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Abstract 

Kiwifruit (Actinidia deliciosa and Actinidia chinensis) is cultivated in several 

countries including Italy, France, Chile, China, Japan, Korea and New Zealand 

and is an important income earner for a majority of these countries. In New 

Zealand, kiwifruit earns approximately USD 714 million per annum. In the recent 

past, the New Zealand kiwifruit industry was threatened by an outbreak of 

bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). The 

invasion strategies and the mobility of Psa pathogen in the kiwifruit plant have 

not been fully described. Recent comparative genomic studies of Psa strains and 

other P. syringae pathovars that also infect woody hosts indicate similarities in 

genetic makeup among these pathovars. Interestingly, these pathovars contain 

genes capable of producing cell wall degrading enzymes, thus suggesting that Psa 

possesses the same capability. However, no previous research demonstrated that 

any P. syringae pathovar degrades the host’s cell walls or any cell wall 

component. This research investigated whether Psa produces xylanases to degrade 

cell wall material of kiwifruit stems and facilitate systemic mobility of the 

pathogen from the infection site. The research also investigates whether vessel 

anatomy and xylem architecture play a role in the systemic mobility of the 

pathogen within the plant. 

Chapter Two of the thesis determines whether Psa is able to multiply and grow on 

kiwifruit wood-containing medium and whether Psa synthesises any xylanase to 

degrade cell wall material contained in the kiwifruit wood. For this purpose, the 

genome of Psa was analysed to ascertain whether sequences homologous to well-

known cell wall degrading enzymes were present in the genome. The degree of 

similarity of the identified genes was compared to the cell wall degrading genes of 

other Pseudomonas woody host pathogens. Six genes encoding for well-known 

cell wall degrading enzymes were identified, with the degree of amino acid 

similarity varying between 58% and 98%. Patterns of Psa growth were examined 

in three media: standard nutrient broth, xylan and casein media and minimal 

media supplemented with kiwifruit cell wall material, called kiwifruit xylem 

medium. Growth of the bacterium was observed in the kiwifruit xylem medium, 

however, the increase in CFU (Colony Forming Units) counts in kiwifruit xylem 

medium was low compared to that in the other two media. A characteristic 
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bacterial growth pattern was observed in the standard nutrient broth media. In the 

kiwifruit xylem media, bacteria counts declined initially, then briefly recovered. 

In vitro enzyme assays were conducted for Psa in the kiwifruit xylem medium to 

determine the activity of xylanase enzyme. Two types of assays were conducted: 

3,5-Dinitrosalicylic acid (DNSA) and Remazol Brilliant Blue (RBB). A 

significant xylanase activity was detected only in the Psa cultured in minimal 

medium supplemented with 0.5% kiwifruit xylem using the DNSA assay. 

However, no xylanase activity was detected using the RBB. It was concluded that 

Psa is capable of producing an active xylanase enzyme, and that synthesis of the 

enzyme is induced under low nutrient conditions and in the presence of kiwifruit 

xylem cell wall material. 

Chapter Three describes investigations of xylanase activity in planta. Twenty 

mature Actinidia chinensis Planch. var. chinensis ‘Hort16A’ plants were used. 

Ten plants were left un-inoculated and ten plants were inoculated with Psa. 

Disease symptoms appeared in the inoculated plants after which both inoculated 

and non-inoculated shoots were harvested. Psa was re-isolated from infected 

plants and duplex PCRs were conducted to confirm that symptoms were due to 

Psa infection. RBB and DNSA assays were conducted on ground kiwifruit stem 

pieces to ascertain putative xylanase activity. The RBB assay indicated xylanase 

activity in inoculated kiwifruit stem pieces. RBB assay parameters were varied to 

ascertain whether the xylanase activity in infected tissues was consistent with 

enzymatic activity. Strength tests were conducted on infected and non-infected 

kiwifruit shoots to determine whether infection affected stem structural integrity. 

The average strength per mm thickness of non-infected kiwifruit xylem was 

significantly higher than that of infected xylem. RNA was extracted from both 

inoculated and non-inoculated stems and PCR conducted with primers specific to 

the xylanase genes identified in the Psa genome. One bacterial xylanase gene was 

expressed during infection of the kiwifruit stems. The observed reduction in stem 

strength was consistent with the xylanase activity detected using the RBB assay 

and the expression of the bacterial xylanase gene during infection. 

Chapter Four investigated kiwifruit vessel lengths, the frequency of open vessel 

connections between kiwifruit stems and leaves, and the potential for movement 

of Psa from leaf inoculation sites into the supporting stem. Silicone injection was 
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used to document xylem vessel length distribution within mature one-year-old 

stems of three kiwifruit cultivars that differ in Psa susceptibility.  There was no 

correlation between average vessel lengths and susceptibility. The air injection 

technique was used to estimate maximum vessel lengths in Hort16A seedlings and 

vessel connections from leaf to stem. It was observed that the maximum xylem 

vessel length of Hort16A kiwifruit seedlings was 345 mm, that 71% of leaves had 

an open vessel from the stem to the leaf blade, and that 79% of leaves had an open 

vessel from stem to the petiole. The average maximum vessel length and plant 

height were positively correlated. A negative correlation was observed between 

height of the plant and the number of nodes with vessels extending into leaves. 

Psa was observed to move in both basipetal and acropetal directions when the leaf 

blade of Hort16A seedlings was inoculated, and in the majority of leaves was 

detected in the petiole or stem when either the tip or base of the leaf lamina was 

inoculated. Psa movement exceeded the boundaries of known open vessel 

connections between stem and leaf, suggesting that if Psa was mobile in the 

xylem, then vessel end walls were not a significant barrier to movement. This 

finding supports the conclusion that Psa has the ability to overcome plant cell 

wall barriers to movement. 

The overall findings of this thesis are that Psa does actively produce at least one 

cell wall degrading enzyme during infection of kiwifruit tissue, and that cell wall 

degrading enzymes contribute to an active invasion mechanism by this pathogen. 

For this reason Psa movement within the plant is not limited by cell wall barriers 

or the architecture of the xylem vascular system. 
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http://en.wikipedia.org/wiki/NCPPB
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1 CHAPTER 1 

1.1 Introduction 

The kiwifruit vine is a member of the family Actinidiaceae; genus Actinidia 

comprising approximately 60 species, including the commercially important A. 

deliciosa (Green kiwifruit) and A. chinensis (Gold kiwifruit). Plants are perennial, 

vigorous and deciduous and grow to a height of about 20 metres in the wild. A. 

deliciosa and A. chinensis have large and round leaves of about 7 cm to 12 cm in 

diameter, and bear male and female flowers on separate plants (dioecious). These 

woody climbers produce berries, which are known to consumers as the kiwifruit 

berry.  The vines need fertile soil, shelter from the wind and protection from frost 

(Ewers et al., 1990). Diseases commonly affecting commercially grown kiwifruit 

include root rots, which can develop from infection by the soil borne oomycete 

Phytophthora usually in association with poor drainage conditions. Another 

pathogen, Armillaria novaezelandiae (bootlace fungus) spreads to kiwifruit from 

the infected remnants of dead plants. When the climate is humid, Botrytis cinerea 

(grey mould rot) infects flowers and young fruit, and can cause serious post-

harvest losses (Ferguson, 1990). However, the New Zealand kiwifruit industry has 

developed horticultural practises that have reduced the losses caused by these 

pathogens to an acceptable level. In contrast, the recently emerged bacteria 

Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses, 

with no effective control strategies developed to date (Everett et al., 2011).    

Despite the previous occurrences of Psa infections being recorded in a number of 

countries,   the discovery of the virulent strain Pseudomonas syringae pv. 

actinidiae (Psa-V) on a New Zealand kiwifruit orchard dates back to only 

November 2010 (Everett et al., 2011). Prior to the discovery of Psa-V in New 

Zealand, there were reports of a similar strain causing severe damages to the 

kiwifruit industry in the Latino region of Italy. Despites its discovery in Italy in 

1992, reports indicate a low incidence of Psa-V until 2007/08. However, since 

2008, the infection has been reported to have caused serious damage in the Latina 

region (Balestra et al., 2009; Scortichini et al., 2012). The damage reached its 

peak in February 2012 when an estimated 650 hectares out of the total cultivation 

of 680 hectares of gold kiwifruit in the Latina Region were destroyed by the 
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infection. Lower levels of vine removal are reported in the other growing regions 

in Italy. The infected plants in all growing regions in France, South Korea, 

Portugal and Chile have tested positive for the bacterium during this period 

(Scortichini et al., 2012). Unconfirmed reports suggest that the disease has also 

affected Chinese orchards during the same period  (KVH, 2012b). It has now been 

established that the infection described in most of the growing regions prior to 

2008 was caused by a less virulent strain of Psa. 

The risk of Psa-V infection across kiwifruit orchards in New Zealand has been 

estimated to be quite significant. There was a sharp increase of the number of 

orchards tested positive for Psa-V through autumn and winter of 2011. Further 

increase in the number of infected orchards was recorded during the spring of 

2011 possibly aided by the rise of sap that occurs in spring. In August 2011 Psa-V 

symptoms were discovered on a Hayward orchard. Until spring 2011, the infected 

orchards were reported from the Te Puke area only. However, from September to 

December 2011, a sharp increase of the disease was recorded throughout the Bay 

of Plenty (Source KVH). Severe damage to vines and orchards was reported in the 

Te Puke area and the infection spread across the kiwifruit growing region of Bay 

of Plenty.  Furthermore, a small number of orchards in the South Auckland and 

Waikato regions have also been infected. According to kiwifruit Vine Health 

Incorporation (KVH) currently Psa-V present in orchards in all regions except far 

North, Whangarei and South Island (Nelson, Motueka, Golden Bay area). 

According to KVH, the response of the kiwifruit industry to the Psa outbreak was 

immediate.  The primary objective of the industry-wide response to counter the 

threat of Psa-V was to contain and eradicate the disease. However, strategies 

implemented by the industry to achieve this objective were far from effective.  

When the eradication efforts failed, the industry focussed on minimising the 

damage and identification of a pathway for recovery.  

Studies conducted to investigate the actual invasion strategies and mobility of Psa 

pathogen in the plant remain inconclusive. However the outcome of the research 

conducted into the host cell wall degrading activity and invasion strategies of a 

number of other pathogens and also histological analysis of Psa infected host 

plants shed some light on the possible cell wall degrading mechanism of the 

pathogen (Lionetti et al., 2007; Mazzaglia et al., 2012a; Perez-Donoso et al., 
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2010; Raiola et al., 2011; Renzi et al., 2012; Roper et al., 2007; Sun et al., 2011; 

Vasse et al., 1995). In addition, recent comparative genomic studies of Psa strains 

and other P.syringae pathovars that also infect woody hosts point towards marked 

similarities in the genetic makeup among these pathovars. Interestingly, these 

pathovars have been found to possess genes capable of producing cell wall 

degrading enzymes, thus indicating a strong possibility that Psa possesses this 

capability (Marcelletti et al., 2011; McCann et al., 2013 ; Scortichini et al., 2012). 

However, none of the existing studies have actually demonstrated that any P. 

syringae pathovar has the capability to degrade cell walls or any cell wall 

component. 

As indicated by (Serizawa & Ichikawa, 1993 c), it is important to study the 

mobility of bacterium within the host plant and to investigate whether the 

movement is taking place via the vascular system. The pathogen’s putative 

capability to degrade cell walls of the host plant and the ability to enter and move 

within the vascular system, particularly the xylem, are assumed to be facilitated 

by the structure of this tissue. In the strict theoretical sense, it is a prerequisite for 

the bacterium to possess cell wall degrading activity to enable it to move along the 

xylem tissue. The pathogen’s perceived capability of cell wall degradation and 

vascular movement necessitates an in-depth understanding of the vascular 

anatomy and cell wall composition of the host. It will also be interesting to 

ascertain the specific features of the plant’s anatomy and vascular structure that 

might facilitate pathogen movement, since there have been investigations carried 

out into this aspect of the disease. So far the actual cause of the characteristic 

wilting and dying back of young shoots caused by the pathogen have not been 

identified, although anecdotal evidence suggests possible blocking of the xylem 

by the colonising bacteria. 

In this analysis, an attempt has been made to extract and document the evidence 

that suggests a possible cell wall degrading activity by Psa and to investigate the 

strategies adopted by Psa to infect host plants through degradation of the host cell 

wall material, to move within the plant, and ultimately cause tissue wilt and cane 

die back.  
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1.2 Literature review 

1.2.1 Background 

In this section of the literature review the general characteristics of the host plant 

and the pathogen are described. 

Kiwifruit is categorized in the Family – Actinidiaceae. Actinidiaceae consists of 

woody vines, shrubs and trees that are native to Asia, Central America and South 

America. These plants have a simple, spiral arrangement of leaves. 

Kiwifruit is classified under the Genus – Actinidia. This name is given to plants 

that are tough and hardy. The word "actinidia" derives from a Greek word 

meaning "difficult" or "hard" and therefore it describes a physical characteristic of 

kiwifruit. The vine and skin of the kiwifruit are extremely tough, resistant, strong 

and hardy. 

Kiwifruit's final classification is based on the features of its fruit. The species 

name, "deliciosa", is derived from the Greek word, which means "luxury" or 

"luxurious" and refers to the luscious taste of the green, fleshy fruit. Actinidia 

deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson var. deliciosa, is considered as 

green or Hayward kiwifruit, and recently released Actinidia chinensis Planch. 

var. chinensis 'Hort16A', is considered as the gold-fleshed kiwifruit, an alternative 

cultivar (Ferguson, 1990; Fraser et al., 2009). 
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Figure 1-1  Light microscopic view of  Pseudomonas syringae pv. actinidiae (Psa) cells. 

The photograph was taken when the specimen was under oil immersion. 100X 

enlargement.  

  

The pathogen Pseudomonas syringae is a Gram-negative bacterium. The 

bacterium is rod shaped (Fig 1.1) and is equipped with polar flagella. The 

bacterium is pathogenic on a wide range of plant species and exists as more than 

50 different pathovars (Anzai et al., 2000). All the named pathovars are available 

via international culture collections such as the National Collection of Plant 

Pathogenic Bacteria (NCPPB) and the  International Collection of 

Microorganisms from Plants (ICMP).  It is unclear whether these pathovars 

represent a single species or a collection of related species (Anzai et al., 2000). 

Pseudomonas syringae belongs to the genus Pseudomonas sensu stricto. This 

genus is included in the γ subclass of the Proteobacteria (Kersters et al., 1996). At 

present the genus Pseudomonas sensu stricto includes only the species of the 

previous Pseudomonas rRNA group I (Palleroni, 1984). The group consists of the 

fluorescent species that produce the pigmented iron-chelating siderophore 

pyoverdines that are fluorescent under UV light. The pathogenic species included 

in this group are harmful to human, plants and some fungi. P. syringae is an 

aerobic and motile plant pathogenic fluorescent Pseudomonas bacterium with a 

http://en.wikipedia.org/wiki/Gram-negative
http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/wiki/Flagella
http://en.wikipedia.org/wiki/Pathovar
https://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj2hdfT1tjTAhVCKpQKHVQBAWUQFgggMAA&url=http%3A%2F%2Fncppb.fera.defra.gov.uk%2F&usg=AFQjCNFU5Z6_zkLyS7PLYuw8dP9Cv9bn7Q&sig2=opfrFlR4mDJJaTnFeNNEAA
https://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj2hdfT1tjTAhVCKpQKHVQBAWUQFgggMAA&url=http%3A%2F%2Fncppb.fera.defra.gov.uk%2F&usg=AFQjCNFU5Z6_zkLyS7PLYuw8dP9Cv9bn7Q&sig2=opfrFlR4mDJJaTnFeNNEAA
http://en.wikipedia.org/wiki/NCPPB
https://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=13&cad=rja&uact=8&ved=0ahUKEwiZp-LI19jTAhXFk5QKHYAgDLwQFgheMAw&url=http%3A%2F%2Fwww.landcareresearch.co.nz%2Fresources%2Fcollections%2Ficmp&usg=AFQjCNFLM1MjRzn5Zdb1D5mKsWks0jBs8Q&sig2=1CIaM2Q94FvSFo1ISnlQ7g
https://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=13&cad=rja&uact=8&ved=0ahUKEwiZp-LI19jTAhXFk5QKHYAgDLwQFgheMAw&url=http%3A%2F%2Fwww.landcareresearch.co.nz%2Fresources%2Fcollections%2Ficmp&usg=AFQjCNFLM1MjRzn5Zdb1D5mKsWks0jBs8Q&sig2=1CIaM2Q94FvSFo1ISnlQ7g
http://en.wikipedia.org/wiki/International_Collection_of_Microorganisms_from_Plants
http://en.wikipedia.org/wiki/Pathovar
http://en.wikipedia.org/wiki/Species
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straight or slightly curved rod shape equipped with one or several polar flagella 

(Holt J.G. et al., 1994; Palleroni, 2005). 

At present, over 50 pathovars of this bacterium that are pathogenic to more than 

180 plant species, including fruit plants, vegetables, ornamentals, and other annual 

and perennial species have been identified (Bradbury, 1986 ; Young J.M. et al., 

1996).  Psa is one of the 50 pathovars. Chapman et al. (2012), described the 

relationships between the various strains of the Psa pathogen in the following 

manner:  

Psa 1 – P. syringae pv actinidiae population discovered from Japan and Italy in 

1992 outbreak 

Psa 2 - P. syringae pv actinidiae population present in Korea. 

Psa 3 -  P. syringae pv actinidiae population present in the Ravenna and Latina 

regions of Italy (2008-09 outbreak), Te Puke region of New Zealand, Chile and 

the Shaanxi province of China. 

Psa 4 - P. syringae pv actinidiae population present across New Zealand and in 

Australia. 

Psa 4 is clearly genetically distinct from Psa 1, Psa 2 and Psa 3 and is less closely 

related to these strains than is the pathovar  P. syringae pv. theae. Psa 4 causes 

only minor symptoms of disease in kiwifruit. It was not detected in New Zealand 

until the outbreak of Psa 3 began, and was originally referred to Psa ‘LV’ (low 

virulence). However, for the first time, strains of pathovar (biovar) 4 have been 

isolated outside New Zealand or Australia. In France, Psa 4 has been identified 

and it is proposed that Psa biovar 4 be renamed Pseudomonas 

syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the 

pathotype strain (Cunty et al., 2015).  

Unless otherwise stated, the use of the term Psa in this thesis refers to Psa 3, also 

referred to by other authors as Psa-V (virulent), I2-Psa (Italy outbreak 2) or the 

‘outbreak strain’. 
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1.3 Other Pseudomonas syringae canker forming bacteria 

1.3.1 Pseudomonas syringae pv. syringae (Pss)  

Pss is the pathogen that causes canker and blast in stone fruit trees. The pathogen 

affects all commercially grown Prunus species, including peach (Prunus persica), 

prune and plum (Prunus domestica), sweet cherry (Prunus avium), almond 

(Prunus dulcis) and apricot (Prunus armeniaca) (Abbasi et al., 2013). 

Pseudomonas syringae pv. syringae causes disease in over 180 species of plants 

in several unrelated genera (Bradbury, 1986 ). This disease causing ability is 

unique among most P. syringae pathovars.  

Canker development on shoots and at the base of spurs are the first disease 

symptoms. Then the canker development progresses upwards supplemented with 

gum exudation beginning in the growing season (Hattingh & Roos, 1995). Pss 

attacks twigs, buds, flowers, leaves and fruits. In the beginning of the spring, dark 

brown submerged wounds appear on small branches underneath the infected 

spurs. Shoot blight and death of the infected branches with gums frequently 

appearing from cankered regions on the large branches in severe infection of 

twigs (Goto, 1992).  

The outcome of the bacterial infection is manifested in a reduction in yield due to 

one or more of the infection related symptoms such as death of buds and flowers, 

tree decline and death due to the development of cankers in branches and major 

scaffold limbs (Ogawa & English, 1991). Pss grows on leaf surfaces and enters 

the apoplast through stomata and wounds. When the pathogen enters the leaf 

apoplast, it initially propagates biotrophically, but subsequently causes necrotic 

lesions (Misas-Villamil et al., 2011). Colonization from wound sites on Nicotiana 

benthamiana is common for P. syringae strains representing major branches of 

the P. syringae phylogenetic tree (phylogroups). Two of the strains that efficiently 

colonize tissues from wound sites are P.syringae pv. syringae B728a (PssB728a) 

and B301D-R (PssB301D), both from phylogroup II. An aggressive strain of Pss 

inoculated into plum petioles, spreads to the xylem and other elements of leaf 

veins suggesting Pss has the ability to systemically spread in leaves (Hattingh et 

al., 1989). In a scanning electron microscope study, it was observed that Pss 

colonises the surface of pear leaves and enters leaf tissue following bacteria 
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multiplication on the leaf surface, particularly on trichomes and in depressions of 

the cuticular layer. Lumps of bacteria were accompanied with leaf spots, which 

begin to exist 9 days after inoculation when conditions are favourable (Mansvelt 

& Hattingh, 1987). Pss frequently multiplies on apple leaves and blossoms during 

the growing season without causing lesions. Scanning electron microscopy 

indicated that Pss entered leaves through stomata and multiplied in the 

substomatal chambers. Another Pss strain applied to blossoms colonized stigmas 

and also occurred in intercellular spaces of styles (Mansvelt & Hattingh, 1989). 

Whether Pss has the ability to degrade the cell walls of Prunus has not been 

recorded in the literature.  

1.3.2 Pseudomonas syringae  pv. morsprunorum (Psm) 

Psm causes bacterial canker of stone fruits. This disease has been known to 

growers for more than a century. The characteristic symptoms of the infection 

includes cankers and necroses developing on branches and trunk, often located 

around spurs, wounds and branch junctions. In early infections on branches, the 

tissue is sunken, water-soaked and slightly discoloured brown. Later, it becomes 

darker and finally reddish-brown black (Bultreys & Kaluzna, 2010). 

During the infection, the infected parts of the plant produce orange-brown gummy 

substances and this is thought to be associated with cankers and necroses. The 

symptoms on the leaves appear as small round wounds of various sizes. At the 

initial stages of the infection, the wounds appear light brown in colour and with 

time they can become dark brown. The wounds can be surrounded by a halo 

which may appear yellow. The infected tissue often separates from the leaf and 

this symptom is well known among the farmers as shot-hole symptoms. The 

pathogen may also infect blossoms, resulting in a brown colour and ultimately 

resulting in abscission before full opening. The immature fruits of the infected 

sweet and sour cherry plants display sunken necroses that are brown or black in 

colour (Bultreys & Kaluzna, 2010). 

The pathovars syringae and morsprunorum race 1 and race 2 were the first 

described P. syringae pathovars. They can be found more frequently in worldwide 

stone fruit orchards (Crosse, 1966; Kennelly et al., 2007a). Pss, Psm race 1 and 
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Psm race 2 are genetically distant and distinct pathogens adapted to the same 

hosts (Gardan et al., 1999; Ménard et al., 2003). 

In a study of sweet cherry leaves, Psm entered through the stomata, multiplied in 

the cavities and survived in a lump for 6 days post inoculation (Roos & Hattingh, 

1983). Scanning Electron Microscopy indicated that Psm applied by spraying 

most probably entered through stomata and then dispersed intercellularly from the 

mesophyll through the parenchyma of the bundle sheath into the vascular system 

of a minor vein. When a vein had been invaded, movement occurred to other 

regions in the leaf blade and petiole (Roos & Hattingh, 1987).  

1.3.3 Pseudomonas syringae pv. aesculi  

P. syringae pv. aesculi is responsible for causing bleeding canker in trunks and 

branches of Aesculus spp. (horse chestnuts). The disease was first discovered in 

Northwest Europe (de Keijzer et al., 2012). During the last 10 years, 

Pseudomonas syringae pv. aesculi has been identified as a major threat to horse 

chestnut. The infection is manifested as extensive necrosis of phloem and 

cambium resulting in dieback. The details of the interaction between the host and 

the pathogen from the infection to extensive necroses have not been well 

documented (de Keijzer et al., 2012). 

When the infection reaches its peak, its severity is displayed by bleeding 

symptoms across large populations of the host (Green et al., 2009). The infection 

is manifested on trunks and branches by way of necrosis of bark tissues and 

bleeding of an amber coloured sap. The vascular cambium is the most commonly 

infected host tissue leading to irregular secondary growth. When necrosis of the 

phloem is extensive, tree vitality is reduced and girdling lesions ultimately lead to 

shoot dieback. 

This pathogen is known to enter and infect the host through its lenticels. Other 

than Psa this is the only Pseudomonad pathogen that infects through lenticels 

(Steele et al., 2010). 
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1.3.4 Pseudomonas  avellanae 

The pathogen causes bacterial canker in hazelnut (Corylus avellana).  P. 

avellanae has been placed in the P. syringae group on the basis of 16S rRNA 

analysis (Anzai et al., 2000). This species was previously identified as a pathovar 

of Pseudomonas syringae. However, DNA-DNA hybridization analyses (A 

technique that measures the degree of genetic similarity between pools of DNA 

sequences) lead to categorization of the pathogen as a separate species (Janse et 

al., 1996). In addition to P. avellanae, Pseudomonas syringae pv. theae was also 

incorporated into this group on the basis of ribotypical analysis (Gardan et al., 

1999). 

1.3.5 Similarities between Pseudomonas syringae canker forming bacteria 

Cankers on the trunk and leader are common to all five Pseudomonas syringae 

canker forming species including Psa. Leaf spots and necrosis are the first  

symptoms common to both Psa and Psm infection. In Psa infection black colour, 

angular leaf spots with or without a chlorotic halo are prominent (Scortichini et 

al., 2012). Small round lesions of various sizes, initially light brown then 

changing to dark brown surrounded by a yellowish halo are prominent with Psm 

infection (Latorre & Jones, 1979). Twig die-back occurs in both Pss and Psa 

infection.  Pss produces a gum-like exudate on cankered regions, while Psa 

produces whitish to orange ooze or reddish brown exudates. With Psm infection, 

the exudates are represented by orange-brown gummosis (Garrett et al., 1966). 

Bleeding of an amber coloured sap which turns black in later stages occurs with 

P. srringae pv. aesculi attack. When infection becomes severe, all the external 

woody tissues of the plant are destroyed and ultimate die back of the plant occurs 

in both the Psa and pv. aesculi infection (Kennelly et al., 2007b). 

Although Pseudomonas avellanae and Psa are in different taxonomic groups, 

both pathogens cause similar symptoms in their respective woody hosts, hazelnut 

and kiwifruit as explained above (Psallidas, 1993). The infections caused by the 

pathogens described above are manifested in a range of symptoms that are 

remarkably similar irrespective of the host plant that they infect. The common 

name of the disease caused by these pathogens is bacterial canker. 

http://en.wikipedia.org/wiki/Pseudomonas_syringae
http://en.wikipedia.org/wiki/RRNA
http://en.wikipedia.org/wiki/Ribotyping
http://en.wikipedia.org/wiki/Pseudomonas_syringae
http://en.wikipedia.org/wiki/Pseudomonas_syringae
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1.4 Plant cell wall 

1.4.1 Structure of the plant cell wall 

There are various features that are common to both plant and animal cells. One 

such feature is the cytoplasm which is bounded by a plasma membrane. However, 

plant cells are surrounded by a ‘wall’ which is uniquely structured with cellulose 

(Raven et al., 1999) which is exterior to the plasma membrane and itself is a part 

of the apoplast. The apoplast, which is a largely self-contiguous component, 

contains all the structures located between the plasma membrane and the cuticle. 

Hence, the apoplast is made up of the primary wall, the middle lamella (a 

polysaccharide-rich region between primary walls of adjacent cells), intercellular 

air spaces and water and solutes. Another significant feature that differentiates 

plant cells from animal cells is the symplast.   Symplast is a self-contiguous phase 

that exists due to the tube-like structures known as plasmodesmata that connect 

the cytoplasm of adjacent plant cells (Fisher, 2000). In growing plant tissues the 

primary wall and middle lamella account for most of the apoplast. Thus, in the 

broadest sense the wall corresponds to the contents of the apoplast. In some 

tissues there are significant volumes of air space in the apoplast (e.g. in the 

mesophyll of leaves, in lenticels of the bark etc).  The air spaces are significant in 

relation to Psa as the pathogen tends to fill air spaces as it multiplies in the host 

plant tissues. 

The cell wall is tough and usually flexible while in certain situations it can be 

fairly rigid. The cell wall provides the cells with structural support and protection. 

The cell wall also performs filtering mechanisms and acts as a pressure vessel, 

preventing overexpansion when water enters the cell.  Furthermore the cell wall is 

involved in a number of metabolic and resistance activities of the plant cell. Many 

cells are highly differentiated to an extent that there are more than 35 cell types in 

plants with different sizes, shapes, positions and wall characteristics. The cell 

walls of growing cells are typically thin (0.1–1 µm) and flexible and made up 

primarily of complex polysaccharides and a small amount of structural proteins. 

Under the electron microscope at nanometre scale, the cell wall’s fibrous 

character can be observed. The wall forms a strong network capable of supporting 

contours of the plant cell, compressing and providing shape to the protoplast that 

it encloses. The cell walls are expanded through a process of controlled polymer 
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creep during the growth of the plant cell. The cells are tightly bound to each other 

through their cell walls making cell migration impossible. Therefore 

morphogenesis of the plant is confined to localized cell division and selective cell 

enlargement. Some of the cells expands to such extents that the largest plant cells 

like xylem vessels can increase by more than 30,000-fold in volume from their 

meristematic initials (Cosgrove, 2005).  

One of the most important functions of the plant cell wall is the defence against 

invading pathogens. The cell wall acts as a physical barrier against pathogens. 

Due to this reason,  plant pathogens have evolved a number of adaptations to 

invade host plant cell walls. As part of their invasion strategies against the host 

cell walls, plant pathogens produce a range of glucanhydrolases including 

polygalacturonase (PG), pectinlyase, pectin methyl esterase and xylanase. These 

enzymes help the pathogens to invade the host tissues by dismantling the host cell 

wall (Stahl & Bishop, 2000). 

In response to pathogen’s cell wall degrading enzymes, plant cells also produce a 

range of inhibitor proteins that are secreted through the cell wall. These inhibitors 

include xylanase inhibitor proteins and polygalacturonase inhibitor proteins 

(PGIP). It has been found that PGIP directly interferes with the host cell wall 

degradation (Stahl & Bishop, 2000). 

1.4.2 The composition of the primary cell wall 

The main component of the primary cell walls of the angiosperms is 

polysaccharides (up to 90% of the dry weight). The other components include 

structural glycoproteins (2–10%), phenolic esters (<2%), ionically and covalently 

bound minerals (1–5%) and enzymes. The primary cell wall of living tissues 

contains water up to 70% of its composition (Monro et al., 1976). Some of the 

plant cells that require high mechanical strength and structural reinforcement also 

produce a secondary cell wall. The secondary cell wall is fortified mainly with 

lignin. 

The cell walls of growing cells consist of cellulose microfibrils that are embedded 

in a matrix of complex polysaccharides forming a fibreglass-like structure 

(Carpita & Gibeaut, 1993; O’Neill & York, 2003). These matrix polysaccharides 

are divided into two classes, hemicelluloses and pectin. Pectin can be dissolved in 
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aqueous buffers and dilute acidic solutions or calcium chelators. Hemicelluloses 

are polysaccharides in plant cell walls that have β-(1→4)-linked backbones with 

an equatorial configuration. Hemicelluloses include xyloglucans, xylans, mannans 

and glucomannans, and β-(1→3,1→4)-glucans (Scheller & Ulvskov, 2010).  

Hemicelluloses are cellulose-binding polysaccharides. Together with cellulose 

they form a network that is both strong and yet resilient. 

The cell walls of both angiosperms and gymnosperms combine cellulose, 

hemicelluloses (xyloglucan, glucomannan or arabinoxylan) and pectic 

polysaccharides (homogalacturonan, rhamnogalacturonans and substituted 

galacturonans) in different amounts (Cosgrove, 2005). The cell walls are 

categorised under two general types based on the relative amounts of pectic 

polysaccharides and the structure and amounts of hemicellulosic polysaccharides. 

Type I walls (Carpita & Gibeaut, 1993) characteristically contain xyloglucan 

and/or glucomannan and 20%–35% pectin. This type of cell walls is found in all 

dicotyledons, the non-graminaceous monocotyledons (e.g. Liliidae) and 

gymnosperms (e.g. Douglas fir). Type II walls are rich in arabinoxylan, and 

contain <10% pectin (Carpita, 1996). These types of cell walls are found in the 

graminaceous monocotyledons (Poaceae, e.g. rice and barley).  

Pectins are highly complex polysaccharides and have several functions (Vincken 

et al., 2003; Willats et al., 2001a ). When hydrated, pectin forms gels that 

maintain the separation of cell wall microfibrils. The dispersion of microfibrils 

facilitates lateral slippage during cell growth. Once the growth ceases, pectin gel 

helps lock the microfibrils in place. Pectin also controls wall porosity and wall 

thickness. Pectin is a component of the middle lamella, an adhesive layer that 

binds cells together in (Iwai et al., 2002). Pectins are often primary targets of 

attack of plant pathogens. When the pectin is disintegrated by the pathogens, the 

resulting components of pectin can function as plant-defence response elicitors 

(Rose, 2003).  

Cellulose and matrix polysaccharides are synthesised in two different pathways. 

Cellulose is synthesized by large membrane complexes. Matrix polysaccharides 

are synthesized in the Golgi apparatus and are stored in small vesicles. 

Subsequently, the vesicles fuse with the plasma membrane and the 

polysaccharides are incorporated to the cell wall. Matrix polysaccharides then 



 

14 

become a component of the wall network by physical interactions, enzymatic 

ligations and cross linking reactions. Newly secreted matrix polysaccharides can 

penetrate into the cell wall (Ray, 1967) . This is facilitated by cell turgor pressure, 

which creates an outward pressure on the cell wall leading to increase of its 

porosity and provides an energy gradient to drive polymers into the wall (Proseus 

& Boyer, 2005). 

Primary cell walls may contain hydrophobic molecules such as waxes. In 

addition, ions and other inorganic molecules such as silicates may also be present 

(Epstein, 1999). These quantitatively minor components are often more abundant 

in specific plants or cell types. For example, silicates are abundant in grasses and 

seedless vascular plants such as horsetails (Equisetum) (Epstein, 1999). 

1.4.3 Structures of the no cellulosic components of primary plant cell walls 

Since cellulose is the lastly attacked polysaccharide in the plant cell wall by the 

microbes and they have to degrade other components of the cell wall first, before 

they attack cellulose (Roberts & Boothroyd, 1972), the structure of non-cellulosic 

polysaccharides are here considered in detail. 

1.4.3.1 Hemicellulosic polysaccharides 

Hemicelluloses are defined as the cell wall polysaccharides that cannot be 

dissolved in hot water or chelating agents, but are soluble in aqueous alkali. Based 

on the above differentiation, we can identify xyloglucan, xylans (including 

glucuronoxylan, arabinoxylan, glucuronoarabinoxylan), mannans (including 

glucomannan, galactomannan, galactoglucomannan), and arabinogalactan as 

hemicelluloses. Hemicelluloses are usually branched and are structurally 

homologous to cellulose. Similar to cellulose, hemicelluloses contains a backbone 

composed of 1,4-linked β-D-pyranosyl residues such as glucose, mannose and 

xylose, where O4 is in the equatorial orientation.  Xyloglucan, xylans and 

mannans are included under this chemical definition of hemicelluloses with 

arabinogalactan excluded from this group. There is a significant structural 

similarity between hemicellulose and cellulose. This similarity results in a strong, 

noncovalent association between the hemicellulose and cellulose microfibrils 

(O’Neill & York, 2003). 
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1.4.3.1.1 Xyloglucan 

Xyloglucan is the predominant hemicellulosic polysaccharide in the primary cell 

walls of non-graminaceous plants. It contributes to 20% of the dry mass of the 

wall. Xyloglucan has a ‘cellulosic’ backbone consisting of β-1,4-linked -D-Glcp 

residues. Bearing β-1,4-D-Xylp residues at O6, up to 75% of the backbone 

residues are branched. Many of the Xylp residues bear glycosyl substituents at 

O2, thereby extending the side chain. Only a limited number of xyloglucan side 

chain structures have been described and the cellulosic backbone itself does not 

vary among xyloglucans from different plant species and tissues.  

Despite the major structural similarities of primary wall polymers in higher plants, 

the xyloglucan structure in dicotyledons and monocotyledons can have significant 

variations. These variations in structure are visible in different plant species, 

tissues, cell-types and occasionally even in different parts of the wall surrounding 

an individual cell (Freshour et al., 1996). Apart from cellulose, xyloglucans are 

the most thoroughly characterized cell wall polysaccharides, and their general 

structure can be found among most of the higher plants. 

1.4.3.1.2 Xylans 

Xylans include cell wall components such as arabinoxylans, glucuronoxylans and 

glucuronoarabinoxylans (Darvill et al., 1980). These components are found in 

lesser quantities in the primary cell walls of dicotyledons and non-graminaceous 

monocotyledons. However, xylans are found in larger quantities in the primary 

cell walls of the Gramineae and in the secondary cell walls of woody plants 

(Ebringerova & Heinze, 2000). Xylans consists of a backbone made up of 1,4-

linked β-D-Xylp residues. Many of these residues are branched.  

It can be deduced that the structural diversity of xylans is related to their 

functionality in plants and may explain the distribution of certain xylan types in 

the plant kingdom. The occurrence of xylans can be traced to the botanically 

oldest plant families. Xylans of all higher plants possess linked Xylp units as the 

backbone, usually substituted with sugar units and O-acetyl groups and are called 

heteroxylans. The only exception of heteroxylans with mixed linkages in the main 

chain, until now reported, have been isolated from the seeds of Plantago species. 

The occurrence of homoxylans in higher plants is rather rare (Vleeshouwers et al., 



 

16 

2000). However, a neutral linear xylan has been isolated from guar seed husks as 

the hemicellulose A fraction. Lower plants (green algae and red seaweeds) cell 

wall components are comprised of homoxylans (Ebringerova & Heinze, 2000). 

1.4.3.1.3 Mannose-containing hemicelluloses 

Mannose-containing polysaccharides include mannans, galactomannans and 

galactoglucomannans. Homopolymers of 1,4-linked β-D-Manp are found in the 

endosperm of several plant species including, for example, ivory nut. 

Galactomannans, which are abundant in the seeds of many legume species, have a 

1,4-linked β-D-Manp backbone that is substituted to different degrees at O6 with 

α-D-Galp residues. Glucomannans are found in larger quantities in the secondary 

cell walls of woody species. They have a backbone made up of both 1,4-linked β-

D-Manp and 1,4-linked β-D-Glcp residues. Galactoglucomannans that are found 

in both primary and secondary cell walls, have a similar backbone as well 

(Stephen, 1982). 

1.4.3.2 Pectic polysaccharides 

The primary cell wall of higher plants can include three structurally different 

pectic polysaccharides, identified as homogalacturonan, substituted galacturonans 

and rhamnogalacturonans.  

1.4.3.2.1 Homogalacturonan 

Homogalacturonan (HG) is a linear chain of 1,4-linked α-D-

galactopyranosyluronic acid (GalpA) residues. Some of the carboxyl groups of 

this linear chain are methyl esterified. When HG polymers are in highly methyl 

esterified form, they are referred to as ‘pectin’. On the other hand, when the 

polymers are methyl esterified to a lesser degree or are not esterified, they are 

called ‘pectic acid’. HGs may be partially O-acetylated in certain plant species 

(Ishii, 1997; Perrone et al., 2002). The degree of methyl esterification of HG 

determines its ability to form gels (Goldberg et al., 1996; Willats et al., 2001b). 

When the HGs polymer is highly methyl esterified, it does not gel in the presence 

of Ca2+. However, highly methyl esterified HG has been found to form gel at low 

pH in the presence of high concentrations of sucrose. As cells mature, the degree 

of methyl esterification of HG decreases which in turn leads to an increase in Ca2+ 
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cross-linking. The increase of Ca2+ cross-linking leads to increases in wall 

strength (Goldberg et al., 1996; Willats et al., 2001b). 

Polygalacturonases (PG) are pectin degrading enzymes. PGs are expressed in a 

wide range of plant tissues and at various stages during plant development 

(Hadfield & Bennett, 1998). These PGs are likely to be involved in modifying the 

structure and properties of wall-bound pectin during normal plant growth and 

development. It is imperative to note that plant pathogens also commonly produce 

polygalacturonases. The main function of polygalacturonases secreted by plant 

pathogens is to facilitate invasion by dismantling the host cell walls. 

1.4.3.2.2 Rhamnogalacturonans 

Lau et al. (1985) stated that Rhamnogalacturonans (RGs) are a group of cell wall 

pectic polysaccharides that are closely related. They are made up of a backbone of 

the repeating disaccharide 4)-α-D-GalpA-(1,2)-α-L-Rhap. Rhap residues are 

substituted at C-4 with neutral and acidic oligosaccharides. Depending on the 

plant source and the method of isolation between 20% to 80% of Rhap s are found 

to be at C-4 (Ishii et al., 1989; Lau et al., 1987; McNeil et al., 1982 b). The 

function of rhamnogalacturonans is believed to be associated with cell and tissue 

development (Orfila & Knox, 2000; Willats et al., 1999; Willats et al., 2001a ). 

1.4.3.2.3 Substituted galacturonans 

Substituted galacturonans are a group of polysaccharides with a backbone of 

linear 1,4-linked α-D-GalpA residues. Major components of this group include 

apiogalacturonans and xylogalacturonans (O’Neill & York, 2003).  

Rhamnogalacturonan II (RG-II ) is also a substituted galacturonan found in the 

walls of all higher plants (O’Neill et al., 1990 ; Stevenson et al., 1988). It is a 

pectic polysaccharide with a low molecular mass (~5–10 kDa). RG-II can be 

dissolved from the cell wall by treatment with endopolygalacturonase. RG-II 

contains eleven different glycosyl residues including Apif, AcefA, 2-O-Me Fucp, 

2-O-Me Xylp, Dha and Kdo (unusual sugars) (Whitcombe et al., 1995). Hence, 

RG-II is not structurally related to rhamnogalacturonans (RGs) that consist of a 

backbone made up of repeating disaccharide 4)-α-D-GalpA-(1,2)-α-L-Rhap (du 

Penhoat et al., 1999).  



 

18 

1.4.3.3 Other primary wall components 

1.4.3.3.1  Structural glycoproteins 

These are O-glycosylated proteins, mainly hydroxyproline-rich glycoproteins 

(HRGPs) and are often referred to as ‘extensins’, even though their role in plant 

growth remains unclear. Generally HRGPs are glycosylated with arabinose, 

arabinobiose, arabinotriose, arabino tetraose and with galactose (Kieliszewksi & 

Shpak, 2001).  

1.4.3.3.2 Arabinogalactan proteins (AGPs) 

Gaspar et al. (2001) observed that Arabinogalactan proteins are a family of 

structurally complex proteoglycans. Polysaccharide portions which are rich in 

galactose and arabinose are 90% of the structural components of the molecule of 

AGPs.  

AGPs are linked to the plasma membrane by a glycosylphosphatidylinositol (GPI) 

membrane anchor (Youl et al., 1998). Those AGPs that are not bound to the 

plasma membrane are present in the apoplast. Anecdotal evidence suggests that 

the plasma membrane-associated AGPs may have a role in cell expansion and cell 

differentiation (O’Neill & York, 2003). 

1.4.3.3.3 Enzymes 

Primary cell walls consist of a number of enzymes including those involved in 

wall metabolism Fry (1995 ), namely endoglycanases and exoglycanases, methyl 

and acetyl esterases, and transglycosylases and enzymes that may generate cross-

links between wall components (e.g. peroxidases). Proteins referred to as 

expansins that have been proposed to break hydrogen bonds between Xyloglucan 

(XG) and cellulose are also present in the walls and hence are believed to regulate 

wall expansion (Cosgrove, 1999). 

1.4.3.3.4 Minerals 

Conditions of plant growth and the methods used to prepare the walls are the two 

major factors influencing the mineral content of a primary wall. However, 

minerals such as Ca, K, Na, Fe, Mg, Si, Zn and B together can constitute for up to 

5% of the dry weight of eudicotyledon walls (Epstein, 1999). Calcium is believed 

to have a major influence on the deformation and flow of different components of 
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the primary wall. The increase of Ca2+ cross-linking leads to an increase in wall 

strength as cells mature.  

1.4.4 Secondary cell wall 

The secondary cell wall in higher plants is made up mainly of cellulose, lignin, 

and xylan. One of the cell types in higher plants that develops a secondary cell 

wall are the xylem elements. Xylem elements are involved in transporting water 

from the root system to the aerial tissues of the plant. The movement of water 

through the xylem elements is supported by negative pressure created by the aerial 

tissues of the plant during transpiration. In order to withstand these forces, the 

xylem cells develop a secondary cell wall matrix. In the secondary xylem, 

produced by the vascular cambium, the development of the secondary wall takes 

place when the cells have reached their final size (Turner et al., 2001). The 

lignified secondary wall of xylem elements and associated fibres within the 

secondary xylem provides the major mechanical support for the transport of water 

and the growth of woody plants (Persson et al., 2007). 

As observed by transmission electron microscopy, the secondary cell wall in the 

xylem can be identified in three distinctive layers, namely S1, S2 and S3, as 

depicted in Fig 1.1 (A). The formation of three such layers is due to changes in the 

orientation of cellulose microfibrils during their deposition. Of the three layers, S1 

and S3 are typically thin and consist of cellulose microfibrils oriented in a flat 

helix relative to the elongation axis of the cell (Fig 1.1 (B)). The S2 layer is a 

thick deposition of cellulose microfibrils oriented in a steep helix relative to the 

elongation axis. The mechanical strength of the fibres in wood is determined by 

the S2 layer (Zhong & Ye, 2009).  
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Figure 1-2 Descriptive view of the secondary cell wall under a transmission 

electron microscope. (A) Three distinct layers (S1, S2 and S3) of secondary cell 

walls in fibre cells of an Arabidopsis stem. (B) Cellulose microfibrils in the 

innermost layer of a mature fibre cell from an Arabidopsis stem are arranged in a 

flat helix. The vertical direction of the image corresponds to the elongation axis of 

the cell. Bar = 10µm 

Source : Zhong and Ye (2009) ; Secondary cell walls. eLS.  

Lignin is a complex phenylpropanoid polymer with hydrophobic characteristics. It 

is associated with the cellulose and hemicellulose network and gives a waterproof 

quality to the secondary cell walls. The waterproof quality enables tracheary 

elements to function as conduits for water transport. The lignin also forms an 

extensive crosslinked network providing a greater strength and rigidity to the 

secondary walls. Furthermore, lignin is a relatively inert polymer thus providing a 

stable and protective barrier to shield secondary cell walls from chemical, 

physical and biological attacks (Boudet, 2003).  

Lignins have as a basis three hydroxycinnamyl alcohols, namely the monolignols, 

which subsequently become phenoxy radicals that then polymerize. Higher plants 

contain two types of lignin, guaiacyl lignin which is polymerized from coniferyl 

alcohol and syringyl lignin which is polymerized from synapyl alcohol. The 

secondary cell walls of vessels of dicots are rich in guaiacyl lignin and secondary 

cell walls in fibres contain both guaiacyl and syringyl lignin (Boudet, 2003). 

A B 
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Hydroxycinnamic acid-mediated cross-linking may occur between cell wall 

constituents after cell growth has ceased and the secondary wall has been formed. 

Subsequently, lower molecular weight components, such as phenolic acids, 

flavonoids, tannins, stilbenes and lignans are deposited which are thought to be 

important during the last stages of wall differentiation (Boudet, 2003). 

Mechanical resistance of the walls are increased due to all of the above processes 

and therefore increase the resistance of the plant to abiotic and biotic stress factors 

(Nicholson & Hammerschmidt, 1992). All these different types of cell walls, 

especially the lignified walls, account for the larger part of the plant biomass and 

a pool of carbon in the form of lignocelluloses. 

Typically lignification starts in the cell corner in the middle lamella and proceeds 

towards the lumen. During the process, lignin fills up pores in the already 

deposited polysaccharide network. The lignification continues until the protoplast 

disintegrates and the cell dies (Christiernin, 2006). 

Stems of kiwifruit consist of a normal cambial structure but kiwifruit wood is 

diverse in structure. A common feature of kiwifruit wood is that it has fibre-

tracheids. The wood is semi ring-porous;  perforation plates may be simple, 

scalariform, reticulate or combinations of all (Condon, 1991). Water moves from 

one vessel to another or to adjacent parenchyma cells through numerous small 

openings called “pits” in the secondary walls. Pits between vessels consist of 

overarching walls that form a bowl-shaped chamber, called “bordered pits.” At the 

centre of each bordered pit is the pit “membrane”. The pit membrane is formed 

from the middle lamella and the original primary walls made up of cellulose 

micro fibrils that are hydrophilic. No lignification is found in the pit membranes 

(Zwieniecki & Holbrook, 2000). 
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Figure 1-3 Xylem vessel structure. (A) Arrangement of vessels and tracheids. 

(B)Schematic diagram of a longitudinal section across a pit. (C) Scanning Electron 

Microscopy (SEM) view of a bordered pit 

Secondary cell walls are evenly deposited on the inside of the primary walls 

except in the pit areas in fibre cells, where secondary walls are absent. Solute 

transportation and communication between two adjacent cells occurs through pits. 

(Zhong & Ye, 2009). Therefore if there was movement of the Psa pathogen 

through pit membranes it would not require any lignin degradation (Fig 1.2 

(A),(B),(C)). 

1.4.5 Composition of kiwifruit cell walls 

There is an absence of research into the structure and composition of primary or 

secondary cell walls of the vascular system of kiwifruit stem and leaves. 

A 

B C 
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However, extensive research has been conducted by Redgwell and co-workers on 

the composition of the primary walls of cells in the kiwifruit berry in relation to 

the ripening and post-harvest storage of the fruit (Redgwell & Fischer, 2001; 

Redgwell & Fry, 1993; Redgwell et al., 1997; Redgwell et al., 1988, 1991, 1992; 

Ross et al., 1993). In their analysis of the cell wall polysaccharides of the 

kiwifruit berry at harvest, they observed that 40-50% of cell wall materials are 

made up of a heterogeneous mixture of pectic galactans. Furthermore, between 

15-25% of the cell wall materials are hemicelluloses, the bulk of which were 

xyloglucans. They further observed that each tissue zone of the fruit contained 

similar types of polysaccharides. It was also observed that polysaccharides of the 

rhamnogalacturonan II type are associated with the pectic polymers of kiwifruit. 

1.4.6 Cell wall degrading enzymes (CWDE) 

Bacteria produce a range of CWDE, which contribute to their ability to invade the 

host plant. Research has been conducted to elucidate the mechanism adapted by 

microbes to disintegrate the different components of the host plant cell wall 

(Bateman & Basham, 1976). A thorough understanding of various CWDE 

produced by other pathogens, and their cell wall degrading mechanisms, would 

lead to a better understanding of putative CWDE activity of Psa. Therefore the 

well-known CWDE literature has been reviewed.  

1.4.6.1 Pectinases 

Pectinases are responsible for pectin solubilization and depolymerisation. 

Enzymatic and probably also non-enzymatic processes result in the solubilization 

of pectins into different fractions  (Rose et al., 2003). 

1.4.6.1.1 Polyuroronide hydrolysis and polygalacturonase (PG) 

The enzyme PG hydrolyses the α-1,4-D-galacturonan backbone of pectic 

polysaccharides (Gross & Wallner, 1979; Hobson, 1962; Huber, 1983; Redgwell 

& Fischer, 2001). As with many cell wall modifying enzymes, PG occurs as a 

family of genes and the corresponding proteins can act as either endo-, or exo-

hydrolases (Hadfield & Bennett, 1998). 
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1.4.6.1.2 Pectin de-esterification: pectin methylesterase and pectin 

acetylesterase 

It is believed that pectins are synthesized and deposited into the wall in a highly 

methylesterified form during cell wall synthesis, and then it undergoes enzyme-

mediated demethylation (Kauss & Hassid, 1967; Lau et al., 1985). Demethylation 

of the pectin galacturonosyl residues results in the generation of carboxylate 

groups. The carboxylate groups can then bind cations such as calcium and 

homogalacturonan chains non -covalently at specific junction zones. This results 

in the formation of a pectate gel (Pérez et al., 2000). 

1.4.6.1.3 Pectin depolymerization and pectate lyases 

This is another group of plant pectinases. These enzymes catalyse the cleavage of 

unesterified α-1→4-galacturonosyl linkages by a β-elimination reaction, in 

contrast with the hydrolytic mechanism of PGs (Rose et al., 2003). 

1.4.6.1.4 Pectin side chain modification: galactanases/β-galactosidases and 

arabinosidases 

Galactanases/β-galactosidases and arabinosidases are believed to be responsible 

for the loss of arabinan and galactan side chains from RG-I (Gross & Sams, 

1984).  

1.4.6.1.5 Rhamnogalacturonase 

Rhamnogalacturonase A (RGase A), is a hydrolase that cleaves galacturonosyl-

1,2-rhamnosyl glycosidic bonds (Schols et al., 1990). This is regarded as another 

enzyme that may act together with PG and other pectinases to degrade the pectin 

network (Redgwell & Fischer, 2001). 

1.4.6.2  Cellulose-interacting  

Cellulase is a general term which refers to three cellulolytic enzymatic groups. 

The three enzyme groups are endoglucanase (Cx), exoglucanase (C1) and 

cellobiase (CB), which act synergistically to degrade cellulose (Zaldivar et al., 

2001).  

Endo-1, 4-β-D-glucanases (EGases) compose a class of enzymes that can 

hydrolyse the 1,4-β-D linkages of cellulose. Potential substrates in plant cell walls 
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include cellulose, xyloglucan and glucomannan. Exo-1, 4-β-glucanases split off 

either cellobiose or glucose from the non-reducing end of the cellulose. 1,4-β-

Glucosidase hydrolyses cellobiose and other water soluble cellodextrines to 

glucose (Levy et al., 2002).  

Additionally, oxidative enzymes are required to fully degrade the cellulose 

polymers, which include cellobiose:quinone oxidoreductase (cellobiose 

dehydrogenase), which reduces quinones and phenoxy radicals in the presence of 

cellobiose, that are then oxidised to cellobiono-δ-lactone (Ander et al., 1990). 

1.4.6.3 Expansins 

Expansins are proteins that aggravate wall loosening but lack hydrolytic activity 

(Cosgrove, 2000a; Cosgrove, 2000b). However, most of the evidence suggests 

that they act in vivo at the cellulose-hemicellulose interface by weakening glucan-

glucan interactions resulting in breaking of the hydrogen bonds (Cosgrove, 2000a; 

Cosgrove, 2000b; McQueen-Mason & Cosgrove, 1994; McQueen-Mason & 

Cosgrove, 1995).  

1.4.6.4 Hemicellulases 

The heterogeneity of hemicellulose molecules makes their degradation difficult, 

requiring a variety of enzymes, generally referred to as hemicellulases. These 

include xylanases, β-xylosidase, endoglucanases, endomannanases, β-

mannosidases, β-mannanases, arabinofuranosidases, α-L-arabinanases and α –

galactosidases (Karboune et al., 2009; Saha, 2003). 

1.4.6.4.1 xyloglucanases  

Xyloglucan cross links are susceptible to cleavage by this enzyme (Pauly et al., 

1999). 

1.4.6.4.2 Xyloglucan endotransglucosylase-hydrolase (XTH) 

XTH catalyse the endo-cleavage and assumption of xyloglucans in a 

transglycosylation reaction. These transglycosylases were earlier named either 

xyloglucan endotransglycosylases (XETs) (Smith & Fry, 1991) or 

endoxyloglucan transferases (EXTs)   (Nishitani & Tominaga, 1992). A 

‘xyloglucanase’, or ‘xyloglucan-specific endo-β-1, 4-glucanase’, also exhibits 
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endotransglycosylase activity under certain conditions in vitro (Fanutti et al., 

1993; Farkaš et al., 1992 ). 

1.4.6.4.3 Mannanases 

These enzymes depolymerise or solubilise galactoglucomannans and/or 

glucomannans, which are also hydrogen bonded to cellulose (Fischer & Bennett, 

1991; Tong & Gross, 1988).   They are known from the cell wall in ripening 

berries of kiwifruit (Redgwell et al., 1991). 

1.4.6.4.4 Xylanases 

Xylanases are glycosidases (O-glycoside hydrolases, EC 3.2.1.x) that catalyze the 

endohydrolysis of 1,4-β-D-xylosidic linkages in xylan. Being a widespread group 

of enzymes, they are involved in the production of xylose, a primary carbon 

source for cell metabolism. In addition to above, xylose are produced in plant cell 

infection by plant pathogens, and by a plethora of organisms including bacteria, 

algae, fungi, protozoa, gastropods and anthropods. When it was first reported in 

1955, they were originally termed pentosanases. Then they were recognized by 

the International Union of Biochemistry and Molecular Biology (IUBMB) in 1961 

and were assigned the enzyme code EC 3.2.1.8. Their official name is endo-1,4-β-

xylanase, but commonly used synonymous terms include xylanase, endoxylanase, 

1,4-β-D-xylan-xylanohydrolase, endo-1,4-β-D-xylanase, β-1,4-xylanase and β-

xylanase (Collins et al., 2005). 

Despite a lack of evidence of degradation activity by xylanases, endoxylanase 

activity has been detected in a wide range of fruits (Ronen et al., 1991). 

As described above, xylans are typically an important structural component of the 

secondary cell walls of eudicotyledons such as kiwifruit. Given the ability of Psa 

to colonize and form cankers on the woody secondary tissues of its host, a core 

objective of this research was to investigate xylanase activity as a possible 

strategy adopted by Psa to degrade kiwifruit cell wall material. 

1.4.6.5 Lignin degrading enzymes 

The enzymes that are responsible for the degradation of lignin are referred to as 

lignin modifying enzymes (LMEs) and are oxidative in their enzymatic 
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mechanisms, not hydrolytic. There are two general groups of LMEs with the first 

including the peroxidases, such as lignin peroxidase, manganese peroxidase and 

versatile peroxidase, and many phenoloxidases of the laccase type (Martinez et 

al., 2005). 

1.5 Vascular structure of the Eu-dicotyledon plants and vascular 

pathogens 

1.5.1 Vascular structure 

The plant vascular system performs two main functions. It is involved in 

transporting water and minerals from the roots to the aerial parts of the plant and 

transports sugars from the leaves to parts of the plant that are not involved in 

photosynthesis. The water and mineral transportation is carried out by the xylem 

while the sugar transportation is carried out by the phloem. The xylem structure is 

capable of transporting water to higher elevations through long tubes of connected 

dead plant cells. In contrast, the phloem consists of interconnected living plant 

cells (Vinatzer, 2012).   

Xylem vessels are made up of elongated cells called vessel elements. At maturity 

the vessel elements consist of thick, lignified secondary cell walls. They are dead 

and hence lack all cytoplasmic content. The axial walls of vessel elements are 

perforated to allow relatively smooth water flow in the longitudinal direction, and 

a single vessel is comprised of many vessel elements arranged in series (Rudall, 

2007). 

Xylem is made up of nutrient-poor dead plant cells that are mainly transporting 

water and minerals. Sperry et al. (2006) observed that variation in the diameters 

of vessels, the tubes that transport water in most woody plants, is considered to be 

of central adaptive importance. Wider vessels conduct water more efficiently. 

However they are also likely to be more prone to breaking of the conductive 

stream and blockage by gas embolism (Olson & Rosell, 2013). 

The hydraulic conductance of xylem is influenced by the geometry of the 

conductive pipeline. The diameter and the length of the pipeline play a major role 

in this conductance. This relationship is explained by the Hagen Poiseuille law. 

Water transportation in most woody angiosperms is dependent on a complex 
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network of vessels. Water movement can occur axially, tangentially and radially 

when vessels are in contact with adjacent vessels (Jansen et al., 2011). 

Inter-vessel pits play an important role within the xylem vascular structure. Since 

the axial length of a single vessel is limited, the inter-vessel pits facilitate passage 

of xylem sap from one vessel to another. When moving from roots to leaves, 

water passes through a large number of inter-vessel pit membranes and therefore 

connectivity of the vessel network plays an important role in water conductance of 

angiosperms (Jansen et al., 2011). The small size of the pit membrane pores is a 

safety mechanism that limits the expansion of gas bubbles from one cavitated 

vessel to its neighbors and the movement of pathogens from one infected, water-

filled vessel to its neighbors as water moves through the xylem system (Nakaho et 

al., 2000; Sperry & Tyree, 1988; Tyree & Zimmermann, 2002b) unless those 

pathogens have a means of passing through the pit membrane (Newman et al., 

2003).  

1.5.2 Vascular pathogens 

The intracellular environment of xylem lacks nutrients required by many 

pathogens. Therefore, the pathogens adapted to survive in the xylem are often 

capable of surviving in nutrient rich areas outside the xylem tissue relatively well.   

As such, these pathogens are not considered as exclusive intracellular pathogens. 

In contrast, pathogens living in the phloem are considered intracellular pathogens 

since they have adapted to a nutrient rich, living environment  (Vinatzer, 2012). It 

is important to know whether Psa is also a xylem adapted pathogen and therefore 

if it is not an exclusive intracellular pathogen.  

Vinatzer (2012) in a commentary article stated that the economic loss caused by 

vascular pathogens in tree crops is much higher than that with herbaceous annual 

crops. Further he states that the recently emerged vascular plant pathogens are 

spread throughout many parts of the world. Phloem-limited Candidatus 

Liberibacter asiaticus, the pathogen thought to be responsible for citrus greening, 

poses a severe threat to the Florida orange industry. Pseudomonas syringae pv. 

actinidiae is affecting the kiwifruit industry in Europe and New Zealand and 

P.syringae pv. aesculi is affecting horse chestnut trees in the United Kingdom. 

Another species of vascular pathogens that poses a great risk to the wine industry 
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in California and the citrus industry in Brazil is the xylem-adapted Xylella 

fastidiosa.  

Type II secretion (T2S) is one of five protein secretion systems in Gram-negative 

bacteria. T2S allow the export of proteins from within the bacterial cell to the 

extracellular milieu and/or into target host cells. T2S can uplift  the virulence of 

human, animal and plant pathogens (Cellini et al., 2014). Ralstonia solanacearum 

is another example of a vascular pathogen which uses a type II secretion system to 

secrete cell-wall-degrading enzymes when invading plant roots. Once R. 

solanacearum reaches the xylem, it lives within dead xylem cells, which 

obviously cannot be manipulated through its injected effectors.  

The xylem sap is poor in nutrients and it is still unknown how bacteria are adapted 

to life in nutrient-poor xylem. Recent studies indicate that vascular pathogens P. 

syringae pv. aesculi and P. syringae pv. actinidiae contain genes that are capable 

of sucrose uptake and utilization (Green S, 2010; Marcelletti et al., 2011). Genetic 

analysis show that sucrose is an important energy source for R. solanacearum in 

xylem (Vinatzer, 2012). It will be interesting to see if genes for sucrose uptake in 

P. syringae pathovars have a similarly important role. 

Cucurbit yellow vine disease (CYVD), which can inflict heavy losses to 

watermelon, pumpkin, cantaloupe, and squash in U.S. is caused by a phloem-

colonizing, squash bug –transmitted bacterium called Serratia marcescens. 

Symptoms are phloem discoloration, foliar yellowing, wilting, and plant decline 

(Bruton et al., 2003). 

1.6 Cell wall degrading activity of Psa 

Marcelletti et al. (2011), observed that the J-Psa (a strain of Psa isolated in Japan, 

Psa biovar 1 in Chapmen et al.’s scheme), I-Psa and I2-Psa (the two strains 

known from Italy, Psa 1 and Psa 3 in Chapman et al.’s scheme) contain pectin 

lyase and polygalacturonase genes. These genes are completely similar to their 

orthologues in the genome of Pto T1 (the T1 strain of P.syringae pv. tomato). The 

soft–rot bacterium P. marginalis also contains the above enzymes. Additionally 

the Psa genome contains genes responsible for catabolism of plant derived 

aromatic compounds, such as lignin. These catabolism genes are also present in 

other P. syringae pathovars which infect woody hosts namely, P. syringae pv. 
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aesculi (pathogenic on chestnuts) and Pseudomonas savastanoi pv. savastanoi 

(pathogenic on olive). 

In the above Marcelletti’s study all three Psa strains were isolated from leaf spot 

symptoms. However they all show a set of genes involved in the degradation of 

lignin derivatives and other phenolics. Also all three Psa strains have genes 

supposed to catalyse the degradation of anthranilate to the catechol branch of the 

β-ketoadipate pathway and to the protocatechuate degradation via the 

protocathechuate 4,5-dioxygenase pathway. Utilisation of unsubstituted lignin-

related compounds and other plant derived phenolic compounds such as 

mandalate and phenol is possible through these pathways. These lignin utilisation 

genes are also displayed in other P. syringae pathovars involved with woody hosts 

such as P. syringae pv. aesculi and P. savastanoi pv. savastanoi and P. putida (a 

soil-inhabiting species). Therefore it has been suggested that the most highlighted 

symptom of extensive degradation of the woody tissues of the main trunk and 

leaders on Actinidia plantations during winter is occurring due to the above lignin 

utilization ability of Psa. 

1.6.1 Histological evidence of cell wall degrading activity of Psa 

It has been found that the primary infection sites of the pathogen are the natural 

openings such as stomata and lenticels, and also lesions at the points of contact. In 

the leaves the pathogen invades the intercellular spaces of the spongy and palisade 

parenchyma first (Renzi et al., 2012).  Psa is considered a ‘biotroph’, hence, it 

invades the apoplasm first. Following the infection through the lenticels of stems, 

the pathogen has been observed in the intercellular and intracellular spaces 

(Hallett, 2012). It has been established that spongy and palisade parenchymas of 

leaves are infected by Psa and in the infected cells, the cytoplasmic organelles 

have disappeared and the cell wall has been ruptured in several locations, 

facilitating movement of the pathogen to neighbouring cells. In infected plants, 

the bacteria have been found in the dead phloem, suggesting that invasion and 

infection of the xylem is possible (Renzi et al., 2012). 

Xylem invasion is further evidenced by a reduction in vessel size by 

approximately 50% after the first year of infection (Renzi et al., 2012), although 

reduced vessel size could be caused indirectly by a reduction in growth following 

http://en.wikipedia.org/wiki/Pseudomonas_savastanoi
http://en.wikipedia.org/wiki/Pseudomonas_savastanoi
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infection. Furthermore, tyloses were observed in the outermost tree rings, which 

are important for water conductance. Formation of tyloses suggests activation of 

defence mechanisms to reduce spread of the pathogen within the xylem, resulting 

in a reduction in hydraulic conductance. Despite the suggestion that Psa invades 

the xylem, neither Renzi et al. (2012) nor Hallett (2012) have directly observed 

bacteria in the xylem during the initial infection period. However, from the New 

Zealand kiwifruit industry there have been many anecdotal reports of white 

bacterial ooze from the cut xylem of plants that are already severely affected, 

raising questions as to whether the bacterium spreads systemically within the 

xylem. Leaf inoculation experiments also suggest that the bacterium can spread 

from leaves into the stem, via the petiole (Ferrante et al., 2012; Serizawa & 

Ichikawa, 1993 c), leading to speculation that it can spread systemically within the 

xylem. However, there have been no convincing reports of Psa movement within 

the xylem of stems or leaves (Spinelli et al., 2011). 

The entire invasion process from natural openings to possible invasion of xylem 

vessels strongly suggests the pathogen possesses the capability to either weaken 

or degrade cell walls of the host plant. However, whether the actual infection 

process is supported by cell wall degrading mechanisms is unknown (Renzi et al., 

2012). 

1.6.2 Genomic evidence of cell wall degrading activity of Psa 

Evidence of the capability of Psa to degrade cell wall material has been observed 

in a recent study of the draft genome of the pathogen (Marcelletti et al., 2011).  

In the genomic analysis of Psa by Plant and Food Research scientists in New 

Zealand, it has also been observed that there are annotations for well-known 

CWDE in the genome (McCann et al., 2013).   The analyses of the core genome 

Psa, combined with disease history, all support the hypothesis of an independent 

Chinese origin for both the Italian and the New Zealand outbreaks and suggest the 

Chilean strains also originate from China (Butler et al., 2013). 

1.6.3 Cell wall degrading activity by other pathogens  

Despite the fact that cell wall degradation ability of Psa has not been previously 

investigated, the infection process of other xylem dwelling and canker forming 
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pathogens has been well established. It has been found that Xylella fastidiosa 

spreads through the xylem during the systemic infection of grapevine. In the 

healthy grapevine, the xylem pit membrane consists of pores with a diameter of 

20 nm through which the pathogen of 250 nm x 1,000 nm size is unable to pass. 

However, the pathogen traverses the pit membrane and passes freely to the 

adjacent xylem vessel in infected plants. This observation has led to the 

investigation of a possible pit membrane degrading activity by X. fastidiosa. The 

walls of the vessel elements consist of a lignified secondary cell wall. However, 

the pit membrane is thought to consist only of middle lamella and parts of primary 

cell wall containing homogalacturonan pectins and xyloglucans.  Sequence 

analysis of the X. fastidiosa genome has shown it to include genes possessing the 

potential to encode enzymes capable of degrading primary cell wall material. 

These genes include one polygalacturonase-encoding gene (pglA) and multiple 

genes encoding endo-1,4-β glucanase (engxcA). It has also been found that the 

alteration of pit membrane porosity occurs only when polygalacturonase and three 

endo-1,4-β-glucanases are present at the same time. When the bacterium secretes 

any one of the enzymes in isolation, it is unable to infect the plant (Perez-Donoso 

et al., 2010; Roper et al., 2007).  

It has also been found that a Diffusible Signal Factor (DSF) produced within the 

pathogen tightly controls the expression of pglA and engxcA genes (Sun et al., 

2011). Mutants of DSF have been found to be hypervirulent on the host. 

Furthermore, the level of pectin and β-glucan in a culture media containing X. 

fastidiosa regulates the degree of expression of pglA and engxcA genes. This 

observation suggests that expression of pglA and engxcA genes may be controlled 

by endogenous factors present in the vessel system that are actively modified by 

the bacterium as it spreads through the host’s xylem (Sun et al., 2011). 

These findings suggest that cell wall material degrading enzymes secreted by the 

pathogen are capable of modifying the porosity of pit membrane allowing the 

pathogen to pass through the xylem from the infection site to other parts of the 

plant, and that the degree of expression of cell wall degrading genes is a function 

of pectin and β-glucan content in the cell wall. If Psa is similarly capable of 

systemic spread through the xylem of kiwifruit plants, then the inter-vessel pit 
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membrane of kiwifruit also represents a barrier. Whether, and how, Psa can 

overcome the pit membranes of kiwifruit is unknown. 

Xylem invasion has also been observed in the case of Ralstonia solanacearum 

during tomato root infection. It has been found that the pathogen initiates 

colonization on the surface of the root extremities and then progresses gradually 

towards the xylem. Electron microscope images of the root following colonization 

have shown the invasion of protoxylem by the pathogen. However, the xylem 

vessels with the lignified secondary walls have not been penetrated. Ralstonia 

solanacearum has been found to produce extracellular endoglucanase and exo-

pectinase capable of degrading primary and secondary plant cell walls. Absence 

of invasion of lignified xylem vessels suggest that lignin and subarine coated 

secondary walls act as a physical barrier to the pathogen (Vasse et al., 1995). 

1.6.4 Evidence of pathogens altering the expression of host genes to 

facilitate invasion 

It has been found that the chemical composition of the host cell wall material 

determines the degree of susceptibility to cell wall degrading enzymes of various 

pathogenic microbes (Lionetti et al., 2007). Pectin is synthesised within the cell in 

a highly methylesterified form. Following its deposition on the cell wall, pectin 

molecules are demethylesterified by pectin methylesterase (PME) enzyme. Pectin, 

in its methylesterified form, is highly resistant to cell wall degrading enzymes, 

while the demethylesterified form is susceptible to degradation. In the host cells, 

expression of PME is inhibited by a pectin methylesterase inhibitor (PMEI), thus 

the conversion of pectin from methylesterified form to demethylesterified form is 

regulated. In Arabidopsis, PMEI is encoded by the expression of two genes, 

AtPMEI-1 or AtPMEI-2, and it has been found that constitutive expression of 

these two genes down regulates the expression of PME encoding gene AtPME3, 

thus reducing the plant’s PME activity and rendering the cell wall more resistant 

to cell wall degrading enzymes of pathogens (Lionetti et al., 2007). 

Pectobacterium carotovorum and Botrytis cinerea have displayed a capability to 

utilize host derived molecules to facilitate pathogenicity process by forcing the 

host enzyme machinery to work in concert with their cell wall degrading enzymes 

to penetrate the cell wall barrier. The two microbes induce AtPME3 leading to the 
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expression of PME, forcing demethylesterification of pectin. Consequently, 

demethylesterified pectin becomes highly susceptible to cell wall degrading 

enzymes of the pathogens. In the plants infected by the pathogens, a relationship 

has also been observed between the activation of the jasmonic acid/ethylene 

(JA/ET) dependent defence pathway and up regulation of AtPME3 (Raiola et al., 

2011). Draft genome analysis of Psa reveals the presence of pectin lyase genes 

(Marcelletti et al., 2011). Accordingly, it may be quite possible that Psa possesses 

a similar capability. 

1.7 Aims and objectives of the thesis 

Sequencing the entire genome of Psa by Plant and Food Research has resulted in 

the discovery of four genes displaying sequence similarities to the xylanase gene. 

Therefore, there is a significant likelihood that Psa possesses a putative xylanase 

activity. Therefore, the overall aim for this thesis was to investigate host cell wall 

degrading strategies, particularly the xylanase producing ability, of Psa. This 

investigation sought to test three hypotheses by pursuing the following objectives: 

Chapter 2. Objectives:  Analysis of the Psa genome for possible CWDE.  

Investigate whether Psa can grow in-vitro on a medium containing kiwifruit 

xylem material, and whether this growth is associated with the appearance of 

xylanase activity. 

Hypothesis I: That the Psa genome includes genes encoding for plant cell wall 

degrading enzymes, particularly xylanase, and that xylanase is produced by the 

bacterium and results in cell wall degrading activity. Chapter 2 describes the 

experiments addressing Hypothesis I. 

Chapter 3. Objectives:  Investigate whether genes responsible for xylanase are 

expressed during in-planta infection. Identify the genes responsible for Psa 

produced xylanase during in-planta infection, and determine whether there is a 

reduction in stem strength associated with infection. 

Hypothesis II: Bacterial genes encoding for xylanase are expressed during 

infection and the xylanases produced by the bacterium degrade components of the 

cell wall of the host plant, reducing the strength of the infected stem. Chapter 3 

describes the experiments addressing Hypothesis II. 
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Chapter 4. Objectives: To ascertain whether xylem vessel architecture such as 

the length and the spatial distribution of vessels has a significant role in 

facilitating the movement of Psa within the plant. To investigate the movement of 

Psa after inoculation of the leaf. 

Hypothesis III: That the kiwifruit vine contains long vessels that extend from the 

stem to the leaf, creating a possible pathway for Psa movement. That movement 

of the Psa bacterium from leaf to stem is correlated with the presence of open 

vessels between the leaf and stem. Chapter 4 describes the experiments addressing 

Hypothesis III. 
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2 CHAPTER 2 

In vitro Psa Growth and Xylanase Enzyme 

Activity 

2.1 Abstract 

The host cell wall degrading activity and invasion strategies of a number of other 

P. syringae pathogens and also histological analysis of  Pseudomonas syringae 

pv. actinidiae (Psa) infected host plants indicate a possible cell wall degrading 

mechanism of Psa pathogen. In this research the genome of Psa was examined to 

ascertain whether well-known cell wall degrading enzymes were annotated. The 

degree of similarity of the annotated genes was compared to the cell wall 

degrading genes of other Pseudomonas woody host pathogens. Nine genes with 

sequence homology to six types of well-known cell wall degrading enzymes 

(CWDE) were identified, with the degree of amino acid similarity varying 

between 58% and 98%. Patterns of Psa growth were examined in standard 

nutrient broth media, xylan and casein media and minimal media supplemented 

with kiwifruit cell wall material. Psa was able to grow in kiwifruit xylem media, 

but the pattern of growth differed from that in the other two media. In the standard 

nutrient broth media, a typical bacterial growth pattern was observed while in the 

kiwifruit xylem media the Psa count declined initially and thereafter recovered 

briefly, which is a pattern indicative of inductive bacterial growth. Based on the 

outcome of the bioinformatics analysis, in vitro enzyme assays were conducted 

for Psa in the aforementioned culture media to determine potential activity of 

xylanase enzyme(s). When Psa cultured in kiwifruit cell wall material were 

assayed with 3,5-Dinitrosalicylic acid (DNSA),  a xylanase activity was observed. 

However, when Psa cultured in kiwifruit cell wall material was assayed with 

Remazol Brilliant Blue (RBB), no activity was detected.     

2.2 Introduction  

Pseudomonas syringae pathovars cause a number of diseases in woody dicot fruit 

trees worldwide, are increasingly difficult to control, and as a result are causing 

significant economic losses. The pathogen has the ability to systemically infect 
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and kill both young and older trees (Kennelly et al., 2007a). New Zealand’s 

kiwifruit industry had been a success story for a number of years until the Psa 

outbreak impacted the woody kiwifruit vine in 2010 (Vanneste, 2012). As Psa is a 

woody host pathogen, it is important to investigate the pathogen’s potential to 

synthesise CWDE. Therefore in this thesis research, in vitro studies of Psa’s 

growth and propagation in various media, one of which was supplemented with 

kiwifruit woody xylem material, were conducted. An understanding of Psa’s 

survival and propagation on kiwifruit material under in vitro conditions provides 

important insights into the pathogen’s capability to degrade and use woody 

kiwifruit tissue as an energy source under in planta conditions. Until now, there 

have been limited investigations of the in vitro growth response and enzyme 

activity of Psa to kiwifruit material (Nardozza et al., 2015). 

Genomic studies conducted into the Psa genome have revealed genes contributing 

to the pathogen’s adaptation and virulence. The pathogen harbours genes 

encoding for well-known CWDE (Marcelletti et al., 2011; McCann et al., 2013). 

However, no research has been conducted to date to investigate the expression of 

these genes or the activity of the enzymes they encode for. 

The importance of conducting in vitro experiments to detect expression of CWDE 

is further supported by the outcomes of a number of in vitro studies conducted on 

other Pseudomonads in low nutrient media. In Pseudomonas fluorescens 23F, the 

carbon-phosphorus bond cleavage activity (Phosphonoacetate hydrolase) to utilize 

phosphonoacetate as the sole carbon and phosphorus source without having to 

starve for phosphate was detected in vitro. The observation was vital in studying 

further behaviour of the pathogen within the host (McMullan & Quinn, 1994). In 

an in vitro study conducted into copper resistance in Pseudomonas syringae pv. 

syringae recovered from blossoms of sweet and sour cherry, copper resistant 

isolates were detected by culturing bacteria on low nutrient glycerol medium 

amended with various concentrations of cupric sulfate. It was observed that 14 out 

of 17 copper resistant isolates contained a single plasmid of 46-73 kb. When the 

plasmids were transferred to copper-sensitive strains and infiltrated into bean 

leaves, populations of copper sensitive strains were reduced significantly (Sundin 

et al., 1989). Important parallels can be drawn with Psa which also has genes 

coding for resistance to copper and antibiotics (Marcelletti et al., 2011). 
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Composition of extracellular polysaccharides (EPS) produced by Pseudomonas 

phaseolicola in vitro were studied and it was found that the composition of EPS is 

dependent on the primary carbon source in the culture media (Gross & Rudolph, 

1987). Therefore, there is a strong case to study the growth and propagation of 

Psa in vitro, especially on a medium containing material from woody parts of the 

kiwifruit vine, to determine whether Psa is able to utilize kiwifruit wood as an 

energy source by synthesising CWDE. 

In this study the in vitro xylanase activity of Psa was studied using different 

enzyme assays, while also investigating the growth of Psa in different media. It 

was hypothesised that Psa produces xylanases in vitro when it is grown in energy-

deficient media with a xylan-containing substrate. Xylanases are hydrolytic 

enzymes which randomly cleave the β1,4 backbone of the complex plant cell wall 

polysaccharide xylan. Different forms of these enzymes have been identified, with 

a variety of amino acid sequences, resulting in different structures, modes of 

action, substrate specificities (different xylanases have different activities against 

various xylan structures), hydrolytic activities and physicochemical characteristics 

(Collins et al., 2005). Xylanases are classified as glycoside hydrolases, and a wide 

variety of xylanases have been identified as belonging to a number of different 

families within this more general class of enzyme. The most studied xylanases 

belong to glycoside hydrolase families 10 and 11 (Collins et al., 2005; Li et al., 

2000). Since the assays for xylanase with Psa described in this thesis appeared to 

show different types of activity in vitro and in planta, it remains unclear which 

family they belong to. There were two objectives in this study.  The first was to 

ascertain the pattern of Psa growth in a minimal culture medium supplemented 

with kiwifruit wood, compared to a standard rich medium and another minimal 

medium supplemented with xylan only. The second objective was to assess the 

potential for xylanase synthesis by Psa by examining the pathogen’s genome for 

potential xylanase genes, and by testing for any xylanase activity produced during 

in-vitro culture. 
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2.3 Materials and methods   

2.3.1 Bioinformatic analysis of Psa genome for putative genes encoding 

plant cell wall degrading enzymes. 

A published genome (Genbank accession number  NZ_MOMK01000370) was 

used in this research to identify putative genes encoding for cell wall degrading 

enzymes (CWDE) (McCann et al., 2013). The bioinformatics analysis was carried 

out using Geneious version 7.1.9 (Biomatters, Switzerland) (Kearse et al., 2012). 

Genes that were annotated in the Psa  genome (referred to as Psa-V by McCann 

et al., 2013) were full genes and not fragments or frameshifts. 

The nucleotide (nt) sequence of each putative CWDE gene was translated to their 

respective protein amino acid (aa) sequence in all six open reading frames (ORFs) 

that were selected. The resulting six protein sequences were compared with 

protein sequences deposited in Genbank using BLAST (NCBI, 2016; Stephen et 

al., 1997) to identify homologous proteins. The top 100 hits were obtained and 

investigated further. For each CWDE, the Enzyme Commission (EC) number was 

recorded using the ExPAsy Bioinformatics Resource portal 

(http://enzyme.expasy.org/). 

2.3.2 Growth of Psa in nutrient broth 

The Pseudomonas syringae pv. Actinidiae strain used in this experiment is 

referred to as “Psa-V” (McCann et al., 2013), which is the isolate responsible for 

disease outbreaks in Italy (in 2008) and in New Zealand (in 2010). For this 

research, a culture of Psa-V (Strain 10627) was obtained from Plant and Food 

Research, Ruakura, New Zealand. Bacteria were maintained at -80ºC in ampules 

containing nutrient broth and 5% glycerol. To culture in Nutrient Broth, 13 grams 

of standard Nutrient Broth ‘E’ (Thomas Scientific) was dissolved in 1 litre (L) of 

deionised water and 250 ml was dispensed into 1 L flasks. Three flasks were 

maintained including the negative control. The media were autoclaved for 

45 minutes. Two flasks were inoculated each with 6.25 ml of 9.21 x 109 colony 

forming units (CFU) ml-1 Psa solution giving approximately 2.5% V/V bacterial 

suspension in the final solution. All the flasks including the negative controls 

were maintained in a shaking incubator with a shaking speed of 160 Rev min-1 at 

25ºC. Serial dilutions, plating on nutrient agar and CFU counts were performed 

http://enzyme.expasy.org/
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from the first 8 hours post inoculation, every 8 hourly for the 1st day and every 

day for the following 10 consecutive days (Cappuccino & Sherman, 2008; 

Tortora, Funke, & Case, 2007). 

2.3.3 Growth of Psa in Oat Spelt xylan, Casein and Ammonium Chloride 

NH4Cl  

Psa was grown on a medium designed to promote xylanase production in Bacillus 

sp. (Pham et al., 1997). Two Erlenmeyer flasks containing the oat spelt xylan 

medium were inoculated each with 6.25 ml of 9.21 x 109 CFU ml-1 Psa solution 

giving approximately 2.5% V/V bacterial suspension in the final solution. The 

experiment was conducted in duplicate. Three flasks including the negative 

controls were maintained in a shaking incubator with a shaking speed of 160 Rev 

min-1 at 25ºC. Serial dilutions and plating were performed from the 1st day and 

every day for the following 10 consecutive days and CFU counts on Nutrient 

Agar plates were recorded. 

2.3.4 Growth of Psa in minimal media supplemented with kiwifruit xylem  

The minimal medium, a culture medium for microorganisms that contains the 

minimal mineral necessities for survival of the wild-type used in this experiment 

was prepared using a recipe published by Chakrabarty et al. (1973) and Demain 

(1958) with modifications to suit Psa.  

1. PAS (phosphate ammonium salts)           7.75 ml/L 

     0.1 M K2HPO4 

     0.05 M KH2PO4 

     0.160 M NH4Cl    

2. 100X Salts                                        10ml/L  

MgSO4 (anhydrous)                         19.5 gm/L 

MnSO4.H2O                                     5gm/L 

FeSO4.7H2O                                     5gm/L 

CaCl2.2H2O                                      0.3gm/L 

Ascorbic acid                                    1.0gm/L 
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Pieces of stem obtained from mature Actinidia chinensis Planch. var. chinensis 

‘Hort16A’ vines located at Plant and Food Research, Ruakura, New Zealand, 

were used to prepare the xylem powder. The bark of the stems was physically 

removed from the surface with a knife and the resulting xylem tissue was washed 

in hot water rubbing thoroughly to remove any sugars and starch associated with 

phloem and the bark. The tissue was cut into small pieces and oven dried at 60°C. 

The oven-dried pieces of kiwifruit were ground into xylem powder using a saw 

grinder (Pulverisette, Fritsch GmbH, Germany). The resulting powder is referred 

to as kiwifruit xylem in this thesis. 

The medium used in this experiment was a minimal medium supplemented with 

0.5% kiwifruit xylem (5g of kiwifruit xylem in 1L minimal media solution). The 

medium was autoclaved for 45 minutes twice to prevent any microbial 

contamination from the kiwifruit xylem. Duplicates of 0.5% kiwifruit medium 

were inoculated with 7.35 x 1011 CFU ml-1 Psa solution. Non-inoculated minimal 

media supplemented with kiwifruit xylem and nutrient broth were maintained as 

negative controls.  The negative controls were also periodically checked for any 

bacterial growth by streaking on to Nutrient Agar plates. All the flasks including 

the negative controls were maintained in a shaking incubator with a shaking speed 

of 160 Rev min-1 at 25º C. Serial dilutions and plating were performed from the 

first day post inoculation, every day for 11 consecutive days and again on the 13th 

day and the respective CFU counts on the plates were recorded (Cappuccino & 

Sherman, 2008; Tortora et al., 2007). 

2.3.5 Enzyme assays 

Two treatments were included in this experiment. The first was 0.5% xylem in 

minimal medium with Psa (henceforth referred to as treatment a), the second was 

0.5% xylem in minimal medium without Psa (Blank Control, henceforth referred 

to as treatment b). Psa cultures, maintained in nutrient broth and glycerol at -

80ºC, were used in this experiment to prepare the inoculum. One ampule of frozen 

Psa was added to 25 ml sterile nutrient broth in 100 ml Erlenmeyer flask. Flasks 

were kept in a shaking incubator at a shaking speed of 160 rev min-1 at 25ºC for 
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24 hours. A sterile loop of culture was spread on to a nutrient agar plate after 24 

hours and incubated in order to ensure that only Psa was grown in the culture. 

Minimal media (250 ml) supplemented with 0.5% kiwifruit xylem prepared 

earlier was added to two flasks and labelled as treatment (a) and treatment (b). 

12.5 ml of Psa inoculum was added to flask (a) and 12.5 ml of sterile nutrient 

broth was added to flask (b). Both the flasks were kept in the shaking incubator, 

160 rev min-1 at 25ºC. Following inoculation, 16 ml samples from the above 

cultures were taken on six days (i.e. Day 1, Day 3, Day 5, Day 7, Day 9, and Day 

11) and assays performed. 

Two different assays were used to test for xylanase  in the resulting cultures. The 

DNSA assay is a general reducing sugar assay that detects sugars released 

primarily by exo-xylanase action on the reducing end of long-chain xylan 

molecules (Jeffries et al., 1998 ). The RBB assay is an alternative assay that 

measures dye release from a conjugate of Remazol Brilliant Blue (RBB) and 

xylan, and is considered more suitable for quantifying the activity of endo-

xylanases capable of hydrolyzing the internal 1-4 linkages of the xylan molecule 

(Bailey et al., 1992). 

Oat spelt xylan (0.2%) in 100mM hepes buffer at PH 7.0 was used as the substrate 

for the DNSA assay. DNSA reagent was prepared as follows. 

Dinitrosalicylic Acid   1.36 g 

Phenol  2.70 g 

Sodium Sulphite  0.68 g  

Sodium hydroxide  13.6 g  

Potassium Sodium Tartarate  47.86 g  

In water to 1000 ml total volume, and filtered through a 0.2 µm membrane filter.  

The principle of the RBB assay is that RBB-Xylan is cleaved with endo-xylanase 

to low molecular weight dyed fragments which remain in solution on addition of 

ethanol to the reaction mixture. The high molecular weight fragments are removed 
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by centrifugation and the absorbance of the supernatant is measured at 595 nm. 

The endo-xylanase activity has a linear relationship to the absorbance of the 

supernatant measured. RBB xylan (0.1%, Sigma-Aldrich, M5019) in 50 mM citric 

acid at pH 5.5 was used as the substrate for the RBB assay. 

While cultures were growing, a standard curve was constructed for DNSA using 

xylanase from Thermomyces lanuginosus. From the standard curve it was 

observed that 25 μl of 0.1 mg ml-1 of Thermomyces xylanase was required for the 

assay with 400 μl of 0.2% oat spelt xylan (starting substrate) to generate sufficient 

xylose product to create an absorbance within the linear portion of the standard 

curve. 

Protocols were developed to concentrate and separate the cultures into bulk, 

extracellular and intracellular fractions. Using VIVASPIN ultrafiltration 

concentrators (membrane 10,000 MWCO PES), 16 ml of total culture were 

concentrated approximately 17 fold (5000 RPM for 60-90 minutes with Rotor F15 

in BECKMAN Induction Drive Centrifuge). DNSA and RBB Assays for xylanase 

were performed as per the standard xylanase assay method with some 

modifications as recorded in Chapter 3 in triplicates (Bailey, 1988; Bailey et al., 

1992; Miller, 1959). The assay tubes were incubated for 30 minutes at pH 7.0 and 

30ºC for DNSA, and 12 hours at pH 5.5 and 37ºC for RBB. Assays were 

conducted separately for culture retentate and the flow-through on day 1 and day 

3. From day 5 and onwards, two 16 ml samples from inoculated culture (treatment 

a) were obtained. One of the 16 ml samples was concentrated 17 fold and the 

concentrate (retentate) and the flow-through assayed as done for day 1 and day 3 

samples. A sample of 16 ml from the non-inoculated culture (treatment b) was 

also obtained from day 5, concentrated and assayed in the same way. The other 16 

ml sample from treatment a, was centrifuged and the pellet and supernatant 

separated. The supernatant was concentrated using the same VIVASPIN 

concentrators and the retentate and flow-through assayed. The pellet (xylem 

particles and the Psa cells) were re-suspended in one ml of HEPES buffer (pH 

7.0), distributed by briefly vortexing for 15 seconds and one portion of the 

suspension was assayed. The other portion was sonicated as per standard bacterial 

sonication and then assayed. As described above, xylanase from Thermomyces 

lanuginosus was used as positive control on day 5 for the DNSA assay. A cocktail 
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of M1, M3 and M6 xylanase (M1 – endo-1,4-β-Xylanase from Trichoderma 

viridae, M3 – endo-1,4-β-Xylanase from Trichoderma longibrachiatum, M6- 

endo-1,4-β-Xylanase from rumen microorganism, these enzymes obtained from 

Megazyme, Bray, Ireland) was used as the positive control for the RBB assay. 

The positive controls were used to confirm that the assay was working properly, 

as well as determine if there was any inhibition from the Psa culture (whether the 

organism or the medium) towards enzyme activity even if the enzyme was 

present. Therefore, assays were conducted with 100 μl xylanase from T. 

lanuginosus/M1, M3 & M6 and 50 μl xylanase from Thermomyces 

lanuginosus/M1, M3 & M6 and 50 μl of treatment b as positive controls in the 

activity. Concentrated whole culture samples from treatment a of each sampling 

day were kept at -20ºC and those samples were assayed after further concentration 

by Microcon Centrifugal Filter Units (MilliporeSigma, USA). In all the above 

assays, absorbance was measured spectrophotometrically at 575 nm for DNSA 

(UV-160, Shimadzu, Japan) and 595 nm for RBB (Microplate reader, BioTek, 

USA) against a blank without an enzyme. 

t-test was performed on enzyme assay results to analyze whether the results are 

statistically significant at 0.05.  

2.4 Results 

2.4.1 Bioinformatic analysis of Psa genome    

Nine sequences with homology to six types of known CWDE genes were 

identified as present in the Psa genome (Table 2.1). Among these sequences, four 

xylanases were identified as polysaccharide deacetylase, with transcript lengths 

ranging from 819 - 1162 nucleotides (Table 2.1). Amino acid translations of the 

annotated CWDE sequences from the Psa genome were compared with enzymes 

of other woody canker causing Pseuodomonas syringae species, and enzymes 

from non-Pseudomonas xylem dwelling pathogens that have been known to 

express CWDE (Table 2.2). Three of the four polysaccharide deacetylase 

sequences shared a high level of homology with known enzymes from other 

canker causing Pseuodomonas syringae pathovars and other Pseudomonas plant 

pathogens (Table 2.2). 
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Table 2.1 Selected annotated CWDE genes in the Psa genome. EC number, 

number of nucleotides (nt), number of amino acids (aa) and genome position are 

provided.

CWDE EC Number 
Gene 

(nt) 
Protein (aa) 

Genome 

Position 

Polygalacturonase 3.2.1.15 1599 533 
5,231,888 -> 

5,233,486 

Polysaccharide 

deacytyalse 1  

3.2.1.8 

3.2.1.32 

3.2.1.136 

3.2.1.156 

1161 

 

387 

 

1,280,788 -> 

1,281,948 

 

Polysaccharide 

deacetylase 2  
3.2.1.8    819 273 

3,684,420 -> 

3,685,238  

Polysaccharide 

deacetylase 3 
3.2.1.8 882 294 

2,330,772 -> 

2,331,653 

Polysaccharide 

deacetylase 4 family 

protein 

3.2.1.8 930 310 
2,938,401 -> 

2,937,472 

Cellulase (Glucanase) 

 

3.2.1.4 1212 404 
1,925,122 -> 

1,926,333 

Pectin Lyase 

 

4.2.2.2 1272 423 
2,265,503 -> 

2,266,774 

Laccase multicopper 

polyphenol  
1.10.3.2 729 243 

5,385,657 -> 

5,384,929 

Catechol 1,2-

dioxygenase 
1.13.11.1 906 302 

4,271,486 -> 

4,270,581 

 

http://enzyme.expasy.org/EC
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Table 2.2 Comparison of Psa annotated CWDE enzymes with other Pseudomonas syringae organisms mainly infecting woody hosts and xylem 

pathogens. Grade % indicates the homology of annotated enzymes of Psa to CWDE proteins (enzymes) in the other pathogens. 

Psa BLASTp Hits 

Enzyme  Gene (nt) 

 

Protein (aa) 

 

Grade 

Score (%) 

Bacterium  

 

GenBank No. # 

 

Protein (aa) 

 

Polygalacturonase 

 

1599 

 

533 

 

98.1 

97.7 

96.4 

93 

76.2 

75.9 

75 

 

75 

74.6 

74.6 

Pseudomonas syringae pv. theae ICMP 3923 

Pseudomonas syringae pv. tomato str. DC3000 

Pseudomonas amygdali 

Pseudomonas savastanoi pv. savastanoi   

Ralstonia solanacearum GMI1000 

Ralstonia solanacearum PSI07 

Xanthomonas translucens pv. translucens DSM 

18974 

Xylella fastidiosa M23 

Xylella fastidiosa Temecula1 

Xylella fastidiosa (PgIA) 

WP_020325471 

NP_793726 

WP_005740729 

WP_002552584 

NP_522441 

YP_003749800 

WP_003475290 

 

YP_001830252 

NP_779680 

AFJ79979 

532 

532 

506 

532 

531 

530 

558 

 

544 

535 

544 

Polysaccharide 

deacetylase 1 

882 

 

294 

 

99.5 

99.5 

99.3 

99.3 

99.3 

Pseudomonas syringae pv. tomato str. DC3000 

Pseudomonas amygdali pv. morsprunorum 

Pseudomonas syringae pv. pisi str. 1704B 

Pseudomonas syringae pv. viburni 

Pseudomonas syringae pv. coryli 

NP_793964 

WP_060402342 

EGH41543 

WP_044419948 

WP_046234980 

293 

293 

293 

293 

293 
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Table 2.2 (contd) 

Psa BLASTp Hits 

Enzyme  Gene (nt) 

 

Protein (aa) 

 

Grade 

Score (%) 

Bacterium  

 

GenBank No. # 

 

Protein (aa) 

 

Polysaccharide 

deacetylase 2  

 

1161 

 

387 

 

63 

 

62.3 

58.7 

58.6 

58.1 

 

57.9 

 

Pseudomonas syringae pv. morsprunorum str. 

M 

Pseudomonas syringae pv. tomato T 

Pseudomonas syringae pv. aesculi str. 0893_23 

Pseudomonas savastanoi pv. Savastanoi 

Pseudomonas syringae pv. avellanae str. 

ISPaVe013 

Pseudomonas syringae pv. avellanae str. 

ISPaVe037 

WP_005736640 

 

WP_007244172 

WP_005733962 

WP_002556135 

WP_003408510 

 

WP_003414950 

 

403 

 

403 

403 

403 

403 

 

403 

Polysaccharide 

deacetylase 3 

819 273 98.7 

98.3 

98.3 

98 

98 

Pseudomonas amygdali 

Pseudomonas syringae pv. Avii 

Pseudomonas avellanae 

Pseudomonas syringae pv. maculicola 

Pseudomonas syringae pv. Persicae 

WP_005737625 

WP_057430319 

WP_024420634 

WP_054069241 

WP_046463531 

299 

299 

299 

299 

299 

Polysaccharide 

deacetylase 4 

family protein 

930 310 99.5 

99.2 

99.2 

99 

98.9 

Pseudomonas avellanae BPIC631 

Pseudomonas syringae pv. delphinii 

Pseudomonas syringae pv. viburni 

Pseudomonas syringae pv. Tomato T1 

Pseudomonas syringae] pv. tomato str. DC3000 

WP_005619456 

WP_057435903 

KPZ14289 

WP_007245254 

WP_005765316 

309 

309 

339 

309 

309 
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Table 2.2 (contd) 

Psa BLASTp Hits 

Enzyme  Gene (nt) 

 

Protein (aa) 

 

Grade 

Score (%) 

Bacterium  

 

GenBank No. # 

 

Protein (aa) 

 

Cellulase 

(Glucanase) 

 

1212 

 

404 

 

99 

98.4 

94.7 

94 

 

93.8 

Pseudomonas syringae pv. morsprunorum  

Pseudomonas syringae pv. tomato str. DC3000 

Pseudomonas syringae pv. aesculi str. 0893_23 

Pseudomonas syringae pv. avellanae str. 

ISPaVe013 

Pseudomonas syringae pv. avellanae str. 

ISPaVe037 

WP_005736640 

NP_790865 

WP_005733962 

WP_003408510 

 

WP_003414950 

 

403 

403 

403 

403 

 

403 

Pectin Lyase 

 

1272 

 

423 

 

99 

98.3 

98.1 

91.8 

 

91.6 

91.2 

Pseudomonas syringae pv. morsprunorum  

Pseudomonas avellanae BPIC 631 

Pseudomonas syringae group genomosp. 3 

Pseudomonas syringae pv. avellanae str. 

ISPaVe037 

Pseudomonas syringae pv. syringae B64 

Pseudomonas savastanoi pv. savastanoi 

WP_005739467 

WP_005620151 

WP_007246176 

WP_003418628 

 

WP_004416371 

WP_002554938 

421 

421 

421 

421 

 

421 

415 

Laccase 

multicopper 

polyphenol  

 

729 

 

243 

 

98.8 

98.8 

98.3 

 

94.4 

Pseudomonas syringae pv. morsprunorum  

Pseudomonas syringae pv. tomato str.DC 3000 

Pseudomonas syringae pv. lachrymans str. 

M302278 

Pseudomonas syringae pv. avellanae str. 

ISPaVe037 

WP_005740193 

NP_790674 

WP_005769280 

 

WP_003414752 

 

242 

242 

242 

 

242 

 

Catechol 1,2-

dioxygenase 

 

906 

 

302 

 

98.8 

98 

98 

Pseudomonas syringae pv. morsprunorum  

Pseudomonas syringae pv. aesculi str. 0893-23 

Pseudomonas savastanoi pv. savastanoi 

NCPPB 3335 

WP_005738670 

WP_005733729 

EFH98912 

301 

301 

309 

 



 

50 

 

2.4.2 Growth of Psa in different media 
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Figure 2-1 Psa colony density expressed as CFU in selected media. Liquid cultures 

held in conical flasks were incubated in a shaking incubator with a shaking speed of 

160 Rev min-1 at 25ºC (n=5, means ± SE). 

Psa in nutrient broth (NB) showed the highest growth rate in the first two days, then 

CFU declined during the 10 days thereafter. Psa in oat spelt xylan/casein and Psa in 

0.5% kiwifruit xylem media showed increases and decreases in CFU counts reaching 

a peak at 195 hours post inoculation in oat spelt xylan medium and two peaks at 100 

and 269 hours post inoculation in the kiwifruit medium (Fig 2.1). 

2.4.3 In vitro xylanase activity of Psa 

Xylanase activity was detected in Psa inoculated 0.5% kiwifruit xylem cultures 

using DNSA. Psa inoculated cultures showed an activity in the concentrated 

supernatant using the DNSA assay conducted post inoculation (P >0.05; Fig 2.2 A). 

On day 9, Psa inoculated culture supernatant showed the highest activity which was 

23.6 - fold higher than the non-inoculated cultures. The activity values were on 

average 17 to 20 – fold higher than that of non-inoculated cultures during the period 
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of the experiment. The level of activity was comparable to that measured with non-

inoculated culture supplemented with a positive control. In contrast, there was no 

positive xylanase activity detected in Psa inoculated culture supernatant using RBB 

assays conducted post inoculation in minimal media supplemented with 0.5% 

kiwifruit xylem (P >0.05; Fig. 2.2 B). However, the RBB assay indicated significant 

activity in the positive control. 

Across all cultures, xylanase assay types and various levels of concentration, 

significant xylanase activity was only detected in the concentrated supernatant of 

centrifuged samples from xylanase-active cultures. No activity was detected in 

assays of re-suspended intact, sonicated (lysed) pellets or flowthrough, suggesting 

that the xylanase was present in an extracellular form. 
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Figure 2-2 Xylanase activity in the concentrated supernatant of minimal media 

supplemented with 0.5% kiwifruit xylem. The positive control was only included in 

assays of the Day 3 culture. (A) DNSA assay; (B) RBB assay (n=5, means ± SE).         
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Figure 2-3 DNSA assay conducted in different media inoculated with Psa to 

evaluate xylanase activity. Assays were conducted on the concentrated supernatant 

of each inoculated media. (n =5, means ± SE).    

 

The xylanase activity observed when Psa was cultured in minimal media 

supplemented with 0.5% kiwifruit xylem was on average 5-fold higher than activity 

detected in cultures grown in nutrient broth medium or xylan and casein medium on 

all days of post inoculation except on day 9 (P <0.05; Fig 2.3). The first peak of Psa 

CFU counts in 0.5% kiwifruit xylem medium on the fourth day (100 hrs) post 

inoculation corresponded with xylanase activity detected on day 3 post inoculation in 

the same culture (Figs 2.1 & 2.3). In the xylan and casein medium, the first peak in 

Psa CFU counts was detected by the eighth day (195 hrs) of post inoculation and its 

xylanase activity was highest on day 9 post inoculation. 
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2.5 Discussion 

The results were consistent with the hypothesis that Psa contains genes encoding for 

cell wall degradation (Table 2.1) and that a gene for xylanase is expressed and is 

active in in vitro cultures of Psa. Extracellular xylanase activity was detected in the 

culture of minimal media supplemented with 0.5% kiwifruit xylem using the DNSA 

assay (Figs. 2.2, 2.3). 

2.5.1 Bioinformatics analysis of Psa genome for putative genes encoding plant 

cell wall degrading enzymes 

Genes for six types of CWDE in total were found in the Psa genome. 

Polygalacturonase from the Psa genome has 74.6% homology to polygalacturonase 

present in Xylella fastidiosa, a well-known xylem dwelling pathogen (Table 2.2) 

whose polygalacturonase enzyme activity has been confirmed (Perez-Donoso et al., 

2010; Roper et al., 2007). Pseudomonas syringae pv. tomato str. DC3000 (Pto) is a 

woody pathogen whose xylanase has 99.5% homology to Psa xylanase. Therefore 

one future research question concerns Pto’s enzyme activity. If Pto’s enzyme activity 

has not been established, future research could be envisaged in this direction. 

Furthermore, well known woody host pathogens Pseudomonas savastanoi and 

Pseudomonas syringae pv. aesculi proteins show 93.7% and 93.9% homology to Psa 

xylanase, respectively. Catechol 1,2-dioxygenase is involved in the lignin 

degradation pathway (Marcelletti et al., 2011). Psa catechol 1,2-dioxygenase has 

98.8%, 98% and 98% similarity to the proteins found in Pseudomonas syringae pv. 

morsprunorum, Pseudomonas syringae pv. aesculi str. 0893-23 and Pseudomonas 

savastanoi pv. savastanoi NCPPB 3335, respectively. Despite the evidence of 

genetic homology of Psa CWDE with above pathogen’s CWDE, the actual cell wall 

degrading activity of these pathogens has not been investigated. 

The Psa genome contains sequences with homology to laccase and catechol 

dioxygenase, enzymes typically associated with lignin degradation in wood 

degrading micro-organisms (Tables 2.1 and 2.2). Wood is highly resistant to decay 

because of the presence of lignin (Floudas et al., 2012). Lignin is also a major pool 

of organic carbon, but white rot fungi in the class Agaricomycetes are the only 

organisms considered capable of substantial lignin decay. Surprisingly, Marcelletti et 

al. (2011) stated that extensive degradation of the woody tissues of the main trunk 
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and leaders in Psa infected kiwifruit during winter is due to utilisation of lignin by 

the pathogen. However, there is no direct evidence to support this claim. Potential 

mechanisms of lignin degradation by Psa should be an area for further research, 

starting from the enzyme sequences identified in this study. 

The genes encoding polygalacturonase and pectin lyase enzymes display a 

significant degree of similarity to those found in Pseudomonas savastanoi and 

Pseudomonas syringae pv. aesculi (Table 2.2). This observation has already been 

made by Marcelletti et al. (2011). Furthermore, genes encoding for xylanase in 

Pseudomonas syringae pv. morsprunorum were 98.5% identical to the xylanase 

annotated in the Psa. Future experiments should be initiated to determine if cell 

cultures of these bacteria are expressing xylanase, leading to degradation of cell wall 

material.  

2.5.2 Growth of Psa in different media      

Psa in nutrient broth showed the characteristic bacterial growth pattern while Psa’s 

growth in xylan plus casein or the 0.5% kiwifruit xylem media deviated from a 

constitutive growth pattern. In the characteristic constitutive growth pattern of 

bacteria, upon inoculation there is an initial lag period followed by exponential-

phase growth. During the first two to three days, bacterial density remains high and 

thereafter cells enter the death phase. After ~99% of the cells die, the survivors can 

be maintained under long-term stationary-phase culture conditions for months or 

years (Finkel, 2006). However, there can be instances where any one or several of 

these phases may be absent. The lag and the acceleration (exponential) phases may 

be suppressed under suitable conditions and the retardation (death) phase can be 

short and slight. Sometimes the stationary phase also becomes imperceptible. In 

addition more complex growth patterns are very common (Monod, 1949).    

It is pertinent to draw parallels between the characteristic bacterial growth pattern 

and the growth pattern of Psa. Psa behaved in three different ways in three different 

media. Psa in nutrient broth followed a growth pattern typical of Gram negative 

bacteria; a log or exponential phase, followed by a stationary phase, and ending with 

a phase of prolonged decline. The rapid growth can be attributed to the rich medium 

in which the cells were initially cultured. Psa in the nutrient broth medium reached 
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its stationary phase within 24 hours and further reached the phase of decline after 48 

hours (Figure 2.1).  

An increase in Psa CFU counts was observed in the xylan and casein medium during 

the first 24 hours followed by a decline in CFU counts between 24 to 48 hours post 

inoculation with the decline continuing to day 6. From day 6 onwards, an increase in 

CFU count was observed until day 8. The second phase of growth was not 

significant compared to the initial growth phase. From day 8 onwards, a decline in 

CFU counts was observed. 

Psa demonstrated a completely different growth pattern in minimal medium 

supplemented with 0.5% kiwifruit xylem with a deviation from the characteristic 

constitutive bacterial growth curve. The minimal medium does not contain a readily 

available source of carbon and energy for Psa to utilize for its survival or 

multiplication. Therefore, as observed in Figure 2.1, it is possible for Psa density to 

enter into the declining phase after the first 24 hours (Day 1). After the 3rd day, the 

bacteria multiply and showed a steady increase in CFU. The cell density reached a 

plateau by day 4 and maintained a constant density until day 5. From day 5 onwards, 

a decline in CFU occurred until day 10. After day 10, there was a rise but the 2nd rise 

was less significant compared to the 1st rise. This pattern of growth can be attributed 

to the ability of phytopathogens to produce a range of enzymes capable of degrading 

complex polysaccharides of the plant cell wall (Bateman & Basham, 1976). 

Therefore, the outcome of this experiment indicated the possibility of the bacteria 

surviving in the medium by producing enzymes that catalysed the degradation of cell 

wall components (mainly xylan and other cell wall polysaccharides of the xylem). 

The degradation products of xylan and xylem resulting from this process were likely 

consumed as a source of carbon and energy and metabolised by Psa, resulting in a 

delay while enzyme production was induced, followed by an increase in cell number. 

A second peak in cell number during bacterial culture under low nutrient conditions 

can occur after cell death releases nutrients. Surviving Psa cells may then catabolise 

the organic debris resulting from cell death. Programmed cell death is a common 

phenomenon in cultures lacking abundant nutrients (Finkel, 2006; Jensen & Gerdes, 

1995). A proportion of Psa cells under these conditions may have committed cellular 

“suicide”, resulting in the survivors continuing to reproduce. The organic debris 
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released by cell death and known to be metabolisable by living cells mainly consist 

of amino acids from proteins, carbohydrates from the cell wall, lipids from cell-

membranes, and even DNA (Finkel & Kolter, 2001). Therefore, the second peak in 

CFU during culture of Psa on xylem media may be attributed to this phenomenon. 

Psa in nutrient broth (NB) showed the highest growth rate in the first 2 days and 

continued to decline over the next 10 days whereas Psa in xylan and casein medium 

or kiwifruit medium demonstrated increases and decreases in growth rate. Nutrient 

broth was a rich medium containing a readily available energy source, causing Psa to 

follow a characteristic pattern of bacterial growth. Overall, Psa in xylan and casien 

medium had the highest cell counts from day 3 onwards compared to NB and the 

kiwifruit xylem medium. Oat spelt xylan contains approximately 10% arabinose and 

15% glucose residues, however these were presumably not initially available as an 

energy source. However, after a lag the surviving Psa cells should have been able to 

utilise these residues via the same type of xylanase activity as that detected in the 

xylem medium. Cell counts of Psa were possibly lower in the minimal medium 

supplemented with kiwifruit xylem compared to the xylan and casein medium 

because kiwifruit xylem was a less pure and energy rich source of polysaccharides 

than the xylan plus casein medium. 

2.5.3 In vitro xylanase activity of Psa 

As discussed above, there should be a correlation between in vitro xylanase activity 

and the delayed first peak of CFU counts of Psa growing on minimal media 

supplemented with 0.5% kiwifruit xylem. This behaviour is consistent with a 

possible utilisation of cell wall polysaccharides by Psa as an energy source, 

following extracellular enzymatic degradation to metabolisable sugars. The DNSA 

assay results were consistent with this hypothesis (Figure 2.2A), while the RBB 

assay results were not (Figure 2.2B).     

The results suggest that the xylanase is probably active as an extracellular enzyme 

secreted by Psa as the activity was detected only in concentrated supernatant. This is 

typical of xylanases and other CWDE produced by similar plant pathogens (Barras et 

al., 1994; Bateman & Basham, 1976; Kosugi et al., 2001). 
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The rate of xylan hydrolysis is influenced by the chain length and the degree of 

substitution. For example, some gylocoside hydrolase family-11 xylanases can 

rapidly hydrolyse xylans that have a chain length greater than 8 xylose residues, and 

their hydrolytic rates are not sensitive to substituents on the xylan backbone (Li et 

al., 2000). Others are more effective on xylans that have a long chain (greater than 

19 xylose residues), but vary widely in their sensitivity to substituent groups (Li et 

al., 2000). In this study oat spelt xylan (C10H11O8)n was used as the substrate for the 

DNSA assay (Xylan Oat spelt). It is possible that the xylanases produced in-vitro by 

Psa were active towards the oat spelt xylan substrate used in the DNSA assay, but 

inactive towards the RBB assay substrate. RBB xylan is generally considered a 

better substrate and assay method for endo-acting xylanases that can cleave at sites 

within longer chain xylans (Bailey et al., 1992; Bhat & Hazlewood, 2001). 

 

In the in planta study (Chapter 3), contrasting results were obtained with the two 

types of xylanase assays. The RBB assay conducted with Psa inoculated plant 

extracts indicated a positive activity, whereas the DNSA assay did not. Contradictory 

assay results between in-vitro and in-planta conditions are not unique to Psa. For 

example, when protein production by the pathogen Fusarium graminearum 

(Gibberella zeae) was compared between in-vitro culture and during infection of 

wheat heads, 49 in-planta produced proteins were not found during growth on any of 

13 different culture media. Several proteins found only during in planta growth may 

be important in the interaction between F. graminearum and its host plants (Paper et 

al., 2007). 

  

Another example of contradictory activities between in vitro and in planta growth 

conditions has been observed with other Pseudomonas syringae pathovars. The 

amounts of ethylene produced by Pseudomonas syringae pv. glycinea, pv. 

phaseolicola and pv. pisi in synthetic medium were different to the amount of 

ethylene production in planta in bean. The bean strains of P. syringae pv. 

phaseolicola and strains of 17 other pathovars did not produce ethylene in planta. 

(Weingart & Volksch, 1997).  

 

An association is evident between the xylanase activity and starvation of Psa in the 

minimal media supplemented with 0.5% kiwifruit xylem (Figs 2.1 & 2.3). In 
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contrast, xylanase activity was absent or very low in the nutrient broth and xylan and 

casein media. Only on day 9 did Psa produce a significant xylanase activity in the 

xylan and casein medium, a timing that corresponded with the 2nd peak in CFU count 

that Psa achieved on Day 9 in this medium (Figures 2.1, 2.3). It is a future area of 

research to investigate whether starvation or the reduction of CFU counts in the 

culture media triggers xylanase production by Psa.  

2.6 Conclusion       

The Psa genome comprises at least four sequences for xylanase, as well as sequences 

with homology to some other well-known cell wall degrading enzymes. Psa displays 

the behaviour of a characteristic Gram negative bacteria in a rich medium, however, 

it showed a different growth behaviour in energy deficient media. The results with 

one type of xylanase substrate indicated that Psa produced xylanase activity when 

grown on energy deficient media. The appearance of this activity corresponded with 

peaks of Psa CFU counts during culture on these media, leading to the conclusion 

that Psa is capable of degrading plant cell wall material, and of utilizing the resulting 

products as a substrate for growth. 
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3 CHAPTER 3 

Putative In Planta Xylanase Activity of Psa in 

Actinidia chinensis Planch. var. chinensis 

‘Hort16A’   

3.1 Abstract 

In order to better understand the invasion process of Psa within the host, studies of 

in planta activity of Psa xylanase were conducted. Stems of Actinidia chinensis 

Planch. var. chinensis ‘Hort16A’plants were inoculated with Psa, and when disease 

symptoms appeared in the inoculated plants, both inoculated and non-inoculated 

shoots were harvested. DNA from the infected shoots was extracted and amplified 

using a pair of duplex Psa specific primers to confirm that the symptoms were due to 

Psa infection. For detection of xylanase activity, ground stem pieces were subjected 

to xylanase extraction buffer. Remazol Brilliant Blue (RBB), 3,5-Dinitrosalicylic 

acid (DNSA) and Azurine-Crosslinked Polysaccharides (AZCL) assays were 

conducted on the stem extracts. Xylanase activity was detected using the RBB assay 

in extract from Psa inoculated stems, but not in extract from non-inoculated stems. 

No xylanase activity was detected using the DNSA and AZCL assays. The RBB 

assay detected xylanase activity exhibited typical enzyme kinetic responses to 

temperature and other assay conditions. A penetrometer test was used to determine 

whether Psa infection caused a reduction in stem strength.  The average strength per 

mm thickness of xylem was less in infected stems, suggesting that infection and 

xylanase activity is associated with a loss of cell wall strength. Anatomical 

observations confirmed the presence of bacteria within the stem cortical tissue, and 

the movement of bacteria between fractured cell walls. cDNA was synthesised from 

RNA extracted from inoculated and non-inoculated stems and amplified using 

primer pairs specific to genes annotated in the Psa genome for xylanases 

(Polysaccharide deacetylases-PDs). Expression of a Psa polysaccharide deacetylase 

gene with a nucleotide length of 882 (PD 882) was observed only in the inoculated 

stem samples. Therefore at least one gene in the Psa genome for a putative xylanase 
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was expressed during Psa infection. This gene may be responsible for the observed 

xylanase enzyme activity and reduction in strength of the infected stems. 

3.2 Introduction 

Microorganisms colonising plants must first overcome the plant cell wall barrier to 

achieve infection. Enzymatic degradation of plant cell walls is one of the most 

striking invasion strategies of plant pathogenic microorganisms (Robinson, 1991). 

Cellulases, pectinases, proteases and xylanases are cell wall degrading enzymes 

often secreted by phytopathogenic bacteria and fungi for breaking down components 

of their host’s cell walls (Choi et al., 2013; Rajeshwari et al., 2005). The plant cell 

wall is a mechanical support and a barrier; nonetheless the wall is a dynamic, 

metabolically active organelle (Robinson, 1991). Although the wall contains 

peroxidases, phenolics and other compounds which are toxic to living tissues, the 

wall is also a nutritional source for microorganisms and animals (Cooper & Jellis, 

1984). Since the wall is comprised mainly of carbohydrate, it can be a rich source of 

glucose or other monomers (Showalter, 1993).  

Once infected, all polymers of a plant cell wall can eventually be degraded by 

microorganisms. This suggests that for every type of chemical bond in the wall there 

must be an enzyme that can cleave it (Walton, 1994). Lignin is the cell wall 

component that is most resistant to microbial degradation, however even the ability 

to degrade lignin has been reported for some plant pathogenic fungi (Dashtban et al., 

2010)  

In-planta expressed xylanase has a major role in virulence in many bacterial and 

fungal diseases. For example, Xanthomonas oryzae pv. oryzae is the causal agent of 

bacterial leaf blight, a devastating disease of rice (Rajeshwari & Sonti, 2000). 

Several proteins, including a xylanase, are secreted through type II secretion systems 

(T2S) and are important for virulence of X. oryzae pv. oryzae. The xynB gene has a 

xylanase catalytic domain present and encodes for the 32 kDa secreted xylanase in 

Xanthomonas oryzae pv. oryzae. The xynA and xynB genes are adjacent to each 

other. Mutations in xynB but not xynA affected secreted xylanase activity and caused 

a significant reduction in virulence (Rajeshwari et al., 2005). There are about 30 to 

40 genes potentially encoding for cell wall degrading enzymes in the genome 

sequences of Xanthomonas campestris pv. campestris and X.axonopodis pv. citri. 
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These genes are likely to be important in the plant pathogenesis of xanthomonads 

(Young J.M. et al., 1996).  

Botrytis cinerea is a fungal plant pathogen attacking a number of hosts, causing 

economic losses worldwide (Y. Elad et al., 2004). B. cinera can degrade xylan by 

the coordinated action of a group of extracellular enzymes. Among these, endo- β-

1,4-xylanases carry out the initial breakdown by cleaving internal bonds in the 

polymer backbone. When the gene, xyn11A, coding for an endo-β-1,4-xylanase 

belonging to family 11 of glycosyl hydrolases was disrupted, a moderate decrease 

(30%) in disease symptoms occurred. When the gene was deleted, an even more 

significant decrease in symptoms occurred (Brito et al., 2006).  

Certain Pseudomonads are known to derive their pathogenicity from production of 

pectinolytic enzymes, but not xylanase. Pseudomonas marginalis produces 

substantial amounts of pectate lyase (PL) to macerate tissues of herbaceous plants, 

causing bacterial soft rot (Membré & Burlot, 1994). Furthermore, an extracellular PL 

produced by Pseudomonas viridiflava is responsible for maceration of tissues of 

harvested vegetables, also causing soft rot (Liao et al., 1988). Pseudomonas syringae 

has been demonstrated to be involved in a number of diseases of hosts ranging from 

herbaceous plants to various species of woody trees, resulting in the emergence of 

highly destructive diseases such as bacterial canker of kiwifruit and bleeding canker 

of horse chestnut (Nowell et al., 2016). However, neither the cell wall degrading 

ability in general, nor the xylanase producing ability in particular, have been 

investigated in detail for P. syringae pathovars that infect woody hosts. 

In recent studies of the Psa genome, it has been noted that the Psa genome includes 

open reading frame sequences with homology to genes from other pathogenic 

bacteria known to encode for polygalacturonase (PG), pectin lyase, and xylanase 

enzymes, as well as genes involved in the degradation of lignin derivatives and other 

phenolics (Marcelletti et al., 2011). During the research reported in this thesis, a 

preliminary gel diffusion experiment was conducted to determine if PG activity was 

present in Psa infected stem extractions, however no PG activity was detected.   
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Investigation of the xylanase activity of the Psa pathogen cultivated in different 

growth media indicated a significant level of xylanase activity especially when the 

pathogen was cultured on minimal media supplemented with 0.5% ground kiwifruit 

secondary xylem (Chapter 2). Observation of the symptoms of infected A. chinensis 

plants also suggested that the stems are weakened and lose strength during invasion 

by the pathogen. These observations prompted the question of whether the organism 

produces xylanase in-planta, during its infection of host tissue. Therefore, in this 

chapter it was hypothesised that genes for xylanase that are present in the Psa 

genome are expressed during infection, that xylanase activity is detectable during 

infection, and that associated changes in the composition of host cell wall material 

causes a loss of strength in infected stems. 

3.3 Materials and methods 

3.3.1 Plant material 

Twenty clonal Actinidia chinensis Planch. var. chinensis ‘Hort16A’ plants were 

grown from rooted cuttings obtained from the Plant and Food Research orchard, 

Ruakura. Once rooted the cuttings were grown in standard potting mix (KKW NZ 

Tree seedling Mix, Daltons, NZ) in 3.5 L volume pots under glasshouse conditions. 

Eight month old plants were pruned back to several axillary buds two months prior 

to the experiment, so that at the time of the experiment, each plant had at least 2 

vigorous shoots with a minimum length of 60 cm. During the experiment the plants 

were kept in an automated containment glass house, irrigated once a day, kept under 

continuous high relative humidity (80 - 90%, maintained using fogging), and a 

daytime temperature of 20-24 ºC under natural summer-time day length and light. 

Ten plants were designated for inoculation with Pseudomonas syringae pv. 

actinidiae (Psa) and ten plants were maintained as non-inoculated, and randomly 

arranged in five rows within the glasshouse (Fig 3.1 A).  

3.3.2 Inoculation 

Psa maintained at -80°C in an ampule consisting of previously grown Psa culture in 

nutrient broth preserved in 5% glycerol was used in this experiment. One thawed 

ampule (containing one ml) of Psa was added to 25 ml of sterile nutrient broth and 

was kept shaking in the orbital incubator on 160 Rev min-1 at 25°C for 48 hours. 

From previous experiments, these conditions were expected to result in a culture 
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containing 1012 CFUs/ml, with CFU checked by measuring the optical density (OD) 

of the culture. The bacterial culture was diluted to approximately 109 CFU ml-1, 

centrifuged, the pellet washed twice in sterile water and re-suspended in 10 ml of 

sterile water in order to obtain a final 109 CFU ml-1 suspension. Serial dilution and 

plating were used to confirm the actual strength of the inoculum. 

Two shoots of each plant were inoculated, with either the prepared Psa culture or 

sterile water (controls). Stems were inoculated by first creating a horizontal wound 

in the bark, 5 mm in length, penetrating to the cambium, 20 cm above the base of the 

shoot. Ten microliters of the prepared inoculum suspension or water were placed 

immediately on the wound, and stem morphology monitored at the wound site to 

follow the progress of infection. 

3.3.3 Harvest 

After approximately 3 weeks there were clear visual signs of infection in inoculated 

shoots. This was observed as browning extending to approximately 400 mm above 

the inoculation point. One shoot from each plant was used for enzyme assays and 

histological analysis and the second shoot was used for the strength test. The shoots 

were measured (length, number of nodes) and harvested using sterilised secateurs 

approximately 50 mm from the base of the shoot.  

Leaves of the shoots used for assays and histology were removed and discarded. 

Each shoot was cut into pieces of 50-60 mm in length from 200 mm above the 

inoculation point, sealed into polythene bags and transferred to the laboratory for 

further analysis. Approximately 10-12 pieces 1 mm in length were cut from the 

stems, snap frozen in liquid N2 and stored at -800C until extraction and assaying for 

xylanase activity. 

3.3.4 Plant extract  

Hort16A kiwifruit stem pieces were ground in liquid N2 using a pestle and mortar. 

Seven hundred and fifty µl of xylanase extraction buffer (Ahmed, 2004; European 

Molecular Biology Laboratory) was added to 250 mg of the ground kiwifruit tissue, 

50 mg of Polyvinylpolypyrrolidone (PVPP) added, and the mixture thawed on ice. 

The sample was mixed by vortexing and incubated on ice for a further 30 minutes. 

The sample was centrifuged at maximum speed 16.1X103 rcf in an Eppendorf® 
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5415 R centrifuge for 10 minutes at 4ºC, and the supernatant transferred to a new 

microcentrifuge tube. Five hundred μl of extraction buffer was again added to the 

ground kiwifruit tissue pellet, vortexed to re-suspend, incubated for 10 minutes on 

ice, centrifuged at maximum speed for 10 minutes at 4ºC, and the supernatant 

combined with that from the first extraction. 

3.3.5 Enzyme assays 

3.3.5.1 RBB assay  

Four hundred µl of 0.1% RBB xylan (Sigma M5019) in 50mM citric acid (pH5.5), 

10 µl of 1 mg ml-1 Bovine Serum Albumin (BSA) and 100 μl plant extract were 

mixed well in a 2 ml Eppendorf tube and incubated overnight at 37ºC. The next day 

0.8 ml of 96% ethanol was added and left for 20 minutes at room temperature. The 

sample was then spun at maximum speed for 10 minutes and absorbance read at 595 

nm against a background control without the plant extract. A positive control 

consisting of a cocktail of three known endo-1,4-β-xylanases (M1- Trichoderma 

viridae, M3- Trichoderma longibrachiatum and M6- rumen microorganism, 

Megazyme, Bray, Ireland) was added into an assay run with non-inoculated plant 

extract. 

RBB assay conditions were varied to confirm the enzymic origin of the xylanase 

activity present in the inoculated plant extract. Assay series were conducted at 21ºC 

(ambient), 37ºC and 50ºC using water baths. Another series was conducted at 4ºC, 

10ºC, 20ºC, 30ºC, 40ºC and 50ºC. RBB assays were also conducted with variable 

plant extract volumes (100 µl and 300 μl), variable substrate concentration (0.5% 

RBB xylan instead of 0.1% RBB xylan) and variable incubation times (2 and 12 

hours at 10ºC, 20ºC, 30ºC, 40ºC). 

3.3.5.2 DNSA assay 

For the DNSA assay, oat spelt xylan (0.2%) in 100 mM hepes buffer at pH 7.0 was 

used as the substrate. Four hundred μl of substrate and 100 µl of the plant extract 

described above were dispensed into 1.5 ml microcentrifuge tubes. The assay tubes 

were mixed by inversion, then incubated in a water bath at 30ºC for 30 minutes, after 

which 1000 μl of DNSA reagent (Chapter 2) was added. The tubes were again mixed 

and placed in a boiling water bath for 6 minutes. They were then transferred to an ice 
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bucket to cool before reading absorbance at 575 nm in UV-Visible recording 

spectrophotometer (UV-160, Shimadzu, Japan). 

Aliquots of substrate incubated without enzyme (plant extract) were used as blanks. 

After addition of DNSA, the plant extract was added, the tubes were immediately 

immersed in boiling water, before being cooled and the absorbance recorded. The 

blank absorbance was subtracted from the sample absorbance to calculate the 

increase in absorbance. Enzyme activity in µmoles minute-1 ml-1 was calculated 

using the slope of the line of best fit over the linear region of the standard curve, 

prepared using known concentrations of product. Known xylanase from 

Thermomyces lanuginosus (Sigma-Aldrich, St. Louis, USA) was added into assays 

run with non-inoculated plant extract as a positive control. 

3.3.5.3 AZCL assay  

Fifty mg of AZCL xylan from birchwood (Megazyme, Bray, Ireland) was dissolved 

in 30 ml of 0.2M 2-(N-morpholino)ethanesulfonic acid (MES) buffer at pH 5.0. In a 

2 ml microcentrifuge tube, 100 μl of the above substrate was added, 50-100 μl of 

plant extract was then added, mixed well and kept overnight at 37ºC. After 

incubation 150 µl of 3% Tris were added and incubated for 20 minutes at room 

temperature. The sample was centrifuged at maximum speed for 10 minutes and 

absorbance of the supernatant read at 595 nm against back ground controls, which 

were assays without plant extract. Known enzyme (the cocktail of M1, M3 and M6 

described above) was added to the assays conducted with extract from non-

inoculated plants as a positive control. 

t-test was performed on enzyme assay results to analyze, whether the results are 

statistically significant at 0.05.  

3.3.6 Re-isolation of Psa from the infected shoots. 

A piece of fresh stem (5 mm in length) was surface sterilised by dipping in 1% 

hypochlorite solution for 3 mins, triple rinsed with sterile water, ground in 100 µl of 

sterile water and centrifuged at low speed to remove the solids.  The resulting 

supernatant was spread on a nutrient agar plate and incubated at room temperature. 

After 2 days the plates were checked for any creamy-coloured colonies that 
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resembled Psa. Fresh samples were then taken from representative colonies and 

Polymerase Chain Reactions (PCRs) conducted to confirm their identity as Psa.  

Duplex PCRs were conducted using 2 pairs of primers (Gallelli et al., 2011): 

a. KN-F and KN-R (McCann et al., 2013; Rees‐George et al., 2010) 

b. AvrDdpx-F and AvrDdpx-R (King EO et al., 1954 ). 

Positively amplified products of the expected size were purified using a DNA clean 

and concentrator kit (Zymo Research, USA), eluted in a final volume of 20 µl and 

sequenced by the DNA Sequencing Facility, University of Waikato, Hamilton, New 

Zealand. 

3.3.7 Strength test 

 

Figure 3-1 Digital force gauge used to measure the strength of the inoculated and non-

inoculated stems.  

 

A digital force gauge (Imada DS-2, Northbrook, USA) was used to measure the 

maximum force required for the probe (2 mm diameter) to penetrate the stem. The 
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gauge was mounted onto a level test stand and the probe was manually advanced 

through the stem at an approximately constant speed until the probe penetrated the 

xylem and entered the pith. The penetration force was measured adjacent to the site 

of inoculation, and 200 mm distal to the site of inoculation.  Thick transverse hand 

sections were cut with a razor blade adjacent to the site of each penetrometer 

measurement, placed on a light box and photographed with a camera equipped with a 

macro lens. The thickness of the xylem from cambium to the pith was measured 

across two radii using image analysis (Image J; Schneider et al 2012) and force 

required to penetrate the stem per mm of xylem thickness calculated. 

t-test was performed on strength test results to analyze, whether the results are 

statistically significant at 0.05.  

3.3.8 Histology  

Minimal fixative was prepared using 0.1% glutaraldehyde, 2% formaldehyde in a 

0.1M phosphate buffer solution. Final pH of the minimal fixative was 7.2.  

Approximately 1 mm thick transverse stem tissue sections from inoculated and non-

inoculated stems were cut into sectors on a wax bottomed dish under minimal 

fixative, fixed for 24 hours, dehydrated through a graded alcohol series, before 

infiltration and embedding in acrylic resin (LR White, Sigma-Aldrich). Transverse 

1.5 µm sections were obtained using a diamond knife fixed to an ultra-microtome 

(Ultracut, Reichert-Jung, Germany). Cross sections were mounted on poly-lysine 

coated slides, stained with 0.5% Toluidine Blue in Na2CO3 buffer pH 11.1 (O'brien 

et al., 1964; Sakai, 1973) and photographed using a light microscope (Leica DMRE). 

3.3.9 Primer designing for xylanase annotations  

Four pairs of gene specific primers (Table 2.1) were designed using Primer3Plus  for 

each polysaccharide deacetylase annotation identified in the Psa genome (PD; 

Accession Number: AKT30846.1, AKT32033.1, KCU98886.1, AKT29083.1). 
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Table 3.1 PCR primers used in this study for xylanase (Polysaccharide deacetylase – 

PD) annotations. Nucleotide number in a particular gene is represented by the 

numeral after PD. 

Annotated 

Gene 
Forward Primer Reverse Primer 

Product 

size(bp) 

PD 819 
ATTTGTTGGGTTTCCACTC

G 

GGTGTAGCGGTTCAGGTCA

T 
383 

PD 930  
GATCCAGATCCTCACCGA

AA 
CTCATGGCTTTTGGCGTATT 406 

PD 882 
GTTTGGTGTGGATGTCGAT

G 
TCAGGCTGTGGTCGTACTTG 425 

PD 1161  
AGGTCTGTTCTGGCTTCAG

G 

ATCGATGTTCCACAACGAC

A 
904 

PD 882 (cover 

full gene) 

ATGGCCAAAGAAATTCTG

TGTGCG 

TCAGCGGGTACGGGGGTTG

CGACG 
882 

PD (882 

(Internal ) 

GTCGGCGACAAGTGGACC

AAGATC 

(Product size 402) 

TTGGTCCACTTGTCGCCGAC

GCGA 

(Product size 500)  

 

 

3.3.10 RNA extraction and cDNA synthesis 

A CTAB method used by Chang et al. (1993) for total RNA extraction was modified 

to suit kiwifruit stem pieces and overcome the problem of mucilage. RNA was 

extracted from 600 mg of stem tissues as described and subjected to DNase 

treatment (DNA-freeTM ;Ambion-Invitrogen). cDNA was synthesized using Tetro 

reverse transcriptase manufactured by Bioline, USA (Nardozza et al., 2013). 

Negative cDNA controls were maintained to test for genomic DNA contamination. 

Housekeeping genes  

The gene rpoD, encoding sigma factor 70 (Petriccione et al., 2014) and dnaA, for 

initiation of chromosomal DNA replication (Fujita et al., 1990) were used as 

bacterial housekeeping genes. These are typical constitutive genes required for basic 

cell functions and act as a control for positive PCR presence. 
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Table 3.2 Primers for housekeeping genes used in this study 

 

Housekeeping 

gene 

Forward primer Reverse primer Product 

size (bp) 

dnaA CGCAGGAAGAGTTTTTCCAC GATATCGCGACCCATGAAGT 326 

rpoD CTGATCCAGGAAGGCAACAT TATTCATGTCGATGCCGAAA 496 

 

3.3.11 PCR experiments 

PCRs were performed on programmable thermal controller (MJ Research, PTC-

100TM ) in a total volume 20 μl in a sterile 200 µl PCR tube containing 10 µl Intron 

2X i-Taq master mix, 1μl of 10 µM of each Forward and Reverse primer (Table 2.2) 

and 2 µl containing 30-50 ng of c DNA. A thermal cycling program of 94ºC for 2 

min for initial hot-start step, followed by 30 cycles for denaturing at  94ºC for 20 sec, 

annealing at 63º C for 10 sec and extension at 72º C for 50 sec and final extension of 

5 min at 72º C was adopted. Amplified products (5 µl) were resolved on 1% TAE 

agarose mini gels containing 1.5 µl ethidium bromide and visualized under UV light 

using a gel visualizer (Omega LumTM G, Aplegen).  

3.3.12 Gene amplification and sequencing   

Positive amplified products of the expected size (Table 2.1), were purified using a 

DNA clean and concentrator kit (Zymo Research, USA) and eluted in a final volume 

of 20 µl. DNA sequencing was conducted at the DNA sequencing facility, 

University of Waikato, New Zealand with the corresponding primers in Table 2.1. 

The sequences were aligned using Geneious 7.1.8. (Geneious; Kearse et al., 2012). 

The consensus nucleotide sequence was aligned to the annotated gene. 

3.4 Results  

3.4.1 Symptoms and confirmation of infection 

The Hort16A kiwifruit stems inoculated with sterile water formed healthy callus at 

the inoculation site (Fig 3.1 B), while stems inoculated with Psa, tissue exhibited 

browning and white exudate and there was no callus formation (Fig 3.1 C). Psa-like 
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colonies were re-isolated from symptomatic tissue excised from all 10 Psa-

inoculated stems. Isolates from 9 of the 10 stems (plant 1-7 and 10) were confirmed 

as Psa using duplex PCR (Fig. 3.1 D). Isolates from plant eight were also 

subsequently confirmed as Psa after a more concentrated bacterial suspension was 

used for DNA extraction. 
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Figure 3-2 Preparation of Hort16A kiwifruit plants for inoculation, disease 

occurrence and confirmation of Psa infection. (A) Randomly assigned Hort16A   

kiwifruit plants at the time of inoculation; (B) A kiwifruit stem three weeks after 

inoculation with sterile water; (C) A kiwifruit stem three weeks after inoculation 

with Psa (D) Agarose gel electrophoresis of products from duplex PCRs for bacterial 

colonies re-isolated from the 10 Psa inoculated plants. Lanes 1-10, isolates from 

plants 1 to 10; lane 11, Psa genomic DNA; lane 12, no template negative control. M: 

molecular markers (Gene RulerTM 100 bp DNA ladder). Expected product sizes of 

the PCR are 492 bp and 226 bp.  Bar in B and C = 1mm. 

3.4.2 Xylanase activity 

Positive xylanase activity was detected using the RBB assay in extracts from Psa 

inoculated stems (P <0.05; Fig. 3.2 A). The level of activity was comparable to that 

A B 

C D 
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measured in extract from non-inoculated stems supplemented with a fungal xylanase 

preparation (positive control; Fig. 3.2 A). The positive control with non- inoculated 

plant extract had only 1.4 fold (40%) higher  activity than that of inoculated plant 

extract. No xylanase activity was detected using the RBB assay in extracts from non-

inoculated stems (Fig. 3.2 A). 

In contrast to the RBB assay results, no activity was detected when inoculated stem 

extract was tested using the DNSA (P >0.05; Fig. 3.2 B) and AZCL (P >0.05; Fig 3.2 

C) assays, even though these assays indicated significant activity using the positive 

control enzymes (P <0.05; Fig 3.2 B and C). The activity of the positive control with 

non-inoculated plant extract was 8.2 fold higher than that of inoculated plant extract 

for the DNSA assay (P <0.05; Fig. 3.2 B) and 11.6 fold higher for the AZCL assay 

(P <0.005; Fig 3.2 C). However, it was noticed that plant derived mucilage in the 

stem extracts appeared to cause fluctuating absorbance readings in the AZCL assay. 
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Figure 3-3 Assay results for xylanase activity in Psa inoculated and non-inoculated   

stem extracts of Actinidia chinensis Planch. var. chinensis ‘Hort16A’ (n=10, means 

± SE). ; (A) RBB assay ; (B) DNSA Assay ; (C) AZCL assay    

 

The RBB assay-detected xylanase activity of inoculated stem extract responded to 

temperature and appeared to have a low temperature optimum between 200C and 

300C (P <0.05; Fig. 3.3). The fungal xylanase used as a positive control had a higher 

temperature optimum under the same assay conditions (P <0.05; Fig. 3.3).      
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Figure 3-4 Response of RBB assay activity on Psa inoculated and non-inoculated 

stem extracts of Actinidia chinensis Planch. var. chinensis ‘Hort16A’ to temperature 

(n=5, means ± SE). 

When the RBB assay with Psa-inoculated plant extract was repeated over a broader 

range of temperatures, activity increased between 4ºC and 30ºC, and decreased 

abruptly at 40ºC and 50ºC (Fig. 3.4). 

Inoculated plant extract showed an activity in this RBB assay indicative of an 

enzyme, as activity varied with temperature and with a change of volume of 

inoculated plant extract in a fixed incubation time (Fig. 3.5). An assumption was 

made that there was no limitation of availability of RBB xylan substrate as 0.5% 

RBB xylan was used instead of 0.1% RBB xylan as the substrate.        
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Figure 3-5 RBB xylanase assays conducted with Psa inoculated stem extracts of 

Actinidia chinensis Planch. var. chinensis ‘Hort16A’ over a range of temperatures 

(n=5, means ± SE). 
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Figure 3-6 Effect of assay temperature, stem extract volume and incubation time on 

RBB xylanase activity. Two volumes of Psa inoculated Actinidia chinensis Planch. 

var. chinensis ‘Hort16A’ stem extracts were used with two incubation times (n=5, 

means ± SE). 

3.4.3 Changes in stem strength and anatomy 

The first observable external symptom of infection of Hort16A stems was slight 

browning of normally green stems. Three weeks after inoculation the bark of 

infected stems had shrunk and darkened at the point of inoculation, and tended to 

collapse more readily when cut (Fig. 3.6 C). At the same time, 200 mm above the 

inoculation point the bark was beginning to brown (Fig. 3.6 B).  
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Figure 3-7 Transverse sections of Actinidia chinensis Planch. var. chinensis 

‘Hort16A’ stems photographed under alight box. (A) Control (Non inoculated) stem 

above the point of inoculation; (B) Inoculated stem above the point of inoculation; 

(C) Inoculated stem at the point of inoculation. Sections are representative of n=10. 

Bar = 1 mm.      

 

When measured with a penetrometer, the strength of the inoculated stems had 

decreased at the point of inoculation and 200 mm above the point of inoculation, 

compared to the strength of the non-inoculated stems at the same positions (t test, P 

<0.05; Fig. 3.7).  
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Figure 3-8 Strength of non-inoculated and Psa inoculated Actinidia chinensis 

Planch. var. chinensis ‘Hort16A’ stems, three weeks after inoculation, at the point of 

inoculation and 200 mm above the point of inoculation. (n=10, means ± SE). 

 

Examination of the anatomy of infected Hort16A stems revealed more frequent 

fracturing and collapse of cortical tissues in inoculated stems compared to non-

inoculated stems (Fig. 3.8).  Pink staining bacterial masses were observed within the 

intercellular spaces and cell lumens in all of the inoculated stems examined.  No 

bacterial masses were observed in non-inoculated stems. Bacteria were observed in 

both the inner and outer cortex, and observed to be crossing the fibre layer between 

the inner and outer cortex in all of the infected stems examined.  Penetration of the 

fibre layer was associated with fractures in the cell walls of the fibre cells (Fig. 3.8). 
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B  

 
Figure 3-9 Transverse sections of Actinidia chinensis Planch. var. chinensis 

‘Hort16A’ stems. (A) non inoculated; (b) inoculated. Bacterial passage through the 

fibre ring is evident (arrows). Bacteria are stained in pink colour with Toluidine blue 

stain. OC- Outer cortex, IC- Inner cortex, F- Fibre layer. Bar = 20 µm.     
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3.4.4 Bacterial gene expression 
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Figure 3-10 PCR conducted with primers specified for the annotated Polysaccharide 

Deacetylase 882 (PD 882) gene. PCRs were conducted using PD882 primers and 

cDNA synthesised from RNA extracted from inoculated and non-inoculated 

Actinidia chinensis Planch. var. chinensis ‘Hort16A’ stems. Lane 1, Positive control 

with Psa genomic DNA; Lane 2, cDNA from Psa inoculated stem; Lane 3, Negative 

control with no cDNA; Lane 4, cDNA from non-inoculated stem; Lane 5, Negative 

control with no template (Water). M: molecular markers (Gene RulerTM 100 bp DNA 

ladder). 

 

One of the four Polysaccharide Deacetylase genes annotated in the Psa genome as 

potential xylanase enzymes was expressed during infection of the kiwifruit stems. 

cDNA synthesised from RNA extracted from inoculated Hort16A kiwifruit stems 

repeatedly produced the expected 425 bp product of gene PD 882 (Fig. 3.9). Primers 

for both housekeeping genes dnaA and ropD produced the expected amplicons in the 

presence of cDNA from inoculated stems, confirming amplification of expressed 

bacterial genes (Fig 3.10). None of the other three annotated Polysaccharide 

Deacetylase genes (PD 819, PD 930 and PD 1161) were detected as expressed in 

inoculated or non-inoculated Actinidia chinensis Planch. var. chinensis ‘Hort16A’ 

stems. 
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Figure 3-11 PCR conducted with primers for the annotated Polysaccharide 

Deacetylase 882 gene (PD 882) (Lanes 1-4) and bacterial housekeeping genes ropD 

(Lanes 6-9) and dnaA (Lanes 10-12), on cDNA synthesised from RNA extracted 

from inoculated and non-inoculated Hort16A kiwifruit stems. Lanes 1, 6, 10, cDNA 

from Psa inoculated stem; Lanes 2, 7, 11, Negative control with no cDNA; Lanes 3, 

8, 12, cDNA from non-inoculated stem; Lane 4, 9 , 13, Negative control with no 

template (Water); Lane M, molecular markers (Gene RulerTM 100 bp DNA ladder).  

 

The expressed PD 882 amplicon was purified and sequenced. Forward and Reverse 

nucleotide sequences were aligned and provided the expected consensus sequence 

comprised of 782 nucleotides with 100% identity to nucleotide positions 24 to 858 of 

the gene annotated as a potential xylanase in the Psa genome. 

3.5 Discussion  

Kiwifruit Hort16A stems were weakened by Psa infection, even during the early 

stages of colonisation, well before tissue necrosis and likely invasion by fungal 

saprophytes. Positive xylanase activity was detected with the RBB xylanase assay, 

consistent with the hypothesis that Psa produces xylanase during the colonisation of 

kiwifruit stems. Expression of a potential bacterial xylanase gene was also detected 

and may be responsible for the observed xylanase activity and stem weakening. 

Whilst xylanase activity was only detected with one of the three types of assays 

used, there are numerous types of xylanases (Honda et al., 1985; Marui et al., 1985; 

Okazaki et al., 1984) and detection of their activity is known to be dependent on the 

assay (Bailey et al., 1992). 
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3.5.1 Detecting xylanase activity 

The results of the RBB assay were consistent with the hypothesis that Psa can 

produce xylanase. The contrasting levels of activity shown in the three different 

xylanase assays may have been caused by differences in the sensitivity of the assays 

the xylanase(s) produced by Psa. The three assays use different substrates and it is 

possible that the type of xylanase produced by Psa caused a higher level of 

hydrolysis of the substrate used in the RBB-xylan assay compared to the substrate 

used in the DNSA-xylan and AZCL-xylan assays (Bailey et al., 1991; Bailey et al., 

1992; Puls & Poutanen, 1989), resulting in positive detection with the RBB-Xylan 

assay. The insolubility of the substrate used in the AZCL assay also posed a 

challenge due to its interaction with kiwifruit mucilage. 

Xylanases have been isolated from a wide range of microorganisms (Kulkarni et al., 

1999). Xylanases are generally classified into glycoside hydrolase families (GH) 10 

and 11 based on the primary sequence classification scheme of Henrissat and 

Bairoch (1993). Depending on the substrate binding site (cleft) of the xylanase, the 

protein can accommodate 4-7 xylose residues. The major difference between the 

GH10 and GH11 families is that GH11 enzymes hydrolyse unsubstituted regions of 

xylan, whereas GH10 enzymes are able to attack modified forms of polysaccharide 

(Pell et al., 2004). GH10 and GH11 vary significantly in molecular mass, isoelectric 

points, substrate preferences, and the nature of oligoxylosides generated as products 

(Biely et al., 1997). The family, the substrate binding cleft and mode of activity of 

the Psa xylanase detected in this study are unknown. The principle of the RBB assay 

is that the RBB-Xylan is cleaved by an endo-xylanase to low molecular weight dyed 

fragments which remain in solution on addition of ethanol to the reaction mixture. 

Higher molecular weight fragments are removed by centrifugation and the 

absorbance of the supernatant is measured at 590 nm (Aldrich). The AZCL assay 

measures the release of soluble dyed moieties from dyed AZCL xylan (Biely et al., 

1985) while the DNSA assay measures release of reducing sugars from partially 

soluble xylan substrates.  Reducing sugars reduce the DNSA reagent, changing its 

colour from yellow. The absorbance measured is directly proportional to the amount 

of reducing sugar (Bailey, 1988; Tan et al., 1985). Overall, the contrasting results 

from the three xylanase assays suggests that the xylanase produced by Psa during 

infection of kiwifruit stems is an endo-xylanase. 



 

85 

Microorganisms that are phytopathogenic tend to secrete a range of cell wall 

degrading enzymes to depolymerize the polysaccharides in the host plant cell wall. 

As a result, plants have evolved diverse defence mechanisms such as generating 

protein inhibitors to counter the cell wall degrading enzymes. In cereals 

endoxylanase inhibitors called novel pathogenesis-related proteins have been 

discovered (Juge, 2006). A new class of plant proteins that inhibit xyloglucan 

endoglucanase have also been discovered (Juge, 2006). Cell wall degrading enzymes 

themselves can also act as defence response elicitors. For example, cell wall 

degrading enzymes secreted by Erwinia soft rot bacteria cause both ethylene and 

jasmonic acid pathways together to regulate defence gene expression in A. thaliana 

plant (Norman-Setterblad et al., 2000). Such discoveries point towards the potential 

for similar defense responses or inhibitor production by the kiwifruit plant against 

Psa secreted xylanases. Plant derived inhibition could provide a plausible 

explanation for the absence of positive xylanase activity with oat spelt xylan used in 

DNSA and AZCL xylan in AZCL assay.  The lack of a plant defence response may 

also explain why DNSA but not RBB xylanase activity was detected when Psa was 

grown in vitro in the presence of dried and ground non-infected kiwifruit xylem 

(Chapter 2). 

It is concluded that the product produced in the RBB assay was the result of xylanase 

enzyme activity. A number of experiments were carried out to determine if the 

activity followed a characteristic enzymatic behaviour. The activity did exhibit a 

characteristic enzymatic temperature response, with a gradual increase in activity to 

30ºC, followed by an abrupt loss of activity at higher temperatures. Activity was also 

responsive to assay length, and to extract volume (Figures 3.3, 3.4, 3.5). The results 

are consistent with that expected of an enzyme catalysed reaction. These 

observations are also consistent with the literature published on temperature optima 

for other environmental Pseudomonas pathogens (Chang et al., 2001; Gügi et al., 

1991; Membré & Burlot, 1994), which tend to have relatively low temperature 

optima. In contrast, the fungal xylanases, which were used as a positive control for 

xylanase activity, had a temperature optimum of at least 50ºC. 

3.5.2 Weakening of inoculated stems 

In this thesis it was hypothesised that there would be a loss of strength in infected 

stem and results were entirely consistent with the hypothesis. Stem strength was 
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significantly higher in non-inoculated stems compared to inoculated stems. 

Xylanases produced during the infection of susceptible kiwifruit stems, as indicated 

in the RBB assays, may have an important role in degrading hemicellulose in the 

plant primary cell walls of the stem. Histological analysis of infected stem cross 

sections further revealed tissue collapse including the cell walls (Fig 3.8). A study 

conducted in Arabidopsis during growth revealed that xyloglucan was essential to 

maintain mechanical strength of the primary cell walls (Peña et al., 2004; Whitney et 

al., 1999). Therefore, this is a potential area for further research to establish that the 

xylanase activity is the cause of loss of strength in the infected kiwifruit stems. 

Anatomical changes following Psa infection in the kiwifruit vine have been studied 

in Italy. They found that Psa can infect host plants by entering natural openings and 

lesions. In naturally infected kiwifruit plants, Psa was present in the lenticels as well 

as in the dead phloem tissue beneath the lenticels, surrounded by a lesion in the 

periderm indicating the importance of lenticels to kiwifruit infection. Biofilm 

formation was observed outside and inside plants. In cases of advanced stages of Psa 

infection, neuroses of the phloem occurred, which were followed by cambial dieback 

and most likely by infection of the xylem. Anatomical changes in wood such as 

reduced ring width, a drastic reduction in vessel size, and the presence of tyloses 

were observed within several infected sites. In the field, these changes occurred only 

a year after the first leaf symptoms were observed suggesting a significant time lapse 

between primary and secondary symptoms. Psa induced cambial dieback was 

studied by applying dendrochronology methods revealing that cambial dieback 

occurs only during the growing season (Renzi et al., 2012)  

Cell wall degrading enzymes are a known virulence factor for many plant pathogens, 

often facilitating the movement of the pathogen within the host. A number of studies 

have been published on the mechanism by which cell wall degrading enzymes 

enlarge the pore size of inter-vessel pit membranes in grapevines when infected with 

Xylella fastidiosa, enhancing a passive mechanism for a systemic spread of the 

bacterium (Chatelet et al., 2006; Perez-Donoso et al., 2010; Thorne et al., 2006). The 

effect of pectinases have also been studied in a large number of pathogens and in 

greater detail than for any other wall depolymerase. Pseudomonas viridiflava has 

only one pectate lyase gene and mutation of this gene results in loss of the 

pathogen’s ability to cause soft rotting in vegetables (Liao et al., 1988). Mutation in 
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the single polygalacturonase (PG) encoding gene of Agrobacterium tumefaciens 

causes the loss of PG activity resulting in a substantial decrease in virulence 

(Rodriguez-Palenzuela et al., 1991). A relationship between localized accumulations 

of H2O2 in plant cell walls with localized membrane damage adjacent to attached 

bacteria in the infection of lettuce leaves by Pseudomonas syringae pv phaseolicola 

has been established (Bestwick et al., 1997). The current study suggests a similar 

relationship between cell wall degradation and the reduction of kiwifruit stem 

strength due to Psa infection, where the open wounds and fracture cell walls 

resulting from the reduction in stem strength is a strategy adopted by Psa to enter 

into and move within the plant. 

Whilst Pseudomonas syringae has not previously been shown to be reliant on cell 

wall degradation for virulence, the related bacterium P. solanacearum has been 

shown to cause cell wall degradation (Vasse et al., 1995). The pathogenic 

interactions between tomato roots and P. solanacearum were investigated 

microscopically. The pathogenic strain invaded protoxylem vessels by degrading cell 

walls, and it was observed that partial wilting of the tomato plant occured if 

approximately 25% of xylem vessels in each vascular bundle were colonised. No 

studies have been conducted to determine the relationship between the wilting of the 

tomato plant and the strength of the infected root. The relevance of the above study 

is that it has significant parallels to the current study because the Pseudomonas 

pathogen invaded the xylem by degrading cell walls, resulting in partial wilting of 

the tomato plant. Wilting is also a symptom of Psa infection of kiwifruit plants. 

3.5.3 RNA extraction and cDNA synthesis 

There were four annotations for xylanase or polysaccharide deacetylase in the Psa 

genome as described in Chapter 2, Table 2.1. Of these four annotations, one 

polysaccharide deacetylase mRNA that was 882bp in length was expressed during 

the infection (Fig. 3.9). Expression of two bacterial housekeeping genes present in 

Psa, dnaA and ropD support the conclusion that bacterial gene expression was 

detected (Fig 3.10). There is no conclusive evidence that the gene expressed was 

encoding for xylanase or that this gene was responsible for the activity detected 

using the RBB assay. Next generation RNA sequencing could be used to investigate 

Psa gene expression patterns in-planta in more detail. A transgenic Psa with a 

PD882 knockout could be used to test whether the gene is responsible for the 
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observed xylanase activity, and contributes to virulence. Further experiments could 

be conducted involving recombinant expression of the protein in vitro by cloning the 

gene into a plasmid and transforming into the bacterium Escherichia coli for 

recombinant protein expression (Lee TH et al., 2007; NCBI, 2016). Thus the 

recombinant protein could be examined by mass spectrometry and crystallography to 

provide insight into its structure and function. Furthermore, the recombinant protein 

could be applied and tested in the RBB assay. 

3.6 Conclusion 

In conclusion, Psa infection caused a loss of stem strength in kiwifruit, and was 

associated with xylanase activity in extracts from infected stem.  The results indicate 

that the PD 882 gene, a putative xylanase gene, was expressed during the infection. 

The resulting enzyme produced by PD 882 may have contributed to the loss of stem 

strength and xylanase activity detected using the RBB assay. Further studies should 

attempt to characterise the detected xylanase protein in more detail, including 

investigating why there was variation in activity with alternative xylanase substrates, 

and the possibility that plant-pathogen interactions result in expression or inhibition 

of particular cell wall degrading enzymes.  It would also be valuable to test the 

hypothesis that the PD 882 gene was responsible for the observed xylanase activity, 

and ultimately contributes to pathogenicity of Psa towards kiwifruit.
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4 CHAPTER 4 

The Role of Vascular Architecture in the 

Movement of Psa within the Kiwifruit Plant   

4.1 Abstract 

Studies conducted to explore the correlation between vascular architecture and 

pathogen movement in other plant species provide a strong rationale to investigate a 

possible correlation between the kiwifruit vascular architecture and the movement of 

Psa. Low pressure air injection was performed on Actinidia chinensis Planch. var. 

chinensis ‘Hort16A’ (Hort16A)  seedlings to determine the longest vessel length of 

Hort16A. Low pressure air injection suggested that the maximum xylem vessel 

length of Hort16A kiwifruit seedlings was 345mm. Based on air injection, 71% of 

the leaves had at least one open vessel from stem to the leaf lamina and 79% of the 

leaves had at least one open vessel from stem to petiole. The average maximum 

vessel length and plant height showed a positive linear correlation. A negative 

correlation was observed between height of the plant and the number of nodes with 

vessels extending into leaves when air was injected into the stem from near the base 

of the plant. When air injection was performed from the stem below each node, a 

negative correlation was observed between plant height and the proportion of 

laminae and petioles that had an open vessel from the stem, suggesting that upper 

nodes were less likely to have an open vessel connection between the leaf and stem.  

Cultivar and developmental differences in vessel length distribution were 

investigated by performing silicon injection on large shoots (canes) from mature 

plants of Actinidia chinensis Planch. var. chinensis ‘G3’ (G3) and Actinidia deliciosa 

(A.Chev.) C.F. Liang et A.R. Ferguson var. deliciosa ‘Hayward’ (Hayward), and 

shoots from mature plants and seedlings of Actinidia chinensis Planch. var. chinensis 

‘Hort16A’. The highest average vessel length was observed in mature shoots of G3, 

while the next highest average vessel length was observed in Hort16A mature 

shoots. Average vessel lengths in mature shoots were more variable between shoots 

of Hort16A than G3 and Hayward, but shoot to shoot variation was not as 

pronounced in Hort16A seedlings. Given that Hort16A is the cultivar considered 
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most susceptible to Psa, there was no relationship between susceptibility and vessel 

length. 

Leaves of Hort16A were inoculated with Psa at the lamina tip and lamina base, 

adjacent to the lamina junction with the petiole, to investigate the potential for 

movement of the pathogen between the lamina and stem. Following tip inoculation, 

tissue samples were taken for attempted re-isolation of Psa from three sites; the 

lamina base, the midpoint of the petiole, and the stem immediately below the petiole. 

Following base inoculation, re-isolation was attempted from the lamina tip, the 

midpoint of the petiole, and the stem immediately below the petiole.  Psa movement 

was observed in both the basipetal and acropetal directions following tip and base 

inoculations. After tip inoculation, there was an 88% probability of basipetal 

movement of Psa to the lamina base, an 85% probability of movement to the 

midpoint of the petiole, and a 77% probability of movement to the stem below the 

petiole. After base inoculations, there was a 96% probability of movement 

acropetally to the lamina tip, an 87% probability for movement basipetally to the 

midpoint of the petiole, and 87% for movement to the stem immediately below the 

petiole. The results suggest a high propensity for Psa to move well beyond the point 

of inoculation within the leaf lamina, to move between the leaf lamina and stem, and 

that movement between lamina and stem occurs more readily than the presence of 

open vessels between the stem and leaves suggests. It is concluded that if movement 

is occurring within the xylem of the kiwifruit plant, the vessel end wall is not a 

barrier for Psa movement.  

4.2 Introduction 

Psa is unusual amongst Pseudomonas canker diseases in that it appears to more 

readily invade into and spread via the vascular tissue (Froud et al., 2015). In 

susceptible kiwifruit cultivars Psa enters the plant through natural openings such as 

stomata, lenticels or open wounds, and then systemically spreads, causing wilting 

and shoot death. Psa has been shown to move systemically from the leaves to young 

shoots of A. chinensis and A. deliciosa through the leaf veins and petioles (Ferrante 

et al., 2012)  possibly via the xylem (Balestra et al., 2009; Ferrante et al., 2012; 

Serizawa & Ichikawa, 1993a; Spinelli et al., 2015; Spinelli et al., 2011). 
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Kiwifruit is a liana, with wide and potentially very long vessels. With the increase in 

vessel length the integration and connectivity of vessel networks increase, 

particularly if vessels are both long and tortuous in their pathways (Jacobsen et al., 

2012; Loepfe et al., 2007; Martínez-Cabrera et al., 2009). Vessel length influences 

plant hydraulic function because longer vessels are less hydraulically limited by pit 

and end wall resistances, but long vessels may also have greater pit area that makes 

them more susceptible to hydraulic failure via cavitation (Hacke et al., 2007; Sperry 

et al., 2006; Wheeler et al., 2005). Loepfe et al. (2007) has highlighted a potential 

risk of hydraulic failure due to increased length of the vessels. Psa clearly impacts 

kiwifruit xylem hydraulic functioning and may cause hydraulic failure, because 

wilting is a common early symptom of systemic infection. However, it is not known 

whether the architecture of the xylem of kiwifruit shoots influences pathogen 

movement or the development of wilting symptoms. 

The architecture of the xylem, including the distribution of vessel lengths has been 

related to the movement of other xylem inhabiting pathogens (Chatelet et al., 2006; 

Jacobsen et al., 2012). The mechanisms of pathogenesis in diseases caused by 

Xylella fastidiosa, an obligate xylem pathogen, have been particularly well studied. 

Primary xylem vessels that are continuous between the stem and leaf of grape vines 

provide a pathway for passive movement of the bacterium (Chatelet et al., 2006). 

The pathology of the disease also includes the ability to degrade pit membranes 

between neighbouring vessels, potentially overcoming movement limitations 

imposed by vessel length (Perez-Donoso et al., 2010). Bacterial cells, tyloses, gums 

and the debris from cell wall degradation block xylem vessels of plants infected by 

X. fastidiosa (Hopkins, 1989; Sun et al., 2013). Psa causes symptoms similar to 

Xylella such as leaf spots, leaf and young shoot wilting and dieback, suggesting 

similar behaviour of the pathogen in the vessels of kiwifruit plants.  

The majority of research on vascular interconnectedness in the xylem has been 

conducted on the movement of water and not on the movement of pathogens (Choat 

et al., 2005; Tyree & Zimmermann, 2002a; Zwieniecki et al., 2002). Pit membranes 

present in the xylem may have a major role in restricting particle or microorganism 

movement via the transpiration stream. Investigations have been carried out into 

potential xylem pathways available to particles or bacteria between stems and leaves, 

however, often only an insignificant movement from stems to leaves or vice versa 
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was observed (Canny, 1997; Suhayda & Goodman, 1981; Wiebe et al., 1984). In 

contrast to the leaves of grape vines, the majority of xylem vessels within leaves of 

other species end near junctions, specifically the petiole–lamina (Canny, 1997; 

Wiebe et al., 1984) and the petiole–stem junction (Tyree & Zimmermann, 2002a; 

Wiebe et al., 1984). If this pattern is the norm, then xylem-mobile microorganisms 

need to pass across pit membranes to leave the stem and move into a leaf blade or 

vice-versa (Thorne et al., 2006). The degree of open-vessel connection between leaf 

and stem in kiwifruit is unknown. 

Depending on the vessel architecture of kiwifruit, Psa bacteria that settle on the leaf 

surface, infect the lamina, and become xylem mobile may have to cross pit 

membranes to enter into the stem. Similarly, bacteria entering through lenticels and 

open wounds in the stem may also have to overcome the pit membrane barrier to 

enter into leaves. Chapters 2 and 3 of this thesis investigated whether Psa possesses 

cell wall degrading activity that might confer the ability to degrade pit membranes.  

This chapter describes the xylem architecture of kiwifruit, with the goal of 

determining whether vessel length and connectedness between stem and leaves are 

related to Psa movement. It was hypothesised that vessels are long in kiwifruit 

compared to other perennial deciduous fruit crops and that vessels extend from stem 

to leaf, enabling passive movement of the bacterium. Kiwifruit xylem vessel lengths 

were compared between cultivars that differ in susceptibility to Psa infection. Vessel 

connections from stem to leaf were also described in detail. Finally, bacterial 

movement from leaf to stem was investigated for comparison with leaf to stem 

vessel architecture. 

4.3 Materials and methods  

4.3.1 Plant material  

Seedlings were grown from open-pollinated seed extracted from fruit of Actinidia 

chinensis Planch. var. chinensis ‘Hort16A’ (Hort16A). The average height of the 

plants was 821 mm and plants were approximately four months old. 
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Figure 4-1  Actinidia chinensis Planch. var. chinensis ‘Hort16A’ seedlings used for 

air injection  

Actinidia chinensis Planch. var. chinensis ‘G3’ (G3) mature shoots, Actinidia 

deliciosa (A.Chev.) C.F. Liang et A.R. Ferguson var. deliciosa ‘Hayward’ 

(Hayward) mature shoots and Actinidia chinensis Planch. var. chinensis ‘Hort16A’ 

mature shoots were harvested at dawn from nearby orchards, placed in water and 

bagged in humid bags to prevent further transpiration before the silicon injection. 

From the multiple cohorts of Hort16A seedlings grown, ten plants were used for 

silicon injection and 30 plants were used for air injection.  

4.3.2 Air injection  

Healthy Hort16A kiwifruit plants were taken into the laboratory. Age, plant height 

(mm), number of cotyledons, number of true leaves,  number of fully expanded 

leaves (90% full size), cut height above soil (mm), nodal position of cut (node 

number below cut) were recorded for each plant.   

Seedlings were cut approximately 137 mm above the soil and the deteached shoots 

were placed under water to avoid cavitation. Air was supplied to the cut base of the 

shoot at a maximum of 80 kPa, which was low enough to avoid inducing cavitation 
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in xylem vessels (Cohen et al., 2003; Skene & Balodis, 1968). The shoots were cut 

back underwater, progressively from the tip to the base. Cuts were made at one to 

two mm intervals from the apex of the stem towards base. Cuts were also made in 

the leaf blades starting at the leaf margins from apex to base. With each incision, 

newly cut vein endings were examined for signs of bubbles emerging from the veins. 

The first appearance of a stream of bubbles was taken as evidence of an open xylem 

vessel, from the point of air injection in the stem to the location of the distal cut. This 

distance was recorded using a tape measure. When low-pressure air is forced through 

xylem vessels of fresh tissue, air will only pass through open vessels because wet pit 

membranes will block air flow (Cohen et al., 2003; Skene & Balodis, 1968; Tyree & 

Zimmermann, 2002a). If vessels are already embolised, air will also be able to cross 

their pit membranes, which could compromise the accuracy of continuous vessel 

length measurements. To avoid that, all plant parts were well hydrated and stems 

were cut immediately prior to air injection, therefore embolisms in vessels were 

highly unlikely to contribute or detract from the lengths of open, continuous vessels 

(Thorne et al., 2006).  

In addition to recording maximum vessel length from a fixed position above the soil, 

air injection from an injection site two to three mm below each node was also used to 

record how often vessels extended from the node into a leaf, and the length they 

extended, for an additional ten seedlings, with five nodes measured on each seedling. 

Nodes were selected at a range of heights, then the average proportion of leaves with 

open vessels for each height class of node was calculated. 

4.3.3 Silicone injection  

4.3.3.1 Mature shoots 

Shoots were harvested at dawn, enclosed in humidified plastic bags and their cut 

ends placed in water to prevent transpiration. The bark was removed from the cut 

end and the xylem washed and recut in the laboratory to give a mucilage free cut end 

for injection. Shoots were connected to pressurized degassed water supply using 

silicon tubing and flushed for 30 minutes at 75 kPa to remove air emboli from open 

vessels. A 1% w/w solution of fluorescent brightener (Uvitex, CIBA AG, Basel, 

Switzerland) in chloroform was prepared and mixed with silicone polymer plus 

hardener (Sylgard 184, Dow Corning Corporation, Midland, Michigan USA), 



 

95 

bubbles were removed and approximately five ml of the polymer was injected into 

the cut end of each stem via a three way stop-cock adjacent to the cut end. The 

shoots were left to set under a constant injection pressure of 30 kPa. Once set, the 

leaves were numbered and the transverse hand sections cut at five to six locations 

distal from the cut end (5, 10, 20, 50, 100, 200 mm). The sections were 

photographed using an epifluorescence microscope and the number of silicon filled 

and unfilled vessels was counted for each position using image analysis (ImageJ, 

(Schneider et al., 2012)). 

4.3.3.2 Seedlings 

Plants were brought to the lab, kept in a dark stable environment, watered well and 

kept bagged in black plastic bags overnight to ensure full hydration. The plants were 

also kept bagged in dark bags as much as possible to prevent evaporation during 

injection. Stems were cut underwater, well below the point where the injection was 

to be made, and then cut again underwater at the point of injection. Bark was peeled 

and mucilage was washed off and the xylem recut with a clean razor blade. 

The silicone polymer and brightener mixture was prepared as described above, 

transferred to five ml disposable syringes, and the syringes connected via short 

lengths of silicone tubing to the cut stem ends, taking care to remove any bubbles. 

Shoots were inverted with the cut end and syringe upwards, supported by a retort 

stand and a weight of about 600g loaded onto the syringe plunger to maintain a 30 

kPa pressure at the stem end. The arrangement was left overnight for silicon to move 

into the vessels and set, before the stems were hand sectioned and imaged as 

described above. 
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Figure 4-2 Vessels filled with silicone gel (appearing in purple) and non- filled 

(appearing in yellow) following silicon injection performed on Actinidia chinensis 

Planch. var. chinensis ‘G3’ mature shoots. Cross sections were imaged 24 hours after 

the injection; (A) Five mm away from the point of silicon injection; (B) 200 mm 

away from the point of silicon injection; (C) 400 mm away from the point of silicon 

injection. Bars=1 mm.    

4.3.3.3 Determination of vessel lengths   

Vessel length distributions were then estimated from the silicone injection results 

using curve fitting as described by Christman et al. (2009) and Sperry (n.d.)   

4.3.4 Investigation of Psa movement from leaf inoculation site to petiole and 

stem   

Hort16A kiwifruit seedlings were selected for leaf inoculation. Healthy Hort16A 

plants were randomly assigned to treatments (Fig 4.3 A).  There were two treatments 

i.e. (a) lamina inoculation close (5-10mm) to the petiole (‘base’) (b) lamina 

inoculation near the distal tip of the lamina (‘tip’). Recently fully-expanded leaves 

situated at least two nodes apart from each plant were subjected to leaf inoculation. 

Twenty plants were maintained as controls, with their leaves inoculated with sterile 

water. Petiole length, lamina length from petiole to tip and lamina width on the 

broadest part of the lamina of both experimental and control plants were measured 

and recorded before inoculation. For inoculation the leaf under surface was gently 

abraded at the midrib with 400 grit sand paper. One 10 µl drop of Psa inoculum with 

approximate strength of 109 CFU ml-1  (Source :Plant and Food Research, Ruakura) 

with 0.025% surfactant (Duwett, Nufarm Australia Limited) was added to the 

abraded surface patch. The plants were monitored for onset of symptoms (Fig 4.3 B 

& C). When the leaf spots were first observed, the plants were harvested. The 

duration from inoculation to harvest was two weeks on average.  Samples were taken 

from three sites of each inoculation. For lamina base inoculations, samples were 

taken from the lamina tip, the midpoint of the petiole from the leaf blade to the stem, 

C A B 
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and from the stem just below the node. In the plants where tip inoculation was 

performed, samples were taken from the lamina base, the midpoint of the petiole 

from the leaf blade to the stem, and from the stem just below the node. The distance 

between the inoculation site and the position of each sample was recorded. Each 

sample weighed approximately one g. The leaf and stem samples were surface 

sterilised and ground in 100 µl of sterile water using a sterilised plastic mortar and 

pestle for each sample. 
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Figure 4-3 Preparation of five month old Actinidia chinensis Planch. var. chinensis 

‘Hort16A’ plants for leaf inoculation, symptom appearance and confirmation of Psa 

movement; (A) Randomly assigned Hort16A kiwifruit plants at the time of 

inoculation; (B) A kiwifruit leaf inoculated close to the petiole with Psa after 16 

days. Leaf spots are more frequent at the lamina tip despite the inoculation being 

performed close to the petiole. ; (C) A kiwifruit leaf inoculated with Psa at the tip 

after 16 days ; (D) Psa colonies formed on the nutrient agar plates following two 

days of culturing of the supernatant from ground tissue samples.  

Bar = 1cm.   

 

 

D 

A B 

C 



 

99 

Re isolation of Psa  

Extractions were spun and the supernatant was plated on to nutrient agar plates and 

allowed time for colony formation (Fig 4.3 D). Duplex PCR was conducted on 

selected colonies to confirm that they were Psa as described in Chapter 3 (Gallelli et 

al., 2011).  

For the two inoculation positions, the number of positive detections of Psa were 

collated for each sampling site. A Chi-square test of homogeneity was performed for 

each inoculation position to test whether the frequency of Psa detection differed 

between the three sampling points. 95% Confidence intervals for the probability of 

detection at each sampling site were estimated based on the normal approximation of 

the binomial confidence interval. 

4.4 Results 

4.4.1 Maximum vessel lengths and leaf to stem connections 

The average longest vessel length of four month old kiwifruit Hort16A seedlings 

measured using air injection was 346 ± 19 mm (n=22). There was a positive 

correlation between the longest vessel length and the height of the plant (P <0.05, 

r2=0.87; Fig 4.4). In contrast, the number of nodes with vessels extending into leaves 

was negatively correlated with the height of the plant (P <0.001,   r2=0.72; Fig 4.5). 

The observation of decreasing stem to leaf vessel connection with height was also 

supported by air injection performed at the stem just below each node. The 

proportion of leaves with open vessels extending from the stem into the leaf blade 

and petiole also decreased with plant height (P < 0.001, Fig 4.6). 

Overall 71% of leaves had an open vessel to the leaf lamina from the stem and 79% 

of leaves had an open vessel from the stem to the petiole. On average an open vessel 

from stem to leaf penetrated into the lamina up to a distance of 39.7 mm (Table 4.1).       
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Figure 4-4 Variation in maximum vessel length with plant height when air injection 

was performed from the basal end of four month old Actinidia chinensis Planch. var. 

chinensis ‘Hort16A’seedlings (n=22).   
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Figure 4-5 Variation in the number of nodes with open vessels extending from the 

stem into the petiole or lamina with plant height observed following air injection 

performed from a single point at the base of four month old Actinidia chinensis 

Planch. var. chinensis ‘Hort16A’seedlings(n=22). 

  

Table 4.1 Proportion of leaf blades and petioles containing open vessels extending 

from the stem and following air injection performed on four month old Actinidia 

chinensis Planch. var. chinensis ‘Hort16A’ seedlings with air injected into the stem 

just below the node (n=10). 

Distance vessel 

penetrated into 

lamina (mm)   

Proportion of leaves 

that had an open 

vessel to the leaf blade    

Proportion of leaves that 

had an open vessel to the 

petiole  

39.7 ± 5.94 0.71 ± 0.093 0.79 ± 0.081 
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Figure 4-6 Variation in the number of leaf blades and petioles containing open 

vessels extending from the stem, following air injection performed on four month 

old Actinidia chinensis Planch. var. chinensis ‘Hort16A’ seedlings with air injected 

into the stem just below the node (n=10, means ± SE).  
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4.4.2 Vessel length distributions   
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Figure 4-7 An example of vessel length distribution estimation for a mature shoot of 

Actinidia chinensis Planch. var. chinensis ‘G3’ using silicone injection. A Weibull 

function was fitted to the decrease in proportion of silicone filled vessels with 

distance from the injection site (A), and the fitted Weibull function was then used to 

predict the probability density of vessels in 9 length classes (B) (Christman et al., 

2009) . 
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Figure 4-8 Vessel length distributions derived from mean best fit of each variety 

using the equations by Hacke et al., 2007 following silicone injection performed on 

mature shoots of each cultivar, and for seedlings of Hort16A (n=5).  
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Table 4.2 Average vessel lengths calculated following silicone injection and analysis 

according to Christman et al. (2009). 

     

Kiwifruit 

Variety/Type  

Vessel length (mm) 

Mean Median Mode  Maximum  

 G3- mature shoots 1354 ± 102 840 ± 55 190 ± 10 9069 ± 78 

Hayward - mature 

shoots 
221 ± 10 179 ± 9 89 ± 6.8 927 ± 99 

Hort16A - mature 

shoots 
539 ± 130 452 ± 93  213 ± 40 2038 ± 886 

 Hort16A - seedlings 52 ± 9 87 ± 4 65 ± 5 350 ± 15 

 

When cut stems were injected with silicone polymer the frequency of silicone filled 

vessels decreased with distance from the cut end (Fig. 4.7 A). A Weibull function 

fitted to these data was used to model the vessel length distribution for each injected 

stem (Fig. 4.7 B).  When the results for all polymer injected stems were combined, 

there were pronounced differences between cultivars in their average vessel length 

distribution (Fig. 4.8, Table 4.2). G3 and Hort16A mature shoots had considerably 

longer average, median, and mode vessel lengths than Hayward (Fig. 4.8, Table 4.2). 

Average vessel lengths were consistent between shoots within the cultivars G3 and 

Hayward (Table 4.2), and more variable between mature shoots of Hort16A (Table 

4.2). However, vessel lengths were shorter and less variable between seedlings of 

Hort16A (Table 4.2). 

4.4.3 Psa movement from leaf lamina inoculation sites to the petiole and stem   

Ninety per cent of the bacterial colonies grown from extractions from lamina, petiole 

and stem samples taken from inoculated leaves resembled Psa. Eighty Five per cent 

of these colonies tested positive for Psa using PCR. 

Substantial movement of Psa occurred after both lamina tip and base inoculations, 

with Psa moving from the lamina to the stem from more than 70% of the inoculated 

leaf laminas. After tip inoculation there was a decrease in the frequency of Psa 

detection with the distance of the sampling site from the point of inoculation (Fig. 

4.9 A, B). However, a test of homogeneity indicated no effect of sampling position 

on the probability of detection (P>0.05). With lamina base inoculation there was also 
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a high probably of movement to the stem or leaf tip (Fig. 4.10 A, B). A test of 

homogeneity indicated no effect of sampling position on the probability of detection 

(P>0.05). Across all sampling sites there was a 90% probability of recovering Psa, 

regardless of the distance between the point of inoculation and the sampling position. 

When movement within the leaf blade was considered, the probability of Psa 

movement across the lamina was similar after lamina base or tip inoculation (P 

>0.05; Fig 4.11). 
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Figure 4-9 Movement of Psa within the leaf and petiole in five months old Actinidia 

chinensis Planch. var. chinensis ‘Hort16A’ seedlings following lamina tip 

inoculation.; (A) Probability of observing Psa at each detection site (error bars 

indicate the 95% confidence interval for the probability of detection). (B) Average 

distance to each detection site from the point of inoculation (n=54, means ± SE).   
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Figure 4-10 Movement of Psa within the leaf and petiole in five months old 

Actinidia chinensis Planch. var. chinensis ‘Hort16A’ seedlings following lamina 

base inoculation.; (A) Probability of observing Psa at each detection site (error bars 

indicate the 95% confidence interval for the probability of detection). (B) Average 

distance to each detection site from the point of inoculation (n=32, means ± SE). 
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Figure 4-11 Comparison of Psa movement within the leaf blade towards the lamina 

base in tip inoculation and towards the tip in base inoculation in five month old 

Actinidia chinensis Planch. var. chinensis ‘Hort16A’ seedlings. Error bars indicate 

the 95% confidence interval for the probability of detection. (n=54 and 32 

respectively). 

4.5 Discussion  

The results clearly demonstrate that all three kiwifruit cultivars have very long 

vessels in their stems, with vessel length distributions that are as long, or longer, than 

other lianas that have been measured (Anna L. Jacobsen & Pratt, 2012; Ewers & 

Fisher, 1989; Ewers et al., 1990). Long vessels may contribute to rapid movement of 

Psa if the pathogen enters the stem xylem. Despite long vessels within the stem, 

more detailed examination of stem to leaf vessel connections suggests that while 

open vessels between the stem and leaf do occur, these are less frequent and less 

extensive than in grape vine, the only other vine crop for which this trait has been 

examined (Chatelet et al., 2006). However, Psa was able to move readily within the 

leaf blade and from the leaf to the stem, more often and further than the measured 

extent of open vessel connections. Assuming that Psa is present and mobile within 



 

110 

the vascular tissue after leaf inoculation, this observation suggests that vessel ends 

and the pit membrane are not significant barriers to Psa movement. 

4.5.1 Vessel Anatomy 

Kiwifruit seedlings have long vessels similar to other woody lianas like grapes; 

however, the kiwifruit vessels are longer compared to those of many other perennial 

deciduous crops (Ewers & Fisher, 1989; Zimmermann & Jeje, 1981).  Vessel length 

of six species of tropical and subtropical lianas (woody vines) were examined (Ewers 

& Fisher, 1989). Stems tended to have vessels, with a maximum vessel length of 625 

mm which is much shorter than kiwifruit. In an analysis of a xylem vessel lengths in 

woody plants, mean and maximum vessel length varied greatly within and among 

species (Jacobsen et al., 2012) which is  consistent with  kiwifruit too. 

The purpose of air injection experiments was to determine the maximum vessel 

lengths and to illustrate the xylem vessel interconnectedness between leaf, petiole 

and stem in Hort16A seedlings (Figs. 4.4, 4.5 & 4.6). Air injection results are 

consistent with those expected of a seedling since the vessel length increases with 

the growth of the plant in height (Fig. 4.4). The number of nodes with vessels 

extending into leaves decreases with the height of the plant due to the increase in 

distance from the point of air injection to the upper nodes, with the growth of the 

plant (Fig. 4.5).       

However when air was injected into the stem immediately below each node, the 

proportion of leaves and petioles containing an open vessel decreases with height of 

the plant, suggesting that stem to leaf connections tend to decrease in the taller plants 

(Fig.4.6). The results of the air injection experiments also indicate the extent to 

which Psa is likely to move passively through the xylem vessels when the pathogen 

entered the plant from an infection site. In theory, from a point of entry into the 

xylem of a Hort16A seedling, Psa could move more than 300 mm by passive 

convection through the longest open xylem vessels before it would encounter a 

vessel end wall. Maximum vessel length calculated by air injection in Hort16A 

seedlings is 346 mm and maximum vessel length of Hort16A seedlings derived by 

curve fitting in silicon injection is 350 mm. Therefore, two results obtained from two 

methods for the same parameter are consistent. In this study 71% of the leaves had 

an open vessel from stem to the leaf blade and 79% of the leaves had an open vessel 
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from stem to the petiole (Table 4.1). The observation suggests that if Psa enters close 

to the petiole from the leaf or the stem end, there is a significant probability of the 

pathogen moving passively into the stem or leaf which is evident from the results of 

the movement experiments of Psa (Figs. 4.9 & 4.10). However in the few other 

investigations into potential xylem pathways available to particles or bacteria 

between stems and leaves, only an insignificant movement from one organ to 

another was observed (Canny, 1997; Suhayda & Goodman, 1981; Wiebe et al., 

1984). It was found that the average length of the leaf lamina in Hort16A seedlings 

was 198.6 mm, and open vessels from the stem, if they were present, penetrated into 

the lamina on average a distance of up to 39 mm. This is only a short distance 

beyond the end of the petiole. This observation is entirely consistent with the 

published literature where it is stated that within leaves, the majority of xylem 

vessels ended near junctions, specifically the petiole–lamina (Canny, 1997; Wiebe et 

al., 1984) and the petiole–stem junction (Tyree & Zimmermann, 2002a; Wiebe et al., 

1984). Therefore, kiwifruit is similar to other plant species in vessel connections, 

while grape vine is different in this aspect. Furthermore, it was observed that vessels 

were not branched within the leaf lamina and air bubbles only appeared in the 

midrib; not in the other veins. However, in grapevine leaves, bacteria, beads and air 

moved through long and branched xylem vessels from the petiole into the secondary 

veins (Thorne et al., 2006). Therefore in kiwifruit vessels, microorganisms have to 

cross pit membranes to leave the petiole and move a significant distance into a leaf 

blade. As stated in (Chatelet et al., 2006), it is not clear if the observed movement of 

air in the xylem was restricted to a single xylem vessel or whether more than one 

vessel was seen connected to another through ruptured primary cell walls or ruptured 

pit membranes. However, Psa appears to move readily within the leaf and from the 

leaf through the petiole into the stem regardless of the position of open vessels, 

suggesting it is capable of crossing pit membrane barriers (Perez-Donoso et al., 

2010) or is moving outside of the vessels. Therefore, it can be ruled out that Psa’s 

movement in the plant is entirely a passive movement via xylem vessels similar to 

the movement of water in the xylem vessels (Jacobsen et al., 2012). This is different 

to grapevine where bacteria, beads and air moved through branched xylem vessels 

from the petiole into the veins in leaves of two grapevine varieties. Kiwifruit has 

vessels extending from the stem into the leaf blade, but the frequency of these and 

the distance they extend appear to be less than in grape.  
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In another study of xylem structure of four grapevine varieties and 12 alternative 

hosts to the xylem-limited bacterium Xylella fastidiosa (Xf), no difference has been 

observed in stem or petiole vascular anatomy among the grape varieties examined. 

Furthermore, no difference in vascular anatomy was observed among the 12 

alternative hosts. Among grape varieties, the more tolerant ‘Sylvaner’ had smaller 

stem vessel diameters and 20% more parenchyma rays than the other three varieties. 

Alternative hosts supporting Xf movement had slightly longer open xylem conduits 

within leaves, and more connection between stem and leaves, when compared with 

alternative hosts that limit Xf movement (Chatelet et al., 2011). Therefore, it appears 

that Psa movement in kiwifruit and Xf movement in grapevine are different.   

Liana vessels are commonly considered to be among the longest in the plant 

kingdom (Kramer & Kozlowski, 1979; Zimmermann & Sperry, 1983). Average 

vessel lengths are about 600 mm in the temperate liana, Vitis labrusca and over 1000 

mm in the tropical liana, Tetracera (Ewers & Fisher, 1989). In a study conducted 

with woody, vessel bearing, flowering plants using liana, shrub, and tree species 

from different environments, it was revealed that maximum vessel lengths were 

typically 5.6 times longer than mean vessel lengths (Jacobsen et al., 2012). This 

observation was consistent with kiwifruit cultivars in this research. In the above 

research, all species exhibited very similar vessel length distributions (i.e., the shape 

of the vessel length distribution curve), with the predominant difference between 

species occurring in shifts in the lengths associated with the peak and tail of the 

distribution (i.e., in the mean vessel length and maximum vessel length). In this 

study, kiwifruit cultivars G3 and Hort16A (mature shoots) displayed vessel length 

distribution curves similar in shape to each other except Hayward.    

The average length of xylem vessels was determined in the Hort16A variety with 

highest susceptibility to Psa and the less susceptible G3 and Hayward varieties. The 

more Psa tolerant G3 variety had the longest average vessel length while more 

susceptible Hort16A had the second longest average vessel length. There are 

possible explanations in the literature describing the way the vessel lengths and 

vessel anatomy help microorganisms to invade the plants. The mechanism of water 

transport in xylem vessels only allows water and low molecular mass solutes to pass 

through pit membranes but not microorganisms and gas bubbles (Bové & Garnier, 

2003; Choat et al., 2005; Fosket, 2012; Tarbah & Goodman, 1987; Tyree & 
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Zimmermann, 2013; Zwieniecki et al., 2002). However, bacteria might also be able 

to move through torn or remnant pit pore membranes, particularly if they possess a 

mechanism for enzymatically degrading the pit membrane (Schneider & Carlquist, 

2004). If vessels are short and if numerous membranes have to be crossed, the 

bacterial movement could be impeded as the pathogen has to disintegrate a large 

number of pit membranes. Bacterial movement in the stem of Vitis is relatively 

unimpeded due to the presence of a large number of vessels that can be as long as 

100cm (Chatelet et al., 2006; Perez-Donoso et al., 2007; Sperry et al., 1987; Thorne 

et al., 2006). Therefore, the observation in this study is consistent to some extent 

with the above literature as the most susceptible Hort16A variety had the second 

longest average vessel lengths. However, there is still a barrier for the bacterial 

passage into leaves if most of the vessels end at the stem—petiole and petiole—

lamina junctions (Chatelet et al., 2006). In addition to xylem vessel lengths, xylem 

network connections play an important role in water and nutrient transport in plants; 

however, they also facilitate the spread of air embolisms and xylem-dwelling 

pathogens. There are vessel relays found in grapevine xylem that form radial and 

tangential connections between spatially discrete vessels. Due to their spatial 

distribution within the Vitis xylem, vessel relays increase the connectivity between 

vessels that would otherwise remain isolated. Differences in vessel relays between 

Vitis species suggest these anatomical features could contribute to disease and 

embolism resistance in some species (Brodersen et al., 2013). Future research can be 

envisaged investigating if vessel relays found in Hort16A make them more 

susceptible to Psa disease.  

4.5.2 Psa movement from leaf inoculation sites to the petiole and stem   

In this study, it is evident that systemic movement of Psa occurred in both directions 

in the leaf, from the lamina base to tip and from the tip to the lamina base and stem. 

The evidence suggests that Psa is moving actively from vessel to vessel, or is 

moving outside of the vessels, as movement occurs readily across the boundary 

where vessels between the leaf and the stem end. Movement also occurs from leaf to 

stem more often than the frequency of leaves that air injection results show have 

vessels extending from stem to leaf. It can be suggested that as described in Chapter 

3 (Fig 3.2), Psa may have produced cell wall degrading enzymes like xylanases to 

penetrate the pit membranes and moved into the next vessel. The same observation 
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has been made by (Ferrante et al., 2012). They have observed that Psa is capable of 

moving systemically from the leaves to young shoots of A. chinensis through the leaf 

veins and petioles. They recovered the pathogen from symptomless shoots one week 

after leaf inoculation. However, they claim that Psa probably moves from the leaf 

veins to the shoot through the xylem vessels as observed by Spinelli et al. (2011).  In 

an experiment conducted using a GFPuv-labelled strain of Psa, light and 

transmission electron microscopic observations showed that bacterial cells colonize 

both the phloem parenchyma or sieve tubes, and xylem vessels (Gao et al., 2016). 

Therefore as clearly shown in chapter 3 (Fig 3.8), Psa travelled not only in the 

xylem, but also in the phloem and parenchyma cells. Systemic movement of Psa was 

investigated in inoculated potted kiwifruit vines in a greenhouse and in naturally 

infected mature vines in the orchard in another study by Tyson et al. (2014). Psa 

moved basipetally and acropetally within the trunks, and through the scion and the 

rootstock, at similar rates. Psa moved systemically throughout mature ‘Hort16A’ 

and A. deliciosa ‘Hayward’ kiwifruit vines and was detected in symptomless tissues.  

4.6 Conclusion 

Susceptibility to Psa in different kiwifruit cultivars has no correlation to xylem 

vessel lengths of the cultivars since the least Psa susceptible variety G3 had the 

highest average vessel lengths while Hort16A being the most susceptible variety, had 

the second highest average vessel lengths for mature shoots. Movement of Psa 

between lamina and stem occurs more readily than the presence of open vessels 

between the stem and leaves suggests, and further than the measured extent of open 

vessel connections. If movement is occurring within the xylem of the kiwifruit plant, 

the vessel end walls and pit membranes are not a barrier for Psa movement. 
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5 CHAPTER 5 

General Discussion  

 

5.1 Novel Findings 

This study advances our understanding of strategies adopted by Psa to infect and 

invade the host kiwifruit plant. The Psa genome includes six genes that have 

sequence similarity to known cell wall degrading enzymes. This is the first study to 

demonstrate that the pathogen’s annotated xylanse gene is expressed during 

infection. Xylanase activity was detected by a reducing sugar-detecting assay when 

Psa was cultured in vitro in minimal media supplemented with ground kiwifruit 

wood. Interestingly, in the in-planta studies, the gene annotated for xylanase was 

expressed at the RNA level and xylanase activity was also detected. Secondly, this 

study is the first to describe kiwifruit vessel lengths in stems and leaves of several 

varieties of kiwifruit including the most Psa susceptible Hort16A cultivar.  

Chapter two demonstrated that Psa is capable of surviving and multiplying in 

nutrient deficient media, especially in a minimal media supplemented with kiwifruit 

xylem. Further enzyme assay experiments revealed that xylanase activity was 

detected in Psa cultured in kiwifruit xylem media using the DNSA assay. However, 

with the RBB assay there was no xylanase activity detected in Psa cultured in 

kiwifruit xylem media. Bioinformatics analysis revealed that the Psa genome 

possesses six genes with sequence similarity to CWDE genes. In addition, some of 

CWDE proteins display a high homology to respective CWDE proteins of other well 

known woody host pathogens. The Psa genome contained four annotations for 

xylanase that differed in length, ranging from 819-1161 nucleotides, respectively.  

Chapter three demonstrated that Psa synthesises a type of xylanase which can be 

detected by the RBB-Xylan assay in the extracts of Psa-infected Hort16A plants. 

However, the xylanase activity in Psa could not be detected using DNSA assay in 

the same infected Hort16A plants. This result is contradictory to the detection of in 

vitro xylanase activity. The strength of the stems of the infected plants was less than 

that of healthy plants, suggesting that xylanase activity detected using the RBB-
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Xylan assay may have caused the reduction in stem strength by degrading 

hemicellulose. RNA extractions of infected kiwifruit stems demonstrated that one 

xylanase gene annotated in the genome (referred to as PD 882) was expressed during 

infection.  

In Chapter four, kiwifruit vessel lengths and connections have been studied 

extensively. Low pressure air injection and silicone injection was performed on 

Hort16A seedlings to determine the longest vessel lengths and vessel length 

distributions, and leaf to stem vessel connectivity in these plants. Silicone injection 

was performed also on three different kiwifruit cultivars in order to ascertain their 

vessel length distributions. These were G3 mature shoots, Hayward mature shoots 

and Hort16A mature shoots. The G3 cultivar had the longest average vessel length, 

and Hayward the shortest. Hort16A average vessel length of mature shoots was 

intermediate compared to the two other cultivars and showed a considerable amount 

of variation among different shoots. Given that of the three cultivars considered, 

Hort16A is the most susceptible to Psa, these results suggest that vessel length on its 

own is not a major risk factor for Psa susceptibility. The average vessel length of 

Hort16A seedlings was much shorter than mature shoots (in keeping with the smaller 

overall length of the shoots) and was less variable.  

Leaf inoculation experiments with Hort16A shoots revealed that there was 

movement of bacteria in both directions (towards stem and leaf tip) when Psa was 

inoculated near the tip and base of the leaf lamina. However, a significantly higher 

probability of movement was observed in the direction of leaf tip. Psa was able to 

move readily from the inoculated leaf lamina into the stem, moving past boundaries 

in open vessel connections between the stem and petiole or lamina, documented 

using air injection. This result reinforces the conclusion that if Psa is mobile in the 

xylem, as observed in other studies (Ferrante et al., 2012; Renzi et al., 2012; 

Scortichini et al., 2012; Spinelli et al., 2011), then pit membranes located at the 

vessel end-walls do not appear to be a barrier to movement. This finding agrees with 

the observations in Chapters 2 and 3 that the Psa genome includes a number of 

CWDE genes, that at least one of these genes is expressed, and that the pathogen 

produces active CWDE protein during infection.               
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5.2 The significance of the host cell wall degrading activity of Psa  

Kiwifruit bacterial canker caused by Psa has become a widespread disease across 

kiwifruit growing regions globally. It has caused severe economic losses to the 

industry from 2008 onwards, and in a more aggressive manner when compared to 

pre-2008 outbreaks (Marcelletti & Scortichini, 2011). Following the first severe 

outbreak in Italy in 2008, many plant scientists and molecular biologists in the area 

of horticulture started researching this virulent pathogenic bacterium and its 

interactions with the host kiwifruit plant. One of the major areas of research includes 

genomic studies of the pathogen and phylogenetic comparisons and relationships 

between different strains of the organism (Chapman et al., 2012; Marcelletti et al., 

2011; Mazzaglia et al., 2012b; Scortichini et al., 2012). More detailed genomic 

sequencing studies were published in 2013, including sequences for the plasmid that 

is unique to the most virulent strain of the pathogen (Butler et al., 2013; McCann et 

al., 2013).  

In all of the above genome sequencing studies it was indicated that the Psa genome 

includes genes encoding for enzymes that may be responsible for degradation of 

plant cell wall material including the primary and secondary cell walls of the host 

plants. Some of these genes are present in the genomes of all sequenced strains of 

Psa while others may be unique to the most recently described virulent pathovar 

(Butler et al., 2013; Marcelletti et al., 2011; McCann et al., 2013). Furthermore, 

investigation of host plant symptoms suggests a possible cell wall degrading activity 

of Psa during the process of infection of the host (Renzi et al., 2012).  

Therefore it is important to find out whether Psa is actually producing cell wall 

degrading enzymes in the process of invasion and propagation of the infection 

throughout the host plant and the nature of such enzymes. In this PhD study, in vitro 

experiments were conducted to describe bacterial metabolism and its ability to 

degrade model substrates. Furthermore, in-planta experiments were also conducted 

to determine the activity of Psa in inoculated kiwifruit plants with regard to cell wall 

degradation. This study is the first of its kind to demonstrate the activity of xylanase 

of Psa in vitro and in-planta.         
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Previous inoculation studies have shown that the bacterium can penetrate the plant 

through natural apertures (stomata, lenticels), fruit stalks, leaf scars and wounds 

(Ferrante et al., 2012). Moreover, as described by Serizawa and Ichikawa (1993b), 

Psa is capable of moving systemically from leaves to young shoots of A. chinensis 

and green kiwifruit through the leaf veins and petioles (Ferrante et al., 2012). Most 

probably, Psa moves from leaf veins to the shoot through xylem vessels as observed 

by Spinelli et al. (2011). In this study, experiments documented in Chapter four 

showed that vessel length has no impact on the pathogen’s ability to move, since it 

has been observed that Psa moved quite quickly from the leaf and into the stem past 

the position in the leaf where stem to leaf vessels ended. Experiments documented in 

chapter two showed that Psa secreted a type of xylanase during infection and 

perhaps that xylanase contributed to the aforesaid rapid movement through the 

tissues, possibly in the xylem by breaking the pit membrane. Furthermore, it is also 

possible that Psa does not need to move specifically in the vessels and instead may 

only be exerting a thrust in and out of cell lumens and between cell walls. Xylanase 

may help to degrade primary cell walls along with either one or several other 

CWDE, such as pectinases and polygalacturonases (PGs). 

It is relatively unusual for the Pseudomonas syringae species to invade woody plant 

tissues. However, contrary to the already established infection strategies of other 

Pseudomonas syringae pathovars, preliminary genomic and histological evidence 

suggests that the virulent strain of Psa possesses a cell wall degrading ability that 

may facilitate invasion of woody tissues. However, this possibility has not been 

investigated in detail and the actual cause of stem cankers and shoot wilting in host 

plants infected by Psa remain inconclusive. The outcome of this study leads to 

further studies aimed at producing resistant kiwifruit cultivars and identification of 

effective control mechanisms for the disease.           

Observations of some of the infected plants show a pattern of localization of 

symptoms either in leaves or shoots. In certain kiwifruit plantations, the cankers 

appear in shoots with no symptoms in leaves while in other plantations only the leaf 

spots have been observed with no signs of canker (Vanneste et al., 2011). Therefore, 

it is important to investigate the mechanism employed by the bacteria to move 

systemically from leaf to stem and from stem to leaf during the process of infection. 

Furthermore, in the absence of previous research with regard to bacterial movement 
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within the kiwifruit plant, it is important to investigate the above phenomenon while 

also considering the vascular architecture and anatomy of the kiwifruit vine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 Invasion and infection process of Psa in the kiwifruit plant. 
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between cell walls, and the xylanase alone or 

with other CWDE  may help to degrade primary 

cell wall; or 

3. Mechanical force exerted on cell walls by 

Exopolysaccharides (EPS) produced by millions 

of Psa colonies. 
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5.3 Future Prospects                

The experiments conducted in this study have opened up many avenues to elucidate 

the activity of CWDE produced by Psa, especially in the process of understanding 

invasion strategies of the bacterium. For future studies, five research strategies are 

recommended. These are outlined in more detail below. 

5.3.1 Investigate CWDE activity of annotated Psa genes in vitro and in-planta 

As described in chapter one, six sequences were identified with homology to known 

CWDE genes in the Psa genome. An initial experiment was carried out to ascertain a 

possible PG activity in Psa infected stem extractions using PG acid gel method. 

However, no PG activity was detected using this method. Further experiments 

should be designed to conduct enzymatic assays for PG activity when Psa is cultured 

under a variety of conditions and/or in-planta. Investigations should also be 

conducted to detect pectin lyase and cellulase activity of Psa. Research on 

pectinases, PG and pectin methylesterase (PME) secreted by plant pathogens have 

been studied in more pathogens and in more detail than any other wall 

depolymerases (Walton, 1994). Pectinases are able to soften tissue, 

a distinguishing quality of soft-rot diseases, and induce many physiological effects in 

plants. Since a large degree of cellulose degradation occurs only late in infection, 

plant pathologists have generally concluded that cellulases are not particularly 

important in the development of disease (Cooper & Jellis, 1984). Therefore enzyme 

assays to detect cellulases could be conducted in very severe stages of the Psa 

infection. However there can be practical limitations of conducting assays for Psa 

cellulases in severe stages of infection as secondary organisms, particularly fungi, 

are interacting with assay results. Zymogram and SDS-PAGE analysis could also be 

carried out to confirm the activity and the length of the enzyme respectively.       

The xylanase activity detected in Psa may be facilitating the rapid movement 

through the tissue that quickly goes beyond documented vessel lengths. Could 

xylanase alone facilitate this movement, or would other CWDE be needed to truly 

loosen or break the walls enough for the bacterium to move within and between 

cells? The type of xylanases and other types of CWDE needed for the aforesaid 
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movement can be investigated in detail.  Kiwifruit stems could be infused with 

commercially available CWDE with properties similar to those produced by Psa, and 

measurements of hydraulic conductance used to determine the effect on pit 

membrane porosity, structure or strength of the xylem tissue. Similar types of 

experiments have been conducted in grapevine to determine the effect on xylem pit 

membranes of PG and endo-1,4-b-glucanase enzymes homologous to those produced 

by Xylella fastidiosa in grapevine (Perez-Donoso et al., 2010).         

5.3.2 Develop genetically modified (GM) Psa strains, knocking out the genes 

encoding for xylanse and carry out enzyme assays to confirm that 

activity is due to the xylanase gene observed in the genome 

Genes encoding for xylanase can be deleted or knocked out from the Psa genome, 

and enzyme assays may be carried out both with wild type and knockout strains of 

Psa to detect the xylanase activity. A dramatic reduction of extracellular xylanase 

activity should be detected in cell cultures of genetically modified Psa when it was 

cultured in minimal media supplemented with 0.5% kiwifruit xylem as described in 

chapter 2, and in extracts from plants infected with knockout strains of Psa (Nélida 

Brito et al., 2006). There are several examples from the published literature where 

xylanase or xylanase transcriptional activators of pathogenic microbes have been 

successfully knocked out, resulting in reduced xylanase activity in culture and during 

infection of the host (Fernando Calero-Nieto et al., 2007; Nélida Brito et al., 2006).   

5.3.3 Use GM Psa inoculations to analyze the disease severity of the host plant 

and virulence of the bacteria.  

The most susceptible variety Hort16A plants can be subjected to GM Psa (as 

described in 5.3.2) inoculations on the stem and the leaf and the resulting disease 

severity can be assessed against Hort16A plants that are inoculated with wild type 

Psa. It is expected to see yellow localized lesions in both plants inoculated with wild 

type Psa and GM Psa. However in GM Psa inoculated plants, spread of the infection 

and formation of white exudate should be less severe than in wild type Psa 

inoculated plants. Plant extracts of GM Psa inoculated plants should not produce 

xylanase and there cannot be any stem strength reduction in them. A number of 

instances (Nomura et al., 2006; Woo et al., 2006) can be quoted from the literature 

where researchers have tested disease severity with GM organisms. Gibberella zeae 
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infection on wheat using wild type (with toxins) and GM G. zeae (without toxins) is 

another example (Desjardins et al., 1996). Successful knockout of xylanase activity 

from fungal plant pathogens has previously resulted in either no change in virulence 

(Fernando Calero-Nieto et al., 2007) or substantial reductions in virulence (Nélida 

Brito et al., 2006). 

5.3.4 Use fluorescence to map out the pathways of movement of bacterium in 

the host plant and understand the rate of movement of Psa in the plant 

The exact path of Psa movement within the plant remains inconclusive. There are 

several ways that Psa may move within the plant (Fig 5.1). It should be possible to 

transform Psa with a stable plasmid vector (pDSK-GFPuv) that strongly expresses 

the GFPuv (Green Fluorescence Protein) protein. GFP Psa should have 45-fold 

brighter green fluorescence than wild type bacterial cells, therefore allowing direct 

observation of individual bacterial cells or cell aggregations with under long-

wavelength UV light (395 nm) (Gao et al., 2016; Spinelli et al., 2011).  Moreover, 

(Chatelet et al., 2006) has conducted experiments using GFP-Xylella fastidiosa 

(GFP-Xf) on grapevine to describe the movement of the pathogen within the xylem. 

A similar experiment is proposed for detection of Psa movement from stem to leaf 

lamina and vice versa using GFP-Psa, and to examine in more detail how the 

bacterium overcomes pit membrane and cell wall barriers in kiwifruit. 

5.3.5 Host defense mechanisms deployed by the kiwifruit plant 

The immune systems evolved by plants to defend against pathogenic 

microorganisms are quite powerful. Nevertheless, pathogens such as P. syringae 

have successfully developed mechanisms for injecting virulence protein into host 

plant cells to counteract and overcome the plant immune systems to cause diseases. 

The plant cell molecules targeted by bacterial virulence proteins that are vital for the 

development of plant disease have not been fully understood. It has been found that 

in Arabidopsis thaliana, an immunity-associated protein, AtMIN7 is targeted by a 

virulence protein, HopM1 produced by P. syringae. The outcome of this experiment 

illustrates the strategy adopted by bacterial pathogens to take advantage of host 

enzymes to undermine the immunity of the host plant and cause infection (Nomura 

et al., 2006). 
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Further research into the effectiveness of host defence mechanisms deployed by 

kiwifruit plant in the face of Psa invasion could lead to breeding of resistant 

kiwifruit varieties. Successful Psa invasion and onset of symptoms ensue if the 

kiwifruit defence mechanisms are inappropriate, the kiwifruit plant fails to detect the 

pathogen or the defence responses triggered are ineffective (Hammond-Kosack & 

Jones, 1996). A comprehensive understanding of Psa-kiwifruit interaction and the 

kiwifruit’s response would shed light on a possible weakness in the defence 

mechanism. It is already known that the G3 cultivar is more resistant to Psa than 

Hort16A. Future research may be envisaged on differences on defence mechanisms 

of Hort16A and G3 cultivars.  

There are three common strategies that host plants mobilize for defence against 

invading pathogens; hypersensitive response, production of reactive oxygen species 

and cell wall fortification. For extracellular pathogens such as P. syringae, fortifying 

the cell wall could prevent leakage of cytoplasm into intercellular space thereby 

depriving the pathogen of nutrients. Pathogens produce a number of cell wall 

hydrolyzing enzymes and mechanical pressure exerted by the pathogen may 

facilitate pathogen entry. Although none of these enzymes or mechanical pressure is 

crucial for a particular mode of pathogenesis in isolation, some of the cell wall 

component fragments produced by the activities of these enzymes might trigger 

additional defence responses. For instance, in response to secretion of PG by some 

necrotrophic fungi to soften the plant cell walls, PG-inhibiting proteins are induced 

in bean that inhibit the activity of PG (Hammond-Kosack & Jones, 1996). Further 

research leading to characterization of defence mechanism related products such as 

PG-inhibiting proteins could pave the way to derive a better understanding of the 

pathogen invasion strategies and thereby developing resistance for specific invasion 

strategies. Therefore future investigations could be directed towards inhibitors 

produced by kiwifruit plant to CWDE secreted by Psa or whether the kiwifruit plant 

detects Psa CWDE as signs of infection. 

Further investigations could also investigate whether there is a relationship between 

callose formation by the host plant and Psa CWDE activity. Callose is a structural 

barrier associated with wounding and infection, and is normally produced during the 

hypersensitive response in leaves (Vleeshouwers et al., 2000).  Callose formation is 

associated with higher levels of resistance by kiwifruit to Psa (Cellini et al., 2014; 
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Southerland, 2013). Experiments could investigate whether callose formation is 

induced by CWDE activity, and whether callose formation acts to limit the bacterial 

movement facilitated by CWDE. 

5.4 Conclusion 

This study revealed the xylanase activity of Psa in vitro and in-planta. One gene 

annotated for xylanase in the Psa genome was expressed during infection. Moreover, 

this study revealed that there is a loss of strength in infected kiwifruit stems that may 

be associated with the observed xylanase activity. It is concluded that Psa probably 

does use at least one cell wall degrading enzyme to facilitate movement within the 

host, after entry via wounds or natural openings on the stem and leaves. Studies of 

vessel lengths in a number of kiwifruit varieties indicated that there is no relationship 

between disease susceptibility and vessel lengths or the location of vessel endings, 

even though others have found that the pathogen is mobile in the xylem tissue. This 

finding further reinforces the conclusion that Psa’s systemic movement in the plant 

is an active process that involves the activity of cell wall degrading enzyme(s) 

produced by the pathogen.  
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