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This paper begins a study of one- and two-variable function space models of irreducible 
representations of q analogs of Lie enveloping algebras, motivated by recurrence relations 
satisfied by q-hypergeometric functions. The algebras considered are the quantum 
algebra U,(su2) and a q analog of the oscillator algebra (not a quantum algebra). In each 
case a simple one-variable model of the positive discrete series of finite- and infinite- 
dimensional irreducible representations is used to compute the Clebsch-Gordan coefficients. 
It is shown that various q analogs of the exponential function can be used to mimic 
the exponential mapping from a Lie algebra to its Lie group and the corresponding matrix 
elements of the “group operators” on these representation spaces are computed. It is 
shown that the matrix elements are polynomials satisfying orthogonality relations analogous 
to those holding for true irreducible group representations. It is also demonstrated that 
general q-hypergeometric functions can occur as basis functions in two-variable models, in 
contrast with the very restricted parameter values for the q-hypergeometric functions 
arising as matrix elements in the theory of quantum groups. 

I. INTRODUCTION 

In this paper we begin a study of function space mod- 
els of irreducible representations of q algebras. The alge- 
bras and models that we consider are motivated by recur- 
rence relations satisfied by q-Jacobi, q-Laguerre, and q- 
Hermite polynomials. The point of view is that espoused 
in Ref. 1. Simple one-variable models of irreducible rep- 
resentations of the q algebras are used to compute model- 
independent properties of the representations, and these 
results are then applied to the more complicated two- 
variable models. In this approach q-hypergeometric func- 
tions depending on arbitrary complex parameters arise as 
basis functions in two-variable models. This contrasts 
with the results of the elegant theory of quantum groups, 
where special functions usually arise as matrix elements 
of quantum group operators. In the quantum group the- 
ory these spherical functions are very restricted classes of 
q-hypergeometric functions.24 

In the Introduction we review the basic facts about 
the finite-dimensional irreducible representations of the 
quantum algebra U,(SU~),~~~-‘~ and examine a model of 
these representations in which the representation space 
consists of polynomials in the complex variable 2.” We 
use this model and a q analog of the exponential function 
to give an alternate derivation of the Clebsch-Gordan 

coefficients for the tensor product of two irreducible rep- 
resentations.8’9*‘2 

In Sec. II we review the basic facts about the positive 
discrete series of unitary irreducible representations of the 
quantum algebra analog of su( 1, 1).5*6P’3 We study a one- 
variable model of these representations in which the 
Hilbert space consists of analytic functions on the unit 
disk. Again we use the model to give an alternate deriva- 
tion of the Clebsch-Gordan decomposition. 

In Sec. IV we introduce a q analog of the four- 
dimensional oscillator Lie algebra. This q analog is mo- 
tivated by the recurrence relations for 1$1 basic hypergeo- 
metric functions, and is not a quantum algebra. 
Nevertheless, the model techniques still prove effective. 
We study a family of irreducible infinite-dimensional rep- 
resentations of this q analog and find two distinct one- 
variable models: the first defined on a Hilbert space of 
functions analytic in the unit disk and the second” on a 
Hilbert space of entire functions. In Sec. V we use the 
disk model to work out the Clebsch-Gordan coefficients 
for the tensor product of two of these representations. 

In Sec. VI we examine briefly the quantum algebra 
WP( 1). We show that a particular representation of 
I#$( 1) can be identified with a particular representation 
of the algebra in Sec. IV, corresponding to a model of 
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bosons, but, in general, these algebras are distinct. [On 
the other hand, if Uq(su2) and WP( 1) are considered as 
complex algebras with identities, then 
upl/z(su2) = Wp( l).] 

In Sec. VII we give some examples showing how the 
various models of q-algebra representations can be used 
to derive identities obeyed by q series associated with the 
models. We draw our examples from the oscillator alge- 
bra of Sec. IV, though the ideas apply generally. Using 
two more q analogs of the exponential function we mimic 
the exponential mapping from a Lie algebra to its Lie 
group and compute the matrix elements of “group oper- 
ators” with respect to a standard basis in the representa- 
tion space. Depending on which q analog of the exponen- 
tial we employ we obtain various q analogs of the 
associated Laguerre polynomials Lirn-‘) (x) for m, n 
non-negative integers. We demonstrate that these matrix 
elements themselves form bases for two-variable models 
of irreducible representations of the oscillator algebra and 
that indeed they are special cases of models involving q 
analogs of the Laguerre polynomials LLY-“) (x) for gen- 
eral real y. We show that the polynomials in each exam- 
ple satisfy orthogonality relations that are q analogs of 
the orthogonality relations for matrix elements of irre- 
ducible representations of the oscillator group. 

In forthcoming papers we will extend the ideas in 
Sec. VII, explore the discrete orthogonality and biorthog- 
onality relations for q analogs of Laguerre and other poly- 
nomials, obtained by multiplying the matrix of a “group 
operator” by its inverse matrix, and explore the various 
identities that arise from a knowledge of these matrices 
and the Clebsch-Gordan coefficients. 

For the most part, the notation used for the q series in 
this paper follows that of Gasper and Rahman.14 

II. MODELS OF FINITE-DIMENSIONAL U&u,) 
REPRESENTATIONS 

The quantum algebra U,( su2) is the associative alge- 
bra generated by the elements H, E,, E-, which obey the 
commutation relations 

[f&E+ 1 =E+, [H,E-] =-E-, 

bi-cH EE+,E-1 =q1/2-q-1/2. (2.1) 

Here we take q to be a real parameter, such that 0 < q < 1. 
In the limit as q+ 1 relations (2.1) go to the usual com- 
mutation relations for the complexification of the Lie al- 
gebra su2. Finite-dimensional irreducible representations 
of U,(su,) are determined by the integral or half-integral 
number u: 2u=O 1 2 , , ,**a . The corresponding representa- 
tion D(2u) is defined on the (2u+ l)-dimensional 
Hilbert space H2u with orthonormal basis {e,:m= -u, 
-u+l ,...,u}, such that 

E+em= ([u--ml,[u+m+ llq)“2em+l, 

E~e,=~[u+m],[u-m+ll,~1’2e,-~, 

He, = me,, 

where 

m/2 -m/2 
[m],=4q,/2~%-l,2 =q-(m-1)/2(~)m 

A second convenient basis for Hz,, is the set { f,,:n 
=O,l,..., 2u}, such that 

e-fn= -dnl+f,-b 

W-n= (--u+n)f,,. 

Here 

E+fn= -q-‘Pu--nl$,+I, 

f,= (_ ly1~‘3/2-~‘y~;~), l/2 

w2wn 1 e--u+n. 
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(2.2) 

(2.3) 

(2.4) 

(2.5) 

C=E+E- +<;,;;+$,;z;: (2.6) 

Since the element 

CZ4 
u+l/2 +4- u-1/2 

commutes with each generator of U,( su2), it corresponds 
to a multiple of the identity operator I on H,,. Indeed, 

(2.7) 

on Hz,. 
Given the irreducible representations D( 2~4~) and 

DC22421 on the spaces Hz+ and H2u2, respectively, we 
define the tensor product representation 
D(2ul) 03~(2u2) of U,(su,) on the space 
Hz,,, 8 Hzuzby the operators 

F+=Ah,(E+)=E, @q+-q(“-l)ffBE+, 

L=A,(H)=Hel+leH, (2.8) 

where a is a real number. The operators F&, L satisfy the 
same commutation relations as the operators E*, H: 

[L,F*] = AF,, hrL [F+,F-1 =q1/2-q-1/2. (2.9) 
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(If we require that F, is the adjoint of F- and L is 
self-adjoint, then we must have a=f, which is the usual 
definition of the tensor product; see Refs. 7 and 8. Thus 
the interest of representations with general a relates pri- 
marily to nonunitary representations, particularly the 
nonunitary infinite-dimensional representations to be 
considered in the next section. However, we will work out 
the details of the Clebsch-Gordan decomposition of a 
also in the finite-dimensional case.) It is straightforward 
to show that 

4 -aHeH Q~H~PH,A 
o-a, (2.10) 

so 

and the operators Ab are equivalent to the operators Aliz. 
In order to decompose D(2ul) o fl(2u2) into irre- 

ducible subspaces, we introduce a convenient one- 
variable model of D(2u).” Here the vector space H2” 
consists of polynomials f (z) of maximum order 2u in the 
complex variable z. The action of Up(su2) is defined by 
the operators 

(2.11) 

where TJ(z) =f(qz). The basis functions {f,,=z”:n 
=0,1,...,2u} satisfy relations (2.4). We define a bilinear 
form (e;) on H,,, such that 

(f,g)= J Jm f (z)g($(z,$dx dy, 
-02 

where z = x + iu and dx dy = - (i/2 ) dz dZ Further, we re- 
quire that 

W+fA = (f,E-g), (Hf,,g) = (f,Hg), 

for all f&X2,. A straightforward computation gives 
p(z,F) =p(z.F) =p(w>, where 

or 

( - wq”-l’2;q) m K 
p(w) =K 

(-wq-“-5’2;q)oo=(-wq-u-5’2;4)2~+2 * 
(2.12) 

Since 

dw qu+5/2 ln q-l 

( -wq-u-5’2;q)2U+2= (l-tiu+‘) ’ 

we choose 

K- 1-&u+’ 
- u+5/2 

4 lnq-” 

so that (1,l) = (fo,fo> = 1. The functions 

=z~+~J, m= -24,-u+ l,..., u, 

(2.12’) 

(2.13) 

form an orthonormal basis for H2U in this model. This 
Hilbert space has the kernel function 

u 
S(,?,z) = C em(z = ( -q-U-3’2Zz;q)2U, 

m= --u 
(2.14) 

It follows from (2.8) and (2.10) that the operators 
correspond to the tensor product D(2u,) o $(2u2) take 
the form 

so that 

(&w; )) =gw 

for Z’E~ and gEHzu. 

F+= -&I- “~2-‘/2z(q~1~,-“2-q--l~~‘2)Tp 

+q(-a+l)u,-l/2W(qU2y42~q--uqm2)~-l+a} w w z f 
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d” d-l+=)uz 
F-=lmq z I (y4”-y2)7y+l 

s 

+$l(pf-r,-‘n)T;” , 1 
d d 

L=-ul--u2+z~+w~. 

The functions 

(2.15) 

pkr(z,w) =zkw’, k=O,l,..., 2ul; I=O,l,..., 2u2, 

form a basis for H,,, @ H2u,.We use the method of highest 
weights to decompose Hz,+ 8 H2,$nto irreducible sub- 
spaces. The eigenvectors of L such that Ff=O are given 
by 

co= j. K&Lq-l”l,l’/2$ 

r 

1 

r 

X -(-l-~)(u*-uu*+(“+l/2)s . (2.16) 

Note that in the case a=$ expression (2.16) can be 
summed explicitly: 

(w/z 4- 1m -‘n”z+“;q) o3 

‘2 

( 

w q-w2)ul-w2)u2.q 
Z 1 

, 9 
s 

Lf,o=(~-uul-u2)fS,o, S=0,1,...,min(2u1,2u2). (2.17) 

We introduce a bilinear form (*,a), on H2,1 
8 H2u2, such that 

=a 6 (_l)k,+~lq(3/*)(kl+~,)-~,k,-uz~1 
v-2 ‘1’2 

(2.18) 

By construction, 

V+PI,P~A,= hF-~2)a, (LPl,P2)a= (PlJP2)al (2.19) 

for all pl, p2 E Hz,,, 8 Hz*,. For a= i, this agrees with 
the inner product on Hz,,, @ H2u2 induced by (2.12) 
and (2.13) .] A straightforward computation yields 

Now we define vectors fS,b recursively, by 

-cl 
fs*k+l= [2ul+2u2-2+-k], F+fs,k 

k=O,l,..., 2ul+2u2-b-1, 

s=O,l,..., min(2u1,2u2). 

(2.20) 

(2.21) 

Using the recurrence relations (2.9) and the Casimir op- 
erator 

c’ =F+F- + $;f+$:/:,‘: , 

we can verify the following. 
Lemma 1: 

(1) F+fs,k= ---4-l t2ul+2uz-~-k],f,k+l, 

(2) F-&c= -d’&f,k-1, 

(3) Lfs,,,= (-Ur-%+S+k)fs,k 

In particular, F+fs,2u,+2u2--2r=0. For fixed s the {f& 
form an orthogonal basis for a subspace of 
H2”, o H2,2transforming according to the irreducible rep- 
resentation D(2ul+2u2-2s). 

Lemma 2: 

min(2u1,2u2) 

mw) eWu2) = c eD(2u*+2u2--2r). 
s=o 

Lemma 3: 

(j$-f?,k’) 
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Instead of the orthogonal basis { fs&} we can pass to 
the orthonormal basis {ek}, where 

ek= Iif,kii -‘f$,k, (2.22) 

and u=uI+u2-s, m=-ul-u,+s+k, so that 

~=u1+u*,q+~*--- ,..., IUl---u*I, 

m=-u,--v+l,..., u. 

To derive a generating function for the Clebsch- 
Gordan coefficients we apply a q analog of the exponen- 
tial of F, to fl,o and expand the resulting expression in 
terms of the monomial P,,~ basis: 

k(k+1)/4 

(exp, tF+ )Co= k;. q(q;q)k fiFLf% (2.23) 

To compute the right-hand side of (2.23) we need to 
evaluate the terms I;*ft~“,~, where ~“,~=Znw~ and 

F,=Y+X, Y=E+cwfH, X=q’“-l’HeE+. 
(2.24) 

Note that YX = qX Y. Moreover, a straightforward induc- 
tion argument using this property (see Refs. 4 and 14, p. 
281, yields the following. 

Lemma 4: 

The right-hand side of this expression is easily eval- 
uated on the P,,~ basis. Then, making use of (2.16), we 
obtain the expression 

(exp, tF+)fio= i i (q-s;q)h(q- 
Zu,+s-h 

;4)j(4-2U2+hX)l q(a-1/2)(&lh-h2)+(a+1/2)hj 

h=O j,l=O (%(l)h(%q)j(%q)d 1 d-4)‘+’ 

xq I([l-a][u,-s]+u2)+j~u~-au~-s/2~+h~[a--l]u~--au~+[a+l/2ls~~-h+jWh+~~+l 
, 

where k=j+l. On the other hand, from (2.21), 

“8 (k+1)/4 m w 2u,-2u2+2s 

(exp, fF+ )<o= kzo (q.q)k fkp&o= c , k=O t&q) k 

;,,,(@;T;s);k 

Thus 

ck(z,W) = sg ti-$;;;;” ~(~~*~~~~~~~r(~~~;q)r 
2 2 2 

r=O r ; m 2 s 

X(q m 
‘+k-r;q) qr[(a-1/2)(k-r)+(a-l/2)s--a(u,--u2)+u2] 

x3$2 

From this result we can easily expand the orthonormal basis {e&} for H2,1 o H2U2, 

(- 1)“I+u2-u(q;q) 
ck= 

u,+u2-“(q-u~-u2-“-1 ;4)u,+q-u(4;4)v+m(4;4)v-m 1’2 

w2u’;4) u~+u2-u(4-2u2~9)~*+uz_uo2u 1 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

where 

m=v,v- l,...,-u; u=tl1+112,u1+112-1,...,I1(1-1121, 

in terms of the orthonormal basis (2.18)) 
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l/2 

ei: 0 ,gzt = 1 
w2u’;4) ul+“,w2uwu2+“2 (1/2--a)[ul(u,+“,)+uz(u2+“2)-(u,+n,)(U2+”2)] 

(4;4L,+n, 4;4L2+n2 ( (- l)ul+u2+nl+n2 1 Q 

xq- 
(3/4)(u,+u2+n,+“2)+(u,/2)(u,+n,)+(u2/2)(u2+”2)p 

u,+n*,u2+ny Fli=Ui7Ui-1,~~~~-Ui: (2.29) 

= 1 Ul u2 0 
eL= 

n,,n2 a 4 n2 m 
1 eul 

“1 
63 &ii. 

4 
(2.30) 

This defines the Clebsch-Gordan coefficients for the tensor product D(2ul) 8 D(2u2). It follows from (2.27) that these 
coefficients vanish unless m = nl + n2. Furthermore, the orthogonality of the two bases implies the identities 

c [;: ;I J j;; ;I :]:=6.“? 
n1.3 a 

c [;: ;; ;I, j :; ;; 1]:=8.,.;. ” a (2.31) 

(In the second sum we require nl +n2= ni + n; = m, and * is complex conjugation.) From (2.27H2.30) we find 

xq 
1/2[-u;+u:+2u*u2-2u2u-*,“l+*2u,-q”2-”2u2] 

“-84*-q 

x 3+2 
4 , 

qUl-U2+V+l , q-u2-n2 

;4; Q 
-v+m 

* 
4 

u+q-q+l 
, 4-2u2 

(2.32) 

In the case a =i the sum (2.25) can be evaluated explicitly (through use of the q-Vandermonde identity; Ref. 14, p. 
236): 

(2.33) 

Thus, from (2.26), (2.28), and (2.29) we obtain the generating function (after some resealing) 

= (- l)“3+u2-ul q (1/2)(U,+U2-U3)+U3(U,+U2)-(1/2)(u:+u:+u:) 

X I 
(-1) ul+u2-u3(q;q) u,+u2-*3(q-u’-u~-u3- 1;4) l/2 

Ul+U2-U3 
2 

ccl- u%L,+u2-*3 ( -2u2;4L,+u2-u3 4 1 
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x c ( -1)“3+mx,us-“x, “‘+“‘X”~+“2q~/~[~(“~-“,+“3)+nl(u~-”~+”,)+”~(”~-“,+U~+2)] 2 
“lJ2 

v 1 w2*w “3+mw2U’;Q) “l+nl(4-2u2;4)“2+n2( - 1)“3-“‘-“2 
I\ 

1 (4;4)“3+m(4~4)“,+nl(4;4)u2+“2 

where m=nl+n2. The left-hand side of (2.34) admits 
symmetries, which account for the 72 symmetries of the 
Clebsch-Gordan coefficients8 Indeed, any even permuta- 
tion of the indices 1, 2, 3 on the left-hand side induces a 
symmetry. For example, the transformation 

Xl *q*xz, Ul-+U21 

x2 +x3, u2 --, 1131 

x3-+*1, U3-+Ul, 

induced by the cyclic permutation ( 123), is a symmetry 
(it maps the generating function to q”2+“3-“* times it- 
self), as is the transformation 

l/2 

l/2 

Ul u2 u3 

nl n2 m 

2371 

, (2.34) 
I 

I 

x3 4x2, u3 * u2, 

x2+*1, U2-‘Ult 

induced by ( 132), which maps the generating function to 
4 “3+‘*-“2 times itself. The odd permutation (12) (3) in- 
duces the transformation 

Xl +x2, u14u2, 4-d 

x2-+x1, u*+u1, 

x3 *x3, u3+u3, 

which maps the generating function to 

times itself. The transformation 

Xj-X,’ l, Uj’Ui, q--*4-‘, j= 1,2,3, 

followed by a multiplication by x~~x~“~x~“~, maps the generating function to 

(_ 1)“,+“~+“~~(u~+“~+“~)-~/~(“,+“~+”j)2+(3/Z)uj-onl-(1/2)“~ 

times itself. The remaining symmetries are probably best understood from the examination of a new generating function. 
In (2.34) we set x1 =z2/y2, x2=zI/yl, x3=z3/y3, multiply by 

(- 1)“l+“2t”3(yLy~2)“3+“2-“l(y~~1)“3t”I-”2(y~l~3) “*+U2-“3 4(*~tU~+*~)-(**t*2t*3)2 
4 

(4x) u3+“2-“*(4x) “3+“*--“2 4;4)“lt”2-“3 ( 
, 

and sum over all possible values of ul, u2, u3 to get 

bv2w?x) m (Y2W3w?) m hv24x) m 

hs2z3;4) co cy3w2;4) co bJ*wm) m 

U3tU*-“2 “2+U3-“1 U*+U2-“3 

= “lt”~“3=o njzuj ~9:4)“3~“,-“2~q~~“2+“3-s:,~B;P~ 
z~+“2z;l+“lz3u3-y2-~2y;l-“1( -y3)“3+m 

“,+“2--“3 

x (_ 1)2("2+"3)q1/2("lt"2-"3~ xq 5/2(“:+“:t”:b2”,“~-“~~“*+“2) 1/2[m(“2-“,+“3)+n,(“2-“~+“,~tq~“~-”,+”~+2~1 
Q 
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(4x) “l+“2-“3(q-*‘-“2-“3-’ ;4) 
X 

“,+“2-“3(q-2”3;4)y3+m(~-2*‘~~~“l+nl~~-2”2~~~”2+n2 1’2 

W2”‘;4) “1+“2-“3(4-2”2;4) “2t”,-u3(4~4)“3tm(4~4)“l+nl(4~4)”2+”2 1 

(2.35) 

I 

All even permutations of the rows and columns of the 
matrix, 

(2.36) 

induce symmetries of the left-hand side of (2.35). For 
example, the mapping of (2.36) to 

is a symmetry, as is the mapping of (2.36) to 

Y3 s3 z3 

Yl Sl Zlc? 

and to 

. 

Yl Sl Zl 

[The last two examples correspond to cyclic permutations 
of (2.34).] Another example is the mapping of (2.36) to 

=1q Yl Sl 

All these symmetries together generate the full group of 
72 transformations of the Clebsch-Gordan coefficients.8 
Through the relation (2.32) the symmetries lead to trans- 
formation formulas for the 342 polynomials.14 

III. A CLASS OF INFINITE-DIMENSIONAL 
REPRESENTATIONS OF U&u,) 

Now we consider the discrete series t, of infinite- 
dimensional representations of U,(su,). This is defined 
on the Hilbert space Ho with orthonormal basis {e,:m = 
-u+n, n=0,1,2 ,... }, such that 

He,=me,. 

Here u is a negative real number. A second convenient 
basis is the set {f,:n=O,l,...}, such that 

E-f,= --4[nl$,+l 

Hf,,= ( -u+n)fn. (3.2) 

On this Hilbert space E+ = - (E- ) * and H* = H, i.e., 

(E+f,g) = - (f,E-g), (Hf,g) = (f,Hg), (3.3) 

for all f,gdi, in the domains of the appropriate operators 
E*,H. (In the limit as q+ 1 these representations corre- 
spond to the positive discrete series of unitary irreducible 
representations of the Lie algebra su ( 1,l) .5*6) Here 

f,= JF e--u+n, n=0,1,2 ,... . (3.4) 

Note, however, that for each complex number u such that 
2u#O,1,2 ,..., expression (3.1) (with a suitable definition 
of j/Y [m-u] ) or (3.2) defines an algebraically irreduc- 
ible representation t u of U,(su,) on an infinite- 
dimensional vector space K, consisting of all finite linear 
combinations of the basis vectors {e,} or {f,,}. In this 
more general case we can define a symmetric bilinear 
form ( *; ), such that (e,,e,,) =S,,,. Then with respect 
to this form we have 

(E+f,g) = - (f,E-g), (Hf,g) = (f,Hgh (3.5) 

for all f,gdC. Also 

q’3/2-4yq;q)n 
(fmfd) =bi (q-2”.q) * 

) n 
(3.6) 

Given the irreducible representations T,, and T u2 we 
define the tensor product representation t,, Q 0t,2 of 
U,( su2) on the space Ke K by the usual operators 
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F+=kz(E+)=E, 8flH+q(a-‘)H@E+, 

F-=A,(E-)=E- .q”-a’H+q-aH~E-, 

L=A,(H) =H~l+leH, (3.7) 

where a is a complex number. Again the operators F*, L 
satisfy the same commutation relations as the operators 
E,, H. [If ul and u2 are negative real numbers and we 
require that F- = (F, ) *, L =L* with respect to the inner 
product induced from the unitary representations tul, 
T ,Q then we must have a=!. Since the equivalence rela- 
tions (2.10) hold, we can relate the tensor product A, for 
general (I to Al,,.] 

To decompose T u, o =fuZ into a direct sum of irreduc- 
ible representations we follow the procedure of Sec. II 
and introduce a convenient one-variable model of t ,.’ ’ A 
basis for the vector space consists of the functions {f,&z) 
=z”:n = 0,1,2,...} in the complex variable z. The action of 
U,(SLQ) on functions f(z) is defined by expressions 
(2.11). We define a bilinear form ( *, . ), such that 

Cf,g) =& s,‘” ~~fOg(re-ie)p(rZ)dd2 de, 
(3.8) 

where z=reie, Z=re-‘*, and 

s 

k 
F(r+&?=k( l-q) i F(kq”)q”. (3.9) 

0 n=O 

Requiring that 

(E+fg) = - (f,E-g), (Hf,g) = (f,Hg), 

for all polynomials f,g we find that the (essentially) 
unique solution is 

k=q-u+1’2, p(3) = 
141qk%“-1’2;q)m 

q5/2(~q-u-5/2;q)m P t3*lo) 

for u#--4, normalized so that /11112=(1,1)=1. In the 
special case u= - f we define the bilinear form through 
the limit 

pk,J(z,w) =ZkW’, k,l=0,1,2 ,..., 

form an orthogonal basis for Ku, o Ku2. Again we will use 
the weight vector calculations to decompose 
Ku, d K,;?into irreducible subspaces. For convenience, we 
will consider only the case where u1 and ~4~ are negative 
real numbers. [However, it is easy, via the bilinear form 
(3.8), to carry out the corresponding computation for all 
complex u,, u2 such that 2ul, 2u2 and 2(u,+u,) are not 
positive integers or zero.] The eigenvectors f of L such 
that F-f =0 are given by the expression (2.16), where 
now s=O 12 , , ,-** * In the case where a=$ we can sum this 
series explicitly: 

(fg) _ 1i2= lim (f,s),. . (3.11) 
u--1/2 

If u is real and negative this bilinear form determines an 
inner product (f,g) = (f,g). With respect to this inner 
product we have relations 

9 

f,o=z’ ((w/z)q-(1’2)~1-(“2)u2;q)m 
((w/Z)q-(‘/2)~1-(‘~2)~2+~;q)m 

=zs ;q- 
( 

w2bq-w2)u2;q 

I9 s 

Lfs,,,= (s-u,-u2)fs,o, s=O,l,... . (3.15) 

(3.12) Now we introduce a bilinear form (*;>, on Ku, 8 Ku2, 
such that 

in agreement with (3.6). Completing the vector space K 
to the Hilbert space K”, the closure of K with respect to 
this inner product, we see that K,, consists of all functions 

f(z) = To cnf, 

such that 

n;. lc,l2 (q3;p;;;y)n< co. (3.13) 

These are functions f(z) analytic~in the disk 1 z 1 < q”‘2-3’ 
4. The Hilbert spaces K,, have corresponding kernel func- 
tions 

(q-“-3’Pz;q) m 
s(z’z)= i e-u+n(z)e-u+n(z)= (qu-3/2zz;q~ , 

n=O 
m(3.14) 

so that 

for 1 z’ 1 < qui2-3’4 and g&,. 
Just as in Sec. II, the operators corresponding to the 

tensor product 7 u, o =t uZ take the form (2.15). The func- 
tions 
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(%dk,b.h, 

x (q-2ul ;dk,(q-2”2;dr, ’ 
(3.16) 

It is easy to verify that 

(J’+PI~P~)~= - (P1P-~2)a, (LP~,Pz) = h,L~z)a, 
(3.17) 

for all pl,p2 E KU, o KU2. [For a= i, this agrees with the 
inner product induced on KU, 8 KU2by (3.10) and (3.12) .] 
It follows that 

x (9;4)sK 2uz-2u, fP- l;q)s 

w2u’;9M7-2uws - (3.18) 

Vectors fs,$ can now be defined, recursively, by 

f s,k+l= [2u,+2u;-2S-kklqF+fs,k d=Oslv. - 

(3.19) 

Lemma 5: 

(1) F+fs,k=--4-‘[2ul+2U2-2S-kl$s,k+l, 

(2) F-f,k= -dkl$s,k-1, 

(3) Lfs,,,= (---U1--%+S+k)fs,kt 
s,k=O,l... . 

For fixed s the {f+} form an orthogonal basis for a sub- 
space of K,,, 8 KUztransforming according to the irreduc- 
ible representation t U, + U2-s 

Lemma 6: 

t,, @Jatlc2= Ii 63 tu,+u2-a- s=o 
Lemma 7: 

(f$&,k’) 

Passing to the orthonormal basis {ek) , where 

e~=lifs,kll-lf,b 

u=u~+u2-s, m= --Ill--u2+s+k, 
we see that these basis vectors satisfy relations (3.1) . 

The derivation of a generating function for the 
Clebsch-Gordan coefficients is very similar to the corre- 
sponding computation in Sec. II. We apply a q analog of 
the exponential F, to fn,o, exactly as in (2.23). Applying 
Lemma 4 and using (2.16) we again obtain (2.25). Sim- 
ilarly, the generating function (2.26) and the explicit ex- 
pression (2.27) for &(z,W) hold for the discrete series of 
representations. From this result we can expand the or- 
thonormal basis {eh) for KU, @ Ku2, 

u,+“2-“(4-U~-“2-“-1;9)U1+“2-“(4;4)”+m 1’2 

u,+u2-“(9-2U2;9)Y*+U2-U(Q-2V;P)m+U 1 q(l/2)(u~+u~-u)(-u~+[2Q-li~~+3/2)+(l/2)(~+U)(3/2-U)e~ 
rn, 

(3.20) 

where 

m=s+k-ul-u2, u=ul+u2-s, 

in terms of the orthonormal basis 

(3.21) 
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e:= c I 
Ul u2 u 

nlrn2 0 nl n2 m 1 e:: c3 &t. (3.22) 
cients for the tensor product TV, o tU2. Clearly, they van- 

4 ish unless m = n i + n2. The orthogonality of the two bases 
implies the orthogonality relations (2.3 1 ), except that the 

This last expression defines the Clebsch-Gordan coeffi- sums are now infinite. We find 

I 

I:: nu: L], 

“--I(,-U2 
~~(3/4)(U,+u2+n,+“2)~~~ 4 9 qu,--u2+u+l , q-u2-"2 

4 v+n,-IQ+1 4 -29 ; 
, 

(3.23) 

Finally, in the case a=; the sum (2.25) can be evaluated explicitly to yield the generating function 

( exp, tF+ )f $” = 
( [zt/( 1 -q)]qW-“‘2;q),( [wt/( l-q) lq~,-~~‘~-“‘~;9)m((W/Z)9-u,‘2-u~’2~9)~,+~2-~ 

( [Wt/(1-q)]q~2’2+“~;q)co( [zt/(l-q)lp ‘2 --u2+” ‘2x, (3.24) 

I 

IV. MODELS OF OSCILLATOR ALGEBRA He,,= (A+n)e,, 8e,=Z2&‘e,. (4.2) 

If 2 and I are real, then T[,~ is defined on the Hilbert space 
K. with orthonormal basis {e,), and on this space we 
haveE+=(E-)*, H*=Hand 8*=8. Asecondconve- 
nient basis for K. is {f,:n=O,l,...}, where 

REPRESENTATIONS 

We introduce as a q analog of the oscillator algebra 
the associative algebra generated by the four elements H, 
E,, E-, 8 that obey the commutation relations 

[f&E+ 1 =E+, [H,E-] = -E-, 

[E+,E- ] = -q-H&9, [ %‘,EA] = [ $,H] =O. (4.1) 

These relations are motivated by the recurrence relations 
obeyed by the q-Laguerre polynomials, although, as we 
shall see, this associative algebra is not a quantum alge- 
bra. In the limit as q-t 1, expressions (4.1) reduce to the 
commutation relations of the four-dimensional oscillator 
Lie algebra.’ The associative algebra admits a class of 
algebraically irreducible representations T r,A, where Z,,l 
are complex numbers and I#O. These are defined on a 
vector space with basis (e,:n=0,1,2,...}, such that 

E,e,=I ’ 
-n- -1 

J-- lvq en-?-b 

--n -1 
E-e,,=1 4 

J -en-b l-9 

l-q” 
E-f,,=Iq-“‘2 I--qf”-1’ 

Hf,,= (A+n)f,,, 8f,,=12#-lf,,. (4.3) 

Here,f,, = d(q;q)d( 1 -q)“e,. 
Note that even in the case where I and il are complex, 

we can define a symmetric bilinear form (e;) on the 
space K of all finite linear combinations of the basis vec- 
tors {e,}, such that (e,,e,,) =a,,,,. Then, with respect to 
this bilinear form, we have 

(E+f,g) = (f,E-g), (Hfsg) = (f,Hg), 

(8f,g)=(f,8g), 

for all polynomials f,gcX. Also, 

(4.4) 
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(4.5) 

The elements %‘=qq-H~+(q-l)E+E- and % lie in 
the center of this algebra, and corresponding to the irre- 
ducible representation t 1,~ we have %’ = ?I, SY = I’#- ‘I, 
where I is the identity operator on Kp 

Given the irreducible representations tl,,A,and 
tz,,n,on the Hilbert space K. we define the tensor product 
representation tl,,,~ o .t [,,A, on the space K, Q K. by the 
operators 

F+=A,(E+)=E+e$H+q’“-l’HeE+, 

F-=A,(E-) =E- ~q’1-“)H+q-=HeE_(Klq+K2) 

L=A,(H) =He I+IeH, 

where 

I&+’ 1:&l + 1;4”2 
KI=-2, 

12 K2= gq% * 
(4.7) 

Then we have 

[L,F* I= *F*, [F+,F-] = -.3q-=, 

[F,F, I= [F,Ll =O, (4.8) 

in agreement with (4.1) . Here a is a complex constant. 
A second type of tensor product representation 

t [,,A, o At 12,Qs defined on K, 8 K. by the operators 

L’=A;(H)=H@I+IsH, 

where 

&4 - l/2 
(I=- 12 9 

2 

1 
Kl=-, 

r 
K2= - (4.10) 

Here a and r are complex constants. Neither of these 
coproducts leads to a quantum algebra because, for ex- 
ample neither satisfies the associative law.15 

Since relations (2.10) hold, the operators A,, AL are 
equivalent to the corresponding operators Al12, hi,,. Us- 
ing this equivalence we shall assume a= 4 in the compu- 
tations to follow. 

We introduce two convenient one-variable models of 
t /,* In the first case a basis for the vector space consists of 
the functions {fn(z) =z”:n=0,1,2,...} in the complex 
variable z. The action of the oscillator algebra is given by 
the operators 

E, = -$ T,- 1’2, 
I 

E-=(1-q)z 
-( T,-1’2-TTf/2), 

x=l+& g=P#-‘I, (4.11) 

where PJ(z) =f(q%). Thus relations (4.3) hold. We 
define a bilinear form (3.8) and (3.9), such that 

W+f,g) = Cf,E-g), (Hf,,g) = v;H’L 

(~f,g)=cf,~g), 

for all polynomials f,g. 

1 

(4.12) 

The essentially unique solution is 

k=- liq’ M)=(q(l-q)?;q),; (4.13) 

see Ref. 2. For I and J. real the bilinear form induces an 
inner product ( *, * ), such that 

<E+.f- ,s> = (f J-g) 9 Wf&) ) = (f3d 9 

( 8fYd = (f, 8:g), (4.14) 

for all polynomials f and g. The functions 

en= 

form an orthonormal basis for the Hilbert space K, of all 
functions 

f(z) = i. c$, 

such that 

2 lcn12 
n=O (1 -q)“< O”* 
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It follows that these functions are analytic in the disk 
“2 The Hilbert space K. has the kernel 

S(z,=) = Ii e,G%A=) =((1 -q;Tz;q) , (4.15) 
n=O co 

so that 

(g,W~,*) =g(=‘), 

for Iz’j <(1-q)-1’2andf&,,. 
A second model of t I,A, ” is determined by the basis 

functions ( fn(z) =q n(n+1)‘4z%=0,1,2,...}, and the oper- 
ators 

I 
E, = lzl, Em = -(l-T,-‘) 

(l--q)= 

H=A+z-$ iF=l++-‘I. (4.16) 

Then expressions (4.3) are valid. We define a bilinear 
form, such that 

v;g) = J Ja f (z)mp(z,adn dy, 
-co 

where z =x + & and f ,g are polynomials in z. Requiring 
that conditions (4.12) hold, we obtain the solution 

p(4 = 1-q 
(-(l-q)z?;q),nlnq-f’ 

For 1 and ,l real this bilinear form induces an inner prod- 
uct ( 1, * ) for Ko, such that relations (4.14) hold for all 
polynomials f and g. The functions 

e;=qn(n+1)/4 (1-q)” J -9, n=O,l,.*., 
(4x)n 

form an orthonormal basis for the Hilbert space K. of all 
functions, 

f’(z) = to 49 

such that 

.g IC,~2q-n(n+l)/2 

n=O (1-q)” <co* 

This is a space of entire functions; it has the kernel func- 
tion 

S(Z,z) = 2 eA(Z)eA(z) =( - (1 -q)qZz;q),. 
n=O 

V. TENSOR PRODUCTS OF OSCILLATOR 
REPRESENTATIONS 

2377 

(4.17) 

We will make use of the model (4.11) of the oscilla- 
tor algebra to decompose the representation tr,,+ 
o t $A, into irreducible components. Thus we have 

F, =$ Tz-‘/‘$i,2T’/+$ T,-‘/2q-A,/2Tz-‘/2 

+4- 
4/2 T-1/2 12 

z 
Cl-q)w 

( ,;1’2- T;“) 

X h’-,+K2>, 

(5.1) 

where 

K1= -‘:“1’-1, K2=“v;$+. 
2 2 

The functions 

P~,,~&z,w) =&wkz, kl,k2=0,1 ,..., 

form a basis for K. EI K,. The eigenvectors f of L, such 
that F-f =0, are given by 

‘+‘;dk 

X 
whq 

(5.2) 

Using (2.23) and Lemma 4, we find 
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(expq tF+)fs*o= h$o jgo (- (K,/K~)~ 
w”;qhlh’ 

2f’;q)h(4;4)h(4;4)j(4;4)1 

(~/2-s/2~l)j(q-~,/2-s/2~2)l 

X6 
( 

,/2+&/2+sl, h 

l2K2 1 

.y-h+jWh+li+l 

-s 
2 

4 9 qw2--dq1tz 

26 
bS = 

(q-Al’2-s’212tw,q) m (q+‘2-s’21*tz;q) m ; 4; (5.3) 

We introduce a bilinear form { -, *) on K. cs Ko, such 
that 

Then we have 

(F+PIP~) = &tF-~z), (LPI>PI) = (PIJP~), 

for all pl,p2~o Q K* 
Defining the functions fs&(z,w), recursively, by 

f sk+,=~-‘q’k+“‘2F+f~,k, s,k=O,l,..., 

I,= Jq-s(z;q-A2+z;q-A’), 

we obtain the following. 
Lemma 8: 

(5.5) 

(1) F,f,k=lsq-‘k+“‘2fsk+,, 

(2) F-f,k=&-k’2[ (1 -qk)/( 1-q) Ifs&-,, 

(3) Lfs,,,= &+&+s+k)f,k. 

For fixed s=O 1 2 , , ,***, the {f,,} form an orthonormal ba- 
sis for a subspace of K. Q K,, transforming according to 
the irreducible representation ti,a,+A2+s. 

Lemma 9: 

m 
h,,a, @ t z*,a,= C @ Q,+A2+s s=o 

Lemma 10: 

From (5.5), we have 

(exp, fF+)fs,o= kto gfs.ks 

and, comparing this result with (5.3), 

fs,k(Z,W) 

=j--k(qw2-qlz)kz’~ 1 WS;4)r 
,. (- (KdKd~+‘;d,(q;dr 

bd- 
X 

-* K2 

x 342 

q , q-k, ---q-r--L2 

l--r--s 4 90 
(5.6) 

We can use this result to expand the orthonormal 
basis {e”,} for K. 8 Ko, 

es,=llfs,kll-‘f&k, s&=0,1,2 ,..., (5.7) 

in terms of the orthonormal basis 

(5.8) 

ei= 
s 1 en, 
k Q 

03 en2- (5.9) 

These Clebsch-Gordan coefficients vanish unless n, + n2 
=s+k. Furthermore, they satisfy the identities 

w1; l,,A,; s 

4; n2; k II M; l2J2; s’ =~kk 

4 nl; 1 w k’ 4 
‘9 

s I[ l,,&; l2J2; s 

k 4 ni; ni; 1 k 4 =6 n,n;9 
(5.10) 
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where nl+n2=nf+ni=s+k=s’+k’, and we are assum- 
ing that Zl,Z2>0 and ;1,,/12 are real. Explicitly, we find 

I,,~,; l,,A.,; s 

nl; n2; 1 k 4 

4-‘7&/2-9 )QW+W+s+‘q )nqq-S;q)n2 

X 
1 

(-- (Kr/K2)~+‘;P)s(SI;q)n,K~ 
(-- (Kd’d $2+‘;q)n2(4;4)n2(4;q)s(4;4)k 1 

l/2 

4 42, -k 
4 , K2 -- 

x 342 KI 
q-“2-A2 

Q 90 
1 -n2-S 

(5.11) 

VI. THE QUANTUM ALGEBRA W,(l) 

Another q analog of the enveloping algebra of the 
oscillator algebra is the quantum algebra WP( 1) ,2*13P16-21 
generated by the three elements H’, E\, EL with the 
commutation relations 

[H’,E:] =E:, [H’,EL] =-EL, 

1/2fl l/ZH’ 

[E;,KI = - pp,,4;9-,,4 , (6.1) 

where 0 <p < 1. The center of this algebra is generated by 

,‘=p’/4p’/2H’_p3/4p-‘/2H’+ ( 1 -p)E;E’_. 

B’J 1) admits a class of algebraically irreducible rep- 
resentations ti where ,l is a complex number. These rep- 
resentations are defined on a space with basis {e,:n 
=0,1,2 ,... }, such that 

E;e, 

-(A+n-l/2)/4 
( 1 ~p(n+lv2) (1 +pA+“/2) 112 

=P 1-P 1 
e n+l* 

-Ken 

-(A+n-3/2)/4 
(1-pn/2)(*+PA+(n-1)/2) 112 

=P 1-P 1 en-l9 
HIen= (A+n)e,. (6.2) 

If il is real then ti is defined on the Hilbert space K. with 
orthonormal basis {e,}, and we have E!+ = (EL) *, and 
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(H’) * =H’. A second convenient basis for K. is {f ,:n 
=O,l,...}, where 

H’f,=(il+n)f,, n=O,l,... . (6.3) 

In this case, 

(P”2;P”2) n 
fn= [ ( -p$P’/2)“( 1 --P)” 1 

l/2 

en* (6.4) 

Corresponding to the irreducible representation ti, we 
have 55” =p (3/2-A)/2(pA-1/2- 1~1. 

In the special case A=;, expressions (4.2) and (6.2) 
for the representations tql/4,1j2and t i/2, respectively, of 
the two q analogs of the oscillator algebra, take on almost 
the same form when q=p. Indeed, we have 

EI, =E,~(H+ ‘/2)/h, E’_ =E-~(H- ‘/2)/h, 

H’=H, I=%‘. (6.5) 

In general, however, these analogs are distinct, the first 
motivated by the recurrence relations for the functions 
‘4, and 2+1, the second by the raising and lowering oper- 
ators for bosons. 

On the other hand, if we consider Uq(su2) and 
WJ 1) to be algebras (with identity) over the complex 
numbers then Up~/2(su2) = WP( 1). Indeed, if we set 

id4 

E;=cE,, 
q+l 

E’_=eiT’4(q- l)E-, 

H’=H-L 21nq’ q=p l/2 9 (6.6) 

Eqs. (2.1) and (6.1) are identical. Thus the basic facts 
about tensor products of representations of the form t; 
can be obtained easily from the results of Sec. III. 

We remark that Biedenharn and Tarlini22 have 
shown how to extend the notion of tensor operators for a 
Lie algebra to q-tensor operators for a quantum algebra in 
such a way that a generalized Wigner-Eckart theorem 
holds. This relates to some of our q-algebra models. 

VII. GENERATING FUNCTIONS, ORTHOGONALITY 
RELATIONS, AND “ADDITION FORMULAS” 

Now we will present some examples to show how the 
various models of q-algebra representations can be used 
to derive identities obeyed by a q series associated with 
the models. We will select all our examples from models 
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of “oscillator algebra” representations, as studied in Sec. 
IV. Examples associated with U,(su,) can be produced 
by a similar procedure. 

L’Y’(x;q) = ‘Y,-q+:p)n I(#1 
n 

( 

q-n q; 
qY+ 1; 

-xq”+Y+l 
; n ) 

We will be concerned with the irreducible represen- 
tation tr,l defined by expressions (4.3) with respect to the 
orthogonal basis {f,) of the Hilbert space K,,. In analogy 
with a standard relationship between special functions 
and the representations of Lie groups, we shall compute 
the “matrix elements” of q analogs of the group operators 
gE+eaE-, with respect to the {f,,} basis. Of course, there 
are many q analogs of the exponential mapping, none of 
which have all the properties needed to ensure that there 
is a true “group” associated with the q algebra. Among 
the q analogs we shall limit ourselves to the two that are 
most important:‘4 

(7.5) 

is a q-Laguerre polynomial. [Note that Lcem)(x;q) 
= (-X)(“-n)((q;q)n/(4;4)m)L~m-n)(x;q).l 

we find 

We can obtain the matrix elements of the operator 
e&X+)E,(aEi’> for free, since (EJPE, )e,(aE- ))* 
=eJ GE+ ) E&BE- ) . Defining matrix elements S,,( a$) 
by 

(7.6) 

(7.7) 

If A is a complex number, the first series converges to 
l/(A;q), for IA 1 < 1 and the second series converges to 
( --A;q) m for all A. For our first example we consider the 
matrix elements T,,(M) of the operator 
E,(PE+)e,(aE-1: 

E,W+)e,(aE- V,,,= f. Tnrn(dWne (7.2) 

It is most convenient to evaluate (7.2) in the model 
(4.16) in which fn(z)=q”‘“f1)‘4F. In this case (7.2) 
becomes the generating function, 

S,,(a,$) =qn(n+lv4-m(m+lv4 p&“-” 
m 

so, if I is real, 

(7.8) 

From the explicit expression (7.5), we can verify the 
recurrence relations 

;t l- T;‘)Liy’(x;q) =qyL~y+,l)(x;q), 

4 -m(m+1)/4 

( 1 
& 7 --Plz;q) m(q(l;q)z:P)m 

= i. L,Aa,Ph”‘“+1”4~, (7.3) 

convergent for all a$. Thus 

q(n-m)(n-m-1)/4 m/2-1/2 n-m 

T,,,(a,P) = 
(4;4)mu%r 1 

(4x)n 

k=O,l,..., (7.9) 

where we adopt the convention that L(_yj (x;q) ~0. Thus 
the operators 

x/(“-rn) -a@q-‘-m 
m ( 1-q a? 

) 

al m---n 
=4 

--m(m+1)/4+n(n+1)/4 - ( 1 1-q 

xL’m-“’ ( 
-a@q-‘-” 

n 1-q ;4 9 
1 

(7.4) 

E.=(l~~)xr(l-T;‘), %“=Pq,-, (7.10) 

f&&t) = (q;q)nqn(n+‘)‘4L~-~-“)(x;q)~+n, 

and the basis functions 

?z=O,l,..., (7.11) 

define a two-variable model of tr,n, i.e., they satisfy rela- 
tions (4.3). For fixed m, we see from (7.8) that the ma- 
trix elements S,,( a,/3) are the special case of this model, 
where A = -m, and we have the identifications 
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f=p x=-(l-q)q’+m’ (7.12) 

Using Lemma 4, we find that the action of the oper- 
ators E&?E;)e,(aE? on the monomial x”t’(xt#O) is 

=XmF(ht-mkq) m ( -@t;q) m (Wt+rSfm;q) m 

(ra4’2/tx;q),(--I~tq-“+m;q)m 

(7.1;) 

for lal,lPI fi su ciently small. From this result, (7.2) and 
(7.11)) we obtain the generating function 

E&W+ )eJaEL >f,,M) 

xyl+” 

--m 9 7 m? 1-A -lfltq-A-m; q; lad- -- 
342 la ’ t 

4 
-A+ I, /ptxq+m 

= $ ~nm(a,B)fn(W, 

la& I I --g- < 1, IrPtq-~-ml < 1. (7.14) 

In the special case where the {f,,} basis reduces to the 
{S,,] basis, we can view (7.14) as a q analog of an 
addition theorem for Laguerre polynomials.’ 

Relations (7.9) can be used to derive orthogonality 
relations for the q-Laguerre polynomials. Let Sy be the 
space of all real polynomials in x with inner product 

VW),= Joa wx)@(x)&(x)& Y,@fl, 

where p,(x) is a weight function to be determined. From 
(7.9) we define operators 

Ry:SY--rSY+‘, Ly:sr/+SY-‘, 

by 

R,=(l/x)(l-TT,-‘), L,=l-qr(l+x)T,. (7.15) 

Furthermore, we require that 

uvw),, 1 = (Y,Ly+ *O), (7.16) 

for all Ydy, OCS Y+’ This leads to the conditions . 
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Py+lW =xp,(d, p&F4 =qv l+x)p,(x). 

The solution, unique up to multiplication by a function of 
y alone, is 

p,(x) =xY/( --xx),, (7.17) 

where we require y> - 1 for convergence of the inner 
product. It follows that the operators Ty 
=R,-lL,:SY+SY are self-adjoint and map polynomials 
of order m to polynomials of the same order. From (7.9)) 
we see that the polynomials Liy’(x;q), k=O,l,..., are ex- 
actly the eigenfunctions of T,,, and that they correspond 
to the eigenvalues qy( 1 -qk). Since eigenfunctions of Tr 
corresponding to distinct eigenvalues must be orthogonal, 
we have 

(L’Y’ L(Y)),=S,&v n 9 m n* (7.18) 

We can also use the recurrence relations (7.9) to help 
determine Ai. Setting Y=L&!I, O=LI;/+” in (7.16), we 
find qyIILI;/+” 2 Ilr+l=(l-qk+l)IILI;/:lll~ Hence 

IILp’lp=q 
yk+k(k-1)/2 

Y (!&q) k 
111112,+k- (7.19) 

Furthermore, from the explicit expressions for L,&y’ and 

(7.20) 

A straightforward contour integration argument gives 

ll’ll2,=- 
dq- %I m 

sin vy(q;q) m ’ IIlll~=lnq-1(q;q)kq-k(k+1)‘2, 

k=012 , , ,*** * 

(For related works on orthogonality extending that of the 
classical polynomials see Refs. 25-3 1. ) 

There are also q analogs of the orthogonality rela- 
tions for matrix elements of the oscillator group. In ex- 
pressions (7.4) and (7.8) for the matrix elements we can 
restrict the parameters a,P so that a=reie, p=remie, 
where r>O and 8 is real. Setting S&a&I> eS,,[r,B], 
Tmn(a,fI) G T,,Jr$], it is easy to see that 

C%,vJ,w I= ( T,,, T,?,,) = 0, (7.21) 

unless m =m’, n =n’, where ( a, * ) is the inner product, 

(f,g) = Jiffde Jam Gf ~r,~lg~rA. co 
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We note that there exist many inner products, in ad- 
dition to (7.18), for which the Laguerre polynomials 
{Lp’:k=O,l,...) are orthogonal. Indeed one can use a 
technique analogous to the derivation of (3.10) to obtain 
a family of orthogonality relations with discrete weight 
functions Refs. 23, 24, and 14, p. 194). 

As a second example of the computation of matrix 
elements we consider the operator e,(PE+ )e,( aE_ ) : 

define a two-variable model of ?*,A for each fixed complex 
number y. Note that the matrix elements A,,(a,/3) are 
the special case of this model, for which y=m and 

1 a/3l2 
‘=p7, x=-(1--4). (7.28) 

e,W+k,(aE-If,= n~o-4m(a9B)fi. 

The result is 

(7.22) 

We can use relations L7.24) to derive orthogonality 
relations for the q analogs Liy)(x;q) of the Laguerre poly- 
nomials. Let Sy be the space of all real polynomials in x 
with discrete inner product 

4,(a,B) = 
qm(m-1)/4-n(n-1)/4(gl)n-m 

(4;4)n-m 

(Y,O>,= J- Y(x)@(x)p,(x)~~ (7.29) 

[see (3.9)], where c and p,(x) are to be determined. 
From (7.24), we define operators 

241 
( 

--m 
(I 9 0 & 

Q 
n-m+1 ; q, -- 

1-q ) R,;S”/+!Y+‘, L,,:SUY-‘, 

2 
(n+3)/4-m(m+3V4(q;q)m al m--n 

( ) 

by 
m)m-n(Q;Q)n 1-q 

x241 
( 

--n 
4, 0 apI 

; 4, -- 
4 m--n+1 

1 l-q * 
(7.23) 

These functions are essentially the Wall polynomials.3 (V@)y+1= W,Ly+‘O), , 

From the power series representation of the 241 poly- 
nomials, we can verify the recurrence relations 

R,= (l/x) (TX- l), L,= -qy+ T;‘-q-‘XT;‘. 
(7.30) 

We require that relations (7.16) hold: 

for all YCSY, OCS u-’ This leads to the conditions . 

(l/x)( TX- l)@)(x;q) =q-ki;L+,“(x;q), 

(-qY+T;‘-q-‘xT;‘)@‘)(x;q) 

= (1 -qk+‘)ii;-‘)(x;q), 

where 

(7.24) 

c=49 L++,(x) =qy+‘xpy(x), p,(qx) =- 19_:P,(x). 

We choose the solution 

p,(x) = (rq) 2 m x~q~(y+‘)‘2 , (7.31) 

L?ky’ (x;q) = (q’+‘-d k 
-k 

h;ik 
241 

Q 9 0 

qY+’ (7.25) 

Thus the operators 

tl 
E+=--@ -q4yTt-‘+T;‘-q-‘xT;‘), i&t&+,%, 

6=(lc;;tx(TX-l), g=P&-‘, (7.26) 

and the basis functions 

where we require y> - 1 for convergence of the inner 
product. The operators T =R ~lL$‘y+sY are self- 

y -d adjoint with eigenfunctions Lk (x;q) and eigenvalues 
qy( 1 -qk>, k=O,l,... . Hence we must have 

(pp) =ij $Y m y m w (7.32) 

Exactly as in the proof of (7.19)) the recurrence relations 
(7.25) yield the formula 

-k(k-1)/Z 

llpl12=4 
Y b&q) k 

IPII;,,. 

f,(x,t) = (q;q)n4n(n-1)‘4~~7-n)(x;q)tn, (7.27) 

From the explicit expressions for ZI;” and pr we can write 
the identity (Liy), Liy’) =0 in the form I(lllt+1=q7+2( 1 
-q4y+1)IIl/1; Thus Ill~+,=(qy+‘;q)kqrk+” +3)‘21]1]l; 
and 
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BY- w+ uL7~y+2)“ll 1112 
n- 

(4x)n Y’ (7.33) 

It is easy to evaluate the sum II 111; directly: 

~~1~~2,= ~~~~(x)~~=q(:~~~~~q)” qy’y+3”2. (7.34) 
m 

In a manner similar to the derivation of (7.21) we 
can also obtain orthogonality relations for the matrix el- 
ements A,,. we note that recurrence relations of the 
type (7.9), (7.24) are closely related to the factorization 
method.25’32] 
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