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We develop the theory of R-separation for the Helmholtz equation on a pseudo-Riemannian
manifold (including the possibility of null coordinates) and show that it, and not ordinary variable
separation, is the natural analogy of additive separation for the Hamilton-Jacobi equation. We
provide a coordinate-free characterization of variable separation in terms of commuting

symmetry operators.

PACS numbers: 02.30. + g, 02.40.Ky

1. INTRODUCTION

Let ¥, be a (local) pseudo-Riemannian manifold. The
Helmholtz equation for V, is expressed in local coordinates

{ ¥/} by
AY(y) = Ey(y), (1.1)

where E is a nonzero constant and 4 is the Hamiltonian or
Laplace-Beltrami operator’
1 2 iy
4= Z,0ETE) 12
Here, d, = d ,, the metric on ¥, is ds® = 3, ;g,dy'dy’,
g = det(g;)#0, and 2, gg,; = &/. The Helmholtz equation
is closely associated with the Hamilton—Jacobi equation®

HOW)=Y g6,Wi,W=E, (1.3)

Lj=1
where H is the Hamiltonian function

H(p;)= z &'p.p;- (1.4)
=1
Both 4 and H are defined independent of local coordinates.
In Ref. 3 the authors presented a theory of orthogonal
R-separation for (1.1). [By R-separation we mean separation
up to a fixed factor:

Wy =R(y) ][ #70". (L5)

j=1

Ordinary separation corresponds to R =1 and trivial R-se-
paration to d; In R = 0 for i;.] We found necessary and
sufficient conditions that an additively separable orthogonal
coordinate system for the Hamilton—Jacobi equation will
also R-separate the Helmholtz equation. [An R-separable
system for (1.1) always separates (1.3).] Further, we found a
coordinate-free characterization of orthogonal R-separable
coordinate systems in terms of families of commuting sym-
metry operators for A.

In this paper we extend the ideas of Ref. 3 to provide a
general theory of R-separation for the Helmholtz equation,
encompassing both orthogonal and nonorthogonal coordi-
nate systems. A major new complication is the possibility of
type 2 (null) coordinates. Our principal result is Theorem 3,
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which provides an intrinsic characterization of an R-separa-
ble coordinate system in terms of a family of commuting
symmetry operators. (In particular, given the operators, ex-
pressed in an arbitrary coordinate system, one can compute
the R-separable coordinates.)

Although R-separation has long been a useful tool in
the study of the Laplace equation [E = 0 in (1.1)], its rel-
evance to the Helmholtz equation was, until recently, virtu-
ally ignored. Our results show clearly that R-separation,
rather than ordinary separation, for the Helmholtz equation
is the proper analog to additive separation of the Hamilton—
Jacobi equation. In fact, the problem of extending a separa-
ble system for (1.3) to an R-separable system for (1.1) reduces
to an exercise in quantization theory.

In Sec. 2 we give a precise operational definition of R-
separation for the Helmholtz equation. (We expect, though
we have not tried to verify, that any coordinate system which
R-separates in accordance with some more intuitive defini-
tion of separability can be shown to be equivalent tc one of
our canonical systems.) In Theorem 1 we derive necessary
and sufficient conditions that a Hamilton~Jacobi separable
system be R-separable for the Helmholtz equation, and we
look at the special case of ordinary separation {R = 1}, ob-
taining a new generalization of the Robertson condition for
orthogonal separability. In Sec. 3 we develop the symmetry
operator approach to R-separation and review the corre-
sponding Hamilton-Jacobi theory. Section 4 contains our
main result, Theorem 3, which gives the intrinsic symmetry
operator characterization of R-separation. Finally, in Sec. 5
we provide some examples of R-separation and briefly dis-
cuss the significance of our results.

The theory presented here is local rather than global.
All functions are assumed to be locally analytic.

2. TECHNICAL CONSIDERATIONS

Let {x/} be a local coordinate system on the pseudo-
Riemannian manifold. We present here an operational de-
finition of R-separation for the Helmholtz equation

1 i

7 0" 00 = Ey 2.1)
in the coordinates {x’} and derive necessary and sufficient
conditions for the existence of this phenomenon. Let (S, (x))

Ay=
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be a Stackel matrix,i.e., an N X N nonsingular matrix whose
ith row depends only on the variable x’ and set § = det(S;).
We divide the coordinates x/ into three disjoint classes: es-
sential of type 1, essential of type 2, and ignorable. We further
order the indices so that n, coordinates x°, 1<a<n,, are es-
sential of type 1, the n, coordinates x", n, + 1<r<n, + n,,
are essential of type 2, and the n, coordinates x%,

n, + n, + 1<a<n, + n, + ny = n, areignorable. (In the fol-
lowing, unless otherwise stated, indices a, b, ¢ range from 1
ton,, indicesr, s, trange from n, + 1ton, + n,, indices a, 3,
y range from n, + n, + 1ton, and indices i, j, k range from 1
to n.) The ignorable coordinates are defined to be all x* such
that d,g’%(x) = 0 for all j, k. Finally, set N = n, + n,, let

A, = —E, A,,...,Ay be complex parameters, and define dif-
ferential operators X, ,K, by

K, =0,, +1,(x9, + m,(x°) + YA x").g
a.B

N
+ 3 nixd, + Y AiSalx) (2.2)
a i=1
fora = 1,...,n, and
K, =23 B W + m,x) + SAP (X135
a ap

+ Ynix)8, + g" A8 (x) (2.3)

i=1
forr=n, 4+ 1,...,N.
We say that the coordinates {x’} are R-separable for
the Helmholtz equation (2.1) provided there exist functions
g«(x) and R (x?,x") (R #0) such that

N
RAR—E= 3} g (x)K,. (2.4)
k=1

Here

R AR =4 +g%,InRJ; + R "'4R) (2.5)
as an operator, where

. 1 y
A=g"3, + e 3.(8""% g"9;. (2.6)

If the coordinates are R-separable then the function
ot = R e [ [ tenp Sox| 2

is a solution of Ay = Ey whenever the y'/ satisfy separation
equations

K, [¢9expld x)} =0, a=l..n,
K, [¢"exp(A,x%)] =0, r=n,+L,..,N. (2.8)

Here the A, are arbitrary complex constantsand 4,,...,4,, are
the separation parameters. Note that the function exp(4,x?)
can be factored out of expressions (2.8), thus reducing these
expressions to ordinary differential equations. The zype I
coordinates x° have the property that the corresponding se-
paration equations are second order ODE’s, whereas for type
2 coordinates x” the separation equations are first order
ODE’s. The solutions ¥#{x,A) (2.7), depend on the separation
parameters 4, but R (x°x°) is independent of these
parameters.

1048 J. Math. Phys., Vol. 24, No. 5, May 1983

It follows from (2.2)—(2.4) that a necessary condition for
R-separation is
gx)=8*/S, k=1,..,N (2.9)

where S*' is the (k,1) minor of (S;;).
Thus the metric must take the form

al
gr=o", ¢ =gm=0, g0
Srl
™ — B%x , 2.10
g {x7 S {2.10)
8 1 N 5 vsil
=— APPX)—, «a
g” 5 ,-;1 7Px) 3 #B
N . Sil
a __ A?"’x' g
g ,-; (x') S
Note that
n, n, n
5% 0 0 n,
gh=1 o 0o g=| n. (2.11)

0 g &*] ns
Conditions (2.10) are necessary but not sufficient for R-
separation. Before determining the remaining conditions,
however, it is worthwhile to point out the significance of
these restrictions on the metric. Consider the Hamilton—Ja-
cobi equation associated with the Helmholtz equation (2.1}

'3, Wa,W =E. (2.12)
It has recently been established,*” that conditions (2.10) are

necessary and sufficient for (additive) separation of the Ham-
ilton—Jacobi equation in the coordinates {x}

Wx)=S WHx"A) + YW A) + YA x* (2.13)

Indeed, Benenti’ has shown that every system which sepa-
rates (2.12), according to the intuitive definition of Levi-Ci-
vita,® is equivalent to a system in the canonical form (2.10).

Proposition 1: A coordinate system that is R-separable
for the Helmholtz equation is also separable for the Hamil-
ton-Jacobi equation. Let

H = S_”,
' S
If conditions (2.10) hold then S %0 since g#0. We can as-

sociate with our coordinate system {x’} on ¥, an orthogonal
coordinate system {x',...,.x" ] on a space V' with metric

i=1,..,N. (2.14)

N
ds* =3 HYdx'}.

i=1

(2.15)

By (2.14), this metric is in Stickel form.” Recall that neces-
sary and sufficient conditions that ds’ be expressible in the
form (2.14) for some Stiickel matrix are (Ref. 1, Appendix 13)
uinH; >+ 3dInH 9 InH~ 2

—InH ;9 mH,;’

—3InH;*3InH;*=0,

j#k; i jk=1,.,N. (2.16)

We further recall some useful results from Ref. 6. Given a
metric ds* = 2, H*dx'}* in Stickel form, we say that the
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function Q (x) is a Stickel multiplier for (ds?) if the metric
ds* = Qds? is also in Stiickel form with respect to the coordi-
nates {x’}. It can be shown that Q is a Stiickel multiplier if
and only if there exist functions ¥, = y;(x/) such that

N
j —2
Q(x)= z Yx)H 7
j=1
Equivalent necessary and sufficient conditions are

3,0 — 3,09 nH, >~ 3,03InH *=0, j#k.
(2.18)

(2.17)

We can now reformulate conditions (2.10).
Proposition 2: A necessary requirement for R-separa-
tion of (2.1) in the coordinates {x":i = 1,...,n} is that

g°=H;?* g°=B%x"\H ? (2.19)

and that each g*# be a Stiickel multiplier for the Stickel form
metric ds* = 3y _ | H 2(dx*)%. All other matrix elements g”
must vanish.

To obtain sufficient conditions for R-separation we
must also demand equality of the coefficients of J; and the

zeroth order terms on each side of (2.5):

£, +23,InR =1, (x%) (2.20)
SEfu 420 0R)= 3 Hitmgle), (@21
> ¥=h
R~'4R)= ﬁv" H - 2m, (x4). (2.22)
k=1

Here,
f.=4d,f f=Inig"%/s), (2.23)
fra =3,In(g'? g™ =f, + 3,In B2(x").

Solving for R from (2.19) we find
R= (%)Vzexp[;/ia(x“) +0 (xS)], (2.24)

and substituting (2.23) into (2.20) and (2.21) we ultimately
obtain the following result.

Theorem 1: Necessary and sufficient conditions that the
coordinates {x’} be R-separable for the Helmholtz equation

3" g'd,y) = Ey
g

are

(1) The requirements of Proposition 2 are satisfied, i.e., the
coordinates {x/} are separable for the Hamilton—Jacobi
equation g%9, Wo, W = E,

(2) 2,8™d,Q is a Stickel multiplier for each a,

(3) 2. H ;% f,. +1f2)is a Stickel multiplier, where

f. =3d,In(g'?/S) and S is the determinant of the Stickel
matrix.

If these conditions are satisfied then

R(x) = (g—ﬁz—)mexp[ Sl + Q7).

where the 4, = 4,(x°) are arbitrary.

We say that the coordinates {x’} are separable for the
Helmbholtz equation provided they are R-separable with
R =1. Furthermore, R-separable coordinates are trivially R-
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separable if R = I17_ | R,(x) and (since coordinates are triv-
ially R-separable if and only if they are separable) we regard
trivial R-separation as equivalent to ordinary separation.

Especially interesting is the case of ordinary separation.
Then R =1 and expression (2.23} becomes

1/2
5ln( gS ) = YA, (x*) + @ (x).
Corollary 1 (Generalized Robertson Condition): Neces-
sary and sufficient conditions that the coordinates {x’} be
separable for the Helmholtz equation are
(1) the coordinates are separable for the Hamilton~Jacobi
equation,
2)f4 =0forj=1,..,N,j#a,
(3) 2,8 f, is a Stdckel multiplier for each a.
Here f= In(g"/?/S) and f, = 3, f.
The original Robertson condition® was concerned with
the case of orthogonal separation. (By permitting a type 1
coordinate to be ignorable if necessary, we can identify this
case with n, = n, n, = n; = 0.) Robertson showed that an
orthogonal separable system for the Hamilton-Jacobi equa-
tion separated the Helmholtz equation if and only if /,, =0
for a#b. (Since n, = 0 this agrees with Corollary 1.)
Eisenhart? showed that the Robertson condition is
equivalent to the requirement

R, =0, a#b (2.26)

where R, is the Ricci tensor expressed in terms of the ortho-
gonal coordinates {x*}. (For an explicit definition of the
Ricci tensor R; in terms of the metric g” together with relat-
ed computational formulas we refer the reader to Chap. 1 of
Eisenhart’s text.') Benenti'® studied nonorthogonal separa-
tion for the Helmholtz equation in which no nonignorable
null coordinates were allowed (#, = 0 in our formalism). His
requirement for Helmholtz separation agrees with our con-
dition (2). Benenti further showed that his requirement was
equivalent to (2.20) again and that R ,, = 0 automatically for
Hamilton-Jacobi separable systems. By a tedious but
straightforward computation we have established

Lemma I: Condition (2) of Corollary 1, namely

[ =0 for j=1,.,N, j#a
is equivalent to
R, =0, a#b, R, =0, (2.27)

where R ; is the Ricci tensor for ¥V, expressed in the coordi-
nates {x’}. Furthermore, R,, = 0 automatically if {x/} sep-
arates the Hamilton-Jacobi equation.

It is perhaps somewhat surprising that requirements
(2.25) continue to hold even with the presence of type 2 co-
ordinates. Condition (3) of Corollary 1 appears not to be
expressible in terms of the Riemann curvature tensor and its
covariant derivatives. However, this condition is vacuous for
n,<1. Since g™ = 0, type 2 coordinates are null and any two
such coordinates are orthogonal. Thus, for separation on a
proper Riemannian space ¥, we must have n, = O and for a
pseudo-Riemannian ¥, with signature ( — 1,17~ '} we must
have n,<1.

Corollary 2: In order that Hamilton-Jacobi separable
coordinates {x’} separate the Helmholtz equation on a pseu-

(2.25)
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do-Riemannian manifold with signature (1")or { — 1,17~ )it
is necessary and sufficient that

R, =0, a#b, R, =0.

3. CONSTANTS OF THE MOTION

Let us suppose that the coordinates {x/} R-separate the
Helmbholtz equation. Then expanding the corresponding
Stickel matrix in (2.2), (2.3) by the / th, rather than just the
1st, column we obtain operators .« ;, = 1,...,N, such that
& 1 = — A, for an R-separated solution -

Sal
1= 35 (00 + 0, + TAL 0.y + S0,
af o

+m, +40, [ — L] +ilfa = 12])
Srl N N
+35% (2gB,am + SAL 0

+ (a7 —2B%d,InR)I, + m,).

(3.1)

(Note that o7, = A.) These expressions are not as complicat-
ed as they appear. It can be directly verified (and we will
show this later) that

[« ] =0, [fa,fﬁ] =0,

[, Ls] =0, 1<LA<N (3.2)
where

L,=0,, a=N+1,.n, (3.3)

and [/, %) = o B — % o . Thus the operators &,
(2<k<N), &, form a commuting family of symmetry oper-
ators for 4, i.e., they commute with 4 and with each other.
Furthermore, the R-separated solutions of (2.2) are simulta-
neous eigenfunctions of the symmetry operators:

A Y= -y, L.p=2.¢ (3.4)

Our construction has started with an R-separable coor-
dinate system {x'} and produced a commuting family of
symmetry operators {#/,,-Z, }. It is our principal task in
this paper to characterize those families of commuting sym-
metry operators that correspond to R-separation.

In Ref. 6 the authors solved the corresponding problem
for the Hamilton—Jacobi equation (2.12). In that case we uti-
lized the natural symplectic structure on the cotangent bun-
dle ¥, of ¥,. Corresponding to local coordinates {(xjonV¥,
we have coordinates {x’, p;} on the 2n-dimensional space
V,,. The Poisson bracket of two functions F (x%, p,), G (x’, p;)
on V, is defined by

(F,G}= lzl
Let {x'] be a separable coordinate system for the Hamilton—
Jacobi equation (2.12) with coordinates of type 1, x°, of type
2, x", and ignorable, x°, as usual. Then the metric g7 in these
coordinates takes the standard form (2.10).

It is convenient at this point to introduce the functions
ok (x',...x"), where

Sjk _ YA
Z = }" 'Hj 2, =
S S

(@,,F3,G — 3,F3,G). (3.5)

=H% 1<jk<N, (3.6)
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and S; is the Stickel matrix corresponding to the separable

system {x'}. Then p{" = 1 and it can be shown that (Ref. 1,
Appendix 13)

dp) = ol — N3 In H 2, 37)

Let H = X, ;¢"p,p; be the Hamiltonian corresponding to
(2.12). In Ref. 6 we constructed quadratic forms 4, (4, = H),
given by

A= Sp0H (7 + AP
a aB

1<i, j,k,<N.

+ YpIH 2(23 Popa + 3A :*'ﬂpapﬁ) 3.8)
v a 3
for / = 1,...,N and n, linear forms L,
L,=p,, a=N+1,.,n (3.9)
These polynomials in the p’s were shown to satisfy
(4,4,) =0, {L,.Ls} =0, (3.10)
{4,L,} =0, Lk=1,.,N,

and when evaluated forp, =d,W,p, =3, W,p, =3, W
with W a separable solution of {2.12), they satisfy

AI= —/ll, La=/{a’
where A, = — E,...,A, are the separation parameters.
Let a%(y) be a symmetric contravariant 2-tensor on V,,,
expressed in terms of local coordinates { y*}, and let g¥(y) be

the contravariant metric tensor. A root p(y) of @’ is a solution
of the characteristic equation

det(a’ — pgl) =0 (3.12)

and an eigenform w = 2A,dy* corresponding to p is a non-
zero 1-form such that

(3.11)

n

z(aij __pg’-’)/{; = 0, = 1,.,.,".

=1
Roots and eigenforms are defined independent of local
coordinates.

Note from (3.8) that for a separable system {y’] the oY
are simple roots of the A, with simultaneous eigenforms dx?,
and the p!"' are roots of multiplicity 2 but with a single eigen-
form dx”. Here dx°,dx" are also eigenforms for the products
L.,Lg.

Let {’} be a local coordinate system on a pseudo-Rie-
mannian manifold and let w , = 4,,dy’, 1<j<n, be a local
basis of 1-forms on V. The dual basis of vector fields is X"

= A™3Q,, 1<h<n, where A"™4, , = 8;). The inner pro-
duct of two 1-forms o, 0, i8 G{j,k) = A& A1)
In Ref. 6 we proved

(3.13)

Theorem 2: Let 6 be a vector subspace of quadratic
forms on ¥, such that Hef and

(1) {4,B } = 0O for each 4,Be0,

(2) there s a basis of 1-forms @, = 4;,d)’, 1<j<n, such that
(i) the n, forms w,,, are simultaneous eigenforms for
each A€ with root p,
(ii) the n, forms w,,, are simultaneous eigenforms for
each A€ with root p?; the root p{ has multiplicity 2 but
corresponds to only one simultaneous eigenform,
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(3) {L,,Lg} =0and L,Ly€6, where L, = A"“p,,
aB=n+n+1..n,
(4) {4,L,} = 0 for each Ae6,

(5) X Ay s5)) = p, X" 11 8As) )

(6) dim@ = §(2n + n,> — n;), where ny =n — n, — n,,
(7 Gla,b)=0if a#b, and G (a,r) = G (a,a) = G (r,5) = 0.

Then there exist local coordinates {x’} for ¥, and functions
S Y(x) such that @, = f dx’ (with a suitable modification
of the ) and the Hamilton—Jacobi equation is separable in
these coordinates. Conversely, to every separable coordinate
system {x/} for the Hamilton-Jacobi equation there corre-
sponds a subspace 8 of quadratic forms on ¥V, with proper-
ties (1)~(7).

In the following section we will show that, with suitable
modifications, this result also characterizes R-separable sys-
tems for the Helmholtz equation.

4. THE BASIC RESULT

Let A be the Hamiltonian operator (1.2), expressed in
terms of local coordinates {x’}. Suppose &7 is a second order
symmetry operator for 4, i.e., a differential operator such
that [.#,4 ] = 0 and which in local coordinates can be writ-
ten

oA = aij(Y)a.‘j +b v)a, + cy) 9= ayf (4.1)

where @’ = ¢" and not all & vanish. As shown in Ref. 3 we
can decompose & uniquely in the form

oL =5+, (4.2)
where
1 "
y = g1/2 ai(gl/z auaj) + ¢,
L =b49, (4.3)
[FA4]l=[ZA]=0. (4.4)

Furthermore, this decomposition is coordinate independent.
Decomposing the operators 7, (3.1), in this form we find

d( = Y] + “?l’
1 .
& =?_av,.(g”2 ai\3))

1/2
+ EJ(GI'HG_ z(ma + %aa [f;z - Ia]
2 -2+ 3pVH [ m,, (4.5)

~ N
2=\ SplH ne

i=1
~ SPUH B0 BT +6,0))a

for/ = 1,...,N, where

4, = a(’i;Pin (4.6)
is the quadratic form (3.8). Note that Z ; is not only a sym-
metry operator for 4, but it in addition is functionally depen-

dent on the first order symmetries ., (3.3). That is, there
exist functions gf(x) such that
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Z,=3gxL,. (4.7)

Returning to the general symmetry operator <, {(4.1)-
(4.4), we can uniquely associate this operator with the qua-
dratic form 4 on V,, defined in local coordinates by

A= Za"p,-pj. (4.8)
Lj

We can talk about the roots and eigenforms of &/, meaning
by this the roots and eigenforms of 4. The following analogy
of Theorem 2 holds.

Theorem 3: Let { &, = 4, & ,,...,o ] be a set of sec-
ond order symmetry operators for 4 with {4, } linearly inde-
pendent, and let { Ly, |,...,.-ZL, } (1 — N = n;) be alinearly
independent set of first order symmetry operators such that
M [ ]=0,[H,-L.]=0,[F,,-Lp] =0,

(2) each .Z, is functignally dependent on the set {.Z, },
where o7, = %, + .£, is the canonical decomposition
(4.1)~(4.4) of &7,

(3) no &7, belongs to the associative algebra generated by
(L.}, e, o, cannot be expressed as ¢f*.¥ ,.% , for con-
stants ¢,

(4) there is a basis of 1-forms w ;, = 4, ;dy’, 1<j<n, such that
(ny+n,=N)

(i) the n, forms w,,, are simultaneous eigenforms for
each 4, with root p!!),

(ii) the n, forms w,,, are simultaneous eigenforms for
each 4, with double root p!"’; the root corresponds to only
one eigenform,

(iii) &, = A3,

(5) X i@y Ass)) = 7 X A iy 85 )
(6)Gla,b)=0ifa##b, and G (a,r) = G (a,a) = G (r,s) = 0.
Then there exist local coordinates {x’} for ¥, and functions
SY(x) such that w , = f ’dx’ (with a suitable modification
of the w,,) and the Helmholtz equation (2.1) is R-separable
in these coordinates. Conversely, to every R-separable coor-
dinate system {x’} for the Helmholtz equation there corre-
spond operators <« ;,.Z , on ¥, with properties (1}-(6).

Proof: Suppose conditions {1)—(6) are satisfied. Compar-
ing coefficients of the highest order (nonvanishing) deriva-
tive terms in condition (1} we find

(44} =0, [4,L,} =0, {L,,Ls} =0,
where L, = A“p,. It follows from this and conditions (3)-
(6) that the hypotheses of Theorem 2 are satisfied. Indeed the
subspace @ is that with basis {4,,L,Lza<f }. Hence, there
exists a local coordinate system {x/} such that the functions
A;,L, canbe expressed in the form (3.8). If 4, = a] \p;p; then
by condition (2) and the fact that det(p}')#0 we can write
o =5 +.L,, where

1 p o -

L= Fai(gllz a(l)aj) + kZIP(IZ’Hk 25 K {4.9)

~ N

Z =3 piH [¢*3,,

k=1
and
N N

SH% =0, YH%*=0, (4.10)

K=1 k=1
E. G. Kalnins and W. Miller, Jr. 1051
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since &/, = A4 and p}' = 1.

We have not yet fully utilized condition (1). Since &, is
self adjoint and .%,,.% , are skew adjoint,” the first two
equations in condition (1) yield

[Z.,Z.]1=0 (4.11a)
[Z,%:]1=0, (4.11b)
[£F ] =0, (4.11c)
[L0 L] + [ 205 e] =0. (4.11d)

Equation (4.11a) yields d, & ¥’ = 0 and (4.11b) is satisfied
identically. Equating coefficients of d; on both sides of
(4.11¢) we find d,.f, = d.f,, 3.f, = 3./, a result already
known. Equating coefficients of d; on both sides of (4.11c)
and using det(p{')#0 we find

3E"=0, 3,26° —fou —¥2)=0,
as(zga_.faa _%fg)zo,
B70,6°=BJ9,£", r#s

Since the last equality must hold for all @, we have d,£ "= 0
for r#s. Thus

£9=4[ fua + V2 +2P.(xY],
§'="P,x)

and from (4.10) we see that
SH . faa +3f2)

is a Stdckel multiplier. Thus condition {3) [and condition (1)]
of Theorem 1 are satisfied. [The zeroth order terms in (4.11c)
give no new requirements.]

The only constraints remaining to us are (4.11d). Equat-
ing coefficients of d,,, in this expression we find

3, =0, 8,£°=0, b#a.
Equating coefficients of d,; we find

B%3,£° + B79,£ =0,

B3+ BIO,E¥=BU.L7 + BT, ris
Thus

a#b,

(no sum).

(4.12)

£ =THx"), &£°=VIKx9), (4.13)
where
B?3.T® + B3, T =B%3.T*
+B23.T? r+#s, nosum. (4.14)

To solve relations (4.14) for T'¢ we use the fact that the

n, X ny matrix (B 4(x")) has rank n,. The ignorable coordi-
nates {x®] are not unique. A new set of ignorable coordi-
nates {x"#}, where x"# = C£x® and (C%) is a nonsingular
constant matrix, will do as well. One effect of such a choice of
new ignorable coordinates is to provide a new matrix

(B "#x")) constructible from the original matrix by a sequence
of elementary column transformations. Conversely, elemen-
tary column transformations of {B #) induce transformations
of ignorable coordinates. Assuming n,>2 [since otherwise
(4.14) is vacuous] we can always choose a new set of ignora-
ble coordinates {x"?} such that every matrix element B '?
and every 2 X 2 minor in the new matrix are nonvanishing in
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a suitably small x'-coordinate neighborhood. Assuming this
done and dropping the primes we set @ = fin (4.14) to obtain

9,(T?/B?) =4,(T?/B?), r#s. (4.15)

Substituting this result back into (4.14) and simplifying we
obtain

(Grwraar ) (0(52)-o(52)) -0 o
BeB=p?B? J\""\B2) '\B%)) T

1t follows from (4.16) that
T?=Bix)Z, + PJ(x’)

and from (4.15) that 3,Z, = 3, Z,, r+#s.

Thus there exists a function @ (x*) (depending on type 2 var-

iables only) such that Z, = — 2. Q.
We conclude that

§™= —2B73,Qx)+ PIx), 5§ =Vi(x°). (418

Substituting this result into (4.10) we see that 3, ¢°3,Q is a
Stackel multiplier. Thus all conditions of Theorem 1 are sat-
isfied and the coordinates {x'} (hence the coordinates {x})
R-separate the Helmholtz equation. [We note that the first
derivative terms in (4.11d) yield no new restrictions.]
Conversely, if the coordinates {x/} R-separate the

Helmholtz equation we can reverse the order of the above
argument and verify conditions (1)-{6). Q.E.D.

(4.17)

5. DISCUSSION AND EXAMPLES

Theorem 2 states that a Hamilton—Jacobi separable sys-
tem {x’} is R-separable for the Helmholtz equation if and
only if the involutive family of Killing tensors 4,,L, corre-
sponds to a commutative family of symmetry operators
o ,.L .. The technical conditions {2} and (3) of Theorem 1
are necessary and sufficient that such a correspondence ex-
ists. In this sense our results have a close relationship with
quantization theory.

Note that if the operators .«7,,.% , satisfy the hypoth-
eses of Theorem 3, except for requirement (2), then the oper-
ators % ,,.% , define an R-separation of the Helmholtz
equation.

Our generalization of variable separation for the Helm-
holtz equation to R-separation and including null coordi-
nates would be of little value unless nontrivial R-separation
exists. In fact, all of the phenomena discussed in this paper
do occur. For examples of ordinary separation involving
type 2 (null) coordinates see Refs. 4, 5, and 11. For examples
{and a theory} of nontrivial orthogonal R-separation see
Refs. 3 and 12. Here, we merely recall one example of non-
orthogonal R-separation from Ref. 12 to show how it relates
to the general theory. The example is a ¥, with local coordi-
nates (x,....x*)=(x,y,a,8 ) and metric

0 0 & 1
lo 0 e 1

gy — i 5.1

E1=lo o 0 o0 -0
1 1 0 0

Thus, n, = n; = 2, n = 4. The coordinates are easily
checked to be Hamilton-Jacobi separable and /=

E. G. Kalnins and W. Miller, Jr. 1052

Downloaded 30 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Ing'/?/S) = ~ In(¢’ — €). Since n, = 0, condition (3) of
Theorem 1 is satisfied. We first check ordinary separability.
Here H >=H *=1andg™f, + g%, = — & — ¢,
&%, + &%, = — 1s0 2,¢"f, is always a Stiickel multi-
plier. It follows that the Helmholtz equation separates in the
coordinates {x/]. We have shown that Q = f'satisfies condi-
tion (2) in Theorem 1. However, once we have separation we
can achieve further R-separation by choosing Q to be any
other function satisfying condition {2). In particular choose
@ = 0. Then the Helmholtz equation R-separates in the co-
ordinates {x/] with R = (¢ — €*)"/% (The phenomenon of
multiple R-separation for a single coordinate system is possi-
ble only if type 2 coordinates are present.) In Ref. 12 we give
the operator characterizations of these coordinates in accor-
dance with Theorem 3.

Upon comparison of Theorem 2 and 3 it is clear that R-
separation and not just ordinary separation is the appropri-
ate Helmholtz analogy of separation for the Hamilton-Ja-
cobi equation.
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