 1 18 Perch 1 160 64.5 unmarked 5.08 4.17 110 

22-Feb-17 Fyke net Fyke net Recapture 17 3 Shortfin eel 1 745 920 unmarked 6.61 6.82 110 

21-Feb-17 Gill net Count NA 1 18 Perch 1 167 68.6 unmarked 5.12 4.23 111 

22-Feb-17 Fyke net Fyke net Recapture 17 3 Shortfin eel 1 545 357 unmarked 6.30 5.88 111 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Perch 1 234 177 unmarked 5.46 5.18 112 

21-Feb-17 Gill net Count NA 1 18 Perch 1 159 60 unmarked 5.07 4.09 112 

21-Feb-17 Gill net Count NA 1 18 Perch 1 170 68.5 unmarked 5.14 4.23 113 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Shortfin eel 1 260 24 unmarked 5.56 3.18 113 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Longfin eel 1 880 2327 unmarked 6.78 7.75 114 

21-Feb-17 Gill net Count NA 1 18 Perch 1 172 76.5 unmarked 5.15 4.34 114 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Longfin eel 1 719 1098 marked 6.58 7.00 115 

21-Feb-17 Gill net Count NA 1 18 Perch 1 142 40.5 unmarked 4.96 3.70 115 

21-Feb-17 Gill net Count NA 2 18 Perch 1 188 92 unmarked 5.24 4.52 116 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Shortfin eel 1 755 805 marked 6.63 6.69 116 
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21-Feb-17 Gill net Count NA 2 18 Perch 1 158 59.4 unmarked 5.06 4.08 117 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Shortfin eel 1 665 695 unmarked 6.50 6.54 117 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Longfin eel 1 1060 3920 unmarked 6.97 8.27 118 

21-Feb-17 Gill net Count NA 2 18 Perch 1 150 50.3 unmarked 5.01 3.92 118 

21-Feb-17 Gill net Count NA 2 18 Perch 1 182 95.9 unmarked 5.20 4.56 119 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Shortfin eel 1 815 1227 unmarked 6.70 7.11 119 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Longfin eel 1 685 1135 marked 6.53 7.03 120 

21-Feb-17 Gill net Count NA 2 18 Perch 1 160 62.5 unmarked 5.08 4.14 120 

21-Feb-17 Gill net Count NA 2 18 Perch 1 140 37.3 unmarked 4.94 3.62 121 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Shortfin eel 1 595 521 unmarked 6.39 6.26 121 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Longfin eel 1 602 580 marked 6.40 6.36 122 

21-Feb-17 Gill net Count NA 2 18 Perch 1 170 76.7 unmarked 5.14 4.34 122 

21-Feb-17 Gill net Count NA 2 18 Perch 1 153 58.6 unmarked 5.03 4.07 123 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Shortfin eel 1 525 301 unmarked 6.26 5.71 123 

22-Feb-17 Fyke net Fyke net Recapture 19 3 Shortfin eel 1   unmarked   123 

22-Feb-17 Fyke net Fyke net Recapture 20 3 Longfin eel 1 710 1277 marked 6.57 7.15 124 

21-Feb-17 Gill net Count NA 2 18 Perch 1 160 54.3 unmarked 5.08 3.99 124 

22-Feb-17 Fyke net Fyke net Recapture 20 3 Perch 1 95 12.2 unmarked 4.55 2.50 125 

21-Feb-17 Gill net Count NA 2 18 Perch 1 178 83.1 unmarked 5.18 4.42 125 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Perch 1 95 13.9 unmarked 4.55 2.63 126 

21-Feb-17 Gill net Count NA 2 18 Perch 1 145 56.1 unmarked 4.98 4.03 126 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Perch 1 87 10.1 unmarked 4.47 2.31 127 

21-Feb-17 Gill net Count NA 2 18 Perch 1 130 35.3 unmarked 4.87 3.56 127 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 850 1764 unmarked 6.75 7.48 128 

21-Feb-17 Gill net Count NA 2 18 Perch 1 165 68.4 unmarked 5.11 4.23 128 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 800 1858 marked 6.68 7.53 129 
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21-Feb-17 Gill net Count NA 2 18 Perch 1 155 56.2 unmarked 5.04 4.03 129 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 830 1876 unmarked 6.72 7.54 130 

21-Feb-17 Gill net Count NA 2 18 Perch 1 155 61.5 unmarked 5.04 4.12 130 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 780 1598 unmarked 6.66 7.38 131 

21-Feb-17 Gill net Count NA 2 18 Perch 1 147 48.1 unmarked 4.99 3.87 131 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 730 1484 unmarked 6.59 7.30 132 

21-Feb-17 Gill net Count NA 2 18 Perch 1 164 64.5 unmarked 5.10 4.17 132 

21-Feb-17 Gill net Count NA 3 18 Perch 1 160 61 unmarked 5.08 4.11 133 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 480 275 unmarked 6.17 5.62 133 

21-Feb-17 Gill net Count NA 3 18 Perch 1 150 53.2 unmarked 5.01 3.97 134 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 660 598 unmarked 6.49 6.39 134 

21-Feb-17 Gill net Count NA 3 18 Perch 1 170 73.2 unmarked 5.14 4.29 135 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 680 809 unmarked 6.52 6.70 135 

21-Feb-17 Gill net Count NA 3 18 Perch 1 148 49.2 unmarked 5.00 3.90 136 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 575 462 unmarked 6.35 6.14 136 

21-Feb-17 Gill net Count NA 3 18 Perch 1 150 54.3 unmarked 5.01 3.99 137 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 640 616 unmarked 6.46 6.42 137 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 585 530 unmarked 6.37 6.27 138 

21-Feb-17 Gill net Count NA 3 18 Perch 1 155 61.6 unmarked 5.04 4.12 138 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 510 406 unmarked 6.23 6.01 139 

21-Feb-17 Gill net Count NA 3 18 Perch 1 145 43.8 unmarked 4.98 3.78 139 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 595 618 unmarked 6.39 6.43 140 

21-Feb-17 Gill net Count NA 3 18 Perch 1 149 48.8 unmarked 5.00 3.89 140 

21-Feb-17 Gill net Count NA 3 18 Perch 1 160 60.9 unmarked 5.08 4.11 141 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 805 1101 unmarked 6.69 7.00 141 

21-Feb-17 Gill net Count NA 3 18 Perch 1 150 54.5 unmarked 5.01 4.00 142 
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22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 640 529 unmarked 6.46 6.27 142 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 610 776 unmarked 6.41 6.65 143 

21-Feb-17 Gill net Count NA 3 18 Perch 1 172 80.4 unmarked 5.15 4.39 143 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 550 518 unmarked 6.31 6.25 144 

21-Feb-17 Gill net Count NA 3 18 Perch 1 168 79.5 unmarked 5.12 4.38 144 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 480 339 unmarked 6.17 5.83 145 

21-Feb-17 Gill net Count NA 3 18 Perch 1 155 57.4 unmarked 5.04 4.05 145 

21-Feb-17 Gill net Count NA 3 18 Perch 1 145 46.8 unmarked 4.98 3.85 146 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 535 306 unmarked 6.28 5.72 146 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Longfin eel 1 415 165 unmarked 6.03 5.11 147 

21-Feb-17 Gill net Count NA 3 18 Perch 1 168 70.1 unmarked 5.12 4.25 147 

21-Feb-17 Gill net Count NA 3 18 Perch 1 162 64.7 unmarked 5.09 4.17 148 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Shortfin eel 1 440 171.65 unmarked 6.09 5.15 148 

22-Feb-17 Fyke net Fyke net Recapture 21 3 Perch 13   unmarked    149 

21-Feb-17 Gill net Count NA 3 18 Perch 1 150 52.7 unmarked 5.01 3.96 149 

21-Feb-17 Gill net Count NA 3 18 Perch 1 172 82.2 unmarked 5.15 4.41 150 

22-Feb-17 Fyke net Fyke net Recapture 22 3 Shortfin eel 1 850 1403 unmarked 6.75 7.25 150 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 770 1458 marked 6.65 7.28 151 

21-Feb-17 Gill net Count NA 3 18 Perch 1 180 82.8 unmarked 5.19 4.42 151 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 970 2744 marked 6.88 7.92 152 

21-Feb-17 Gill net Count NA 3 18 Perch 1 165 69 unmarked 5.11 4.23 152 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 915 2692 unmarked 6.82 7.90 153 

21-Feb-17 Gill net Count NA 3 18 Perch 1 165 68 unmarked 5.11 4.22 153 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 845 1870 marked 6.74 7.53 154 

21-Feb-17 Gill net Count NA 3 18 Perch 1 157 58.5 unmarked 5.06 4.07 154 

21-Feb-17 Gill net Count NA 3 18 Perch 1 155 55.3 unmarked 5.04 4.01 155 



  

 

136 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Shortfin eel 1 706 751 unmarked 6.56 6.62 155 

21-Feb-17 Gill net Count NA 3 18 Perch 1 165 63.9 unmarked 5.11 4.16 156 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Shortfin eel 1 584 460 unmarked 6.37 6.13 156 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 900 2204 marked 6.80 7.70 157 

21-Feb-17 Gill net Count NA 3 18 Perch 1 140 49.4 unmarked 4.94 3.90 157 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 600 614 marked 6.40 6.42 158 

21-Feb-17 Gill net Count NA 3 18 Perch 1 150 60.1 unmarked 5.01 4.10 158 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 790 1610 marked 6.67 7.38 159 

21-Feb-17 Gill net Count NA 3 18 Perch 1 148 48.8 unmarked 5.00 3.89 159 

21-Feb-17 Gill net Count NA 3 18 Perch 1 154 55.8 unmarked 5.04 4.02 160 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Shortfin eel 1 726 996 unmarked 6.59 6.90 160 

22-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 562 595 unmarked 6.33 6.39 161 

21-Feb-17 Gill net Count NA 4 25 Perch 1 180 83.8 unmarked 5.19 4.43 161 

23-Feb-17 Fyke net Fyke net Recapture 1 3 Longfin eel 1 970 3179.7 marked 6.88 8.06 162 

21-Feb-17 Gill net Count NA 4 25 Perch 1 170 69.1 unmarked 5.14 4.24 162 

23-Feb-17 Fyke net Fyke net Recapture 1 3 Longfin eel 1 880 2301.8 marked 6.78 7.74 163 

21-Feb-17 Gill net Count NA 4 25 Perch 1 185 85 unmarked 5.22 4.44 163 

23-Feb-17 Fyke net Fyke net Recapture 1 3 Longfin eel 1 580 577.2 unmarked 6.36 6.36 164 

21-Feb-17 Gill net Count NA 4 25 Perch 1 160 60.2 unmarked 5.08 4.10 164 

21-Feb-17 Gill net Count NA 4 25 Perch 1 155 56.3 unmarked 5.04 4.03 165 

23-Feb-17 Fyke net Fyke net Recapture 1 3 Shortfin eel 1 490 242.04 unmarked 6.19 5.49 165 

23-Feb-17 Fyke net Fyke net Recapture 1 3 Longfin eel 1 744 1318.7 unmarked 6.61 7.18 166 

21-Feb-17 Gill net Count NA 4 25 Perch 1 165 68 unmarked 5.11 4.22 166 

23-Feb-17 Fyke net Fyke net Recapture 1 3 Perch 6   unmarked    167 

21-Feb-17 Gill net Count NA 4 25 Perch 1 168 67.8 unmarked 5.12 4.22 167 

21-Feb-17 Gill net Count NA 4 25 Perch 1 175 78.8 unmarked 5.16 4.37 168 
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23-Feb-17 Fyke net Fyke net Recapture 2 3 Shortfin eel 1 720 827.07 unmarked 6.58 6.72 168 

23-Feb-17 Fyke net Fyke net Recapture 2 3 Longfin eel 1 820 1821.0 unmarked 6.71 7.51 169 

21-Feb-17 Gill net Count NA 4 25 Perch 1 165 74.1 unmarked 5.11 4.31 169 

23-Feb-17 Fyke net Fyke net Recapture 3 3 Longfin eel 1 890 2389.8 unmarked 6.79 7.78 170 

21-Feb-17 Gill net Count NA 4 25 Perch 1 168 66.8 unmarked 5.12 4.20 170 

23-Feb-17 Fyke net Fyke net Recapture 5 3 Perch 1   unmarked    171 

21-Feb-17 Gill net Count NA 5 25 Perch 1 155 53.1 unmarked 5.04 3.97 171 

21-Feb-17 Gill net Count NA 5 25 Perch 1 160 59.2 unmarked 5.08 4.08 172 

23-Feb-17 Fyke net Fyke net Recapture 5 3 Shortfin eel 1 795 1134.88 unmarked 6.68 7.03 172 

23-Feb-17 Fyke net Fyke net Recapture 6 3 Longfin eel 1 680 978.4 unmarked 6.52 6.89 173 

21-Feb-17 Gill net Count NA 5 25 Perch 1 180 79.5 unmarked 5.19 4.38 173 

23-Feb-17 Fyke net Fyke net Recapture 6 3 Longfin eel 1 730 1238.16 unmarked 6.59 7.12 174 

21-Feb-17 Gill net Count NA 5 25 Perch 1 170 75.5 unmarked 5.14 4.32 174 

21-Feb-17 Gill net Count NA 5 25 Perch 1 175 71 unmarked 5.16 4.26 175 

23-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 455 191.04 unmarked 6.12 5.25 175 

21-Feb-17 Gill net Count NA 5 25 Perch 1 177 65.4 unmarked 5.18 4.18 176 

23-Feb-17 Fyke net Fyke net Recapture 6 3 Shortfin eel 1 690 721.98 unmarked 6.54 6.58 176 

23-Feb-17 Fyke net Fyke net Recapture 6 3 Perch 6   unmarked    177 

21-Feb-17 Gill net Count NA 5 25 Perch 1 160 63.4 unmarked 5.08 4.15 177 

21-Feb-17 Gill net Count NA 5 25 Perch 1 187 92.3 unmarked 5.23 4.53 178 

23-Feb-17 Fyke net Fyke net Recapture 7 3 Shortfin eel 1 600 462.09 unmarked 6.40 6.14 178 

23-Feb-17 Fyke net Fyke net Recapture 7 3 Longfin eel 1 950 2967.4 unmarked 6.86 8.00 179 

21-Feb-17 Gill net Count NA 5 25 Perch 1 166 60.2 unmarked 5.11 4.10 179 

23-Feb-17 Fyke net Fyke net Recapture 7 3 Perch 4   unmarked    180 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Perch 2 205  unmarked    180 

21-Feb-17 Gill net Count NA 5 25 Perch 1 175 70.3 unmarked 5.16 4.25 180 
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21-Feb-17 Gill net Count NA 5 25 Perch 1 180 77.9 unmarked 5.19 4.36 181 

23-Feb-17 Fyke net Fyke net Recapture 8 3 Shortfin eel 1 604 472.00 unmarked 6.40 6.16 181 

21-Feb-17 Gill net Count NA 5 25 Perch 1 170 73.4 unmarked 5.14 4.30 182 

23-Feb-17 Fyke net Fyke net Recapture 8 3 Shortfin eel 1 670 657.26 unmarked 6.51 6.49 182 

23-Feb-17 Fyke net Fyke net Recapture 8 3 Longfin eel 1 328 87.1 unmarked 5.79 4.47 183 

21-Feb-17 Gill net Count NA 5 25 Perch 1 180 77.9 unmarked 5.19 4.36 183 

21-Feb-17 Gill net Count NA 5 25 Perch 1 155 55.7 unmarked 5.04 4.02 184 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 725 845.55 unmarked 6.59 6.74 184 

21-Feb-17 Gill net Count NA 5 25 Perch 1 175 81.3 unmarked 5.16 4.40 185 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 526 303.53 unmarked 6.27 5.72 185 

21-Feb-17 Gill net Count NA 5 25 Perch 1 158 52.8 unmarked 5.06 3.97 186 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 591 440.32 unmarked 6.38 6.09 186 

21-Feb-17 Gill net Count NA 5 25 Perch 1 177 81.6 unmarked 5.18 4.40 187 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 748 934.21 unmarked 6.62 6.84 187 

21-Feb-17 Gill net Count NA 5 25 Perch 1 154 53.2 unmarked 5.04 3.97 188 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 670 657.26 unmarked 6.51 6.49 188 

21-Feb-17 Gill net Count NA 5 25 Perch 1 165 64.4 unmarked 5.11 4.17 189 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 725 845.55 unmarked 6.59 6.74 189 

21-Feb-17 Gill net Count NA 5 25 Perch 1 158 55.8 unmarked 5.06 4.02 190 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 621 515.74 unmarked 6.43 6.25 190 

21-Feb-17 Gill net Count NA 5 25 Perch 1 162 59.5 unmarked 5.09 4.09 191 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 560 370.73 unmarked 6.33 5.92 191 

21-Feb-17 Gill net Count NA 5 25 Perch 1 181 90.6 unmarked 5.20 4.51 192 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 681 692.34 unmarked 6.52 6.54 192 

21-Feb-17 Gill net Count NA 5 25 Perch 1 160 59.5 unmarked 5.08 4.09 193 

23-Feb-17 Fyke net Fyke net Recapture 9 3 Shortfin eel 1 639 565.00 unmarked 6.46 6.34 193 
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23-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 990 3402.5 unmarked 6.90 8.13 194 

21-Feb-17 Gill net Count NA 5 25 Perch 1 160 58.7 unmarked 5.08 4.07 194 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 527 420.0 unmarked 6.27 6.04 195 

21-Feb-17 Gill net Count NA 5 25 Perch 1 178 77.2 unmarked 5.18 4.35 195 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 578 570.6 unmarked 6.36 6.35 196 

21-Feb-17 Gill net Count NA 5 25 Perch 1 150 57.2 unmarked 5.01 4.05 196 

21-Feb-17 Gill net Count NA 5 25 Perch 1 158 55.6 unmarked 5.06 4.02 197 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Shortfin eel 1 575 403.38 unmarked 6.35 6.00 197 

21-Feb-17 Gill net Count NA 5 25 Perch 1 145 50.8 unmarked 4.98 3.93 198 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Shortfin eel 1 595 449.91 unmarked 6.39 6.11 198 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 480 308.0 marked 6.17 5.73 199 

21-Feb-17 Gill net Count NA 5 25 Perch 1 170 70.4 unmarked 5.14 4.25 199 

21-Feb-17 Gill net Count NA 5 25 Perch 1 165 68.2 unmarked 5.11 4.22 200 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Shortfin eel 1 675 673.05 unmarked 6.51 6.51 200 

21-Feb-17 Gill net Count NA 5 25 Perch 1 180 86.5 unmarked 5.19 4.46 201 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Shortfin eel 1 570 392.28 unmarked 6.35 5.97 201 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 780 1542.6 unmarked 6.66 7.34 202 

21-Feb-17 Gill net Count NA 5 25 Perch 1 160 58.3 unmarked 5.08 4.07 202 

21-Feb-17 Gill net Count NA 5 25 Perch 1 172 72 unmarked 5.15 4.28 203 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Shortfin eel 1 575 403.38 unmarked 6.35 6.00 203 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 480 308.0 unmarked 6.17 5.73 204 

21-Feb-17 Gill net Count NA 5 25 Perch 1 150 55.8 unmarked 5.01 4.02 204 

23-Feb-17 Fyke net Fyke net Recapture 10 3 Longfin eel 1 375 135.8 unmarked 5.93 4.91 205 

21-Feb-17 Gill net Count NA 5 25 Perch 1 198 106.4 unmarked 5.29 4.67 205 

21-Feb-17 Gill net Count NA 5 25 Perch 1 155 57.6 unmarked 5.04 4.05 206 

23-Feb-17 Fyke net Fyke net Recapture 11 3 Shortfin eel 1 825 1277.36 unmarked 6.72 7.15 206 
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21-Feb-17 Gill net Count NA 5 25 Perch 1 162 66.8 unmarked 5.09 4.20 207 

23-Feb-17 Fyke net Fyke net Recapture 11 3 Shortfin eel 1 460 197.83 unmarked 6.13 5.29 207 

21-Feb-17 Gill net Count NA 5 25 Perch 1 170 71.5 unmarked 5.14 4.27 208 

23-Feb-17 Fyke net Fyke net Recapture 13 3 Shortfin eel 1 995 2323.35 unmarked 6.90 7.75 208 

21-Feb-17 Gill net Count NA 5 18 Perch 1 155 56.5 unmarked 5.04 4.03 209 

23-Feb-17 Fyke net Fyke net Recapture 13 3 Shortfin eel 1 800 1157.82 unmarked 6.68 7.05 209 

23-Feb-17 Fyke net Fyke net Recapture 13 3 Perch 1 200  unmarked 5.30   210 

21-Feb-17 Gill net Count NA 5 18 Perch 1 160 60.4 unmarked 5.08 4.10 210 

21-Feb-17 Electrofishing Count NA 1 NA Perch 100   unmarked   211 

23-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 940 1937.61 unmarked 6.85 7.57 211 

21-Feb-17 Electrofishing Count NA 2 NA Perch 96   unmarked   212 

23-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 625 526.42 unmarked 6.44 6.27 212 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 90 12.3 unmarked 4.50 2.51 213 

23-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 605 474.50 unmarked 6.41 6.16 213 

23-Feb-17 Fyke net Fyke net Recapture 14 3 Longfin eel 1 1060 4268.3 unmarked 6.97 8.36 214 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 90 11.4 unmarked 4.50 2.43 214 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 140 39.4 unmarked 4.94 3.67 215 

23-Feb-17 Fyke net Fyke net Recapture 14 3 Shortfin eel 1 612 492.25 marked 6.42 6.20 215 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 86 10.2 unmarked 4.45 2.32 216 

23-Feb-17 Fyke net Fyke net Recapture 16 3 Shortfin eel 1 580 414.68 unmarked 6.36 6.03 216 

23-Feb-17 Fyke net Fyke net Recapture 16 3 Longfin eel 1 605 663.9 unmarked 6.41 6.50 217 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 95 17.7 unmarked 4.55 2.87 217 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 105 17.8 unmarked 4.65 2.88 218 

23-Feb-17 Fyke net Fyke net Recapture 16 3 Shortfin eel 1 560 370.73 unmarked 6.33 5.92 218 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 145 47.5 unmarked 4.98 3.86 219 

23-Feb-17 Fyke net Fyke net Recapture 16 3 Perch 1 225  unmarked 5.42   219 
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21-Feb-17 Electrofishing Count NA 3 NA Perch 1 138 44.3 unmarked 4.93 3.79 220 

23-Feb-17 Fyke net Fyke net Recapture 16 3 Perch 1 160  unmarked 5.08   220 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 82 8.8 unmarked 4.41 2.17 221 

23-Feb-17 Fyke net Fyke net Recapture 16 3 Perch 1 190  unmarked 5.25   221 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 85 9.4 unmarked 4.44 2.24 222 

23-Feb-17 Fyke net Fyke net Recapture 16 3 Perch 1 95  unmarked 4.55   222 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 157 55.1 unmarked 5.06 4.01 223 

23-Feb-17 Fyke net Fyke net Recapture 18 3 Perch 1 160  unmarked 5.08   223 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 170 78.8 unmarked 5.14 4.37 224 

23-Feb-17 Fyke net Fyke net Recapture 20 3 Shortfin eel 1 730 864.31 unmarked 6.59 6.76 224 

23-Feb-17 Fyke net Fyke net Recapture 20 3 Longfin eel 1 835 1933.9 unmarked 6.73 7.57 225 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 90 11.2 unmarked 4.50 2.42 225 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 85 9 unmarked 4.44 2.20 226 

23-Feb-17 Fyke net Fyke net Recapture 20 3 Shortfin eel 1 795 1134.88 unmarked 6.68 7.03 226 

23-Feb-17 Fyke net Fyke net Recapture 20 3 Longfin eel 1 630 759.4 unmarked 6.45 6.63 227 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 88 11.4 unmarked 4.48 2.43 227 

23-Feb-17 Fyke net Fyke net Recapture 20 3 Longfin eel 1 480 308.0 unmarked 6.17 5.73 228 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 97 14.7 unmarked 4.57 2.69 228 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 168 74.4 unmarked 5.12 4.31 229 

23-Feb-17 Fyke net Fyke net Recapture 20 3 Shortfin eel 1 215 17.44 unmarked 5.37 2.86 229 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 219 151.8 unmarked 5.39 5.02 230 

23-Feb-17 Fyke net Fyke net Recapture 22 3 Shortfin eel 1 591 440.32 unmarked 6.38 6.09 230 

23-Feb-17 Fyke net Fyke net Recapture 22 3 Longfin eel 1 585 593.9 unmarked 6.37 6.39 231 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 130 36.3 unmarked 4.87 3.59 231 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 160 62.4 unmarked 5.08 4.13 232 

23-Feb-17 Fyke net Fyke net Recapture 22 3 Shortfin eel 1 590 437.94 unmarked 6.38 6.08 232 
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21-Feb-17 Electrofishing Count NA 3 NA Perch 1 95 13.5 unmarked 4.55 2.60 233 

23-Feb-17 Fyke net Fyke net Recapture 22 3 Shortfin eel 1 630 539.98 unmarked 6.45 6.29 233 

23-Feb-17 Fyke net Fyke net Recapture 22 3 Longfin eel 1 500 352.7 unmarked 6.21461 5.87 234 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 95 11.8 unmarked 4.55 2.47 234 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 99 14.3 unmarked 4.60 2.66 235 

23-Feb-17 Fyke net Fyke net Recapture 22 3 Shortfin eel 1 605 474.50 unmarked 6.40523 6.16 235 

23-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 1200 6441.9 unmarked 7.09008 8.77 236 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 80 7.8 unmarked 4.38 2.05 236 

23-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 1150 5593.5 unmarked 7.04752 8.63 237 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 80 8.4 unmarked 4.38 2.13 237 

23-Feb-17 Fyke net Fyke net Recapture 23 3 Longfin eel 1 765 1446.3 unmarked 6.63988 7.28 238 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 85 10.3 unmarked 4.44 2.33 238 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 80 7.3 unmarked 4.38 1.99 239 

23-Feb-17 Fyke net Fyke net Recapture 23 3 Shortfin eel 1 814 1223.77 unmarked 6.70196 7.11 239 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 78 7.3 unmarked 4.36 1.99 240 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 181 91.4 unmarked 5.20 4.52 241 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 149 49.1 unmarked 5.00 3.89 242 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 150 56.1 unmarked 5.01 4.03 243 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 155 68.5 unmarked 5.04 4.23 244 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 160 60.9 unmarked 5.08 4.11 245 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 165 68.8 unmarked 5.11 4.23 246 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 157 49 unmarked 5.06 3.89 247 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 77 9.5 unmarked 4.34 2.25 248 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 83 8.9 unmarked 4.42 2.19 249 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 90 11.8 unmarked 4.50 2.47 250 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 84 9 unmarked 4.43 2.20 251 



  

 

143 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 94 12.2 unmarked 4.54 2.50 252 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 90 13.4 unmarked 4.50 2.60 253 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 95 13.1 unmarked 4.55 2.57 254 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 97 14.8 unmarked 4.57 2.69 255 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 77 8.4 unmarked 4.34 2.13 256 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 87 11 unmarked 4.47 2.40 257 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 85 10 unmarked 4.44 2.30 258 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 85 9.8 unmarked 4.44 2.28 259 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 91 11.5 unmarked 4.51 2.44 260 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 139 40 unmarked 4.93 3.69 261 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 100 14.5 unmarked 4.61 2.67 262 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 86 10.5 unmarked 4.45 2.35 263 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 91 11.7 unmarked 4.51 2.46 264 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 94 11.2 unmarked 4.54 2.42 265 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 74 6.6 unmarked 4.30 1.89 266 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 93 13 unmarked 4.53 2.56 267 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 75 7.8 unmarked 4.32 2.05 268 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 78 6.8 unmarked 4.36 1.92 269 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 86 9.4 unmarked 4.45 2.24 270 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 86 8.9 unmarked 4.45 2.19 271 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 85 8.2 unmarked 4.44 2.10 272 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 80 5.4 unmarked 4.38 1.69 273 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 98 15.6 unmarked 4.58 2.75 274 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 69 5.2 unmarked 4.23 1.65 275 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 83 8.7 unmarked 4.42 2.16 276 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 92 14.7 unmarked 4.52 2.69 277 
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21-Feb-17 Electrofishing Count NA 3 NA Perch 1 95 11.3 unmarked 4.55 2.42 278 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 83 8.6 unmarked 4.42 2.15 279 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 84 8.6 unmarked 4.43 2.15 280 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 91 11.5 unmarked 4.51 2.44 281 

21-Feb-17 Electrofishing Count NA 3 NA Perch 1 72 6.3 unmarked 4.28 1.84 282 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 140 41.2 unmarked 4.94 3.72 283 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 165 67.9 unmarked 5.11 4.22 284 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 95 11.9 unmarked 4.55 2.48 285 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 150 52.9 unmarked 5.01 3.97 286 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 146 46.2 unmarked 4.98 3.83 287 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 88 9.6 unmarked 4.48 2.26 288 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 148 51.3 unmarked 5.00 3.94 289 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 155 47.3 unmarked 5.04 3.86 290 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 89 9.5 unmarked 4.49 2.25 291 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 92 10.6 unmarked 4.52 2.36 292 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 148 51.3 unmarked 5.00 3.94 293 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 89 10 unmarked 4.49 2.30 294 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 151 58.7 unmarked 5.02 4.07 295 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 140 42.3 unmarked 4.94 3.74 296 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 88 10.4 unmarked 4.48 2.34 297 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 88 9.4 unmarked 4.48 2.24 298 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 155 63.9 unmarked 5.04 4.16 299 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 81 9.4 unmarked 4.39 2.24 300 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 86 9.3 unmarked 4.45 2.23 301 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 98 13.1 unmarked 4.58 2.57 302 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 90 9.9 unmarked 4.50 2.29 303 
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21-Feb-17 Electrofishing Count NA 4 NA Perch 1 83 8.3 unmarked 4.42 2.12 304 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 150 48.1 unmarked 5.01 3.87 305 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 155 60.3 unmarked 5.04 4.10 306 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 95 11.1 unmarked 4.55 2.41 307 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 150 46.5 unmarked 5.01 3.84 308 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 79 7.8 unmarked 4.37 2.05 309 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 98 14.7 unmarked 4.58 2.69 310 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 91 11.7 unmarked 4.51 2.46 311 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 95 12.3 unmarked 4.55 2.51 312 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 86 8.5 unmarked 4.45 2.14 313 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 82 8.4 unmarked 4.41 2.13 314 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 145 41.4 unmarked 4.98 3.72 315 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 150 56.9 unmarked 5.01 4.04 316 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 95 12 unmarked 4.55 2.48 317 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 95 10.4 unmarked 4.55 2.34 318 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 94 12.7 unmarked 4.54 2.54 319 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 97 14.7 unmarked 4.57 2.69 320 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 78 6.8 unmarked 4.36 1.92 321 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 85 8.5 unmarked 4.44 2.14 322 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 95 13.2 unmarked 4.55 2.58 323 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 90 12 unmarked 4.50 2.48 324 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 88 11.1 unmarked 4.48 2.41 325 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 142 45.2 unmarked 4.96 3.81 326 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 156 61.5 unmarked 5.05 4.12 327 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 91 12.5 unmarked 4.51 2.53 328 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 89 10.5 unmarked 4.49 2.35 329 
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21-Feb-17 Electrofishing Count NA 4 NA Perch 1 144 44.4 unmarked 4.97 3.79 330 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 135 40.2 unmarked 4.91 3.69 331 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 155 62.5 unmarked 5.04 4.14 332 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 146 48.1 unmarked 4.98 3.87 333 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 144 43.8 unmarked 4.97 3.78 334 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 104 17.6 unmarked 4.64 2.87 335 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 83 8.7 unmarked 4.42 2.16 336 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 85 10.3 unmarked 4.44 2.33 337 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 87 9.4 unmarked 4.47 2.24 338 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 93 12.6 unmarked 4.53 2.53 339 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 140 41.2 unmarked 4.94 3.72 340 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 168 68.8 unmarked 5.12 4.23 341 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 85 8.9 unmarked 4.44 2.19 342 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 150 54.4 unmarked 5.01 4.00 343 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 83 7.8 unmarked 4.42 2.05 344 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 187 100.7 unmarked 5.23 4.61 345 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 87 10.6 unmarked 4.47 2.36 346 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 185 89 unmarked 5.22 4.49 347 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 142 45.2 unmarked 4.96 3.81 348 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 91 11.5 unmarked 4.51 2.44 349 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 94 13.8 unmarked 4.54 2.62 350 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 85 8.5 unmarked 4.44 2.14 351 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 75 6.2 unmarked 4.32 1.82 352 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 194 96.8 unmarked 5.27 4.57 353 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 98 15.2 unmarked 4.58 2.72 354 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 82 7.8 unmarked 4.41 2.05 355 
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21-Feb-17 Electrofishing Count NA 4 NA Perch 1 78 7.4 unmarked 4.36 2.00 356 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 90 11.6 unmarked 4.50 2.45 357 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 89 10.5 unmarked 4.49 2.35 358 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 86 9.1 unmarked 4.45 2.21 359 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 95 12.7 unmarked 4.55 2.54 360 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 88 10.4 unmarked 4.48 2.34 361 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 82 8.3 unmarked 4.41 2.12 362 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 89 10.7 unmarked 4.49 2.37 363 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 155 57.2 unmarked 5.04 4.05 364 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 160 63.9 unmarked 5.08 4.16 365 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 150 49.8 unmarked 5.01 3.91 366 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 145 43 unmarked 4.98 3.76 367 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 138 40 unmarked 4.93 3.69 368 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 138 42.4 unmarked 4.93 3.75 369 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 158 59.5 unmarked 5.06 4.09 370 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 145 48.2 unmarked 4.98 3.88 371 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 139 43.3 unmarked 4.93 3.77 372 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 130 32 unmarked 4.87 3.47 373 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 146 48.2 unmarked 4.98 3.88 374 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 82 10.5 unmarked 4.41 2.35 375 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 85 9.7 unmarked 4.44 2.27 376 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 105 17.8 unmarked 4.65 2.88 377 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 90 11.5 unmarked 4.50 2.44 378 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 81 7.5 unmarked 4.39 2.01 379 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 87 10.3 unmarked 4.47 2.33 380 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 96 14.3 unmarked 4.56 2.66 381 
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21-Feb-17 Electrofishing Count NA 4 NA Perch 1 81 7.5 unmarked 4.39 2.01 382 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 87 10.3 unmarked 4.47 2.33 383 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 96 14.9 unmarked 4.56 2.70 384 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 81 9 unmarked 4.39 2.20 385 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 66 4 unmarked 4.19 1.39 386 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 92 12.3 unmarked 4.52 2.51 387 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 98 16 unmarked 4.58 2.77 388 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 89 12 unmarked 4.49 2.48 389 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 79 8.8 unmarked 4.37 2.17 390 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 78 5.8 unmarked 4.36 1.76 391 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 87 9.9 unmarked 4.47 2.29 392 

21-Feb-17 Electrofishing Count NA 4 NA Perch 1 84 9 unmarked 4.43 2.20 393 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 169 76.7 unmarked 5.13 4.34 394 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 149 62.4 unmarked 5.00 4.13 395 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 106 17.1 unmarked 4.66 2.84 396 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 91 12 unmarked 4.51 2.48 397 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 86 9.1 unmarked 4.45 2.21 398 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 92 12.6 unmarked 4.52 2.53 399 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 86 9.6 unmarked 4.45 2.26 400 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 79 7.2 unmarked 4.37 1.97 401 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 95 12.5 unmarked 4.55 2.53 402 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 90 11.5 unmarked 4.50 2.44 403 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 93 11.6 unmarked 4.53 2.45 404 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 84 9.1 unmarked 4.43 2.21 405 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 78 7.1 unmarked 4.36 1.96 406 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 89 9.1 unmarked 4.49 2.21 407 
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21-Feb-17 Electrofishing Count NA 5 NA Perch 1 92 9 unmarked 4.52 2.20 408 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 75 6.7 unmarked 4.32 1.90 409 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 96 13.8 unmarked 4.56 2.62 410 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 88 11.8 unmarked 4.48 2.47 411 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 158 59.7 unmarked 5.06 4.09 412 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 158 61 unmarked 5.06 4.11 413 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 85 10 unmarked 4.44 2.30 414 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 89 11.8 unmarked 4.49 2.47 415 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 86 10.2 unmarked 4.45 2.32 416 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 90 11.4 unmarked 4.50 2.43 417 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 81 8.1 unmarked 4.39 2.09 418 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 90 9.8 unmarked 4.50 2.28 419 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 89 10.8 unmarked 4.49 2.38 420 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 87 10.2 unmarked 4.47 2.32 421 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 82 8.5 unmarked 4.41 2.14 422 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 96 13.9 unmarked 4.56 2.63 423 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 82 8.5 unmarked 4.41 2.14 424 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 96 13.9 unmarked 4.56 2.63 425 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 82 8.1 unmarked 4.41 2.09 426 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 90 11 unmarked 4.50 2.40 427 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 84 9.9 unmarked 4.43 2.29 428 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 80 7.5 unmarked 4.38 2.01 429 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 83 7.6 unmarked 4.42 2.03 430 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 94 12.6 unmarked 4.54 2.53 431 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 133 34.2 unmarked 4.89 3.53 432 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 88 8.4 unmarked 4.48 2.13 433 
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21-Feb-17 Electrofishing Count NA 5 NA Perch 1 86 9.6 unmarked 4.45 2.26 434 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 82 8.3 unmarked 4.41 2.12 435 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 82 8.4 unmarked 4.41 2.13 436 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 92 12.1 unmarked 4.52 2.49 437 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 95 13.8 unmarked 4.55 2.62 438 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 89 10.2 unmarked 4.49 2.32 439 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 82 8.4 unmarked 4.41 2.13 440 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 100 17.8 unmarked 4.61 2.88 441 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 91 10.9 unmarked 4.51 2.39 442 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 89 10.9 unmarked 4.49 2.39 443 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 91 10.8 unmarked 4.51 2.38 444 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 81 7.2 unmarked 4.39 1.97 445 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 90 10 unmarked 4.50 2.30 446 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 96 12.7 unmarked 4.56 2.54 447 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 83 8.8 unmarked 4.42 2.17 448 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 86 9.4 unmarked 4.45 2.24 449 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 91 10.5 unmarked 4.51 2.35 450 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 85 9.2 unmarked 4.44 2.22 451 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 91 11 unmarked 4.51 2.40 452 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 90 11 unmarked 4.50 2.40 453 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 79 7.5 unmarked 4.37 2.01 454 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 85 10.4 unmarked 4.44 2.34 455 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 89 9.6 unmarked 4.49 2.26 456 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 79 8.3 unmarked 4.37 2.12 457 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 79 6.4 unmarked 4.37 1.86 458 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 90 10.8 unmarked 4.50 2.38 459 
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21-Feb-17 Electrofishing Count NA 5 NA Perch 1 83 8.3 unmarked 4.42 2.12 460 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 86 10.8 unmarked 4.45 2.38 461 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 82 8.4 unmarked 4.41 2.13 462 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 90 10.5 unmarked 4.50 2.35 463 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 82 8.7 unmarked 4.41 2.16 464 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 85 9.4 unmarked 4.44 2.24 465 

21-Feb-17 Electrofishing Count NA 5 NA Perch 1 94 12.5 unmarked 4.54 2.53 466 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 161 65.3 unmarked 5.08 4.18 467 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 170 68.6 unmarked 5.14 4.23 468 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 159 63.1 unmarked 5.07 4.14 469 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 154 55.2 unmarked 5.04 4.01 470 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 172 71.4 unmarked 5.15 4.27 471 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 163 64.3 unmarked 5.09 4.16 472 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 152 52.2 unmarked 5.02 3.96 473 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 155 53.3 unmarked 5.04 3.98 474 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 164 60.3 unmarked 5.10 4.10 475 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 156 49.5 unmarked 5.05 3.90 476 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 156 60.8 unmarked 5.05 4.11 477 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 144 46.1 unmarked 4.97 3.83 478 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 154 56.5 unmarked 5.04 4.03 479 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 146 45 unmarked 4.98 3.81 480 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 150 54.5 unmarked 5.01 4.00 481 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 155 56.3 unmarked 5.04 4.03 482 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 148 47.3 unmarked 5.00 3.86 483 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 157 53.6 unmarked 5.06 3.98 484 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 141 40.6 unmarked 4.95 3.70 485 
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22-Feb-17 Electrofishing Count NA 6 NA Perch 1 156 56.5 unmarked 5.05 4.03 486 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 152 54.3 unmarked 5.02 3.99 487 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 180 82 unmarked 5.19 4.41 488 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 134 35.2 unmarked 4.90 3.56 489 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 95 12.3 unmarked 4.55 2.51 490 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 143 42.2 unmarked 4.96 3.74 491 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 135 32.1 unmarked 4.91 3.47 492 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 106 16.4 unmarked 4.66 2.80 493 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 94 12.4 unmarked 4.54 2.52 494 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 93 12 unmarked 4.53 2.48 495 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 98 12.8 unmarked 4.58 2.55 496 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 89 9.9 unmarked 4.49 2.29 497 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 99 12.9 unmarked 4.60 2.56 498 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 79 6 unmarked 4.37 1.79 499 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 84 7.6 unmarked 4.43 2.03 500 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 98 13.8 unmarked 4.58 2.62 501 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 95 12.4 unmarked 4.55 2.52 502 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 89 8.3 unmarked 4.49 2.12 503 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 80 6 unmarked 4.38 1.79 504 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 101 15 unmarked 4.62 2.71 505 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 100 16.5 unmarked 4.61 2.80 506 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 92 11.3 unmarked 4.52 2.42 507 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 102 16.2 unmarked 4.62 2.79 508 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 103 16.4 unmarked 4.63 2.80 509 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 99 14.2 unmarked 4.60 2.65 510 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 91 10.6 unmarked 4.51 2.36 511 
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22-Feb-17 Electrofishing Count NA 6 NA Perch 1 95 11.1 unmarked 4.55 2.41 512 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 105 15.1 unmarked 4.65 2.71 513 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 94 11.8 unmarked 4.54 2.47 514 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 104 16.9 unmarked 4.64 2.83 515 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 80 6.2 unmarked 4.38 1.82 516 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 89 10.3 unmarked 4.49 2.33 517 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 88 11.4 unmarked 4.48 2.43 518 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 82 6.3 unmarked 4.41 1.84 519 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 91 8.7 unmarked 4.51 2.16 520 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 78 5.9 unmarked 4.36 1.77 521 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 89 9 unmarked 4.49 2.20 522 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 86 8.7 unmarked 4.45 2.16 523 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 83 7.5 unmarked 4.42 2.01 524 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 81 7.8 unmarked 4.39 2.05 525 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 93 11.4 unmarked 4.53 2.43 526 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 80 6.5 unmarked 4.38 1.87 527 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 90 9.2 unmarked 4.50 2.22 528 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 82 7.4 unmarked 4.41 2.00 529 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 84 7 unmarked 4.43 1.95 530 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 85 8.1 unmarked 4.44 2.09 531 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 89 9.2 unmarked 4.49 2.22 532 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 91 9.7 unmarked 4.51 2.27 533 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 89 9.9 unmarked 4.49 2.29 534 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 86 7.5 unmarked 4.45 2.01 535 

22-Feb-17 Electrofishing Count NA 6 NA Perch 1 84 6.4 unmarked 4.43 1.86 536 

22-Feb-17 Electrofishing Count NA 6 NA Longfin eel 1 900 2480 unmarked 6.80 7.82 537 
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22-Feb-17 Electrofishing Count NA 6 NA Longfin eel 1 900 2480 unmarked 6.80 7.82 538 

22-Feb-17 Electrofishing Count NA 6 NA Longfin eel 1 900 2480 unmarked 6.80 7.82 539 

22-Feb-17 Electrofishing Count NA 6 NA Longfin eel 1 900 2480 unmarked 6.80 7.82 540 

22-Feb-17 Electrofishing Count NA 6 NA Longfin eel 1 900 2480 unmarked 6.80 7.82 541 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 90 10.9 unmarked 4.50 2.39 542 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 190 101.2 unmarked 5.25 4.62 543 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 190 96.3 unmarked 5.25 4.57 544 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 168 70.2 unmarked 5.12 4.25 545 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 107 18 unmarked 4.67 2.89 546 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 95 11.1 unmarked 4.55 2.41 547 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 95 12 unmarked 4.55 2.48 548 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 94 11.7 unmarked 4.54 2.46 549 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 100 15.2 unmarked 4.61 2.72 550 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 81 7.2 unmarked 4.39 1.97 551 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 91 10.5 unmarked 4.51 2.35 552 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 88 9.4 unmarked 4.48 2.24 553 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 96 15.1 unmarked 4.56 2.71 554 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 89 10 unmarked 4.49 2.30 555 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 96 13.4 unmarked 4.56 2.60 556 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 88 9.2 unmarked 4.48 2.22 557 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 98 13.3 unmarked 4.58 2.59 558 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 84 8.6 unmarked 4.43 2.15 559 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 88 8.7 unmarked 4.48 2.16 560 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 90 9.8 unmarked 4.50 2.28 561 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 77 6.5 unmarked 4.34 1.87 562 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 91 9.6 unmarked 4.51 2.26 563 
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22-Feb-17 Electrofishing Count NA 7 NA Perch 1 96 12.4 unmarked 4.56 2.52 564 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 92 10.3 unmarked 4.52 2.33 565 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 79 7.6 unmarked 4.37 2.03 566 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 89 7.9 unmarked 4.49 2.07 567 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 94 11.3 unmarked 4.54 2.42 568 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 88 9.7 unmarked 4.48 2.27 569 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 96 14.2 unmarked 4.56 2.65 570 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 92 12.5 unmarked 4.52 2.53 571 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 105 16.5 unmarked 4.65 2.80 572 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 88 10.1 unmarked 4.48 2.31 573 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 84 8.8 unmarked 4.43 2.17 574 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 100 13.3 unmarked 4.61 2.59 575 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 85 7.8 unmarked 4.44 2.05 576 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 90 10.2 unmarked 4.50 2.32 577 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 86 9.4 unmarked 4.45 2.24 578 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 93 11.5 unmarked 4.53 2.44 579 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 94 12.5 unmarked 4.54 2.53 580 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 94 12.3 unmarked 4.54 2.51 581 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 83 8 unmarked 4.42 2.08 582 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 101 12.7 unmarked 4.62 2.54 583 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 70 4.3 unmarked 4.25 1.46 584 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 85 9.6 unmarked 4.44 2.26 585 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 83 8.5 unmarked 4.42 2.14 586 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 91 12.1 unmarked 4.51 2.49 587 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 85 7.8 unmarked 4.44 2.05 588 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 100 13.9 unmarked 4.61 2.63 589 
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22-Feb-17 Electrofishing Count NA 7 NA Perch 1 90 9.1 unmarked 4.50 2.21 590 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 90 9.7 unmarked 4.50 2.27 591 

22-Feb-17 Electrofishing Count NA 7 NA Perch 1 80 7.3 unmarked 4.38 1.99 592 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 157 55.4 unmarked 5.06 4.01 593 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 88 9.2 unmarked 4.48 2.22 594 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 90 10.4 unmarked 4.50 2.34 595 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 155 58.5 unmarked 5.04 4.07 596 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 155 62.4 unmarked 5.04 4.13 597 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 182 93.2 unmarked 5.20 4.53 598 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 151 52.8 unmarked 5.02 3.97 599 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 92 11.2 unmarked 4.52 2.42 600 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 103 15.4 unmarked 4.63 2.73 601 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 87 8.8 unmarked 4.47 2.17 602 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 85 9.2 unmarked 4.44 2.22 603 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 98 14.2 unmarked 4.58 2.65 604 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 84 7.9 unmarked 4.43 2.07 605 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 83 8.1 unmarked 4.42 2.09 606 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 72 4.5 unmarked 4.28 1.50 607 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 82 7.3 unmarked 4.41 1.99 608 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 89 10.8 unmarked 4.49 2.38 609 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 94 10.7 unmarked 4.54 2.37 610 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 94 12.5 unmarked 4.54 2.53 611 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 90 10.4 unmarked 4.50 2.34 612 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 79 6.9 unmarked 4.37 1.93 613 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 10.2 unmarked 4.51 2.32 614 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 92 10.5 unmarked 4.52 2.35 615 
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22-Feb-17 Electrofishing Count NA 8 NA Perch 1 84 7.9 unmarked 4.43 2.07 616 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 93 10.2 unmarked 4.53 2.32 617 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 86 9.4 unmarked 4.45 2.24 618 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 88 9.1 unmarked 4.48 2.21 619 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 102 14 unmarked 4.62 2.64 620 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 95 11.8 unmarked 4.55 2.47 621 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 98 11.7 unmarked 4.58 2.46 622 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 11.3 unmarked 4.51 2.42 623 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 79 7.6 unmarked 4.37 2.03 624 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 88 9.2 unmarked 4.48 2.22 625 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 99 14.4 unmarked 4.60 2.67 626 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 90 9.5 unmarked 4.50 2.25 627 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 12.7 unmarked 4.51 2.54 628 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 93 11.5 unmarked 4.53 2.44 629 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 89 10.4 unmarked 4.49 2.34 630 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 12.7 unmarked 4.51 2.54 631 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 93 11.5 unmarked 4.53 2.44 632 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 89 10.4 unmarked 4.49 2.34 633 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 11.8 unmarked 4.51 2.47 634 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 171 77.5 unmarked 5.14 4.35 635 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 173 77.4 unmarked 5.15 4.35 636 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 89 10.6 unmarked 4.49 2.36 637 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 99 14.4 unmarked 4.60 2.67 638 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 98 14.1 unmarked 4.58 2.65 639 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 11.8 unmarked 4.51 2.47 640 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 79 6.5 unmarked 4.37 1.87 641 
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22-Feb-17 Electrofishing Count NA 8 NA Perch 1 90 11.4 unmarked 4.50 2.43 642 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 95 12.1 unmarked 4.55 2.49 643 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 84 8.4 unmarked 4.43 2.13 644 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 87 11.2 unmarked 4.47 2.42 645 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 86 10.1 unmarked 4.45 2.31 646 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 9.9 unmarked 4.51 2.29 647 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 95 14.1 unmarked 4.55 2.65 648 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 90 10.6 unmarked 4.50 2.36 649 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 103 13.4 unmarked 4.63 2.60 650 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 95 11.3 unmarked 4.55 2.42 651 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 89 10.3 unmarked 4.49 2.33 652 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 76 5.8 unmarked 4.33 1.76 653 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 103 14.9 unmarked 4.63 2.70 654 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 89 9.7 unmarked 4.49 2.27 655 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 85 8.3 unmarked 4.44 2.12 656 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 89 10.7 unmarked 4.49 2.37 657 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 94 12.2 unmarked 4.54 2.50 658 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 10.9 unmarked 4.51 2.39 659 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 85 9 unmarked 4.44 2.20 660 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 80 8.2 unmarked 4.38 2.10 661 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 87 9.8 unmarked 4.47 2.28 662 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 10.4 unmarked 4.51 2.34 663 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 82 7.8 unmarked 4.41 2.05 664 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 86 9 unmarked 4.45 2.20 665 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 89 10.2 unmarked 4.49 2.32 666 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 11.4 unmarked 4.51 2.43 667 
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22-Feb-17 Electrofishing Count NA 8 NA Perch 1 96 12.8 unmarked 4.56 2.55 668 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 86 9.9 unmarked 4.45 2.29 669 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 85 8.9 unmarked 4.44 2.19 670 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 82 7.4 unmarked 4.41 2.00 671 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 11.5 unmarked 4.51 2.44 672 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 90 9.4 unmarked 4.50 2.24 673 

22-Feb-17 Electrofishing Count NA 8 NA Perch 1 91 10.3 unmarked 4.51 2.33 674 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 176 82.4 unmarked 5.17 4.41 675 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 172 78 unmarked 5.15 4.36 676 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 195 112.5 unmarked 5.27 4.72 677 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 143 42.9 unmarked 4.96 3.76 678 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 151 51 unmarked 5.02 3.93 679 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 158 56 unmarked 5.06 4.03 680 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 101 17.9 unmarked 4.62 2.88 681 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 8.2 unmarked 4.43 2.10 682 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 7.3 unmarked 4.43 1.99 683 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 9.1 unmarked 4.50 2.21 684 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 9.3 unmarked 4.50 2.23 685 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 99 12.6 unmarked 4.60 2.53 686 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 83 9 unmarked 4.42 2.20 687 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 76 5.8 unmarked 4.33 1.76 688 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 10.8 unmarked 4.50 2.38 689 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 92 10.8 unmarked 4.52 2.38 690 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 75 6.4 unmarked 4.32 1.86 691 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 93 11.1 unmarked 4.53 2.41 692 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 89 9.8 unmarked 4.49 2.28 693 
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22-Feb-17 Electrofishing Count NA 9 NA Perch 1 148 49.3 unmarked 5.00 3.90 694 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 93 11.7 unmarked 4.53 2.46 695 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 91 10.8 unmarked 4.51 2.38 696 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 105 15.1 unmarked 4.65 2.71 697 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 10.6 unmarked 4.50 2.36 698 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 80 7 unmarked 4.38 1.95 699 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 80 7.4 unmarked 4.38 2.00 700 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 83 7.9 unmarked 4.42 2.07 701 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 9.4 unmarked 4.43 2.24 702 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 7.8 unmarked 4.43 2.05 703 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 86 10.5 unmarked 4.45 2.35 704 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 94 10.4 unmarked 4.54 2.34 705 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 86 9.2 unmarked 4.45 2.22 706 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 9.5 unmarked 4.44 2.25 707 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 8.7 unmarked 4.44 2.16 708 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 91 10.7 unmarked 4.51 2.37 709 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 101 13.4 unmarked 4.62 2.60 710 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 9.9 unmarked 4.43 2.29 711 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 11.1 unmarked 4.50 2.41 712 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 87 5.7 unmarked 4.47 1.74 713 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 83 7.3 unmarked 4.42 1.99 714 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 106 16.3 unmarked 4.66 2.79 715 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 81 6.8 unmarked 4.39 1.92 716 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 94 11.1 unmarked 4.54 2.41 717 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 8.9 unmarked 4.44 2.19 718 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 102 16.5 unmarked 4.62 2.80 719 
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22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 7.6 unmarked 4.44 2.03 720 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 158 64.3 unmarked 5.06 4.16 721 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 156 49.1 unmarked 5.05 3.89 722 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 180 76.1 unmarked 5.19 4.33 723 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 155 59 unmarked 5.04 4.08 724 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 181 84.1 unmarked 5.20 4.43 725 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 158 59.5 unmarked 5.06 4.09 726 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 141 41 unmarked 4.95 3.71 727 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 153 52.3 unmarked 5.03 3.96 728 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 148 51.8 unmarked 5.00 3.95 729 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 101 11.6 unmarked 4.62 2.45 730 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 99 13.2 unmarked 4.60 2.58 731 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 94 11.9 unmarked 4.54 2.48 732 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 86 6.9 unmarked 4.45 1.93 733 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 98 11.7 unmarked 4.58 2.46 734 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 104 14.8 unmarked 4.64 2.69 735 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 78 5.8 unmarked 4.36 1.76 736 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 80 6.9 unmarked 4.38 1.93 737 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 95 11.8 unmarked 4.55 2.47 738 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 104 15.4 unmarked 4.64 2.73 739 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 86 8 unmarked 4.45 2.08 740 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 97 13.2 unmarked 4.57 2.58 741 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 78 7.2 unmarked 4.36 1.97 742 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 9.7 unmarked 4.50 2.27 743 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 86 8.8 unmarked 4.45 2.17 744 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 74 5.8 unmarked 4.30 1.76 745 
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22-Feb-17 Electrofishing Count NA 9 NA Perch 1 91 10.2 unmarked 4.51 2.32 746 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 11.2 unmarked 4.50 2.42 747 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 87 8.7 unmarked 4.47 2.16 748 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 78 7.2 unmarked 4.36 1.97 749 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 8.3 unmarked 4.44 2.12 750 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 7.8 unmarked 4.44 2.05 751 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 87 9.9 unmarked 4.47 2.29 752 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 83 8.2 unmarked 4.42 2.10 753 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 96 12.5 unmarked 4.56 2.53 754 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 86 8.3 unmarked 4.45 2.12 755 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 7.3 unmarked 4.44 1.99 756 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 93 10.8 unmarked 4.53 2.38 757 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 96 9.8 unmarked 4.56 2.28 758 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 82 8.1 unmarked 4.41 2.09 759 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 7.7 unmarked 4.44 2.04 760 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 72 5.2 unmarked 4.28 1.65 761 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 75 6.2 unmarked 4.32 1.82 762 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 74 6.1 unmarked 4.30 1.81 763 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 94 10.6 unmarked 4.54 2.36 764 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 95 10.8 unmarked 4.55 2.38 765 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 8.6 unmarked 4.50 2.15 766 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 82 7.1 unmarked 4.41 1.96 767 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 98 11.1 unmarked 4.58 2.41 768 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 103 17.5 unmarked 4.63 2.86 769 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 10.1 unmarked 4.50 2.31 770 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 95 11.8 unmarked 4.55 2.47 771 
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22-Feb-17 Electrofishing Count NA 9 NA Perch 1 92 9.2 unmarked 4.52 2.22 772 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 92 10.5 unmarked 4.52 2.35 773 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 94 10.6 unmarked 4.54 2.36 774 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 81 7 unmarked 4.39 1.95 775 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 8.1 unmarked 4.43 2.09 776 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 100 14.5 unmarked 4.61 2.67 777 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 100 13 unmarked 4.61 2.56 778 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 8.6 unmarked 4.43 2.15 779 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 91 10 unmarked 4.51 2.30 780 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 99 13.1 unmarked 4.60 2.57 781 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 82 7.6 unmarked 4.41 2.03 782 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 77 6.6 unmarked 4.34 1.89 783 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 97 11.6 unmarked 4.57 2.45 784 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 92 9.7 unmarked 4.52 2.27 785 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 101 14.5 unmarked 4.62 2.67 786 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 165 60.2 unmarked 5.11 4.10 787 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 160 62.3 unmarked 5.08 4.13 788 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 7.8 unmarked 4.44 2.05 789 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 83 7.3 unmarked 4.42 1.99 790 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 72 4.4 unmarked 4.28 1.48 791 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 131 37.6 unmarked 4.88 3.63 792 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 136 36.5 unmarked 4.91 3.60 793 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 97 13.6 unmarked 4.57 2.61 794 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 104 14.9 unmarked 4.64 2.70 795 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 78 7.8 unmarked 4.36 2.05 796 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 88 10.3 unmarked 4.48 2.33 797 
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22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 7.5 unmarked 4.43 2.01 798 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 80 7.2 unmarked 4.38 1.97 799 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 81 8 unmarked 4.39 2.08 800 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 87 9.8 unmarked 4.47 2.28 801 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 9.9 unmarked 4.50 2.29 802 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 9.4 unmarked 4.44 2.24 803 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 100 13.2 unmarked 4.61 2.58 804 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 95 11.7 unmarked 4.55 2.46 805 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 87 9.1 unmarked 4.47 2.21 806 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 96 12 unmarked 4.56 2.48 807 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 88 9 unmarked 4.48 2.20 808 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 83 7.1 unmarked 4.42 1.96 809 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 79 7.2 unmarked 4.37 1.97 810 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 89 9.6 unmarked 4.49 2.26 811 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 84 8.2 unmarked 4.43 2.10 812 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 10.4 unmarked 4.50 2.34 813 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 93 11.9 unmarked 4.53 2.48 814 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 95 11.8 unmarked 4.55 2.47 815 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 86 9.3 unmarked 4.45 2.23 816 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 94 11.8 unmarked 4.54 2.47 817 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 7.7 unmarked 4.44 2.04 818 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 73 5 unmarked 4.29 1.61 819 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 86 9.2 unmarked 4.45 2.22 820 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 81 7.1 unmarked 4.39 1.96 821 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 79 7.1 unmarked 4.37 1.96 822 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 98 11.6 unmarked 4.58 2.45 823 
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22-Feb-17 Electrofishing Count NA 9 NA Perch 1 91 9.6 unmarked 4.51 2.26 824 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 85 8.9 unmarked 4.44 2.19 825 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 89 10.1 unmarked 4.49 2.31 826 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 90 13.8 unmarked 4.50 2.62 827 

22-Feb-17 Electrofishing Count NA 9 NA Perch 1 80 6.5 unmarked 4.38 1.87 828 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 169 72.9 unmarked 5.13 4.29 829 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 162 59.8 unmarked 5.09 4.09 830 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 159 62.4 unmarked 5.07 4.13 831 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 148 44.6 unmarked 5.00 3.80 832 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 149 48.3 unmarked 5.00 3.88 833 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 166 67.4 unmarked 5.11 4.21 834 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 88 10.6 unmarked 4.48 2.36 835 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 99 12.4 unmarked 4.60 2.52 836 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 91 9.7 unmarked 4.51 2.27 837 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 86 9.5 unmarked 4.45 2.25 838 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 76 7.2 unmarked 4.33 1.97 839 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 160 58.9 unmarked 5.08 4.08 840 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 155 56.3 unmarked 5.04 4.03 841 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 162 63.1 unmarked 5.09 4.14 842 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 91 12.8 unmarked 4.51 2.55 843 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 81 7 unmarked 4.39 1.95 844 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 96 13.1 unmarked 4.56 2.57 845 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 78 7 unmarked 4.36 1.95 846 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 82 7.4 unmarked 4.41 2.00 847 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 147 48.3 unmarked 4.99 3.88 848 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 109 16.6 unmarked 4.69 2.81 849 
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22-Feb-17 Electrofishing Count NA 10 NA Perch 1 86 9.6 unmarked 4.45 2.26 850 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 90 8.8 unmarked 4.50 2.17 851 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 79 6.4 unmarked 4.37 1.86 852 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 100 13 unmarked 4.61 2.56 853 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 95 10.4 unmarked 4.55 2.34 854 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 91 9.7 unmarked 4.51 2.27 855 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 93 11.6 unmarked 4.53 2.45 856 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 91 11.8 unmarked 4.51 2.47 857 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 95 11 unmarked 4.55 2.40 858 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 90 9.2 unmarked 4.50 2.22 859 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 88 9.1 unmarked 4.48 2.21 860 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 92 11.7 unmarked 4.52 2.46 861 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 92 9.2 unmarked 4.52 2.22 862 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 93 10.6 unmarked 4.53 2.36 863 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 100 12.9 unmarked 4.61 2.56 864 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 90 10.8 unmarked 4.50 2.38 865 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 84 8.4 unmarked 4.43 2.13 866 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 79 8.2 unmarked 4.37 2.10 867 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 90 10.8 unmarked 4.50 2.38 868 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 84 8.4 unmarked 4.43 2.13 869 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 79 8.2 unmarked 4.37 2.10 870 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 90 9.5 unmarked 4.50 2.25 871 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 88 7.8 unmarked 4.48 2.05 872 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 85 9.9 unmarked 4.44 2.29 873 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 90 10.4 unmarked 4.50 2.34 874 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 89 8.2 unmarked 4.49 2.10 875 
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22-Feb-17 Electrofishing Count NA 10 NA Perch 1 84 6.8 unmarked 4.43 1.92 876 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 74 5.2 unmarked 4.30 1.65 877 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 79 6.8 unmarked 4.37 1.92 878 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 90 8.3 unmarked 4.50 2.12 879 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 84 7.6 unmarked 4.43 2.03 880 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 85 8.4 unmarked 4.44 2.13 881 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 87 8.8 unmarked 4.47 2.17 882 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 160 67.2 unmarked 5.08 4.21 883 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 155 49.3 unmarked 5.04 3.90 884 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 151 52.6 unmarked 5.02 3.96 885 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 153 47.7 unmarked 5.03 3.86 886 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 164 62.9 unmarked 5.10 4.14 887 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 145 45.9 unmarked 4.98 3.83 888 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 157 57.8 unmarked 5.06 4.06 889 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 154 53.2 unmarked 5.04 3.97 890 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 151 48.1 unmarked 5.02 3.87 891 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 163 60.5 unmarked 5.09 4.10 892 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 138 39.3 unmarked 4.93 3.67 893 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 145 46.8 unmarked 4.98 3.85 894 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 86 8.3 unmarked 4.45 2.12 895 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 79 7.4 unmarked 4.37 2.00 896 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 110 19 unmarked 4.70 2.94 897 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 87 8 unmarked 4.47 2.08 898 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 81 6.9 unmarked 4.39 1.93 899 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 104 14.5 unmarked 4.64 2.67 900 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 93 10 unmarked 4.53 2.30 901 
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22-Feb-17 Electrofishing Count NA 10 NA Perch 1 87 6.9 unmarked 4.47 1.93 902 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 100 13.7 unmarked 4.61 2.62 903 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 75 5.7 unmarked 4.32 1.74 904 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 80 7.2 unmarked 4.38 1.97 905 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 88 9.7 unmarked 4.48 2.27 906 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 79 6.8 unmarked 4.37 1.92 907 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 78 7.2 unmarked 4.36 1.97 908 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 78 7.2 unmarked 4.36 1.97 909 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 90 9.8 unmarked 4.50 2.28 910 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 86 9.8 unmarked 4.45 2.28 911 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 77 5.6 unmarked 4.34 1.72 912 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 85 8.3 unmarked 4.44 2.12 913 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 83 7.6 unmarked 4.42 2.03 914 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 88 10.8 unmarked 4.48 2.38 915 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 83 8.7 unmarked 4.42 2.16 916 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 84 8 unmarked 4.43 2.08 917 

22-Feb-17 Electrofishing Count NA 10 NA Perch 1 84 7.8 unmarked 4.43 2.05 918 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 224 163.9 unmarked 5.41 5.10 919 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 200 133 unmarked 5.30 4.89 920 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 165 61.3 unmarked 5.11 4.12 921 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 165 64.5 unmarked 5.11 4.17 922 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 136 35 unmarked 4.91 3.56 923 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 153 52.3 unmarked 5.03 3.96 924 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 95 10 unmarked 4.55 2.30 925 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 90 10.4 unmarked 4.50 2.34 926 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 95 13.1 unmarked 4.55 2.57 927 
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22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 89 11.3 unmarked 4.49 2.42 928 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 86 8.3 unmarked 4.45 2.12 929 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 100 12.7 unmarked 4.61 2.54 930 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 95 11.1 unmarked 4.55 2.41 931 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 89 8.6 unmarked 4.49 2.15 932 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 81 7.4 unmarked 4.39 2.00 933 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 92 9.2 unmarked 4.52 2.22 934 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 87 9.8 unmarked 4.47 2.28 935 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 90 9.3 unmarked 4.50 2.23 936 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 80 7.1 unmarked 4.38 1.96 937 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 91 10.8 unmarked 4.51 2.38 938 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 76 5.4 unmarked 4.33 1.69 939 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 190 109.4 unmarked 5.25 4.70 940 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 150 55.4 unmarked 5.01 4.01 941 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 150 49.4 unmarked 5.01 3.90 942 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 168 73.6 unmarked 5.12 4.30 943 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 84 9.1 unmarked 4.43 2.21 944 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 91 9.8 unmarked 4.51 2.28 945 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 87 9.9 unmarked 4.47 2.29 946 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 80 5.7 unmarked 4.38 1.74 947 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 90 10.4 unmarked 4.50 2.34 948 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 98 13.9 unmarked 4.58 2.63 949 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 94 11.2 unmarked 4.54 2.42 950 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 81 7.5 unmarked 4.39 2.01 951 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 89 10 unmarked 4.49 2.30 952 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 88 11 unmarked 4.48 2.40 953 
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22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 97 11.8 unmarked 4.57 2.47 954 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 90 10 unmarked 4.50 2.30 955 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 93 9.2 unmarked 4.53 2.22 956 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 89 9.8 unmarked 4.49 2.28 957 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 95 12 unmarked 4.55 2.48 958 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 82 8.2 unmarked 4.41 2.10 959 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 95 10.8 unmarked 4.55 2.38 960 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 93 8.1 unmarked 4.53 2.09 961 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 89 9.4 unmarked 4.49 2.24 962 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 86 9.2 unmarked 4.45 2.22 963 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 96 12.6 unmarked 4.56 2.53 964 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 81 6.8 unmarked 4.39 1.92 965 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 91 10.4 unmarked 4.51 2.34 966 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 94 10.3 unmarked 4.54 2.33 967 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 88 9.2 unmarked 4.48 2.22 968 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 89 9.1 unmarked 4.49 2.21 969 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 86 8.5 unmarked 4.45 2.14 970 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 220 163 unmarked 5.39 5.09 971 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 200 123 unmarked 5.30 4.81 972 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 179 86 unmarked 5.19 4.45 973 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 153 58.2 unmarked 5.03 4.06 974 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 154 52.8 unmarked 5.04 3.97 975 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 152 53 unmarked 5.02 3.97 976 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 135 38.4 unmarked 4.91 3.65 977 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 94 12 unmarked 4.54 2.48 978 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1 81 7.4 unmarked 4.39 2.00 979 
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22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   980 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   981 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   982 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   983 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   984 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   985 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   986 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   987 

22-Feb-17 Fyke netting Count NA Fyke leftover 3 Perch 1   unmarked   988 

22-Feb-17 Electrofishing Count NA 6 NA Shortfin eel 1 280 40.5 unmarked 5.63 3.70 989 

22-Feb-17 Electrofishing Count NA 6 NA Shortfin eel 1 250 25.9 unmarked 5.52 3.25 990 

22-Feb-17 Electrofishing Count NA 8 NA Shortfin eel 1 341 59.1 unmarked 5.83 4.08 991 

22-Feb-17 Electrofishing Count NA 8 NA Shortfin eel 1 166 6.5 unmarked 5.11 1.87 992 

22-Feb-17 Electrofishing Count NA 8 NA Shortfin eel 1 146 4.5 unmarked 4.98 1.50 993 

22-Feb-17 Electrofishing Count NA 8 NA Shortfin eel 1 116 2.5 unmarked 4.75 0.92 994 

22-Feb-17 Electrofishing Count NA 8 NA Shortfin eel 1 235 19.1 unmarked 5.46 2.95 995 

22-Feb-17 Electrofishing Count NA 9 NA Shortfin eel 1 105 1.8 unmarked 4.65 0.59 996 

22-Feb-17 Electrofishing Count NA 9 NA Shortfin eel 1 115 1.8 unmarked 4.74 0.59 997 

22-Feb-17 Electrofishing Count NA 9 NA Shortfin eel 1 150 5.5 unmarked 5.01 1.70 998 

22-Feb-17 Electrofishing Count NA 9 NA Shortfin eel 1 216 14.6 unmarked 5.38 2.68 999 

22-Feb-17 Electrofishing Count NA 9 NA Shortfin eel 1 215 15 unmarked 5.37 2.71 1000 

22-Feb-17 Electrofishing Count NA 10 NA Shortfin eel 1 200 12.6 unmarked 5.30 2.53 1001 

22-Feb-17 Electrofishing Count NA 4 NA 
Banded 
kokopu 1 53 1.1 unmarked 3.97 0.10 1002 

22-Feb-17 Electrofishing Count NA 9 NA 
Banded 
kokopu 1 47 0.9 unmarked 3.85 -0.11 1003 

22-Feb-17 Electrofishing Count NA 9 NA 
Banded 
kokopu 1 46 0.6 unmarked 3.83 -0.51 1004 

22-Feb-17 Electrofishing Count NA 9 NA 
Banded 
kokopu 1 50 1.1 unmarked 3.91 0.10 1005 
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Appendix 1: Results from the fish sampling in Lake Rotokare on 8-9 June 2017. 

Date Fishing_type Fishing_type_mesh Net_number Net_mesh_mm Species Count_of_fish Length_mm weight_g ln_len ln_weight order 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 173 74 5.15 4.30 1 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 174 71 5.16 4.26 2 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 171 74 5.14 4.30 3 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 179 86 5.19 4.45 4 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 173 77 5.15 4.34 5 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 158 55 5.06 4.01 6 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 184 94 5.21 4.54 7 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 161 67 5.08 4.20 8 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 167 64 5.12 4.16 9 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 170 72 5.14 4.28 10 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 174 62 5.16 4.13 11 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 166 57 5.11 4.04 12 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 154 55 5.04 4.01 13 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 175 81 5.16 4.39 14 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 162 65 5.09 4.17 15 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 168 70 5.12 4.25 16 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 157 59 5.06 4.08 17 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 154 53 5.04 3.97 18 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 158 60 5.06 4.09 19 

7/06/2017 Gill_net Gill_net 1 18 Perch 1 153 56 5.03 4.03 20 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 433 1658 6.07 7.41 21 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 230 210 5.44 5.35 22 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 177 74 5.18 4.30 23 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 168 74 5.12 4.30 24 
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7/06/2017 Gill_net Gill_net 2 18 Perch 1 164 56 5.10 4.03 25 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 165 68 5.11 4.22 26 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 177 85 5.18 4.44 27 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 189 104 5.24 4.64 28 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 182 91 5.20 4.51 29 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 180 84 5.19 4.43 30 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 168 73 5.12 4.29 31 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 210 136 5.35 4.91 32 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 212 131 5.36 4.88 33 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 177 83 5.18 4.42 34 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 178 88 5.18 4.48 35 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 180 87 5.19 4.47 36 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 174 79 5.16 4.37 37 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 176 85 5.17 4.44 38 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 158 62 5.06 4.13 39 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 148 49 5.00 3.89 40 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 162 62 5.09 4.13 41 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 122 26 4.80 3.26 42 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 173 80 5.15 4.38 43 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 157 53 5.06 3.97 44 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 186 96 5.23 4.56 45 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 172 79 5.15 4.37 46 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 151 51 5.02 3.93 47 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 151 50 5.02 3.91 48 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 114 23 4.74 3.14 49 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 119 24 4.78 3.18 50 
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7/06/2017 Gill_net Gill_net 2 18 Perch 1 133 33 4.89 3.50 51 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 124 27 4.82 3.30 52 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 133 21 4.89 3.04 53 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 149 51 5.00 3.93 54 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 117 25 4.76 3.22 55 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 116 25 4.75 3.22 56 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 122 25 4.80 3.22 57 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 119 22 4.78 3.09 58 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 125 26 4.83 3.26 59 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 128 30 4.85 3.40 60 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 118 24 4.77 3.18 61 

7/06/2017 Gill_net Gill_net 2 18 Perch 1 116 23 4.75 3.14 62 

7/06/2017 Gill_net Gill_net 3 18 Perch 1 187 104 5.23 4.64 63 

7/06/2017 Gill_net Gill_net 3 18 Perch 1 178 85 5.18 4.44 64 

7/06/2017 Gill_net Gill_net 3 18 Perch 1 114 22 4.74 3.09 65 

7/06/2017 Gill_net Gill_net 3 18 Perch 1 117 23 4.76 3.14 66 

7/06/2017 Gill_net Gill_net 3 18 Perch 1 126 25 4.84 3.22 67 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 169 72 5.13 4.28 68 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 164 70 5.10 4.25 69 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 159 60 5.07 4.09 70 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 203 117 5.31 4.76 71 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 182 87 5.20 4.47 72 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 153 53 5.03 3.97 73 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 123 27 4.81 3.30 74 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 121 24 4.80 3.18 75 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 149 52 5.00 3.95 76 



  

 

175 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 151 48 5.02 3.87 77 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 131 28 4.88 3.33 78 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 122 26 4.80 3.26 79 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 116 23 4.75 3.14 80 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 118 24 4.77 3.18 81 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 126 29 4.84 3.37 82 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 116 23 4.75 3.14 83 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 128 26 4.85 3.26 84 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 122 26 4.80 3.26 85 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 114 21 4.74 3.04 86 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 123 25 4.81 3.22 87 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 116 22 4.75 3.09 88 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 122 25 4.80 3.22 89 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 108 18 4.68 2.89 90 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 118 25 4.77 3.22 91 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 119 24 4.78 3.18 92 

7/06/2017 Gill_net Gill_net 4 18 Perch 1 124 26 4.82 3.26 93 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 174 82 5.16 4.41 94 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 164 61 5.10 4.11 95 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 182 84 5.20 4.43 96 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 174 72 5.16 4.28 97 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 162 56 5.09 4.03 98 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 181 89 5.20 4.49 99 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 189 104 5.24 4.64 100 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 171 65 5.14 4.17 101 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 170 67 5.14 4.20 102 
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7/06/2017 Gill_net Gill_net 5 25 Perch 1 165 65 5.11 4.17 103 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 163 64 5.09 4.16 104 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 188 93 5.24 4.53 105 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 176 79 5.17 4.37 106 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 156 55 5.05 4.01 107 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 164 59 5.10 4.08 108 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 179 91 5.19 4.51 109 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 157 54 5.06 3.99 110 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 183 92 5.21 4.52 111 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 165 67 5.11 4.20 112 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 167 77 5.12 4.34 113 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 168 66 5.12 4.19 114 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 157 57 5.06 4.04 115 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 164 67 5.10 4.20 116 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 183 83 5.21 4.42 117 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 170 74 5.14 4.30 118 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 156 57 5.05 4.04 119 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 178 85 5.18 4.44 120 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 172 71 5.15 4.26 121 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 177 78 5.18 4.36 122 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 214 149 5.37 5.00 123 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 207 118 5.33 4.77 124 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 179 84 5.19 4.43 125 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 170 71 5.14 4.26 126 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 162 58 5.09 4.06 127 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 169 85 5.13 4.44 128 
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7/06/2017 Gill_net Gill_net 5 25 Perch 1 178 81 5.18 4.39 129 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 196 106 5.28 4.66 130 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 174 81 5.16 4.39 131 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 199 112 5.29 4.72 132 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 168 74 5.12 4.30 133 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 159 60 5.07 4.09 134 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 192 105 5.26 4.65 135 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 181 79 5.20 4.37 136 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 178 74 5.18 4.30 137 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 205 111 5.32 4.71 138 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 184 105 5.21 4.65 139 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 157 54 5.06 3.99 140 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 158 56 5.06 4.03 141 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 177 81 5.18 4.39 142 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 169 59 5.13 4.08 143 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 173 80 5.15 4.38 144 

7/06/2017 Gill_net Gill_net 5 25 Perch 1 163 66 5.09 4.19 145 

7/06/2017 Gill_net Gill_net 6 25 Perch 1 156 57 5.05 4.04 146 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 327 773 5.79 6.65 147 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 260 298 5.56 5.70 148 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 171 69 5.14 4.23 149 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 203 120 5.31 4.79 150 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 167 75 5.12 4.32 151 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 178 87 5.18 4.47 152 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 168 70 5.12 4.25 153 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 179 91 5.19 4.51 154 
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7/06/2017 Gill_net Gill_net 7 25 Perch 1 194 106 5.27 4.66 155 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 153 52 5.03 3.95 156 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 155 55 5.04 4.01 157 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 155 61 5.04 4.11 158 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 174 81 5.16 4.39 159 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 169 68 5.13 4.22 160 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 184 97 5.21 4.57 161 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 196 126 5.28 4.84 162 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 255 282 5.54 5.64 163 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 183 94 5.21 4.54 164 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 168 74 5.12 4.30 165 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 178 80 5.18 4.38 166 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 159 65 5.07 4.17 167 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 182 84 5.20 4.43 168 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 157 63 5.06 4.14 169 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 193 97 5.26 4.57 170 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 185 105 5.22 4.65 171 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 178 83 5.18 4.42 172 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 158 59 5.06 4.08 173 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 168 70 5.12 4.25 174 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 174 83 5.16 4.42 175 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 185 104 5.22 4.64 176 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 166 77 5.11 4.34 177 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 173 72 5.15 4.28 178 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 159 65 5.07 4.17 179 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 173 89 5.15 4.49 180 
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7/06/2017 Gill_net Gill_net 7 25 Perch 1 190 106 5.25 4.66 181 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 192 101 5.26 4.62 182 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 187 99 5.23 4.60 183 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 160 64 5.08 4.16 184 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 175 77 5.16 4.34 185 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 169 72 5.13 4.28 186 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 164 68 5.10 4.22 187 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 118 25 4.77 3.22 188 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 117 23 4.76 3.14 189 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 183 88 5.21 4.48 190 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 158 57 5.06 4.04 191 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 161 63 5.08 4.14 192 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 175 73 5.16 4.29 193 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 165 71 5.11 4.26 194 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 174 85 5.16 4.44 195 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 160 64 5.08 4.16 196 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 149 52 5.00 3.95 197 

7/06/2017 Gill_net Gill_net 7 25 Perch 1 156 61 5.05 4.11 198 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 168 70 5.12 4.25 199 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 195 110 5.27 4.70 200 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 166 69 5.11 4.23 201 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 183 84 5.21 4.43 202 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 175 77 5.16 4.34 203 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 215 136 5.37 4.91 204 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 174 72 5.16 4.28 205 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 160 60 5.08 4.09 206 
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7/06/2017 Gill_net Gill_net 8 25 Perch 1 196 108 5.28 4.68 207 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 205 124 5.32 4.82 208 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 206 118 5.33 4.77 209 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 160 62 5.08 4.13 210 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 184 92 5.21 4.52 211 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 173 72 5.15 4.28 212 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 180 81 5.19 4.39 213 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 185 93 5.22 4.53 214 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 182 95 5.20 4.55 215 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 179 89 5.19 4.49 216 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 190 102 5.25 4.62 217 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 155 61 5.04 4.11 218 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 185 103 5.22 4.63 219 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 180 89 5.19 4.49 220 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 177 81 5.18 4.39 221 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 190 100 5.25 4.61 222 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 188 89 5.24 4.49 223 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 184 90 5.21 4.50 224 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 180 89 5.19 4.49 225 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 195 101 5.27 4.62 226 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 171 80 5.14 4.38 227 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 190 95 5.25 4.55 228 

7/06/2017 Gill_net Gill_net 8 25 Perch 1 185 96 5.22 4.56 229 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 186 101 5.23 4.62 230 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 151 52 5.02 3.95 231 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 160 58 5.08 4.06 232 
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7/06/2017 Gill_net Gill_net 9 18 Perch 1 183 95 5.21 4.55 233 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 178 88 5.18 4.48 234 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 158 57 5.06 4.04 235 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 165 70 5.11 4.25 236 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 178 81 5.18 4.39 237 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 190 94 5.25 4.54 238 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 179 89 5.19 4.49 239 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 178 82 5.18 4.41 240 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 169 75 5.13 4.32 241 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 124 25 4.82 3.22 242 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 120 24 4.79 3.18 243 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 161 57 5.08 4.04 244 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 165 63 5.11 4.14 245 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 147 49 4.99 3.89 246 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 149 49 5.00 3.89 247 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 170 71 5.14 4.26 248 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 127 31 4.84 3.43 249 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 154 55 5.04 4.01 250 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 178 77 5.18 4.34 251 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 165 68 5.11 4.22 252 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 152 50 5.02 3.91 253 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 157 57 5.06 4.04 254 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 159 58 5.07 4.06 255 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 122 26 4.80 3.26 256 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 123 26 4.81 3.26 257 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 194 107 5.27 4.67 258 
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7/06/2017 Gill_net Gill_net 9 18 Perch 1 178 82 5.18 4.41 259 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 150 54 5.01 3.99 260 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 123 26 4.81 3.26 261 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 194 107 5.27 4.67 262 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 178 82 5.18 4.41 263 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 150 54 5.01 3.99 264 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 123 26 4.81 3.26 265 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 165 67 5.11 4.20 266 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 120 23 4.79 3.14 267 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 185 91 5.22 4.51 268 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 158 59 5.06 4.08 269 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 156 56 5.05 4.03 270 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 155 58 5.04 4.06 271 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 156 60 5.05 4.09 272 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 146 49 4.98 3.89 273 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 157 55 5.06 4.01 274 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 153 48 5.03 3.87 275 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 174 77 5.16 4.34 276 

7/06/2017 Gill_net Gill_net 9 18 Perch 1 112 21 4.72 3.04 277 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 174 82 5.16 4.41 278 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 170 72 5.14 4.28 279 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 183 88 5.21 4.48 280 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 170 77 5.14 4.34 281 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 170 71 5.14 4.26 282 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 157 54 5.06 3.99 283 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 188 97 5.24 4.57 284 
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7/06/2017 Gill_net Gill_net 10 25 Perch 1 179 84 5.19 4.43 285 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 180 88 5.19 4.48 286 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 168 65 5.12 4.17 287 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 185 88 5.22 4.48 288 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 175 80 5.16 4.38 289 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 176 83 5.17 4.42 290 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 176 65 5.17 4.17 291 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 178 97 5.18 4.57 292 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 176 86 5.17 4.45 293 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 187 98 5.23 4.58 294 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 169 72 5.13 4.28 295 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 156 57 5.05 4.04 296 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 167 65 5.12 4.17 297 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 175 75 5.16 4.32 298 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 163 60 5.09 4.09 299 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 186 90 5.23 4.50 300 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 164 64 5.10 4.16 301 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 174 78 5.16 4.36 302 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 161 58 5.08 4.06 303 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 164 64 5.10 4.16 304 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 170 69 5.14 4.23 305 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 174 72 5.16 4.28 306 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 171 79 5.14 4.37 307 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 158 55 5.06 4.01 308 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 178 81 5.18 4.39 309 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 182 86 5.20 4.45 310 
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7/06/2017 Gill_net Gill_net 10 25 Perch 1 176 79 5.17 4.37 311 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 159 54 5.07 3.99 312 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 160 54 5.08 3.99 313 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 173 76 5.15 4.33 314 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 185 96 5.22 4.56 315 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 181 88 5.20 4.48 316 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 175 75 5.16 4.32 317 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 160 61 5.08 4.11 318 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 179 79 5.19 4.37 319 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 197 113 5.28 4.73 320 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 171 68 5.14 4.22 321 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 151 51 5.02 3.93 322 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 172 76 5.15 4.33 323 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 183 90 5.21 4.50 324 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 155 58 5.04 4.06 325 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 185 94 5.22 4.54 326 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 192 103 5.26 4.63 327 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 177 83 5.18 4.42 328 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 160 60 5.08 4.09 329 

7/06/2017 Gill_net Gill_net 10 25 Perch 1 160 57 5.08 4.04 330 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 230 213 5.44 5.36 331 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 170 74 5.14 4.30 332 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 189 103 5.24 4.63 333 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 174 83 5.16 4.42 334 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 183 90 5.21 4.50 335 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 161 63 5.08 4.14 336 
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8/06/2017 Gill_net Gill_net 1 18 Perch 1 154 53 5.04 3.97 337 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 163 59 5.09 4.08 338 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 154 50 5.04 3.91 339 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 167 66 5.12 4.19 340 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 168 65 5.12 4.17 341 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 152 52 5.02 3.95 342 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 155 57 5.04 4.04 343 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 153 55 5.03 4.01 344 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 148 44 5.00 3.78 345 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 148 48 5.00 3.87 346 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 154 53 5.04 3.97 347 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 154 51 5.04 3.93 348 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 120 24 4.79 3.18 349 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 124 26 4.82 3.26 350 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 148 46 5.00 3.83 351 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 150 49 5.01 3.89 352 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 116 24 4.75 3.18 353 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 155 55 5.04 4.01 354 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 156 52 5.05 3.95 355 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 157 57 5.06 4.04 356 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 120 29 4.79 3.37 357 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 133 35 4.89 3.56 358 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 125 28 4.83 3.33 359 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 128 31 4.85 3.43 360 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 127 29 4.84 3.37 361 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 129 29 4.86 3.37 362 
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8/06/2017 Gill_net Gill_net 1 18 Perch 1 126 25 4.84 3.22 363 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 128 32 4.85 3.47 364 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 124 25 4.82 3.22 365 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 126 27 4.84 3.30 366 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 128 27 4.85 3.30 367 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 114 20 4.74 3.00 368 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 117 22 4.76 3.09 369 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 117 22 4.76 3.09 370 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 122 23 4.80 3.14 371 

8/06/2017 Gill_net Gill_net 1 18 Perch 1 117 24 4.76 3.18 372 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 298 504 5.70 6.22 373 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 170 73 5.14 4.29 374 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 185 103 5.22 4.63 375 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 188 91 5.24 4.51 376 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 185 95 5.22 4.55 377 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 160 63 5.08 4.14 378 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 180 78 5.19 4.36 379 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 175 76 5.16 4.33 380 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 203 113 5.31 4.73 381 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 187 97 5.23 4.57 382 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 167 72 5.12 4.28 383 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 149 58 5.00 4.06 384 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 169 62 5.13 4.13 385 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 190 106 5.25 4.66 386 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 173 75 5.15 4.32 387 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 166 65 5.11 4.17 388 
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8/06/2017 Gill_net Gill_net 1 25 Perch 2 149 59 5.00 4.08 389 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 168 67 5.12 4.20 390 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 188 92 5.24 4.52 391 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 162 65 5.09 4.17 392 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 166 68 5.11 4.22 393 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 184 91 5.21 4.51 394 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 179 86 5.19 4.45 395 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 170 68 5.14 4.22 396 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 154 51 5.04 3.93 397 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 159 59 5.07 4.08 398 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 158 56 5.06 4.03 399 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 168 69 5.12 4.23 400 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 161 60 5.08 4.09 401 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 164 61 5.10 4.11 402 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 156 56 5.05 4.03 403 

8/06/2017 Gill_net Gill_net 1 25 Perch 2 164 66 5.10 4.19 404 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 250 240 5.52 5.48 405 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 190 96 5.25 4.56 406 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 176 81 5.17 4.39 407 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 188 98 5.24 4.58 408 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 176 76 5.17 4.33 409 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 159 56 5.07 4.03 410 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 154 53 5.04 3.97 411 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 128 30 4.85 3.40 412 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 129 27 4.86 3.30 413 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 113 18 4.73 2.89 414 
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8/06/2017 Gill_net Gill_net 1 25 Perch 3 124 26 4.82 3.26 415 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 118 22 4.77 3.09 416 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 116 22 4.75 3.09 417 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 123 22 4.81 3.09 418 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 117 21 4.76 3.04 419 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 113 22 4.73 3.09 420 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 118 24 4.77 3.18 421 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 121 23 4.80 3.14 422 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 116 21 4.75 3.04 423 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 114 19 4.74 2.94 424 

8/06/2017 Gill_net Gill_net 1 25 Perch 3 118 21 4.77 3.04 425 

8/06/2017 Gill_net Gill_net 1 25 Perch 4 313 600 5.75 6.40 426 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 150 51 5.01 3.93 427 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 278 426 5.63 6.05 428 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 297 446 5.69 6.10 429 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 187 101 5.23 4.62 430 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 150 51 5.01 3.93 431 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 156 53 5.05 3.97 432 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 158 61 5.06 4.11 433 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 126 26 4.84 3.26 434 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 121 27 4.80 3.30 435 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 124 26 4.82 3.26 436 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 132 37 4.88 3.61 437 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 151 51 5.02 3.93 438 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 126 28 4.84 3.33 439 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 131 34 4.88 3.53 440 
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8/06/2017 Gill_net Gill_net 1 25 Perch 5 134 35 4.90 3.56 441 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 125 31 4.83 3.43 442 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 119 22 4.78 3.09 443 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 110 22 4.70 3.09 444 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 121 26 4.80 3.26 445 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 128 32 4.85 3.47 446 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 112 24 4.72 3.18 447 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 119 24 4.78 3.18 448 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 116 23 4.75 3.14 449 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 123 26 4.81 3.26 450 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 115 21 4.74 3.04 451 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 115 20 4.74 3.00 452 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 121 26 4.80 3.26 453 

8/06/2017 Gill_net Gill_net 1 25 Perch 5 116 23 4.75 3.14 454 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 282 410 5.64 6.02 455 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 165 66 5.11 4.19 456 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 203 125 5.31 4.83 457 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 204 122 5.32 4.80 458 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 181 96 5.20 4.56 459 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 199 118 5.29 4.77 460 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 189 93 5.24 4.53 461 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 178 79 5.18 4.37 462 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 187 90 5.23 4.50 463 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 169 76 5.13 4.33 464 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 168 72 5.12 4.28 465 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 182 83 5.20 4.42 466 
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8/06/2017 Gill_net Gill_net 1 25 Perch 6 185 87 5.22 4.47 467 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 179 81 5.19 4.39 468 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 204 119 5.32 4.78 469 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 178 79 5.18 4.37 470 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 175 80 5.16 4.38 471 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 165 65 5.11 4.17 472 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 162 61 5.09 4.11 473 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 160 58 5.08 4.06 474 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 165 59 5.11 4.08 475 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 165 63 5.11 4.14 476 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 162 58 5.09 4.06 477 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 159 60 5.07 4.09 478 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 161 60 5.08 4.09 479 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 174 78 5.16 4.36 480 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 165 64 5.11 4.16 481 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 160 56 5.08 4.03 482 

8/06/2017 Gill_net Gill_net 1 25 Perch 6 151 55 5.02 4.01 483 

8/06/2017 Gill_net Gill_net 1 25 Perch 7 324 628 5.78 6.44 484 

8/06/2017 Gill_net Gill_net 1 25 Perch 7 269 361 5.59 5.89 485 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 307 605 5.73 6.41 486 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 180 87 5.19 4.47 487 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 174 82 5.16 4.41 488 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 172 81 5.15 4.39 489 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 124 27 4.82 3.30 490 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 195 120 5.27 4.79 491 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 171 84 5.14 4.43 492 
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8/06/2017 Gill_net Gill_net 1 25 Perch 8 160 58 5.08 4.06 493 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 153 57 5.03 4.04 494 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 155 52 5.04 3.95 495 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 153 54 5.03 3.99 496 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 122 28 4.80 3.33 497 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 122 25 4.80 3.22 498 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 123 25 4.81 3.22 499 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 134 33 4.90 3.50 500 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 132 33 4.88 3.50 501 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 119 23 4.78 3.14 502 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 120 24 4.79 3.18 503 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 123 25 4.81 3.22 504 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 134 33 4.90 3.50 505 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 132 33 4.88 3.50 506 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 119 23 4.78 3.14 507 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 120 24 4.79 3.18 508 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 128 26 4.85 3.26 509 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 123 27 4.81 3.30 510 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 117 23 4.76 3.14 511 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 120 25 4.79 3.22 512 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 118 24 4.77 3.18 513 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 122 24 4.80 3.18 514 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 113 22 4.73 3.09 515 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 125 26 4.83 3.26 516 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 123 25 4.81 3.22 517 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 111 21 4.71 3.04 518 



  

 

192 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 115 24 4.74 3.18 519 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 116 22 4.75 3.09 520 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 115 22 4.74 3.09 521 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 118 23 4.77 3.14 522 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 121 26 4.80 3.26 523 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 117 25 4.76 3.22 524 

8/06/2017 Gill_net Gill_net 1 25 Perch 8 117 23 4.76 3.14 525 
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Appendix 2: 

 

 

Appendix 2; Table  1: Volumetric tomach contents of 144 perch sampled by boat electrofishing in Lake Rotokare on 21-22 Feb 2017. 

Length class N Number  Mean stomach Mean stomach

Site (mm) total empty fullness (1-5) fullness (%) N Mean N Mean N Mean N Mean N Mean N Mean N Mean N Mean N Mean

3 72-110 9 0 4.4 89 1 1 9 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11-180 9 0 3.8 76 5 16 8 69 0 0 2 12 1 2 0 0 1 1 0 0 0 0

180-249 2 0 4.0 80 2 53 1 40 0 0 0 0 1 7 0 0 0 0 0 0 0 0

4 72-110 9 0 4.0 80 2 2 9 92 0 0 0 0 3 5 0 0 0 0 1 1 0 0

111-180 8 1 4.5 90 7 45 4 47 4 8 0 0 0 0 0 0 0 0 0 0 0 0

180-249 3 0 4.7 93 2 32 1 27 1 8 0 0 0 0 0 0 0 0 0 0 1 33

5 72-110 10 0 4.2 84 4 1 10 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0

111-180 5 0 3.6 72 1 37 3 55 2 7 0 0 0 0 1 1 0 0 0 0 0 0

6 72-110

111-180 10 0 3.8 76 9 66 4 30 5 4 0 0 0 0 0 0 0 0 0 0 0 0

7 72-110 14 0 4.0 80 2 4 14 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

111-180 3 1 3.3 67 1 45 1 20 2 10 0 0 1 25 0 0 0 0 0 0 0 0

180-249 2 1 2.0 40 1 90 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0

8 72-110 13 0 3.8 75 2 6 13 92 0 0 0 0 2 2 0 0 0 0 0 0 0 0

111-180 6 0 3.2 63 2 18 5 67 1 3 2 9 1 3 0 0 0 0 0 0 0 0

180-249 1 0 4.0 80 1 90 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0

9 72-110 8 0 4.3 85 2 6 7 81 0 0 0 0 1 13 0 0 0 0 0 0 0 0

111-180 12 0 4.4 88 5 30 6 25 3 10 1 4 5 31 0 0 0 0 0 0 0 0

10 72-110 10 0 4.6 92 3 3 7 87 0 0 0 0 1 9 1 1 0 0 0 0 0 0

111-180 10 0 3.7 74 5 35 6 55 4 7 0 0 1 1 1 1 2 1 0 0 0 0

Total 72-110 73 0 4.2 84 16 3 69 93 0 0 0 0 7 4 1 0 0 0 1 0 0 0

111-180 63 2 3.8 76 35 36 37 47 21 6 5 3 9 8 2 0 3 0 0 0 0 0

180-249 8 1 3.7 73 6 55 2 23 3 6 0 0 1 2 0 0 0 0 0 0 1 14

Percent of volume of food items

DipteraSnail - PhysaChironimids Zooplankton Detritus Odonata Unidentified insect Macrophyte Algae
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Appendix 2; Table  2: Volumetric stomach contents of 50 perch sampled by gill netting on 21 Feb 2017. 
 

 

Appendix 2; Table  3: Volumetric stomach contents of 194 perch caught by both boat electrofishing and gill netting on 21-22 Feb 2017. 

  

Length class N Number  Mean stomach Mean stomach

Site (mm) total empty fullness (1-5) fullness (%) N Mean N Mean N Mean N Mean N Mean N Mean N Mean N Mean N Mean

1 111-180 3 0 4.3 86 2 50 3 39 2 8 0 0 1 3 0 0 0 0 0 0 0 0

180-249 7 1 3.1 62 4 58 2 29 4 8 0 0 1 5 0 0 0 0 0 0 0 0

2 111-180 8 0 3.0 60 4 31 7 61 3 8 0 0 0 0 0 0 0 0 0 0 0 0

180-249 2 0 5.0 100 2 88 0 0 2 12 0 0 0 0 0 0 0 0 0 0 0 0

3 111-180 10 0 4.3 86 4 3 10 96 0 0 0 0 1 1 0 0 0 0 0 0 0 0

180-249 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 111-180 8 0 3.6 72 1 6 8 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0

180-249 2 0 3.5 70 0 0 2 95 0 0 0 0 1 5 0 0 0 0 0 0 0 0

5 111-180 9 1 3.7 74 1 1 8 96 0 0 1 3 0 0 0 0 0 0 0 0 0 0

180-249 1 0 4.0 80 0 0 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 111-180 38 1 3.8 76 12 18 36 77 5 3 1 1 2 1 0 0 0 0 0 0 0 0

180-249 12 1 3.9 78 6 36 5 56 6 5 0 0 2 3 0 0 0 0 0 0 0 0

Chironimids Zooplankton Snail - Physa DipteraDetritus Odonata Unidentified insect Macrophyte Algae

Length class N Number  Mean stomach Mean stomach

Site (mm) total empty fullness (1-5) fullness (%) N Mean N Mean N Mean N Mean N Mean N Mean N Mean N Mean N Mean

Total 72-110 73 0 4.3 85 16 3 41 93 0 0 1 0 4 4 0 0 0 0 0 0 0 0

111-180 101 3 3.7 74 47 27 73 61 26 5 6 2 11 5 2 0 3 0 0 0 0 0

180-249 20 2 3.6 72 12 50 7 34 9 7 0 0 3 3 0 0 0 0 0 0 1 6

Macrophyte Algae Snail - Physa DipteraChironimids Zooplankton Detritus Odonata Unidentified insect

Percent of volume of food items
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Appendix 2: Stable isotope results from June and December 2017. 

code Species weight_g length_mm Percent_C Percent_N delta13C delta15N Order 

 JBK001 Banded Kokopu 53 1.1 46.39 13.80 -31.13 6.68 107 

 JBK002 Banded Kokopu 46 0.6 47.18 14.12 -29.30 7.04 108 

 JBK003 Banded Kokopu 47 0.9 45.00 13.51 -27.53 8.30 109 

 JBK004 Banded Kokopu 50 1.1 47.35 14.07 -30.78 7.21 110 

 CHA001 Charophyte sp.  -   -  37.12 3.34 -25.79 -5.02 91 

 CHA002 Charophyte sp.  -   -  37.36 3.51 -25.34 -4.40 92 

 CHIRNMIV Chironomid larvae  -   -  38.39 8.27 -25.13 2.89 148 

 CHIRNMW Chironomid larvae  -   -  43.22 9.26 -28.47 2.14 149 

 CHL001 Chironomid larvae  -   -  45.03 10.11 -31.78 2.63 85 

 CHL002 Chironomid larvae  -   -  33.68 6.77 -27.08 3.94 86 

 DFL001 Dragonfly nymph 1.5 16.5 42.18 10.05 -31.01 8.50 96 

 DFL002 Dragonfly nymph 1.7 18 43.68 10.82 -32.02 3.84 97 

 DFL003 Dragonfly nymph 1.8 18 47.41 9.73 -30.71 3.40 98 

 DFL004 Dragonfly nymph 1.6 17 42.83 10.42 -31.87 3.78 99 

 DFL005 Dragonfly nymph 1.4 16 44.06 10.49 -32.29 2.86 100 

 DFL006 Dragonfly nymph 1.5 17 44.06 10.31 -29.14 6.73 101 

 LSM001 Lagarosiphon. M  -   -  37.47 3.77 -29.67 -1.29 87 

 LSM002 Lagarosiphon. M  -   -  36.20 3.15 -27.64 -3.23 88 

 EELFU05 Longfin eel 725 1363 41.90 10.82 -27.15 8.65 38 

 EELFU09 Longfin eel 872 2484 42.49 10.65 -26.66 9.18 42 

 EELFU12 Longfin eel 707 1141 44.86 11.25 -26.63 8.95 45 

 EELFU14 Longfin eel 594 660 41.41 10.89 -27.45 8.39 47 

 EELFU16 Longfin eel 702 1199 43.83 11.59 -27.17 8.82 49 

 EELFU17 Longfin eel 500 396 43.16 11.04 -25.69 8.89 50 
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 EELFU18 Longfin eel 474 343 43.07 11.81 -25.79 8.01 51 

 EELFU19 Longfin eel 623 975 43.64 11.39 -27.39 8.81 52 

 LFE002 Longfin eel 1448 750 43.91 11.40 -27.24 8.65 2 

 LFE004 Longfin eel 6690 1120 43.47 10.50 -27.22 8.50 4 

 LFE005 Longfin eel 352 520 46.43 12.22 -27.12 8.96 5 

 LFE006 Longfin eel 1764 850 45.95 11.13 -27.36 9.00 6 

 LFE007 Longfin eel 1380 760 45.82 10.86 -27.65 9.44 7 

 LFE009 Longfin eel 2458 916 48.95 11.25 -27.95 9.15 9 

 LFE010 Longfin eel 4663 1140 44.07 11.24 -27.48 8.97 10 

 LFE011 Longfin eel 1760 764 45.91 11.49 -27.16 8.84 11 

 LFE012 Longfin eel 2897 925 49.56 11.42 -27.33 9.21 12 

 LFE013 Longfin eel 1002 665 44.51 12.44 -26.82 9.05 13 

 LFE014 Longfin eel 2387 854 44.69 11.92 -27.35 8.88 14 

 LFE015 Longfin eel 675 610 45.74 12.25 -27.37 8.13 15 

 LFE016 Longfin eel 1092 628 43.72 11.90 -26.91 8.42 16 

 LFE017 Longfin eel 5192 1110 42.87 11.73 -26.85 9.44 17 

LFE001 Longfin eel 3920 1060 43.01 10.49 -27.39 9.11 1 

LFE003 Longfin eel 3330 994 49.13 10.65 -28.05 9.95 3 

LFE008 Longfin eel 3234 970 44.81 11.80 -26.99 9.31 8 

 PER001 Perch 5.4 80 47.21 13.68 -25.47 6.78 111 

 PER002 Perch 10.2 90 46.39 13.62 -25.52 6.97 112 

 PER003 Perch 9.4 85 46.96 13.53 -25.62 7.01 113 

 PER004 Perch 12 91 45.98 13.48 -25.23 6.96 114 

 PER005 Perch 18.6 110 47.50 14.07 -25.35 6.79 115 

 PER006 Perch 66.1 159 47.30 14.21 -27.30 7.93 116 

 PER007 Perch 8.1 84 48.09 14.16 -25.03 7.29 117 
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 PER008 Perch 76.5 174 46.77 14.09 -27.35 6.80 118 

 PER009 Perch 9.1 87 47.03 13.83 -25.33 7.29 119 

 PER010 Perch 55 154 47.48 14.33 -26.82 6.92 120 

 PER011 Perch 17.6 100 48.36 14.21 -25.49 6.95 121 

 PER012 Perch 8.4 80 48.62 14.21 -25.54 7.25 122 

 PER013 Perch 59.2 158 46.54 13.96 -27.08 7.03 123 

 PER014 Perch 59.9 160 47.33 14.08 -27.02 7.19 124 

 PER015 Perch 14.4 95 48.37 14.34 -25.40 6.92 125 

 PER016 Perch 39.2 137 47.92 14.42 -27.16 7.37 126 

 PER017 Perch 63.9 165 47.09 14.21 -27.28 7.17 127 

 PER018 Perch 8.1 85 48.37 14.27 -25.57 7.33 128 

 PER019 Perch 147.3 204 48.05 14.59 -27.83 7.63 129 

 PER020 Perch 96 198 47.38 14.26 -28.60 6.86 130 

 PER021 Perch 10.5 89 47.65 14.09 -25.48 7.06 131 

 PER022 Perch 96.8 194 46.82 14.10 -27.18 7.44 132 

 PER023 Perch 43.8 143 46.94 14.03 -26.54 7.23 133 

 PER024 Perch 10.3 87 47.27 14.01 -25.42 7.18 134 

 PER025 Perch 151.5 210 46.69 14.20 -25.50 8.63 135 

 PER026 Perch 407 285 45.71 13.88 -28.29 7.32 136 

 PER027 Perch 193.7 235 47.30 13.79 -27.98 7.81 137 

 PER028 Perch 1658 433 47.55 14.30 -26.45 9.15 138 

 PER029 Perch 24 119 46.79 14.07 -31.24 6.67 139 

 PER030 Perch 87 182 45.93 13.87 -28.86 7.24 140 

 PER031 Perch 21 112 46.68 13.85 -30.76 6.87 141 

 PER032 Perch 210 230 46.18 13.86 -27.47 8.3 142 

 PER033 Perch 78 174 46.05 13.79 -29.25 7.03 143 



  

 

198 

 PER034 Perch 24 120 46.79 13.82 -31.07 6.83 144 

 PER035 Perch 66 167 46.25 13.81 -29.80 6.91 145 

 PER036 Perch 240 250 45.41 13.83 -27.24 8.02 146 

 PER037 Perch 27 124 45.10 13.51 -28.10 6.82 147 

 LZP001 Zooplankton  -   -  33.18 4.95 -37.41 3.85 102 

 LZP002 Zooplankton  -   -  29.17 3.33 -35.43 2.32 103 

 PHYTO 1 phytoplankton   33.22 4.71 -28.94 1.44 152 

 PHYTO2 Phytoplankton   33.15 4.35 -28.62 2.99 153 

 PGO001 Potamogeton. O  -   -  36.95 4.47 -42.17 -2.39 89 

 PGO002 Potamogeton. O  -   -  36.37 4.35 -42.12 -2.44 90 

 SED N Sediment   6.63 0.50 -28.12 2.03 150 

 SEDW Sediment   43.23 2.69 -28.98 1.67 151 

 EELFU01 Shortfin eel 516 333 41.98 11.63 -28.70 6.44 35 

 EELFU02 Shortfin eel 819 1323 45.81 11.02 -27.28 8.72 36 

 EELFU03 Shortfin eel 560 494 41.93 11.91 -28.87 6.93 37 

 EELFU06 Shortfin eel 610 522 42.95 11.81 -26.75 7.07 39 

 EELFU07 Shortfin eel 871 1650 44.73 10.85 -28.08 9.11 40 

 EELFU08 Shortfin eel 624 614 40.14 11.69 -28.74 6.91 41 

 EELFU10 Shortfin eel 623 607 42.64 10.73 -27.45 8.37 43 

 EELFU11 Shortfin eel 838 1428 44.93 11.01 -28.04 8.73 44 

 EELFU13 Shortfin eel 524 338 41.48 11.39 -29.83 7.13 46 

 EELFU15 Shortfin eel 621 610 44.49 11.51 -25.69 8.03 48 

 EELFU20 Shortfin eel 620 657 43.31 9.51 -29.32 7.12 53 

 EELFU21 Shortfin eel 500 287 40.97 11.80 -26.50 6.80 54 

 EELFU22 Shortfin eel 590 423 42.83 11.54 -26.18 8.13 55 

 EELFU23 Shortfin eel 554 435 38.90 10.87 -26.29 7.18 56 
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 EELFU24 Shortfin eel 636 584 35.39 9.98 -26.16 8.47 57 

 EELFU25 Shortfin eel 475 248 42.57 11.94 -26.60 6.87 58 

 EELFU26 Shortfin eel 530 413 43.08 11.53 -28.82 6.97 59 

SFE001 Shortfin eel 465 615 44.08 11.84 -27.89 8.80 18 

SFE002 Shortfin eel 497 625 45.78 11.73 -28.22 8.71 19 

SFE003 Shortfin eel 804 700 39.70 10.74 -27.86 8.51 20 

SFE004 Shortfin eel 1054 760 43.45 11.03 -28.02 8.61 21 

SFE005 Shortfin eel 1490 845 48.31 10.80 -29.20 8.95 22 

SFE006 Shortfin eel 2001 930 45.87 11.24 -28.41 8.53 23 

SFE007 Shortfin eel 1189 785 42.52 11.43 -28.03 8.97 24 

SFE008 Shortfin eel 674 692 41.48 11.50 -28.10 7.84 25 

SFE009 Shortfin eel 313 525 43.02 11.95 -27.26 7.54 26 

SFE010 Shortfin eel 468 608 44.61 11.78 -28.76 7.75 27 

SFE011 Shortfin eel 470 578 43.25 11.63 -27.17 7.66 28 

SFE012 Shortfin eel 588 616 41.89 11.86 -27.80 7.34 29 

SFE013 Shortfin eel 580 640 43.45 11.52 -27.93 8.04 30 

SFE014 Shortfin eel 640 643 43.64 10.57 -29.37 7.40 31 

SFE015 Shortfin eel 517 650 41.59 10.63 -27.99 8.59 32 

SFE016 Shortfin eel 875 628 43.64 12.00 -26.73 8.50 33 

SFE017 Shortfin eel 456 615 40.07 11.66 -26.95 8.15 34 

 SNA001 Snail: physa&lymnaea  -   -  32.80 6.13 -28.90 6.69 93 

 SNA002 Snail: physa&lymnaea  -   -  34.36 6.48 -29.15 6.94 94 

 SNA003 Snail: physa&lymnaea  -   -  31.57 5.71 -28.34 6.75 95 

 WPP001 Winter phytoplankton  -   -  31.37 4.93 -38.21 -0.61 106 

 DZP001 Zooplankton  -   -  46.33 5.54 -42.97 6.87 104 

 DZP002 Zooplankton  -   -  43.30 4.75 -41.42 4.99 105 
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 ZOO 1 Zooplankton   29.39 5.53 -26.89 4.56 154 

 ZOO 2 Zooplankton   29.67 4.30 -28.36 5.64 155 
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Appendix 2: Stable isotope results from 19 December 2017 for untreated eel muscle and fin tissue. 

codea Code lipid_treatment species tissue_type length_mm weight_g ln_length ln_weight  weight_mg percent_N d15N percent_C d13C C:N ratio 

 EELMT01 EEL001 Treated Shortfin eel Muscle 516 333 6.25 5.81 2.230 13.26 8.16 44.03 -32.05 3.32 

 EELMT02 EEL002 Treated Shortfin eel Muscle 819 1323 6.71 7.19 2.227 13.52 9.25 44.98 -29.42 3.33 

 EELMT04 EEL004 Treated Shortfin eel Muscle 450 192 6.11 5.26 2.226 13.76 6.88 45.38 -31.38 3.30 

 EELMT05 EEL005 Treated Longfin eel Muscle 725 1363 6.59 7.22 2.260 13.81 9.36 45.21 -27.21 3.27 

 EELMT06 EEL006 Treated Shortfin eel Muscle 610 522 6.41 6.26 2.211 13.37 8.81 45.76 -28.87 3.42 

 EELMT08 EEL008 Treated Shortfin eel Muscle 624 614 6.44 6.42 2.249 13.73 7.59 46.58 -31.80 3.39 

 EELMT09 EEL009 Treated Longfin eel Muscle 872 2484 6.77 7.82 2.222 12.68 9.36 47.59 -29.35 3.75 

 EELMT10 EEL010 Treated Shortfin eel Muscle 623 607 6.43 6.41 2.230 13.80 8.79 45.89 -28.91 3.33 

 EELMT11 EEL011 Treated Shortfin eel Muscle 838 1428 6.73 7.26 2.224 13.35 8.48 46.93 -30.23 3.52 

 EELMT12 EEL012 Treated Longfin eel Muscle 707 1141 6.56 7.04 2.224 13.25 8.95 45.29 -26.67 3.42 

 EELMT13 EEL013 Treated Shortfin eel Muscle 524 338 6.26 5.82 2.262 13.76 7.55 45.41 -30.15 3.30 

 EELMT14 EEL014 Treated Longfin eel Muscle 594 660 6.39 6.49 2.232 13.85 8.69 45.93 -27.23 3.32 

 EELMT15 EEL015 Treated Shortfin eel Muscle 621 610 6.43 6.41 2.238 13.32 8.48 46.45 -26.32 3.49 

 EELMT16 EEL016 Treated Longfin eel Muscle 702 1199 6.55 7.09 2.234 12.79 7.58 47.95 -28.33 3.75 

 EELMT17 EEL017 Treated Longfin eel Muscle 500 396 6.21 5.98 2.245 13.58 8.51 45.27 -26.53 3.33 

 EELMT18 EEL018 Treated Longfin eel Muscle 474 343 6.16 5.84 2.269 12.96 8.40 42.80 -27.14 3.30 

 EELMT19 EEL019 Treated Longfin eel Muscle 623 975 6.43 6.88 2.286 13.46 8.86 46.03 -27.06 3.42 

 EELMT20 EEL020 Treated Shortfin eel Muscle 620 657 6.43 6.49 2.240 13.09 7.71 46.63 -29.68 3.56 

 EELMT22 EEL022 Treated Shortfin eel Muscle 590 423 6.38 6.05 2.226 13.26 8.57 43.86 -26.70 3.31 

 EELMT23 EEL023 Treated Shortfin eel Muscle 554 435 6.32 6.08 2.245 13.49 8.09 44.61 -27.50 3.31 

 EELMT24 EEL024 Treated Shortfin eel Muscle 636 584 6.46 6.37 2.211 13.44 8.28 45.00 -27.35 3.35 

 EELMT25 EEL025 Treated Shortfin eel Muscle 475 248 6.16 5.51 2.252 13.69 7.36 45.04 -27.13 3.29 

 EELMT26 EEL026 Treated Shortfin eel Muscle 530 413 6.27 6.02 2.269 13.12 7.50 44.01 -28.13 3.35 
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EELMU01 EEL001 Untreated Shortfin eel Muscle 516 333 6.25 5.81 2.208 13.74 7.12 45.65 -27.75 3.32 

 
EELMU02 EEL002 Untreated Shortfin eel Muscle 819 1323 6.71 7.19 2.209 13.02 8.87 47.14 -28.41 3.62 

 
EELMU03 EEL003 Untreated Shortfin eel Muscle 560 494 6.33 6.20 2.278 13.35 6.93 45.98 -31.25 3.44 

 
EELMU04 EEL004 Untreated Shortfin eel Muscle 450 192 6.11 5.26 2.275 13.64 8.14 45.77 -31.02 3.36 

 
EELMU05 EEL005 Untreated Longfin eel Muscle 725 1363 6.59 7.22 2.208 12.77 8.74 48.73 -28.87 3.82 

 
EELMU06 EEL006 Untreated Shortfin eel Muscle 610 522 6.41 6.26 2.219 10.91 7.15 52.17 -30.60 4.78 

 
EELMU07 EEL007 Untreated Shortfin eel Muscle 871 1650 6.77 7.41 2.219 12.10 8.59 50.12 -31.01 4.14 

 
EELMU08 EEL008 Untreated Shortfin eel Muscle 624 614 6.44 6.42 2.245 13.10 7.12 50.05 -32.46 3.82 

 
EELMU09 EEL009 Untreated Longfin eel Muscle 872 2484 6.77 7.82 2.269 12.66 9.21 49.73 -29.28 3.93 

 
EELMU10 EEL010 Untreated Shortfin eel Muscle 623 607 6.43 6.41 2.268 13.18 8.78 45.68 -29.11 3.47 

 
EELMU11 EEL011 Untreated Shortfin eel Muscle 838 1428 6.73 7.26 2.257 11.54 8.35 46.85 -30.64 4.06 

 
EELMU12 EEL012 Untreated Longfin eel Muscle 707 1141 6.56 7.04 2.229 12.79 8.99 44.30 -28.52 3.46 

 
EELMU13 EEL013 Untreated Shortfin eel Muscle 524 338 6.26 5.82 2.226 10.52 7.21 35.77 -33.00 3.40 

 
EELMU14 EEL014 Untreated Longfin eel Muscle 594 660 6.39 6.49 2.259 13.60 8.68 45.34 -28.81 3.33 

 
EELMU15 EEL015 Untreated Shortfin eel Muscle 621 610 6.43 6.41 2.263 12.60 8.68 47.37 -27.91 3.76 

 
EELMU16 EEL016 Untreated Longfin eel Muscle 702 1199 6.55 7.09 2.205 13.15 8.77 47.43 -29.39 3.61 

 
EELMU17 EEL017 Untreated Longfin eel Muscle 500 396 6.21 5.98 2.214 13.79 9.11 45.63 -27.19 3.31 

 
EELMU18 EEL018 Untreated Longfin eel Muscle 474 343 6.16 5.84 2.226 13.54 8.36 45.02 -28.24 3.32 

 
EELMU19 EEL019 Untreated Longfin eel Muscle 623 975 6.43 6.88 2.267 13.32 8.73 46.53 -28.87 3.49 

 
EELMU20 EEL020 Untreated Shortfin eel Muscle 620 657 6.43 6.49 2.271 12.58 7.67 49.22 -31.54 3.91 

 
EELMU21 EEL021 Untreated Shortfin eel Muscle 500 287 6.21 5.66 2.228 13.57 6.77 45.52 -31.42 3.35 
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EELMU22 EEL022 Untreated Shortfin eel Muscle 590 423 6.38 6.05 2.244 13.58 8.54 45.90 -28.58 3.38 

 
EELMU23 EEL023 Untreated Shortfin eel Muscle 554 435 6.32 6.08 2.260 14.13 7.99 46.66 -28.91 3.30 

 
EELMU24 EEL024 Untreated Shortfin eel Muscle 636 584 6.46 6.37 2.211 13.40 8.34 44.80 -29.12 3.34 

 
EELMU26 EEL026 Untreated Shortfin eel Muscle 530 413 6.27 6.02 2.251 14.05 7.85 46.66 -29.79 3.32 

 EELFT01 EEL001 Treated Shortfin eel Fin 516 333 6.25 5.81 2.217 11.94 6.30 40.81 -28.86 3.42 

 EELFT02 EEL002 Treated Shortfin eel Fin 819 1323 6.71 7.19 2.208 10.48 8.72 41.05 -26.91 3.92 

 EELFT03 EEL003 Treated Shortfin eel Fin 560 494 6.33 6.20 2.254 11.59 6.97 39.26 -28.59 3.39 

 EELFT04 EEL004 Treated Shortfin eel Fin 450 192 6.11 5.26 2.241 12.07 8.22 42.50 -30.01 3.52 

 EELFT05 EEL005 Treated Longfin eel Fin 725 1363 6.59 7.22 2.258 12.31 7.20 41.64 -26.23 3.38 

 EELFT06 EEL006 Treated Shortfin eel Fin 610 522 6.41 6.26 2.205 11.78 8.80 44.70 -27.13 3.79 

 EELFT07 EEL007 Treated Shortfin eel Fin 871 1650 6.77 7.41 2.224 12.66 9.35 43.96 -26.90 3.47 

 EELFT08 EEL008 Treated Shortfin eel Fin 624 614 6.44 6.42 2.258 12.55 7.23 43.40 -28.92 3.46 

 EELFT09 EEL009 Treated Longfin eel Fin 872 2484 6.77 7.82 2.248 11.54 9.34 42.17 -25.80 3.65 

 EELFT10 EEL010 Treated Shortfin eel Fin 623 607 6.43 6.41 2.209 12.22 8.55 41.80 -26.07 3.42 

 EELFT11 EEL011 Treated Shortfin eel Fin 838 1428 6.73 7.26 2.272 10.53 8.85 41.40 -27.41 3.93 

 EELFT12 EEL012 Treated Longfin eel Fin 707 1141 6.56 7.04 2.263 10.49 8.86 41.13 -26.26 3.92 

 EELFT13 EEL013 Treated Shortfin eel Fin 524 338 6.26 5.82 2.280 12.42 7.16 42.78 -29.16 3.44 

 EELFT15 EEL015 Treated Shortfin eel Fin 621 610 6.43 6.41 2.220 11.70 7.95 43.76 -25.37 3.74 

 EELFT16 EEL016 Treated Longfin eel Fin 702 1199 6.55 7.09 2.217 12.43 8.87 43.70 -26.50 3.52 

 EELFT17 EEL017 Treated Longfin eel Fin 500 396 6.21 5.98 2.263 11.54 8.88 41.30 -24.97 3.58 

 EELFT19 EEL019 Treated Longfin eel Fin 623 975 6.43 6.88 2.272 11.06 8.89 41.70 -26.68 3.77 

 EELFT20 EEL020 Treated Shortfin eel Fin 620 657 6.43 6.49 2.248 12.22 7.06 40.95 -27.80 3.35 

 EELFT21 EEL021 Treated Shortfin eel Fin 500 287 6.21 5.66 2.223 12.58 6.74 40.68 -26.09 3.23 

 EELFT23 EEL023 Treated Shortfin eel Fin 554 435 6.32 6.08 2.259 12.33 7.40 40.11 -25.66 3.25 

 EELFT24 EEL024 Treated Shortfin eel Fin 636 584 6.46 6.37 2.211 11.64 8.63 39.32 -25.60 3.38 
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 EELFU01 EEL001 Untreated Shortfin eel Fin 516 333 6.25 5.81 2.230 11.63 6.44 41.98 -28.70 3.61 

 EELFU02 EEL002 Untreated Shortfin eel Fin 819 1323 6.71 7.19 2.250 11.02 8.72 45.81 -27.28 4.16 

 EELFU03 EEL003 Untreated Shortfin eel Fin 560 494 6.33 6.20 2.237 11.91 6.93 41.93 -28.87 3.52 

 EELFU05 EEL005 Untreated Longfin eel Fin 725 1363 6.59 7.22 2.214 10.82 8.65 41.90 -27.15 3.87 

 EELFU06 EEL006 Untreated Shortfin eel Fin 610 522 6.41 6.26 2.233 11.81 7.07 42.95 -26.75 3.64 

 EELFU07 EEL007 Untreated Shortfin eel Fin 871 1650 6.77 7.41 2.279 10.85 9.11 44.73 -28.08 4.12 

 EELFU08 EEL008 Untreated Shortfin eel Fin 624 614 6.44 6.42 2.219 11.69 6.91 40.14 -28.74 3.43 

 EELFU09 EEL009 Untreated Longfin eel Fin 872 2484 6.77 7.82 2.210 10.65 9.18 42.49 -26.66 3.99 

 EELFU10 EEL010 Untreated Shortfin eel Fin 623 607 6.43 6.41 2.230 10.73 8.37 42.64 -27.45 3.97 

 EELFU11 EEL011 Untreated Shortfin eel Fin 838 1428 6.73 7.26 2.259 11.01 8.73 44.93 -28.04 4.08 

 EELFU12 EEL012 Untreated Longfin eel Fin 707 1141 6.56 7.04 2.199 11.25 8.95 44.86 -26.63 3.99 

 EELFU13 EEL013 Untreated Shortfin eel Fin 524 338 6.26 5.82 2.212 11.39 7.13 41.48 -29.83 3.64 

 EELFU14 EEL014 Untreated Longfin eel Fin 594 660 6.39 6.49 2.259 10.89 8.39 41.41 -27.45 3.80 

 EELFU15 EEL015 Untreated Shortfin eel Fin 621 610 6.43 6.41 2.242 11.51 8.03 44.49 -25.69 3.87 

 EELFU16 EEL016 Untreated Longfin eel Fin 702 1199 6.55 7.09 2.267 11.59 8.82 43.83 -27.17 3.78 

 EELFU17 EEL017 Untreated Longfin eel Fin 500 396 6.21 5.98 2.264 11.04 8.89 43.16 -25.69 3.91 

 EELFU18 EEL018 Untreated Longfin eel Fin 474 343 6.16 5.84 2.221 11.81 8.01 43.07 -25.79 3.65 

 EELFU19 EEL019 Untreated Longfin eel Fin 623 975 6.43 6.88 2.267 11.39 8.81 43.64 -27.39 3.83 

 EELFU20 EEL020 Untreated Shortfin eel Fin 620 657 6.43 6.49 2.281 9.51 7.12 43.31 -29.32 4.55 

 EELFU21 EEL021 Untreated Shortfin eel Fin 500 287 6.21 5.66 2.214 11.80 6.80 40.97 -26.50 3.47 

 EELFU22 EEL022 Untreated Shortfin eel Fin 590 423 6.38 6.05 2.275 11.54 8.13 42.83 -26.18 3.71 

 EELFU23 EEL023 Untreated Shortfin eel Fin 554 435 6.32 6.08 2.285 10.87 7.18 38.90 -26.29 3.58 

 EELFU24 EEL024 Untreated Shortfin eel Fin 636 584 6.46 6.37 2.243 9.98 8.47 35.39 -26.16 3.55 

 EELFU25 EEL025 Untreated Shortfin eel Fin 475 248 6.16 5.51 2.281 11.94 6.87 42.57 -26.60 3.57 

 EELFU26 EEL026 Untreated Shortfin eel Fin 530 413 6.27 6.02 2.277 11.53 6.97 43.08 -28.82 3.74 
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