Difference in details: transfer learning case study of ”cryptic”’ plants and moths
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Abstract

Can we classify species of very similar looking organ-
isms quickly and accurately using only out of the box feature
transfer? What if we only have small number of images?
This experimental paper is part of on-going project on
species recognition research and evaluates transfer learn-
ing and fine-tuning approaches on two highly specialized
fine-grained datasets. The two fine-grained datasets were
specifically assembled for the purpose of this research.
These datasets consist of images of New Zealand native
species of moths and “cryptic” plants of Genus Corposma
found also in New Zealand. We compare results from fine-
tuning experiments with performance of transfer learning
without fine-tuning. The latter results are based on features
extracted from various levels of depth in the InceptionV3
network, including fully connected layers. The extracted
features serve as inputs to a number of classification algo-
rithms. We observe contrasting results for the two datasets.
For the dataset of moths, the method based on features ex-
tracted from deep levels of the InceptionV3 network out-
performs fine-tuning in accuracy (90.09% versus 87.18%).
This is not the case for the dataset of cryptic plants (60.46%
versus 74.37%). Despite both datasets being fine-grained in
nature, these experimental differences could be attributed
to intrinsically different morphology of organisms and war-
rant further investigation.

1. Introduction

In this paper, we tackle two challenging fine-grained
identification tasks: automatic classification of plants of the
genus Coprosma and New Zealand species of native moth.
In general, it is often difficult to distinguish species of bio-
logical organisms using only morphology. Plants of genus
Coprosma that occur in New Zealand (NZ), especially, con-
tain species that are hard to differentiate even by expert
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botanists. NZ native moth species present a similar level
of challenge.

Automated species identification based on morpholog-
ical features is a fine-grained classification task because
small details can be crucial for distinguishing between
classes. Other examples of fine-grained classification in-
clude recognition of faces [2]] and vehicles [3]. There has
been significant interest recently in harnessing and opti-
mising the power of deep learning-based architectures in
fine-grained classification problems [9, 4]]. [8] provides an
overview of recent applications of fine-grained recognition,
including car identification and recognition of biological or-
ganisms. [1] reviews recent advances in the field of au-
tomated plant identification. [5] attempts to automatically
classify species of organisms on a large scale.

There is a wide range of potential applications of mod-
els that can automatically identify biological species, in ar-
eas such as bio-security, precision agriculture, biodiversity
mapping and citizen science. However, there are a num-
ber of associated challenges. The first challenge is small
variability between classes and large variability within
classes—this is common among all fine-grained recognition
tasks. Itis amplified in the case of plant recognition because
the differences between species can be very subtle, unlike
models of cars. Another challenge is the lack of sufficiently
large datasets because acquiring and labeling is a costly and
time consuming process requiring specialist expertise.

Due to the difficulties of the species recognition task,
these particular image classification challenges could serve
as a good case-study for evaluating the limits of convolu-
tional networks, the current state-of-the-art in image classi-
fication.

In this paper, we analyse the performance of methods
based on feature extraction from various depths of an Incep-
tionV3 network and compare these methods with a baseline
obtained by fine-tuning an InceptionResNetv2 network, for
two challenging fine-grained datasets.



Figure 1. Plant of genus Coprosma, Crassifolia species.

2. Datasets
2.1. Plants of genus Coprosma

There are 17 species of Coprosma represented in this
dataset. For each species, there are one to eight plants
(mean 4.9) for a total of 83 plants, and there are typically
ten images per plant (each of a different branch of the plant,
mean 9.9), for a total of 83 plants and 819 images (Fig.[I).
Each image contains 5184 x 3456 pixels and is stored as
a high quality JPEG image. Images were taken by placing
each branch on a black background. A ruler is present in
the top left-hand corner of each image to indicate scale. In
our experiments, the ruler was removed before further pro-
cessing occurred by setting the pixels of the ruler to black.
3799 non-overlapping crops of size 1024 x 1024 pixel were
extracted from the images.

2.2. NZ native moth

The NZ moth dataset contains 11 species of moth found
in New Zealand (Fig. 2). Each species has between 2 and
54 images of individual specimens (mean of 20) meaning
that there is a large class imbalance present. All of the im-
ages have a set width of 1181 pixels and varying height.
All images are taken from a straight on dorsal view of the
specimens. In each image, a scale bar is present in each bot-
tom left corner. This scale bar was removed for training and
testing.

3. Methods
3.1. Baseline experiments: fine-tuning

Firstly, a convolutional neural network based on the In-
ceptionResNetV?2 architecture and pre-trained on the Ima-
genet dataset, was fine-tuned on the two respective datasets.

Figure 2. Moth specimen, Nyctemera annulata X amicus.

The results were taken to form a baseline in our experi-
ments. Taking into account the relatively small number of
images in the datasets, a 5-fold cross-validation was used to
give a more accurate evaluation of model performance.

The following settings were utilized in fine-tuning exper-
iments:

e Moth dataset: 5000 steps per run, learning rate of 0.1,
learning rate decay factor of 0.97, learning rate decay-
ing every 15 epochs.

e Coprosma dataset: 12000 steps per run, learning rate
of 0.01, learning rate decay factor of 0.94, learning rate
decaying every 5 epochs.

3.2. Feature transfer experiments

[6] showed that using convolutional layers as a fea-
ture extractor and utilizing an alternative classifier on the
extracted vector representation can work as well as fine-
tuning. In addition, [10] demonstrated that extracting fea-
ture vectors from a range of depths in the CNN network can
yield improvements in performance.

In this section, we analyse performance of a number of
different classification algorithms trained on the feature rep-
resentations extracted from the images in the two datasets.
We have performed two sets of experiments: utilising fea-
tures extracted from the last pooling layer and combining it
with the features extracted from deeper layers of the Incep-
tionV3 network. The details of experiments are outlined in
the following sections.

In both of these feature transfer experiments, in order to
improve the estimate of accuracy for each classifier, Monte-
Carlo cross-validation was used with 100 random splits of
data into training/testing sets of proportion 80/20.

3.2.1 Features extracted from the final pooling layer

Firstly, a forward pass of the InceptionV3 network, pre-
trained on ImageNet, was performed on the images from
the respective datasets. Then, the 2048-dimensional vector



output from the final pooling operator in the InceptionV3
network was extracted. Finally, the extracted vectors were
used as feature inputs to 7 classifiers. The default settings
of the classifiers in the Python scikit-learn library were used
in the experiments.

3.2.2 Feature extraction from varying depths

In this approach, the final vector representation of each im-
age is found by concatenating the feature vector used in the
previous section with an additional feature vector extracted
from an earlier layer. As the InceptionV3 network is com-
prised of several “Inception Blocks” in sequence, each fea-
ture vector was extracted between these blocks. The ex-
tractions were of varying 3D shapes, therefore compression
of these representations into a vector was performed as fol-
lows. The size n of the longest dimension was found and
a vector of length n was created where the ¢-th value in the
vector was set to the maximum value in the i-th 2D array
along the longest axis of the extraction. This procedure is
equivalent to taking the maximum response of each filter.
Principal component analysis was applied to the extracted
vectors in order to reduce dimensions to 128. The same
transformations were applied to the test sets independently
of the training sets. Final classification was performed us-
ing a linear support vector classifier.

4. Results

The combined results from the sets of experiments de-
scribed in [3.2.1) and the fine-tuning experiments are sum-
marized in Table[T] As can be seen for both Coprosma and
Moth datasets, the feature transfer approach using only fea-
tures from the last pooling layer in the InceptionV3 net-
work leads to a decrease in classification accuracy com-
pared to base-line fine-tuning. The difference is especially
pronounced in the case of the Coprosma dataset: 74.37%
baseline accuracy versus 60.42% accuracy of the best clas-
sifier in feature transfer. The drop of accuracy is much less
for the moth dataset: 87.18% for baseline fine-tuning versus
80.14% accuracy obtained by the best classifier.

Interestingly, feature transfer using features extracted
from various depths of the InceptionV3 network outper-
forms fine-tuning for the moth dataset by 2.91% - 90.09%
versus 87.18% respectively (Table [2). However, feature
transfer does not lead to an increase in accuracy over the
baseline in the case of the Coprosma dataset: 60.46% ver-
sus 74.37% for the baseline.

The contrasting results for the two datasets can poten-
tially be attributed to fundamental differences in morphol-
ogy between them. In the case of the Coprosma dataset,
differences between species can be seen in different sizes
of leaves and the arrangement of the leaves on branches.
Therefore, there is a spatial structure present in this dataset

Classifier Coprosma Acc | Moth Acc

SVC (linear) 58.80% 80.14%
SVC (radial) 49.64% 74.45%
Extra Trees 49.28% 74.50%
Random Forests 50.29% 75.41%

K Nearest Neighbour 45.84% 70.77%
Multilayer Perceptron 60.42% 78.00%
Gaussian Naive Bayes 49.46% 72.14%
InceptionResNetV2 \ 74.37 % 87.18%

Table 1. Evaluation results of fine-tining experiments and the sets
of experiments described in|3.2.1

that may explain why the features extracted from network
pre-trained on the general purpose dataset ImageNet are not
sufficient to obtain good results. On the other hand, in the
moth dataset, differences between species can be seen in
small details of the wings and antennae, which could ex-
plain why general features extracted from the deeper layers
of the InceptionV3 network are able to capture it. Neverthe-
less, this result warrants further investigation.

Extracted layer | Coprosma Acc | Moth Acc
mixed/join:0 59.30% 89.91%
mixed_1/join:0 60.01% 88.32%
mixed_2/join:0 57.74% 90.09%
mixed_3/join:0 59.54% 87.45%
mixed_4/join:0 60.46% 85.86%
mixed_5/join:0 59.38% 88.27%
mixed_6/join:0 59.94% 87.59%
mixed_7/join:0 57.91% 87.72%
mixed_8/join:0 57.69% 86.95%
mixed_9/join:0 59.88% 86.41%

Table 2. Evaluation of feature extraction from various depths
within the InceptionV3 architecture, as described in[3.2.2}

5. Conclusions and future work

The comparison of accuracy estimates obtained from
two types of feature transfer experiments and a baseline
provided by fine-tuning yielded contrasting results for the
moth and Coprosma datasets studied in this paper. The dif-
ferences can potentially be attributed to the morphology of
the images in the datasets. We are planning to extend our
investigation into datasets of similar nature. In particular, it
would be of interest to extract subsets of similar morphol-
ogy from the iNaturalist databaset and investigate whether
pre-training a network on a large set of species images from
iNaturalist improves accuracy. Other avenues of further
investigation include multi-modal models and capsule net-
works [[7].
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