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Abstract 

 

Transcranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method 

capable of inducing plastic reorganisation of cortical circuits in humans. Changes in neural 

activity following TMS are often attributed to synaptic plasticity via process of long-term 

potentiation and depression(LTP/LTD). However, the precise way in which synaptic processes 

such as LTP/LTD modulate the activity of large populations of neurons, as stimulated en masse 

by TMS, are unclear. The recent development of biophysical models, which incorporate the 

physiological properties of TMS-induced plasticity mathematically, provide an excellent 

framework for reconciling synaptic and macroscopic plasticity. This article overviews the TMS 

paradigms used to induce plasticity, and their limitations. It then describes the development of 

biophysically-based numerical models of the mechanisms underlying LTP/LTD on population-

level neuronal activity, and the application of these models to TMS plasticity paradigms, 

including theta burst and paired associative stimulation. Finally, it outlines how modeling can 

complement experimental work to improve mechanistic understandings and optimize outcomes 

of TMS-induced plasticity.  
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1. Introduction  

  

Transcranial magnetic stimulation (TMS) is a powerful tool for studying human brain function 

(Hallett, 2007). Using the principles of electromagnetic induction, TMS can noninvasively 

depolarize cortical neurons across the skull and scalp (Rothwell, 1997). When applied using 

certain patterns of stimulation, TMS can induce plastic increases or decreases in cortical 

excitability which outlast the period of stimulation, reminiscent of long-term 

potentiation/depression (LTP/LTD)-like mechanisms observed in vitro (Cooke and Bliss, 2006). 

The ability of TMS to alter neural activity has resulted in a wide range of uses, from studying the 

mechanisms of plasticity in humans (Ziemann et al., 2008), to inferring the functional roles of 

brain regions in behavior (Pascual-Leone et al., 2000), to providing clinical treatments 

(Lefaucheur et al., 2014). However, the field is facing several challenges, including large 

interindividual variability in response to TMS (Ridding and Ziemann, 2010), difficulty in 

optimizing protocols due to nonlinear relationships between stimulation parameters and 

outcomes (Gamboa et al., 2010), and problems translating the detailed knowledge gained from 

the motor system to non-motor regions which often lack clearly observable output that can be 

used to measure the effects of stimulation. (Parkin et al., 2015). At the centre of these 

challenges is a poor understanding of the cellular and molecular mechanisms underlying TMS-

induced plasticity (Müller-Dahlhaus and Vlachos, 2013), which makes it difficult to interpret 

outcomes at the level of neural populations as measured in human experiments. As such, a 

general theory that explains how TMS induces plasticity across multiple brain scales and 

regions is urgently required. 

  

Our aim here is to overview how biophysically-informed modeling approaches can be applied to 

better understand TMS-induced plasticity, thus addressing the challenges outlined above. 

Previous discussions have focused on modeling the TMS induced electric field on the cortical 

surface (Neggers et al., 2015), the generation of motor output following TMS (Triesch et al., 

2015), and the neural and behavioural changes following TMS plasticity paradigms (Hartwigsen 

et al., 2015). We focus primarily on a small, but growing literature interested in modeling the 

neural plasticity harnessed by TMS. These models aim to explain and predict data observed in 

TMS plasticity experiments (e.g., changes in cortical excitability) in terms of underlying 

physiological mechanisms. The central idea is to capture the relevant physiological mechanisms 

using mathematics, where the variables and parameters of the model equations may be 

physiological properties such as receptor conductances, membrane potentials, or firing rates. 

We focus specifically on models of plasticity that have  been applied to TMS paradigms, but 

note that  the same models could also be applied to other brain stimulation methods such as 

transcranial direct current stimulation (tDCS) to complement existing tDCS modeling [for 

reviews see (Bestmann et al., 2015; Rahman et al., 2015)]. 

 

We begin by briefly overviewing the TMS paradigms used to induce plasticity in humans. We 

then introduce how biophysically-based models, including neural population models, have been 

used to describe neural plasticity mechanisms. Finally, we overview the application of modeling 

to TMS plasticity paradigms, discuss how such models can inform the optimization of plasticity-

inducing paradigms for TMS, and outline future research directions to further refine our 

https://paperpile.com/c/tL6ALY/uzOS
https://paperpile.com/c/tL6ALY/3gwZ
https://paperpile.com/c/tL6ALY/pgtZ
https://paperpile.com/c/tL6ALY/Vvn7
https://paperpile.com/c/tL6ALY/q7yG
https://paperpile.com/c/tL6ALY/diNF
https://paperpile.com/c/tL6ALY/Vxpf
https://paperpile.com/c/tL6ALY/9xfN
https://paperpile.com/c/tL6ALY/vSCp
https://paperpile.com/c/tL6ALY/0TTl
https://paperpile.com/c/tL6ALY/AeWZ
https://paperpile.com/c/tL6ALY/2ar6
https://paperpile.com/c/tL6ALY/2ar6
https://paperpile.com/c/tL6ALY/ZwrA
https://paperpile.com/c/tL6ALY/ZwrA
https://paperpile.com/c/tL6ALY/ftJS+oDEM
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understanding of the interactions between TMS and plasticity across different brain regions. 

Modeling will play a key role in resolving many of the seemingly inconsistent and unexpected 

findings in the field of TMS research. We thus argue for greater integration of modeling and 

experimentation to guide future research. 

  

2. Plasticity-inducing TMS paradigms 

  

To illustrate the need for models of TMS induced plasticity, we briefly introduce the array of 

common repetitive TMS (rTMS) paradigms used to induce plasticity in humans. For a review 

outlining the detail of these TMS plasticity paradigms and the current position of the field, please 

see (Huang et al., 2017; Suppa et al., 2017, 2016).  

 

‘Traditional’ rTMS involves the repeated application of stimuli at frequencies typically ≥ 1 Hz 

(Fitzgerald et al., 2006). For higher frequencies (e.g ≥ 5 Hz), stimulation is often separated in to 

shorter trains followed by rest periods to avoid coil overheating and for safety considerations 

(Rossi et al., 2009). More recently, patterned forms of rTMS have been introduced such as theta 

burst stimulation (TBS), which involves delivering high frequency stimuli (e.g. 50 Hz) nested in 

lower frequency rhythms (e.g. 5 Hz) (Huang et al., 2005; Suppa et al., 2016). Another form of 

patterned stimulation involves delivering repeated paired pulses with interstimulus intervals of 

1.5 ms (Thickbroom et al., 2006) or 4 pulse bursts at interstimulus intervals ranging from 1.5 to 

100 ms (known as quadripulse stimulation) (Hamada et al., 2008, 2007) repeated every 5 

seconds. Paired associative stimulation (PAS) is an alternative form of rTMS inspired by spike-

timing dependent plasticity, and involves pairing a peripheral nerve stimulus with TMS to the 

motor cortex (Stefan et al., 2000; Suppa et al., 2017). A more recent variant is cortico-cortical 

PAS which involves pairing the stimulation of two different cortical areas with dual TMS coils 

(Arai et al., 2011; Buch et al., 2011).  

 

Most research to assess the capacity of these paradigms to induce plasticity has occurred in the 

motor system due to the ease of measuring motor outputs. For instance, single TMS pulses 

given to the motor cortex at suprathreshold intensities result in compound action potentials in 

the muscle targeted by the stimulated cortical region. This TMS-evoked muscle activity, termed 

a motor-evoked potential (MEP), can be easily measured using surface electromyography. The 

amplitude of the MEP is influenced by both excitatory and inhibitory circuits within and outside 

the motor cortex as well as spinal excitability, but is often used to indirectly infer changes in 

cortical excitability induced following TMS plasticity protocols (Di Lazzaro et al., 2008). A large 

body of work over the last several decades has outlined how altering the parameters of these 

TMS paradigms can change the outcome of stimulation. For instance, applying rTMS at 1 Hz, 

TBS continuously for 600 pulses (cTBS), or PAS with a 10 ms interval between nerve 

stimulation and TMS (so that the afferent sensory input arrives at the cortex after the TMS 

pulse) often reduces MEP amplitude following stimulation. In contrast, applying rTMS at higher 

frequencies (> 5 Hz), TBS with an intermittent pattern of 2 s of stimulation followed by an 8 s 

break (iTBS), or PAS with a 25 ms interval between nerves stimulation and TMS (so the 

sensory input arrives contemporaneously with the TMS pulse) often increases MEP amplitude 

(Huang et al., 2017). In addition to the frequency and pattern of stimulation, other parameters 

https://paperpile.com/c/tL6ALY/WNNx+TgOe+NKAw
https://paperpile.com/c/tL6ALY/CFTZ
https://paperpile.com/c/tL6ALY/yKw9
https://paperpile.com/c/tL6ALY/LeZE+TgOe
https://paperpile.com/c/tL6ALY/Hu9o
https://paperpile.com/c/tL6ALY/eD88+p7cc
https://paperpile.com/c/tL6ALY/VKiG+NKAw
https://paperpile.com/c/tL6ALY/zxju+r3iE
https://paperpile.com/c/tL6ALY/ZTFi
https://paperpile.com/c/tL6ALY/WNNx
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such as stimulation intensity, number of pulses, pulse shape, and brain state also influence the 

outcome of each paradigm, although often in unexpected ways (Pell et al., 2011). 

 

The changes in MEP amplitude observed following the aforementioned TMS protocols are 

broadly consistent with changes in synaptic efficacy following plasticity mechanisms such as 

LTP/LTD (Hoogendam et al., 2010). First, the changes in excitability induced by TMS paradigms 

last beyond the period of stimulation for short periods (~30 min), consistent with synaptic 

plasticity (Huang et al., 2005; Peinemann et al., 2004; Stefan et al., 2000). Second, the effects 

of low frequency rTMS, TBS and PAS paradigms are blocked or reversed by NMDA receptor 

(Fitzgerald et al., 2005; Huang et al., 2007; Stefan et al., 2002) and, calcium channel 

antagonists in the case of TBS and PAS (Wankerl et al., 2010; Weise et al., 2016). Third, the 

outcomes of TMS plasticity paradigms are dependent on the history of cortical activation (e.g., 

past plasticity induced by another TMS protocol or motor learning), consistent with 

metaplasticity (Iyer et al., 2003; Müller et al., 2007; Todd et al., 2009; Ziemann et al., 2004). In 

addition to synaptic plasticity, other nonsynaptic mechanisms may also contribute to changes in 

MEP amplitude, such as changes in membrane excitability, biochemistry, or gene expression 

(Pell et al., 2011; Tang et al., 2015). However, the contributions of these mechanisms to TMS 

plasticity are yet to be fully explored. 

 

Despite the widespread use of TMS in research and clinically, a major issue facing the field is 

the large inter-individual variability in response to TMS plasticity paradigms. Recent studies 

have demonstrated that only ~50% of participants show the expected plasticity effects following 

a particular stimulation protocol (Hamada et al., 2013; Hinder et al., 2014; López-Alonso et al., 

2014; Maeda et al., 2000; Müller-Dahlhaus et al., 2008). The reasons for this variability are likely 

complex, involving an interplay between trait and state characteristics (Huang et al., 2017; 

Ridding and Ziemann, 2010). A major challenge is distilling the enormous parameter space 

available for delivering TMS to find the optimal combination of parameters for inducing plasticity 

in a controlled manner within and between individuals. In order to tackle this problem in a 

principled way, it is essential to develop a detailed understanding of the mechanisms underlying 

TMS plasticity, both in the motor cortex and other cortical regions. However, it is unclear how 

the plasticity mechanisms that likely underlie the effects of TMS, such as LTP/LTD, scale from 

the microscale/synapse level in animal studies to the macroscale/brain region level in human 

studies (Müller-Dahlhaus and Vlachos, 2013). In order to unify the often disparate results within 

and between TMS paradigms, we urgently require a framework that structures our results and 

understanding in terms of putative physiological mechanisms. 

  

3. Mathematical modeling and neural plasticity  

 

Biophysically-based models have the potential to explain patterns in brain-imaging data in terms 

of the physiological mechanisms that may underlie them. After specifying the mathematical 

model in terms of known neurophysiology, computers can then be used to simulate TMS-

induced plasticity dynamics numerically to produce predictions that can be compared to 

experimental data. Conversely, given experimental data, the models can be inverted to infer 

model parameters (which putatively correspond directly to physiological quantities) that best 

https://paperpile.com/c/tL6ALY/8cH9
https://paperpile.com/c/tL6ALY/sh7s
https://paperpile.com/c/tL6ALY/VKiG+LeZE+qKHX
https://paperpile.com/c/tL6ALY/iybz+5oM8+G9Py
https://paperpile.com/c/tL6ALY/8Qmc+HV2h
https://paperpile.com/c/tL6ALY/01XH+M5lJ+bZHU+XHFl
https://paperpile.com/c/tL6ALY/8cH9+Z6ol
https://paperpile.com/c/tL6ALY/19rB+VbS2+Ffob+pFmS+jujY
https://paperpile.com/c/tL6ALY/19rB+VbS2+Ffob+pFmS+jujY
https://paperpile.com/c/tL6ALY/Vxpf+WNNx
https://paperpile.com/c/tL6ALY/Vxpf+WNNx
https://paperpile.com/c/tL6ALY/0TTl
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explain the data. In this way, mathematical models of the brain act as a bridge between 

macroscale experimental data and the unobserved neurophysiological mechanisms that 

generate them. 

 

Mathematical models of the brain can be formulated at multiple levels of description, from the 

microscopic scale of single neurons, through to the complex interplay of macroscopic neural 

populations that yield whole-brain dynamics (Breakspear, 2017; Deco et al., 2008). The 

appropriate level of description to include in a model depends on the question of interest and 

scale of analysis and measurement. Including too much complexity may lead to an under-

constrained model that could fit any phenomenon, whereas oversimplifying may obscure 

important phenomena. In humans, neural activity is commonly measured at the macroscale, 

e.g., using MRI or EEG, thus reflecting the combined activity of millions of neurons. The 

electrical stimulation of bulk populations of neurons in the brain by externally applied fields, such 

as TMS, also typically stimulates a few square centimetres of cortex. Rather than explicitly 

modeling the complex dynamics of millions of individual neurons, it is more appropriate to 

simulate the collective dynamics of neurons at this macroscopic scale of stimulation and 

measurement.  

 

To model the brain at this macroscopic scale, we require a reduced description of the dynamics 

of a large population of spiking neurons. This can be achieved by taking a population density 

approach that involves describing the likely distribution of a large number of neuronal states 

over time. Here we refer to such models as neural population models. Neural population models 

contain equations that define the dynamics of the properties of large populations of neurons, 

and include parameters that encapsulate physiologically-measurable mechanisms, such as 

those that may be manipulated using TMS. Different populations (such as excitatory pyramidal 

neurons and inhibitory interneurons) can be linked together, with weights that represent the 

number and strengths of synaptic connections between populations, as functions of neural type 

and location. Once constructed, models can be analyzed mathematically, or simulated 

numerically with a computer to fit experimental data and generate predictions to guide future 

experiments (Bojak and Liley, 2010; Deco et al., 2008; Jirsa and Haken, 1996; Nunez, 1974; 

Robinson, 2005; Robinson et al., 2005, 1997). 

 

A very general class of population-based model is that of neural field models. These models 

average the properties and dynamics of various neural populations over scales of a few tenths 

of a millimeter to yield equations for the evolution of average quantities such as firing rate Qe(r,t) 

as functions of continuous position r and time t (i.e., as fields). In these models, axons transmit 

averaged influences between different locations, as activity fields, thereby allowing for time 

delays and finite ranges of these influences (Breakspear, 2017; Deco et al., 2008; Pinotsis et 

al., 2014). An important special case of neural field models is to consider the limit in which the 

activity is spatially uniform; this removes the need to track spatial position, while retaining the 

effects of axonal ranges and delays, which make essential contributions to system stability and 

temporal responses. A further approximation is to neglect these delays, which can be valid for 

low frequency activity whose timescale is much longer than the axonal propagation time across 

the cortex (i.e., frequencies well below 5 Hz) and whose spatial scales are longer than 

https://paperpile.com/c/tL6ALY/Nd2D+DVaM
https://paperpile.com/c/tL6ALY/cvHN+1Hht+XWRL+ABD9+wX8e+UkPD+Nd2D
https://paperpile.com/c/tL6ALY/cvHN+1Hht+XWRL+ABD9+wX8e+UkPD+Nd2D
https://paperpile.com/c/tL6ALY/Nd2D+S4pn+DVaM
https://paperpile.com/c/tL6ALY/Nd2D+S4pn+DVaM
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corticocortical white matter axonal ranges (several cm). This approximation yields neural mass 

models, which have been used in some applications, and which essentially shrink the system to 

a spatial point (Deco et al., 2008). It is worth mentioning that another type of neural mass model 

has also been discussed, in which populations of neurons have been locally coupled without 

regard to delays, and then these masses have been taken to represent different values of r 

(Breakspear, 2017). In these approaches, the different locations are then coupled together using 

coupling strengths and time delays that are artificially constructed, or taken from an anatomical 

``connectome’’. Unless particular care is taken, this latter procedure is not valid – it fails at a 

very fundamental level because the coupling strengths and delays are not consistent with those 

implied by the local dynamics in the limit of fine discretization. The most appropriate procedure 

is to start with a spatially continuous neural field approximation and discretize self-consistently 

at the desired scale, as is routinely done in spatiotemporal simulations of neural fields, for 

example. 

 

We now consider some details of neuronal population models. Figure 1A shows an example of 

a neuronal population model consisting of populations of cortical excitatory and inhibitory cells, 

driven by TMS. Neuronal populations are represented here by the mean cell body potential, Vi, 

of neurons which can be simulated from the parametrized set of interactions, time constants and 

length scales. This mean membrane potential can be related to the mean firing rate, Qj, through 

a parametrized sigmoidal function (Fig. 1B) (Freeman, 1975). Some of the other key biophysical 

parameters of the model, including coupling strengths between populations, 𝝂jk (which specify 

the strength of excitation or inhibition between populations), and timescales, 𝝂j (which set the 

intrinsic timescale of activity for a population), are indicated. Setting these parameters specifies 

the model; for example, setting 𝝂ei < 0 specifies inhibition from population i→e, setting 𝝂ie > 0 

specifies excitation from population e→i, and increasing 𝝂e increases the response timescale 

for the excitatory population, e. Here, TMS is modelled as an excitatory input to both the 

excitatory (𝝂ex) and inhibitory  (𝝂xi) neural populations. To describe interactions between these 

neural populations, specific parameters quantify the strength of synaptic coupling, and the 

direction, magnitude, and time course of synaptic input to each population; for example Fig. 1C 

shows the membrane potential response, Vi, to different forms of synaptic input from excitatory 

and inhibitory receptors. Furthermore, in neural field models, propagation of activity within a 

population is described by wave equations with further parameters that govern both spatial and 

temporal scales. 

 

Plasticity can be incorporated into neuronal population-based modeling both 

phenomenologically and physiologically. First, it can be included phenomenologically, for 

example through an adaptation of a pairwise spike timing dependent plasticity (STDP) window 

(Bi and Poo, 2001) for neuronal populations (Fung et al., 2013; Robinson, 2011; Wilson et al., 

2014). The key parametrization is that of the STDP window function describing the time course 

of STDP (i.e., negative for t<0, denoting postsynaptic activity occurring before presynaptic 

activity, and positive for t>0, denoting postsynaptic activity occurring after presynaptic activity). 

Within this time window, fluctuations in presynaptic activity as a function of time, described 

through the neuronal population equations, are compared with fluctuations in postsynaptic 

activity, to give the rate of change in synaptic weight. An increase in excitatory-excitatory 

https://paperpile.com/c/tL6ALY/Nd2D
https://paperpile.com/c/tL6ALY/DVaM
https://paperpile.com/c/tL6ALY/x493
https://paperpile.com/c/tL6ALY/U8vQ
https://paperpile.com/c/tL6ALY/RQQo+UC0c+ZBS9
https://paperpile.com/c/tL6ALY/RQQo+UC0c+ZBS9
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synaptic weight can then be taken as an approximate measure of change in excitability. STDP 

requires adaptation to capture spike triplet interactions (such as two presynaptic spikes paired 

with one postsynaptic spike) which are important when firing rates are high and spikes are close 

together (Pfister and Gerstner, 2006). Since several hundred presynaptic spikes typically arrive 

at a given cortical neuron during the integration time for it to produce a postsynaptic spike, 

population based approaches to STDP are particularly suitable and appropriate (Fung et al., 

2013; Robinson, 2011). 

 

The second approach to describing plasticity is through physiological theories that can be 

formulated in terms of biophysical processes. Calcium Dependent Plasticity (CaDP) theory 

(Lisman, 1989; Shouval et al., 2002) describes cellular calcium dynamics and its effects on 

synaptic strength. Broadly, high post-synaptic concentrations of calcium lead to potentiation, 

and moderate concentrations to depression, although the pattern of stimulation is also important 

(Yang et al., 1999). CaDP can be captured mathematically by modelling  the rate of change of 

synaptic strength between populations (e.g., equivalent to changes in 𝝂ee in fig. 1A for 

excitatory-to-excitatory synapses) resulting from changes in postsynaptic calcium concentration. 

Calcium influx to the neuronal population is provided via voltage-dependent NMDA receptors 

and is modelled via parameters governing calcium permeability, glutamate binding which is 

dependent on glutamate concentration resulting from activity of excitatory synapses, and a 

voltage dependence term which is dependent on the population voltage (e.g., Ve  in fig 1A). The 

calcium concentration levels resulting in depression or potentiation are described through the Ω 

function (Fig. 1D): where Ω<0.5 gives LTD; Ω>0.5 gives LTP. Figure 1D demonstrates that at 

very low concentrations, no plasticity is achieved (equivalent to a plasticity threshold). As 

calcium concentrations increase, LTD is achieved, followed by LTP at higher concentrations, 

Calcium influx into postsynaptic dendritic spines through NMDA receptors is dependent on both 

glutamate release due to presynaptic activity and postsynaptic voltage, so CaDP provides a 

microscopic link between the activity of pre- and postsynaptic populations of cells. Moreover, 

Graupner and Brunel (Graupner and Brunel, 2010) have shown how physiological CaDP can 

predict plausibly-shaped phenomenological STDP windows. Thus both CaDP and STDP can be 

considered useful and complementary approaches to plasticity, with CaDP providing a 

physiologically detailed approach. 

 

CaDP theory has been incorporated into neural field models (Fung and Robinson, 2014), The 

theory has been further expanded to include a Bienenstock-Cooper-Munro (BCM) metaplasticity 

scheme (Fung and Robinson, 2014). Here, activity-dependent changes in NMDA receptor 

calcium conductance are assumed to underlie metaplasticity. The rate of change of 

conductance is described by an equation dependent upon both the instantaneous conductance 

of the NMDA receptor and the instantaneous excitatory-excitatory synaptic weight. Thus the 

calcium conductance is dependent upon the history of the synaptic weight. Importantly, the 

model also includes a metaplasticity timescale parameter, which estimates the time of the 

protein cascade responsible for altering NMDA receptor conductance. As such, the plasticity 

signal and expression are separated in time. This means previously high plasticity induction 

reduces calcium conductance and favors LTD, while previously low induction increases 

conductance favoring LTP (Bienenstock et al., 1982). As such, the metaplasticity scheme 

https://paperpile.com/c/tL6ALY/fmSk
https://paperpile.com/c/tL6ALY/ZBS9+RQQo
https://paperpile.com/c/tL6ALY/ZBS9+RQQo
https://paperpile.com/c/tL6ALY/sPbH+4T8Z
https://paperpile.com/c/tL6ALY/QHfe
https://paperpile.com/c/tL6ALY/0Cgq
https://paperpile.com/c/tL6ALY/8dLI
https://paperpile.com/c/tL6ALY/8dLI
https://paperpile.com/c/tL6ALY/Kby8
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operates as an activity-dependent sliding window, similar to the BCM postulate, meaning that 

the requirements for inducing plasticity depend on the history of plasticity induction. Under 

uniform stimulation a calcium attractor is recovered, with calcium levels converging to the 

threshold between the depression and potentiation zones during significant stimulation.  

 

 
Figure 1. Three examples of how physiological relationships can be approximated in models of 

macroscale brain activity, as demonstrated in (Wilson et al., 2016). (A) Populations annotated 

with some relevant parameters, including coupling strengths between populations, 𝝂jk, 

timescales, 𝝂j, and cell body potentials, Vj. (B) The relationship between mean cell body 

(membrane) potential Vj and mean firing rate within a neural population can be described with a 

sigmoid function (Freeman, 1975). (C) Changes in membrane potential Ve across time resulting 

from a single input of an excitatory population synapsing onto dendritic excitatory receptors 

(black line), and an inhibitory population synapsing onto dendritic GABAA  (blue) and GABAB 

(red) receptors. The amplitude of the change in membrane potential has been scaled to 

illustrate differences in peak change between receptor types. The GABAA and GABAB curves 

describe the dynamics of the inhibitory connections i→e and i→i of part (A); the excitatory curve 

describes the dynamics of the excitatory connections e→e and e→i.  (D) The Ω synaptic 

plasticity function codes the direction of change of synaptic strengths νee. Neural firing results in 

calcium influx to the cell, the concentration of which determines whether synaptic strength 

decreases (Ω < 0.5; LTD) or increases (Ω > 0.5; LTP). 

 

4. Modeling of TMS plasticity paradigms 

 

The models described above provide useful tools for understanding the effects of TMS on 

plasticity. We now consider in more detail how such models have been applied to TMS plasticity 

paradigms. For mathematical detail of the models below, readers are directed to the original 

sources. 

 

https://paperpile.com/c/tL6ALY/ESzU
https://paperpile.com/c/tL6ALY/x493
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Theta burst stimulation protocols were first considered from a theoretical perspective by Huang 

et al. (Huang et al., 2011). They proposed a neural mass model of plasticity based on 

‘facilitatory’ and ‘inhibitory’ agents. Both were driven by postsynaptic calcium concentration; 

however, the former depended upon the rate of increase of calcium while the latter depended 

on the accumulated concentration of calcium. By using the difference between the 

concentrations of the facilitatory and inhibitory agents as a measure of plasticity effect, many of 

the canonical TBS results could be explained in this manner. cTBS (600 pulses) was ultimately 

depressive due to the accumulation of postsynaptic calcium, which favoured inhibitory activity 

over excitatory activity. Conversely, iTBS was potentiating since the breaks in pulses allowed for 

calcium levels to decay between bursts, resulting in larger increases in excitatory activity 

relative to inhibitory activity. Other phenomena were also captured – for example a 300 pulse 

cTBS protocol did not produce enough calcium for the inhibitory effects to dominate and was 

hence potentiating, in line with experimental results. However, when  a  prior muscle contraction 

was modelled, the calcium level was driven to higher levels and the protocol again favoured 

inhibition. This last result, the effect of previous activity, is an example of metaplasticity. 

However, the model did not test other notable TBS results, for example the switch in plasticity 

direction for cTBS (from LTD to LTP) and iTBS (from LTP to LTD) when a 600 pulse protocol 

was extended to 1200 pulses (Gamboa et al., 2010) (although see (Hsu et al., 2011) for a report 

of MEP facilitation following 1200 pulses of iTBS). Moreover, the model ignored many 

physiological effects such as the detailed dynamics of calcium concentration, instead 

generalized effects were described using a few phenomenological and arbitrarily estimated 

parameters.   

 

Wilson et al (2014) considered a spatially uniform neural field model including excitatory and 

inhibitory populations of cortical cells including STDP  to model TBS and paired pulse 

paradigms. Spatial uniformity means that, in the neural field wave equation describing 

spatiotemporal propagation of activity across a population, the spatial (but not temporal) 

derivatives are zero, meaning that activity can change with time but not position. This is not 

quite a neural mass model, which would further assume that spatial propagation of activity 

across a population is instantaneous. This spatially uniform activity case of a neural field model 

better describes the temporal changes in activity that underlie plasticity mechanisms than a 

neural mass model. However, it does not model spatial detail that is unnecessary given the wide 

area of cortex that a TMS pulse stimulates. The model drew parameters from biological 

measurement where possible, minimizing arbitrary decisions about parameter values. The 

change in excitatory to excitatory synaptic weight was modeled following various protocols. The 

increase of excitability after canonical iTBS was recovered; likewise the reduction in excitability 

following cTBS. Furthermore, a paired-pulse paradigm was also modeled, with results indicating 

a decrease in MEP after short interstimulus intervals (<20 ms), which changed to an increased 

MEP when ISI was increased, peaking at about 40 ms, returning to approximately no change 

after very long ISIs (>160 ms).  While this described the shape of a typical paired-pulse result, 

the exact timings were not reproduced exactly, with MEP facilitation typically peaking 

experimentally at around 10-15 ms for subthreshold conditioning intensities. 

 

https://paperpile.com/c/tL6ALY/wp79
https://paperpile.com/c/tL6ALY/9xfN
https://paperpile.com/c/tL6ALY/fp0f
https://paperpile.com/c/tL6ALY/UC0c
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Fung and Robinson (2013) used a spatially uniform neural field model, with spatially uniform 

activity, to describe PAS and frequency dependence of simple rTMS protocols. They used the 

the NFTsim neural field model (Sanz-Leon et al., 2017) with a single excitatory population, 

assuming uniform spatial activity and using a model of calcium dependent plasticity. In (Fung 

and Robinson 2013) changes in synaptic coupling between excitatory populations were used to 

estimate the TMS-induced change in cortical excitability, measured experimentally as MEPs. 

Results for one-second pulse trains of simple repetitive TMS are summarized in Fig. 2A for one-

second pulse trains. Low frequencies (<8 Hz) resulted in little change in synaptic weight, higher 

frequencies (8-14 Hz) resulted in LTD, while yet higher frequencies (>14 Hz) gave very strong 

LTP. Human rTMS studies generally show LTD-like effects at 1 Hz and LTP-like effects above 5 

Hz, following many repeated pulse trains. The model has qualitatively reproduced the general 

pattern of LTD at low and LTP at high frequencies, however the frequency ranges do not exactly 

match experimental data (Fitzgerald et al., 2006). Using stimulation paradigms that more closely 

resemble those used in human experiments (e.g., 5 Hz stimulation with 5 s on and 25 s off over 

1500 pulses), including a metaplasticity scheme (Fung and Robinson, 2014), or more refined 

collaboration between modeling and experimentation may improve quantitative precision. PAS 

was also modeled; the plasticity at different interstimulus intervals (ISI) was calculated for a 

single population of excitatory cells. This model predicted depression for ISI between 

approximately -20 to 0 ms (NB: negative times mean that the TMS pulse occurred before the 

nerve stimulus arrived), potentiation for ISI between approximately 0 and 10 ms, and a second 

small depressive window for longer ISI, from about 10 to 30 ms, roughly in agreement with 

human PAS experiments (Wolters et al., 2003). The predictions are shown in Fig. 2C.  

 

Fung and Robinson (2014) developed their spatially uniform neural field modeling further with 

the inclusion of metaplasticity in a BCM scheme, with the aim of modeling the effects of TBS. A 

single excitatory population of cells was modeled and the plasticity response (calculated as the 

change in synaptic coupling between excitatory populations, Δs) for the canonical cTBS and 

iTBS protocols (Huang et al., 2005) was simulated. The model predicted the canonical LTD and 

LTP for cTBS and iTBS, respectively (Fig. 2B), but also a broader range of results.  Of particular 

importance was the predicted dependence of the plasticity response on the number of pulses in 

the protocol. Either doubling or halving the number of pulses reversed the TBS outcome, with 

cTBS resulting in LTP and iTBS resulting in LTD, also consistent with experimental findings 

(Gamboa et al., 2010; Gentner et al., 2008). Furthermore, reducing TMS activation of the 

excitatory population also reversed the excitability change following both iTBS and cTBS. This 

pattern is consistent with the finding in humans that differences in activation of excitatory and 

interneuron populations by the TMS pulse (e.g., differences in MEP latency following stimulation 

with anterior-posterior current flow) are tightly correlated with the resulting TBS outcome 

(Hamada et al., 2013). However, this modeling work was limited to a single population of 

excitatory cells and applied only to TBS paradigms. (Wilson et al., 2016) extended the neural 

field model of (Fung and Robinson, 2014) to include both excitatory and inhibitory populations of 

cortical neurons, using realistic synaptic response times for both GABAA and GABAB receptors 

as in Fig. 1C, with CaDP and metaplasticity. The model reproduced the increase/decrease in 

excitability following canonical iTBS/cTBS and also made predictions of how excitability 

changes would depend on the parameters of the protocols, including theta-burst frequency and 

https://paperpile.com/c/tL6ALY/NLI4
https://paperpile.com/c/tL6ALY/rKrK
https://paperpile.com/c/tL6ALY/CFTZ
https://paperpile.com/c/tL6ALY/8dLI
https://paperpile.com/c/tL6ALY/sNzE
https://paperpile.com/c/tL6ALY/8dLI
https://paperpile.com/c/tL6ALY/LeZE
https://paperpile.com/c/tL6ALY/9xfN+2TZJ
https://paperpile.com/c/tL6ALY/19rB
https://paperpile.com/c/tL6ALY/ESzU
https://paperpile.com/c/tL6ALY/8dLI
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the number of pulses within a burst. Similar predictions were also made using an STDP model 

rather than CaDP, suggesting that phenomenological  STDP and physiological CaDP modeling 

approaches towards TMS-induced plasticity can be considered complementary.  Taken 

together, these findings demonstrate that neural field models incorporating CaDP are capable of 

reproducing the main patterns of excitability change following three major TMS plasticity 

paradigms. These results agree with experimental evidence, suggesting that CaDP is a key 

mechanism of macroscale TMS-induced plasticity. 

 

 
Figure 2: Plasticity effects of different TMS paradigms predicted by a single excitatory 

population CaDP model. A The effect of iTBS and cTBS on excitatory synaptic coupling (Δs). B 

The effect of rTMS frequency on change in synaptic coupling between excitatory populations. C 

The effect of interstimulus interval during PAS on the change in excitatory synaptic coupling 

(solid line). The circles and error bars represent changes in MEP amplitude from human 

participants (Wolters et al., 2003). A and C are taken from (Fung and Robinson, 2013) with 

permission. 

 

 

https://paperpile.com/c/tL6ALY/sNzE
https://paperpile.com/c/tL6ALY/NLI4
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5. Understanding interindividual variability and model-based optimization of stimulation 

parameters 

 

One of the major factors limiting the practical use of TMS plasticity paradigms is the large 

interindividual variability in response. Modeling approaches, which allow experimental results to 

be interpreted in terms of inferred neurophysiological parameters, may be able to provide new 

insights into the reasons behind these broad interindividual responses to TMS and thereby help 

inform the design of future experiments.  

 

As an example, the CaDP model of TBS with metaplasticity has been used to simulate synaptic 

strength over time following iTBS and cTBS protocols, as shown in Fig. 3. Results show that the 

change in synaptic strength following a protocol depends upon the duration of the protocol. This 

dependency arises in the model as a result of the interplay between calcium concentration, 

plasticity signaling, and metaplasticity, giving rise to an oscillatory behavior, with the direction of 

change in synaptic coupling dependent on the concentration at the end of stimulation (Fung and 

Robinson, 2014). The implication of this finding is that both iTBS and cTBS are capable of 

producing increases and decreases in cortical excitability depending on the length of 

stimulation. Furthermore, the phase of the calcium oscillation during stimulation is shifted by 

altering the level of TMS activation on the excitatory population (Fung and Robinson, 2014). As 

such, the number of pulses required for an increase/decrease in excitability following iTBS/cTBS 

may differ between individuals depending on how TMS interacts with excitatory cortical 

populations. This may be due to the differences in structure of brain convolutions or genetic 

differences in physiology between individuals, with the same applied field strength and pattern 

activating slightly different groups of neurons. These results suggest that differences in the 

response to TBS between individuals can be minimized by adequately adjusting either the 

number of pulses given, or the TMS intensity for the individual. It is possible that by identifying 

and understanding the elements of physiology that most affect TMS response, we may be able 

to build personalized models, and use these models to tailor clinical treatments.  

 

https://paperpile.com/c/tL6ALY/8dLI
https://paperpile.com/c/tL6ALY/8dLI
https://paperpile.com/c/tL6ALY/8dLI
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Figure 3. Predicted change in synaptic strength as a result of oscillations in calcium 

concentration during cTBS (top) and iTBS (bottom). Vertical axes indicate the synaptic strength 

attained (relative to the initial strength) if the stimulation protocol is ceased at the point in time 

indicated on the horizontal axis. Arrows indicate the change in excitability for different numbers 

of pulses. Following the standard 600 -pulse protocol, the canonical decrease/increase in 

excitability with cTBS/iTBS is predicted by the model. However, for 300 pulses and 1200 pulses, 

the model predicts a reversal of the above pattern. Figure taken from  (Fung and Robinson, 

2014) with permission. 

 

Additionally, modeling can be used to explore the vast stimulation parameter space to inform 

optimization of TMS paradigms. A benefit of capturing the relevant physiological dynamics and 

interactions in a model is that alterations in parameters can be simulated numerically, without 

the need to perform costly experiments. This is of particular use for protocols like TBS, where 

the vast parameter space defining myriad combinations of stimulation timing and strength 

remains mostly unexplored, but can be simulated straightforwardly (Wilson et al., 2016, 2014).   

 

Figure 4 shows the predicted change in MEP strength after 600 pulses of close-to-threshold 

cTBS (part A), and iTBS (2 s ‘ON’ time, 8 s ‘OFF’ time, part B) for a wide range of different 

interburst (theta) stimulation frequencies, intraburst (gamma) frequencies, and pulses-per-burst 

applied to the neuronal model of (Wilson et al., 2016) (Fig. 1A). The canonical cTBS and iTBS 

https://paperpile.com/c/tL6ALY/8dLI
https://paperpile.com/c/tL6ALY/8dLI
https://paperpile.com/c/tL6ALY/ESzU+UC0c
https://paperpile.com/c/tL6ALY/ESzU
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protocols (Huang et al., 2005) are part of this set; they are shown by the crosses in Fig. 4. It is 

clear that an increase in intraburst stimulation frequency generally leads to an increase in 

potentiation. Likewise, higher numbers of pulses per burst favor LTP over LTD. The effect of 

interburst (theta) frequency is more subtle; for cTBS at lower theta frequencies increasing 

stimulation rate favors LTD over LTP, but at high theta frequencies and for iTBS the potentiation 

is not greatly dependent on stimulation rate.  

 

The results demonstrate the ease with which constrained models of candidate 

neurophysiological mechanisms can generate predictions about the results of new experiments, 

in this case helping the experimenter to understand the impact of stimulation timing parameters 

for TBS. The impact of such predictions could be important for selecting optimal stimulation 

settings for addressing a given scientific question, or to obtaining the maximal treatment 

response; issues that cannot currently be addressed systematically from first principles. An 

important next step will involve testing these model predictions using human experiments. 

 

 
 

Figure 4: Estimated change in excitatory-excitatory synaptic strength (CaDP with BCM 

metaplasticity; coupled excitatory and inhibitory populations) for continuous bursting (A) and 

intermittent bursting (B) protocols. Parts (A) and (B) both show the relative change in synaptic 

coupling (0 = no change, positive values shown as green-yellow = LTP, negative values shown 

as blue = LTD) immediately after 600 pulses of close-to-threshold TBS versus three variables: 

1. The interburst (theta) stimulating frequency (1 - 10 Hz, on the vertical axis); 2. The number of 

pulses in a burst (1 - 8, on the horizontal axis); and 3. The intraburst stimulation frequency (20 - 

https://paperpile.com/c/tL6ALY/LeZE
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95 Hz, indicated above each set of axes). The solid black contours denote the boundary 

between LTD and LTP . The ‘X’ symbols in parts (A) and (B) denote respectively the cTBS and 

iTBS protocols of (Huang et al., 2005).  

 

6. Challenges and Limitations 

 

In the above we have demonstrated how physiologically-based models of neural populations, 

coupled with physiological theories of plasticity, can replicate experimental results and make 

useful and testable predictions. However, there are still many challenges pertaining to the 

formulation of these models, and to the interpretation of their results.  

 

Neural field modeling of plasticity, as described here, draws from physiological principles at a 

microscopic level. Variables such as mean neuronal firing rate and postsynaptic calcium 

concentration describe microscopic effects. Yet TMS is performed at a macroscopic level, by 

applying a stimulus with a coil, and its effects are assessed at macroscale for example using 

MEPs. Modeling carries underlying assumptions regarding the mapping of macroscopic 

stimulation to microscopic processes and back to macroscopic observables such as MEPs and 

EEG. For example, the firing activity of a population of cortical excitatory cells can reasonably 

be used as a proxy for EEG, but this must be interpreted carefully, for example including 

attenuation effects due to the skull. Other variables have been used as a proxy for MEPs, but 

these implementations are less robust (Wilson et al., 2014). For example, models have used 

changes in synaptic weight, changes in the balance of excitation and inhibition, or average 

axonal firing activity to represent MEP changes. However, these quantities have only indirect 

links with changes in MEP. 

 

Many of the underlying microscopic physiological mechanisms and parameters in the model are 

still not well understood. In part, this is due to the difficulty in performing invasive measurements 

during stimulation. This can lead to poorly constrained parameters and therefore to poorly 

defined results. However, we note that there are methods by which parameters can be 

constrained. A good model must be able to reproduce established experimental results using 

parameters which are biologically plausible. This sets limits on some parameters that may not 

otherwise be easily measurable. For example, the metaplasticity modeling of (Fung and 

Robinson, 2014; Wilson et al., 2016) includes several characteristic timescales, for example for 

protein cascades; these are somewhat arbitrary but have been assigned based on known 

experimental results. A similar argument is made in (Huang et al., 2011) for allocating the 

timescale of calcium decay. Invasive animal models may help to provide biologically plausible 

parameter limits for microscopic variables which are not measurable in humans. 

 

Another difficulty is modeling the interaction between the TMS pulse and the cortical neural 

populations. The dynamics of a neuron will depend on the details of the transmembrane 

currents induced by the field. It is often assumed that the gradient of electric field along an axon 

is the most important factor for determining whether a neuron will be stimulated; however, 

recent experimental work suggests that it is the field intensity and not direction that matters 

(Bungert et al., 2016). Additionally, the time-course of stimulation also plays a role, with longer 

https://paperpile.com/c/tL6ALY/LeZE
https://paperpile.com/c/tL6ALY/UC0c
https://paperpile.com/c/tL6ALY/8dLI+ESzU
https://paperpile.com/c/tL6ALY/8dLI+ESzU
https://paperpile.com/c/tL6ALY/wp79
https://paperpile.com/c/tL6ALY/BaKW
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pulses decreasing motor threshold in paired-pulse TMS (Shirota et al., 2016).  The exact 

processes that occur to cause these effects remain debatable. As such, it is difficult to estimate 

how best to model the TMS/neural interaction (see section 7).    

 

A pressing limitation is that none of the models discussed in this paper have accurately 

described known experimental results across all TMS paradigms. Models have tended to 

concentrate on just one or two paradigms. For example, comprehensive modeling of either 

repetitive paired pulse or quadripulse TMS has not been performed, and model explanations of 

traditional rTMS paradigms to not align well with experimental findings. A good model should be 

able to make predictions of changes in many experimental parameters, not only MEP changes. 

Most importantly, the predictive power of these models has yet to be tested. These models 

should be used to make predictions across a range of paradigms and these predictions then 

tested experimentally. Such an approach requires large amounts of data from a broad range of 

TMS paradigms. The availability of open TMS data sets would be of particular use for 

constraining and testing models.  However, the practice of making data sets openly available is 

not common practice in the field of TMS at the current time. 

 

7. Generalizing TMS outcomes across modalities and cortical regions, and other future 

directions 

  

Neural population models incorporating excitatory and inhibitory cortical populations have 

successfully described TMS plasticity effects observed in human motor cortex, using synaptic 

coupling strength as an analog for MEP amplitude. However, MEP formation is complicated, 

reflecting polysynaptic connections between cortical, corticospinal, and motor neurons (Ziemann 

et al., 2015). Indeed, changes in synaptic properties at the spinal level may contribute to MEP 

changes following rTMS (Perez et al., 2005; Quartarone et al., 2005). Future models should 

include spinal and motor neuron populations to more accurately capture the effect of TMS on 

the corticospinal system. Encouragingly, neural population models can also capture other TMS 

phenomena, such as short-interval cortical inhibition and intracortical facilitation following paired 

pulse paradigms (Wilson et al., 2014). More detailed models considering many discrete neurons 

in multiple layers are also able to capture these paired-pulse phenomena (Esser et al., 2005; 

Rusu et al., 2014), but at the cost of an increase in model complexity.    

 

If a model of a neural system is a good approximation to the true biology, then it should be able 

to describe multiple phenomena with the same biophysically constrained parameters. Values for 

model parameters can be found either from experiments that measure them directly or by 

finding appropriate ranges that reproduce known effects. A good model must be able to 

generate predictions beyond the data used to constrain it. Neural population models, such as 

those described in this work, are capable of reproducing not just experimental results of TMS, 

but also a wide range of experimental phenomena, including oscillatory and evoked EEG 

activity (Rennie et al., 2002; Robinson et al., 2001), and slower hemodynamic oscillations 

measured with functional MRI (Steyn-Ross et al., 2009); these results can be used to further 

constrain model parameters. 

 

https://paperpile.com/c/tL6ALY/BG0J
https://paperpile.com/c/tL6ALY/7os3
https://paperpile.com/c/tL6ALY/7os3
https://paperpile.com/c/tL6ALY/4akX+U1Wk
https://paperpile.com/c/tL6ALY/UC0c
https://paperpile.com/c/tL6ALY/Qn4T+h73H
https://paperpile.com/c/tL6ALY/Qn4T+h73H
https://paperpile.com/c/tL6ALY/I5gH+SMkX
https://paperpile.com/c/tL6ALY/F3E3
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TMS plasticity paradigms are often administered outside the motor system in cognitive and 

clinical applications where MEP measures are not possible and neuroimaging methods, such as 

EEG and fMRI, are increasingly used to assess how TMS alters brain function in these non-

motor regions (Sale et al., 2015; Thut and Pascual-Leone, 2010). Several studies have applied 

biophysical models to gain a deeper mechanistic understanding on the impact of TMS on neural 

activity recorded by these methods (Hartwigsen et al., 2015). For example, Hartwigsen and 

colleagues assessed cortical activity and connectivity during a pseudoword reading task before 

and after cTBS to left inferior frontal gyrus (Hartwigsen et al., 2013). Conventional fMRI 

analyses revealed that hemodynamic activity was reduced at the site of stimulation following 

cTBS, but increased in the contralateral hemisphere. To assess whether these changes in 

activity reflected a reduction in interhemispheric inhibition from the left-to-right cortex, or an 

adaptive increase in right-to-left hemisphere connectivity, the authors applied dynamic causal 

modelling. This framework compares experimental data against outputs generated from 

biophysical models with differing biologically plausible structures (e.g. connections between 

neural populations) using Bayesian inversion (Friston et al., 2003). The ‘winning’ model (i.e. the 

most likely model from those assessed) suggested that connectivity was increased from the 

right-to-left frontal hemisphere, but not from left-to-right, providing support for a rapid adaptive 

increase in inter-hemispheric connectivity from the non-stimulated hemisphere following cTBS 

(Hartwigsen et al., 2013). Such modelling approaches provide deeper insight into the neural 

adaptations that occur following TMS plasticity protocols. An important future direction will be to 

include plasticity mechanisms within such models to estimate how TMS can impact 

hemodynamic activity and task performance.  

 

Before one can model the effects of an induced electric field on neural populations in detail, the 

induced field distribution itself must be calculated. The electric field induced in the brain by a 

TMS pulse can readily be modeled with finite element models with varying degrees of 

complexity (Hartwigsen et al., 2015; Neggers et al., 2015), from simple geometries (Tang et al., 

2016) through to folded human brain geometries extracted from MRI (Opitz et al., 2013; 

Thielscher et al., 2011). In simple geometries, analytical calculations may be sufficient (Pashut 

et al., 2014). How this field interacts with neurons, white matter tracts and brain regions to 

cause macroscale stimulation is not yet fully known. This is of critical importance for modeling 

and interpreting TMS effects.  

 

Likely biophysical mechanisms of how electromagnetic fields interact with cortical structures 

have been reviewed by Neggers et al. (2015) and Hartwigsen et al. (2015). It is known that the 

orientation of the induced current with respect to the cortical sheet is important for stimulation, 

with induced currents perpendicular to the sulcal wall resulting in largest responses. This is 

likely because electric fields are enhanced in this geometry due to the abrupt boundary between 

the highly conductive cerebrospinal fluid in the sulcus and the less conductive gray matter. 

Strong electric fields can change excitability at cell bodies or along axons due to polarization of 

membranes. These areas of strong local activation can connect to other areas through white 

matter tracts, which can be identified using diffusion MRI. Compartmental models of neural 

geometries (Pashut et al., 2011; Rahman et al., 2013) and tracts (De Geeter et al., 2012)  at 

various scales have been used to predict the effect of an electric field on axons in the tracts, 

https://paperpile.com/c/tL6ALY/G68S+3fNH
https://paperpile.com/c/tL6ALY/ZwrA
https://paperpile.com/c/tL6ALY/xSr4
https://paperpile.com/c/tL6ALY/Nulb
https://paperpile.com/c/tL6ALY/xSr4
https://paperpile.com/c/tL6ALY/AeWZ+ZwrA
https://paperpile.com/c/tL6ALY/laQt
https://paperpile.com/c/tL6ALY/laQt
https://paperpile.com/c/tL6ALY/yDNn+EXEp
https://paperpile.com/c/tL6ALY/yDNn+EXEp
https://paperpile.com/c/tL6ALY/FYK4
https://paperpile.com/c/tL6ALY/FYK4
https://paperpile.com/c/tL6ALY/AeWZ/?noauthor=1
https://paperpile.com/c/tL6ALY/ZwrA/?noauthor=1
https://paperpile.com/c/tL6ALY/tCic+3yJh
https://paperpile.com/c/tL6ALY/gkMo
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and thus stimulation of areas remote to the immediate source of TMS. Given that the outcome 

of TMS plasticity protocols is dependent on the neural populations stimulated by the pulse 

(Hamada et al., 2013), an important future direction will be combining electromagnetic models 

with plasticity models to determine optimal pulse parameters (e.g. electric field duration and 

direction) for targeting specific neural populations. Once optimal pulse parameters have been 

identified, these parameters can be directly assessed using new generation TMS machines 

capable of controlling TMS pulse properties (Hannah et al., 2016).  A summary of how different 

models can link together into a coherent scheme is given in Figure 5. 

 

 

 

 

 
 

Figure 5. The stages of a comprehensive modeling architecture. Stimulation with a given coil 

and current profile induces an electric field, which can be determined with an electromagnetic 

model. This electric field then causes changes in neural activation and behavior at a network 

level. This network activity then induces changes in the network, through a variety of possible 

mechanisms, including plasticity, changes in membrane excitability and gene expression. 

Finally, the altered activity can be mapped with appropriate models to measurable quantities 

such as EEG and MEP.   

 

Furthermore, while this work has discussed only plasticity, other mechanisms are likely to 

contribute to changes in neural activity following TMS. For instance, TMS-induced changes in 

membrane excitability (Pell et al., 2011) or the expression of biochemicals such as brain-derived 

neurotrophic factor (Gersner et al., 2011) could also influence plasticity and neural activity. 

Finally, this approach could be applied to other plasticity-inducing brain stimulation paradigms, 

such as transcranial direct current stimulation (Bestmann et al., 2015; Hämmerer et al., 2016). 

By incorporating these factors we aim to generate a powerful modeling framework in which 

brain stimulation can be systematically investigated and interpreted. 

https://paperpile.com/c/tL6ALY/19rB
https://paperpile.com/c/tL6ALY/xcT4
https://paperpile.com/c/tL6ALY/8cH9
https://paperpile.com/c/tL6ALY/KfzC
https://paperpile.com/c/tL6ALY/ftJS+jJRH
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8. Summary 

  

Understanding the mechanisms of TMS in humans is complicated by an interplay of different 

spatial and temporal scales. Neural plasticity and other possible drivers of TMS-induced effects 

occur at a microscopic scale, yet stimulation and measurement are made macroscopically. 

There is considerable variation in experimental results, since many of the key parameters, such 

as the initial cortical activity, are poorly controlled and differ between individuals. Moreover, the 

range of possible stimulating protocols is vast, but the range is mostly unexplored 

experimentally, with cTBS and iTBS protocols having dominated recent research. Mathematical 

modeling of the relevant physiology allows rapid evaluation of the effects of many paradigms 

and differing physiological states, and to explore the effects of microscopic changes on 

macroscopic outputs without the cost and time demands of experiment. We argue that the early 

modeling studies presented here hold great promise for providing a much needed theoretical 

framework with which to unify many diverse experimental findings and address many of the 

outstanding problems in the field. 

 

Despite its transformative potential, TMS modeling is nascent. While the current models of 

TMS-induced plasticity have qualitatively captured several group-level findings following 

paradigms such as PAS and TBS, it remains to be seen whether these models can predict 

unobserved experimental findings, either at the group or individual level (e.g., the effect of 

changing the frequency of stimulation in TBS). An important next step is to design experiments 

that will directly test model predictions of unknown TMS parameters in order to assess the 

biophysical validity of these models. A goal for neural modeling is to design a general model 

capable of capturing a broad range of observed neural phenomena (e.g., neural oscillations, 

changes in brain states, event-related potentials). In order to test the generalizability of the 

plasticity models, future work will need to extend the current TMS plasticity models to 

incorporate spatial dynamics across cortical and subcortical regions. Continued development of 

models of TMS plasticity will enable closer integration between experimental and theoretical 

work to guide the field and unify diverse experimental findings in terms of underlying 

mechanisms. 
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